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Abstract. We prove a Liouville type theorem for sign-changing radial solutions of a subcritical
semilinear heat equation u; = Au + |u|1’_1u. We use this theorem to derive a priori bounds,
decay estimates, and initial and final blow-up rates for radial solutions of rather general semilin-
ear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further conse-
quences on the existence of steady states and time-periodic solutions are also shown.

1. Introduction

In this paper we study the asymptotic behavior of classical solutions of problems of the
form

ur — Au = f(x|,t,u,Vu), xe€Q,t >0,
u=0, x €02, t>0, (1.1)
u(x,0) =upx), xeQ,

where Q is a radial domain in RY (that is, a ball, an annulus, an exterior of a ball or
the whole of RY), uq is radially symmetric and f behaves like the power nonlinearity
lul?~u, p > 1, for large values of u. (If N = 1 then the radial symmetry of € and ug
is not needed.) Solutions of are radially symmetric in the x-variable and we will
often consider such functions as functions of the radial variable r = |x| and ¢. Hence,
without fearing confusion we use both the notation u(x, r) and u(r, t). The key ingredient
of our study is a Liouville-type theorem for radial solutions of the corresponding limiting
problem

ur— Au=ul’lu, xeRN, reR, (1.2)

which enables us to derive universal estimates on solutions of (I.T).
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We start with a short description of analogous results for elliptic problems which play
an important role also in the parabolic case. It is well known (see [19} 9] or [35] and the
references therein) that the problem

—Au=ul”'u, xeRV, (1.3)

possesses positive classical solutions if and only if p > pg, where pg is the critical
Sobolev exponent:

N+2
NH2 den >3,

ps ‘= N -2
0 if N e {1,2}).

The theorem on nonexistence of positive solutions of (T.3)) in the subcritical case, often
referred to as a Liouville theorem for (I.3)), is very useful in the study of nonnegative
solutions of problems of the form

—Au = f(x,u,Vu), x¢€Q, (1.4)

where € is an arbitrary domain in R and f behaves like the power |u|?~'u for u large. In
combination with scaling arguments, the Liouville theorem is very effective for derivation
of a priori estimates on positive solutions (see [30] for recent theorems on universal a
priori estimates and a discussion of earlier results).

It is well known that the Liouville theorem for (T.3)) is not valid for nodal solutions,
that is, solutions which may change sign. However, one can hope that it does hold (and,
as a consequence, a priori estimates for can be established), if the class of solutions
considered is restricted by an additional structure. An example is the class of solutions
with finite Morse index. The nonexistence of nodal solutions of (I.3) with finite Morse
index (or, more generally, solutions which are stable outside a compact set) for all sub-
critical and even some supercritical values of p was proved in [4} [17]].

Another interesting and natural class is that of radial solutions with a finite number
of zeros. As we explain below, in the context of parabolic equations this class is more
relevant, thus we discuss it in more detail. Given an open interval / C R and v € C({),
we define

zr() :==sup{j : Ixy, ..., xj1 €1, x1 < -+ < Xj41,
v(xi) - v(xiy1) <Ofori =1,...,j},

where sup(f) := 0. We usually refer to z;(v) as the zero number of v in I. Note that
z7(v) is actually the number of sign changes of v; it coincides with the number of zeros
of vif v e C1(I) and all its zeros are simple.

The following result is an elliptic Liouville-type theorem for radial solutions with
finite zero number. It is a direct consequence of [28, Theorem 2.5].

Theorem 1.1. Let 1 < p < pg and let u = u(r) be a classical radial solution of (1.3)
with 20,00)(#) < 00. Then u = 0. The same result remains true for non-radial solutions
u=ux)if N =1and zr(u) < oo.
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‘We remark that the result in Theoremis not true without the assumption z g, 50y (#) < 00
(or zr(u) < 00).

Finally, we mention a yet another class of solutions admissible for the Liouville the-
orem, namely solutions (not necessarily radially symmetric) lying in the energy space

E:={veLPP'RY): vve L2RV))},

(1.5
Ivlle = vl Lr+1 @yy + IVl 2@

In fact, if u € & is a solution of (I.3) then the Pohozaev identity and the equality
Jgv IVul?dx = [pn [u|P*! dx (which can be proved by using the same cut-off func-
tion as in the proof of the Pohozaev identity [37, Theorem B.3]) guarantee u = 0.

Let us now turn to parabolic problems, first considering positive solutions. A nat-
ural extension of the elliptic Liouville theorem for positive solutions would state that
for any subcritical p there are no positive classical solutions of (I.2)) (note that in (I.2))
we are dealing with entire solutions, that is, solutions defined for all times t € R). So
far such an extension has been proved only for exponents p € (1, pg), where pp =
N(N +2)/(N — 1)2 (see [6] or [35, Theorem 21.2]). In particular, if N = 1 then the
following theorem is true.

Theorem 1.2. Let N = 1 and p > 1. Then equation (I.2) has no positive classical
solutions.

The restriction p < pp in the result mentioned above is hardly optimal. On the other
hand, if we restrict ourselves to the radial solutions then the following result due to [29}
31] is valid for the optimal range of exponents.

Theorem 1.3. Let 1 < p < ps. Then equation (1.2) has no positive classical radial
solutions.

As in the elliptic case, Theorems [I.2] and [I.3] can be used for proving optimal estimates
of positive radial solutions of problems of the form (I.T)) (see [31])). In particular, one can
deduce initial and final blow-up rates of local solutions as well as decay rates for global
solutions, all with universal constants.

The previous discussion raises a natural question whether as in the elliptic case a
Liouville-type theorem and a priori estimates are valid for a suitable class of nodal so-
lutions. Unlike in elliptic equations, the class of solutions with finite Morse index does
not seem to be appropriate. While one can make sense of a Morse index along a solution
u(-, 1), defining it for each fixed ¢ using the “elliptic part” of the equation, a discrete quan-
tity defined this way is not a Lyapunov functional for the parabolic semiflow (cf. [18]),
hence it can increase along a solution of (I.T)) and possibly be unbounded. For this rea-
son, extensions of the elliptic Liouville theorem for solutions with finite Morse index to
parabolic equations are probably not very meaningful.

On the other hand, it is well known (see [3} [12]]) that the zero number is a discrete-
valued Lyapunov functional for radial solutions of many problems of the form (I.IJ.
Therefore, we focus our attention on radial nodal solutions with finite zero number. Our
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main aim is to extend Theorems[I.2] and their applications in [31] to such nodal solu-
tions. It is also well known that for many parabolic problems, the usual energy functional
serves as a real-valued Lyapunov functional, at least for solutions in a suitable energy
space. Hence, the class of solutions with finite energy can also be considered and we
prove several results for such solutions as well. In fact, we use energy estimates at several
places to complement zero number arguments.

Our first result is the following Liouville-type theorem.

Theorem 1.4. Let 1 < p < ps and let u = u(r, t) be a classical radial solution of (1.2).
Assume that there exists Z € N such that

20,000, 1) < Z (t eR). (1.6)
Thenu = 0.

As in the elliptic case, the finiteness of z(,00) (1 (-, t)) for some ¢t € R is necessary for the
nonexistence result in Theorem@ in general. On the other hand, if we restrict ourselves
to bounded radial solutions with suitable spatial decay then the assumption (I.6) is not
needed: see Corollary [2.8]

In dimension one, we can treat nonsymmetric solutions as well. The following two
theorems are results of independent interest, but they will also be needed, together with
Theorem T.4] for the derivation of a priori estimates on radial solutions of (I.T).

Theorem 1.5. Let N = 1, p > 1 and let u = u(x,t) be a classical solution of (1.2).
Assume that there exists Z € N such that

R, 1) <Z (t€R). (1.7)
Thenu = 0.
Theorem 1.6. Let p > 1 and let u = u(x, t) be a classical solution of the problem

up — gy = u|”"'u, x € (0,00, t €R,

1.8
u(,1) =0, teR. (18)

Assume that there exists Z € N such that
20,000, 1)) < Z (t € R). (1.9

Then u = 0.

