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Abstract. We define a functional for Hermitian metrics using the curvature of the Chern connec-
tion. The Euler—Lagrange equation for this functional is an elliptic equation for Hermitian metrics.
Solutions to this equation are related to Kdhler—Einstein metrics, and are automatically Kdhler—
Einstein under certain conditions. Given this, a natural parabolic flow equation arises. We prove
short time existence and regularity results for this flow, as well as stability for the flow near Kihler—
Einstein metrics with negative or zero first Chern class.

1. Introduction

In this paper we introduce a new curvature evolution equation on compact complex mani-
folds. Specifically, given (M?", g, J) a manifold with integrable complex structure J and
Hermitian metric g, let V denote the Chern connection of g, which is a metric compatible
connection with torsion 7' [12]]. Let 2 denote the curvature of V. Define

i
Si7 = (o $2);5 = 87 ;5

and let s = g'/5;; be the scalar Chern curvature. Furthermore let w; = g/*7; ;. denote
the trace of the torsion. Consider the functional

_Juls = 31T = 3lw*1dV
- (fy V) =D/n

F(g) ey

As we will see in Section 3 this is the unique functional yielding S, the traceless part of S,
as the traceless component of the second order terms in the associated Euler—Lagrange
equation. Moreover, the form of the Euler—Lagrange equation suggests a flow equation in
the same way that Ricci flow is suggested by the usual Hilbert functional. In particular
we define an evolution equation

0
58=—5+Q @)

where Q = Q(T) is a certain quadratic polynomial in the torsion 7" of V which is made
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precise in Section 3. We call equation Hermitian curvature flow (HCF). Of course
now it is known that Ricci flow is indeed the gradient flow of the lowest eigenvalue of
a certain Schrodinger operator, although a corresponding statement for HCF is not yet
known. It is also possible to write HCF in terms of Hodge-type operators. In particular, if
(t) denotes the Kéhler form of the time varying metric, then it satisfies the equation

%a) = —(a;aw — 00w — gaglog detg — 2\/—_1(5;‘;604540)) + 0,
where Q' is a distinct fixed quadratic expression in the torsion.

We observe that when a solution g(7) to HCF exists, the metric is Hermitian with
respect to the fixed complex structure J for all time. Secondly, we will show that when
the initial metric g(0) is Kihler, then the solution g(¢) is Kihlerian and consequently
the solution to HCF is given by Kéhler—Ricci flow. Thirdly, we prove that certain static
solutions are Kidhler—Einstein metrics. It will be a very interesting problem to classify all
static solutions. It is possible that most of them are Kéhler. Hence, in some sense, this
new flow evolves Hermitian metrics towards Kéhler metrics.

Next we will prove a local existence theorem for HCF and develop some regularity
properties for this flow. In particular we derive higher order derivative estimates in the
presence of a curvature bound. These results are summarized in the following theorem.

Theorem 1.1. Let (M?", gy, J) be a complex manifold with Hermitian metric go. There
exists a constant c(n) depending only on the dimension such that there exists a unique
solution g(t) to HCF for

c(n)
telo, 2 .
max{|2[co(gy)s IVT | c0(g0)s |T|C°(go)}

Moreover, there exist constants Cy, depending only on m such that the estimates

Cn max{2co(gy)- VT Ic0(gp) 1T gy}
tm/z

V" Qo [V Tlcogg) <

hold for all t in the above interval. Moreover, the solution exists on a maximal time
interval [0, t), and if Tt < oo then

lim sup max{|€2|cog,y, VT | cocg,ys [T1c0(g,)} = 00.
=T

Finally, if go is Kdhler, then g(t) is a solution to Kdhler—Ricci flow.

In some sense, the simplest possible behavior for this flow should occur near Kihler—
Einstein metrics, where we expect the flow to be not too much different from Kihler—
Ricci flow. In this direction, we prove a stability result for HCF around K&hler-Einstein
metrics with negative or zero first Chern class. Specifically, we show
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Theorem 1.2. Let (M?", g, J) be a complex manifold with Kéihler—Einstein metric g and
c1(M) < 0or ci(M) = 0. Then there exists € = €(g) so that if g is a Hermitian metric
on M compatible with J and |g—g|c~ < € then the solution to HCF with initial condition
g exists for all time and converges to a Kiihler—Einstein metric.

It is important to note here that these theorems apply to a wide class of equations. In
particular, consider

a

8= —S+0 3)

where Q is any (1, 1)-tensor which is a quadratic expression of the torsion. As mentioned
above, in this paper we isolate a specific choice of Q based on a certain unique functional
introduced in Section 3, but Theorems [I.1] and [I.2] apply to solutions of (3), where Q is
any quadratic expression in the torsion. Depending on the ultimate goal one has, different
choices of Q may be appropriate.

There are two natural directions which motivate defining this flow. First, given all of
the success of Ricci flow it is natural to study it on complex manifolds. However, it is
usually the case that the Ricci tensor of a Hermitian metric is not (1, 1), and thus the
Hermitian condition for the metric is not preserved. Thus the Ricci flow is not the best
tool for studying complex geometry which is not already Kihler. The tensor S is a natu-
ral (1, 1) curvature tensor associated to a Hermitian metric which differs from the Ricci
tensor by torsion terms, meaning that it equals the Ricci tensor in the Kéhler setting.
Moreover, the operator g — S(g) is strictly elliptic, giving HCF nice existence proper-
ties. Thus from this perspective HCF is the right analogue of Ricci flow for Hermitian
geometry.

The second motivation, and actually our original motivation for HCF, is that it serves
as a “holonomy flow”. If one looks on the level of the Kéhler form and asks for a parabolic
flow which preserves the Hermitian condition and is stationary on Kéhler manifolds, HCF
comes up quite naturally. There is the side effect that one ends up looking not just for
Kaihler metrics, but Kihler—Einstein metrics. Given the excellent existence properties of
the Kihler—Ricci flow, this is an acceptable price to pay. Indeed, other natural analytic
approaches to this question which strictly look for Kidhler metrics among Hermitian met-
rics (see for instance [19]) yield equations which are not elliptic. In [4] it is shown that
if the usual Ricci-type curvature of the Chern connection is a nonzero scalar multiple of
the metric, then the metric is automatically Kidhler—Einstein. However, this Ricci tensor is
not in general (1, 1), so from the perspective of Hermitian geometry, especially defining
a flow of Hermitian metrics, this condition is not natural.

Here is an outline of the rest of the paper. In Section 2 we define all of the relevant
objects and notation and provide various curvature formulas. In Section 3 we discuss the
Hermitian Hilbert functional. Section 4 gives the definition of HCF and provides various
equivalent formulations using Hodge-type operators and the Levi-Civita connection. In
Sections 5—7 we prove existence and regularity properties for HCF. In Section 8 we prove
the stability result for HCF around Kihler—Einstein metrics. We conclude in Section 9
with a discussion of some related questions. Section 10 is an appendix containing various
useful calculations related to Hermitian geometry.
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2. Differential operators on Hermitian manifolds

Let (M?", g, J) be a complex manifold with a Hermitian metric g. In particular J :
TM — T M is an integrable almost complex structure, i.e.

N;(X,Y)=[UX,JY]-JJX,Y]-JIX,JY]-[X,Y]=0
forall X,Y € T M,,. Furthermore
gu,v) =g(Ju, Jv).
This equation is written in complex coordinates as
8ij=87=0, &j7=8 =28

Recall the Chern connection V. In complex coordinates, the nonvanishing components of
the connection are given by

rjj =" oig;r

This connection is compatible with g, but has torsion 7. In particular in complex coordi-
nates we have

k Kl
T =g (dig;; — 9j8;7)-
Also, there is a natural trace of the torsion

w; =T}, 4)

As we will see in the next section, w is just a multiple of 9" w but this separate defini-
tion will be useful to us. We will also need certain quadratic expressions in the torsion.
Specifically let

1 _ kI _mn T
Qi?—g 8 Ttknlema

2 kI _mn
Q,j =g 8" Tiy T

T (5)
0} = ¢"¢"" Ty T;

jnm’
1 - -
4 _ kl _mn o _ _
Q5= 588 (T Tii + T T 7)-
Note that each Q' is a real symmetric (1, 1)-tensor. The covariant derivatives of torsion
also satisfy an identity.

