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Abstract. We prove the uniqueness, up to shifts, of pulsating traveling fronts for reaction-diffusion
equations in periodic media with Kolmogorov–Petrovskiı̆–Piskunov type nonlinearities. These re-
sults provide in particular a complete classification of all KPP pulsating fronts. Furthermore, in the
more general case of monostable nonlinearities, we also derive several global stability properties
and convergence to pulsating fronts for solutions of the Cauchy problem with front-like initial data.
In particular, we prove the stability of KPP pulsating fronts with minimal speed, which is a new
result even in the case when the medium is invariant in the direction of propagation.

1. Introduction and main results

This paper is the follow-up of the article [20] on qualitative properties of pulsating travel-
ing fronts in periodic media with monostable reaction terms. By monostable we mean that
the fronts connect one unstable limiting state to a weakly stable one. In [20] we proved
monotonicity properties and exponential decay of these fronts. Here, we first show the
uniqueness of KPP pulsating fronts, for any given speed. The second part of the paper is
devoted to further stability properties for solutions of the Cauchy problem with front-like
initial data, for general monostable nonlinearities. All these issues have been left open so
far and the present paper fills in the main remaining gap in the theory of monostable and
specific KPP traveling fronts in periodic media, in the sense that it provides a positive
answer to the question of the classification and stability of all KPP pulsating fronts, as
well as the stability of pulsating fronts with noncritical speeds in the general monostable
framework. Lastly, we point out that, due to our general assumptions on the limiting sta-
tionary states, our stability results are new even in the special case of media which are
invariant under translation in the direction of propagation. The stability of KPP fronts
with minimal speeds involves completely new ideas and is an original result even in the
most simplified situations which were previously considered in the literature.
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1.1. General framework and assumptions

We consider reaction-diffusion-advection equations of the type{
ut −∇ · (A(x, y)∇u)+ q(x, y) · ∇u = f (x, y, u), (x, y) ∈ �,

νA(x, y)∇u = 0, (x, y) ∈ ∂�,
(1.1)

in an unbounded domain � ⊂ RN which is assumed to be of class C2,α (with α > 0),
periodic in d directions and bounded in the remaining variables. That is, there are an
integer d ∈ {1, . . . , N} and d positive real numbers L1, . . . , Ld such that{

∃R ≥ 0, ∀(x, y) ∈ �, |y| ≤ R,

∀k ∈ L1Z× · · · × LdZ× {0}N−d , � = �+ k,

where
x = (x1, . . . , xd), y = (xd+1, . . . , xN ), z = (x, y)

and | · | denotes the euclidean norm. Admissible domains are the whole space RN , the
whole space with periodic perforations, infinite cylinders with constant or periodically
undulating sections, etc. We denote by ν the outward unit normal on ∂�, and

ξBξ ′ =
∑

1≤i,j≤N

ξiBij ξ
′

j

for any two vectors ξ = (ξi)1≤i≤N and ξ ′ = (ξ ′i )1≤i≤N in RN and any N × N matrix
B = (Bij )1≤i,j≤N with real entries. Throughout the paper, we call

C = {(x, y) ∈ � : x ∈ [0, L1]× · · · × [0, Ld ]}

the cell of periodicity of �.
Equations of the type (1.1) arise especially in combustion, population dynamics and

ecological models (see e.g. [3, 16, 29, 35, 43, 49]), where u typically stands for the tem-
perature or the concentration of a species.

The symmetric matrix field A(x, y) = (Aij (x, y))1≤i,j≤N is of class C1,α(�) and
uniformly positive definite. The vector field q(x, y) = (qi(x, y))1≤i≤N is of class
C0,α(�). The nonlinearity (x, y, u) (∈ � × R) 7→ f (x, y, u) is continuous, of class
C0,α with respect to (x, y) locally uniformly in u ∈ R, and of class C1 with respect to u.
All functions Aij , qi and f (·, ·, u) (for all u ∈ R) are assumed to be periodic, in the sense
that they satisfy

w(x + k, y) = w(x, y) for all (x, y) ∈ � and k ∈ L1Z× · · · × LdZ.

We are given two C2,α(�) periodic solutions p± of the stationary equation{
−∇ · (A(x, y)∇p±)+ q(x, y) · ∇p± = f (x, y, p±) in �,

νA(x, y)∇p± = 0 on ∂�,
(1.2)
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which are ordered, in the sense that p−(x, y) < p+(x, y) for all (x, y) ∈ �.1 We assume
that there are β > 0 and γ > 0 such that the function

(x, y, s) 7→
∂f

∂u
(x, y, p−(x, y)+ s)

is of class C0,β(�× [0, γ ]). Denote

ζ−(x, y) =
∂f

∂u
(x, y, p−(x, y)). (1.3)

Throughout the paper, we assume that p− is linearly unstable in the sense that

µ− < 0, (1.4)

where µ− denotes the principal eigenvalue of the linearized operator around p−

ψ 7→ −∇ · (A(x, y)∇ψ)+ q(x, y) · ∇ψ − ζ−(x, y)ψ

with periodicity conditions in� and the Neumann boundary condition νA∇ψ = 0 on ∂�.
That is, there exists a positive periodic function ϕ in � such that

−∇ · (A(x, y)∇ϕ)+ q(x, y) · ∇ϕ − ζ−(x, y)ϕ = µ−ϕ in �

and νA(x, y)∇ϕ = 0 on ∂�. Notice that the condition µ− < 0 is fulfilled in particular if
ζ−(x, y) > 0 for all (x, y) ∈ � or even if ζ− is nonnegative and not identically equal to
0 in �. We also assume that there is ρ such that

0 < ρ < min
�

(p+ − p−)

and that, for any classical bounded super-solution u of{
ut −∇ · (A(x, y)∇u)+ q(x, y) · ∇u ≥ f (x, y, u) in R×�,
νA∇u ≥ 0 on R× ∂�,

satisfying u < p+ and �u = {(t, x, y) ∈ R×� : u(t, x, y) > p+(x, y)− ρ} 6= ∅, there
exists a family (ρτ )τ∈[0,1] of functions defined in �u and satisfying

τ 7→ ρτ is continuous in C1+α/2;2+α
t;(x,y)

(
�u
)
,

τ 7→ ρτ (t, x, y) is nondecreasing for each (t, x, y) ∈ �u,

ρ0 = 0, ρ1 ≥ ρ, inf
�u

ρτ > 0 for each τ ∈ (0, 1],

(u+ ρτ )t −∇ · (A∇(u+ ρτ ))+ q · ∇(u+ ρτ ) ≥ f (x, y, u+ ρτ ) in �u,τ ,

νA∇(u+ ρτ ) ≥ 0 on (R× ∂�) ∩�u,τ ,

(1.5)

1 The present paper is concerned with uniqueness and stability properties of pulsating fronts
connecting p− and p+. Under the assumptions below, the fact that these two limiting stationary
states are ordered makes the fronts monotone in time, which plays an important role in the proofs.
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where
�u,τ = {(t, x, y) ∈ �u : u(t, x, y)+ ρτ (t, x, y) < p+(x, y)}.

This is a weak stability condition for p+. It is satisfied in particular if p+ is linearly stable
(as in Theorem 1.3 below), or if f is nonincreasing in a left neighborhood of p+, namely
if there exists ρ ∈ (0,min� (p

+
− p−)) such that f (x, y, p+(x, y)+ ·) is nonincreasing

in [−ρ, 0] for all (x, y) ∈ �. It is straightforward to check that condition (1.5) is fulfilled
as well if, for every (x, y) ∈ �, the function

s 7→
f (x, y, p−(x, y)+ s)− f (x, y, p−(x, y))

s

is nonincreasing in (0, p+(x, y) − p−(x, y)). Indeed, in this case, we can take any ρ in
(0,min�(p

+
− p−)) (see Section 1.1 of [20] for details).

For some of our results, we shall assume a Kolmogorov–Petrovskiı̆–Piskunov type
condition on f , that is, for all (x, y) ∈ � and s ∈ [0, p+(x, y)− p−(x, y)],

f (x, y, p−(x, y)+ s) ≤ f (x, y, p−(x, y))+ ζ−(x, y)s. (1.6)

As an example, when f depends on u only and admits two zeroes p− < p+ ∈ R, the
above conditions are satisfied if f is of class C1,β in a right neighborhood of p− with
f ′(p−) > 0 and if f is nonincreasing in a left neighborhood of p+. The KPP assumption
(1.6) reads in this case:

f (u) ≤ f ′(p−)(u− p−) for all u ∈ [p−, p+].

The nonlinearities f (u) = u(1 − u) or f (u) = u(1 − u)m with m ≥ 1 are archetype
examples (with p− = 0 and p+ = 1) arising in biological models (see [16, 29]).

1.2. Uniqueness of KPP pulsating fronts

This paper is concerned with qualitative properties of an important class of solutions
of (1.1), namely the pulsating traveling fronts connecting the two stationary states p−

and p+. Given a unit vector e ∈ Rd × {0}N−d , a pulsating front connecting p− and p+,
traveling in the direction e with (mean) speed c ∈ R∗, is a time-global classical solution
U(t, x, y) of (1.1) such that

U(t, x, y) = φ(x · e − ct, x, y) for all (t, x, y) ∈ R×�,
(x, y) 7→ φ(s, x, y) is periodic in � for all s ∈ R,
φ(s, x, y)

s→±∞
−−−−→ p∓(x, y) uniformly in (x, y) ∈ �,

p−(x, y) < U(t, x, y) < p+(x, y) for all (t, x, y) ∈ R×�.

(1.7)

With a slight abuse of notation, x · e denotes x1e1 + · · · + xded , where e1, . . . , ed are
the first d components of the vector e. The notion of pulsating traveling fronts extends
that of usual traveling fronts which are invariant in the frame moving with speed c in the
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direction e. It was proved in [20] that any pulsating front is increasing in time if c > 0 (or
decreasing if c < 0). More precisely, φs(s, x, y) < 0 for all (s, x, y) ∈ R×�.2

Our first result yields uniqueness, up to shifts in time, of the pulsating KPP traveling
fronts for a given speed c in a given direction e.

Theorem 1.1. Let e be a unit vector in Rd×{0}N−d , let c ∈ R∗ be given, and assume that
the KPP assumption (1.6) is fulfilled. IfU1(t, x, y) = φ1(x ·e−ct, x, y) andU2(t, x, y) =

φ2(x ·e−ct, x, y) are two pulsating traveling fronts in the sense of (1.7), then there exists
σ ∈ R such that

φ1(s, x, y) = φ2(s + σ, x, y) for all (s, x, y) ∈ R×�, (1.8)

that is, there exists τ ∈ R (τ = −σ/c) such that

U1(t, x, y) = U2(t + τ, x, y) for all (t, x, y) ∈ R×�. (1.9)

As a consequence, in the KPP case, given any direction e and any speed c ∈ R∗, the set
of pulsating fronts U(t, x, y) = φ(x ·e−ct, x, y) is either empty or homeomorphic to R.
Notice indeed that if τ is not zero in (1.9), then U1 6= U2, since all fronts are strictly
monotone in time (see [20]).

The existence of pulsating traveling fronts is known in some cases which are covered
by the assumptions of Theorem 1.1. For instance, if

p− = 0, p+ = 1, f (x, y, u) > 0 for all (x, y, u) ∈ �× (0, 1),

f (x, y, u) is nonincreasing with respect to u in a left neighborhood of 1,

∇ · q = 0 in �, q · ν = 0 on ∂�,
∫
C

qi(x, y) dx dy = 0 for 1 ≤ i ≤ d,

(1.10)

and if the KPP assumption (1.6) is satisfied, then, given any unit vector e ∈ Rd ×{0}N−d ,
there exists a minimal speed c∗(e) > 0 such that pulsating traveling fronts exist if and
only if

c ≥ c∗(e) = min
λ>0

(−k(λ)/λ) = min{c ∈ R : ∃λ > 0, k(λ)+ λc = 0}, (1.11)

where k(λ) is the principal eigenvalue of the operator

Lλψ := −∇ ·(A∇ψ)+2λeA∇ψ+q ·∇ψ+ [λ∇ ·(Ae)−λq ·e−λ2eAe−ζ−]ψ (1.12)

acting on the set of C2(�) periodic functions ψ such that νA∇ψ = λ(νAe)ψ on ∂�
(see [5]; actually, this existence result has been proved under additional smoothness as-
sumptions on the coefficients of (1.1)). Here ζ−(x, y) = ∂f

∂u
(x, y, 0). As already empha-

sized (see Section 1.1 in [20]), conditions (1.6) and (1.10) imply (1.4) and (1.5). Applica-
tions of the formula for the minimal speed c∗(e)were given in [4, 13, 14, 24, 39, 41, 46, 50].

2 In [20], the notation U(t, x, y) = φ(ct − x · e, x, y) was used, with φ(±∞, x, y) = p±(x, y).
In [20], φ was then increasing in s. The definition (1.7) makes U and φ face the same direction and
is then more natural. In the present paper, the results of [20] have been translated in order to fit with
the definition (1.7).
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However, the uniqueness up to shifts for a given speed c was not known. Theorem 1.1 of
the present paper thus provides a complete classification of all pulsating fronts: namely,
given a direction e in Rd×{0}N−d , the set of pulsating fronts is a two-dimensional family,
which can be parameterized by the speed c and the shift in the time variable.

For nonlinearities f satisfying (1.6) and (1.10), the derivative ζ−(x, y) = ∂f
∂u
(x, y, 0)

is positive everywhere. That is why condition (1.4) is fulfilled automatically. However,
if ζ− is not everywhere positive, the principal eigenvalue µ− may not be negative in
general. In [7], nonlinearities f = f (x, s) (for x ∈ � = RN ) satisfying{

p− = 0, f (x, 0) = 0, u 7→ f (x, u)/u is decreasing in u > 0,

∃M > 0, ∀x ∈ RN , ∀u ≥ M, f (x, u) ≤ 0
(1.13)

were considered, with no advection (q = 0). Typical examples are

f (x, u) = u(ζ−(x)− η(x)u),

where η is a periodic function which is bounded from above and below by two positive
constants (see [43] for biological invasion models). Under the assumptions (1.13), the
existence (and uniqueness) of a positive periodic steady state p+ of (1.2) is equivalent to
the condition µ− < 0, that is, (1.4) (see [6]). Notice also that (1.13) implies (1.5) (see
[20]), as well as (1.6). Under the condition µ− < 0, the existence of pulsating fronts
in any direction e was proved in [7] for all speeds c ≥ c∗(e), where c∗(e) is still given
by (1.11) (see also [25] for partial results in the one-dimensional case), and it was already
known from [7] that no pulsating front exists with speed less than c∗(e). However, the
uniqueness of the front profiles in a given direction e and for a given speed c ≥ c∗(e) was
still an open problem, even in dimension 1.

In short, the first part of the present paper gives a positive answer to the uniqueness is-
sue of the KPP pulsating fronts, in a setting which unifies and is more general than (1.10)
or (1.13). In particular, in this paper, the nonlinearity f is not assumed to be nonnegative
or to satisfy any monotonicity properties. Actually, Theorem 1.1 follows from a more
general uniqueness result which does not require the KPP assumption (1.6) but needs ad-
ditional a priori properties for any two fronts with the same given speed: see Theorem 2.2
in Section 2.

Remark 1.2. If both p− and p+ are weakly stable—that is, when (1.5) is satisfied and
when the instability assumption (1.4) of p− is replaced by a weak stability assumption
which is similar to (1.5)—then the analysis is much easier. Comparison principles such as
Lemma 2.1 below, which can be viewed as weak maximum principles in some unbounded
domains, would then hold not only in the region where the solutions are close to p+, but
also in the region where they are close to p−. Two given fronts could then automatically
be compared globally in R × �, up to time-shifts, and a sliding method similar to [2, 3]
would imply that the functions φ(s, x, y) are unique up to shifts in the variable s, and
that the speed c, if any, is necessarily unique. This is the case for instance for bistable or
combustion-type nonlinearities (see [2, 3, 9, 32, 34, 47, 48, 49] for existence and further
qualitative results with such reaction terms). In the present paper, as a consequence of the
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instability of p−, one cannot use versions of the weak maximum principles in the region
where the solutions are close to p−. Therefore, even if the proofs of Theorems 1.1 and 2.2
below are based on a sliding method, the main difficulty is to compare two given fronts
globally and especially to compare their tails in the region where they approach p− (see
Section 2 for further details).

