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Abstract. LetMn
g be the moduli space of n-pointed Riemann surfaces of genus g. Denote byMn

g

the Deligne–Mumford compactification ofMn
g . In the present paper, we calculate the orbifold and

the ordinary Euler characteristics ofMn
g for any g and n such that n > 2− 2g.

1. Introduction

The moduli space of n-pointed Riemann surfaces of genus g, Mn
g , is an object of much

importance in several branches of mathematics and theoretical physics. It parameterizes
algebraic curves of genus g with n points, or equivalently Riemann surfaces of genus g
with n points. Deligne and Mumford in [5] defined a natural compactification of Mn

g ,
Mn

g , by adjoining stable curves at infinity. These spaces serve as classifying spaces in
algebraic geometry, so it is very important to understand their topological structure, es-
pecially their homology and cohomology. Madsen and Weiss [13] proved the Mumford
conjecture by calculating the stable cohomology of Mn

g . In the current paper we work in
the unstable range, calculating both the orbifold and the ordinary Euler characteristics of
Mn

g for any g and n with 2g − 2+ n > 0.

Related work. In [12], Harer and Zagier calculated the orbifold Euler characteristic of
Mn

g . Moreover, they computed the ordinary Euler characteristic of Mn
g for any g and

n = 0, 1. Since then, there have been some results on the ordinary Euler characteristic of
Mn

g only for low values of g. The reader is referred to [9] and [14] for g = 0, to [7] for
g = 1, to [2], [6], [8] for g = 2 and to [10] for g = 3.

Results. The main results of this paper are formulae for the Euler characteristics of Mn
g

and Mn

g . These are given in Theorems 3.2, 4.3 and 4.5. These theorems are proven by
combining the techniques of generating functions, integral representations and Wick’s
lemma that are well established in the field with other counting methods, including a
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formula of Serre and Brown [3] (also used in [12]) for computing actual Euler charac-
teristics in terms of orbifold ones. We compute tables of values in all cases (these were
generated using Maple). Our results agree with previous computations in the papers men-
tioned above.

Outline. Section 2 describes the stratification of Mn

g in terms of stable curves. In Sec-
tion 3 we review the results of [12], and compute the orbifold Euler characteristic ofMn

g .
Section 4.1 concludes the paper by calculating the actual Euler characteristic of Mn

g and
of Mn

g . Tables of values are given in each case.

2. The graph-type stratification of Mn

g

In this section, we review some basic facts and definitions we shall use in the rest of the
paper. The moduli space of stable curvesMn

g admits a stratification, which is determined
by the configuration of nodes and by irreducible components of n-pointed genus g stable
curves. This stratification may be described via stable graphs. For the sake of complete-
ness, we briefly recall their definition.

Definition 2.1. Let g, n be nonnegative integers such that n > 2− 2g. A stable graph of
type (g, n) is given by the following data:

(SG1) two finite sets VG and LG;
(SG2) a partition P of LG into subsets with one or two elements;
(SG3) a map γ from VG to the set of integers {0, . . . , g} such that

g =
∑
v∈VG

γ (v)+ h1(G);

(SG4) a subset L(v) ⊂ LG, v ∈ VG, such that 2γ (v)− 2+ |L(v)| > 0;
(SG5) a map ν from subsets of LG with one element to {1, . . . , n}.

The elements of VG are the vertices of G, whereas the elements of LG are the half-
edges of G. Moreover, we define legs to be the subsets of P with one element, and edges
to be the subsets of P with two elements. (SG3) relates g to the structure of G. In fact,
h1(G) = 1 − v(G) + e(G), where v(G) and e(G) denote the number of vertices and
the number of edges of the stable graph, respectively. The automorphism group Aut(G)
of G is the set of bijections which map VG to VG, LG to LG, and preserve all data of
Definition 2.1. In what follows, for the sake of simplicity, we shall denote VG and LG by
V and L, respectively. Moreover, by abuse of language, we will call γ (v) the genus of v,
and g the genus of G.

Given a stable graph G of type (g, n), choose an ordering of L(v) for each vertex v.
Next, consider the morphism

ξG :
∏
v∈V

Ml(v)

γ (v)→Mn

g, (1)
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where l(v) = |L(v)|. A point in the domain is the datum of an l(v)-pointed curve Cv
for each v. The image point is the n-pointed genus g curve which is obtained as follows:
identify the marked points of Cv corresponding to the half-edges of G which are con-
nected by an edge. By definition, the map ξG is independent of the ordering of the sets
L(v). Analogously to (1), define the morphism

ξoG : MG :=
∏
v∈V

Ml(v)
γ (v)→Mn

g. (2)

Set 1oG = ξ
o
G(MG) and denote by 1G its closure in Mn

g . By definition of (1), two
elements in a fiber of ξoG differ by an automorphism of G. This means that

1oG 'MG/Aut(G). (3)

We recall that a stable graph G of type (g, n) degenerates to a stable graph G′ of the
same type if G′ can be obtained from G by a chain of the following moves:

1. collapse an edge that joins two different vertices v1 and v2 and label the new vertex v
with γ (v) = γ (v1)+ γ (v2),

2. collapse a loop to a vertex v and increase the genus of v by one.

In that case, we write G′ < G. Thus the following holds:

Mn

g =

⋃
G

1oG, (4)

where the union is over stable graphs of type (g, n).
The locally closed strata1oG are equipped with an orbifold structure. Fix a topological

oriented surface Sγ (v),l(v) for each vertex v of G. Such a surface has genus γ (v) and l(v)
marked points, where l(v) is the number of half-edges outgoing from v. Denote by a(v)
the number of half-edges outgoing from v that are legs, and set b(v) := l(v)− a(v). For
each vertex, consider the Teichmüller space T l(v)γ (v) and the mapping class group 0l(v)γ (v). If

T (G) :=
∏
v∈VG

T l(v)γ (v), (5)

the orbifold structure of 1oG can be described as follows. We recall that the elements
of Aut(G) are obtained as compositions of permutations of vertices v1 and v2 (when
γ (v1) = γ (v2), a(v1) = a(v2) = 0, b(v1) = b(v2)) or permutations of half-edges
of G. Any permutation of the l(v) half-edges outgoing from v induces a permutation of
the l(v) marked points of Sγ (v),l(v). Accordingly, Aut(G) acts on T (G) as follows. Fix
a vertex v and, for simplicity, denote by [C; x1, . . . , xl, [f ]], l = l(v), an element of
the Teichmüller space associated with v. Choose τ in Aut(G) which permutes the half-
edges outgoing from v. Clearly, it corresponds to a permutation of the marked points of
Sγ (v),l(v). Thus τ maps [C; x1, . . . , xl, [f ]] to [C; xτ(1), . . . , xτ(l), [τ ◦ f ◦ τ−1]]. On the
other hand, take τ in Aut(G) such that τ(v1) = v2, where v1 and v2 are vertices of G
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with the same genus and a(v1) = a(v2) = 0, b(v1) = b(v2). Set l1 = l(v1) = l(v2), and
consider the elements

[C1; x1, . . . , xl1 , [f1]], [C2; y1, . . . , yl1 , [f2]]. (6)

These two are exchanged by τ in the product T (G).