The proof of Theorem|I.5]for bounded solutions is based on zero number arguments only
(see Proposition . On the other hand, in the proof of Theorem for N > 1 we
employ zero number arguments as well as energy arguments. First, the bound on the zero
number of the solution u(-, t) is used in order to get a uniform bound on u(-, ) in the
energy space £. This bound is very useful since the Cauchy problem

ur— Au=ul’u, xeRY, r>0,
(1.10)

u(x,0) =ug(x), xeRV,
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is well posed in & (see the case A = 0 in [35, Example 51.28]) and the corresponding
solution satisfies the energy identity

I
E@(- 1) — E(u(-, 1)) = —/2/ u?(x, 1) dx dt, (1.11)
131 RN

1 1
E(v) :=f <—|W|2——|u|P+‘)dx
RN 2 p—l—l

is the energy functional. Using the energy estimates, we reduce the proof to the problem
of nonexistence of nontrivial equilibria which is guaranteed by Theorem [I.T}

As a by-product of various energy estimates derived in this paper, we obtain two al-
ternative proofs of Theorem|I.3] These proofs are completely different from the proof of
the main result in [29], hence they might be of interest. The first one (see Remark [2.6)
makes use of the nonexistence result in [6] in the one-dimensional case. The second al-
ternative proof is essentially self-contained but requires the additional assumption p < 3
(see Section[3).

Let us now discuss some consequences of our nonexistence results. Using Theo-
rems [[.4HI.6| we obtain the following universal estimates.

where

Theorem 1.7. Let0 < Ry < Rp < ocandl := (R, Ry)) if Ry > 0,1 :=[0,Ry) if
R1 = 0. Consider the problem

ur — Au= f(|x|,t,u,Vu), xe€Q,te(0,7),

(1.12)
u=0, xedQ, te,T),

with Q == {x e RN : |x| e I}and T € (0,00). Let Z € N, p € (1, ps), ¢ €
0,2p/(p + 1)) and let f be a Carathéodory function satisfying

|f(rt, s, &) < Ci(1+IsI” +1&19) (rel.1e(0.T), seR, &§eRY),
and, for all (r,t) € [R1, R2] x [0, T,

fp, T, s, |s|PTD/2E)
Isl— 00, Ix(0,T)3(p,7)— (1) |s|P—Ls

=L, 1) € (0, 00), (1.13)

uniformly for & bounded. Then there exists a positive constant C = C(f, 2, Z) such that
any radially symmetric solution u of (1.12)) satisfying

LR Ry, 1) =Z (1 €(0,T)) (1.14)

fulfills the following estimates.

(1) If T < oo then

lu(x, )] < C(1+17VPD (7 —n)7VP=Dy  (x e Q, 1t € (0, T)).
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(i) If T = oo then
ux, 0] <CA+:YPDy e, t>0).
(i) IfT =00, Q =RN and f(r,t,s, &) = |s|P~ s then
luG,n| < Ct=V/@=D  (x eRN, t > 0).

If r = 0o or t = oo then the assumption (I.13)) in Theorem 1.7 can be replaced with the
following: Given any sequence (pk, 7x) € I x (0, T) converging to (r, t), there exists a
subsequence (,ok_ 55 Tk j) such that

fox; + p. Ty + 7.5, |s|PTD/2E)
|s|]—=00, j—>00, (p,7)—(0,0) |S|p71S

€ (0, 00).

This generalization is used in the proof of Theorem 1.8.

Of course, analogous statements are true for nonradial solutions if N = 1. The uni-
versal a priori estimates stated in Theorem extend those proved earlier for positive
solutions (i.e. Z = 0 in (]'f_ﬂb; see [31, Theorem 4.1, Corollary 3.2 and Section 6]).

We now present consequences of the above a priori estimates.

An application of Theorem[I.7|shows that global solutions of the model Cauchy prob-
lem (I.I0) with 1 < p < pyg satisfy the decay estimate

-, ) ooy < Ct=H 7D (1.15)

provided ug € L is continuous, radially symmetric and z(o,oc)(#0) < oo (and we con-
sider classical solutions satisfying u(-,t) € L°®°(RY) for all # > 0). The assumption
2(0.00)(10) < 00 is also necessary since there exist radial stationary solutions v of (T.2))
with z(0,00) (V) = 0o. Estimate (I.13)) has interesting consequences for global solutions of
(T.T0) with initial data in H'(R") and p < ps. In this case it is known (see [36} proof of
Theorem 2]) that

lu(, Oll2@wyy = o(r), t — oo. (1.16)
Interpolation between (I.13) and (T.16) yields
NuC, Ol ppriq@wyy = 0, 1 — oo. (1.17)

We will prove that the same estimate is true without the assumption ug € H'(RY) pro-
vided N = 1, ug € C! and the zero numbers of uq and u6 are finite. In addition, in this
case Proposition [5.4] below also shows

lu(,Dlle >0, t— oo. (1.18)

Let us mention that (T-I8) is well known for initial data with exponential decay (see [24],
[25]], [35 Proposition 20.13 and Example 51.24]). On the other hand, it seems to be an
interesting open problem whether (I.18) remains true for all global solutions of (T.10)
with p < psandug € €.
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Another result, in which Theorem|[I.7]is a key ingredient, concerns nontrivial periodic
solutions for a class of periodic-parabolic problems. In Section [6] we consider the model
problem

ur—Au=m(@t)f(w), xeQ,te0,T7),
u=0, xe€ed, te(0,7), (1.19)
ux,0) =ulx,T), x € Q,

where
m € W°([0, T1) is positive, m(0) = m(T), (1.20)
C'®), fO)=0, f(0) <0,
feci®. 1O | £ < } (121)
Il <CA+ul™", r<ps.
and
AC) =1 forsome p € (1, ps). (1.22)

im

lul—o0 |u|P~Vu
Existence of positive solutions of @I) in a bounded domain €2 was proved in [14} [15]
21, 122] 134] under various additional assumptions on m, f and p. Here we assume that 2
is a ball or the whole of RV. If Q = By := {x € RY : |x| < R} then we find infinitely
many radial solutions of (I.19). More precisely, we prove the following theorem.

Theorem 1.8. Consider problem (I.19) with Q = Bg and assume ([.20)-(T.22). Fix
Z € {0,1,2,...}. Then there exists a radial solution u = u(r,t) of (L.I9) satisfying
Z((),R)(u(-, 1)) = Z forallt.

We also consider equations on = R¥, in which case we fix f(u) = |ul?"'u — u
for simplicity. We prove the existence of a positive radial solution of (with the
boundary condition # = 0 on 92 x (0, T') replaced by the condition u(x,?) — 0 as
|x| = o0, t € (0, T); see Theorem [6.1] below).

It is clear that if m is independent of 7, then Theorem [I.§] guarantees the existence
of infinitely many radial equilibria of the autonomous problem (I.19). Applications of
the uniform a priori estimates of global solutions go even farther; one can use them to
show additional properties of equilibria and establish the existence of connecting orbits
between equilibria (see [[1} 2} 132 34] and the references therein).

An interesting aspect of the construction by means of Theorem|[I.7]is that the resulting
equilibria or periodic orbits belong to the boundary of the domain of attraction of the zero
solution. This has a curious consequence for the problem

u,—Au:|u|p_1u, xeQ,t>0,
u=0, xea, t>0, (1.23)
ux,0) =uo(x), xe,
where Q = Br and 1 < p < pgs. Using scaling invariance one easily proves that given

Z € {0,1, ...}, there exists a unique radial equilibrium u satisfying z(o g)(#) = Z and
u(0) > 0 (see [7]). On the other hand the proof of Theorem@] shows that there exists
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a radial equilibrium u satisfying z(o,g)(#) = Z on the boundary of the domain of attrac-
tion of the zero solution. Using these observations and the symmetry of the problem, we
conclude that in fact all radial equilibria of (I.23)) belong to the boundary of the domain
of attraction of zero. This result is well known for positive solutions, but seems to be new
for nodal solutions (cf. [8]]).

2. Liouville-type theorems for nodal solutions

We first consider problem (I.2) with N = 1.

Proposition 2.1. Let u be a bounded classical solution of (L2) with N = 1 and p > 1.
Assume that there exists Z € N such that zr(u(-,t)) < Z forallt € R. Then u = 0.

