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Abstract. An affine Hecke algebra can be realized as an equivariant K-group of the corresponding
Steinberg variety. This gives rise naturally to some two-sided ideals of the affine Hecke algebra by
means of the closures of nilpotent orbits of the corresponding Lie algebra. In this paper we will
show that the two-sided ideals are in fact the two-sided ideals of the affine Hecke algebra defined
through the two-sided cells of the corresponding affine Weyl group after the two kinds of ideals are
tensored by Q. This proves a weak form of a conjecture of Ginzburg proposed in 1987.

0. Introduction

LetH be an affine Hecke algebra over the ring Z[v, v−1] of Laurent polynomials in an in-
determinate v with integer coefficients. The affine Hecke algebra has a Kazhdan–Lusztig
basis. The basis has many remarkable properties and plays an important role in repre-
sentation theory. Also, Kazhdan and Lusztig and Ginzburg gave a geometric realization
of H , which is the key to the proof by Kazhdan and Lusztig of the Deligne–Langlands
conjecture on classification of irreducible modules of affine Hecke algebras over C at
non-roots of 1. This geometric construction of H has some two-sided ideals defined nat-
urally by means of the nilpotent variety of the corresponding Lie algebra. The two-sided
ideals form a nice filtration of the affine Hecke algebra. In [G2] Ginzburg conjectured that
the two-sided ideals are in fact the two-sided ideals of the affine Hecke algebra defined
through two-sided cells of the corresponding affine Weyl group (see also [L6, T2]). The
conjecture is known to be true for the trivial nilpotent orbit {0} (see Corollary 8.13 in
[L6] and Theorem 7.4 in [X1]) and for type A [TX]. Other evidence is showed in [L6,
Corollary 9.13]. We will prove the two kinds of two-sided ideals coincide after they are
tensored by Q (see Theorem 1.5 in Section 1). This proves a weak form of Ginzburg’s
conjecture.

1. Affine Hecke algebra

1.1. Let G be a simply connected simple algebraic group over the complex number
field C. The Weyl group W0 acts naturally on the character group X of a maximal tours
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of G. The semidirect product W = W0 n X with respect to this action is called an (ex-
tended) affine Weyl group. Let H be the associated Hecke algebra over the ring A =
Z[v, v−1] (v an indeterminate) with parameter v2. Thus H has an A-basis {Tw | w ∈ W }
and its multiplication is defined by the relations (Ts − v2)(Ts + 1) = 0 if s is a simple
reflection and TwTu = Twu if l(wu) = l(w)+ l(u), where l is the length function of W .

1.2. Let g be the Lie algebra of G, N the nilpotent cone of g, and B the variety of all
Borel subalgebras of g. The Steinberg variety Z is the subvariety ofN ×B×B consisting
of all triples (n, b, b′), n ∈ b ∩ b′ ∩N , b, b′ ∈ B. Let 3 = {(n, b) | n ∈ N ∩ b, b ∈ B}
be the cotangent bundle of B. Clearly Z can be regarded as a subvariety of 3 × 3 via
the imbedding Z → 3 × 3, (n, b, b′) 7→ (n, b, n, b′). Define a G × C∗-action on
3 by (g, z) : (n, b) 7→ (z−2ad(g)n, ad(g)b). Let G × C∗ act on 3 × 3 diagonally;
then Z is a G × C∗-stable subvariety of 3 × 3. For 1 ≤ i < j ≤ 3, let pij be the
projection from 3×3×3 to its (i, j)-factor. Note that the restriction of p13 gives rise
to a proper morphism p−1

12 (Z) ∩ p
−1
23 (Z) → Z. Let KG×C∗(Z) = KG×C∗(3 × 3;Z)

be the Grothendieck group of the category of G × C∗-equivariant coherent sheaves on
3×3 with support in Z. We define the convolution product

∗ : KG×C∗(Z)×KG×C∗(Z)→ KG×C∗(Z), F ∗G = (p13)∗(p
∗

12F⊗O3×3×3p
∗

23G ),

where O3×3×3 is the structure sheaf of 3×3×3. This endows KG×C∗(Z) with an
associative algebra structure over the representation ring RG×C∗ of G × C∗. We shall
regard the indeterminate v as the representationG×C∗→ C∗, (g, z) 7→ z. Then RG×C∗
is identified with A ⊗Z RG. In particular, KG×C∗(Z) is an A-algebra. Moreover, as an
A-algebra, KG×C∗(Z) is isomorphic to the Hecke algebra H (see [G1, KL2] or [CG,
L6]). We shall identify KG×C∗(Z) with H .