Lemma 2.1. Given g a Hermitian metric,

Py Py P
ViTjg + Viliji + ViTyi = T T + Ty i + Ty T -
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Proof. We directly compute

_ . i PPT o _TPT -_TPT -
ViTjq + Viliji + ViTyis = 0 Tjq + 0Ty + 0 Tg — Uy Tpg = Tia Ty = Tia T
p p p
=TTt = UjaTpir = Uji Tt
_ Py 4 TP . TPT .
=TT + T Tipi + T Tpi- O

Next we collect some useful formulas for the Chern curvature. In particular, let 2 denote
the curvature of the Chern connection and let S be the trace, i.e.

Sotﬁ = (tl‘w Q)(XB = glLUQ/LVaﬁ'
Further, let
s = g“ESaE.
We will let P denote the trace of the transpose of €2, i.e.
Pocﬁ = gWQaﬁw-
In the Kéhler case S WB = PaB is the Ricci curvature and s = r is the scalar curvature.

Lemma 2.2. Given g a Hermitian metric we have

Sig=— glﬁgﬂ,lﬁ +g™g? quz,mgj@l-
Proof. First of all we have
Qi = = 8kpOm(7101817) = = & T+ 8" 8ok w8l
Thus
Si = 8" e = = " 8 m + 8" "8k w8l
as required. O

Lemma 2.3 (Bianchi Identity). For X, Y, Z € T,(M) we have

2{QX,VNZ)=32{T(T(X,Y),Z2)+ VxT(Y, Z)}
2{VxQY,2)+ QT (X,Y),2)} =0,

where X denotes the cyclic sum over the three vectors.

Lemma 2.4. Given g a Hermitian metric we have

kl
Pij — Sl; =g (VTTkif +V; Trjk)‘

Proof. We compute using the Bianchi identity and the symmetries of the torsion:
Qi = it + ViTur = Qi + ViTui = Qg + Vil + Vil

Taking the trace and relabeling indices gives the result. O
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Now we focus on Hodge operators associated to g. Let
wu,v) =—gu, Jv)
be the Kédhler form of g. In local complex coordinates we have

/1 , ‘
®= Tgijdz’ Ad7Z/.

Let A¥ = b pq=k AP4 denote the usual decomposition of complex differential k-forms
into forms of type (p, g). The exterior differential d decomposes into the operators 9

and 0,
d: AP — APTLA G AP AP

Also the operator d;, the L2 adjoint of d, decomposes into 82,‘ and 5;,
9t APTLE 5 AP G AP AP

Using these operators we can define the complex Laplacians

Oo =30+ 00; : AP — AP, T, =09,0 + 099, : AP? — AP,

It is well known that the operator « +— [, is a second order elliptic operator with
symbol that of the Laplacian in complex coordinates [12]]. Moreover, one has the formula

Agg =0+ Eg + lower order terms.

(6)

However, we will be interested in the action of these operators on w itself, so the terms
which are lower order in (6) become highest order terms in this context. In the lemmas

which follow we compute the action of these differential operators explicitly.

Lemma 2.5. Given g a Hermitian metric we have in complex coordinates

2
v —1
2

(@500 =

"1 (3587 — d&pa):

8" gz — 0;8p7)-

@ 0); =
Proof. We compute using integration by parts. Given « € A%! we have
(Vfw, a) = (0, d) = /M g"’gif(wj;@)dv
/1 - J—1 =
=0 [ @ av ==Y [ a@toav)
2 Ju ’ 2 Ju
=1

= 5 Ma_zd VI—g"dgmng" + g g’ d-g,7].

This gives the first formula, and the second follows analogously.

(N

®)
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Lemma 2.6. Given g a Hermitian metric we have in complex coordinates

1 - o
(aazw)jk = T[gpq (gpﬁqj - gquj) + gpqg”grﬁ,j(gpyj - gpﬁ’g)]' )

Proof. In general for @ € A%! we have (3a) T = djaz. Thus we compute using Lem-
ma 2.5

/—1 _
(0030); = =5 (8" (98, — d8s))
v —1 _ . B
= 18" g — 8pgxy) — 8" 8mn.i8" 8yt — 8pg0)]
The result follows. -

Lemma 2.7. Given g a Hermitian metric we have in complex coordinates

/—1 - o
@ 00)x = ——18"(8x jg — & pg) + 8"78" (857 = 8p7.9) &5, — &,.))
+8"8" 81558t — &%) T 8718 8,15 (87 — 87 0]
Proof. First of all we know that

V=1
() = T(gjﬁ,i ~ 8% ;)

Now, we use the general formula for d; and compute

9 1. N\ o
@200) 7 = — gme, (azfm + g‘o#g)@w)mpq
/1 9 . _
= - [gjpgkq aZTm[g”“g” "8 (gr5,i — &is.r)]
+ gmgpqua,m(gj;,n - gnk,j)}
/—1 _
- (876257 = 8.0
+ 8p8r, (&rsi — gis. g™ gumg 8" 8%
+ 88k, (8rs.i — 8is. )" 87 guvmg” 8]
+ 858k, (8rs.i — 8is. )" 87 ¢ quv.me™]
— 8" ¢" gpg (& ikn — 8uk})]
/1. _ o
= T[gpq(gpﬁjg - gjﬁ,pﬁ) +gPg" (gps.g — g]ﬁ,?)(gjﬁ’r - gr?,j)
+878" gjg5(8pr, — &) + 878 n (&g — &7, )))- o
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Lemma 2.8. Given g a Hermitian metric we have in complex coordinates

/1 _ /1 _ _

(Taa log detg) o —5 ("0 0807 — 8" 0; 878" S8 p)-
J

Proof. We compute directly in coordinates:

/—1 _ V=1 =
(Taalogdetg) = Taj(g”qé);gpg)

ik

vas)
2
Also in this section we introduce canonical coordinates for g. We know that if g is not
Kéhler then we cannot choose complex coordinates so that all the first derivatives of g
vanish. However, we can always ensure that a certain symmetric part of the first deriva-
tives vanishes. This is made clear in the lemma below.

(8770;0¢8p7 — 8" 9; 8758 dc8p7)- O

Lemma 2.9. Given a point p € M, there exist coordinates around p so that
87 = dij and 3,‘ng +0;g;z=0.

Proof. Let {z;} be arbitrary complex coordinate functions around p so that z'(p) = 0 for
all i. We briefly change our point of view and consider the Hermitian metric / associated
to g. The coordinate expression for 4 takes the form

h= hideide
where h;; = Ej ;. Without loss of generality by a rotation and rescaling we can assume
hij(p) = dij. (10)

Define new coordinates {w'} by the equation
w' =z + % LZ}((&%}ZU(P) + %hik(P))ZjZk
so that
dw' =d7' + % ;(%hu(m + %hik(p)>zjdzk.
Note also that still holds in these coordinates. In these new coordinates write
h = hijdw' dw’ .
It is clear that

~ 1 ad ad
hij = hij — 3 Z(a—zkhij(p) + ﬁhik(p)>zk + O(Z%).
Jok

The claim follows directly by differentiating. O
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3. The Hermitian Hilbert functional

Let (M 2”, g, J) be a complex manifold. Consider the functional

 Juls = 3IT1> = lwPlav

Lemma 3.1. Let g(a) be a one-parameter family of Hermitian metrics with variation h.
Then

i]F( ) = (/ dV>(l_n)/n/ <h —S+1Q1_1Q2_1Q3+Q4
da &= M M ’ 2 4 )

1 2 1 2
L2 n—1(f;s— 4TI —§|w|)dV)g>dV_
n

1
N
+(S O T,dv

Moreover, I is the unique second order functional which yields S as the leading order
term in the traceless part of the variational equation through Hermitian metrics.