Definition 2.2.
0(G) :=

∏
v

0
l(v)
γ (v) o Aut(G). (7)

We now define an action of Aut(G) on
∏
v 0γ (v),l(v) so that 0(G) acts on T (G) and

T (G)/0(G) ∼= 1oG. If τ ∈ Aut(G) permutes the half-edges of G and (
∏
v[hv]) ∈∏

v 0
l(v)
g(v), set

τ ·
(∏
v

[hv]
)
=

(∏
v

[τ ◦ hv ◦ τ
−1]
)
. (8)

On the other hand, if τ ∈ Aut(G) permutes two vertices v1 and v2 with the same
genus and a(v1) = a(v2) = 0, b(v1) = b(v2), consider two elements as in (6). If h1 and
h2 are elements in the mapping class groups associated with v1 and v2, then τ acts on
the group 0(G) since it swaps h1 and h2. As a result, the semidirect product 0(G) in 2.2
is well defined and acts on T (G) in the following way. First, let us consider the case
of an automorphism τ which permutes the half-edges of G that stem from a vertex v. If
[C; x1, . . . , xl, [f ]] and h belong to the Teichmüller space and to the mapping class group
associated with v, [C; x1, . . . , xl, [f ]] is mapped to [C; xτ(1), . . . , xτ(l), [τ ◦h◦f ◦τ−1]].
Second, let τ permute two vertices of G, v1 and v2, with no legs, the same genus, and the
same number of half-edges. Consider two elements as the ones in (6), which belong to
the Teichmüller spaces corresponding to v1 and v2, and two classes h1 and h2 in the
mapping class groups associated with v1 and v2. Then the action of 0(G) exchanges
[C1; x1, . . . , xl1 , [h1 ◦ f1]] with [C2; y1, . . . , yl1 , [h2 ◦ f2]].

It is easy to check that the elements in T (G)/0(G) are obtained by looking at the
orbit of pointed stable curves under the action of Aut(G). Thus,

T (G)/0(G) ∼= 1
o
G. (9)

Furthermore, 1oG has an orbifold structure, since the action of 0(G) is properly dis-
continuous and with finite stabilizers, as can be readily checked.

3. The orbifold Euler characteristic of Mn

g

The orbifold structure of Mn

g naturally induces an orbifold Euler characteristic, which
will be hereafter denoted by χ(Mn

g). In this section, we use the stratification described
in (4) to determine generating functions for the rational numbers χ(Mn

g).
Suppose an orbifold M admits a manifold M̃ as a finite branched covering π :

M̃ → M of degree d . Then χ(M) turns out to be e(M̃)/d, where e(M̃) is the ordinary
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Euler characteristic of M̃ . Recall that the Euler characteristic of a virtually torsion free
group H is defined similarly, i.e., χ(H) = χ(H̃ )/d , where H̃ is a torsion free subgroup
of index d in H . We shall use this group-theoretic analogy to compute χ(1oG).

First, observe that 0(G) contains torsion free subgroups 0̂(G) which act freely on
T (G). This follows from well known facts about level structures of algebraic curves. As
a consequence, T (G)/0̂(G) is a finite branched covering of1oG of degree [0(G) : 0̂(G)].
Therefore, χ(1oG) = χ(0(G)). By the short exact sequence of groups

1→
∏
v

0
l(v)
γ (v)→ 0(G)→ Aut(G)→ 1,

we get
χ(0(G)) =

(∏
v

χ(Ml(v)
γ (v))

)
/|Aut(G)|. (10)

Thus,

χ(Mn

g) =
∑
G

∏
v χ(M

l(v)
γ (v))

|Aut(G)|
.

The orbifold Euler characteristic of the moduli spaceMn
g has been computed in [12].

More precisely, the following holds.

Theorem 3.1 ([12]). For nonnegative integers g, n with n > 2− 2g, the orbifold Euler
characteristic of Mn

g is

χ(Mn
g) = (−1)n

(2g − 1)B2g

(2g)!
(2g + n− 3)!,

where B2g is the (2g)-th Bernoulli number.

In order to compute χ(Mn

g), we introduce the power series

F(x, ~) :=
∑
g≥0

Fg(x)~g−1,

where

Fg(x) :=
∑

n>2−2g, n≥0

χ(Mn

g)
xn

n!
.

We will express the formal power series F(x, ~) in terms of the known generating series

�(x, ~) :=
∑
g≥0

∑
n>2−2g
n≥0

χ(Mn
g)
xn

n!
.

Standard techniques in asymptotic theory will yield closed formulae for Fg(x).

Theorem 3.2.

exp(F (x, ~)) =
∫

R
exp

(
−
(x − y)2

2~
+�(y, ~)

)
dy
√

2π~
. (11)
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Proof. If we make the substitution y − x = z
√

~, the integral on the right-hand side
of (11) reduces to a one-dimensional Gaussian integral which can be computed directly.
Moreover, if the exponential to be integrated is expanded as a power series, we get

1+
∑
k≥1

∑
g1,...,gk≥0

∑
r1,...,rk
rj>2−2gj

k∏
j=1

χ(Mgj ,rj )

·

r1,...,rk∑
t1,...tk=0∑
tj even

(t1 + · · · + tk − 1)!!
k!t1! . . . tk!

x
∑k
j=1(rj−tj )∏

j (rj − tj )!
~
∑k
j=1(gi−1)+ 1

2
∑
j tj . (12)

The claim will follow if the sum in (12) can be rewritten as a sum over stable graphs.
For this purpose, consider k (k ≥ 1) stable graphs G1, . . . ,Gk . Each graph Gj has one
vertex of genus gj and rj legs. If we choose tj legs, 0 ≤ tj ≤ rj , from each Gj , there are
(t1 + · · · + tk − 1)!! possible ways of interconnecting them, provided

∑
tj is even. Such

a pairing yields a disconnected stable graph G of type (hk, nk), where

hk =

k∑
j=1

gj + 1− k +
1
2

k∑
j=1

tj , nk =

k∑
j=1

(rj − tj ).

Conversely, if we fix nonnegative integers g and n (n > 2 − 2g) and a discon-
nected stable graph of type (g, n), we can determine a collection of integers k, t1, . . . , tk,
r1, . . . , rk as in the sum which appears in (12). This sum can therefore be rearranged as

1+
∑
g≥0

∑
n≥0

n>2−2g

∑
G∈Gg,n

χ(MG)

|Aut(G)|
~g−1, (13)

where Gg,n is the set of disconnected stable graphs of genus g with n legs. By standard
combinatorial arguments, the theorem is completely proved. ut

3.1. Asymptotic formulae For Fg(x)

In order to deduce formulae for Fg(x) we perform a semiclassical expansion of the inte-
gral on the right-hand side of (12). In other words, we substitute

U(x, y, ~) := −
(x − y)2

2~
+�(y, ~)

with its formal power series centered at the solution of

y = x +
∑
g≥0

�′g(y)~
g, (14)

where the prime denotes the j -th derivative with respect to the variable y. We thus look
for a solution of (14) of the form

y(x, ~) :=
∑
g≥0

yg(x)~g.
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This yields the recursive relations

y0(x) = x +
∑
n≥2

χ(M0,n+1)
yn0 (x)

n!
,

yg(x) =

g∑
s=0

∑
n>1−2s
n≥0

χ(Ms,n+1)
∑

m1+2m2+···+gmg=g−s
m0+m1+···+mg=n

y
m0
0 (x) . . . y

mg
g (x)

m0! . . . mg!
.

(15)

The function y0(x) can be computed via the differential equation

dy0(x)

dx
(1− log(1+ y0(x))) = 1.

This yields the power series

y0(x) = x +
x2

2
+
x3

3
+

7
24
x4
+

17
60
x5
+

71
240

x6
+

163
504

x7
+ o(x8). (16)

Since y′0(0) = 0, the yg(x)’s are uniquely defined via the recursive relations

yg(x)

y′0(x)
=

g∑
s=1

∑
n>1−2s
n≥0

χ(Ms,n+1) ·
∑

m1+2m2+···+gmg=g−s
m0+m1+···+mg=g

y
m0
0 (x) . . . y

mg
g (x)

m0! . . . mg!
.