1.3. Let C and C′ be two G-orbits in N . We say that C ≤ C′ if C is in the closure of C′.
This defines a partial order on the set of G-orbits in N . Given a locally closed G-stable
subvariety of N , we set ZY = {(n, b, b′) ∈ Z | n ∈ Y }.

If Y is closed, then the inclusion iY : ZY → Z induces a map (iY )∗ : KG×C∗(ZY )→
KG×C∗(Z) (see [G1, KL2]). The image HY of (iY )∗ is in fact a two-sided ideal of
KG×C∗(Z) (see [L6, Corollary 9.13]), which is generated byG×C∗-equivariant sheaves
supported on ZY . It is conjectured that this ideal is spanned by elements in a Kazhdan–
Lusztig basis (see [G2, L6, T2]).

1.4. Let Cw = v−l(w)
∑
y≤w Py,w(v

2)Ty , where Py,w are the Kazhdan–Lusztig polyno-
mials. Then the elements Cw (w ∈ W) form an A-basis of H , called a Kazhdan–Lusztig
basis of H . Define w ≤LR u if aw 6= 0 in the expression hCuh′ =

∑
z∈W azCz (az ∈ A)

for some h, h′ inH . This defines a preorder onW . The corresponding equivalence classes
are called two-sided cells and the preorder gives rise to a partial order ≤LR on the set of
two-sided cells of W . (See [KL1].) For an element w in W and a two-sided cell c of W
we shall write w ≤LR c if w ≤LR u for some (equivalent any) u in c.

Lusztig established a bijection between the set of G-orbits in N and the set of two-
sided cells of W (see [L4, Theorem 4.8]). Lusztig’s bijection preserves the partial orders
we have defined: this was conjectured by Lusztig and verified by Bezrukavnikov (see [B,
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Theorem 4(b)]). Perhaps this bijection is at the heart of the theory of cells in affine Weyl
groups; many deep results are related to it. Now we can state the main result of this paper.

Theorem 1.5. Let C be a G-orbit in N and c the two-sided cell of W corresponding
to C under Lusztig’s bijection. Then the elements Cw (w ≤LR c) form a Q[v, v−1]-
basis of HC̄ ⊗Z Q, where C̄ denotes the closure of C and HC̄ is the image of the map
(iC̄)∗ : KG×C∗(ZC̄)→ KG×C∗(Z) = H .

Remark. In [B] Bezrukavnikov established a closely related result, which involves affine
flag manifolds, derived categories and the Springer resolution (see Theorem 4(a) there).
Bezrukavnikov’s result deals with canonical left cells and suggests a very nice possible
approach to Theorem 1.5. We will discuss this approach in Section 3. I am very grateful
to the referee for pointing out this approach.

2. Proof of the theorem

2.1. Before proving the theorem we need to recall some results about representations of
an affine Hecke algebra. Let H = C[v, v−1]⊗AH and for any nonzero complex number
q set Hq = H⊗C[v,v−1] C, where C is regarded as a C[v, v−1]-algebra by specializing v
to a square root of q.

For any G-stable locally closed subvariety Y of N we set KG×C∗(ZY ) =
KG×C∗(ZY ) ⊗ C. If Y is closed, then the inclusion iY : ZY → Z induces an injec-
tive map (iY )∗ : KG×C∗(ZY ) ↪→ KG×C∗(Z) = H. If Y is a closed subset of N , we shall
identify KG×C∗(ZY ) with the image of (iY )∗, which is a two-sided ideal of H. See [KL2,
5.3] or [L6, Corollary 9.13].