Proof. Combining Lemmas[10.7H10.9| we see
a 1 1
[s — Z|T|2 — —|w|2:| dv

da Jy 2

_ _ l l_l 2_1 3 4 _l 2_1 2
_/M[<h S+50' - 40750 +Q>+(trh)<s ZITF = 5wl )]dV.

Likewise we compute

-/ /n
i(/ dV) = 1/ trth(/ dV) .
da \Ju n M M

Combining these two calculations gives the result. The uniqueness claim is also clear by

inspection of the variational formulas in Lemmas|10.7H10.9| O
Let
0=10'- 10"~ 103+ 0’ an
2 4 2

and let K := S — Q. Note that
1 1
ki=trg K =5 — —|T|* — = |w*.
4 2

We can rephrase the above situation in a very simple manner. In particular

F(g) :/ kdV
M
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and
n—1/[,kdv

n o f[,dv
which is exactly analogous to the form of the gradient of the normalized Hilbert func-
tional.

i]F(g(a)) = / <h —K + kg — g>dV, 12)
da M

Definition 3.2. Given (M?", g, J) a complex manifold we say that g is static if g is
critical for F.

Proposition 3.3. Ler (M?", g, J) be a complex manifold with g static. Then
1
K ——kg=0.
n

Also k is a constant function. Finally, if F(g) > 0 and [ uSdVe < 0then g is Kihler—
Einstein.

Proof. The first property follows immediately by letting » = K — (1/n)kg in (I2)). Next
let h = —(Apk)g where Ap means the Laplacian with respect to the Levi-Civita con-
nection. Plugging this into (12) yields

0= —/ (ADk)de=/ |dk|?.
M M

To see the last claim we simply note that together the hypotheses imply

1 1 1
_y—l/n, _ -1/ _ - 2 _ - 2 _ 2
0=F(g)=V"""k=v "(s nd 2|w|>§ TP

which implies 7 = 0. If the torsion of g vanishes, then g is Kdhler and moreover K is
given by the Ricci tensor of g, so g is Kihler—Einstein. O

To emphasize, S is in a sense the only natural curvature tensor associated to a Hermitian
metric which is a symmetric (1, 1)-tensor and which is a second order elliptic operator. In
seeking a functional which yields § as the leading term in the Euler-Lagrange equation,
IF above is the only choice. We note that the functional f S dVg was considered in [9)].
Indeed, for this functional one finds automatically that critical points are Kéhler—Einstein
if the value of the functional is nonzero. However, there the leading term in the Euler—
Lagrange equation is P, which is not an elliptic operator on Hermitian metrics. Finally,
we remark that [F is not the Hilbert functional restricted to Hermitian metrics. Indeed, a
straightforward calculation (see also [8, line (33)]) shows that if » denotes the usual scalar

curvature,
1 2
rdVy = s ——=|T|".
M M 4

Therefore we see that [F = f G %|w 1% d V, restricted to Hermitian metrics. This bears
a certain formal similarity to functionals related to renormalization group flows arising in
physical models [13], [[16], [17].
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4. Hermitian curvature flow

In this section we give the definition of Hermitian curvature flow in terms of the Chern
curvature. We then provide an equivalent definition using Hodge operators. In all the
calculations below, Q is defined by (T1).

Proposition 4.1. Let (M 2n g, J) be a Hermitian manifold and let

P(g) = (S — 0)(®).

Then @ is a map
®: RN Sym"! T*M — R Sym"! T*M

where N Syml’l T*M are the real symmetric (1, 1)-tensors. Moreover, ® is a nonlinear
second order elliptic operator.

Proof. 1t follows from Lemma that ®(g);; = —gklgijgkj + O(9g) and so d is a
nonlinear second order elliptic operator since g is positive definite. Also, by definition
each of the tensors Q' is a real symmetric (1, 1)-tensor and thus Q is. Lemmaimplies
that S is also a real symmetric (1, 1)-tensor. Therefore ®(g) is a real symmetric (1, 1)-
tensor. The result follows. O

Definition 4.2. Given (M g go) a complex manifold with Hermitian metric go. We
say that a one-parameter family of Hermitian metrics g(¢) is a solution to Hermitian
curvature flow (HCF) with initial condition g if

%g(t) = —S(g®) + Q(g()),
8(0) = go.
Next we compute a formula for HCF using Hodge operators. Define
E=5CJ).

We will write E(g) using Hodge differentials. Let

VAl - _ _
Y (w) := 8;8a) - 8850) - Taa logdetg — 2\/—1(8Zw4 ow). (13)

We choose to isolate this term because, as we will see in the calculations below, it is a
real (1, 1)-form.

Proposition 4.3. Given g a Hermitian metric, we have

—1 1
E(g) = V(w) - g(zg;‘k + Eij).
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Proof. Choose coordinates according to Lemma[2.9]so that at a fixed point p € M,
%8k = —0j8i%-

Using this we find that at the point p,

1
Tk = 5(31'8]; — 9i8;p) = dig;x-

N =

Next we compute a formula for W in coordinates. In particular we compute a formula for
00 logdet g:

-1 _ J=1 J=T1 o _ _
5 (@9logdetg);z = ——08; (8" dggpg) = —5— (879 0g8p7 — 8" 98758 I8pg)

=1 _ | Qe
=5 <g”‘1gpq,,-— 18718 ST;,qusp).

Next we compute using Lemma 2.5}

—2«/—1(5;604560) = — 2\/—1gp§(§;w)p(5w)qj; =Y gpqgrET,pgTq;j.

We now combine these calculations with Lemmas [2.6|and [2.7]to get

=1 _ | [
‘I/(Cl))]} = T _gpqgjppﬁ + Egpqg” ZTﬁ[’TrjE + ZTP”aTEEj

1
+ TqjTpr + Tsgp Irjg — TirgTisp + §TjqukspH
/1 _ 1 - - 1
=5 [_gpqgjk,pq + 587" [2qup Ljx + 2Tprg Tz + Tsg T + ETjquksPi|:|.

Likewise we have, from Lemma[2.2]

~ =1 - | IR
E@jr="—"75" [—gpqgjk,pq‘l' ngqg”ijsqu,}-
The result follows by combining these calculations. O

Corollary 4.4. The HCF equation is equivalent to

9 VAS 8 SN P R 4
&w——\ll(a))—i—T(EQ +ZQ _EQ +30 )

Proof. This follows immediately from the definition of HCF and Proposition 3] O
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5. Short-time existence

Proposition 5.1. Given (M?", J, go) a compact complex manifold, there exists a unique
solution to HCF with initial condition gy on [0, €) for some € > 0.

Proof. Since the operator ®(g) is strictly elliptic by Proposition the HCF equation
is strictly parabolic, and thus short-time existence and uniqueness follow from standard
theory. O

Proposition 5.2. Given (M*", J, go) a compact complex manifold with Kéiihler metric go,
let g(s) denote the solution to HCF with initial condition gy, which exists on [0, T). Then
forallt € [0, T), g(t) is Kdhler, and is a solution to Kihler—Ricci flow.

Proof. Let g(t) be the solution to Kihler—Ricci flow with initial condition go. Ricci flow
preserves the Kihler condition, thus g(¢) is Kihler for all time, hence T = d@ = 0 and
Q = 0. It follows that Rc = § = S — Q and so

0~
azg
Thus g(z) is a solution to HCF with initial condition gg. Since solutions to HCF are

unique, it follows that g(r) = g(¢) for all time and hence g(z) is Kéhler for all time and
solves Kahler—Ricci flow. O

(t)=-Rc=-S+ 0.