Let us now expand the function U(x, y, ~) about the point y(x, ~), and setw = y−y.
Thus, we get

−
(x − y)2

2~
+�(y, ~)−

1
2~
w2
(

1−
∑
g≥0

�(2)g (y)~
g
)
+

∑
k≥3

1
k!
wk
(∑
g≥0

�(k)g (y)~
g−1

)
,

where the superscript (j), j ≥ 2, denotes the derivative with respect to the variable y. For
the sake of simplicity, we set

G(x, y(x, ~)) =
∑
g≥0

�(2)g (y(x, ~))~
g, Sk(x, y(x, ~)) =

∑
g≥0

�(k)g (y(x, ~))~
g−1,

and

A(x, y(x, ~)) =
∑
r≥1

∑
k1,...,kr≥3∑

ki even

(k1 + · · · + kr − 1)!!
k1! . . . kr !

·
Sk1(x, y(x, ~)) · . . . · Skr (x, y(x, ~))√

1−G(x, y(x, ~))k1+···+kr+1
~

1
2
∑
ki .

Then the following holds.
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Theorem 3.3. Let

F(x, ~) :=
∑
g≥0

∑
n≥0

n>2−2g

χ(Mn

g)
xn

n!
~g−1

be the generating function of χ(Mn

g). An asymptotic expansion of F(x, ~) is given by

(−x + y(x, ~))2

2~
+

∑
g≥0

�g(y(x, ~))~g−1 (17)

−
1
2

log(1−G(x, y(x, ~))) (18)

+ log(1+ A(x, y(x, ~))). (19)

Proof. The claim follows by rewriting the integral appearing on the right-hand side of
(11) as

exp
(
(−x + y(x, ~))2

2~
+

∑
g≥0

�g(y(x, ~))~g−1
)

·

∫
R

exp
(
−

1
2~
w2
(

1−
∑
g≥0

�(2)g (y)~
g
))

exp
(∑
k≥3

1
k!
wk
(∑
g≥0

�(k)g (y)~
g−1

)) dw
√

2π~
.

(20)

By Wick’s Lemma (see [1]), note that the term involving A(x, ~) originates from the
expansion of the exponential in the integral (20). ut

The semiclassical expansion used in Theorem 3.3 can be interpreted as a loopwise expan-
sion, i.e., as an expansion with respect to the first Betti number of a stable graph of type
(g, n). Thus, we shall describe the yg(x)’s, g ≥ 0, from a combinatorial point of view.

Definition 3.4. A stable tree T of genus h (h ≥ 0) is a tree such that

T1. there exists a map γ : VT → {0, . . . , h} with
∑
v γ (v) = h,

T2. there are n (n ≥ 0) numbered leaves and j unnumbered leaves going into the root
such that j ≥ 1, n+ j > 2− 2h,

T3. for every vertex v of the tree, the number of outgoing edges (including the leaves) is
greater than 2− 2γ (v).

In what follows, we shall denote by G′h,n+j the collection of stable trees of genus h
with n numbered leaves and j unnumbered leaves going into the root. A graph in G′h,n+j
is by definition a stable graph of type (h, n+ j). Take now the two generating functions

ξ0(x) := x +
∑
n≥2

∑
T ∈G′0,n+1

χ(1oT )
xn

n!
, ξg(x) :=

g∑
h=0

∑
n>1−2h

∑
T ∈G′

h,n+1

χ(1oT )
xn

n!
,

where χ(1oT ) is the orbifold Euler characteristic of the open stratum defined as the image
of the morphism ξoT in (2).
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Proposition 3.5. For each g ≥ 0, ξg(x) = yg(x).

Proof. Choose a graph T ∈ G′h,n+1. The root of T corresponds to a vertex v with an
unnumbered leg, t outgoing edges, and γ (v) = h, 0 ≤ h ≤ g. If we cut T along these
edges, we get m graphs T1, . . . , Tm each of which belongs to G′a,b+1 with some a ∈
{0, . . . , g − h} and b > 1− 2a. The claim follows by (10). ut

Let G(g,l,n) be the set of stable graphs with genus g, h1(G) = l, and n legs. Theorem 3.3
can be interpreted in the following way.

Proposition 3.6.

(i)
(−x + y(x, ~))2

2~
+

∑
g≥0

�g(y(x, ~))~g−1
=

∑
g≥0

∑
n>2−2g
n≥0

∑
G∈G(g,0,n)

χ(1oG)
xn

n!
~g−1
;

(ii) −
1
2

log(1−G(x, y(x, ~))) =
∑
g≥1

∑
n>2−2g
n≥0

∑
G∈G(g,1,n)

χ(1oG)
xn

n!
~g−1
;

(iii) log(1+ A(x, y(x, ~))) =
∑
l≥2

∑
g≥l

∑
n>2−2g
n≥0

∑
G∈G(g,l,n)

χ(1oG)
xn

n!
~g−1.

Proof. (i) Since

−
(x − y)2

2~
= −

1
2~

(∑
g≥0

�′g(y)~
g−1

)2
,

each contribution in (17) is of the form χ(Mh,r)P (x), where P(x) is a polynomial in
yg(x), g ≥ 0. By Proposition 3.5, this is just a sum of the Euler characteristics χ(1oG),
where G is a stable graph and h1(G) = 0.

(ii) Observe that

�
(j)
g (y) =

∑
n≥0

n>2−j−2g

χ(Mg,n+j )
yn

n!
. (21)

By using (14), we can describe (21) as a sum over oriented rooted trees of arbitrary genus
having a root with j unnumbered leaves. Therefore, the product

�
(j)
h (y)�

(k)
t (y)

is a sum over stable graphs, which is obtained in the following way. We match the j un-
numbered leaves outgoing from the root of T1 ∈ G′a,j+n1

, a ≤ h, with the k unnumbered
leaves from the root of T2 ∈ G′b,k+n2

, b ≤ t , n1 + n2 = n. In other words, multiplying
derivatives of �g(y) gives rise to a sum over stable graphs with h1(G) ≥ 1. In particular,
since in (18) there are only second derivatives, the contribution− 1

2 log(1−G(x, y(x, ~)))
can be rewritten as ∑

g≥1

∑
n>2−2g
n≥0

∑
G∈G(g,1,n)

χ(1oG)
xn

n!
~g−1.



496 Gilberto Bini, John Harer

(iii) Analogously to the case h1(G) = 1, the contribution in (19) can be interpreted as∑
l≥2

∑
g≥l

∑
n>2−2g
n≥0

∑
G∈G(g,l,n)

χ(1oG)
xn

n!
~g−1. ut

By Proposition 3.6 we also have

Theorem 3.7. Let Mc
g,n be the moduli space of stable genus g curves with n marked

points whose associated stable graph G is a tree. Then

∑
g≥0

∑
n≥0

n>2−2g

χ(Mc
g,n)

xn

n!
~g−1

=
(−x + y(x, ~))2

2~
+

∑
g≥0

�g(y(x, ~))~g−1.

Example 3.8. The combinatorial interpretation carried out in Proposition 3.6 yields ex-
plicit formulae for the functions Fg(x). In the genus zero case,

F0(x) = �0(y0)−
1
2
�′0(y0),

where y0(x) is defined in (16). Since the function y0(x) satisfies the identity

(1+ y0) log(1+ y0) = 2y0 − x,

the power series x + F ′0(x) coincides with the one given in [14] in an implicit form.
When g = 1,

F1(x) = �1(y0)−
1
2

log(1−�(2)0 (y0)).