1.3. Global stability of KPP or general monostable fronts

The second part of this paper is concerned with stability issues for KPP or general mono-
stable fronts. The stability of the fronts and the convergence to them at large times is
indeed one of the most important features of reaction-diffusion equations. We are back
to the general periodic framework and we shall see that, under some assumptions on the
initial conditions, solutions of the Cauchy problem (1.1) will converge to pulsating fronts.

To state the stability results, we need a few more notations. In what follows, e denotes
a given unit vector in Rd × {0}N−d and ζ−(x, y) is defined as in (1.3). For each λ ∈ R,
denote by k(λ) the principal eigenvalue of the operator Lλ defined in (1.12) and let ψλ
denote the unique positive principal eigenfunction of Lλ such that, say,

‖ψλ‖L∞(�) = 1. (1.14)

It has been proved (see Proposition 1.2 in [20]) that, for any pulsating traveling front
U(t, x, y) = φ(x · e − ct, x, y) of (1.1) in the sense of (1.7),

c ≥ c∗(e) := inf
λ>0
(−k(λ)/λ). (1.15)

The quantity c∗(e) is a real number, and for each c > c∗(e), the positive real number

λc = min{λ > 0 : k(λ)+ cλ = 0} (1.16)

is well-defined (see [20]).
Let now µ+ be the principal eigenvalue of the linearized operator

ψ 7→ −∇ · (A(x, y)∇ψ)+ q(x, y) · ∇ψ −
∂f

∂u
(x, y, p+(x, y))ψ

around the limiting state p+, with periodicity conditions in� and the Neumann boundary
condition νA∇ψ = 0 on ∂�. Let ψ+ be the unique positive principal eigenfunction such
that ‖ψ+‖L∞(�) = 1. The function ψ+ satisfies
−∇ · (A(x, y)∇ψ+)+ q(x, y) · ∇ψ+ −

∂f

∂u
(x, y, p+(x, y))ψ+ = µ+ψ+ in �,

ψ+ > 0 in �, max
�

ψ+ = 1,

νA∇ψ+ = 0 on ∂�.

(1.17)

It is straightforward to check (see [20]) that the condition µ+ > 0 implies the weak
stability property (1.5).
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From now on, u0 denotes a uniformly continuous function defined in � such that

p−(x, y) ≤ u0(x, y) ≤ p
+(x, y) for all (x, y) ∈ �,

and let u(t, x, y) be the solution of the Cauchy problem (1.1) for t > 0, with initial
condition u0 at time t = 0. Observe that

p−(x, y) ≤ u(t, x, y) ≤ p+(x, y)

for all (x, y) ∈ � and t ≥ 0, from the maximum principle.
The following theorem is concerned with the global stability of general monostable

pulsating fronts for speeds larger than c∗(e).

Theorem 1.3. Assume thatµ+ > 0 and thatU(t, x, y) = φ(x ·e−ct, x, y) is a pulsating
traveling front with speed c > c∗(e) such that

lim
s→+∞

sup
(x,y)∈�

∣∣∣∣ ln(φ(s, x, y)− p−(x, y))s
+ λc

∣∣∣∣ = 0. (1.18)

Then there exists ε0 > 0 such that if

lim inf
ς→−∞

inf
(x,y)∈�, x·e≤ς

[u0(x, y)− p
+(x, y)] > −ε0 (1.19)

and

u0(x, y)− p
−(x, y) ∼ U(0, x, y)− p−(x, y) as x · e→+∞, 3 (1.20)

then
sup

(x,y)∈�

|u(t, x, y)− U(t, x, y)| → 0 as t →+∞. (1.21)

In Theorem 1.3, the assumption (1.18) on the logarithmic equivalent of φ(s, x, y) −
p−(x, y) as s → +∞ is automatically satisfied under the KPP condition (1.6) (see
formulas (1.22) and (1.23) below and Theorem 1.5). Actually, assumption (1.6) is not
required here and it is only assumed that the limiting state p− is unstable while the other
one, p+, is stable. But it does not mean a priori that f is of the KPP type or that there is no
other stationary state p between p− and p+. In the general monostable case, assumption
(1.18) is also fulfilled, without the KPP condition, as soon as there exists a pulsating front

U ′(t, x, y) = φ′(x · e − c′t, x, y)

in the sense of (1.7) with a speed c′ < c (see Theorem 1.5 in [20]). As a consequence, the
following corollary holds.

3 Condition (1.20) is understood as sup
(x,y)∈�, x·e≥ς

|(u0(x, y) − p
−(x, y))/(U(0, x, y) −

p−(x, y))− 1| → 0 as ς →+∞.
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Corollary 1.4. In Theorem 1.3, if the assumption (1.18) is replaced by the existence of a
pulsating front U ′(t, x, y) = φ′(x · e− c′t, x, y) with a speed c′ < c, then the conclusion
still holds.

The existence of a pulsating front with a speed c′ < c is a reasonable assumption. For
instance, under assumptions (1.10) with ∂f

∂u
(x, y, 0) > 0, even without the KPP assump-

tion (1.6), pulsating fronts U(t, x, y) = φ(x · e− ct, x, y) exist if and only if c ≥ c∗∗(e),
where the minimal speed c∗∗(e) is such that c∗∗(e) ≥ c∗(e) and c∗(e) is given in (1.11)
(see [2, 3]). Thus, for each c > c∗∗(e), the existence of a pulsating traveling front with a
speed c′ < c is guaranteed.

Let us now comment on Theorem 1.3 and Corollary 1.4 and give some insight into
their proofs. These two statements are global stability results for general monostable
fronts. The initial condition u0 is in some sense close to the pulsating front U(0, ·, ·)
at both ends, that is, when x · e→±∞. Assumption (1.19) means that u0 has to be in the
basin of attraction of the stable state p+ as x · e is very negative. But these conditions are
not very restrictive and u0 is not required to be close to U(0, ·, ·) when |x · e| is not large.
Nevertheless, the convergence result (1.21) as t →+∞ is uniform in space. The assump-
tions of Theorem 1.3 and Corollary 1.4 alone imply that the solution u(t, x, y) converges
to the periodicity condition—namely the second property of (1.7)—asymptotically as
t →+∞, whereas u0 does not satisfy any such periodicity condition. A serious difficulty
in Cauchy problems of the type (1.1) is indeed to get uniform estimates in the variables
which are orthogonal to the direction e (establishing such estimates is an essential tool in
the proof of Theorem 1.3). This difficulty was not present in the case of one-dimensional
media or infinite cylinders with bounded sections, because of the compactness of cross
sections.

The general strategy of the proofs is, as in the paper by Fife and McLeod [15], to
trap the solution u(t, x, y) between suitable sub- and super-solutions which are close to
some shifts of the pulsating traveling front U , and then to show that the shifts can be
chosen as small as we want when t → +∞. However, the method is much more in-
volved than in the bistable case investigated in [15]: not only does the instability of p−

require more precise estimates in the region where x · e − ct is positive, but also the
fact that p+ is only assumed to be stable (in the sense that µ+ > 0) without any sign
hypothesis on f (·, ·, s) − f (·, ·, p+) as s ' p+ makes the situation more complicated
and requires the use of the principal eigenfunction ψ+ in the definition of the sub- and
super-solutions (dealing here with the general monostable case introduces additional dif-
ficulties which would not be present in the KPP case, especially as far as super-solutions
are concerned). Furthermore, the dependence of all coefficients A, q and f on the spa-
tial variables (x, y) induces additional technical difficulties, which are overcome by the
use of space-dependent exponential correcting terms (we refer to Section 3 for further
details).

Lastly, it is worth pointing out that there is no shift in the limiting profile, unlike
for combustion-type or bistable equations (we refer to [15, 27, 40] for results with such
nonlinearities in the one-dimensional case, or in infinite cylinders with invariance under
translation in the direction of propagation; see equation (1.28) below).
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Let us now deal with the particular KPP case (1.6). The assumptions of Theorem 1.3
can then be rewritten in a more explicit way. We first recall that, under the assump-
tion (1.6), if c > c∗(e) then

φ(s, x, y)− p−(x, y) ∼ Bφe
−λcsψλc (x, y) as s →+∞ (1.22)

uniformly in (x, y) ∈ �, for some Bφ > 0, while if c = c∗(e) then there is a unique
λ∗ > 0 such that k(λ∗)+ c∗(e)λ∗ = 0 and there exists Bφ > 0 such that

φ(s, x, y)− p−(x, y) ∼ Bφs
2m+1e−λ

∗sψλ∗(x, y) as s →+∞ (1.23)

uniformly in (x, y) ∈ �, where m ∈ N and 2m + 2 is the multiplicity of λ∗ as a root of
k(λ)+ c∗(e)λ = 0 (see Theorem 1.3 in [20]).

Theorem 1.5. Assume that the KPP condition (1.6) is satisfied, that µ+ > 0 and that
U(t, x, y) = φ(x ·e−ct, x, y) is a pulsating traveling front of (1.1). Then there is ε0 > 0
such that the following holds.

(1) If c > c∗(e), if u0 satisfies (1.19) and if there exists B > 0 such that

u0(x, y)− p
−(x, y) ∼ Be−λcx·eψλc (x, y) as x · e→+∞, (1.24)

then
sup

(x,y)∈�

|u(t, x, y)− U(t + τ, x, y)| → 0 as t →+∞, (1.25)

where τ is the unique real number such that Bφeλccτ = B and Bφ > 0 is given by
(1.22).

(2) If c = c∗(e), if u0 satisfies (1.19) and if there exists B > 0 such that

u0(x, y)− p
−(x, y) ∼ B(x · e)2m+1e−λ

∗x·eψλ∗(x, y) as x · e→+∞, (1.26)

then (1.25) holds, where τ is the unique real number such that Bφeλ
∗c∗(e)τ

= B and
Bφ > 0 is given by (1.23).

It is immediate to see that, under the notations of Theorem 1.5,

u0(x, y)− p
−(x, y) ∼ U(τ, x, y)− p−(x, y) as x · e→+∞.

As a consequence, part (1) of Theorem 1.5 is a corollary of Theorem 1.3. Part (2) is more
technical and needs a specific proof, which is done in Section 4. The main additional diffi-
culty relies on the fact that the exponentially decaying functions e−λ

∗s characterizing the
behavior of KPP fronts with minimal speeds near the unstable steady state p− are mul-
tiplied by polynomial pre-factors. These pre-factors vanish somewhere. The construction
of sub- and super-solutions must take this fact into account and it is therefore much more
intricate. The sub- and super-solutions used in the proof use extra polynomial times ex-
ponentially decaying terms involving some derivatives of the principal eigenfunctions ψλ
with respect to λ at the critical rate λ = λ∗. We point out that these ideas are new even in
the previous special cases which were investigated in the literature.
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From Corollary 1.4 and Theorem 1.5, it follows that the only case which is not covered
by our stability results is the monostable case without the KPP assumption (1.6) and when
the front U is the slowest one among all pulsating fronts. The situation is different in this
case, and in general a shift in time is expected to occur in the convergence to the front at
large times, like in combustion-type nonlinearities.

It can be seen from Theorems 1.3 and 1.5 that the propagation speed of u(t, x, y) at
large times strongly depends on the asymptotic behavior of the initial condition u0 when
it approaches the unstable state p−. Actually, this fact has already been known in some
simpler situations. In particular, the above stability results extend earlier ones for the usual
traveling fronts U(t, x) = φ(x − ct) of the homogeneous one-dimensional equation

ut = uxx + f (u) in R (1.27)

with f (0) = f (1) = 0 (p− = 0 and p+ = 1) and f > 0 in (0, 1), with or without the
KPP condition 0 < f (s) ≤ f ′(0)s in (0, 1) (see e.g. [10, 18, 26, 30, 31, 42, 44, 45]).
In this case, the minimal speed is equal to c∗ = 2

√
f ′(0), k(λ) = −λ2

− f ′(0) for each
λ ∈ R, λ∗ =

√
f ′(0) and m = 0. Theorem 1.5 also generalizes the stability results for

the traveling fronts U(t, x, y) = φ(x − ct, y) (which are still invariant in their moving
frame) of equations of the type

ut −1u+ α(y)
∂u

∂x
= f (u), (x, y) ∈ � = R×ω, ν · ∇u = 0, (x, y) ∈ ∂�, (1.28)

in straight infinite cylinders with smooth bounded sections ω and with underlying shear
flows q = (α(y), 0, . . . , 0), for nonlinearities f such that f (0) = f (1) = 0 and satis-
fying the stronger KPP assumption that f (s)/s is nonincreasing in (0, 1) (see [33]). For
equations (1.28), we refer to [9] for existence and uniqueness results of traveling fronts.
Some stability results without the KPP assumption (when 0 and 1 are assumed to be the
only possible steady states in [0, 1]) have also been established in [33] and [40]. Recently,
stability results for the one-dimensional equation

ut = uxx + f (x, u) (1.29)

with KPP periodic nonlinearity f (x, u) have been obtained in [1] with the use of Flo-
quet exponents. The stability and uniqueness of one-dimensional pulsating KPP fronts
for discretized equations have just been addressed in [19], under the assumption of expo-
nential behavior of the fronts when they approach the unstable state. Actually, we point
out that, in the KPP case, even for the equation (1.28) in infinite cylinders or for the one-
dimensional periodic discrete or continuous framework, the question of stability of fronts
with minimal speed has been open. Part (2) of Theorem 1.5 gives a positive answer to this
important question.

The general philosophy of the aforementioned references [1, 33, 40] is that, if the ini-
tial condition u0 approaches the unstable state p− = 0 like a (pulsating) traveling front
up to a faster exponential term, then the convergence of u to the front at large times is
exponential in time in weighted function spaces. The method is based on spectral prop-
erties in weighted spaces and it also uses the exact exponential behavior of the fronts
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when they approach 0. We conjecture that such a more precise convergence result holds
in our general periodic framework—at least in the KPP case when the exact exponen-
tial behavior is known—under a stronger assumption on u0, like u0(x, y) − p

−(x, y) =

U(0, x, y)−p−(x, y)+O((U(0, x, y)−p−(x, y))1+ε) as x ·e→+∞, for some ε > 0.
However, this is not the purpose of the present paper and the method which we use to
prove Theorems 1.3 and 1.5 is based directly on the construction of suitable sub- and
super-solutions and on some Liouville type results. Furthermore, the method works in the
general monostable periodic framework and it only requires that

u0(x, y)− p
−(x, y) ∼ U(0, x, y)− p−(x, y) as x · e→+∞,

as well as the logarithmic equivalent of the fronts when they approach the unstable
state p−. However, in Theorems 1.3 and 1.5, the assumptions (1.20), (1.24) and (1.26)
play an essential role and cannot be relaxed. Indeed, with a KPP type nonlinearity f , for
equation (1.29), if u0(x) is simply assumed to be trapped between two shifts of a front φ,
then u may exhibit nontrivial dynamics and its ω-limit set may be a continuum of trans-
lates of φ (see [1]). On the other hand, even in the homogeneous one-dimensional case
(1.27), if u0(x) is just assumed to be trapped as x · e→ +∞ between two exponentially
decaying functions with two different decay rates, the asymptotic propagation speed of u
as t →+∞ may not be unique in general (see [21] for details; see also [23] for results in
the same spirit for combustion-type equations). Lastly, if u0(x) decays more slowly than
any exponentially decaying function as x · e → +∞, then the asymptotic propagation
speed is infinite (see [11, 22]).