6. Evolution equations

Lemma 6.1. For a solution to HCF we have

9 e p
37 i = AR + 8" (T Qg + Ty Vi)
mi (P - a _ p _ P .
+ 8" Qs Qg + 2 Qg + Q5 Qi + Q5 Qi)

= Q5 (8,1 = Q) = V5Vi Qg

Proof. First consider the term Q in the evolution of g. Using Lemma [10.2] we see that
this contributes

ipk inp

m
259 — ViViQu
to the evolution of Qﬁk;. Next we consider the contribution of the term —S in the evolu-
tion of g. Using Lemma we see that the evolution % g = — S yields

0
—Q

o=
or Lkl T Qiij

ml

—+ va,- Sk?‘
Now we must apply the second Bianchi identity. We have
V5(ViSi) = V58" (Vi) = V58" (Vi g + T i)
n p p
= 8" (V5 Vi + V5T Qg + T V72 00)-

Jjmi
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Next we commute covariant derivatives to get

mnv Vi ankl - gmn(v Vi kal + Q Qpnkl + Qmanzpkl

p
+ Qm;inﬁpi + Qmﬁglﬁkﬁ)

Finally, we apply the Bianchi identity again to get
"V V5 T = 8 mﬁvm(vﬁgim + Tigiﬁki)

7
AQ”M + gm"(V T szkl + Tﬂvmgiw).

Combining these calculations yields

;t Q7 = AL + & (Vi T Qi + T =V Qi + VT i + T V52 )
+ g’""(sz" il + sz o i T QP o Simpl T Q 7 nkp) = U Syr-
Now we can apply the Bianchi identity to the terms
Qzﬁ = Qinj LV T and Q- =@l +V;T).
Plugging these two in yields
aat Qi = AR5 + gmn(Tp Vin Qi + T V7 2mi)
+ g""’(sz” ikl sz” 7 T szfﬁkszmpl + Q Sknkp) — ,,ksz
Combining this with the above terms gives the result. O

Lemma 6.2. For a solution to HCF we have

aT——AT— m”TpVT ViT T”VT
5 Lk = Alijg T 8 [ vk + VT Tor + ipk
+Vsz ]pk+T VTka]
p p P
+gmn[Qn]mTtpk+Q Timp Qmmij;_kaT P

p p
= Qi L1 = T (S,x — Q) +ViQiz — Vi Qi
Proof. First we compute the contribution from the term Q in the evolution of g. In par-
ticular using Lemma[T0.4] this yields

ViQir =V 0z + T 0,z
Next we focus on the term —S. Applying Lemma[I0.4] we obtain

VjStk Vi S/k z] Spk
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Now using the Bianchi identity we rewrite

V/ Si% = gmﬁvj Qmﬁi% mnv (Qtnmk + VﬁTimE)’
Vi sz = g”’"Vi(Qﬁm; + VﬁijE)‘
Combining these yields
ETijE = mn(v Qmmk Vi€2 ‘iamk + V VT, imk —ViVi ka) l/ Spk

Applying the Bianchi identity again yields

mn (ViQizmr — Vi QjﬁmE) = _gmnTprnmk

Also, we commute derivatives:

p
VjV"Ttmk = Vi vJ Tlmk + QF pmk + Qn]m ipk + Q lmp’

nji
7
ViV ka_vv mk+QmJ pmk+Qmm ]pk—i_Q ij
Finally, using Lemma 2.1 we see

8"V (V; o) = 8" Vi (Vi T+ 10T, + T,

p
zpk + T’ ijE)
— _ p _ [7
- ATijk + gmnv (Tl mpk + ijTipk + Tlm /pk)

tmk jmk

Combining these calculations yields

0
ETUE = A’Tijﬁdl_gmnv (Tl mpk +T, m] lPk +T, im ]Pk)
+gml’l[Qr1:/l pmk +Qr’i/mTlpk +Q lmp
p p p p
- Qm/ pmk Qmm jpk Q ]mp pnmEsz] l] pk
Using the Bianchi identity we can simplify
p p p
mn[Qn/z pmk an] pmk] = mn[Qn/z + an]]Tme = gmnv Tl Tpmk
Plugging this in yields
d
o Tie = ATz + & VaT, ¢ + VaTp Top + T VaT, x

P
+V Ttm ]pk+T V Tpk]

p P 4
+ gm"[Qn]mszE + QﬁjET"mP QmmTJPk Q T/ml’ QP"’”"T 1
p
Tl/ Spk

Combining this with the terms from Q gives the result. O
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7. Higher derivative estimates

In this section we will prove derivative estimates for HCF. It will be most convenient to
phrase these results in terms of the curvature of the Chern connection. All of the calcula-
tions below will be done in canonical coordinates at a fixed point. In particular, in these
coordinates any first derivative of g can be expressed in terms of the torsion 7', and any
second derivative can be expressed in terms of a sum of curvature and torsion.

Lemma 7.1. Given (M*", g(t), J) a solution to HCF we have

9k k : j k41— a j k—j
EVQ:AVQjLZVT*V -Q+ZV-Q*V iQ
Jj=0 j=0
k ) ) k+2 ) )
+ ZV’T*V/’IT*Vk’/Q—i—ZV/T*VHZ’JT.
j=0 =0 Jj=0

Proof. The case k = 0 is covered by Lemma [6.1] We directly compute
0 d
EV Q= E(8+F)*(8+F)*~-~*(8+F)Q

=v"(39)+(ir)*(8+l")*-~-*(8+l“)9

at at
+(a+r)*<%F>*---*(a+r)9+~--
+(8+F)*~~*(8+F)*<%F>Qo

We apply Lemma to see that

9
—I=V(Q+T?)=VQ+TxVT.

at
Plugging this in yields
)
Ev"sz =VKAQ+T*VQ+ Q2 +QxT*?+V2Q)
k—1 ] )
+Y VI(VQ+ T« VT) % VF17iQ
j=0

k k
= AVFQ+ Y VIT« VIHITiQ 4+ Y viQs viig

j=0 j=0
kK J ) ) k+2 _
+ ZVIT*VJ’IT*Vk’fQ—i—ZVJT*Vk”’JT. o
j=01=0 j=0
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Lemma 7.2. Given (M?", g(), J) a solution to HCF we have

9 k+1
—va AV"T+ VIT 5 V1= /T—i— V/T*Vk iQ

k J
+ Zv’T*vJ—”lT*vk—l—/T.
Jj =0

|
—

I
o

Proof. The case k = 0 is covered by Lemma|[6.2] We directly compute

o i 0
— VT =—@+D)*---x@+D)T
ot at

o[ 9
=V gT + EF *@+D)*---x@+D)T

+(8+F)>x<<%F>*---*(8+I’)T+~-~

+(8+F)*~--*(8+F)*<%F>T~

Again we apply Lemma [T0.]to obtain

k—1
=VEAT + VT + T+ QxT)+ ) V/(VQ+ T« V)« VITIT

j:O
k+1
_AVkT+ZVfT*Vk+1 fT+ZV/T*Vk iQ
j=0 j=0
k=1 j
+) D VIT VIt s VAT O

I}
o

j=01=0

Theorem 7.3. Let (M*", g(t), J) be a solution to HCF for which the maximum principle
holds. Then for each « > 0 and every m € N there exists a constant Cy, depending only
on m, n and max{c«, 1} such that if

Qlcog,) < K. IVTlco) <K, [TIgoq, <K (14)

(&)

forallx e M andt € [0, o/K], then

CnK

CnK +1
|Vm9|co(gr) = mj2 V" Tleogy = (m/2 (15)

forallx e Mandt € (0,a/K].