A crucial ingredient of the proof of this result is the following lemma on the zero number
of solutions of a linear equation

vy = Uy +alx, v, (x, 1) eR x (s, T), 2.1

where —00 < 5 < T < oo and «a is continuous on R x (s, T'). Given a solution v of
(2.1), we examine the function ¢ — z(g,(1),6,(r))(v(:, 1)), where either (01(2), 62(1)) =
(—o0,00) forall t € (s, T), or 81 < 6, are continuous functions on (s, 7). In the latter
case, we shall also assume that

vO1(1), 1) £ 0 £ v(ba(1), 1) (s <t <T). 2.2)

Lemma 2.2. Let v be a nontrivial solution of (2.1). Then for each t € (s, T) the function
v(:, t) has only isolated zeros; in particular, Z(g, ry,)(v(-,1)) < oo for each bounded
interval (R1, Ry). Further, with 0, 02 as above, assume that 2.2) holds if 6y, 6, are
finite; in case they are infinite, assume that

261,60 (v, 1)) <00 (1 € (s, T)). (2.3)
Then the following assertions hold true.

(1) t = 20,a).6,a))(V(-, 1)) is a nonincreasing function on (s, T);
(ii) if for some t1 € (s, T) the function v(-, t1) has a multiple zero in (01(t1), 62(t1)), then
I = 2(0,(0),6,0)) (V (-, 1)) is discontinuous at t =t (hence, by (1), it drops at t = t1).

These are standard results in case 61, 6, are independent of ¢ (see [3} [10]]). It is straight-
forward to extend them to the case of variable 6, 6. Indeed, the monotonicity property,
which is a consequence of the maximum principle and the Jordan curve theorem (see
for example [26]), is proved in the same way as for constant 61, 6,. The finiteness and
dropping properties are derived from the local structure of the nodal set of v near points
(x0, tp), where x¢ is a multiple zero of v(-, #p) [3, [10]. These apply in our setting in the
same way. An interested reader can also verify that the results for variable 6, 6, can be
derived from those for constant 61, 6> via an approximation argument. For this one first
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chooses neighborhoods of the graphs of 61, 6> on which v does not vanish. Approximat-
ing the functions 01, 6, by suitable piecewise constant functions 51 s 52, with graphs in the
nonvanishing neighborhoods, one can prove the desired conclusion by repeatedly using
Lemma[2.2]on time-independent intervals.

Observe that if holds (in particular, if 61, 6> are finite) then statements (i), (ii)
of the lemma imply that v(-, ) can have a multiple zero in (61 (¢), 62(t)) only for isolated
values of 7. Regardless of (2.3), we can say that given any bounded interval (Ry, R2),
the function v(-, #) can have a multiple zero in (R, R2) only for isolated values of ¢.
To show this, fix any 79 and enlarge the interval (R, Ry) slightly, if necessary, so that
V(R1,t) # 0 # v(Ry, t) for t = tg (this is possible by the first statement of the lemma).
Then we can use statements (i), (ii) on the interval (61 (¢), 62(t)) = (R1, Ry) for t ~ t.

In applications of Lemmabelow, we set v = u| —up, where uy, up are solutions of
with N = 1 and p > 1. Then v is a solution of Z.1) with a(x, t) = p|¢|P~ ! (x, 1),
where ¢ (x, t) is between u(x, t) and uy(x, t).

Proof of Proposition[2.1) Towards a contradiction, we assume u # 0. By Theorem [I.2]
and Lemma [2.2] u(-, r) must have at least one zero for each sufficiently large negative .
Lemma further implies that there exists g € R such that zr(u(-, #)) > 1 is constant
on (—o0, 19] and therefore all zeros of u(-, #) are simple if t € (—o00, 19]. For t < 795 we
let n(t) < &(¢) denote the smallest and largest zero of u(-, 1), respectively. By the implicit
function theorem, & and n are C!-functions on (—o00, 19]. Clearly, u is of constant sign in
each of the sets {(x, 1) € R2:x > E@), t < to}and {(x,1) € R2:x < n(), t < 19}.
Replacing u with —u if necessary, we shall assume below that u(x, t) > 0 for x > &(¢),
t < 19.
We distinguish the following two possibilities:

(a) Either £(¢) is not bounded from above or n(¢) is not bounded from below.
(b) There exists Rg such that —Rg < n(t) < &(t) < Rg for all t < 1.

Consider case (a) and for definiteness assume that £(¢) is unbounded from above (the
other case is analogous). For any 7 € (—o00, tg] and A > &£(7) set

Q) i={(x,1) 1 E(t) <x < A, t € (52(7), 7]}, (2.4)

where
5).(7) :=supl{s < 7:&(s) = A}. 2.5)

Since A > &(7) and & is unbounded from above, s, (t) € (—00, t). Define further
V) =u@r—x,t) —u(x, 1) ((x,1) eRz). (2.6)

Then v* solves a linear parabolic equation (Z.1) on Q = R? and v* > 0 on the parabolic
boundary of Q*; more specifically, v*(, ) = 0 and v*(£(t),1) > 0 for ¢ € (s3(7), 7)
(the latter follows from the positivity of u(x, t) for x > &(¢)). Therefore, by the maximum
principle, v* > 0 in Q% and then, by the Hopf boundary principle,

0> vr(h, 1) = —2u (h, 1) (t € (sx(x), T]). Q2.7
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In particular, uy (A, 7) > 0. Since A > &(t) was arbitrary, we conclude that for each
T < 70,
Uuy(x,7) >0 (x > &(1)). (2.8)

Now choose any sequence y;y — 0o and consider the function
up(x, 1) == u(x + y, 1) ((x,1) € R?).

Since u is bounded, parabolic estimates imply that uy, replaced by a subsequence if nec-
essary, converges locally uniformly on R? to a solution & of (T.Z). Now, (2.8) implies
that for each fixed t < 7¢ the limit u(x, t) is positive and independent of x (it is equal
to limy_, o u(y, 1)). Consequently, i is an entire positive x-independent solution of (I.2),
which is absurd.

Next we consider case (b), dividing it further into the following two possibilities.

(1) lu(, )|Lo—r.g) = 0ast — —oo for each R > 0.
(b2) There exist a sequence ¢y — —oo and positive constants Ry, B such that

||u('7tk)||L°°(—R1,R1) > By foreachk=0,1,....

For T < 79 and A > &(7) we define v*, Q% as in 2.6), Z.4). The value s; (t) is as in (2.5)
with the understanding that sup ¥ = —oo.

Assume (b1). We show that in this case too, (2.8)) holds for all sufficiently large nega-
tive T, which leads to a contradiction as above. As in case (a), follows from the Hopf
boundary principle if we prove that for each A > &(t) one has v* > 0 in Q’}. This holds,
by the same arguments as in case (a), if s, (t) > —oo. We thus only need to consider the
possibility s, (7) = —oo, thatis, £(f) < A forall t < 7.

Let 1, @1 be, respectively, the principal eigenvalue and a positive eigenfunction of
the eigenvalue problem

(pxx+l’“p=()s XE(—RO—l,)\+1),
9=0, xe{—Ry—1,A+1}.

By (bl), for each sufficiently large negative T < 10,

max{|u|?~ QA —x, 1), [u|P " (x, )} < ? (x € [—Ro, A), 1 < 7). (2.9)
p

Fix any such t. Observe that in the equation satisfied by v*, we have a(x, 1) =
p|§|1’_1(x, 1), where ¢ (x, 1) is between u(x, t) and u(21 — x, t). By 2.9),
a(x,t) < pu1/2 ((x,1) € [Ro, A] x (=00, 7)).
Also note that foreacht < 7,
VPO = 0> —pi(h) and vV (ED. 1) > 0> —pi(E().

Therefore, using a comparison argument on the set Qﬁ(s) = Qi‘ N R x (s, t]), with
an arbitrary s € (—oo, 7), we obtain the following conclusion: if € > 0 is a constant
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and v* (-, 5) > —eg; on [£(s), A] then v* > —e@; on Q%(s). Now, in view of (bl), we
can take € > 0 arbitrarily small, upon taking s < O large enough. Sending ¢ — 0 (and
s — —00) we obtain v* > 0 on Q%. The strong maximum principle then gives v* > 0
on Qé‘, as desired. We have thus completed our argument in case (b1).

Finally, assume that (b2) holds. Set

ur(x,t) =ulx,ty +1t) xeR, te(—00, 19— )).

A suitable subsequence of these functions converges locally uniformly on R? to a bounded
solution & of such that ||ii(-, 0)||Loo(—gr,,&,) = Bo and & > 0 in (Rp, 00) x R. By
Lemma[2.2]and the strong maximum principle, & > 0 in (R, 00) x R. Similarly, i does
not vanish in (—oo, —Rg) x R, hence

for each ¢ all zeros of i (-, t) are contained in [— Ry, Rp]. (2.10)

Moreover,
Z(=Ry—1.Ry+1) (-, 1)) =m (1 € R), (2.11)
where
m = zRrU(:, 5)) = Z(—Ry,Ry) (-, 5)) (s < 70).