1.4. Additional results in the time-periodic case

Finally, we mention that, with the same type of methods as in this paper, similar unique-
ness and stability results can be established for pulsating fronts in time-periodic media
(however, in order not to lengthen this paper, we just state the conclusions without the
detailed proofs). Namely, consider reaction-diffusion-advection equations of the type{

ut −∇ · (A(t, y)∇u)+ q(t, y) · ∇u = f (t, y, u) in �,

νA∇u = 0 on ∂�,
(1.30)

in a smooth unbounded domain � = {(x, y) ∈ Rd × ω}, where ω is a C2,α bounded do-
main of RN−d . The uniformly elliptic symmetric matrix fieldA(t, y)=(Aij (t, y))1≤i,j≤N
is of class C1,α/2;1,α

t;y
(R × ω), the vector field q(t, y) = (qi(t, y))1≤i≤N is of class

C
0,α/2;1,α
t;y

(R× ω) and the nonlinearity (t, y, u) (∈ R× ω × R) 7→ f (t, y, u) is contin-
uous, of class C0,α/2;0,α with respect to (t, y) locally uniformly in u ∈ R and of class C1

with respect to u in R × ω × R. All functions Aij , qi and f (·, ·, u) (for all u ∈ R) are
assumed to be time-periodic, in the sense that they satisfy w(t + T , y) = w(t, y) for all
(t, y) ∈ R×ω, where T > 0 is given. We are given two time-periodic classical solutions
p± of (1.30) satisfying

p−(t, y) < p+(t, y) for all (t, y) ∈ R× ω.
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Assume that the function (t, y, s) 7→ ∂f
∂u
(t, y, p−(t, y)+s) is of classC0,β(R×ω×[0, γ ])

for some β > 0 and γ > 0, and that µ− < 0, where µ− denotes the principal eigenvalue
of the linearized operator around p−,

ψ(t, y) 7→ ψt −∇ · (A(t, y)∇ψ)+ q(t, y) · ∇ψ −
∂f

∂u
(t, y, p−(t, y))ψ,

with time-periodicity conditions in R× ω and Neumann boundary condition νA∇ψ = 0
on R×∂ω. With a slight abuse of notation, ∇ψ denotes (0, . . . , 0,∇yψ) ∈ {0}d×RN−d .
Assume that there is ρ such that 0 < ρ < minR×ω (p+ − p−) and, for any classi-
cal bounded supersolution u of (1.30) satisfying u < p+ and �u = {u(t, x, y) >
p+(t, y) − ρ} 6= ∅, there exists a family (ρτ )τ∈[0,1] of functions defined in �u and
satisfying (1.5) with �u,τ = {(t, x, y) ∈ �u : u(t, x, y) + ρτ (t, x, y) < p+(t, y)}.
The KPP condition (1.6) is replaced with the following one: for all (t, y) ∈ R × ω and
s ∈ [0, p+(t, y)− p−(t, y)],

f (t, y, p−(t, y)+ s) ≤ f (t, y, p−(t, y))+
∂f

∂u
(t, y, p−(t, y))s. (1.31)

Given a unit vector e ∈ Rd × {0}N−d , a pulsating front connecting p− and p+, traveling
in the direction e with mean speed c ∈ R∗, is a classical solution U(t, x, y) of (1.30) such
that 

U(t, x, y) = φ(x · e − ct, t, y) for all (t, x, y) ∈ R× Rd × ω,
φ(s, t + T , y) = φ(s, t, y) for all (s, t, y) ∈ R2

× ω,

φ(s, t, y)
s→±∞
−−−−→ p∓(t, y) uniformly in (t, y) ∈ R× ω,

p−(t, y) < U(t, x, y) < p+(t, y) for all (t, x, y) ∈ R× Rd × ω.

(1.32)

We refer to [17, 37, 38] for existence results and speed estimates of pulsating fronts for
equations of the type (1.30) with time-periodic KPP nonlinearities and shear flows (see
also [36] for the existence of fronts in space-time periodic media). For each λ ∈ R, still
define k(λ) as the principal eigenvalue of the operator

ψ 7→ ψt −∇ · (A∇ψ)+ 2λeA∇ψ + q · ∇ψ

+

[
λ∇ · (Ae)− λq · e − λ2eAe −

∂f

∂u
(t, y, p−(t, y))

]
ψ

with time-periodicity conditions in R×ω and the boundary conditions νA∇ψ=λ(νAe)ψ
on R × ∂ω, and denote by ψλ the unique positive principal eigenfunction such that
‖ψλ‖L∞(R×ω) = 1. Define c∗(e) as in (1.15) and for each c > c∗(e), define λc > 0
as in (1.16). These quantities are well-defined real numbers.

Then, for any pulsating traveling front, one has c ≥ c∗(e) (this fact was already
mentioned in [20]). Furthermore, under the KPP assumption (1.31), if

U1(t, x, y) = φ1(x · e − ct, t, y) and U2(t, x, y) = φ2(x · e − ct, t, y)
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are two pulsating traveling fronts with the same speed c, then φ1(s, t, y) = φ2(s+σ, t, y)

in R2
× ω for some σ ∈ R.

In the following, assume that µ+ > 0, where µ+ denotes the principal eigenvalue of
the linearized operator around p+,

ψ(t, y) 7→ ψt −∇ · (A(t, y)∇ψ)+ q(t, y) · ∇ψ −
∂f

∂u
(t, y, p+(t, y))ψ,

with time-periodicity in R × ω and the Neumann boundary condition νA∇ψ = 0 on
R× ∂ω. Consider a pulsating front U(t, x, y) = φ(x · e− ct, t, y) in the sense of (1.32).

If c > c∗(e) and if ln(φ(s, t, y) − p−(t, y)) ∼ −λcs as s → +∞ uniformly in
(t, y) ∈ R× ω, then there exists ε0 > 0 such that, for any uniformly continuous function
u0 such that p

−(τ, y) ≤ u0(x, y) ≤ p
+(τ, y) for all (x, y) ∈ �,

lim inf
ς→−∞

inf
(x,y)∈�, x·e≤ς

[u0(x, y)− p
+(τ, y)] > −ε0

(1.33)

and u0(x, y) − p
−(τ, y) ∼ U(τ, x, y) − p−(τ, y) as x · e → +∞ for some τ ∈ R, the

solution u(t, x, y) of (1.30) with initial condition u0 satisfies

sup
(x,y)∈�

|u(t, x, y)− U(t + τ, x, y)| → 0 as t →+∞.

Lastly, under the KPP condition (1.31), there is ε0 > 0 such that the following holds.
If c > c∗(e) and if there exist τ ∈ R and B > 0 such that u0 satisfies (1.33) and
u0(x, y)− p

−(τ, y) ∼ Be−λcx·eψλc (τ, y) as x · e→+∞, then the solution u(t, x, y) of
(1.30) with initial condition u0 satisfies

sup
(x,y)∈�

|u(t, x, y)− U(t + τ, x + σe, y)| → 0 as t →+∞, (1.34)

where σ is the unique real number such that Bφeλc(cτ−σ) = B and Bφ > 0 is given by

φ(s, t, y)− p−(t, y) ∼ Bφe
−λcsψλc (t, y) as s →+∞ uniformly in (t, y) ∈ R× ω.

On the other hand, if c = c∗(e) and if there exist τ ∈ R and B > 0 such that u0
satisfies (1.33) and u0(x, y)−p

−(τ, y) ∼ B(x · e)2m+1e−λ
∗x·eψλ∗(τ, y) as x · e→+∞,

where λ∗ is the unique positive root of k(λ) + c∗(e)λ = 0, with multiplicity 2m + 2,
then (1.34) holds, where σ satisfies Bφeλ

∗(c∗(e)τ−σ)
= B and Bφ > 0 is given by

φ(s, t, y)−p−(t, y) ∼ Bφs
2m+1e−λ

∗sψλ∗(t, y) as s →+∞ uniformly in (t, y) ∈ R×ω.

Outline of the paper. Section 2 is devoted to the uniqueness results. In Section 3, the
proof of the stability result in the general monostable case is given. Lastly, Section 4 is
concerned with the proof of the stability of KPP fronts with minimal speed c∗(e).
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2. Uniqueness of the fronts up to shifts

This section is devoted to the proof of the uniqueness result, that is, Theorem 1.1. Theo-
rem 1.1 is itself based on another uniqueness result which is valid in the general mono-
stable case. The basic strategy is to compare a given front φ2 with to the shifts of another
one φ1 and to prove that, for a critical shift, the two fronts are identically equal. In other
words, we use a sliding method. One of the difficulties is to initiate the sliding method,
that is, to compare the solutions globally in R×�, and in particular in the region where
both fronts are close to p− (as s → +∞). In this region, the weak maximum principle
does not hold because of the instability of p−. However, this difficulty can be overcome
because the fronts have a nondegenerate behavior as s →+∞ (see (2.2) below).

Before doing so, we first quote from [20] a useful lemma (see Lemma 2.3 in [20])
which is a comparison result between sub- and super-solutions in the region where s ≤ h.

Lemma 2.1. Let ρ ∈ (0,min�(p
+
− p−)) be as in (1.5). Let U and U be respectively a

classical super-solution and sub-solution of{
U t −∇ · (A(x, y)∇U)+ q(x, y) · ∇U ≥ f (x, y, U) in R×�,
νA∇U ≥ 0 on R× ∂�,

and {
U t −∇ · (A(x, y)∇U)+ q(x, y) · ∇U ≤ f (x, y, U) in R×�,
νA∇U ≤ 0 on R× ∂�,

such that U < p+ and U < p+ in R×�. Assume that U(t, x, y) = 8(x · e − ct, x, y)
and U(t, x, y) = 8(x · e − ct, x, y), where 8 and 8 are periodic in (x, y), c 6= 0 and
e ∈ Rd × {0}N−d with |e| = 1. If there exists h ∈ R such that

8(s, x, y) > p+(x, y)− ρ for all s ≤ h and (x, y) ∈ �,

8(h, x, y) ≥ 8(h, x, y) for all (x, y) ∈ �,

lim inf
s→−∞

[
min

(x,y)∈�

(8(s, x, y)−8(s, x, y))
]
≥ 0,

then
8(s, x, y) ≥ 8(s, x, y) for all s ≤ h and (x, y) ∈ �,

that is, U(t, x, y) ≥ U(t, x, y) for all (t, x, y) ∈ R×� such that x · e − ct ≤ h.

We then use the following general uniqueness result, which does not require the KPP
assumption (1.6):

Theorem 2.2. Let e be a unit vector in Rd × {0}N−d and c ∈ R∗ be given. Assume that
for any two pulsating traveling fronts U(t, x, y) = φ(x · e − ct, x, y) and U ′(t, x, y) =
φ′(x · e − ct, x, y) in the sense of (1.7), there exists a constant C[φ,φ′] ∈ (0,+∞) such
that

φ(s, x, y)− p−(x, y)

φ′(s, x, y)− p−(x, y)
→ C[φ,φ′] as s →+∞ uniformly in (x, y) ∈ �. (2.1)
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Then, if U1(t, x, y) = φ1(x · e − ct, x, y) and U2(t, x, y) = φ2(x · e − ct, x, y) are two
pulsating fronts, there exists σ ∈ R such that (1.8) and (1.9) hold.

Proof. Step 1. Let U(t, x, y) = φ(x · e− ct, x, y) be any pulsating traveling front in the
sense of (1.7). From Proposition 2.2 of [20], we know that there exist two positive real
numbers λm,φ ≤ λM,φ such that

λm,φ := lim inf
s→+∞

(
min

(x,y)∈�

−φs(s, x, y)

φ(s, x, y)− p−(x, y)

)
> 0,

λM,φ := lim sup
s→+∞

(
max
(x,y)∈�

−φs(s, x, y)

φ(s, x, y)− p−(x, y)

)
< +∞.

(2.2)

For each σ ∈ R, denote by C[φσ ,φ] the constant defined as in the statement of Theo-
rem 2.2, with

φσ (·, ·, ·) := φ(· + σ, ·, ·).

Then we claim that
∃ν > 0, ∀σ ∈ R, C[φσ ,φ] = e

−νσ . (2.3)

Indeed, for any σ, σ ′ ∈ R and (x, y) ∈ �,

C[φσ+σ ′ ,φ] = lim
s→+∞

φ(s + σ + σ ′, x, y)− p−(x, y)

φ(s, x, y)− p−(x, y)

= lim
s→+∞

(
φ(s + σ + σ ′, x, y)− p−(x, y)

φ(s + σ ′, x, y)− p−(x, y)

φ(s + σ ′, x, y)− p−(x, y)

φ(s, x, y)− p−(x, y)

)
= C[φσ ,φ]C[φσ ′ ,φ].

Furthermore, the function σ 7→ C[φσ ,φ] is nonincreasing in R since φ(s, x, y) is decreas-
ing in s (see Proposition 2.5 in [20]). As a consequence, there exists ν ∈ [0,+∞) such
that C[φσ ,φ] = e−νσ for all σ ∈ R. Using (2.2), we finally obtain ν ∈ [λm,φ, λM,φ],
whence ν > 0. This shows (2.3).

Step 2. Now, let U1(t, x, y) = φ1(x · e − ct, x, y) and U2(t, x, y) = φ2(x · e − ct, x, y)

be two pulsating fronts satisfying (1.7). From (2.3) applied with φ = φ1, we know that,
for σ < 0 negative enough,

C[φσ1 ,φ2] = C[φσ1 ,φ1]C[φ1,φ2] > 1.

Since φ1 is strictly decreasing with respect to s, we deduce that there exist60 > 0, σ0 < 0
such that

∀σ ≤ σ0, φ2 ≤ φ
σ
1 in [60,+∞)×�. (2.4)

Since φ1(−∞, ·, ·) = p
+, decreasing σ0 if necessary, one can assume that

φσ1 > p+ − ρ in (−∞, 60]×� for all σ ≤ σ0.

All assumptions of Lemma 2.1 are then satisfied, for all σ ≤ σ0, with

U(t, x, y) = U1(t − σ/c, x, y), U = U2, 8 = φσ1 , 8 = φ2, h = 60.
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As a consequence, φ2 ≤ φ
σ
1 in (−∞, 60]×� for all σ ≤ σ0 and, from (2.4), we finally

get
φ2 ≤ φ

σ
1 in R×� for all σ ≤ σ0.

Let us set
σ ∗ = sup{σ ∈ R : φ2 ≤ φ

σ
1 in R×�}.

Observe that σ ∗ ≥ σ0. Since φ1(+∞, ·, ·) = p− and φ2(s, x, y) > p−(x, y) for all
(s, x, y) ∈ R×�, we also know that σ ∗ < +∞. Moreover, φ2 ≤ φ

σ ∗

1 in R×�. Set

z(s, x, y) = φσ
∗

1 (s, x, y)− φ2(s, x, y).

The function z is continuous in (s, x, y), periodic in (x, y) and nonnegative. In particular,
the minimum of z over all sets of the type [−6,6]×�, with 6 > 0, is reached and it is
either positive or zero.

Case 1: Assume that there exists 6 > 0 such that min(s,x,y)∈[−6,6]×� z(s, x, y) = 0.
The function

v(t, x, y) := z(x · e − ct, x, y)

is nonnegative in R×� and it vanishes at a point (t∗, x∗, y∗) such that |x∗ ·e−ct∗| ≤ 6.
Moreover, it satisfies the boundary condition νA(x, y)∇v = 0 on R× ∂�, and the equa-
tion

vt −∇ · (A∇v)+ q · ∇v = f (x, y, U1(t − σ
∗/c, x, y))− f (x, y, U2(t, x, y))

in R × �. Since f is globally Lipschitz-continuous in � × R, there exists a bounded
function b(t, x, y) such that

vt −∇ · (A∇v)+ q · ∇v + bv = 0 for all (t, x, y) ∈ R×�. (2.5)

From the strong maximum principle and Hopf lemma, the function v is then identically 0
in (−∞, t∗]×�, and then in R×� by uniqueness of the Cauchy problem associated to
(2.5). We thus obtain z ≡ 0, that is, φ2 ≡ φ

σ ∗

1 in R×�.

Case 2: Assume that, for all 6 > 0, min(s,x,y)∈[−6,6]×� z(s, x, y) > 0. The function z
is uniformly continuous in R × �, thus, for all 6 > 0, there exists σ6 ∈ (σ ∗, σ ∗ + 1)
such that

φ2 ≤ φ
σ
1 in [−6,6]×� for all σ ∈ [σ ∗, σ6]. (2.6)

For 6 large enough,
φ
σ6
1 > p+ − ρ in (−∞,−6]×�.