When g = 2,

F2(x) = �2(y0)− y
2
1y
′

0 −
y2

1
2
+

�
(2)
1 (y0)

2(1−�(2)0 (y0))
−

1

8(1−�(2)0 (y0))2(1+ y0)2

+
1

12(1+ y0)2(1−�
(2)
0 (y0))

+
1

8(1+ y0)2(1−�
(2)
0 (y0))3

.

4. The ordinary Euler characteristic of Mn

g

In this section, we will express the ordinary Euler characteristic of Mn

g in terms of
χ(Mn

g). This amounts to the computation of e(1oG) for any stable graph G. For this pur-
pose, we shall pursue previous work in [12] and apply some results of group cohomology
theory. In fact, 1oG is a rational K(0(G), 1); hence we have

e(1oG) = e(0(G)).
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Thus, the computation of e(0(G))will follow from a result in [3]. Define a groupK to
be geometrically WFL if there is a contractible, finite-dimensional, proper K-complex Y
such that there are only finitely many cells of Y under the action of K . Suppose, fur-
ther, that K has finitely many conjugacy classes of elements of finite order and for every
element σ in K the centralizer ZK(σ ) is geometrically WFL. Then the following holds.

Theorem 4.1 ([3]). For each σ of finite order in K ,

e(K) =
∑
Cσ

χ(ZK(σ )),

where the sum is over all conjugacy classes Cσ of elements of finite order in K , and
χ(ZK(σ )) is the Euler characteristic of the group ZK(σ ) in the sense of Wall (cf. [4]).

We shall apply Theorem 4.1 to the group 0(G) for any stable graph G. Let Y ng , n ≥ 1,
be the CW-complex introduced in [11]. Y ng is a contractible, finite-dimensional complex
such that the mapping class group 0ng acts cellularly, with finite stabilizers and finitely
many orbits. For a graph G, consider the CW-complex given by the product

Y (G) :=
∏
v∈VG

Y
l(v)
g(v). (22)

By the properties of Y (G), the group 0(G) is geometrically WFL. In Corollary 4.9 we
shall prove that centralizers of elements of finite order in 0(G) are geometrically WFL.
Since, as we shall see, χ(ZG(σ )) can be computed in terms of the characteristic of a group
which is a finite extension of products of mapping class groups, the ordinary Euler char-
acteristic of the stratum 1oG is determined by χ(Mn

g). Various algebraic manipulations
will yield the final result.

4.1. e(Mn+1
g )

To exemplify the strategy above, we consider first the stable graphG with one vertex and
n+ 1 legs. This will yield a formula for the open locus of smooth pointed curves. In this
section we restrict our attention to curves with at least two marked points. The remaining
cases are dealt with in [12].

Fix a genus g topological oriented surface Sg,n+1 with n + 1 marked points. Let
σ ∈ 0n+1

g be an element of finite order. As proved in [15], σ may be represented by a
periodic homeomorphism f of order k which fixes pi ∈ Sg,n+1, i = 1, . . . , n + 1. Such
a homeomorphism defines a branched covering

ψf : Sg,n+1 → Hg,n+1 := Sg,n+1/〈f〉,

where Hg,n has a natural structure of orbifold of genus h. If p1, . . . , pn, pn+1, . . . ,

pn+d+1 denote the ramification points, then by the Riemann–Hurwitz formula we have

2g − 1+ n = k(2h− 1+ n+ d)−
∑
i

Mi, (23)
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where k ≥ 1, h ≥ 0 and 1 ≤ Mr < k, Mr | k. The unramified covering corresponding to
ψf is clearly determined by a group homomorphism

ωσ : H1(Hg,n+1 − B)→ Z/kZ, (24)

where B is the branch locus of ψf. As a result, an element of finite order in 0n+1
g deter-

mines a homomorphism ωσ and integers h, k, d,Mi satisfying (23). On the other hand,
it is easy to check that data {h, k, d,Mi} are sufficient to have an element of order k in
0n+1
g . Define now 0(Hg,n+1) to be the group of all isotopy classes of homeomorphisms

ofHg,n+1 which fix the set {p1, . . . , pn+1} and may permute pi and pj for i, j ≥ n+2—
when they have the same monodromy. Set, further,

0n+1
g (f) := {h ∈ 0(Hg,n+1) : ωσ ◦ h = ωσ }.

Let Zσ and Nσ be the centralizer and the normalizer of σ in 0n+1
g , respectively. Anal-

ogously to Lemma 3 in [12], the following holds.

Lemma 4.2. The groups Nσ and 0n+1
g (f) are related via the short exact sequence

1→ Z/kZ→ Nσ → 0n+1
g (f )→ 1.

Moreover, the groups Nσ and Zσ are geometrically WFL.

By Lemma 4.2, χ(Zσ ) is well defined and can be computed in terms of the Euler char-
acteristic of Nσ . Similar arguments to those in [12] yield a closed formula for e(Mn+1

g ).
Let us now recall some conventional notation. As is customary, we denote by φ and µ
the Euler and the Möbius arithmetic functions, respectively. Additionally, for any triple
of nonnegative integers k, l, δ such that l | k and δ | k, we set

c(k, l, δ) =
φ(k/l)

φ(δ/(δ, l))
µ(δ/(δ, l)), (25)

where (δ, l) is the g.c.d. of δ and l. Then the following holds.

Theorem 4.3. For nonnegative integers g, n such that 2g−1+n > 0, the ordinary Euler
characteristic of Mn+1

g is

e(Mn+1
g ) =

∑
h,k,M1,...,Md

φ(k)

k

χ(Md+1+n
h )

d!
k2h−1

∑
δ|k

µ(δ) (c(k, 1, δ))n ·
d∏
r=1

c(k,Mr , δ),

(26)
where h, k, d,M1, . . . ,Md satisfy the following conditions:

k ≥ 1, h ≥ 0, 1 ≤ Mr < k, Mr | k,

2g − 1+ n = k(2h− 1+ n+ d)−M1 − · · · −Md .

Remark 4.4. Note that for n = 0 formula (26) coincides with the one given in [12].

In Table 1 we give some values of e(Mn+1
g ) for 3 ≤ g ≤ 10 and 1 ≤ n ≤ 8. In fact,

all the values we get for g = 0, 1, 2 coincide with the known ones. Finally, we further
remark that formula (26) generates the same numbers as χ(Mn+1

g ) for n ≥ 2g + 2. This
is consistent with the general fact that a smooth curve with at least 2g + 3 marked points
is automorphism free; hence the two Euler characteristics coincide.
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Table 1. Some values of e(Mn+1
g )

n
g 1 2 3 4 5 6

3 8 6 4 −10 30 −660
4 −2 −10 −24 −24 −360 2352
5 12 26 92 182 1674 −16716
6 0 −46 −206 188 −7512 124296
7 38 120 676 −1862 71866 −1058676
8 −166 −630 −5362 16108 −680616 12234600
9 748 2132 29632 −323546 7462326 −164522628

10 −1994 6078 −213066 4673496 −106944744 2559934440

4.2. The general case

Analogously to Section 4.1, we shall give a formula for e(Mn

g). First of all, we arrange
all such numbers in the generating function

f (λ, y) :=
∑
g≥0
n≥1

2g+n≥3

e(Mn

g)λ
2g−2+n y

n

n!
(27)

and express f in terms of matrix integrals. To state the main formula, we need some more
notation. For any nonnegative integers k and δ | k, define V (k, δ) to be the polynomial