Let s be a semisimple element ofG, and n a nilpotent element inN such that ad(s)n =
qn, where q is in C∗. Let Bsn be the subvariety of B consisting of the Borel subalgebras
containing n and fixed by s. Then the component group A(s, n) = CG(s, n)/CG(s, n)o

of the simultaneous centralizer inG of s and n acts on the total complex homology group
H∗(Bsn). Let ρ be a representation of A(s, n) appearing in the space H∗(Bsn). It is known
that if

∑
w∈W0

q l(w) 6= 0 then the isomorphism classes of irreducible representations
of Hq are in one-to-one correspondence to the G-conjugacy classes of all the triples
(s, n, ρ), where s ∈ G is semisimple, n ∈ N satisfies ad(s)n = qn, and ρ is an irre-
ducible representation of A(s, n) appearing in H∗(Bsn). See [KL2, X3].

Remark. In the proof of this section we shall often use arguments from [KL2] although
the setting there is different from ours. In [KL2] equivariant topological K-homology
Ktop( ) is considered, while we consider equivariant algebraic K-theory K( ). We explain
why the arguments of [KL2] work in the present paper. Besides the fact that algebraic
K-theory and topological K-theory share many properties (one may compare [KL2] with
[Th1, Th2, CG]), the key reason is that K(Bsn) ' Ktop(Bsn) and K(Bsn)⊗ C ' Ktop(Bsn)
⊗ C, as explained in [L5, p. 80]. (The isomorphisms rely on the results in [DLP].) One
may see that the properties of Ktop(Bsn)⊗ C play a key role in the arguments of [KL2].

2.2. From now on we assume that q is not a root of 1. Let Lq(s, n, ρ) be an irreducible
representation of Hq corresponding to the triple (s, n, ρ). Kazhdan and Lusztig con-
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structed a standard module M(s, n, q, ρ) over Hq such that Lq(s, n, ρ) is the unique
simple quotient of M(s, n, q, ρ) (see [KL2, 5.12(b) and Theorem 7.12]). We shall write
Mq(s, n, ρ) for M(s, n, q, ρ). The following simple fact will be needed.

(a) Let C be a G-orbit in N . Then the image HC̄ of (iC̄)∗ acts on Mq(s, n, ρ) and
Lq(s, n, ρ) by zero if n is not in C̄.

Proof. Clearly Y = C̄ ∪ (G.n −G.n) is closed. If n is not in C̄, then the complement in
X = C̄ ∪ G.n of Y is G.n. Recall that KG×C∗(ZY ′) is regarded as a two-sided ideal of
H for any closed subset Y ′ of N (see 2.1). According to [KL2, 5.3(c), (d) and (e)], the
inclusions i : Y ↪→ X and j : G.n ↪→ X induce an exact sequence of H-bimodules

0→ KG×C∗(ZY )→ KG×C∗(ZX)→ KG×C∗(ZG.n)→ 0.

Using [KL2, 5.3(e)] we know the inclusion k : C̄ → Y induces an injective H-bimodule
homomorphism k∗ : KG×C∗(ZC̄)→ KG×C∗(ZY ). Since Mq(s, n, ρ) is a quotient mod-
ule of KG×C∗(ZG.n) (cf. proof of 5.13 in [KL2]), the statement (a) then follows from the
exact sequence above.

2.3. Let Jc be the based ring of a two-sided cell c ofW , which has a Z-basis {tw |w ∈ c}.
Let Dc be the set of distinguished involutions in c. For x, y ∈ W , we write CxCy =∑
z∈W hx,y,zCz, hx,y,z ∈ A. The map

ϕc(Cw) =
∑
d∈Dc
u∈W

a(d)=a(u)

hw,d,utu, w ∈ W,

defines an A-algebra homomorphism H → Jc ⊗Z A, where a : W → N is the a-
function defined in [L1, 2.1]. The homomorphism ϕc induces a C-algebra homomorphism
ϕc,q : Hq → Jc = Jc⊗ZC. IfE is a Jc-module, then through ϕc,q ,E gets an Hq -module
structure, which will be denoted by Eq . See [L2, L3].

Let C be the nilpotent orbit corresponding to c. According to [L4, Theorems 4.2 and
4.8], the map E → Eq defines a bijection between the isomorphism classes of simple
Jc-modules and the isomorphism classes of standard modules Mq(s, n, ρ) with n in C.
The following fact will be needed.