618 Jeffrey Streets, Gang Tian

Proof. Our proof is by induction on m. First consider m = 1. The following evolution
equation for |Q|? follows from Lemma

9
§|sz|2 =AIQP =2IVQP + T xVQx Q+ Q3 + T2 % Q*
+ VT« VT «Q+T %« VT % Q
1
5A|Q|2—|VQ|2+§|VZT|2+CK3. (16)

In the last line we applied the assumed bound on curvature in the time interval [0, o/ K],
and in what follows below C will denote a generic constant depending only on the di-
mension. Also Lemma([7.T]implies

3
§|VQ|2 = AIVQP = 2IV2QP + T« V2Q % VQ

+Qx V2 4+ VT x VQ'2 + T*2 % VQ*?
+T*VT * Qs VQ+T x V3T %« VQ+ V2T x VT % VQ

< AIVQ]? — |V2Q)? + %|V3T|2 + CK(VQP?+ V2T +CK*. (7)
Also from Lemmal[7.2] we conclude
%WTF = A|IVT|>? =2IV2T>+ T« V>T x VT + VT*
+ T« VQ#« VT + VT %« Q+ T*2 %« VT*
< AIVT|? - |V2T|2+%|VQ|2+CK3 (18)
and
%|V2T|2 = AV T)? = 2IV3TP? + T« VT « V2T + VT « V2T %« V’T

+ T %« V?Qx V2T + VT %« VQ % VT + VT % Q
+ T« VT*? %« V2T 4+ T*2 % V2T*?
1
< AIV2T)? — |V3T% + §|v2s2|2 + CK(IVQ> + |V2T>) + CK*. (19)
Consider the function
F(x, 1) :=1(VQP* +|VT]») + BUQP + VT
where f is a constant to be chosen below. Putting together (I6)—(I9) and using 7 €
[0, ¢/K] gives

%F < AF — %(IVZQIZ +|V3T|H) + (tCK — B/2)(IVQI* + |[VT|?)
+ CK*+ BK?)
< AF 4 (Ca — B/2)(IVQ)? + |V>T)?) + CK3(a + B). (20)
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Choosing  large with respect to dimensional constants and max{c, 1} yields
O p < CBK?
a '

Using that F(0) < BK? and applying the maximum principle gives

sup F(x,1) < BK> + CBK>t < (1 + Ca)BK* < C7K?
xeM

where again Cy depends only on n and max{c, 1}. Thus

|[F _CiK
2 —_— —
IVQRI+IVTI =\ + = 17

forallx € M and r € (0, o/ K]. This completes the case m = 1.
For the induction step we first deduce from Lemma [7.T]the evolution equation

3 ko .
EIV"SZIZ = AIVEQP —2]VMHIQP2 + Y VIT « VI Qx viQ

j=0
k ko
+Y VIQxVEIQu VEQ 4+ Y N VIT« VITIT x VT Qe VEQ
j=0 j=0 1=0
k+2
—i—ZV/T * VET22I T 5 VK Q.
j=0

We address the first sum in the above equation. We first make the bound

1
T« VEIQ « vEQ < €T IVFHIQ| VEQ| < z|V’<+1sz|2 + CIT 2 |V*Q)?

IA

%wk“mz + CK|VFQ)2. 21
Also we have

VT « VEQ % VEQ < C|VT| |IVFQ)? < CK|V*Q)%. (22)
For the rest of the summand we bound, for j > 0,

VIT « VFH=IQ « vEQ < VI T| |[VFTI-TQ| [V Q|

<c_X K \vka| < ckvtap CK3 23
= Clgmn7 arimpp |V S = CRIVEQIT + € (23)
A similar calculation yields a bound
VIQx VEIQx VEQ < C|VIQ| IV Q| IVEQ)
<X _X gk < ckiviep CK3 24
= mm| | = | I~ + e (24)
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Next we bound using the inequality K < C/t:

VIT « VIIT « VFIQ e vEQ < C|VIT| |V I T |V Q) IVE Q)
K K K

k
= C;(l—l)/2 tG=1=1)/2 ¢(k—j)/2 IV e
) G K?
< Ct(k_—z)/zw Q| < Ct(k_—l)/zw Q|
K3
§CK|VkQ|2+Ct—k. (25)
Finally we bound the last summand. First, for j = 0 we have
1
T % VF2T « VFQ < §|V"+2T|2+CK|V"Q|2. (26)
For the general term, estimates as above yield
4 . K?
VIT « VF2IT « VEQ < CK<|V"Q|2+ |Vk+]T|2+t—k>. 27)

Using (ZT)-(27) we conclude

9 1
K2
+ CK<|V’<Q|2 + | VEHIT)2 4 z_k>

Furthermore, using completely analogous bounds one can conclude

d 1

K2
+ CK(|vksz|2 + VT2 4 t_k>'

Together these yield, if we set Hy = |V¥Q|?> + |[VAHIT |2,

8H < AH 1H + CKH, +K3
o e = AHk = S Hyy v

This bound is sufficient to carry out the inductive step analogously to the step k = 1. The
details of this construction are found in [6, pp. 229-230]. O

Corollary 7.4. There exists a constant ¢ = c(n) such that given (M, g, J) a complex
manifold with Hermitian metric g, the solution to HCF with initial condition g exists
fort € [0, c(n)/max{|Q|co, [VT|co, |T|2CO}]. Moreover the solution exists on a maximal
time interval [0, T), and if T < 0o then

lim sup max{|€2|co(g,), IVT |co(g,), |T|?3°(g;)} = 00.

=1
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Proof. This argument is standard. Using the evolution equations for 7, VT and Q it
is easy to prove a “doubling-time” estimate for these quantities on the interval stated
using the maximum principle. Once this is in place, the derivative estimates follow from
Theorem(7.3] These yield bounds on the curvature and torsion and all covariant derivatives
on the stated interval, which can be integrated in time to show smooth existence of the
flow on that interval.

Finally, if one knows that the curvature, torsion and first covariant derivative of torsion
are bounded up to a time T < 0o, one deduces from Theoremuniform bounds on the
derivatives of curvature and torsion on [0, t]. These bounds can be integrated in time to
get C¥ bounds on the metric on this whole time interval, yielding smooth existence up to
this time. O

Note now that Theorem [I.1]is a consequence of Proposition[5.1} Theorem [7.3]and Corol-
lary

8. Stability

In this section we prove dynamic stability of HCF near a Kdhler—Einstein metric with
negative or zero first Chern class. By examining the linearized deformation equation we
know that Kéhler—Einstein metrics are rigid in case ¢ (M) < 0. In the case ¢ (M) = 0,
there can be nontrivial deformation of Kéhler—FEinstein metrics due to variation of Kéhler
class. There is a general technique for dealing with stability of evolution equations around
integrable stationary points [5]], [14]], [15]. Given the discussion above, our problem falls
squarely into the realm of these techniques, and so we adopt them. We note that since
the c1 (M) < 0 case is rigid, there may be an easier proof for this case, but in the inter-
est of covering the most cases possible with a single proof we choose the more general
technique.
Consider the volume-normalized HCF equation

ig:—S+Q+l(f trg (S — Q)dV>g =:—F(g).
ot n\Jm

We compute the linearization of F at a Kdhler—Einstein metric. Since the tensor F(g) is
only defined for Hermitian metrics we obviously compute the variation of F(g) through
a family of Hermitian metrics.