Moreover, φσ61 (−6, x, y) ≥ φ2(−6, x, y) in � from (2.6). Applying Lemma 2.1 with

U(t, x, y) = U1(t − σ6/c, x, y), U = U2, 8 = φ
σ6
1 , 8 = φ2, h = −6,

we get φ2 ≤ φ
σ6
1 in (−∞,−6] × �. Together with (2.6), since φ1 is decreasing in s, it

follows that

∃61 > 0, ∀6 ≥ 61, ∃σ6 > σ ∗, ∀σ ∈ [σ ∗, σ6], φ2 ≤ φ
σ
1 in (−∞, 6]×�. (2.7)
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Assume now that

∃ε > 0, ∃6̃ > 0, φσ
∗

1 − φ2 ≥ ε(φ2 − p
−) in [6̃,+∞)×�. (2.8)

Let (σn)n∈N be a decreasing sequence with limn→+∞ σn = σ ∗. In particular, σn > σ ∗

for all n ∈ N. Divide (2.8) by φσn1 − p
−. We get, for all (s, x, y) ∈ (−∞,−6̃]×�,

φσ
∗

1 (s, x, y)− p−(x, y)

φ
σn
1 (s, x, y)− p

−(x, y)
−
φ2(s, x, y)− p

−(x, y)

φ
σn
1 (s, x, y)− p

−(x, y)
≥ ε

φ2(s, x, y)− p
−(x, y)

φ
σn
1 (s, x, y)− p

−(x, y)
.

Passing to the limit as s → +∞, we obtain C[φσ∗1 ,φ
σn
1 ] − C[φ2,φ

σn
1 ] ≥ εC[φ2,φ

σn
1 ], or,

equivalently,
1

1+ ε
C

[φσ
∗−σn

1 ,φ1]
≥ C[φ2,φ

σn
1 ].

But, from (2.3) applied with φ = φ1, we know that, for n large enough, C
[φσ
∗−σn

1 ,φ1]
<

1+ ε, whence C[φ2,φ
σn
1 ] < 1. As a consequence, there exist n1 ∈ N and 62 > 6̃ such that

φ2 ≤ φ
σn1
1 in [62,+∞)×�, and therefore,

φ2 ≤ φ
σ
1 in [62,+∞)×� for all σ ∈ [σ ∗, σn1 ]. (2.9)

Denote 6 := max{61, 62} and σ := min{σn1 , σ6}, where σ6 is defined by (2.7). From
(2.7) and (2.9), we obtain φ2 ≤ φ

σ
1 in R×�,which contradicts the definition of σ ∗, since

σ > σ ∗. Therefore, the property (2.8) cannot hold.
Finally, we obtain the existence of a real number σ ∗ such that φσ

∗

1 ≥ φ2 and either

• φσ
∗

1 ≡ φ2, or
• the property (2.8) is false, thus there exists a sequence (sn, xn, yn)n∈N in R×� such

that limn→+∞ sn = +∞ and

0 ≤ φσ
∗

1 (sn, xn, yn)− φ2(sn, xn, yn) ≤
φ2(sn, xn, yn)− p

−(xn, yn)

n
for all n ∈ N.

(2.10)

Since φ1 and φ2 were chosen arbitrarily, we also obtain the existence of a real number
−σ∗ such that φ−σ∗2 ≥ φ1 and either

• φ
−σ∗
2 ≡ φ1, or

• there exists a sequence (s′n, x
′
n, y
′
n)n∈N in R×� such that limn→+∞ s

′
n = +∞ and

0 ≤ φ−σ∗2 (s′n, x
′
n, y
′
n)−φ1(s

′
n, x
′
n, y
′
n) ≤

φ1(s
′
n, x
′
n, y
′
n)− p

−(x′n, y
′
n)

n
for all n ∈ N.

Equivalently, setting s′′n = s
′
n − σ∗, we get, for all n ∈ N,

0 ≤ φ2(s
′′
n , x
′
n, y
′
n)− φ

σ∗
1 (s

′′
n , x
′
n, y
′
n) ≤

φ
σ∗
1 (s

′′
n , x
′
n, y
′
n)− p

−(x′n, y
′
n)

n
. (2.11)
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Eventually, either the property (1.8) of Theorem 2.2 holds for some σ ∈ R, or there
exist σ ∗, σ∗ ∈ R such that φσ

∗

1 ≥ φ2 and φ−σ∗2 ≥ φ1 (that is, φ2 ≥ φ
σ∗
1 ) in R × �,

and properties (2.10) and (2.11) hold true. Divide the inequalities in (2.10) and (2.11) by
φ1(sn, xn, yn)−p

−(xn, yn) and φ1(s
′′
n , x
′
n, y
′
n)−p

−(x′n, y
′
n) respectively, and pass to the

limit as n→+∞. It follows that

C[φσ∗1 ,φ1] = C[φ2,φ1] and C[φ2,φ1] = C[φσ∗1 ,φ1].

Thus, C[φσ∗1 ,φ1] = C[φσ∗1 ,φ1]. From (2.3) applied with φ = φ1, we conclude that σ ∗ =

σ∗ =: σ . Since φσ∗1 ≤ φ2 ≤ φ
σ ∗

1 , we finally get φσ1 ≡ φ2. Property (1.8) has been shown.
ut

The assumption (2.1) in Theorem 2.2 says that, for a given speed c, any two pulsating
traveling fronts have the same asymptotic behavior, up to multiplicative constants, as
s → +∞, that is, as they approach the unstable state p−. This condition is essential and
it is known to be fulfilled for instance in simplified situations, like in space-homogeneous
settings or in straight infinite cylinders with shear flows, that is, for problems (1.27) and
(1.28). In our general periodic setting, property (2.1) is a reasonable conjecture but it has
not been shown yet in general. However, in the KPP case (1.6), this property is satisfied
and the proof of Theorem 1.1 follows:

Proof of Theorem 1.1. Under the KPP assumption (1.6), the hypothesis (2.1) in Theo-
rem 2.2 is automatically satisfied, because of formulas (1.22) and (1.23) (see Theorem 1.3
in [20]). As a consequence, (1.8) and (1.9) follow immediately. ut

3. Stability of monostable fronts with speeds c > c∗(e)

This section is devoted to the proof of Theorem 1.3. The general strategy is based on the
construction of suitable sub- and super-solutions which trap the solution u of the Cauchy
problem (1.1) and which can eventually be chosen as close as we want to the front U
as t → +∞. The sub- and super-solutions are close to the pulsating front U , up to
some phase-shifts and exponentially small correcting terms (see Proposition 3.2 below in
Subsection 3.2). Furthermore, more precise exponential estimates are established in the
region where s is large (see Proposition 3.3). In Subsection 3.3, we prove a Liouville type
result: any time-global solution which satisfies the same type of exponential estimates as
in Proposition 3.3 must be a pulsating front (see Proposition 3.4). In Subsection 3.4, we
complete the proof of Theorem 1.3, by arguing by contradiction and using the estimates
of Subsection 3.2 and the aforementioned Liouville type result.

Due to the generality of the framework and the assumptions, the proof is rather in-
volved and requires many technicalities. Before entering into the core of the proof, we
introduce a few notations.
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3.1. Preliminary notations

We assume here that µ+ > 0 and that

U(t, x, y) = φ(x · e − ct, x, y)

is a pulsating traveling front with speed c > c∗(e) satisfying (1.18).
Recall that k(0) = µ− < 0 and that λc > 0 is given by (1.16). By continuity of k,

there exists λ > λc such that

−k(λ)/λ < c = −k(λc)/λc (3.1)

and
k(λ)+ λc ≤ µ+. (3.2)

Define ω > 0 by
k(λ)+ λc = 2ω. (3.3)

Let θ be a C2(�) nonpositive periodic function such that

νA∇θ + νAe = 0 on ∂�. (3.4)

For instance, up to a constant, θ can be chosen to be a minimizer inH 1
per of the functional

ϕ 7→

∫
�

∇ϕA∇ϕ + 2
∫
∂�

(νAe)ϕ,

where H 1
per denotes the set of periodic functions in � which are in H 1

loc(�). Let ψ+ be
given by (1.17) and ψ = ψλ denote the positive principal eigenvalue of the operator Lλ,
given in (1.12), such that ‖ψ‖L∞(�) = 1. Set m+ = min� ψ

+ > 0 and let s ∈ R be such
that

e−λ(s−1)
≤ m+. (3.5)

Let χ be a C2(R; [0, 1]) function such that

χ ′(s) ≥ 0 for all s ∈ R, χ(s) = 0 for s ≤ s − 1, χ(s) = 1 for s ≥ s. (3.6)

Let g be the function defined for all (s, x, y) ∈ R×� by

g(s, x, y) = ψ(x, y)e−λsχ(s + θ(x, y))+ ψ+(x, y)(1− χ(s + θ(x, y))).

Observe that g is nonnegative, bounded and periodic with respect to (x, y) in R×�.

Lemma 3.1. Define

ρ+ = min
�

p+ − p−

ψ+
> 0. (3.7)

Then

lim sup
ς→−∞

sup
(s,x,y)∈R×�, ρ∈(0,ρ+]

φ(s, x, y)− ρg(s + ς, x, y)− p+(x, y)

ρψ+(x, y)
≤ −1.
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Proof. Assume the conclusion does not hold. Then there exist 0 < ε ≤ 1 and sequences
(sn, xn, yn)n∈N in R×�, (ρ′n)n∈N in (0, ρ+] and (ςn)n∈N such that limn→+∞ ςn = −∞

and
φ(sn, xn, yn)− ρ

′
ng(sn + ςn, xn, yn)− p

+(xn, yn)

ρ′nψ
+(xn, yn)

≥ −1+ ε

for all n ∈ N. Up to taking a subsequence, either the sequence (sn + ςn)n∈N converges to
−∞ as n→ +∞, or it is bounded from below. In the first case, and since φ ≤ p+, one
has

−g(sn + ςn, xn, yn)

ψ+(xn, yn)
≥ −1+ ε.

The passage to the limit as n → +∞ leads to −1 ≥ −1 + ε by definition of g,
which is impossible. Thus, the sequence (sn + ςn)n∈N is bounded from below, whence
limn→+∞ sn = +∞. Since g ≥ 0 and ρ′n ≤ ρ

+, one gets

φ(sn, xn, yn)− p
+(xn, yn)

ψ+(xn, yn)
≥ −(1− ε)ρ′n ≥ −(1− ε)ρ

+ > −ρ+. (3.8)

Since all functions φ, p+ and ψ+ are periodic in (x, y), one can assume that (xn, yn)→
(x∞, y∞) ∈ � as n→ +∞ (up to taking another subsequence). The limit as n→ +∞
in (3.8) leads to

p−(x∞, y∞)− p
+(x∞, y∞)

ψ+(x∞, y∞)
> −ρ+,

which is ruled out by (3.7). As a consequence, Lemma 3.1 has been proved. ut

In what follows, we fix s0 ≤ 0 such that

∀ρ ∈ (0, ρ+], ∀(s, x, y) ∈ R×�,
φ(s, x, y)− ρg(s + s0, x, y)− p

+(x, y)

ψ+(x, y)
≤ −

ρ

2
.

(3.9)
Set, for all (s, x, y) ∈ R×�,4

B(s, x, y) = (ζ− + ω)ψe−λsχ(s + θ)+ (ζ+ + µ+ − ω)ψ+(1− χ(s + θ))

+{(ψe−λs − ψ+)× [c + q · (∇θ + e)−∇ · (A∇θ + Ae)]

+ 2(−λψe−λse − e−λs∇ψ +∇ψ+)A(∇θ + e)}χ ′(s + θ)

− (ψe−λs − ψ+)(∇θA∇θ + eAe + 2eA∇θ)χ ′′(s + θ)

C(s, x, y) = −λψe−λsχ(s + θ)+ (ψe−λs − ψ+)χ ′(s + θ),

(3.10)

where all functions A, q, ζ±, ψ , ψ+, θ are evaluated at (x, y), and ζ±(x, y) =
∂f
∂u
(x, y, p±(x, y)). Let us check that the function C is nonpositive. To see this, since

λψχ ≥ 0 and χ ′ ≥ 0, one only needs to check that ψ(x, y)e−λs − ψ+ ≤ 0 when
χ ′(s + θ(x, y)) > 0. If χ ′(s + θ(x, y)) > 0, then s + θ(x, y) ≥ s − 1, whence s ≥

4 In formula (3.10), when the letter e is alone, it means the direction e, while e−λs means
exp(−λs).
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s−1−θ(x, y) ≥ s−1 (θ is nonpositive) and ψ(x, y)e−λs ≤ e−λ(s−1)
≤ m+ ≤ ψ+(x, y)

from (3.5). Therefore,

C(s, x, y) ≤ 0 for all (s, x, y) ∈ R×�. (3.11)

Now, choose ρ− > 0 such that

∀(x, y, ρ) ∈ �× [0, ρ−],
∣∣∣∣∂f∂u(x, y, p−(x, y)+ ρ)− ζ−(x, y)

∣∣∣∣ ≤ ω. (3.12)

Recall that φs < 0 in R×� and notice that, because of (1.18), (2.2) and λ > λc,

sup
(x,y)∈�

|C(s + s0, x, y)|

|φs(s, x, y)|
→ 0 as s →+∞.

Owing to the definitions of the functions B and C, there exists s+ ≥ 0 such that

∀(s, x, y) ∈ [s+,+∞)×�,



p−(x, y) < φ(s, x, y) ≤ p−(x, y)+ ρ−/2,

g(s + s0, x, y) = ψ(x, y)e
−λ(s+s0) ≤ ρ−/2,

B(s + s0, x, y) = (ζ
−(x, y)+ ω)g(s + s0, x, y),

C(s + s0, x, y) = −λψ(x, y)e
−λ(s+s0) < 0,

−φs(s, x, y)+ ρ
+C(s + s0, x, y) ≥ 0.

(3.13)

As above, one can choose ρ+1 ∈ (0, ρ
+] such that

∀(x, y, ρ) ∈ �×[0, ρ+1 ],
∣∣∣∣∂f∂u(x, y, p+(x, y)−ρψ+(x, y))−ζ+(x, y)

∣∣∣∣ ≤ ω. (3.14)

Since min� ψ
+ > 0, there exists s− ≤ 0 such that

∀(s, x, y) ∈ (−∞, s−]×�,


p+(x, y)−

ρ+1
2
ψ+(x, y) ≤ φ(s, x, y) < p+(x, y),

g(s, x, y) = ψ+(x, y),

B(s, x, y) = (ζ+(x, y)+ µ+ − ω)ψ+(x, y),

C(s, x, y) = 0.
(3.15)

Once the real numbers s± have been chosen, let δ be given by

δ = min
s−≤s≤s+, (x,y)∈�

(−φs(s, x, y)). (3.16)

The real number δ is positive since the function φs is continuous, negative and periodic
with respect to (x, y) in R×�. Define

ε1 = min
(
ρ+1
4
,

δ

4‖C‖∞

)
> 0, (3.17)

ε0 = m
+ε1 > 0, (3.18)

where m+ = min� ψ
+ > 0.



Monostable pulsating fronts 367

Lastly, since the function ∂f/∂u is continuous in �× R and periodic with respect to
(x, y), the quantity

M = max
(x,y)∈�,p−(x,y)≤u≤p+(x,y)

∣∣∣∣∂f∂u(x, y, u)
∣∣∣∣ (3.19)

is finite. Notice also that all functions g, B and C are bounded in R × �. Let σ be the
nonnegative real number defined by

σ = max
(
M‖g‖∞ + ‖B‖∞

ω‖C‖∞
,
M‖g‖∞ + ‖B‖∞

ωδ

)
. (3.20)

3.2. Sub- and super-solutions

The method which is used to prove the convergence of u(t, x, y) to the pulsating front
U(t, x, y) is first based on the construction of suitable sub- and super-solutions which
converge to finite shifts of the front φ as t → +∞. This idea is inspired by a paper by
Fife and McLeod [15] devoted to one-dimensional bistable equations. The method has to
be adapted here to the periodic framework and to monostable equations. Then we will
prove that the shifts can be as small as we want as x · e− ct →+∞. These comparisons
will be used in the following subsection to prove the uniform convergence of u to the
front U as t →+∞, without shift.