(a) Let c be a two-sided cell ofW and C the corresponding nilpotent class. LetMq(s, n, ρ)

be a standard module with n in a nilpotent class C′. If CwMq(s, n, ρ) 6= 0 for some
w ∈ c, then C̄′ ⊆ C̄.

Proof. Let c′ be the two-sided cell corresponding to C′. Then Mq(s, n, ρ) is isomor-
phic to Eq for some simple Jc′ -module E. Thus CwMq(s, n, ρ) 6= 0 implies that
ϕc′,q(Cw)E 6= 0. So hw,d,u 6= 0 for some distinguished involution d ∈ c′ and some
u ∈ c′. We then have c′ ≤LR c. By [B, Theorem 4(b)] we know that C̄′ ⊆ C̄. The state-
ment is proved.

Now we start to prove Theorem 1.5.
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2.4. We first show that HC̄ is contained in the two-sided ideal H≤c of H spanned by all
Cw (w ≤LR c).

Let C = G.n and recall that HC̄ stands for the image of (iC̄)∗ : KG×C∗(ZC̄) →
KG×C∗(Z) = H . If HC̄ were not contained in the A-submodule H≤c of H , we could
find x ∈ W such that x 6≤LR c and Cx appears in HC̄ . (We say that Cx appears in HC̄ if
there exists an element

∑
w∈W awCw (aw ∈ A) in HC̄ such that ax 6= 0.) Choose x ∈ W

such that Cx appears in HC̄ , x 6≤LR c and x is highest with respect to the preorder ≤LR
and to HC̄ in the following sense: whenever Cw appears in HC̄ , then either w and x are in
the same two-sided cell or x 6≤LR w. Let c′ be the two-sided cell containing x. We then
have c′ 6≤LR c.

Choose an element h =
∑
w∈W awCw (aw ∈ A) in HC̄ such that hc′ =

∑
w∈c′ awCw

is nonzero. We have ϕc′(h) = ϕc′(hc′).
We claim that ϕc′(hc′) is nonzero. Let u ∈ c′ be such that au has the highest degree

(as a Laurent polynomial in v) among all aw, w ∈ c′. Let d be the distinguished invo-
lution such that d and u are in the same left cell. It is known that for any distinguished
involution d ′, the degree hw,d ′,u is less than the degree of hu,d,u if either w 6= u or d ′ 6= d
(see [L2, Theorems 1.8 and 1.10]). Thus the degree of awhw,d ′,u is less than the degree
of auhu,d,u if either w 6= u or d ′ 6= d. Hence ϕc′(h′c) is nonzero.

Clearly, there are only finitely many q such that ϕc′,q(hc′) is zero after specializing v
to a square root of q. According to [BO, Theorem 4], the ring Jc′ is semisimple, that is,
its Jacobson radical is zero. So we can find a nonzero q in C of infinite order and a simple
Jc′ -module E′ such that ϕc′,q(h) = ϕc′,q(hc′) is nonzero and its action on E′ is nonzero.

According to [L4, Theorems 4.2 and 4.8], E′q is isomorphic to a standard module
Mq(s

′, n′, ρ) with n′ in the nilpotent orbit C′ corresponding to c′. Since c′ 6≤LR c, C′ is
not in the closure of C (see [B, Theorem 4(b)]), so by 2.2(a), the image HC̄ of (iC̄)∗ acts
on E′q by zero. This contradicts that the action of ϕc′,q(h) on E′ is nonzero. ThereforeHC̄
is contained in the two-sided ideal H≤c.

2.5. In this subsection all tensor products are over Z except when other specifications are
given.

Now we show that H≤c ⊗ Q is equal to HC̄ ⊗ Q. If C is regular, then C̄ is the whole
nilpotent cone and the corresponding two-sided cell c contains the neutral element e; in
this case, both HC̄ and H≤c are the whole Hecke algebra.

We use induction on the partial order ≤LR in the set of all two-sided cells of W .
Assume that for all c′ with c ≤LR c′ and c′ 6= c, we have HC̄′ ⊗ Q = H≤c′ ⊗ Q, where
C′ is the nilpotent orbit corresponding to c′.