V (k, δ) = c(k, 1, δ)λky +
∑

1≤m<k

c(k,m, δ)λk−m + T (k, δ)λk

+

∑
1≤r≤k
r|k

c(k, r, δ)xrλ
k (28)

in the variables λ, y, x1, . . . , xk . In (28), note that

T (k, δ) =

{
k/2, k ≡ 0 mod 2, δ = 1, 2,
0, otherwise, (29)

and the other coefficients are defined in (25). Set, further,

Q(λ, y, x) =
∑
δ|k

∑
2h+s≥3
h,s

φ(δ)χ(Ms
h)(kλ

k)2h−2V
s(k, δ)

s!
. (30)

Then the following holds.
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Theorem 4.5.

f (λ, y)+
∑
g≥2

( g−1∑
h=1

h|(g−1)

e(Mh+1)− e(Mg)
)
λ2g−2

= log
{

lim
M→∞

1
(2π)M/2

∫
RM

exp(Q) dµM

}
, (31)

where

dµM = exp
(
−

1
2
(x2

1 + · · · + x
2
M)

)
dx1 . . . dxM . (32)

Remark 4.6. Note that the results in Section 4.1 can be expressed in terms of generating
functions, too. In fact, set

f0(λ, y) =
∑
g,n≥0

2g+n≥3

e(Mn
g)

n!
λ2g−2+nyn,

V0(k, δ) = c(k, 1, δ)λky +
∑

1≤m<k
m|k

c(k,m, δ)λk−m.

Then

f0(λ, y)−
∑
g≥2

( g−1∑
h=1
h|g−1

e(Mh+1)− e(Mg)
)
λ2g−2

=

∑
2h+s≥3
h,s≥0

∑
1≤δ|k

φ(δ)χ(Ms
h)(kλ

k)2h−2V
s
0 (k, δ)

s!
.

As sketched before, the proof of Theorem 4.5 is organized as follows. To begin, we
will prove that centralizers of elements of finite order in 0(G) are geometrically WFL—
see Section 4.2.2. Henceforth, we assume G is a stable graph with at least two vertices.
Next, we will obtain a formula for e(Mn

g) in terms of χ(Mr
h) for suitable values of h

and r—see Section 4.2.2. Finally, we will deduce formula (31) by standard techniques in
matrix integral theory.

4.2.1. Centralizers of elements of finite order in 0(G). The elements of finite order in
0(G), and their centralizers, are better understood if we describe the group 0(G) in an
alternative way. For any stable graph G, let S(G) be the surface

S(G) =
⊔
v∈VG

Sg(v),a(v)+b(v), (33)

where Sg(v),a(v)+b(v) is defined in Section 2. For nonnegative integers g, b denote by
V
(g,b)
G the subset of vertices of G such that g(v) = g, a(v) = 0 and b(v) = b. Any
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nonempty V (g,b)G is equipped with a permutation action of the symmetric group S(g,b).
Define 0(S(G)) to be the semidirect product

0̃ o
∏

V
(g,b)
G 6=∅

S(g,b),

where 0̃ consists of the isotopy classes of the orientation-preserving diffeomorphisms of
S(G) which, for each vertex v, fix the a(v) points, but may permute the b(v) points.

We now show that 0(G) is isomorphic to a subgroup L of 0(S(G)). Let L be the set
of elements of 0(S(G)) that are compatible with the identifications of the marked points,
which are induced by G. In other words, if qi and qj are identified in S(G), then any h
in L identifies h(qi) and h(qj ). It is easy to check that 0(G) is isomorphic to L. Clearly,
any element of 0(G) induces an element in L. Conversely, note that h in L satisfies
h(qi) = qθ(i) and h(qj ) = qθ(j), where θ is a permutation of the set of the

∑
v b(v)

marked points of S(G). Accordingly, h induces the element (̃h, θ̃ ) in 0(G), where θ̃ is
the automorphism of G induced by θ and h̃ = θ̃ ◦ h.

Since 0(G) can be viewed as a subgroup of 0(S(G)), an element σ of finite order in
0(G) can be realized (cf. [15]) as a periodic diffeomorphism of S(G). The quotient of
S(G) by the group generated by σ is a disconnected orbifold, X. Let us describe X in
detail.

X has a finite number (say p) of connected components Xi each of which is an orbi-
fold of genus hi, 1 ≤ i ≤ p. Each Xi has some natural marked points. The n marked
points of S(G) corresponding to legs of G are fixed by σ and thus descend to marked
points of X. Hence, each Xi has ai (ai ≥ 0) points of this type, where

∑
ai = n.

Another set of marked points is given by the orbits of 〈σ 〉 that contain points of S(G)
corresponding to half-edges of G. Additionally, we mark the points of Xi which come
from orbits of length smaller than |〈σ 〉|. Each Xi may have di additional marked points
of this type.

This leads quite naturally to the construction of an orbi-graphH in the following way.
The set of vertices {v1, . . . , vp} ofH has order p. Each vi corresponds to one of the Xi’s.
The edges of H are recovered from the edges of G if we respect some compatibility con-
ditions. More explicitly, let βi and βj be two half-edges of H . Suppose they correspond
to points xi and xj of X. If yi and yj are points of S(G) which correspond to xi and xj ,
then βi and βj are paired if and only if the half-edges of G corresponding to yi and yj
are paired too. Note that some edges of G may correspond to half-edges of H . Thus, we
denote by bi the number of marked points in Xi that correspond to the half-edges issuing
from vi and giving rise to edges of H . On the other hand, we denote by ci the number
of half-edges issuing from vi and different from the ai + bi + di half-edges listed so far.
Finally, we denote by ki the degree of the covering, say σi , of Xi . An element of finite
order in 0(G) thus determines the following set of data:

p, {k1, . . . , kp}, {h1, . . . , hp}, {a1, . . . , ap},

{b1, . . . , bp}, {c1, . . . , cp}, {d1, . . . , dp}, π,
(34)

where π is the pairing among the
∑p

i=1 bi half-edges of H induced by the compatibility
conditions described above.
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Note that a stable graph G and the elements of finite order σi determine group ho-
momorphisms from H1(X

0
i ) to the cyclic group of order ki , where X0

i is Xi with all the
marked points removed. Moreover, these homomorphisms satisfy the following condi-
tions. Below, when we refer to small loops around a marked point q of X0

i we mean an
oriented loop (say counterclockwise) around q which is small enough to encircle only the
point q.

(I) (ωi(α), ki) = 1 for a small loop α around each of the ai marked points;
(II) ωi(δ) 6= 0 for a small loop around each of the di marked points;

(III) (ωi(γ ), ki) ≡ 0 mod 2 for a small loop γ around each of the ci marked points.

Conversely, given a graph H and data as in (34), we would like to recover a stable
graphG′ of type (g, n) for some g and n. Roughly speaking, we would like to reconstruct
a topological surface from X. For these purposes, we need some extra information. First,
we define group homomorphisms

ωi : H1(X
0
i )→ Z/kiZ (35)

which satisfy conditions (I)–(III). A homomorphism ωi in (35) determines a branched
covering of Xi of degree ki : the image of the loops around the marked points of X deter-
mine the local monodromy of the covering. Let

N i
j , 1 ≤ j ≤ bi, N i

j | ki, 1 ≤ N i
j ≤ ki, (36)

M i
r , 1 ≤ r ≤ di, M i

r | ki, 1 ≤ M i
r < ki, (37)

Ris, 1 ≤ s ≤ ci, (38)

be the numbers of points lying over each of the bi, di, ci marked points of Xi . Notice that
each vertex of the graph G′ has

ηi = ai +

bi∑
j=1

N i
j +

ci∑
s=1

Ris (39)

half-edges. Note that the sums in (39) should be considered empty when bi (or ci) are
zero. Next, we introduce a pairing π̃ among the points in the orbit of each of the bi
points. Clearly, this pairing has to be compatible with the pairing π of the graph H .
Indeed, suppose that βij and βi

′

j ′
are paired via π . By abuse of notation, we still denote

the marked points corresponding to them by βij and βi
′

j ′
. If there are N i

j (resp. N i′

j ′
) points

lying above βij (resp. βi
′

j ′
), then N i

j = N
i′

j ′
.