We assume that µ+ > 0 and that U(t, x, y) = φ(x · e − ct, x, y) is a pulsating
traveling front with speed c > c∗(e) and satisfying (1.18). We use the notations of the
previous section and we assume that the initial condition u0 satisfies (1.19) and (1.20). In
what follows, for all κ ∈ R and (t, x, y) ∈ R×�, we denote

sκ(t, x) = x · e − ct + κ − κe
−ωt .

Proposition 3.2. Under all assumptions of Theorem 1.3 and with the above notations,
there exist t0 > 0 and σ0 ≥ σ such that

max[φ(sσ0(t, x), x, y)− 2ε1g(sσ0(t, x)+ s0, x, y)e
−ωt , p−(x, y)]

≤ u(t, x, y) ≤ min[φ(s−σ0(t, x), x, y)+ g(s−σ0(t, x), x, y)e
−ωt , p+(x, y)] (3.21)

for all t ≥ t0 and (x, y) ∈ �.

Proof. Step 1: Choice of t0 > 0. Since u and U solve the same equation (1.1) with
p−(x, y) ≤ u(t, x, y), U(t, x, y) ≤ p+(x, y) for all (t, x, y) ∈ [0,+∞)×�, we have

|u(t, x, y)− U(t, x, y)| ≤ eMt |u0(x, y)− U(0, x, y)| (3.22)

for all (t, x, y) ∈ [0,+∞)×�, where M ∈ [0,+∞) is defined in (3.19). In particular, it
follows from (1.20) that, for each t > 0,

u(t, x, y)−p−(x, y) = U(t, x, y)−p−(x, y)+o(U(0, x, y)−p−(x, y)) as x·e→+∞.
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Since both U and p− satisfy (1.1) and U > p− in R × �, it follows from the Harnack
inequality that, for each t > 0, there is a constant Ct > 0 such that

0 < U(0, x, y)− p−(x, y) ≤ Ct (U(t, x, y)− p−(x, y)) for all (x, y) ∈ �.

As a consequence,

∀t > 0, u(t, x, y)− p−(x, y) ∼ U(t, x, y)− p−(x, y) as x · e→+∞. (3.23)

It also follows from (1.19) and (3.22) that one can choose t0 > 0 small enough so that

lim inf
ς→−∞

inf
(x,y)∈�, x·e≤ς

u(t0, x, y)− p
+(x, y)

ψ+(x, y)
> −

ε0e
−ωt0

m+
= −ε1e

−ωt0 , (3.24)

because of (3.18). Since 0 < 2ε1 ≤ ρ
+

1 /2 ≤ ρ
+, it follows from (3.9) and (3.24) that

sup
(s,x,y)∈R×�

φ(s, x, y)− 2ε1g(s + s0, x, y)e
−ωt0 − p+(x, y)

ψ+(x, y)

< lim inf
ς→−∞

inf
(x,y)∈�, x·e≤ς

u(t0, x, y)− p
+(x, y)

ψ+(x, y)
. (3.25)

Step 2: Choice of σ0 ≥ σ . We now claim that

max[φ(sσ (t0, x), x, y)− 2ε1g(sσ (t0, x)+ s0, x, y)e
−ωt0 , p−(x, y)]

≤ u(t0, x, y) in � (3.26)

for all σ > 0 large enough. Assume not. Then there exist sequences (xn, yn)n∈N in� and
(σn)n∈N such that limn→+∞ σn = +∞ and

max[φ(sσn(t0, xn), xn, yn)− 2ε1g(sσn(t0, xn)+ s0, xn, yn)e
−ωt0 , p−(xn, yn)]

> u(t0, xn, yn)

for all n ∈ N. Since u ≥ p−, one gets

φ(sσn(t0, xn), xn, yn)− 2ε1g(sσn(t0, xn)+ s0, xn, yn)e
−ωt0 > u(t0, xn, yn) (3.27)

for all n ∈ N. Up to taking a subsequence, two cases may occur: either the sequence
(sσn(t0, xn))n∈N is bounded from above, or limn→+∞ sσn(t0, xn) = +∞. If the sequence
is bounded from above, then xn · e→−∞ as n→+∞. We have

φ(sσn(t0, xn), xn, yn)− 2ε1g(sσn(t0, xn)+ s0, xn, yn)e
−ωt0 − p+(xn, yn)

ψ+(xn, yn)

>
u(t0, xn, yn)− p

+(xn, yn)

ψ+(xn, yn)
.
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But the limsup of the left-hand side as n→ +∞ is less than the liminf of the right-hand
side, because of (3.25) and limn→+∞ xn · e = −∞. This case is thus ruled out.

Consequently, sσn(t0, xn)→ +∞ as n→ +∞. As φ(+∞, ·, ·) = p− and u ≥ p−,
it follows from (3.27) that

u(t0, xn, yn)− p
−(xn, yn)→ 0 as n→+∞. (3.28)

From (3.24) and 0 < ε1e
−ωt0 < ε1 ≤ ρ

+/2 < ρ+ = min�[(p+ − p−)/ψ+], it follows,
as in the proof of Lemma 3.1, that the sequence (xn · e)n∈N is bounded from below. Up
to taking another subsequence, two subcases may occur: either the sequence (xn · e)n∈N
is bounded, or it converges to +∞ as n → +∞. Write xn = x′n + x

′′
n where x′n ∈

L1Z × · · · × LdZ and (x′′n , yn) ∈ C for all n ∈ N. Up to taking a subsequence, one can
assume that (x′′n , yn)→ (x∞, y∞) ∈ C as n→+∞. Set

un(t, x, y) = un(t, x + x
′
n, y).

By periodicity of coefficients of (1.1), the functions un solve (1.1) for t > 0. Furthermore,
p−(x, y) ≤ un(t, x, y) ≤ p

+(x, y) for all (t, x, y) ∈ [0,+∞) × � and n ∈ N. From
standard parabolic estimates, the functions un converge locally uniformly in (0,+∞)×�,
up to taking a subsequence, to a solution u∞ of (1.1) such that

p−(x, y) ≤ u∞(t, x, y) ≤ p
+(x, y) for all (t, x, y) ∈ (0,+∞)×�.

Moreover, u∞(t0, x∞, y∞) = p−(x∞, y∞) from (3.28). It follows from the strong max-
imum principle that u∞(t, x, y) = p−(x, y) for all (t, x, y) ∈ (0, t0] × � (and so in
(0,+∞)×�). If the sequence (xn ·e)n∈N is bounded, so is (x′n ·e)n∈N, hence the function
u∞ still satisfies (3.24). This leads to a contradiction as above. Therefore, xn · e→ +∞
as n→+∞. By (3.27),

φ(sσn(t0, xn), xn, yn)− p
−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
>
u(t0, xn, yn)− p

−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
.

Because of (3.23), the right-hand side converges to 1 as n→+∞. On the other hand, the
left-hand side is equal to

φ(sσn(t0, xn), xn, yn)− p
−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)

=
φ(xn · e − ct0 + σn − σne

−ωt0 , xn, yn)− p
−(xn, yn)

φ(xn · e − ct0, xn, yn)− p−(xn, yn)
.

But property (2.2), together with limn→+∞ xn · e = limn→+∞ σn = +∞, implies that
the above quantity converges to 0 as n→+∞. This leads to a contradiction. Eventually,
the claim (3.26) is proved.

Next, we claim that

u(t0, x, y) ≤ min{φ(s−σ (t0, x), x, y)+ g(s−σ (t0, x), x, y)e−ωt0 , p+(x, y)} (3.29)
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in � for all σ > 0 large enough. Assume not. Since u ≤ p+, there exist sequences
(xn, yn)n∈N in � and (σn)n∈N such that limn→+∞ σn = +∞ and

φ(s−σn(t0, xn), xn, yn)+ g(s−σn(t0, xn), xn, yn)e
−ωt0 < u(t0, xn, yn)

for all n ∈ N. If s−σn(t0, xn) → −∞ as n → +∞ up to taking a subsequence,
then φ(s−σn(t0, xn), xn, yn) − p

+(xn, yn) → 0, while u(t0, xn, yn) ≤ p+(xn, yn) and
lim infn→+∞ g(s−σn(t0, xn), xn, yn)e

−ωt0 ≥ m+e−ωt0 > 0, where m+ = min� ψ
+ > 0.

This gives a contradiction. Thus, the sequence (s−σn(t0, xn))n∈N is bounded from below,
whence xn ·e→+∞ as n→+∞. In particular, u(t0, xn, yn)−p−(xn, yn)→ 0 as n→
+∞ from (3.23). Since φ ≥ p− and g ≥ 0, one finds that g(s−σn(t0, xn), xn, yn)→ 0 as
n→+∞, whence s−σn(t0, xn)→+∞ owing to the definition of g. Moreover,

φ(s−σn(t0, xn), xn, yn)− p
−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
<
u(t0, xn, yn)− p

−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
(3.30)

and the right-hand side converges to 1 as n→+∞ from (3.23). Since

lim
n→+∞

s−σn(t0, xn) = lim
n→+∞

xn · e = lim
n→+∞

(xn · e − s−σn(t0, xn)) = +∞

one concludes from (2.2) that the left-hand side of (3.30) converges to +∞ as n→+∞,
which is a contradiction. Hence, the claim (3.29) is proved.

In the rest of the proof, we fix a real number σ0 large enough so that (3.26) and (3.29)
hold for σ = σ0, and σ0 ≥ σ ≥ 0, where σ ≥ 0 has been given in (3.20).

Step 3: The lower and upper bounds in (3.21) are sub- and super-solutions of (1.1).
Define

Lw = wt −∇ · (A(x, y)∇w)+ q(x, y) · ∇w − f (x, y,w)

and

u(t, x, y) = φ(sσ0(t, x), x, y)− 2ε1g(sσ0(t, x)+ s0, x, y)e
−ωt ,

u(t, x, y) = φ(s−σ0(t, x), x, y)+ g(s−σ0(t, x), x, y)e
−ωt ,

for all (t, x, y) ∈ [t0,+∞)×�.
Since νA∇U(t, ·, ·) = νA∇ψ+ = νA∇ψ − λ(νAe)ψ = νA∇θ + νAe = 0 on ∂�,

it is immediate from the definitions of g and s±σ0(t, x) that

νA(x, y)∇u(t, x, y) = νA(x, y)∇u(t, x, y) = 0

for all (t, x, y) ∈ [t0,+∞)× ∂�.
Recall now that p− ≤ u ≤ p+ solves (1.1), and that the inequalities (3.21) are

satisfied at time t0. In order to prove (3.21) for all (t, x, y) ∈ [t0,+∞) × �, it is thus
enough to prove, from the maximum principle, that

Lu ≤ 0 in �− and Lu ≥ 0 in �+,
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where

�− = {(t, x, y) ∈ [t0,+∞)×� : u(t, x, y) > p−(x, y)},

�+ = {(t, x, y) ∈ [t0,+∞)×� : u(t, x, y) < p+(x, y)}.

Let us first deal with the function u. By using equations (1.1), (1.17), (3.3) andLλψ =
k(λ)ψ in �, a lengthy but straightforward calculation leads to, for all (t, x, y) ∈ �−,

Lu(t, x, y) = f (x, y, φ(sσ0(t, x), x, y))− f (x, y, u(t, x, y))

+ σ0ωφs(sσ0(t, x), x, y)e
−ωt

− 2ε1B(sσ0(t, x)+ s0, x, y)e
−ωt
− 2ε1σ0ωC(sσ0(t, x)+ s0, x, y)e

−2ωt ,

where the functions B and C have been defined in (3.10).
If (t, x, y) ∈ �− and sσ0(t, x) ≥ s

+, where s+ is given by (3.13), then

f (x, y, φ(sσ0(t, x), x, y))− f (x, y, u(t, x, y))

≤ 2ε1(ζ
−(x, y)+ ω)g(sσ0(t, x)+ s0, x, y)e

−ωt

from (3.12) and (3.13), whence

Lu(t, x, y) ≤ 2ε1[(ζ−(x, y)+ ω)g(sσ0(t, x)+ s0, x, y)− B(sσ0(t, x)+ s0, x, y)]e
−ωt

+ σ0ω[φs(sσ0(t, x), x, y)− 2ε1C(sσ0(t, x)+ s0, x, y)e
−ωt ]e−ωt

≤ 0

because of (3.13) and 0 < 2ε1e
−ωt
≤ ρ+.

If (t, x, y) ∈ �− and sσ0(t, x) ≤ s
−, where s− is given by (3.15), then g(sσ0(t, x)+

s0, x, y) = ψ
+(x, y) (because s0 ≤ 0) and

p+(x, y) > φ(sσ0(t, x), x, y) ≥ u(t, x, y)

≥ p+(x, y)−
ρ+1
2
ψ+(x, y)− 2ε1ψ

+(x, y)e−ωt ≥ p+(x, y)− ρ+1 ψ
+(x, y)

because ε1 ≤ ρ
+

1 /4 from (3.17). Thus,

f (x, y, φ(sσ0(t, x), x, y))− f (x, y, u(t, x, y)) ≤ 2ε1(ζ
+(x, y)+ ω)ψ+(x, y)e−ωt

from (3.14). Since φs < 0 and since the last two properties in (3.15) also hold with s+ s0
instead of s (because s0 ≤ 0), it follows that

Lu(t, x, y) ≤ 2ε1(ζ
+(x, y)+ ω)ψ+(x, y)e−ωt − 2ε1(ζ

+(x, y)

+µ+ − ω)ψ+(x, y)e−ωt

= 2ε1(2ω − µ+)ψ+(x, y)e−ωt ≤ 0

from (3.2) and (3.3).
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If (t, x, y) ∈ �− and s− ≤ sσ0(t, x) ≤ s
+, it follows from the definitions of δ, ε1, M

and σ in (3.16), (3.17), (3.19) and (3.20), together with the inequality σ0 ≥ σ , that

Lu(t, x, y) ≤ 2ε1M‖g‖∞e
−ωt
+ 2ε1‖B‖∞e

−ωt
− σ0ωδe

−ωt
+ 2ε1σ0ω‖C‖∞e

−2ωt

≤
δ(M‖g‖∞ + ‖B‖∞)e

−ωt

2‖C‖∞
−
σ0ωδe

−ωt

2
≤ 0.

As a consequence, u is a sub-solution of (1.1) in �−, and u(t0, ·, ·) ≤ u(t0, ·, ·) in �.
Thus, u(t, x, y) ≤ u(t, x, y) for all (t, x, y) ∈ [t0,+∞)×� from the parabolic maximum
principle.

Let us now check that Lu(t, x, y) ≥ 0 for all (t, x, y) ∈ �+. Just as for u, it is
straightforward to check that

Lu(t, x, y) = f (x, y, φ(s−σ0(t, x), x, y))− f (x, y, u(t, x, y))

− σ0ωφs(s−σ0(t, x), x, y)e
−ωt
+ B(s−σ0(t, x), x, y)e

−ωt

− σ0ωC(sσ0(t, x), x, y)e
−2ωt

≥ f (x, y, φ(s−σ0(t, x), x, y))− f (x, y, u(t, x, y))

− σ0ωφs(s−σ0(t, x), x, y)e
−ωt
+ B(s−σ0(t, x), x, y)e

−ωt

from (3.11).
If (t, x, y) ∈ �+ and s−σ0(t, x) ≥ s

+, where s+ is given by (3.13), then

p−(x, y) < φ(s−σ0(t, x), x, y) ≤ u(t, x, y) ≤ p
−(x, y)+ ρ−

(notice indeed that the first four properties in (3.13) hold without s0, since s0 ≤ 0). As
φs < 0, it then follows from (3.12) and (3.13) that Lu(t, x, y) ≥ 0.