We need to show HC̄ ⊗ Q = H≤c ⊗ Q. Let c′ be a two-sided cell different from c

such that c ≤LR c′ but there is no two-sided cell c′′ between c and c′, i.e. no c′′ such that
c ≤LR c

′′
≤LR c

′ and c 6= c′′ 6= c′.
Let F be an algebraic closure of C(v). We first show that F ⊗A HC̄ = F ⊗A H≤c.

Assume this were not true. Note that F is isomorphic to C (noncanonically), so we can
apply the results in [KL2]. By 2.4 and induction hypothesis, there would exist w ∈ c such
that Cw is contained in F⊗A HC̄′ but not in F⊗A HC̄ .
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We claim that Cw is not contained in F⊗AHC̄′−C′ . Let Ci (i = 1, . . . , k) be nilpotent
classes such that C̄′−C′ is the union of C̄1, . . . , C̄k and C̄i 6⊆ C̄j whenever 1 ≤ i 6= j ≤ k.
By the choice of C′, we have C = Ci for some i. It is no harm to assume that C = C1. It
is known that F ⊗A HC̄′−C′ is the sum of all F ⊗A HC̄i , 1 ≤ i ≤ k (see [KL2, 5.3(e)]).
Since C̄ 6⊆ C̄i for i 6= 1, by [B, Theorem 4(b)] we know that Cw is not in H≤ci , where ci
is the two-sided cell corresponding to Ci . By 2.4 we see that F⊗A HC̄i (i ≥ 1) does not
contain Cw. Assume that Cw were contained in F ⊗A HC̄′−C′ . Then there would exist a
subset J of {1, . . . , k} and hi ∈ F⊗AHC̄i (i ∈ J ) such that Cw =

∑
i∈J hi and hi 6∈ HC̄i′

for different i, i′ in J . We may choose such a J so that
∑
i∈J i is minimal possible. Let

j be the largest number in J . Then j > 1 since Cw is not contained in F⊗A HC̄1
(recall

that C1 = C).

Let C′j be a nilpotent class in C̄j such that hj is in F⊗A HC̄′j but not in F⊗A HC̄′j−C′j .

Thus the image in MC′j = F ⊗A KG×C∗(ZC′j ) = F ⊗A HC̄′/F ⊗A HC̄′j−C′j
of hj is

nonzero. According to [KL2, Corollary 5.9], the action of each nonzero element in F⊗A
HC̄′j
\F⊗AHC̄′j−C′j onMC′ is nonzero. The argument for [KL2, Proposition 5.13] implies

that each nonzero element in MC′j would have nonzero image in some standard quotient
module of MC′j . Thus the action of hj on some standard quotient module Mv2(s, n′j , ρ

′)

of MC′j is nonzero, where n′j ∈ C
′

j . Note that C̄′j 6⊆ C̄i for any i ∈ J with i 6= j since
hj is not in F ⊗A HC̄i if i 6= j . By 2.2(a), hi acts on Mv2(s, n′j , ρ

′) by zero if i 6= j .
So CwMv2(s, n′j , ρ

′) = hjMv2(s, n′j , ρ
′) 6= 0. By 2.3(a), we get C̄′j ⊆ C̄ = C1. This

contradicts that
∑
i∈J i is minimal and j > 1. Therefore Cw is not contained in F ⊗A

HC̄′−C′ .

Thus the image in MC′ = F ⊗A KG×C∗(ZC′) = F ⊗A HC̄′/F ⊗A HC̄′−C′ of Cw is
nonzero. According to [KL2, Corollary 5.9], the action of each nonzero element in F⊗A
HC̄′ \F⊗AHC̄′−C′ onMC′ is nonzero. The argument for [KL2, Proposition 5.13] implies
that each nonzero element in MC′ would have nonzero image in some standard quotient
module of MC′ . Thus the action of Cw on some standard quotient module Mv2(s, n′, ρ)

ofMC′ is nonzero, where n′ ∈ C′. According to 2.3(a), we have C̄′ ⊆ C̄. By Theorem 4(b)
in [B], we get c′ ≤LR c. This contradicts our assumption c′ 6= c ≤LR c′. So we have
F⊗A HC̄ = F⊗A H≤c.