Indeed, if z(—r,—1,Ry+1)(@(:,)) < m for some ¢, then the same is true for any larger
t and hence we can assume in addition that all zeros of (-, ) are simple. Then, since
uC, te +1t) — ii(-, 1) in C'[=Ry — 1, Ry + 1], we have z(_g, o) (-, tx +1)) < m for
each sufficiently large k, a contradiction. The inequality z(—g,—1,ry+1)(@(:, 1)) > m is
ruled out by a similar argument.

By (2.T1), all zeros of i(-, t) are simple and hence the largest zero, which we denote
by §(t), is a C! function of ¢. Clearly,

E(t) = klim E(tx + 1) < o :=limsup&(s).

§—>—00

Our goal is to prove that the points of local maxima and minima of (-, ¢) in (é (1), 00),
if any, are independent of . We then show that this leads to a contradiction.
First we show that for each t € R one has

iix(A,7) >0 (2.12)

whenever £ (t) < A < 0. Obviously, holds (with the strict inequality) at the simple
zero A = £(t) of i(-, 7). Hence, it is sufficient to prove for any A satisfying
é(r) < A < o (if there is no such A, i.e. if é‘(r) = o, the previous argument alone gives
the desired conclusion).

Fix any T € R and () < A < o. For all sufficiently large k we have &(t + 1) < A.
Also, A < o implies that s, (t + #x) > —oo. Therefore, as in case (a), u, (A, T + 1) > 0.
Taking the limit as k — oo, we obtain (2.12).

Now let A > o. For a sufficiently large 71 < 7o we have £(t) < A forallt < 7. Let o*
be defined as v* with u in (2.6) replaced with ii. Since & % 0 (we have 7% (£(¢), 1) > 0),
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we can fix f < 71 such that v (-, 7) has only simple zeros in [—Rog — 1,21 + Rg + 1]. It
then follows from the convergence

Vot + 1) > 0D
in Cl[—Rp — 1, 2 + Ry + 1] that there is M such that
e 2—erin @ C e+ D) < M (2.13)

for all sufficiently large k. Note that 0 < v*(£(¢), 1) = —v*(2AL —&(¢), 1) foreacht < 7.
Hence, Lemma and (2.13) imply that z(,g(t)yzk,g(t))(vk(-, t)) is independent of ¢ for
large negative ¢, say for t < 1, (o may depend on ). Using Lemma [2.2] again we infer
that v*(-, t) has only simple zeros in (£(t), 2 — &(t)) for t < 1. In particular, since
v (1, t) = 0, we have —2u, (A, 1) = v2(A, 1) #Oforall t < 1.

The above considerations show that for each A > o, the limit

tlim signuy (A, t) € {—1, 1} (2.14)
——00

exists (this argument was inspired by [11]). This has the following consequence on u: if
A > o then either 1, (A,-) > 0on R or &, (X, ) < 0 on R. Combining this information
with the fact that (Z.12) holds whenever &(t) < A < o, we conclude that either ii(-, 7) is
nondecreasing on (§ (1), o0) for each t € R, or else there is A > o such that i, (A, ) =0
(namely, A = inf{u > o : u,(u,-) < 0onR}). The former leads to a contradiction,
as we have seen above. In the latter case, the function f))‘(~, t) has a multiple zero at
x = A for each t € R, which is possible only if #* = 0. In case » > &(¢) for some 7
this contradicts the positivity of (-, t) in (E(1), 00). If € = A then —2ily (é t),t) =
Efg(-, t) = 0 contradicts the simplicity of £(1) as a zero of i (-, 1).

We have thus finished the argument in case (b2) and thereby completed the proof. O

Remark 2.3. In order to make the proof of Proposition [2.1]self-contained we have based
it entirely on the maximum and intersection-comparison principles. At some steps we
could have used alternative arguments and perhaps it is worthwhile to mention the follow-
ing ones. Inequality (2.8) could also be ruled out using results of [27] (see (3.1) below).
Case (b2) in the proof of Proposition[2.T|could also be resolved by energy arguments sim-
ilar to those used in Proposition [2.4] below. In fact, the boundedness of i, and [31}
Theorem 3.1(ii) and Remark 3.4(e)] used with Q = {x : |x| > Rp} guarantee estimate

(2.13) with u replaced by .
Next we consider bounded radial solutions of (I.2)).

Proposition 2.4. Let 1 < p < ps and let u be a classical bounded radial solution of
(T.2). Assume that there exists Z € N such that (1.6) is true. Then u = 0.

The main ingredients of the proof of this result are the Liouville-type results of Proposi-
tion[2.T]and Theorem[I.1] energy estimates, and the following Doubling Lemma of [30].
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Lemma 2.5. Let (X, d) be a complete metric space and let ) # D C ¥ C X, with &
closed. Set I' = ¥ \ D. Finally let M : D — (0, 00) be bounded on compact subsets
of D and fixareal k > 0. If y € D is such that

M (y)dist(y, ') > 2k,
then there exists x € D such that
M(x)dist(x, ") > 2k, M(x) > M(y),

and
M(z) <2M(x) forallz € DN Bx(x, kM~ (x)).

Proof of Proposition Assume u 3 0. First we prove that there is a constant C > 0
such that

lu(r, )2 P™D - fu, (r, )PV < € (>0, 1 €R). (2.15)
Assume on the contrary that there exist 7, > 0 and #; € R such that

2/(p—1 (p+1)/(p—1) N

)
lu(ry, t)lry, + lur (i, 21y 0.

Set
M(r, 1) = |u(r, PV 4 Ju, (r, ) PV PFD (- > 0, 1 € R).

Passing to a subsequence we may assume M(rg, tx) > 2k/ry. Notice that rp =
distp ((rg, tx), 0Q), where distp ((r, t1), (2, 12)) := |r1 — r2| + /|t1 — 12| denotes the

parabolic distance and Q := (0, 00) x R. Now the Doubling Lemma (Lemma [2.5 with
X = R?, dist = distp, D = 0, T = Q) guarantees the existence of (7, fx) € Q such
that My := M (7x, fx) > 2k /7 and

M(r,t) < 2M; whenever |r — 7| ++/|t — | < k/ M.
Set Ay := 1/Mj and

2/(p—1)  ,~ ~
vk (p, s) = Ak/(p )u(rk + Ak p, tk +A,%s).

Then
1050, 0)|P~1/2 4 18,0.(0, 0)| P~/ PHD =

lue (o, )| P™72 1 18,0 (p, )| P~V/PTD <2 (o] + /5| < k),
20.00) Wk () < Z (s €R),

and v solves the equation

—1
0y Vg —Bppvk = 8pvk+|vk|p Vk.

Fr/M+p
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Since ri /Ay = My — 00, it is easy to pass to the limit to get a nontrivial bounded
solution v of (I.2) with N = 1 satisfying (I.7). However, this contradicts Proposition[2.1]
Consequently, (2.13) is true.

We now complete the proof using energy arguments. Estimate (2.13) guarantees that
lu(-, t)|le < C and |E(u(-, t))| < C with C independent of ¢ (recall that the space £ is
defined in (I.5)). This also implies (cf. (I.TT))

// u? dx dt < oo.
R JRN

Choose t; — —oo such that fR utz(x, tt) dx — 0. Then
lee (-, tk)”Lm(]RN) — 0. (2.16)

Indeed, if not then we may assume [|u(-, #) || Lo rn) = ¢ for some ¢ > 0. Choose ry >0
such that |u(rg, tx)| > %”M(‘,tk)”Loo(RN). We may assume that either ry — roo €
[0, 00) or ry — oo. In the former case a subsequence of vi(r) := u(r, t;) converges
in Cioc ([0, 00)) to some function v which is a radial solution of —Av = |v|? “lyinRY,
the zero number of v is finite and v(r) > c¢/2, which contradicts Theoremﬂ;ﬂ In the
latter case we set v (r) := u(ry +r, tx). Then a subsequence of v converges in Cloc (R) to
a nontrivial solution v of the limiting problem —v,, = |v|? 1y, r € R, and zgr(v) < 00,
which contradicts Theorem[T.T|again. Hence indeed (2:16) is true and parabolic regularity
estimates guarantee

it tk + Dll ooy + VUGt + Dl oo vy = 0.
Analogous arguments show the existence of fz — oo such that
it e+ Dll ooy + VUG, G + Dl oy — 0.