Proposition 8.1. Let (M?", J) be a complex manifold and suppose g(a) is a one-param-
eter family of unit volume Hermitian metrics compatible with J with

! (a) h
—gl(a =h.
da § a=0
Moreover suppose g(0) is Kdhler—Einstein. Then
a N o
—F(g) = V*Vh — R(h)
da

where é(h)kj = h’iRkjﬁ.
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Proof. Choose complex coordinates which are normal for g(0) at a point p € M. First
we note that

iT(a) * T(a)
da

— hxT(0) % T(0) + (iT(a)> *T(0)=0
a=0 da

since the metric g(0) is Kéhler and hence torsion-free. Now using Lemma[2.2]

d 0 o _
—3S = — —0; Oz, —+0 ad
2a k| _, = da (8(a)™ (=090mg(a); + 0g(a) * 9g(a))) i,
= —h'" Rigix — gy Omh -
Now —h’jRﬁk; = —I%(h)ki from the Bianchi identity using that the metric g(0) is

Kihler—Einstein. Next, we compute an expression for V*Vh using complex coordinates:
Im Im 7
(V*Vh)jz =—g mleﬁhjE = —g m(alf}mhliz — a[l—‘m;hjﬁ)

_ _ _ 1
1) 1
=—g malamhjz — R%nhjm = —8 malamhj% — ;Shj;

where R = § is the Ricci tensor of the Kihler metric g(0) and s = r = trg S is the scalar
curvature. Next we compute using Lemma|10.7

0
—(/ trngV>
da M

where the last equality follows since tr S is the scalar curvature which is constant and
[y trg hdV = 0 since the volume is fixed through g(s). Thus

a1 1 1
——</ trngV>g :—(/ trngV)h:—sh.
dan\Jy a=0 N \Jm n

Putting together these calculations yields the result. O

1
<1 — —) trg Strg hdV
M n

=/ ((h,—S)—i—trghtrgS)dV:/
a=0 M
=0

Definition 8.2. Let L = L(go) = Dg,F be the linearization of F at a static metric go.
We say that gg is linearly stable if L > 0.

Definition 8.3. A static metric go is integrable if for any solution i of the linearized
equation
Dgy(F(8))(h) =0

there exists a path g(s), s € (—e, €), of static metrics where g(0) = go and

d
R =h.
P Szog(S)

In particular this implies that the set of Hermitian metrics g satisfying F(g) = 0 has a
smooth manifold structure near gg.
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We note that by the analysis of Koiso’s Theorem it follows that Kdhler—Einstein met-
rics with ¢1(M) < 0 or ¢1 (M) = 0 are integrable. Indeed, any solution to the linearized
deformation equation arises as the variation along a path of Kéhler—Einstein metrics,
which are static. This can be seen as follows: If ¢; (M) < 0, Kidhler-Einstein metrics are
linearly stable. If ¢; (M) = 0, any infinitesimal deformation of Kéhler—Einstein metrics is
given by Hermitian symmetric deformation of Einstein metrics which in turn correspond
to (1, 1)-forms; moreover, the eigenvalues L are the eigenvalues of the operator

1
Ve Aay — sy

acting on (1, 1)-forms ¥ ([2, p. 362]). If s = 0, nonnegativity follows easily and the ker-
nel of L consists of harmonic (1, 1)-forms which are simply variations of Kdhler—Einstein
metrics with vanishing scalar curvature due to the Calabi—Yau theorem. So Kihler—Ein-
stein metrics are integrable in the case c¢; (M) = 0. We now proceed with the proof of
Theorem T2

Proof of Theorem[I.2] Let (M, go. J) be a Kéhler-Einstein manifold. Fix ~ a symmetric
two-tensor of type (1, 1) such that |h|ce < € < € where € and € are small positive
constants to be chosen later. We want to show that the solution to the equation

ot
g0) =go+h,

) 1

exists for all time and converges for €’ chosen small enough. Let h(t) = g(¢) — go. First
consider

a 1
—h=—S+0Q+ ;(/Mtrg(S— Q)dv>g
= —DFyy(h) + A(g0, h) = —L(h) + A(go. h) (29)

where A represents the higher order terms in the approximation of F by DSy, (). Specif-
ically we have the bounds

|A(g0. Wk < C(Ihlck VAl k-2 + VA Giy) (30)

where the constant C depends on bounds on the geometry of g(¢), which we are assuming
is staying bounded along the flow anyway since |g(#) — golcxk < €. So, fix T > O and a
small € > 0. We would like to show that for €’ small enough as above our solution exists
on [0, T) and |A(?)|cx < € on this interval. We start with an L? growth estimate.

Lemma 8.4. There exists a uniform (independent of €, €', T) constant C such that if
|hlck < € forallt € [0, T), we have

/M |h(@)]* dVy, < eC“/M |hol* dVy,.
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Proof. Multiplying the final equation in by h and integrating over M gives

9
a_/ |h(1)[> dVy, 5/ (A% h)dVy,
tJIm M

since L is negative semidefinite. By straightforward bounds using integration by parts and
the assumed C* bound on / we are able to get the bound

'/ (A% h)dVy, ch/ |h|? dVy,
M M

where C depends only on gg. The result follows immediately. O

Lemma 8.5. There exists € = €' (T, n) < € such that if |hg|ce < €', then the solution
h(t) exists on [0, T) with |h(t)|cx < € forallt € [0,T).

Proof. We use standard parabolic regularity theory. First we rewrite the evolution equa-
tion for & as

9
o= A+ Rm(h) + A(go. h). 31)

Fix a time T < T. We will first get an estimate for [y [,, |Vh|>dVy, dt. Take the inner
product of (3T) with & and integrate over M to get

2(%] h)? = — /|Vh|2 /Rm*h*2 /Vzh*h*2+h*Vh*2
/|Vh| +9/ Vi +c<e>/ hP?

—-f |Vh|2+C(9)/ |h|?. (32)
Y M

Using this bound and integrating over time we conclude that

/ / |Vh|2<—/ |h0|2+C(9)TSUP/ Ih(1)|°.
[0,7) /M

Using Lemmawe see that fo / u VR | can be made very small, in particular bounded
uniformly in terms of €. We now show how to get estimates on fOT / M [VER|? for all
k > 0 in terms of the small constant ¢’. Consider

/ |Vh|? = / (V(Ah 4+ Rm(h) + A(go, h)), Vh)
28[ M

| /\

IA

+/ V2h % Vh % Vh + h % Vh*?
M

—/ |V2h|2+Cf |Rm| |Vh|?
M M

+9/ |V2h|2+C(9)/ |Vh|4+Ce/f |Vh|?
M M M

1
—-/ |V2h|2+C/ |Vh|?.
2 Ju M

IA

IA
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This implies the bound

1 [° 1 T
—f / |v2h|25—/ IVh0|2+C/ f VAP < Cé'.
2J)o Jm 2 /u o Jm

Continuing in this fashion we can induct to get a bound of the above form for all covariant
derivatives of h. Note that for instance we can now bound

2 T T
§C</ f |v2h|2+/ / |h|2)sca.
0 M 0 M

It is clear that we can in fact get bounds of the form

NG

for all p, g > 0. One can now apply the Sobolev inequality (with respect to gg) to deduce
C* bounds on & in terms of €’. These bounds will hold over any time interval where the
L? norm of 4 is still small. Since this time can be made arbitrarily large with small choice
of € by Lemma the result follows. O

—th < C¢’

atp

We now improve these estimates to include L? decay of 4, which will ultimately yield the
stated long-time existence and convergence. Say 7' is a maximal time such that |k, < €
on [0, T'). Divide the interval [0, T') into intervals of length t and let N be the integer
suchthat Nt < T < (N+1)t.LetI; = [jt, (j+1)7]. On M; := M x I; define a norm

(J+Dr
11wy == / £ 02 (33)
J

iT

which defines an inner product in the usual way. Let 7w/ denote the orthogonal projection
onto ker(d/dt + L) with respect to || f ||y, . Since L is positive semidefinite we see that
7 has no positive eigenvalues, but there is st111 the llngenng question of zero eigenvalues.

This is where the integrability property comes in. Let 710 (h) denote the radial component,
i.e. the kernel of L. We will show using integrability that there exists a stationary solution

gj on M; such that 7{(')" (g(t) — gj) is very small compared to g(¢) — g;. This will allow us
to deduce the L? decay of / and then to conclude convergence.