Thus for each w ∈ c, we can find a nonzero a ∈ F such that aCw is in HC̄ . Clearly,
we must have a ∈ A. Now we show that KG×C∗(ZY ) is a free C[v, v−1]-module for
any G-stable locally closed subvariety Y of N . According to [KL2, 5.3] we may assume
that Y is a nilpotent orbit C. It is enough to show that the completion of KG×C∗(ZC) at
any semisimple class in G × C∗ is free over C[v, v−1]. Using [KL2, 5.6] it is enough to
show that the right hand side of 5.6(a) in [KL2] is free. This follows from [KL2, (l3)];
the assumption there is satisfied by [KL2, 4.1]. Using [KL2, 5.3] we know that as a free
C[v, v−1]-module,HC̄′⊗C is a direct sum ofHC̄⊗C and KG×C∗(ZC̄′−C̄). By assumption,
HC̄′ ⊗Q = H≤c′ ⊗Q, thus HC̄′ ⊗Q is a free Q[v, v−1]-module and contains Cw. These
imply that if aCw ∈ HC̄ for some nonzero a ∈ A then Cw ∈ HC̄ ⊗ C. Therefore we
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can find a nonzero complex number a such that aCw is in HC̄ . Obviously a ∈ Z. Thus
H≤c⊗Q is contained inHC̄⊗Q. By 2.4 we then haveH≤c⊗Q = HC̄⊗Q. Theorem 1.5
is proved.

3. An approach based on Theorem 4(a) in [B]

In this section we discuss a nice possible approach to the main result of the present paper
based on Theorem 4(a) in [B]; this was suggested by the referee. Let 0 be the union of
all canonical left cells of W , and I the left ideal of H generated by all Cw, w 6∈ 0. Then
M = H/I is the anti-spherical module. Moreover, the images in M of all Cw, w ∈ 0,
form a basis of M . For each two-sided cell c of W , let M≤c be the submodule of M
spanned by the images of all Cw, w ∈ 0 and w ≤LR c.

According to Arkhipov and Bezrukavnikov (see Subsection 1.1.2 in [AB]), as an H -
module, M is isomorphic to KG×C∗(3) (see Subsection 10.1 in [L6] for the definition
of the H -module structure on KG×C∗(3)). Let C be the nilpotent class in N corre-
sponding to the two-sided cell c under Lusztig’s bijection. Let 3C̄ = {(N, b) ∈ 3 |
N ∈ C̄}. Then the inclusion jC̄ : 3C̄ → 3 induces an H -module homomorphism
(jC̄)∗ : KG×C∗(3C̄) → KG×C∗(3). A variation of Theorem 4(a) in [B] implies that
the image Im(jC̄)∗ of (jC̄)∗ is M≤c if we identify M with KG×C∗(3).

Since each left cell in a two-sided cell has a nonempty intersection with any right cell
in the same two-sided cell, we see that for a two-sided cell c, the two-sided ideal H≤c of
H spanned by all Cw (w ≤LR c) is the annihilator of M/M≤c.

Let C be the nilpotent class corresponding to the two-sided cell c. Then naturally one
hopes to prove that the image Im(iC̄)∗ of the map (iC̄)∗ : KG×C∗(ZC̄)→KG×C∗(Z)=H
coincides with the two-sided ideal H≤c by using the above characterizations for M≤c
and H≤c. A natural way to reach this coincidence is to prove the following two state-
ments:

(a) KG×C∗(3 \3C̄) is isomorphic to KG×C∗(3)/Im(jC̄)∗.
(b) If x ∈ KG×C∗(Z) annihilates KG×C∗(3)/Im(jC̄)∗, then x ∈Im(iC̄)∗.

(a) implies that the image Im(iC̄)∗ is inH≤c, and (b) implies that this image containsH≤c.
Unfortunately, the author has not been able to prove these two statements. See com-

ments in Subsection 4.2 for some ideas.

4. Some comments

4.1. If one can show that KG×C∗(ZC) is a free Z-module for any nilpotent orbit C, then
the argument in 2.5 shows that the image of (iC̄)∗ in H = KG×C∗(Z) contains H≤c,
where c is the two-sided cell corresponding to C. Then Ginzburg’s conjecture would be
proved. In fact, it seems that one can expect more. More precisely, it is likely the following
result is true.
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(a) KG×C∗(ZC) is a free A-module and KG×C∗
1 (ZC) = 0 for all nilpotent orbits C. (We

refer to [CG, Section 5.2] and [Q] for the definition of the functor KG
i .)