Now estimate (2.13)) enables us to show E(u(-, i + 1)) — O and E(u(-, f + 1)) — 0,
which implies E(u(-, ¢)) = 0 and u; = 0. However, this contradicts Theorem|I.1 m]

Proof of Theorems [I.4 and [I.3] Propositions [2.4] and [2.1] prove the Liouville theorems
under the extra assumption of boundedness of u. To remove this assumption, thus showing
that Theorems [T.4] and [I.3] follow from Propositions [2.4] and [2.1] respectively, one uses
scaling and the Doubling Lemma in the same way as in the proof of [31, Theorem 3.1].
We omit the details. O

Proof of Theorem|[I.6] Setii(x, 1) ;= u(x,t) forx > Oandr € R, a(x, 1) := —u(—x,1)
forx < 0 and 7 € R. Then # is a solution of (T.2) satisfying the assumptions of Theo-
rem (with Z replaced by 2Z + 1), hence u = 0. O

Remark 2.6. In the proof of Proposition [2.4) we showed how energy and scaling argu-
ments can be used to derive the Liouville result for radial solutions from the Liouville
theorem for nonsymmetric solutions of the one-dimensional problem. This sort of reason-
ing can of course be applied to positive solutions as well. Specifically, if u is a positive
bounded radial solution of (T.2) (with N > 1 and p > 1) then one can use Theorem [I.2]
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instead of Proposition [2.1] in order to prove estimate (2.13). Consequently, the proof of
Proposition 24] (and the doubling arguments used in the proof of Theorem [T.4) give one
of the alternative proofs of Theorem[I.3]mentioned in the introduction.

Estimate (2.15) was used in the second part of the proof of Proposition @l in order
to prove a uniform bound for u (-, f) in the energy space £. It is clear that the same bound
can be obtained if we replace estimate (2.13)) by the estimate

lu(r, O)|r* + |u,(r, t)|rﬁ <C (r>0,1eR), 2.17)

for some @« > N/(p + 1) and B > N/2. In what follows we find a sufficient condition
guaranteeing (2.17). Our estimates will also be needed in the subsequent section.

Proposition 2.7. Let p > 1 and let u be a radial solution of (L.2) satisfying
lu(r,r)] < Cymin(l,r™%) (r > 0,1 €R), (2.18)

where 0 < a < 2/(p — 1). Fix B < a(p + 1)/2. Then there exists a constant C =
C(C1, N, p, a, B) such that

luy(r, )] < Cmin(1, 7 #) (>0, 1t eR). (2.19)

In particular, if p < ps and 2.18) is true with some o > N /(p + 1) then 2.17) is true
with some o > N/(p+ 1) and B > N/2.

Corollary 2.8. Let 1 < p < ps and let u = u(r, t) be a bounded radial solution of (1.2))
satisfying 2.18) with some « > N/(p + 1). Then u = 0.

Proof. The result follows from the remarks preceding Proposition[2.7] the proof of Propo-
sition 2.4] and the nonexistence of nontrivial stationary solutions in the energy space €.
O

In the proof of Proposition 2.7 we will need the following lemma.
Lemma 2.9. Let p > 1 and let u be a radial solution of (1.2) satisfying (2.18) with

some o € (0,2/(p—1)]. Let R > 1, T € Rand q € (1,00). Then there exists Cr =
C2(C1, N, q) > 0 such that

T 7R 1/q
/ / luyr (r, )9 dr dt < CyR3Ya—pe, (2.20)
T—2R? J3R

Proof. By C we denote various positive constants which depend only on C1, N, ¢. Given
r € (0, R], denote

O0,(R,T):={(x,1) e RN :5R —4r < |x| <5R+4r, T — 8% <t < T}
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and Q, = Q,(1,0). Set also v(y,s) := u(Ry, T + RZs) for (y,s) € Q1. Then we
have vy — Ayv = R2|v|”_1v and [v| < C{R™ in Q. This fact and interior parabolic
L9-estimates guarantee

(o) =e((f, )+ (f, ) )

< C(R™® 4 R?>™P*) < CR* 7P,

Consequently,

T 7R l/q 1/q
CRW-D/q (f / e (r, )| dr dt) < (/ |D§u|q dx dt)
T—2R? J3R Orp2(R,T)

1/q
:R—2</ |D§v|qRN+2dyds> < CRWN*D/a=pe,
Q12

which concludes the proof. o

Proof of Proposition 2.7} Obviously it is sufficient to prove the result for 8 sufficiently
close to a(p + 1)/2. We may thus assume that

a(p+1)/2 > B > max(a, pa — 1).

By C we denote various positive constants depending only on C1, N, p, «, B.

Since |u| < Cy, standard parabolic regularity estimates show |u,| < C, hence (2.19)
is true for the restricted range r < 5 and ¢ € R. Now, if (2.19) is not true in the whole
range r > 0 then, given Cyy = Cy(C1, N, p,a, B) > 0, thereexist R > land T € R
such that

luy(5R, T)| > CyRP. (2.21)

We show that if Cpy = Cy(Cy, N, p, «, B) is sufficiently large, as specified below, then
(2.27) leads to a contradiction.
First we prove that for Cy, large enough, (2.21) implies

(Vt € [T —2,T —11) 3r; € [4R, 6R))  |u,(r;,1)| > V/CuR7P. (2.22)

Assume, on the contrary,

Fto € [T —2, T — 1) (Vr € [4R,6R]) |u,(r, 19)| < VCuR™P. (2.23)
We have (u,); — Au, = au,, where a := —(N — 1)/r2 + plulp’l, hence a < ¢, =

pCf ~! The comparison principle implies |u,| < v for t > ty, where v is the solution of
the linear Cauchy problem

Vr — Av = CqV, t > 1, U(‘, tO) = |ur|(.7 t())
Denoting w := ¢~y and ¢,, := ¢>“ we have

Wy — Aw = O’ > 1, U)(', tO) = |“r|(‘a tO),
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and |u,| < cpw for t € [ty, to + 2]. Fix xo € RV with |xo| = SR. Then estimates (2.21)),
(2:23) and the boundedness of u, guarantee

CuR™P < |u,(5R, T)| < cpw(xo, T)
< cw/ e By, 19) dy
RN
< coCuk ™ [

[y—x0l<R
<Cy/CuR7*,

so that Cpy < C2. This shows that if Cj in .21) is sufficiently large then (2.21)) implies
e2).

Fix ¢ > 1 such that ¢((p + Do — 28) > 3 4+ o — B. Notice that this choice of ¢ and
the inequality 8 > pa — 1 imply

0P8 gy 4 C/ 0P8 gy
y—xol>R

0 :=q'(pa—p—3/q)€pf—all,

where ¢’ = q/(qg — 1). Lemma guarantees the existence of 7o € [T — 2, T — 1] such
that

7R 1/q
(/ |y (r, t0)|4 dr) < CRY47Pe, (2.24)
3R

Due to (2.22) there exists ro € [4R, 6R] such that

luy (ro. t0)| > v/CyR™P. (2.25)

Using the Mean Value Theorem, Holder’s inequality and estimate (2.24) we obtain, for
any r € (0, R?],

lur (ro + 1, 10) — 4, (ro. to)| < C2R¥ 1774014 = C,R=F < 1./CyyR7P,
provided Cy > 4C3. This inequality and (2:23)) imply

lur (ro + 1, 10)] = 2/CuR™P  (r € (0, R?)),

so that
lu(ro + RY, t0) — u(ro, to)| > +/Cy RPT > L /Cy R,

which contradicts (2.18) for Cj large enough. o
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3. Alternative proof of Theorem[1.3]

This section is a slight detour from the main course of the paper. We utilize here the
energy estimates derived above in order to give an alternative proof of Theorem|I.3|under
the additional assumption p < 3. As mentioned in the introduction, although the result is
weaker than that in [29]], new ideas of this proof might be of interest to some readers.

In the following three lemmas we assume that | < p < ps, p < 3 andu is a
positive bounded radial solution of (T.2). We set B, := {x € RV : |x| < r}. By C,c¢
we will denote various positive constants which may vary from step to step but which are
independent of r and 7.