We can now associate a graph G′ to the covering of X determined by the homomor-
phisms ωi . The number, v(G′), of vertices of G′ is

∑p

i=1 Pi , where Pi is the number
of components lying over Xi . The total number, e(G′), of edges is determined as fol-
lows. There is only one way to lift the ci half-edges of H , so G′ has

∑
i,s R

i
s/2 edges

of this type. Let e be an edge obtained by pairing two half-edges e− and e+. Denote by
N(e−) and N(e+) the numbers of points over (the marked points corresponding to) e−
and e+. By the discussion above, there exist N(e−) = N(e+) possible pairings π̃ for G′.
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As a consequence, there are 1
2
∑
i,j N

i
j edges of this type. We observe that each vertex

of G′ corresponds to a genus gi covering of Xi , where gi is determined by the Riemann–
Hurwitz formula, namely

Pi(2− 2gi) = ki(2− 2hi − ai − bi − ci − di)+ ai +
bi∑
j=1

N i
j +

di∑
r=1

M i
r +

ci∑
s=1

Ris . (40)

If we set

n :=
p∑
i=1

ai, g :=
p∑
i=1

Pigi + e(G
′)− v(G′)+ 1, (41)

we get

2g − 2+ n =
( p∑
i=1

ki(2hi − 2+ ai + bi + ci + di)
)
−

∑
i,r

M i
r . (42)

The graph G′ does not have a total ordering of all the a1 + · · · + ap points. Thus, we
give a total ordering O to all these points and there are clearly n! of these. We call the
result G, and the following now holds.

Proposition 4.7. The graph G is stable if and only if

ki(2hi − 2+ ai + bi + ci + di)−
∑

M i
r > 0 (43)

for all 1 ≤ i ≤ p. Furthermore, this condition is equivalent to the stability of H except
for the case where hi = ai = ci = 0, bi = 1, di = 2, ki is even and M1

i = M
2
i = ki/2. If

these values hold for some i, then G is not stable, even though H is.

Proof. Let ai + bi + ci + di be the number of half-edges at the i-th vertex of H and let
ηi be the number of half-edges of G′ as in (39). Suppose first that (43) holds. This means
that 2hi − 2+ ai + bi + ci + di > 0 for 1 ≤ i ≤ p. By (40) we have

Pi(2gi − 2+ ηi) ≥ Pi(2gi − 2)+ ηi = ki(2hi − 2+ ai + bi + ci + di)−
∑

M i
r > 0,

so G is stable.
Conversely, suppose that H is not stable at a vertex vi, 1 ≤ i ≤ p. Then either

hi = 1, ai + bi + ci + di = 0,

or
hi = 0, ai + bi + ci + di ≤ 2.

Let X̃i be one of the Pi components lying above Xi . In the former case, there are no
branch points, so X̃i must be a torus with no marked points, implying that G is also not
stable. In the latter case, X̃i must be a cover of Xi branched at most over two points and
again G cannot be stable. ut

In other words, a pair (G, σ) of a stable graph and an element of finite order in 0(G)
is determined by (i) a stable graph H that satisfies (43), (ii) a collection of data as in
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(34), (iii) group homomorphisms ωi satisfying conditions (I)–(III), and finally (iv) a total
ordering O and a pairing π .

This said, it is now easier to study properties of the centralizer ZG(σ ) of an element
σ of finite order in 0(G).

Let NG(σ ) be the normalizer of σ in 0(G). Denote by H the graph associated with
(G, σ). Since H is stable, we define the group 0(H) as in 2.2, i.e.

p∏
i=1

0hi ,ai+bi+ci+di o Aut(H), (44)

where Aut(H) is the group of automorphisms of H generated by

• automorphisms of H which may permute two vertices vi and vj only if hi = hj , ai =
aj = 0, bi = bj , ci = cj and di = dj ,
• permutations of the di marked points for each i, 1 ≤ i ≤ p.

Any element h in 0(H) induces an automorphism of the fundamental group of X which
we denote by h∗. Thus, we set

0(H,ωσ ) := {h ∈ 0(H) : ωσ ◦ h∗ = ωσ }, (45)

where ωσ is any of the group homomorphisms determined by σ .

Proposition 4.8. The groups NG(σ ) and 0(H,ω) are related via the short exact se-
quence of groups

1→ Ck
t1
−→ NG(σ )

t2
−→ 0(H,ωσ )→ 1. (46)

Proof. The group Ck is the cyclic group of order k generated by σ , and t1 is the inclusion
homomorphism. The map t2 is defined as follows. Pick an element h in NG(σ ). By the
same arguments in [12, Lemma 3], there exists an orientation-preserving diffeomorphism
fh of S(G) such that

fhσ f−1
h = σ

j for some j . (47)

Then t2(h) is defined as the isotopy class of fh. By condition (47) and the definition of
0(H,ωσ ), fh yields an element in 0(H,ωσ ). ut

Corollary 4.9. The centralizers of elements of finite order in 0(G) are geometrically
WFL.

Proof. The group 0(H,ωσ ) is a finite index subgroup of 0(H) so it acts on the CW-
complex Y (G) introduced in (22). The exact sequence in (46) gives an action of NG(σ )
and ZG(σ ) on Y (G); so they are both WFL. ut
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4.2.2. A formula for e(Mn

g). In this section we give a formula for e(Mn

g) when n ≥ 1.
This will be used in the next section for the generating function f . In what follows, we
adopt the same notation as in Section 4.2.1.

By Theorem 4.1, we have

e(Mn

g) =
∑
G

e(1oG) =
∑
G

∑
Cσ

χ(ZG(σ )). (48)

Since each (G, σ) determines an orbi-graphH , we rewrite e(Mn

g) as a sum over pairs
(H, ωi), where H is an orbi-graph and ωi are the group homomorphisms introduced in
(35). For each ki we consider the action of 0(H) on the setAH (ki) of all homomorphisms
ωi in (35) which satisfy conditions (I)–(III). In particular, if ωi ∈ AH (ki), we denote by
0(H,ωi) the stabilizer of ωi under the action of 0(H). Notice that when ωi is induced
by σ ∈ 0(G), 0(H,ωi) is the group in (45).

Fix an orbi-graph H and data O and π described in Section 4.2. Let 3i be a set of
representatives of the conjugacy classes Cσi , and suppose that the quotient of S(G) by the
σi’s is isomorphic to X. Thus

e(Mn

g) =
∑
p

∑
k1,...,kp

∑
Cσ1 ,...,Cσp

∑
Cρ1 ,...Cρp

p∏
i=1

χ(ZG(σi)),

where Sσi is a set of representatives of the orbits of

Gσi = {σ
n
i : (n, k) = 1}

under the action of NG(σi) by conjugation. If Oj is such an orbit, then we get∑
ρ∈Sσi

χ(ZG(ρ)) =
∑
ρ∈Sσ

|Oj |χ(NG(ρ)) = φ(k)χ(NG(σ )). (49)

Hence we have ∑
p

∑
k1,...,kp

∑
Cσ1 ,...,Cσp

p∏
i=1

φ(ki)

ki
χ(0(H,ωσi )).