If (a) is true, then we also have

(b) The map (iC̄)∗ : KG×C∗(ZC̄)→ KG×C∗(Z) is injective.

We explain some evidence for (a) and prove it for G = GLn(C), Sp4(C) and
type G2. Let N be a nilpotent element in C, and BN be the variety of Borel subalgebras
of g containing N . By the Jacobson–Morozov theorem, there exists a homomorphism
ϕ : SL2(C)→ G such that dϕ

(
0 1
0 0

)
= N . For z in C∗, let dz =

( z 0
0 z−1

)
. Following Kazh-

dan and Lusztig [KL2, 2.4], we define QN = {(g, z) ∈ G× C∗ | ad(g)N = z2N}. Then
QN is a closed subgroup of G× C∗. Let x = (g, z) ∈ QN act on (G× C∗)× BN × BN
by x(y, b, b′) = (yx−1, ad(g)b, ad(g)b′). Then ZC is isomorphic to the quotient space
QN\((G×C∗)×BN ×BN ). Thus we have KG×C∗

i (ZC) = K
QN
i (BN ×BN ) (see [KL2,

5.5] and [Th1, Prop. 6.2]). It is known that Qϕ = {(g, z) ∈ G × C∗ | gϕ(x)g−1
=

ϕ(dzxd
−1
z ) for all x ∈ SL2(C)} is a maximal reductive subgroup of QN (see [KL2,

2.4(d)]). So we have KQN
i (BN × BN ) = K

Qϕ
i (BN × BN ) (see [CG, 5.2.18]).

Let P be the parabolic subgroup of G associated to N (see [DLP, 1.12]). Then we
know that the intersection BN,O of BN with any P -orbit O on B is smooth. The torus
D = {ϕ(dz) | z ∈ C∗} is a subgroup of P and acts on BN,O , and BN,O is a vector bundle
over the D-fixed point set BD

N,O (see [DLP, 3.4(d)]). Since the action of Qϕ on BN,O
commutes with the action of D, according to [BB], this vector bundle is isomorphic to a
Qϕ-stable subbundle of T (BN,O )|BD

N,O
, where T (BN,O ) is the tangent bundle of BN,O .

Thus the vector bundle is Qϕ-equivariant, so that the computation of KQϕ
i (BN × BN )

is reduced to the computation of KQϕ
i (BD

N,O × B
D
N,O ′) for various P -orbits O, O ′ on

B (see Theorems 2.7 and 4.1 in [Th1], or Theorems 5.4.17 and 5.2.14 in [CG]). Note
that Cϕ = {gϕ(d−1

z ) | (g, z) ∈ Qϕ} is a maximal reductive subgroup of the centralizer
CG(N) of N (see [BV, 2.4]) and the map (g, z) 7→ (gϕ(d−1

z ), z) defines an isomorphism

from Qϕ to Cϕ × C∗. Thus we have KQϕ
i (BD

N,O × B
D
N,O ′) = K

Cϕ×C∗
i (BD

N,O × B
D
N,O ′).

Now the factor C∗ and the group D act on BD
N,O × B

D
N,O ′ trivially, we therefore have

K
Qϕ
i (BD

N,O × B
D
N,O ′) = K

Cϕ
i (BD

N,O × B
D
N,O ′) ⊗ RC∗ (see [CG, (5.2.4)], the argument

there works for higherK-groups). Note that we have identified RC∗ withA = Z[v, v−1].
Thus the statement (a) is equivalent to the following one.

(c) KCϕ
i (BD

N,O × B
D
N,O ′) is a free Z-module for i = 0 and is 0 for i = 1.

The statement (c) seems much easier to access. The variety BD
N,O and its fixed point

set Bs,D
N,O for any semisimple element s in Cϕ are smooth and have good homology prop-

erties. See [DLP].

4.2. Replacing Z by 3, we can state the counterparts of 4.1(a), 4.1(b) and 4.1(c) as
follows.



Kazhdan–Lusztig basis and a geometric filtration 215

(a) KG×C∗(3C) is a free A-module and KG×C∗
1 (3C) = 0 for all nilpotent orbits C.