Lemma 8.6. Given o > 0 there exists § = §(n, ©) such that if supy, o1 1h()|cx <8
then there exists a Kihler—Einstein metric g such that

7l (g — gDl < a(t — 0)lg — g1l (34)

and

lg1 — golcx < Csuplg — golck- (35)
1
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Proof. Recall from the discussion above that the set of metrics g near g¢ satisfying
F(g) = 0, call it U, has a natural smooth manifold structure. The tangent space to U/
is given by the kernel of L, call it KC, which is finite-dimensional since L is elliptic. Let
{B;} be a basis for K orthonormal with respect to the L? norm induced by go. Also using
ellipticity, we get a system of eigenvectors {E; } for L orthonormal with respect to the L?
inner product above. We see that there exist constants r), such that C; = r E 5eM is a basis
for ker(d/0¢ + L) which is orthonormal with respect to the inner product corresponding
to (33).

Define the map W : &/ — K by W(g) = > ;(g, Bi) > B;. A simple calculation using
the bases described above shows that for g1 € U, W(g1) = \IJ(Jrf(g])) = T[é (g1). Also
it is easy to see that the differential of W at g¢ is the identity map, so we can apply the
inverse function theorem. Fix the time 79 € I;. If [g(¢) — golx is small enough, then in

particular n({ (g(r0) — go) = JT({ (g(10)) can be made small, so that by the argument above
there exists g1 € U such that _

W(g1) = 1y (g(10)).
Thus in particular using the above equalities we have n({ (g1 — g(r0)) = 0. Using the
evolution equations satisfied by g and g it is clear that one has estimate (34). Also note

that g1 = ‘-IJ_l((nfg)o) and go = y-l ((n/go)o), thus using our bound from the inverse
function theorem we get

g1 — gollag; < Clim’ (g = go)llw;
and again using that these are all solutions of the same parabolic equation, we can get the
bound
181 — golck = Csup g — golck- o
Ij
Lemma 8.7. Let I = [, 9 + 7] and take g1 as in Lemma Then there exists € > 0
depending only on go such that if |h1(0)|cx < € where hy = g — g then

sup / lg—g1l7dVg, <e” ™2 sup / g —gilPdVy,  (36)
[to+7/2, 10+l /M [t0,T0+7/2] /M
where .. = min{X; : A; is an eigenvalue of L, L; # 0} > 0.

Proof. Let hi(t) = g(t) — g1. If |h1(0)|cx < €, a calculation like that in Lemma [8.4]
combined with the bound on 7o (% (t)) shows that

d
il hal?
dt/Ml 1

/(2Lh1,h1)dvg0+/ A(hl,go)*hldvgo
M M

IA

—2x/ Iy — 7] (h) > d Vg, +Ce/ |h1|? dVy,
M M

3
(——A+C6>/ |h1|2§—xf 2
2 M M

aslongase < A/C. Thus [, [ (t)|*dVy, < e~ [\ |h1(1)> dVy,, from which the
claim follows immediately. O

IA
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We will need one more lemma, which roughly says that if a solution to (28) is decaying
at a certain rate at a particular time then it decayed at that rate earlier in time. This lemma
is inspired by Lemma 5.31 in [5], and the proof is the same.

Lemma 8.8. There exists a constant v(n, t) > 0 with the following property. Let h be a
symmetric two-tensor satisfying the equation

d
—h=—Lh+ A(go, h),
o + A(go, )

and
sup |halck < v and |mo(h)| < a(t — 10)|h|
[70,70+7]
where 1 is the projection onto the kernel of 9/0t 4+ L restricted to the interval
[to — /2, 10 + ). Then if

sup /|h|2dVg0§e_”‘/2 sup f|h|2dVg0 (37)
[to+7/2,70+T] I M [t0,T0+7/2] /M
then
sup /|h|2dvgoge—“/2 sup /|h|2dVg0. (38)
[T0,T0+7/21 /M [to—7/2, 701 /M

Proof. Firstnote that the analogous claim where £ satisfies the linear equation (d/dt+L)h
=0 and (k) = 0 is obvious since L is positive semidefinite and by definition 7 (h)o=0.
In fact there is decay at the rate A as opposed to the A/2 in the statement above. So,
if the claim were false, then for a sequence v; — 0 we would have h; satisfying the
hypothesis but not the conclusion with the bound |%; |-« < v;. By standard compactness
arguments we can parabolically rescale /; and extract a subsequence converging to /o,
which satisfies the initial decay hypothesis but not the conclusion. Moreover, given that
A is quadratic in A, it is clear that this h, satisfies the linear equation (9/dt + L)h = 0
and mo(h) = 0, contradicting the above. ]

We now proceed with the main proof. Suppose the maximal existence time satisfies
T < oo, and subdivide [0, T'] into N intervals of length 7 labeled I; as above. For

fixed j, let g; be the metric such that n({ (g(t) — gj) = O on I; given by Lemma
Define hj := g(t) — g;. By Lemma and parabolic regularity we have

sup lhjl < Ce™™/%  sup |k (39)
[(+1/2)7,(j+1D)7] Lit,(j+1/2)7]

We can apply Lemma[8.8]inductively to deduce

sup  |hj] <eMU=D gyp |hj].
Liz,G+Dr] [0,7/2]

This allows us to conclude that on /; we have
8 —_—
2% =

a( i)
9t 8 8

< Csup|hj|cx < Cee U0 = ——
I p’
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Now note that simply integrating over time we see that

sup |g — gol <2t sup
I LI

9

— 2| 4+ su — .

a:g‘ pf'g gol
J

Applying this estimate inductively we find that

suplg 2ol <2TZ sup
k= llkU Uly

o0

9
— S
atg‘Jr up |g — 8ol

(40)

— Iy

Now we want to choose our constants €, ¢’ and 7 to derive a contradiction from this
inequality. So, choose t initially so large that

1 2Ct 1
+ < _e—rk/4
c(n)e™ = e™ —1

where c(n) is a fixed large constant and C is a constant depending only on gg.

Now let € = min{d(n, t), v(n, 7), A/Co} where §(n, 7) is as in Lemma v(n, 1)is
as in Lemma|8.8] and Cj is a constant depending only on go and the dimension which we
now make explicit. By Lemma we can bound the growth of L? derivatives of 4, and
then by Sobolev embeddings we can bound C* norms. Specifically there exists a constant
depending only on gg such that

|hlcs < CeC€T|h(0)] 0.

(41)

Then let Cy := 12C. Note that if ¢ < A/Cp and we start our flow with some A (fg) satis-
fying |h(t0)|cs < (e/C)e’”‘/“, the solution exists at least on [#g, fo + 37) and moreover
SUP[y 1437) 1R ()|t < €.

Now again using Lemmawe see that we may choose €’ so that the solution exists
on [0, 37] and further

sup [h(@®)|cr < £

[0,37] c(n)
Since € < min{8(n, t), v(n, 1)} we can apply [@0) to get

1 2Ct €
su - <e€ < —e M4,
Plg — g0l = (c(n)e” + e — 1> =c

In

Thus the solution to HCF with initial metric g(7" — 7) exists on an interval of length 37
with |h]-2 < €, contradicting the maximality of 7. Thus the solution exists for all time
and |g(f) — golcx < € for all time. Indeed we have decay

|g(t) — gj| < Ce™

forall ¢ € [0, jt) and for all j. Since {g;} is a sequence of Kihler-Einstein metrics with
uniform C* bounds, we get a subsequence g/ — 8o convergent to a critical metric, with
exponential convergence g(t) = goo- O



Hermitian curvature flow 629

9. Further questions

It bears mentioning again that Theorems [I.1] and [I.2] are both true for solutions to (3]
where Q can be any quadratic expression in the torsion. It remains to be discovered which
choices of Q lead to flows with favorable existence properties. Ideally one would like to
find choices of Q for which either integrability conditions for w are preserved, or certain
curvature conditions are preserved.