Lemma 3.1. There exists a positive constant Cq independent of r > 0 andt € R such
that
/ u(x,t)dx < CorV=2r=, (3.1
B,

Proof. Set ¢1(x) = 7=N2e=1 and y() = fRN u(x, t)o1(x)dx. Then [35, (17.3)]
implies y(r) < 2N)Y/(P~D hence

w2 [ g <y < @)V,
By

which proves (3.1)) for r = 1.
If » > 0 is general, we set v(y, s) = r2/®P=Dy(ry, r¥s). Then v is a positive radial
solution of (T.2)), hence the above estimate shows

Co z/ v(y,s)dy:r_N+2/(p_1)/ u(x,t)dx. O
B

-

Lemma 3.2. There exist positive constants C1, oy such that u(r,t) < Cir—! for all
r>0andt € R.

Proof. Parabolic regularity estimates imply |u,| < C, for some C; > 0. Since p < 3
we can choose @ € (0,1/(p — 1) — 1/2). Assume u(r,t) > 2Cor~¢ for some ¢ and
r>R>2Thenr ® <r/2and u(p,t) = Cor *for |p —r| < r=* dueto |u,| < C»,
hence

/ ulx,t)dx > C/ u(p, t)prl dp > CrN-1-2e
Bay |p—r|<r—¢

which contradicts Lemmafor R = R(Cy, C ) large enough. ]

Set
a* == sup{a >0:(AC > 0) u(r,t) < Cr “forallr > C, t € R}

= sup{a >0: (3D > 0) u(r,t) < Dr%forallr >0, 1t € R}.

Lemma 3.3. o* >2/(p — 1).
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Proof. Lemma [3.2| guarantees «® > o) > 0. Assume on the contrary a* < 2/(p — 1).
Fix § > 0 small (to be specified later) and set o := o™ — 8, y := o* + §. We can assume
a > 0and y < a(p + 1)/2. By the definition of «* we have

u(r,t) <Dr * (r>0,teR), (3.2)

and there exist r; — oo and #; € R such that

u(re, tr) > kr 7. (3.3)
Fix g € (y, a(p + 1)/2). Proposition 2.7]and (3-2) guarantee
lup(r,t)| < Cor™F  (r >0, teR). (3.4)

Now (3:3) and (3.4) imply

k _
ulr 1) = 51 Tor=nl <1 (3.5)

for k large enough. Lemma 2.9] (used with R = ry/5 and T = x + 2) guarantees the
existence of 7y € [t; + 1, tx + 2] such that

Tri/5 1/q 3
</ |ty (1, Tk)|q dl") = Crk/q—pot. (3.6)
3re/5

Here g > 1 can be taken arbitrarily large (and C depends on g). Since u > v for t > t,
where v is the solution of the Cauchy problem

Uy — Av = 07 >, U(', tk) = M(', tk)v
estimate (3.5) implies

u(ry, w) > min v(rg, T) > 2c*krk_y (3.7)
telty+1,1+2]

for some (small) constant ¢* > 0. Estimate (3.6)), the Mean Value Theorem and Holder’s
inequality imply
3 — 7
Jur (o1, ) = ur(p2, )| < Cr ™" o1 = o] V4, 38)
(o1, p2 € Brie/S,Tr/3))

(as usual, ¢’ = q/(q — 1)).

Setf := (p—1)a/2—26. Choosing é small enough we may assume 6 € (0, 1), hence
r,f < 2ry/5 for k large. Taking g > 1 large enough we also have 3/g — pa +6(1+1/q")
< —y. Ifu, (rk, ©) > 0 then (3:8) guarantees

ur(rcr ) = =Cr T (e 0.7,
hence, givenr € I := (ry, ri + r,f), we have

u(r, ) > 2c*krk_y - Crs/qu“(r —r)ttla > C*krk_y
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provided k is large enough. Consequently,

/u(r, ) dr > c*krk_yw.

I

3.9)

Analogously, if k is large enough and u,(r¢, 7x) < O then estimate @) is true with
I:= (=12 r). Consequently, in either case

_ ~ N—l-y+6
/ ulx, p)dx > cr,ﬁv ! /u(r, ) dr > ckr, vt ,
B I

Tk
which contradicts Lemma[3.T|dueto N — 1 —y +6 > N —2/(p — 1) for § small enough.
]

Proof of Theorem[I.3|for p < 3. If u is a nonnegative bounded radial solution of (T.2),
then u = 0 due to Lemma 3.3] Corollary 2.8]and the inequality 2/(p — 1) > N/(p + 1).
Once this is proved, the nonexistence of unbounded positive radial solutions of (T.2))
follows in the same way as in the proof of [31, Theorem 2.3]. O

4. Proof of Theorem [1.7]

The proof of Theorem mimics the proof of [31] Theorem 4.1] (cf. also the proof of
[30, Theorem 6.1]) so we will only sketch it.

Sketch of the proof of Theorem[I.7} As in the case of nonnegative solutions (see [31])) it
is sufficient to prove assertion (i). Assume on the contrary that there exist 7; € (0, 00),
pk € 1, si € (0, T) and radial solutions uy of (I.I2) satisfying (I.14) (with T replaced
by Tj) such that the function

My = |uk|(P—1)/2 + |Vuk|(17—1)/(17+1)

satisfies M (ox, sx) > 2k(1 + d; ' (s)), where di(r) := min(z, (T — 1))'/2. Using the
Doubling Lemma (see Lemma([2.3)), we find ry, € I and 7 € (0, Tj) such that My (ry, 1) >
2k max(1, d; ' (1)) and

My < 2My(ri 1) in{(r,0) € I x (0, Ty) : |r — rie| 4 |t — |/ < k),

where Ay := My(ri, )L We may assume ry — ro € [Ry, Rp] and tp — 9 € [0, oo].
We may also assume that either (a) ry /Ay — po = 0 or (b) r/Ax — 00.
In case (a) we set

2/(p—1
vk (o, 8) = Kk/(p "ug otk + AZs).

The function vy is radially symmetric, it has a bounded zero number,

Ni(p, 8) == |k (p, )| P™V/2 4 |8, (p, 5)| P~/ PFTD < 2
(p < min(k/2, Ray/M0), Is| < k?/4, k large),
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Ny (rk/ 2k, 0) = 1, vg solves the equation

Og UV — 8§pvk — pvk = fr(p,s), where

2 —1 -2 —1 — 1 —1
felprs) = 2P £ O, e+ 225, P 00, ), A PP 0o, 5)),

together with the corresponding Dirichlet boundary condition (if 2 # RY). Due to our
assumptions on f it is easy to pass to the limit to get a nontrivial radial solution v of the
limit problem

vs — Av =0, 10)[v|" v,  peRN, seR,
satisfying with u replaced by v. However, this clearly contradicts Theorem |1.4]
In case (b) we set

2/(p—1
vk(p,s) == kk/(p g (re + hiep, t + AZs)

and notice that vy satisfies the equation

N—1
s vk — 05, v — mapvk = fi(p,s), where

2 -1 —2/(p—1 - 1 —1
o) = 1770 f ot ap, et ads P Voo, ), 0 P o, 000, 9).

Setting nx := min(Ry — r¢, rr — R1) we may assume that either (i) nx/Ar — 00 or
(i1) nix/Axr — co > 0. Passing to the limit in case (i) or (ii) we obtain a contradiction with
Theorem [I.5]or Theorem|[I.6} respectively. |

5. Decay of global solutions in the energy norm

Our aim in this section is to give sufficient conditions for the decay of the solution u (-, t)
of (I.I0) in the norm of £ (see the paragraph containing (T.I8) for a discussion of this
problem).

Throughout this section we assume that u is a global solution of problem with
N =1,p > 1land ugp € C(R), zr(ug) < oo. This assumption and [27, Theorem 1.3]
guarantee that liminf,_, o |uo(x)] - Ix %=1 and liminfy_ —oo |uo(x)] - |x]|>P~D are
finite. Consequently, if either

up(oo) := lim ug(x) or wug(—o0):= lim wup(x)
X— 00 X——00
exists then
up(c0) =0 or wug(—o0) =0, 6.1

respectively. The proof of the following lemma is based on arguments used in the proof
of [27, Theorem 1.3].
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Lemma 5.1. Let u be a global solution of with N =1, p > 1 and uy € C(R),
Z = zRr(up) < 00. Let —00 < x1 < x3 < 00 be such that the restriction of ug to I :=
(x1, x2) is a monotone function which does not change sign and which is not identically
zero. Let i € {1, 2} be such that |ug(x;)| = max{|ug(x1)l, [ug(x2)|}. Then |x;| < oo and
there exists a constant C* = C*(Z, p) independent of uo, x1, xp such that

luo(x)| < C*|x — x;| 7P~V (x € (x1, x2)). (5.2)

Proof. Assume |x;| = oo. Then (5.I) guarantees ug(x;) = 0. Since |ug(x;)| > |ug(x)]
for x € (x1, x2), we have ug = 0 on (x1, x2). However, this contradicts our assumptions.
Consequently, |x;| < oo.