If (t, x, y) ∈ �+ and s−σ0(t, x) ≤ s
−, where s− is given by (3.15), then

p+(x, y)− ρ+1 ψ
+(x, y) ≤ φ(s−σ0(t, x), x, y) ≤ u(t, x, y) < p+(x, y),

whence

Lu(t, x, y) ≥ −(ζ+(x, y)+ ω)ψ+(x, y)e−ωt + (ζ+(x, y)+ µ+ − ω)ψ+(x, y)e−ωt

= (µ+ − 2ω)ψ+(x, y)e−ωt ≥ 0

from (3.2), (3.3), (3.14) and (3.15).
If (t, x, y) ∈ �+ and s− ≤ s−σ0(t, x) ≤ s

+, it follows from (3.16), (3.19), (3.20) and
the inequality σ0 ≥ σ that

Lu(t, x, y) ≥ −M‖g‖∞e−ωt + σ0ωδe
−ωt
− ‖B‖∞e

−ωt

≥ (σωδ −M‖g‖∞ − ‖B‖∞)e
−ωt
≥ 0.

Consequently, the parabolic maximum principle yields u(t, x, y) ≤ u(t, x, y) for all
(t, x, y) ∈ [t0,+∞)×�, and the proof of Proposition 3.2 is complete. ut

The following proposition states that the solution u stays close to the front φ when x ·e−ct
is very positive.
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Proposition 3.3. Under all assumptions of Theorem 1.3 and under the above notations,
there exists σ ∈ R such that, for each η > 0, there is Dη > 0 such that, for all (t, x, y) ∈
[0,+∞)×�,

φ(x · e − ct + η, x, y)−Dηψ(x, y)e
−λ(x·e−ct)

≤ u(t, x, y)

and

[x · e − ct ≥ σ ] ⇒ [u(t, x, y) ≤ φ(x · e − ct − η, x, y)+Dηψ(x, y)e−λ(x·e−ct)].

Proof. Let t0 > 0 and σ0 ≥ σ ≥ 0 be as in Proposition 3.2. Recall that φ(+∞, ·, ·)
= p− uniformly in �. It follows from (3.21) and the definition of g and χ that there
exists σ ∈ R such that, for all (t, x, y) ∈ [t0,+∞)×� with x · e − ct ≥ σ ,

u(t, x, y) ≤ φ(x · e − ct − σ0 + σ0e
−ωt , x, y)+ ψ(x, y)e−λ(x·e−ct−σ0+σ0e

−ωt )e−ωt

≤ p−(x, y)+ ρ−,

where ρ− > 0 is as in (3.12). On the other hand, for all (t, x, y) ∈ [0,+∞)×�,

u(t, x, y) ≤ φ(x · e − ct, x, y)+ eMt |u0(x, y)− U(0, x, y)|

from (3.22), and u0(x, y)− U(0, x, y)→ 0 uniformly as x · e→+∞ from assumption
(1.20). Therefore, there exists σ ≥ σ such that, for all (t, x, y) ∈ [0, t0]×� with x · e −
ct ≥ σ , we have u(t, x, y) ≤ p−(x, y)+ρ−. To sum up, for all (t, x, y) ∈ [0,+∞)×�,

[x · e − ct ≥ σ ] ⇒ [u(t, x, y) ≤ p−(x, y)+ ρ−]. (3.31)

Let η > 0 be any positive number. We claim that

φ(x · e + η, x, y)−Dψ(x, y)e−λx·e ≤ u0(x, y) in � (3.32)

for D large enough. Assume not. Then there exist sequences (xn, yn)n∈N in � and
(Dn)n∈N in [0,+∞) such that limn→+∞Dn = +∞ and

φ(xn · e + η, xn, yn)−Dnψ(xn, yn)e
−λxn·e > u0(xn, yn)

for all n ∈ N. Since φ and u0 are bounded and min� ψ > 0, it follows that limn→+∞ xn ·e

= +∞. For all n ∈ N,

φ(xn · e + η, xn, yn)− p
−(xn, yn)

φ(xn · e, xn, yn)− p−(xn, yn)
>

u0(xn, yn)− p
−(xn, yn)

φ(xn · e, xn, yn)− p−(xn, yn)
.

The right-hand side converges to 1 as n→+∞, from assumption (1.20), while the limsup
of the left-hand side is not larger than e−λm,φη < 1, from (2.2). One has thus reached a
contradiction. Hence, (3.32) holds for D large enough.

Similarly, it is easy to check that

u0(x, y) ≤ φ(x · e − η, x, y)+Dψ(x, y)e
−λx·e in � (3.33)

for D large enough.



374 François Hamel, Lionel Roques

We choose Dη > 0 such that (3.32) and (3.33) hold for D = Dη, and

Dη ≥ max
(
eλs
+

max
�

p+ − p−

ψ
, ρ−eλσ max

�

1
ψ

)
(3.34)

where s+ and σ have been given in (3.13) and (3.31).
Set

uη(t, x, y) = φ(x · e − ct + η, x, y)−Dηψ(x, y)e
−λ(x·e−ct)

for all (t, x, y) ∈ [0,+∞) × �. Notice that uη(0, x, y) ≤ u(0, x, y) in �, u ≥ p− and
νA(x, y)∇uη(t, x, y) = 0 for all (t, x, y) ∈ [0,+∞)×∂�. In order to prove that uη ≤ u
in [0,+∞) × �, it is then sufficient to check that Luη(t, x, y) ≤ 0 for all (t, x, y) ∈
[0,+∞) × � such that uη(t, x, y) > p−(x, y). From (1.1), (3.3) and Lλψ = k(λ)ψ

in �,

Luη(t, x, y) = f (x, y, φ(x · e − ct + η, x, y))− f (x, y, uη(t, x, y))
− (2ω + ζ−(x, y))Dηψ(x, y)e−λ(x·e−ct)

for all (t, x, y) ∈ [0,+∞)×�. When uη(t, x, y) > p−(x, y), then

Dηψ(x, y)e
−λ(x·e−ct) < φ(x · e − ct + η, x, y)− p−(x, y) < p+(x, y)− p−(x, y),

whenceDηe−λ(x·e−ct) ≤ max�[(p+−p−)/ψ]. Because of (3.34), it follows that x ·e−ct
≥ s+, and so

φ(x · e − ct + η, x, y) < φ(s+, x, y) ≤ p−(x, y)+ ρ−/2

from (3.13). In particular, when uη(t, x, y) > p−(x, y), then

p−(x, y) < uη(t, x, y) < φ(x · e − ct + η, x, y) < p−(x, y)+ ρ−,

whence

f (x, y, φ(x · e − ct + η, x, y))− f (x, y, uη(t, x, y))

≤ (ζ−(x, y)+ ω)Dηψ(x, y)e
−λ(x·e−ct)

from (3.12). It follows that Luη(t, x, y) ≤ −ωDηψ(x, y)e−λ(x·e−ct) < 0 for all (t, x, y)
∈ [0,+∞) × � such that uη(t, x, y) > p−(x, y). The maximum principle then yields
uη(t, x, y) ≤ u(t, x, y) for all (t, x, y) ∈ [0,+∞)×�.

Now, set

uη(t, x, y) = φ(x · e − ct − η, x, y)+Dηψ(x, y)e
−λ(x·e−ct)

for all (t, x, y) ∈ [0,+∞) × �. Notice that u(0, x, y) ≤ uη(0, x, y) in �, that
νA(x, y)∇uη(t, x, y) = 0 for all (t, x, y) ∈ [0,+∞)× ∂�, that

[x · e − ct ≥ σ ] ⇒ [u(t, x, y) ≤ p−(x, y)+ ρ−]
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from (3.31), and that

[x · e − ct = σ ] ⇒ [uη(t, x, y) > p−(x, y)+ ρ−]

from (3.34) and φ > p−. In order to prove that u ≤ uη when x · e − ct ≥ σ , it is
thus sufficient to check that Luη(t, x, y) ≥ 0 for all (t, x, y) ∈ [0,+∞) × � such that
uη(t, x, y) ≤ p

−(x, y)+ ρ−. For all such (t, x, y),

Luη(t, x, y) = f (x, y, φ(x · e − ct − η, x, y))− f (x, y, uη(t, x, y))
+ (2ω + ζ−(x, y))Dηψ(x, y)e−λ(x·e−ct)

and p−(x, y) < φ(x · e − ct − η, x, y) < uη(t, x, y) ≤ p
−(x, y)+ ρ−, whence

Luη(t, x, y) ≥ −(ζ−(x, y)+ ω)Dηψ(x, y)e−λ(x·e−ct)

+ (2ω + ζ−(x, y))Dηψ(x, y)e−λ(x·e−ct)

> 0

from (3.12). The maximum principle yields u(t, x, y) ≤ uη(t, x, y) for all (t, x, y) ∈
[0,+∞)×� such that x · e − ct ≥ σ . That completes the proof of Proposition 3.3. ut

3.3. A Liouville type result

The last step before the proof of Theorem 1.3 is a Liouville type result for the time-global
(t ∈ R) solutions of (1.1) which are trapped between two shifts of the front φ and which
satisfy similar estimates to those in Proposition 3.3, uniformly in time.

Proposition 3.4. In the notation of the previous subsections, let v(t, x, y) be a solution
of (1.1), for all (t, x, y) ∈ R×�, such that

∀(t, x, y) ∈ R×�, φ(x · e − ct + a, x, y) ≤ v(t, x, y) ≤ φ(x · e − ct + b, x, y),

for some b ≤ 0 ≤ a. Assume also that for each η > 0, there areDη > 0 and ση ∈ R such
that, for all (t, x, y) ∈ R×� with x · e − ct ≥ ση,

φ(x · e − ct + η, x, y)−Dηψ(x, y)e
−λ(x·e−ct)

≤ v(t, x, y) ≤ φ(x · e − ct − η, x, y)+Dηψ(x, y)e
−λ(x·e−ct). (3.35)

Then

v(t, x, y) = φ(x · e − ct, x, y) = U(t, x, y) for all (t, x, y) ∈ R×�.

Proof. Define

η∗ = min{η ∈ [0,+∞) : v(t, x, y) ≤ φ(x · e − ct − η′, x, y) in R×� for all η′ ≥ η}.

The real number η∗ is well-defined and it satisfies 0 ≤ η∗ ≤ −b, since φs < 0 in R×�.
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Let us now prove that η∗ = 0, which will imply that u ≤ U in R × �. Assume that
η∗ > 0.

We first claim that there exists σ ∗ ∈ [ση∗/4,+∞) such that

∀(t, x, y) ∈ R×�, [x · e − ct ≥ σ ∗] ⇒ [v(t, x, y) ≤ φ(x · e − ct − η∗/2, x, y)],
(3.36)

where the real number ση∗/4 is given by our assumption applied to η = η∗/4 > 0. If not,
then there exists a sequence (tn, xn, yn)n∈N in R×� such that sn = xn · e− ctn→+∞
as n→+∞, and, for all n ∈ N,

φ(sn − η
∗/2, xn, yn) < φ(sn + η

∗/4, xn, yn)+Dη∗/4ψ(xn, yn)e−λsn ,

from property (3.35) applied with η = η∗/4 > 0. Thus,

1 <
φ(sn − η

∗/4, xn, yn)− p−(xn, yn)
φ(sn − η∗/2, xn, yn)− p−(xn, yn)

+
Dη∗/4ψ(xn, yn)e

−λsn

φ(sn − η∗/2, xn, yn)− p−(xn, yn)

for all n ∈ N. The limsup as n → +∞ of the first term of the right-hand side is not
larger than e−λm,φη

∗/4 < 1 from (2.2). The limit of the second term of the right-hand side
is equal to 0 because of (1.18) and λ > λc. A contradiction is reached as n → +∞.
Therefore, property (3.36) holds for some σ ∗ ≥ ση∗/4.

Choose now σ∗ ≤ σ
∗ such that

φ(s, x, y) > p+(x, y)− ρ for all (s, x, y) ∈ (−∞, σ∗]×�, (3.37)

where ρ > 0 is given in (1.5).
We then claim that

inf
(t,x,y)∈R×�, σ∗≤x·e−ct≤σ ∗

(φ(x · e − ct − η∗, x, y)− v(t, x, y)) > 0. (3.38)

Notice first that v(t, x, y) ≤ φ(x · e− ct−η∗, x, y) in R×� by definition of η∗. Assume
that the claim (3.38) is not true. Then there exists a sequence (tn, xn, yn)n∈N such that
sn = xn · e − ctn ∈ [σ∗, σ ∗] for all n ∈ N, and

φ(xn · e − ctn − η
∗, xn, yn)− v(tn, xn, yn)→ 0 as n→+∞. (3.39)

For each n ∈ N, write xn = x′n+x
′′
n , where x′n ∈ L1Z×· · ·×LdZ and (x′′n , yn) ∈ C, and

vn(t, x, y) = v(t + tn, x + x
′
n, y).

Up to taking a subsequence, one can assume that, as n → +∞, sn → s∞ ∈ [σ∗, σ ∗],
(x′′n , yn) → (x∞, y∞) ∈ C and vn(t, x, y) → v∞(t, x, y) locally uniformly in (t, x, y),
where v∞ solves (1.1) in R×�. We have vn(t, x, y) ≤ φ(x ·e−ct+x′n ·e−ctn−η

∗, x, y)

since φ is periodic in (x, y), whence

v∞(t, x, y) ≤ φ(x · e − ct + s∞ − x∞ · e − η
∗, x, y)
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for all (t, x, y) ∈ R × �. Furthermore, v∞(0, x∞, y∞) = φ(s∞ − η
∗, x∞, y∞) from

(3.39). Hence,

v∞(t, x, y) = φ(x ·e−ct+s∞−x∞ ·e−η
∗, x, y) for all (t, x, y) ∈ R×�, (3.40)

from the strong maximum principle and periodicity of φ in the variables (x, y). On the
other hand, if x · e − ct ≥ σ ∗ + ctn − x′n · e, then

vn(t, x, y) ≤ φ((x + x
′
n) · e − c(t + tn)− η

∗/2, x, y)

from (3.36), whence

[x · e − ct ≥ σ ∗ − s∞ + x∞ · e]
⇒ [v∞(t, x, y) ≤ φ(x · e − ct + s∞ − x∞ · e − η∗/2, x, y)].

This contradicts (3.40), since φs < 0 and η∗ > 0.
Therefore, property (3.38) holds. By continuity and (x, y)-periodicity of φ, there

exists η∗ such that η∗/2 ≤ η∗ < η∗ and, for all η ∈ [η∗, η∗],

[σ∗ ≤ x · e − ct ≤ σ ∗] ⇒ [v(t, x, y) ≤ φ(x · e − ct − η, x, y)].

Actually, the previous inequality also holds when x · e − ct ≥ σ ∗, because of (3.36) and
φs < 0. Pick any η in [η∗, η∗] (⊂ [0, η∗]). In the region where x · e − ct ≤ σ∗, we
have φ(x · e − ct − η, x, y) > p+(x, y) − ρ, from (3.37) and φs < 0. All assumptions
of Lemma 2.1 are satisfied with h = σ∗, U(t, x, y) = φ(x · e − ct − η, x, y), 8 =
φ(· − −η, ·, ·), U = v and 8(s, x, y) = v((x · e − s)/c, x, y), apart from the fact that
8 may not be periodic in (x, y). However, since 8 ≤ φ(· + b, ·, ·) < p+, the arguments
used in the proof of Lemma 2.1 (that is, Lemma 2.3 of [20]) can be immediately extended
to the present case. They yield the inequality

v(t, x, y) ≤ φ(x · e − ct − η, x, y) for all (t, x, y) such that x · e − ct ≤ σ∗.

Eventually, v(t, x, y) ≤ φ(x · e − ct − η, x, y) in R × � for all η ∈ [η∗, η∗]. Since
η∗ < η∗, that contradicts the minimality of η∗. Consequently, η∗ cannot be positive,
which proves that v(t, x, y) ≤ φ(x · e − ct, x, y) in R×�.