By the short exact sequence

1→
p∏
i=1

0hi ,ai+bi+ci+di → 0(H)→ Aut(H)→ 1,

we get

χ(0(H,ωσi )) = [0(H) : 0(H,ωσi )]

∏p

i=1 0hi ,ai+bi+ci+di

|Aut(H)|

= |O(ωσi )|
∏p

i=1 0hi ,ai+bi+ci+di

|Aut(H)|
, (50)

where O(ωσi ) is the orbit of ωσi under the action of 0(H) on AH (ki).



506 Gilberto Bini, John Harer

The expression in (50) can be further simplified. We say that H is ordered if it has an
ordering on its vertices and an ordering on each collection of the half-edges going out of
a vertex v. Let H′ be the set of all ordered (disconnected) stable orbi-graphs. The group

Sp n
p∏
i=1

(Sai ×Sbi ×Sci ×Sdi )

acts on H′ with orbits equal to orbi-graphs. To determine the ordered orbi-graph H , we
only need to enumerate

(h1, . . . , hp), hi ≥ 0, (k1, . . . , kp), ki ≥ 1,
(a1, . . . , ap), ai ≥ 0, (b1, . . . , bp), bi ≥ 0,

∑p

i=1 bi ≡ 0 mod 2,
(c1, . . . , cp), ci ≥ 0, (d1, . . . , dp), di ≥ 0,

together with a pairing π of the numbers 1, . . . , b1 + · · · + bp. Denote by N the vector

(N1
1 , . . . , N

1
b1
, . . . , N

p

1 , . . . , N
p
bp
),

where N i
j is defined in (36). By (42), (41), (37), and (38), we get

e(Mn

g) =
∑
p

∑
k1,...,kp

1
p!

∑
ωi∈AH (ki )

φ(ki)

ki

∑
hi ,ai ,bi ,ci ,di≥0
b1+···+bp even

2hi+ai+bi+ci+di≥3

p∏
i=1

χ(Mai+bi+ci+di
hi

)

ai!bi!ci!di!
. (51)

We can simplify the sum in (51) if we enumerate all the elements in AH (ki). A ho-
momorphism ωi : H1(X

0
i )→ Z/kiZ is determined by assigning its values on a basis of

H1(Xi) and on each small oriented loop around any of the marked points in Xi . There-
fore, for any ki , the number of such homomorphisms can be computed as follows. The
number of values that ωi can assume on a basis of H1(Xi) is

∏p

i=1 k
2hi
i . For the values

on the loops around the marked points we introduce the following notation. Denote by
<αil>,<β

i
j>,<γ

i
s>,<δ

i
r> the loops around the ai, bi, ci, di marked points. Then ω is

determined by assigning the following elements of Z/kiZ:

1. ω(<αil>) = A
i
l , with (Ail , ki) = 1, 1 ≤ l ≤ ai ,

2. ω(<βij>) = B
i
j , with (Bij , ki) = N

i
j , N

i
j | ki, 1 ≤ N i

j ≤ k, 1 ≤ j ≤ bi ,
3. ω(<γ is>) = C

i
s , with (Cis, ki) ≡ 0 mod 2, 1 ≤ s ≤ ci ,

4. ω(<δir>) = D
j
r , with (Dir , k) = M

i
r , M

i
r | k, 1 ≤ M i

r < k, 1 ≤ r ≤ di .

These requirements depend on the conditions (I)–(III) satisfied by ωi . Moreover, the im-
age under ωi of the relation among cycles in H1(Xi) yields the additional constraint∑

i,l

Ail +
∑
j,i

Bij +
∑
s,i

Cis +
∑
r,i

Dir ≡ 0 mod ki .
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Define T({ai}, {bi}, {ci}, {di}, {N i
j }, {M

i
r }) to be the cardinality of the set{

(A1
1, A

1
2, . . . , D

p
dp
) : A1

1 = 1, (Ail , ki) = 1, (B ij , k) = N
i
j ,

(Cis, ki) ≡ 0 mod 2, (Dir , ki) = M
i
r ,∑

i,l

Ail +
∑
j,i

Bij +
∑
s,i

Cis +
∑
r,i

Dir ≡ 0 mod ki
}
.

Accordingly, if ai ≥ 1, the number of homomorphisms ωi is

p∏
i=1

k
2hi
i φ(ki)T({ai}, {bi}, {ci}, {di}, {N i

j }, {M
i
r }). (52)

By standard facts in elementary number theory (see [12]) we have

φ(ki)T({ai}, {bi}, {ci}, {di}, {N i
j }, {M

i
r })

=

p∏
i=1

1
ki

∑
ζ

ζ k=1

∑
0≤Ail<ki
(Ail ,ki )=1

∑
0≤Bij<ki
(Bij ,ki )=N

i
j

∑
0≤Cis<ki

(Cis ,k)≡0 mod 2

∑
0≤Dir<ki
(Dir ,k)=M

i
r

ζ
∑
l A

i
l+
∑
j B

i
j+
∑
s C

i
s+
∑
r D

i
r

=

p∏
i=1

1
ki

∑
ζ

ζ ki =1

ai∏
l=1

( ∑
0≤s<ki
(s,ki )=1

ζ s
) bi∏
j=1

( ∑
0≤s<ki
(s,ki )=N

i
j

ζ s
) ci∏
l=1

( ∑
0≤s<ki

(s,ki )≡0 mod 2

ζ s
) di∏
j=1

( ∑
0≤s<ki
(s,ki )=M

i
r

ζ s
)
.

Lemma 4.10. (i) If k is even,∑
(r,k)≡0 mod 2

0≤r<k

ζ r =

{
k/2 for ζ = 1,−1,
0 otherwise.

(ii) For any pair l, δ of divisors of k and ζ a primitive δ-th root of unity, we have∑
(r,k)=l
0≤r<k

ζ r = c(k, l, δ),

where c(k, l, δ) is defined in (25).

Proof. (i) Since k is even, we have∑
(r,k)≡0 mod 2

0≤r<k

ζ r = 1+ ζ 2
+ ζ 4

+ · · · + ζ k−2,

which is zero unless ζ = 1 or −1 in which case it equals k/2.
(ii) This follows from the definition of the Möbius function. ut
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By Lemma 4.10, we have

φ(ki)T({ai}, {bi}, {ci}, {di}, {N i
j }, {M

i
r })

=

p∏
i=1

1
ki

∑
δ|ki

1≤δ<ki

c(ki, 1, δ)ai
bi∏
j=1

c(ki, N
i
j , δ)γ (ki, δ, ci)

di∏
r=1

c(ki,M
i
r , δ), (53)

where

γ (k, δ, c) =


φ(δ), c = 0,
0, k ≡ 1 mod 2, c > 0,
0, k ≡ 0 mod 2, c > 0, δ > 2,
(k/2)c, k ≡ 0 mod 2, c > 0, δ = 1, 2.

(54)

As a result, the following holds.

Theorem 4.11. For any integers g ≥ 0 and n ≥ 1 such that n > 2 − 2g, the ordinary
Euler characteristic of Mn

g is given by

e(Mn

g) = n!
2g−2+n∑
p=1

1
p!

∑
b1,...,bp

b1+···+bp even

∑
N

∑
π

∏
e

N(e)

·

∏
i

∑
hi ,ai ,di

2hi+ai+bi+ci+di≥3

∑
ki ,M

r
i

χ(Mai+bi+di+ci
hi

)

di!ai!bi!ci!