Without loss of generality we may assume i = 1 (otherwise consider the function
uo(x) := ug(—x)) and u(x;) > 0 (otherwise consider i1o(x) := —ug(x)). Consequently,
x1 € R, ug > 0on (xq, x2) and ug is nonincreasing in that interval. We may also assume
x1 = 0 (otherwise consider iig(x) := ug(x + x1)).

The proof of [27, Theorem 1.3] shows the existence of 0 < « < < oo and a smooth
function uf with support in [e, 8] such that the solution u* of with initial data u)
exhibits (Z + 2)-polar blow-up. More precisely, there exist 7 < oo and —o0 < y; <
y2 < -+ < yz42 < 0o such that either lim,%Tr(—l)ju’(yj, ty=o00,j=1,...,Z+2,
orlim 77 (=1)/u*(y;,t) = —00, j=1,..., Z+2.

Set L := supp |u6| and, given A > 0, denote

V(1) = APyt 0, A%, x e R, 1 €0, TT/A%),
v())‘(x) = Xz/(p_l)u(r)()»x), x e R.

Then [vf(x)| < LAY P~V if x € [a/A, B/A], and v} (x) = O otherwise.
Fix A > B/x; and notice that 8/1 < x,. The relation

min  wug > LA/ ®P~D
[a/x,B/A]

leads to a contradiction as in the proof of [27, Theorem 1.3] (denoting z(¢) := zr (u(-, t)—
v*(-, 1)) we would have z(0) < Z and z(¢) > Z + 1 for t — T7). Hence,

uo(B/A) = min wug < LAY @D,
o(B/A) (o i U0 =

Considering x € (0, x2) and choosing A := 8/x we obtain
ug(x) < LEP~ Va7 P7D (x € (0, x2)),
which proves the assertion. O

Corollary 5.2. Let u be a global classical solution of (1.10) with N =1, p > 1 and
ug € CYR) satisfying zr(ug) < oo and ZR(%) < oo. Then |u(-,)lpaw — 0 as
t — oo foranyq > (p—1)/2,q > 1.

Proof. Theorem iii) guarantees the estimate |u(x,t)| < C t~1/(P=D_ This estimate
and Lemma|5.1| guarantee both u(-, ) € LY (R) and [[u(-, )||Le®) — Oast — co. O
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Remark 5.3. It is likely that Lemmal[5.1] (hence also Corollary[5.2]withg > N(p—1)/2)
remain true in the higher dimensional case if we consider radial solutions and p < ps.
In fact, the continuity of the blow-up time needed in the corresponding proof of existence
of solutions with (Z 4 1)-polar blow-up follows from [33]]. We refrain from proving such
results since the proof would be quite long.

Proposition 5.4. Let u be a classical solution of (LIO) with N = 1, p > 1 and ug €
C!(R) satisfying zr (uo), zr(ug) < Z < o0o. Then |lu(t)|lg — Oast — oo.

Proof. The decay of the L?*!-norm follows from Corollary Statement (iii) of The-
orem gives the estimate |u(x, )| < Ct~!/?P=D and parabolic regularity estimates
show

ltxlloo := llutx |l oo (Rx[1,00)) < OO

Fixt > 1. Let I = (x1, x2) be any interval where u(-, t) and u, (-, #) do not change

sign. Then
X2 X2
/ uy(x,t)dx| > / ui(x,t)dx,
X1 X

lu(, OllLeo®) = |u(xz, 1) —ulxy, t)| =

T uxlloo 1
hence
/Ruf(x, Ndx < 2Z+ Dlu, DllLeom)llixlloos (5.3)
which implies |[ux (-, )| L2y — 0 as ¢ — oo and concludes the proof. m]

6. Periodic solutions

Proof of Theorem In the proof we will employ solutions of the Cauchy-Dirichlet
problem
ur—Au=m@)f(w), xe,t>0,
u=>0, x €d2, t >0, 6.1)
u(x,0) =ugx), x € Q,

where u is radially symmetric and m(t + kT) := m(t) fork = 1,2,... and ¢ € [0, T].
The solution of at time ¢ will also be denoted by u(¢; ug) or u(-, t; ug) (if we want
to emphasize its dependence on ug). The maximal existence time of this solution will be
denoted by Tpax(10). Our aim is to prove the existence of infinitely many solutions of
(T.19). We adapt the basic idea of the proof of the existence of infinitely many equilibria
in [32 Example 2]: solutions of will be found in the w-limit set of a suitable subset
of the boundary of the domain of attraction of zero in problem (6.1). Set

X :={uce HI(Q) : u is radially symmetric},
Dy = {ug € X : Tax(ug) = oo and u(t; ugp) — 0in X as t — oo}.
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Then D4 is an open set in X containing 0. Indeed, this is an immediate consequence
of the fact that the Cauchy problem is well posed on X and its trivial solution is
asymptotically stable. Further, given ug € X and ¢ € [0, Thax (10)), let

V() =V, (@) = %/;2 |Vu(x,t; u0)|2dx — m(t)/QF(u(x,t; up)) dx,

where F(s) := fOA f (&) d&. Estimate (5.19) in [34] guarantees the existence of a constant
Cy > 0 (independent of u() such that

V(1) = =Cyv (= 0) (6.2)

provided Tax(ug) = oo. Let ¥, (m = 0,1,2,...) denote the linear hull of the set
{00, @1, ..., om}, where @; (x) = @;(|x]) = cos((2j + Dm|x|/2R), j = 0,1, ..., and let
P,, be the orthogonal projection in X onto Y;,. As in [32] we have z(¢) < m for ¢ € Y,
and z(¢) > m for ¢ L Y, ¢ # 0, where z := z(o,r) denotes the zero number in the
interval (0, R). In addition, z(¢’) < m for all ¢ € Y,,.

Let P :={ug € X : Tmax(uo) > T and u(T'; ug) = ugp}, thus P is the set of initial
data of T -periodic solutions. Assume that there exists k € {0, 1, ...} such that z(ug) # k
for all up € P. We show that this leads to a contradiction which proves the theorem
(notice that z(u(t; ug)) = z(up) for all u9 € P and ¢ > 0 due to the periodicity of u and
monotonicity of z).

Set Y := Yy and M := dy(D4 N Y), where dy denotes the boundary in Y. Since
limyey, fuplx—oc Vg (0) = —oo, estimate (6.2) guarantees that the set Dy N Y is
bounded. This fact and Theorem [I.7)imply the existence of C > 0 (independent of ug, x
and ¢) such that

lu(x,t;up)| <C (x€e,t>0,uye DygNY). (6.3)
Denote
M?T = {u(t; ug) : ug € M},

om) =M. o= M.

>0 s>0 Tt=8

We remark that the trajectories and limit sets of points or sets considered here are those
of the time-periodic dynamical process generated by (6.I). Equivalently, we could work
with the discrete-time dynamical system generated by the period map of (6.1]); however,
working with continuous time has some advantages in applications of degree arguments.
We refer to [20] for basic properties of w-limit sets and related concepts.

Standard parabolic regularity estimates and (6.3) guarantee that (M) is nonempty
and compact. Moreover, with any u| € w(M), w(M) contains the trajectory {u(-,t) :
t € R} of an entire solution u of (6.1)) satisfying u(-, s) = u; for some s € [0, T). Notice
also that 0 ¢ w (M) due to the stability of the zero solution.