If (a) is true, then we have

(b) The map (iC̄)∗ : KG×C∗(3C̄)→ KG×C∗(3) is injective.

As in 4.1, the statement (a) is equivalent to the following one:

(c) KCϕ
i (BD

N,O ) is a free Z-module for i = 0 and is 0 for i = 1.

It is easy to check that the statement (a) implies 3(a). Also (a) is helpful to understand
the statement 3(b).

Proposition 4.3. The statements 4.1(a) and 4.2(a) are true for GLn(C), Sp4(C) and
type G2. In particular, Ginzburg’s conjecture is true in these cases.

Proof. We only need to prove statements 4.1(c) and 4.2(c). For G = GLn(C), we know
that BD

N,O has an α-partition into subsets which are affine space bundles over the flag
variety B′ of Cϕ (see Theorems 2.2 and 2.4(a) in [X2]). In this case, 4.1(a) and 4.2(a) are
true since we are reduced to computing KCϕ

i (B′ × B′) and KCϕ
i (B′) (cf. [CG, Lemma

5.5.1] and the argument for [L7, Lemma 1.6]). ForG = Sp4(C) or typeG2, we know that
BD
N,O is either empty or the flag variety of Cϕ if N is not subregular (see Prop. 4.2(i) and

Section 4.4 in [X2]). In this case, we are also reduced to computing KCϕ
i (B′ × B′) and

K
Cϕ
i (B′) (loc.cit.), so 4.1(a) and 4.2(a) are true. If N is subregular, then BN is a Dynkin

curve and it is easy to see that BD
N,O is either a projective line or a finite set (see Prop.

4.2(ii) and Section 4.4 in [X2] for a computable description of BN ). The computation for
K
Cϕ
i (BD

N,O × B
D
N,O ′) and KCϕ

i (BD
N,O ) is easy, they are free Z-modules for i = 0 (see

4.3(b) and 4.4 in [X2]), and are 0 for i = 1 (since this is true for a projective line and a
finite set). The proposition is proved.

Remark. For GLn(C), this proposition also provides another proof for the main result of
[TX], where results of [T1] are used.

Proposition 4.4. Assume that Cϕ is connected. Then

(a) KCϕ (BN × BN ) is a free Z-module.
(b) KQϕ (BN × BN ) is a free A-module. That is, KG×C∗(ZG.N ) is a free A-module.

Proof. Let T be a maximal torus of Cϕ . According to [Th2, (1.11)], we have a split
monomorphism KCϕ (BN × BN ) → KT (BN × BN ). Similar to the argument for [L7,
Lemma 1.13(d)], we see that KT (BN × BN ) is a free RT -module. (a) follows.

The reasoning for (b) is similar sinceQϕ is isomorphic to Cϕ×C∗ and the monomor-
phism KQϕ (BN × BN )→ KT×C∗(BN × BN ) is split. The proposition is proved.

Remark. If G = GLn(C), then all Cϕ are connected and have simply connected derived
group. In this case KQϕ (BN × BN ) is a free RQϕ -module since RQϕ = RCϕ ⊗ A and
RT×C∗ is a free RCϕ ⊗ A-module. Combining this, Subsection 2.4 and the argument in
Subsection 2.5 we obtain a different proof of the main result in [TX].
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4.5. The K-groups KF (BN ) and KF (BN × BN ) are important in representation theory
of affine Hecke algebras for F being Qϕ, Cϕ or a torus of Qϕ (see [KL2, L7]). For the
nilpotent element N , in [L4, 10.5] Lusztig conjectured that there exists a finite Cϕ-set Y
which plays a key role in understanding the based ring of the two-sided cell correspond-
ing to G.N . It seems that as RCϕ -modules, KCϕ (Y ) and KCϕ (Y × Y ) are isomorphic to
KCϕ (BN ) and KCϕ (BN × BN ) respectively. Let X = BN or BN × BN . In view of [L4,
10.5] one may hope to find a canonical Z-basis of KCϕ (X) and a canonical A-basis of
KQϕ (X) in the spirit of [L6, L7]. Moreover, there should exist a natural bijection between
the elements of the canonical basis of KF (BN × BN ) (F = Cϕ or Qϕ) and the elements
of the two-sided cell corresponding to G.N .
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