· k
2hi−2
i

∑
δi |ki

(
c(ki, 1, δi)ai

bi∏
j=1

c(ki, N
j
i , δi)γ (ki, δi, ci)

di∏
r=1

c(ki,M
r
i , δi)

)
,

where

2g − 2+ n =
p∑
i=1

ki(2hi − 2+ ai + bi + ci + di)−
p∑
i=1

(M1
i + · · · +M

di
i );

Mr
i | ki, Mr

i < ki, ki ≤ 1;

0 ≤ hi ≤ g,
p∑
i=1

ai = n;

1 ≤ N j
i ≤ ki, N

j
i | ki, N

j
i = N

j ′

i′
;

π a connected pairing of the numbers 1, . . . , b1 + · · · + bp, bi ≥ 1.

4.2.3. The proof of Theorem 4.5. This section is devoted to proving Theorem 4.5. Basi-
cally, we shall apply Wick’s Lemma to deduce (31).
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By (42) and Theorem 4.11, the generating series∑
g≥1,n≥0
n≥2g+2

e(Mn

g)λ
2g−2 y

n

n!

is equal to∑
p≥1

1
p!

∑
k1,...,kp

∑
b1,...,bp

b1+···+bp even

∑
N,π

∏
e

N(e) (55)

·

∏
i

∑
hi ,ai ,di

2hi+ai+bi+ci+di≥3

∑
ki ,M

r
i

χ(Mhi ,ai+bi+di+ci )

di!ai!bi!ci!
(56)

· (kiλ
ki )2hi−2

∑
δi |ki

(
(c(ki, 1, δi)λkiy)ai (57)

·

bi∏
j=1

(c(ki, N
j
i , δi)λ

ki )(γ (ki, δi, ci)λ
ki )

di∏
r=1

(c(ki,M
r
i , δi)λ

ki−M
i
r )
)
. (58)

Note that
γ (ki, δi, ci)λ

ki = φ(δi)(T (ki, δi)λ
ki )ci ,

where T (ki, δi) is defined in (29). Moreover, all the indices bi in (55) are positive integers.
Looking at the expansion above, we define the generating series

f̂ (λ, y) =
∑
p≥1

1
p!

∑
k1,...,kp

∑
b1,...,bp≥0

b1+···+bp even

∑
N,π

∏
e

N(e)

·

∏
i

∑
hi ,ai ,di

2hi+ai+bi+ci+di≥3

∑
ki ,M

r
i

χ(Mhi ,ai+bi+di+ci )

di!ai!bi!ci!

· (kiλ
ki )2hi−2

∑
δi |ki

(
(c(ki, 1, δi)λkiy)ai

·

bi∏
j=1

(c(ki, N
j
i , δi)λ

ki )(γ (ki, δi, ci)λ
ki )

di∏
r=1

(c(ki,M
r
i , δi)λ

ki−M
i
r )
)
.

Clearly, we have

f̂ (λ, y) =
∑
g≥2

ugλ
2g−2
+

∑
g≥1, n≥0
n≥2g+2

e(Mn

g)λ
2g−2 y

n

n!
,

whence
f (λ, y) = f̂ (λ, y)−

∑
g≥2

(ug − e(Mg))λ
2g−2.
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Theorem 4.5 will be completely proved if we show that (i) f̂ (λ, y) is equal to the
right-hand side of (31) and (ii) the following holds:

ug =

g−1∑
h=1

h|(g−1)

e(Mh+1). (59)

To prove (i) we argue as follows. Set

Q̂(k, b,N1, . . . , Nb) =
∑
δ|k

φ(δ)

b∏
j=1

√
Nj c(k,Nj , δ)λ

k

·

∑
2h+s+b≥3

h,s

χ(Mb+s
h )(kλk)2h−2

(
c(k, 1, δ)λky + T (k, δ)λk +

∑
1≤m<k
m|k

c(k,m, δ)λk−m
)s
.

Then we have

f̂ (λ, y) =
∑
p≥1

1
p!

∑
k1,...,kp

∑
b1,...,bp≥0

b1+···+bp even

∑
N,π

p∏
i=1

Q̂(ki, bi, N
1
i , . . . , N

p
i ). (60)

If we now expand exp(f̂ ), we get∑
q≥0

1
q!

∑
k1,...,kq≥0

∑
N
j
i |ki

b1,...,bq≥0

∑
π

q∏
i=1

Q̂(ki, bi, N
1
i , . . . , N

bi
i ), (61)

where π is a not necessarily connected pairing. For any positive integer r denote by Nr
the number of those N j

i ’s that equal r . Set also

Nr =
{
(Nr − 1)!!, Nr even,
0, else.

Formula (61) can be written as∑
q≥0

1
q!

∑
k1,...,kq≥0

∑
N
j
i |ki

b1,...,bq≥0

∏
r≥1

Nr
q∏
i=1

Q̂(ki, bi, N
1
i , . . . , N

bi
i ).

For any integers k, b,N1, . . . , Nb, s define R(λ, y, xN1 , . . . , xNb ) to be the polynomial

R(λ, y, xN1 , . . . , xNb ) =
∑
δ|k

φ(δ)

b∏
j=1

√
Nj c(k,Nj , δ)xNj λ

k

·

∑
2h+s+b≥3

h,s

χ(Mb+s
h )(kλk)2h−2

(
c(k, 1, δ)λky + T (k, δ)λk +

∑
1≤m<k
m|k

c(k,m, δ)λk−m
)s
.
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By Wick’s Lemma, we get

exp(f̂ ) = lim
M→∞

1√
(2π)M

∫
RM

exp
(∑
b≥0
k≥1

∑
Ni |k

R(λ, y, xN1 , . . . , xNb )
)
dµM ,

where dµM is the Gaussian measure as in (32). It is an easy exercise (left to the reader)
to check that ∑

b≥0
k≥1

∑
Ni |k

R(λ, y, xN1 , . . . , xNb ) = Q(λ, y, x)

where Q(λ, y, x) is defined in (30). Hence (i) is proved.
As for (59), it suffices to show that the following identity of generating series holds:

−

∑
g≥2

e(Mg) log(1− λ2g−2) =
∑
g≥2

ugλ
2g−2. (62)

e(Mg) is the sum of the Euler characteristics e(1(G)), where 1(G) are the strata
in Mg . Analogously to Section 4.2.2, e(1(G)) can be computed by taking into account
connected coverings of Riemann surfaces of genus g.

Let us now expand the left-hand side of (62). Clearly, we get

∑
g≥2

e(Mg)
∑
m≥1

(λ2g−2)m

m
. (63)

From what we recalled on e(Mg), (63) can be interpreted as a generating series for cov-
erings with more than one connected component. This is exactly what the numbers ug
enumerate.

Table 2. Some values of e(Mn
g)

n
g 0 1 2 3 4 5 6

2 6 13 42 181 1004 6883 56392
3 32 102 454 2612 18515 156094 1526677
4 200 882 5214 37945 327584 3272624 37151502

For genus g = 0, 1 our numbers coincide with the known values. For g = 2 our
method showed an incongruence with the values in [2]. In what follows, we adopt the
same notation as in that paper. By Proposition 3.15, p. 507 in [2], the contribution of
graphs of type 5 should be

1
24(1− E)(1+D)2

+
11+ 2D − 3D2

24(1− E)
+

1
2
+

3D
2
+

7D2

4
+

7D3

6
+

11D4

24
+
D5

8
+
D6

48
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and not

1
24(1− E)(1+D)2

+
11+ 2D − 3D2

24(1− E)
+

1
2
+

3D
2
+

7D2

4
+

7D3

6
+

11D4

24
−
D5

8
+
D6

48
.

As a consequence, the final generating function K2(t) in [2] should be modified by
adding D5/4. This yields the same values we get in the present paper for g = 2.
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