Consider an entire solution # : R — w(M). By [12, Theorem 3.2], the w- and «-limit
sets of this solution are given by T'-periodic solutions. Consequently, w (M) consists of
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T -periodic solutions and their connecting orbits. Since z(v) < k forany v € M C Yy,
the monotonicity of the zero number [12] implies z(v) < k forallv € O(M) U w(M).
In addition z(v) < k for any v € w(M) since z(v) # k for v € P. In particular, this
implies k > 0. Since z(v) > k forv L Y;, v # 0, we have 0 ¢ Py (O(M)). Similarly,
0 ¢ Pr1(w(M)), hence 0 ¢ Pr_1(M*) = Pr_1 Pr(M") for t sufficiently large. This
guarantees that Hy(t,v) :== (1 —t)v+tPr—1v Z# Oforany ¢t € [0,1] and v € P, M".
Since Hy(t,v) := (1 —t)v+tor # Oforany ¢ € [0, 1] and v € Y;—1 \ {0}, we may use
the homotopies H;| and H, to contract the set Py M™ in Y \ {0} to the single point ¢ # O.
Consequently, the Brouwer degree deg(Pru(t; ), 0, D4 N Y) in the finite-dimensional
space Y equals zero. However, this gives a contradiction, since 0 ¢ P, (O (M)) implies

deg(Pru(t;-),0,Da NY) = deg(Pru(t; -),0, Dg NY) = deg(Pru(0;-),0,Da NY)
=deg(1d,0, Do NY) =1
for any r € [0, ]. ]

Next we consider the problem

Uy — Au=m@)w? —u), xeRY, te(,T1),
u(x,t) — 0, |x] > o0, t € (0, 7), (6.4)
ulx,0)=ulxx,T), x e RV,

Theorem 6.1. Assume (1.20) and 1 < p < ps. Then there exists a positive radially
symmetric solution of problem (6.4).

In what follows we set m := inf; m(t), m := sup, m(t), and

- muP —u) ifu>1, mu?P —u) ifu>1,
fu) = . S =1— .
mw? —u) ifu<l, = mwP —u) ifu <1.
In the proof of Theorem [6.1| we will need a supersolution whose existence is guaranteed
by the following lemma.

Lemma 6.2. There exists ¢ > 0 and a C 2-fu_iftction g : [0, 00) — (0, 00) with exponen-
tial decay satisfying g(0) = 1+¢, g”’(r) + f(g(r)) =0 forr > 0.

Proof. Let a > 0 satisfy a®> < m(2P~! — 1)/27 and ro := (log2)/a. Then the function
h(r) := e~ +70) is a supersolution for the problem

g0 =1/2, g'+ f(g =0 forr>0. (6.5)

Since zero is a subsolution for (6.3), problem (6.5) possesses a solution g; satisfying
0 < g1 < hon [0, 00). Obviously gi (0) < K'(0) < 0. Solving the initial value problem
22(0) = 1/2, g5(0) = g1(0), g5 + f(g2) = Oforr < 0, we obtain & > 0 and r; > 0
such that go(—r;) = 1 4+ ¢ and gé < 0 on (—rq, 0) (notice that g, is convex on the
set {r : g2(r) < 1}). Now it is sufficient to set g(r) := go(r — ry) for r < r; and
g(r) =g1(r —ry) forr > ry. ]
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Proof of Theorem Consider the Cauchy problem

ur — Au=m(@)w” —u), xRV, >0,

6.6
u(x,0) = ug(x), x e RV, ©6)

where uo > 0 is radially symmetric and m(t + kT) := m(t) for k = 1,2,... and
t €[0,T]. Letp € C®(RV, [0, 00)) be a radially symmetric and radially nonincreasing
function with compact support, ¢ % 0, and consider initial data in the form uy := a¢,
where @ > 0. Clearly, the trivial solution is asymptotically stable, hence if « is small then
the solution u = u, of (6.6) exists globally and tends to zero as + — co. On the other
hand, if « is large enough then u, blows up in finite time. Indeed, this is shown easily by
a comparison with the Dirichlet problem for the same equation on the ball Bg, where R is
chosen so large that B contains the support of ¢. For the Dirichlet problem, blow-up for
solutions with initial data ¢| g, with o large follows by an energy argument (cp. (6.2)).
We can thus conclude that the number o* := sup{e > 0 : u, exists globally} is finite and
positive. In what follows we fix uy := a*¢ and consider the threshold solution u = uy*
as a function depending on the radial variable r and ¢t > 0.

Theorem [[.7(ii) guarantees that u exists globally and is bounded. Also, since ¢ is
radially nonincreasing, u(-, t) is such for each r > 0. Let ¢ and g be as in Lemma@ We
next show that for R > 0 large enough, we have

u(R,t) <1+¢ forallr >0. 6.7)

Assume on the contrary that there exist Ry — oo and #; € [0, co) such that u(Ry, tx) >
1 4+ ¢. Then u(r,t) > 1 + ¢ for all » € [0, Ri] due to the radial monotonicity of u.
Consequently, u(r, t + tx) > wg(r, t), where wy is the solution of

w—Aw=f(w), xeRY r>0,

w('v O) = (1 + S)XBRI('

Let v be the solution of the ODE /() = f(¥(t)), t > 0, with ¥ (0) = 1 + . The
function ¥ blows up at some T < oo and wy(r, 1) / ¥(t) as k — oo for all r €
[0, 00) and ¢ < T, which contradicts the boundedness of . This proves that is true.
Enlarging R if necessary, we may assume uo(r, 0) = O for » > R. Then it follows (using
the equation for u in the radial variable and u, < 0) that the function U (r,t) = g(r — R)

is a supersolution to u for r > R. We conclude that
u(r,t) <gr—R) (¢ >=R,t>0). (6.8)

We now use a standard zero-number argument (cf. [16, proof of Lemma 3.5]) to prove
that u(-, t) approaches a periodic solution as t — oo. Set v(r, t) := u(r,t +T) —u(r, t),
r,t > 0. Since u(-, 0) has compact support and u(r, ) > 0 for» > 0 and t > 0, we see
that v(r, 0) > O for r large enough. Hence, by [12], the zero number z, (t) := z(0,c0) V(- #)
is finite for # > 0, it is nonincreasing in ¢, and, since v, (0, t) = 0 for all ¢, z,(¢) drops
whenever v(0, ) = 0. The latter can occur only finitely many times, which implies that
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v(0, t) is of constant (nonzero) sign for all ¢ sufficiently large, say for ¢+ > t#y. Fixing
t > 1y, the sequence {u(0, t +kT)}, is monotone and bounded. Let W (¢) denote its limit.

Consider the sequence {u(-, - + kT')};. Parabolic regularity estimates guarantee that
this sequence is relatively compact in Cioc = Cloc([0, 00) X [0, 00)). Fix a subsequence
{u(-, -+k;T)}; converging to a limit function w in Cjoc. Then w is a global radial nonneg-
ative solution of (6.6) with initial condition ug = w(-, 0). In view of (6.8), {u(-, k;T)};
converges to w(-, 0) in L* ([0, co). In particular, by the asymptotic stability of the trivial
solution, w is not identically zero, hence it is positive by the maximum principle. In ad-
dition, w(r,t) < g(r — R) forr > R and t > 0. Let now IEj — oo be any other sequence
such that {u(-, - + I;j T)}; converges to a limit function w in Cjoc. We shall prove that
w = w for ¢ > g, hence the whole sequence u(-, - + kT') converges for t > fy. It is then
easy to see that the limit w is T-periodic for ¢ > fg, which concludes the proof.

Assume that w(ry, t;) # w(ry, 1) for some ri > 0 and #; > fy. We obviously have
w(0, 1) = w(0,t) = W(r) forall t > 1y, hence, in particular, r; > 0. Fix t, > #; such that
w(ry,t) # w(ry, t) for all ¢ € [11, 12]. Then the zero number z,,(¢) := z.-)(W(-, 1) —
w(-, t)) is finite for ¢ € (¢1, t2] and, as w(0, t) = w(0, t) and w, (0, t) = w,(0,7) = 0, it
has to drop at each ¢ € (1, #2), which is an obvious contradiction. O

Remark 6.3. If N = 1 then the positive radially symmetric solution u, as constructed
in Theorem is the unique positive solution of up to translations. Moreover,
(6-4) has no nodal radially symmetric solutions if N = 1 (see [16| Theorem 1.2]). Thus
there are exactly three solutions of @ up to translations: u, —u, and O (as usual, u?
is interpreted as |u|?~Yu here). On the other hand, if N > 1 and m is independent of ¢
then an analogue of Theorem for problem was shown in [23]}; cf. also [3] for
an earlier result and [13] and the references therein for possible generalizations. These
results suggest that (6.4) might possess infinitely many solutions if N > 1.
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