The proof of the opposite inequality is exactly similar. Finally, v(t, x, y) =
φ(x · e − ct, x, y) in R×�, which is the desired result. ut

Remark 3.5. Notice that the two key tools in the proof of Proposition 3.4 are first the
property (2.2), which holds for any pulsating front in the sense of (1.7), and second the
fact that e−λs = o(φ(s, x, y)− p−(x, y)) as s →+∞, uniformly in (x, y) ∈ �.

3.4. Proof of Theorem 1.3

With the results of the previous subsections, we are now able to complete the proof of
Theorem 1.3.
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Proof of Theorem 1.3. Assume that the limit (1.21) does not hold. Then there exist
ε > 0 and a sequence (tn, xn, yn)n∈N in [0,+∞) × � such that limn→+∞ tn = +∞

and |u(tn, xn, yn)− U(tn, xn, yn)| ≥ ε for all n ∈ N, that is,

|u(tn, xn, yn)− φ(sn, xn, yn)| ≥ ε, (3.41)

where sn = xn ·e−ctn. Under the notations of Proposition 3.2, and using the monotonicity
of φ in s, we obtain

φ(sn + σ0, xn, yn)− 2ε1‖g‖∞e
−ωtn ≤ u(tn, xn, yn) ≤ φ(sn − σ0, xn, yn)+ ‖g‖∞e

−ωtn .

If sn→−∞, up to taking a subsequence, then

φ(sn + σ0, xn, yn)− p
+(xn, yn)− 2ε1‖g‖∞e

−ωtn ≤ u(tn, xn, yn)− p
+(xn, yn) ≤ 0,

whence

lim
n→+∞

(u(tn, xn, yn)− p
+(xn, yn)) = 0 = lim

n→+∞
(φ(sn, xn, yn)− p

+(xn, yn)).

This contradicts (3.41). Therefore, the sequence (sn)n∈N is bounded from below. Simi-
larly, one can prove that it is bounded from above.

For each n ∈ N, write xn = x′n+ x
′′
n , where x′n ∈ L1Z× · · · ×LdZ and (x′′n , yn) ∈ C.

Up to taking a subsequence, one can assume that sn → s∞ ∈ R, (x′′n , yn) → (x∞, y∞)

∈ C as n → +∞. Set t ′n = tn + (s∞ − x∞ · e)/c and observe that x′n · e − ct
′
n → 0 as

n→+∞. Denote
un(t, x, y) = u(t + t

′
n, x + x

′
n, y).

Up to taking another subsequence, the functions un converge locally uniformly in R×�
to a time-global solution u∞ of (1.1) in R×�. Furthermore, Proposition 3.2 implies that,
for each n ∈ N and (t, x, y) ∈ [−t ′n,+∞)×�,

φ(x · e − ct + x′n · e − ct
′
n + σ0 − σ0e

−ω(t+t ′n), x, y)− 2ε1‖g‖∞e
−ω(t+t ′n) ≤ un(t, x, y)

≤ φ(x · e − ct + x′n · e − ct
′
n − σ0 + σ0e

−ω(t+t ′n), x, y)+ ‖g‖∞e
−ω(t+t ′n),

whence

φ(x · e − ct + σ0, x, y) ≤ u∞(t, x, y) ≤ φ(x · e − ct − σ0, x, y) (3.42)

for all (t, x, y) ∈ R×�.
Let σ ∈ R be as in Proposition 3.3. It follows that for each η > 0, there is Dη > 0

such that, for each n ∈ N and (t, x, y) ∈ [−t ′n,+∞)×�,

φ(x · e − ct + x′n · e − ct
′
n + η, x, y)−Dηψ(x, y)e

−λ(x·e−ct+x′n·e−ct
′
n) ≤ un(t, x, y)

and

[(x + x′n) · e − c(t + t
′
n) ≥ σ ] ⇒

[un(t, x, y) ≤ φ(x · e − ct + x′n · e − ct
′
n − η, x, y)+Dηψ(x, y)e

−λ(x·e−ct+x′n·e−ct
′
n)].
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The passage to the limit as n→+∞ yields, for all (t, x, y) ∈ R×� and η > 0,{
φ(x · e − ct + η, x, y)−Dηψ(x, y)e

−λ(x·e−ct)
≤ u∞(t, x, y),

[x · e − ct ≥ σ ] ⇒ [u∞(t, x, y) ≤ φ(x · e − ct − η, x, y)+Dηψ(x, y)e−λ(x·e−ct)].
(3.43)

It finally follows from (3.42) and (3.43) and from Proposition 3.4 that u∞(t, x, y) =
φ(x · e − ct, x, y) in R × � (we here apply a particular case of Proposition 3.4, when
the real numbers ση can all be set to σ , independently of η > 0). But assumption (3.41)
implies that |un(tn − t ′n, x

′′
n , yn)− φ(sn, x

′′
n , yn)| ≥ ε, whence

|u∞((−s∞ + x∞ · e)/c, x∞, y∞)− φ(s∞, x∞, y∞)| ≥ ε.

We have reached a contradiction. Hence, formula (1.21) is proved and the proof of Theo-
rem 1.3 is complete. ut

4. Stability of KPP fronts with speeds c∗(e)

This section is devoted to the proof of Theorem 1.5, under the KPP condition (1.6). Ac-
tually, because of (1.22) when c > c∗(e), part (1) is an immediate consequence of Theo-
rem 1.3. Only part (2) on the stability of KPP fronts with minimal speeds c∗(e) remains
to be proved. The proof follows the main scheme as that of Theorem 1.3. However, the
ideas and the stability result are new even in the special cases which were previously
considered in the literature. Two additional serious difficulties arise: firstly the sub- and
super-solutions must take into account the fact that the behavior of the KPP fronts with
minimal speeds c∗(e) as they approach p− is not purely exponential e−λ

∗s , secondly, be-
cause of the criticality of λ∗, some of the ideas used in Section 3 cannot just be adapted
(for instance, there is no λ satisfying (3.1) with λc = λ∗). The sub- and super-solutions in-
volve products of exponentially decaying functions and suitable polynomial factors which
are given in terms of some derivatives of the principal eigenfunctions ψλ with respect to
λ at λ = λ∗.

Proof of part (2) of Theorem 1.5. Up to a shift in time, we can assume that B = Bφ in
assumption (1.26), that is, u0(x, y)−p

−(x, y) ∼ U(0, x, y)−p−(x, y) as x · e→+∞,
where Bφ > 0 is given in formula (1.23).

Step 1: Choice of parameters. SinceU is a pulsating front in the sense of (1.7) with speed
c∗(e), it follows from [20], as already underlined, that there exists a unique λ∗ > 0 such
that k(λ∗) + c∗(e)λ∗ = 0 and λ∗ is a root of k(λ) + λc = 0 with multiplicity 2m + 2.
Furthermore, the function λ 7→ k(λ) is analytic (see [12, 28]) and, by the normalization
condition (1.14) and standard elliptic estimates, the principal eigenfunctions ψλ of the
operators Lλ given in (1.12) are also analytic with respect to λ in the spaces C2,α(�). For
each j ∈ N and λ ∈ R, denote by ψ (j)λ the j -th order derivative of ψλ with respect to λ,
under the convention that ψ (0)λ = ψλ. All these functions are periodic and of class C2
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in �. Denote by L(j)λ the operator whose coefficients are the j -th order derivatives with
respect to λ of the coefficients of Lλ. In other words,

L
(0)
λ ψ = Lλψ, L

(1)
λ ψ = 2eA∇ψ + [∇ · (Ae)− q · e − 2λeAe]ψ, L(2)λ ψ = −2eAeψ

and L(j)λ ψ = 0 for all j ≥ 3 and for all ψ ∈ C2(�) and λ ∈ R. Differentiating the
relation Lλψλ − k(λ)ψλ = 0 with respect to λ yields

Lλψ
(1)
λ − k(λ)ψ

(1)
λ + 2eA∇ψλ+ [∇ · (Ae)− q · e− 2λeAe]ψλ− k′(λ)ψλ

= (Lλ− k(λ))ψ
(1)
λ + (L

(1)
λ − k

′(λ))ψλ = 0,

Lλψ
(j)
λ − k(λ)ψ

(j)
λ + j

(
2eA∇ψ (j−1)

λ + [∇ · (Ae)− q · e− 2λeAe]ψ (j−1)
λ

)
−jk′(λ)ψ

(j−1)
λ − 2C2

j eAeψ
(j−2)
λ −

∑
2≤l≤j

Cljk
(l)(λ)ψ

(j−l)
λ

= (Lλ− k(λ))ψ
(j)
λ + j (L

(1)
λ − k

′(λ))ψ
(j−1)
λ +C2

jL
(2)
λ ψ

(j−2)
λ −

∑
2≤l≤j

Cljk
(l)(λ)ψ

(j−l)
λ

= 0 for all j ≥ 2,
(4.1)

where Cmn = n!/(m!(n − m)!) for all integers m, n such that m ≤ n. Similarly, since
νA∇ψλ = λ(νAe)ψλ on ∂� for all λ ∈ R, one finds that, for all λ ∈ R,

νA∇ψ
(j)
λ − λ(νAe)ψ

(j)
λ − j (νAe)ψ

(j−1)
λ = 0 on ∂� for all j ≥ 1. (4.2)

Let i and I be the functions defined by

i(s, x, y) = Bφe
−λ∗s

[2m+1∑
j=0

(−1)jCj2m+1s
2m+1−jψ

(j)
λ∗ (x, y)

]
,

I (t, x, y) = i(x · e − c∗(e)t, x, y).

Notice that

i(s, x, y) ∼ Bφe
−λ∗ss2m+1ψλ∗(x, y) ∼ φ(s, x, y)− p

−(x, y) as s →+∞, (4.3)

uniformly in (x, y) ∈ �, from (1.23) and the fact that min� ψλ∗ > 0. It also follows
from (4.1) and (4.2) applied to λ = λ∗ that νA(x, y)∇I (t, x, y) = 0 for all (t, x, y) ∈
R× ∂�, and

It −∇ · (A(x, y)∇I )+ q(x, y) · ∇I − ζ
−(x, y)I = 0 in R×�. (4.4)

Now, for µ ∈ R and a > 0, denote

h(s, x, y) = e−µs
[2m+2∑
j=0

(−1)jCj2m+2(s + a)
2m+2−jψ (j)µ (x, y)

]
,

H(t, x, y) = h(x · e − c∗(e)t, x, y).
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By of (4.2), νA(x, y)∇H(t, x, y) = 0 for (t, x, y) ∈ R× ∂�. Notice that

h(s, x, y) ∼ e−µss2m+2ψµ(x, y) as s →+∞, uniformly in (x, y) ∈ �. (4.5)

It also follows from the definition of m and from the proof of Proposition 4.5 of [20] that
one can choose µ− λ∗ > 0 small enough and a > 0 large enough so that{
hs(s, x, y) ≤ 0 for all (s, x, y) ∈ [0,+∞)×�,

Ht −∇ · (A(x, y)∇H)+ q(x, y) · ∇H − ζ
−(x, y)H ≤ −υe−µs(s + a)2m+2 < 0

(4.6)

for all (t, x, y) ∈ R×� such that s = x · e − c∗(e)t ≥ 0, where

υ =
|k(2m+2)(λ∗)|κ∗(µ− λ∗)2m+2

4(2m+ 2)!
> 0 and κ∗ = min

�

ψλ∗ > 0. (4.7)

Decreasing µ− λ∗ if necessary, one can also assume without loss of generality that

λ∗ < µ < λ∗(1+ β), (4.8)

where one recalls that β > 0 is such that the function (x, y, u) 7→ ∂f
∂u
(x, y, p−(x, y)+u)

is of class C0,β(�× [0, γ ]) for some γ > 0.
Let θ be a C2(�) nonpositive periodic function satisfying (3.4). Let ψ+ be given

by (1.17), and denote m+ = min� ψ
+ > 0. Because of (1.23) and µ > λ∗, one can

choose s ≥ 1 such that

0 ≤ h(s, x, y) ≤
φ(s, x, y)− p−(x, y)

2
≤ m+ for all (s, x, y) ∈ [s − 1,+∞)×�.

Let χ ∈ C2(R; [0, 1]) be as in (3.6) and let g be the function defined in R×� by

g(s, x, y) = −h(s, x, y)χ(s + θ(x, y))+ ψ+(x, y)(1− χ(s + θ(x, y))).

Notice that χ(s+θ(x, y)) = 0 for all (s, x, y) ∈ (−∞, s−1]×�, and that g is bounded,
C2 in R×� and periodic with respect to the variables (x, y). Furthermore, g ≥ −m+ in
R×�, and, for all (s, x, y) ∈ R×�, s ≤ s − 1 ⇒ g(s, x, y) = ψ+(x, y) ≥ 0,

s ≥ s − 1 ⇒ g(s, x, y) ≥ −h(s, x, y) ≥ −
φ(s, x, y)− p−(x, y)

2
.

(4.9)

We then claim that

lim sup
ς→−∞

sup
(s,x,y)∈R×�, ρ∈(0,ρ+/2]

φ(s, x, y)− ρg(s + ς, x, y)− p+(x, y)

ρψ+(x, y)
≤ −1,



382 François Hamel, Lionel Roques

where ρ+ = min�[(p+ − p−)/ψ+] > 0. Assume not. Then there exist 0 < ε ≤ 1
and sequences (sn, xn, yn)n∈N in R × �, (ρ′n)n∈N in (0, ρ+/2] and (ςn)n∈N such that
limn→+∞ ςn = −∞ and

φ(sn, xn, yn)− ρ
′
ng(sn + ςn, xn, yn)− p

+(xn, yn)

ρ′nψ
+(xn, yn)

≥ −1+ ε

for all n ∈ N. As in the proof of Lemma 3.1, it follows that the sequence (sn + ςn)n∈N
is bounded from below, whence limn→+∞ sn = +∞. The last part of the argument is
different from that of Lemma 3.1, since g is not nonnegative anymore. For each n ∈ N,

ρ+

2
+
φ(sn, xn, yn)− p

+(xn, yn)

ψ+(xn, yn)
≥

ρ′nm
+

ψ+(xn, yn)
+
φ(sn, xn, yn)− p

+(xn, yn)

ψ+(xn, yn)

≥ −(1− ε)ρ′n ≥ −(1− ε)
ρ+

2
> −

ρ+

2

since 0 < ρ′n ≤ ρ+/2, and g ≥ −m+ in R × �. This leads to a contradiction as in
Lemma 3.1. Therefore, one can choose s0 ≤ 0 such that

φ(s, x, y)− ρg(s + s0, x, y)− p
+(x, y)

ψ+(x, y)
≤ −

ρ

2

for all ρ ∈ (0, ρ+/2] and (s, x, y) ∈ R×�.
Set

G(t, x, y) = g(x · e − c∗(e)t, x, y)e−ωt

for all (t, x, y) ∈ R×�, where

ω = µ+/2 > 0

and µ+ > 0 is as in (1.17). The function G is of class C2(R × �) and, by (4.6), there
exists a continuous, bounded and (x, y)-periodic function B in R×� such that

Gt −∇ · (A(x, y)∇G)+ q(x, y) · ∇G = B(x · e − c
∗(e)t, x, y)e−ωt , (4.10)

where {
B(s, x, y) ≥ (−ζ−(x, y)+ ω)h(s, x, y) if s ≥ s + ‖θ‖∞ (≥ 0),

B(s, x, y) = (ζ+(x, y)+ µ+ − ω)ψ+(x, y) if s ≤ s − 1.

For all (s, x, y) ∈ R×�, define

C(s, x, y) = hs(s, x, y)χ(s + θ(x, y))− (h(s, x, y)+ ψ
+(x, y))χ ′(s + θ(x, y)).

The function C is continuous and bounded in R×�, and periodic in the variables (x, y).
Observe thatC(s, x, y) ∼ −µe−µss2m+2ψµ(x, y) as s →+∞, uniformly in (x, y) ∈ �,



Monostable pulsating fronts 383

whenceC(s, x, y) = o(−φs(s, x, y)) as s →+∞ from (1.23), (2.2) andµ > λ∗. Choose
ρ− > 0 as in (3.12) and s+ ≥ 0 such that

∀(s, x, y) ∈ [s+,+∞)×�,



p−(x, y) < φ(s, x, y) ≤ p−(x, y)+ ρ−/2,

−ρ−/2 ≤ g(s + s0, x, y) = −h(s + s0, x, y) ≤ 0,

B(s + s0, x, y) ≥ (−ζ
−(x, y)+ ω)h(s + s0, x, y),

C(s + s0, x, y) = hs(s + s0, x, y) ≤ 0,

|C(s, x, y)| ≤ −φs(s, x, y).