The HCEF is similar in some regards to certain renormalization group flows arising in
physics where external fields, say Yang—Mills or B-fields, are added to the pure gravity
theory and then arise in the flow equations (see for instance [[13], [L6], [17]). In these
flows the torsion is given as an external field, whereas in HCF everything is defined in
terms of the metric. A similar case is studied in [3], [10] where a “holonomy flow” is
proposed for closed G, structures. Here one evolves the definite three-form o defining the
G structure by the Hodge Laplacian of o taken with the metric induced by o. This is a
quasilinear equation which bears a certain resemblance to HCF in that it can be written as
“Ricci flow plus torsion”, where the torsion is defined in terms of the underlying metric.
The techniques of our stability theorem likely apply to show stability of this flow near
G»>-holonomy spaces with negative semidefinite Lichnerowicz operator.

Finally, Hermitian curvature flow may provide a framework for addressing questions
on the existence of integrable complex structures. In particular, if one had a complete
description of the behavior of this flow for certain geometric conditions and a complete
understanding of the limiting objects, one could then describe the manifolds admitting
integrable complex structures with Hermitian metrics satisfying the initial geometric con-
ditions. Therefore with strong enough convergence results for this flow one could possibly
rule out integrable complex structures on certain manifolds.

10. Appendix: Variational formulas

In this appendix we collect variational formulas for quantities related to the curvature and
torsion of Hermitian metrics.

Lemma 10.1. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J. Then

9 I Im 0 7 7
Salik = "'Vihjm, o =8 "Vh, 7.
Proof. We compute directly in canonical complex coordinates:
Ot = O gm i I
%Fik =328 @i gm) = —h""9; g + & 0; him
= " @ihim — Tfihpm) = ¢"™ Vihi.

This gives the first formula, and the second follows by conjugation. O
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Lemma 10.2. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J. Then

8 -
- = —&" V5 Vi,

a

a

Proof. We compute directly:

9 / 9 l Im
sy = 5 (—Th) = — (8" Vi)
= glﬁ%gﬁngmvihkm - glm%Vz’hm
= =" @ Vil — T7_Vihip) = ="' V5 Vil
This gives the first formula, and the second follows easily. O

Lemma 10.3. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J. Then

)
378 = —Atrth — (h,S+divV T — Vuw).
a

Proof. We compute using Lemma[10.2}

9 - . . - _
—s = —g"8; = NS+ M= Ahyg — BT Qg + um Sl = —Atch — (h, P).
The result now follows from Lemma 2.4l |

Lemma 10.4. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J. Then

3
35 TijE = Vihjg = Vihig + Tij b, g,
aiw =Virh —divY h.
a

Proof. We compute directly:

9 9 »
%Tij? = ﬁ(aigﬁ — &) = aihﬁ —djhig = Vihj% + F?}hmi = Vihiz = FjihpE

= Vil = Vihig + T hyge
This gives the first formula. For the second we see that
0 e LBy piRp 4 K e — Vb 4 TM
32 T 528 Tix=—h"Tjz+&" (Vihg = Vihg +T7h,p)
=V trh —div' h;. O
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Lemma 10.5. Let g(s) be a family of Hermitian metrics compatible with the given com-
plex structure J. Then

a3|T|2 = (h, =20+ Q%) + 4(Vh,T)
S

where |
(VA T) = g ¢ " (Vi T3, + T Vihy,,)-

Proof. We compute directly:

3l T1 = 588" Tz Toqr
= —h'P TGN T, 7 Toge — W8P g T, Tgy — W g7 91T, ;7 T

+ 878N [(Vihg = Vihig + T/ b Trgr + Tz (Vphgr — Vahpr + Toghys)]
= (h.~20"' + Q) + 4(Vh.T). o

Lemma 10.6. Let g(s) be a family of Hermitian metrics compatible with the given com-
plex structure J. Then

3
8—|w|2 =—(h, Q°) + 2(Vtrh — div¥ h, w).
S

Proof. In canonical complex coordinates at a point we compute

a Py — —
—8"¢"" 8" Timn T

os jsr
= _hijgmﬁgrETimﬁTjgr - gijhmﬁgrETimﬁTjgr - gijgmﬁhrETimﬁTjgr

+ 878" " (Vi — Vinhiz + Ty hpi) T,
+ (Vihsy — Vsh;, + T%hﬁr)nmﬁ]
= —(h, Q%) +2(Vtrh — div¥ h, w). O

Lemma 10.7. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J. Then

B
— st:f[(h, —S—divV T + Vw) + (trh)(s — div¥ w — |w[»)]dV.
80 M M
Proof. From Lemma we obtain
)
—f st:/[—Atrh+(h,—S—divVT+Vw)+strh]dV.
da M M
Now by Lemma [I0.T1] we see
/—Atrth: / (trh)(—div¥ w — |w|?) dV,
M M

and the result follows. O
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Lemma 10.8. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J. Then

a
5/ IT)dV = / [(h, —20" + Q* —40* — 4div¥ T) + (trh)|T|*1dV.
M M
Proof. We directly compute using Lemma|T0.5}
9 2 1 2 2
— [ T1?av = | [(h,—20" + Q%) +4(Vh,T) + (trh)|T|*1dV.
da M M
We now integrate by parts:
f (Vh,T)dV = / 87T ¢M Vi Ty AV
M M
= /M ¢ Pgllgk (3;h it = iih ) Togr dV
= T - T
= — /M hjgai(g”’g”g rTﬁr dV) +g'pg”g rF;vjhsETﬁr dv
= /M hle™ 0 gmmg" P 877 8" Togr + "7 87" 0 gumg™ 1 8 Tpgr
+ 8P g gk 3; guig™ Togr — 87 877 M 8 Ty
— "7 ¢ 1" Ty 8" 0 g
— " "GN T T 1dV
= / (h,—div’ T — Q%) dV.
M
Plugging in this simplification yields the result. O

Lemma 10.9. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J. Then

i/ lw|?>dV = / [(h, O° +2Vw) + (rh)[-2div¥ w — [w|*]]dV.
da Ju M

Proof. We directly compute using Lemma [I0.6| and integrating by parts using Lemmas
10.70land [T0.12¢

3
—/ lw?dV = / [(h, —0%) +2(Virh —div¥ h, w) + (trh)|w|*]dV
da Ju M

= / [(h, — Q%) + 2(tr [~ div¥ w — [w]?]
M

+2(h, Vw + Q%) + (trh)|w|*] V. O
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Lemma 10.10. Given ¢ € C®(M) and « € T"O(M) we have

/<v¢,a>= / dl—div¥ o — (w, a)]dV.
M M

Proof. We directly compute
/ (Vo a)dV = / gTaigaydV = —f piilgTazdV]
M M M
= /M Ple"” digrsg az — ¢ by — gV 8770, 871 dV
= / d[—divY o — (w, a)]dV. O
M
Lemma 10.11. Given ¢ € C°°(M) we have

/A¢dV=/¢[divvw+|w|2]dV.
M M

Proof. We directly compute
/ ApdV = f g 3509 dV = _f 0:pd7(s7 dV)
M M M

= /M 0iplg"” 858" — ' 8" 058pg1dV = /M 0i9lg" " Ty, 14V

- / (Vo, w)dV = / SldivY w + [w|?]1dV.
M M
For the last equality we applied Lemma[10.10] |

Lemma 10.12. Given 8 € T"0(M) and h € Sym"! (M) we have

/(divvh,ﬂ)dV:/[(h, —VB—w® B)dV.
M M

Proof.
[ @S nprav = [ Mvingpav = [ oelitoh; — rnpipiav
M M M J
= — [ hpads™s pravi+ | g% T hisprdv
M ij k M kj P
= /M hi7le" Oggrsg" 8" B + 8™ 6" dcgrss B — 88" b — 8™ 8V ¢ dgis Pl dV
— | &*Thizprdv
& 815 l])ﬂl
M J

= f [(h, =V —w ® B)]dV. O
M
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