(4.11)
Lastly, define

M = max
(x,y)∈�,p−(x,y)−‖g‖∞≤u≤p+(x,y)+‖g‖∞

∣∣∣∣∂f∂u(x, y, u)
∣∣∣∣ ≥ 0, (4.12)

let ρ+1 > 0, s− ≤ 0 and δ > 0 be as in (3.14)–(3.16), and set

ε1 = min
(
ρ+1
4
,

δ

4‖C‖∞
,

1
2

)
> 0, ε0 = m

+ε1 > 0, σ =
M‖g‖∞ + ‖B‖∞

ω‖C‖∞
≥ 0.

(4.13)

Step 2: Comparison with sub- and super-solutions. Assume now that the initial condition
u0 satisfies (1.19) and (1.20). For all (t, x, y) ∈ [0,+∞)×�, define

u(t, x, y) = φ(sσ0(t, x), x, y)− 2ε1g(sσ0(t, x)+ s0, x, y)e
−ωt ,

u(t, x, y) = φ(s−σ0(t, x), x, y)+ 2ε1g(s−σ0(t, x), x, y)e
−ωt ,

where sκ(t, x) = x · e − c∗(e)t + κ − κe−ωt and σ0 will be chosen below.
As in Step 1 of the proof of Proposition 3.2, one can choose t0 > 0 such that (3.25)

holds. Then we claim that

max{u(t0, x, y), p−(x, y)} ≤ u(t0, x, y) in �, (4.14)

for σ0 large enough. If not, there exist sequences (xn, yn)n∈N in � and (σn)n∈N such that
limn→+∞ σn = +∞ and

φ(sσn(t0, xn), xn, yn)− 2ε1g(sσn(t0, xn)+ s0, xn, yn)e
−ωt0 > u(t0, xn, yn)

for all n ∈ N. As in Step 2 of the proof of Proposition 3.2, it follows that
limn→+∞ sσn(t0, xn) = +∞ and limn→+∞ xn · e = +∞. We have

φ(sσn(t0, xn), xn, yn)− p
−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
−

2ε1g(sσn(t0, xn)+ s0, xn, yn)e
−ωt0

U(t0, xn, yn)− p−(xn, yn)

>
u(t0, xn, yn)− p

−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
.
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The right-hand side converges to 1 as n → +∞, from (3.23), while the first term of
the left-hand side converges to 0, from (2.2). Lastly, the second term on the left-hand
converges to 0 too, from (1.23) and µ > λ∗. This leads to a contradiction, which yields
(4.14) for σ0 large enough.

Similarly,

u(t0, x, y) ≤ min{u(t0, x, y), p+(x, y)} in �, (4.15)

for σ0 large enough. Assume not. Then there exist sequences (xn, yn)n∈N in � and
(σn)n∈N such that limn→+∞ σn = +∞ and

φ(s−σn(t0, xn), xn, yn)+ 2ε1g(s−σn(t0, xn), xn, yn)e
−ωt0 < u(t0, xn, yn)

for all n ∈ N. As in Step 2 of the proof of Proposition 3.2, it follows that the se-
quence (s−σn(t0, xn))n∈N is bounded from below, whence limn→+∞ xn · e = +∞ and
limn→+∞(u(t0, xn, yn) − p−(xn, yn)) = 0. Since φ > p− and ε1 ∈ (0, 1/2], it
follows from (4.9) that 2ε1g(s−σn(t0, xn), xn, yn)e

−ωt0 ≥ −(φ(s−σn(t0, xn), xn, yn) −

p−(xn, yn))/2, whence

φ(s−σn(t0, xn), xn, yn)− p
−(xn, yn)

2(U(t0, xn, yn)− p−(xn, yn))
<
u(t0, xn, yn)− p

−(xn, yn)

U(t0, xn, yn)− p−(xn, yn)
.

One gets a contradiction as in Step 2 of the proof of Proposition 3.2.
As a consequence, (4.15) holds for σ large enough and one can choose σ0 ≥ σ large

enough so that (4.14) and (4.15) hold for σ = σ0.
Let us now check that u and u are respectively sub- and super-solutions of (1.1)

for t ≥ t0, when u > p− and u < p+. Notice first that νA(x, y)∇u(t, x, y) =
νA(x, y)∇u(t, x, y) = 0 for (x, y) ∈ ∂�, from (3.4), (4.2) and the definition of g. It
follows from (4.10) and the definition of sσ0(t, x) that

Lu(t, x, y) = f (x, y, φ(sσ0(t, x), x, y))− f (x, y, u(t, x, y))

+ σ0ωφs(sσ0(t, x), x, y)e
−ωt
− 2ε1B(sσ0(t, x)+ s0, x, y)e

−ωt

− 2ε1σ0ωC(sσ0(t, x)+ s0, x, y)e
−2ωt .

If u(t, x, y) > p−(x, y) and sσ0(t, x) ≥ s
+, where s+ is given by (4.11), then it follows

from the first four properties of (4.11) and from the inequalities 0 < ε1 ≤ 1/2 and φs < 0
that Lu(t, x, y) ≤ 0. If u(t, x, y) > p−(x, y) and sσ0(t, x) ≤ s

−, where s− is given by
(3.15), then it follows from (3.15), φs < 0, s0 ≤ 0 and ω = µ+/2 that Lu(t, x, y) ≤ 0.
Lastly, if p−(x, y) < u(t, x, y) and s− ≤ sσ0(t, x) ≤ s+, then it follows from (3.16),
(4.12), (4.13) and σ0 ≥ σ that Lu(t, x, y) ≤ 0 too. Since u(t0, x, y) ≤ u(t0, x, y) and
p−(x, y) ≤ u(t, x, y) for all (t, x, y) ∈ [0,+∞)×�, one concludes from the parabolic
maximum principle that

max{u(t, x, y), p−(x, y)} ≤ u(t, x, y) for all (t, x, y) ∈ [t0,+∞)×�.
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Similarly,

Lu(t, x, y) = f (x, y, φ(s−σ0(t, x), x, y))− f (x, y, u(t, x, y))

+ σ0ωφs(s−σ0(t, x), x, y)e
−ωt
+ 2ε1B(s−σ0(t, x), x, y)e

−ωt

− 2ε1σ0ωC(s−σ0(t, x), x, y)e
−2ωt .

As above, it then follows from (3.15), (3.16), (4.11), (4.12), (4.13), and from φs < 0,
s0 ≤ 0, ω = µ+/2 and σ0 ≥ σ that Lu(t, x, y) ≥ 0 for all (t, x, y) ∈ [t0,+∞)×� such
that u(t, x, y) < p+(x, y). Since u(t0, x, y) ≥ u(t0, x, y) and u(t, x, y) ≤ p+(x, y) for
all (t, x, y) ∈ [0,+∞)×�, one concludes from the parabolic maximum principle that

u(t, x, y) ≤ min{u(t, x, y), p+(x, y)} for all (t, x, y) ∈ [t0,+∞)×�.

Step 3: Time-global sharp estimates as x · e − c∗(e)t is very large. We now claim
that, for any η > 0, there are Dη > 0 and ση ∈ R such that

∀(t, x, y) ∈ [0,+∞)×�, [x · e − c∗(e)t ≥ ση] ⇒

[φ(x · e − c∗(e)t + η, x, y)−Dηψλ∗(x, y)e−λ
∗(x·e−c∗(e)t)

≤ u(t, x, y) ≤ φ(x · e − c∗(e)t − η, x, y)+Dηψλ∗(x, y)e
−λ∗(x·e−c∗(e)t)].

(4.16)
Let η > 0. We are going to trap u, for very large x · e − c∗(e)t , between a sub- and a
super-solution which are larger and smaller than the left- and right-hand sides of (4.16),
respectively.

Define, for all (t, x, y) ∈ [0,+∞)×�,

uη(t, x, y) = i(s + η/2, x, y)+ h(s, x, y)−Dηψλ∗(x, y)e
−λ∗s
+ p−(x, y),

where s = x ·e−c∗(e)t , i and h have been defined in Step 1, and the real numberDη > 0
will be chosen later. Recall now that the function (x, y, ξ) 7→ ∂f

∂u
(x, y, p−(x, y) + ξ) is

assumed to be of class C0,β(�× [0, γ ]) for some β, γ > 0. Therefore, there exists r ≥ 0
such that

|f (x, y, p−(x, y)+ ξ)− f (x, y, p−(x, y))− ζ−(x, y)ξ | ≤ rξ1+β (4.17)

for all (x, y, ξ) ∈ �×[0, γ ]. From (1.24) with B = Bφ , (4.3), (4.5) and (4.8), there exists
ση ≥ 0 such that

0 < φ(s + η, x, y)− p−(x, y) ≤ i(s + η/2, x, y)+ h(s, x, y) ≤ γ,

0 < h(s, x, y) ≤ i(s + η/2, x, y),

r21+β i(s + η/2, x, y)1+β ≤ υ e−µs(s + a)2m+2,

(4.18)

for all (s, x, y) ∈ [ση,+∞)×�, where υ > 0 is as in (4.7), and

i(x · e + η/2, x, y)+ h(x · e, x, y) ≤ u0(x, y)− p
−(x, y) (4.19)
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for all (x, y) ∈ � such that x · e ≥ ση. Then choose Dη > 0 large enough so that

i(ση + η/2, x, y)+ h(ση, x, y)−Dηψλ∗(x, y)e−λ
∗ση ≤ 0 (4.20)

for all (x, y) ∈ �. In order to prove the first inequality of (4.16), it is then enough to
prove, from (4.18), that

uη(t, x, y) ≤ u(t, x, y) for all (t, x, y) ∈ [0,+∞)×� with x · e − c∗(e)t ≥ ση.
(4.21)

Observe that

uη(0, x, y) ≤ u0(x, y) for all (x, y) ∈ � such that x · e ≥ ση,

from (4.19), and that

uη(t, x, y) ≤ p
−(x, y) ≤ u(t, x, y)

for all (t, x, y) ∈ [0,+∞)×� with x · e − c∗(e)t = ση,

from (4.20). Moreover, νA(x, y)∇uη(t, x, y) = 0 for all (t, x, y) ∈ [0,+∞)×∂�, since
νA(x, y)∇I = νA(x, y)∇H = νA(x, y)∇p− = νA(x, y)∇ψλ∗ − λ

∗(νA(x, y)e)ψλ∗

= 0 for all (x, y) ∈ ∂�. Lastly, recall that u ≥ p−. Therefore, from the parabolic
maximum principle, in order to prove (4.21), it is enough to check that Luη(t, x, y) ≤ 0
for all (t, x, y) ∈ �−η , where

�−η = {(t, x, y) ∈ [0,+∞)×� : x · e − c∗(e)t ≥ ση and uη(t, x, y) > p−(x, y)}.

From (4.4), (4.6) and Lλ∗ψλ∗ = k(λ∗)ψλ∗ in �, it is straightforward to see that

Luη(t, x, y) ≤ ζ−(x, y)(i(s + η/2, x, y)+ h(s, x, y)−Dηψλ∗(x, y)e−λ
∗s)

− υe−µs(s + a)2m+2
+ f (x, y, p−(x, y))− f (x, y, uη(t, x, y))

for all (t, x, y) ∈ �−η , where s = x · e− c∗(e)t . From (4.18), 0 < uη(t, x, y)− p
−(x, y)

≤ γ for all (t, x, y) ∈ �−η , whence

f (x, y, uη(t, x, y)) ≥ f (x, y, p
−(x, y))+ ζ−(x, y)(uη(t, x, y)− p

−(x, y))

− r(uη(t, x, y)− p
−(x, y))1+β .

Furthermore, 0 < uη(t, x, y)−p
−(x, y) ≤ 2i(x ·e−c∗(e)t+η/2, x, y) in�−η . It follows

that, for all (t, x, y) ∈ �−η ,

Luη(t, x, y) ≤ −υe
−µs(s + a)2m+2

+ r21+β i(s + η/2, x, y)1+β ≤ 0

from (4.18). As a consequence, (4.21) holds, and hence the first inequality in (4.16) as
well.
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Define now, for all (t, x, y) ∈ [0,+∞)×�,

uη(t, x, y) = i(s − η/2, x, y)+Dηψλ∗(x, y)e−λ
∗s
+ p−(x, y),

where s = x · e − c∗(e)t . After increasing ση and Dη if necessary, it follows from (1.24)
with B = Bφ , (4.3) and (4.8) that one can assume that (4.18)–(4.20) hold, as well as
∀(s, x, y) ∈ [ση,+∞)×�, 0 < i(s − η/2, x, y) ≤ φ(s − η, x, y)− p−(x, y),

∀(x, y) ∈ �, [x · e ≥ ση] ⇒ [u0(x, y)− p
−(x, y) ≤ i(x · e − η/2, x, y)],

∀(x, y) ∈ �, i(ση − η/2, x, y)+Dηψλ∗(x, y)e−λ
∗ση + p−(x, y) ≥ p+(x, y).

(4.22)
In order to prove the second inequality of (4.16), it is thus enough to prove that

u(t, x, y) ≤ uη(t, x, y) for all (t, x, y) ∈ [0,+∞)×� with x · e − c∗(e)t ≥ ση.
(4.23)

It also follows from (4.22) that

u0(x, y) ≤ uη(0, x, y) for all (x, y) ∈ � such that x · e ≥ ση,

and

u(t, x, y)≤p+(x, y)≤uη(t, x, y) for all (t, x, y) ∈ [0,+∞)×� with x·e−c∗(e)t = ση.

Moreover, νA(x, y)∇uη(t, x, y) = 0 for all (t, x, y) ∈ [0,+∞) × ∂�. Recall that
u ≤ p+. Therefore, from the parabolic maximum principle, in order to prove (4.23),
it is enough to check that Luη(t, x, y) ≥ 0 for all (t, x, y) ∈ �+η , where

�+η = {(t, x, y) ∈ [0,+∞)×� : x · e − c∗(e)t ≥ ση and uη(t, x, y) < p+(x, y)}.

From (4.4), from Lλ∗ψλ∗ = k(λ
∗)ψλ∗ and from the KPP condition (1.6),

Luη(t, x, y) = ζ−(x, y)(i(s − η/2, x, y)+Dηψλ∗(x, y)e−λ
∗s)

+ f (x, y, p−(x, y))− f (x, y, uη(t, x, y))

≥ 0

for all (t, x, y) ∈ �+η , where s = x · e − c∗(e)t . As a consequence, (4.23) holds, and
hence the second inequality in (4.16) as well.

Step 4: Conclusion. By using the fact that e−λ
∗s
= o(φ(s, x, y)−p−(x, y)) as s →+∞

uniformly in (x, y) ∈ �, it follows from the same arguments as in Proposition 3.4 that, if
v(t, x, y) is a solution of (1.1) in R×� such that
∃a ≥ b ∈ R,
φ(x · e − c∗(e)t + a, x, y) ≤ v(t, x, y) ≤ φ(x · e − c∗(e)t + b, x, y) in R×�,
∀η > 0, ∃Dη > 0, ∃ση ∈ R, [s = x · e − c∗(e)t ≥ ση] ⇒

[φ(s+η,x,y)−Dηψλ∗(x,y)e−λ
∗s
≤ v(t,x,y) ≤ φ(s−η,x,y)+Dηψ−λ∗(x,y)e

−λ∗s],

then v(t, x, y) = φ(s, x, y) = U(t, x, y) in R×�.
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Finally, from this Liouville type result and Steps 2 and 3, property (1.25) of part (2)
of Theorem 1.5 (with τ = 0 due to our assumption B = Bφ) can be deduced by the same
arguments as those used in the proof of property (1.21) of Theorem 1.3. The proof of
Theorem 1.5 is thus complete. ut
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