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Abstract. We define a functional for Hermitian metrics using the curvature of the Chern connec-
tion. The Euler–Lagrange equation for this functional is an elliptic equation for Hermitian metrics.
Solutions to this equation are related to Kähler–Einstein metrics, and are automatically Kähler–
Einstein under certain conditions. Given this, a natural parabolic flow equation arises. We prove
short time existence and regularity results for this flow, as well as stability for the flow near Kähler–
Einstein metrics with negative or zero first Chern class.

1. Introduction

In this paper we introduce a new curvature evolution equation on compact complex mani-
folds. Specifically, given (M2n, g, J ) a manifold with integrable complex structure J and
Hermitian metric g, let ∇ denote the Chern connection of g, which is a metric compatible
connection with torsion T [12]. Let � denote the curvature of ∇. Define

Sij = (trω�)ij = g
kl�klij

and let s = gijSij be the scalar Chern curvature. Furthermore let wi = gjkTijk denote
the trace of the torsion. Consider the functional

F(g) =
∫
M

[s − 1
4 |T |

2
−

1
2 |w|

2] dV
(
∫
M
dV )(n−1)/n . (1)

As we will see in Section 3 this is the unique functional yielding S̊, the traceless part of S,
as the traceless component of the second order terms in the associated Euler–Lagrange
equation. Moreover, the form of the Euler–Lagrange equation suggests a flow equation in
the same way that Ricci flow is suggested by the usual Hilbert functional. In particular
we define an evolution equation

∂

∂t
g = −S +Q (2)

where Q = Q(T ) is a certain quadratic polynomial in the torsion T of ∇ which is made
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precise in Section 3. We call equation (2) Hermitian curvature flow (HCF). Of course
now it is known that Ricci flow is indeed the gradient flow of the lowest eigenvalue of
a certain Schrödinger operator, although a corresponding statement for HCF is not yet
known. It is also possible to write HCF in terms of Hodge-type operators. In particular, if
ω(t) denotes the Kähler form of the time varying metric, then it satisfies the equation

∂

∂t
ω = −

(
∂∗g∂ω − ∂∂

∗
gω −

√
−1
2

∂∂ log det g − 2
√
−1(∂

∗

gω ∂ω)

)
+Q′,

where Q′ is a distinct fixed quadratic expression in the torsion.
We observe that when a solution g(t) to HCF exists, the metric is Hermitian with

respect to the fixed complex structure J for all time. Secondly, we will show that when
the initial metric g(0) is Kähler, then the solution g(t) is Kählerian and consequently
the solution to HCF is given by Kähler–Ricci flow. Thirdly, we prove that certain static
solutions are Kähler–Einstein metrics. It will be a very interesting problem to classify all
static solutions. It is possible that most of them are Kähler. Hence, in some sense, this
new flow evolves Hermitian metrics towards Kähler metrics.

Next we will prove a local existence theorem for HCF and develop some regularity
properties for this flow. In particular we derive higher order derivative estimates in the
presence of a curvature bound. These results are summarized in the following theorem.

Theorem 1.1. Let (M2n, g0, J ) be a complex manifold with Hermitian metric g0. There
exists a constant c(n) depending only on the dimension such that there exists a unique
solution g(t) to HCF for

t ∈

[
0,

c(n)

max{|�|C0(g0)
, |∇T |C0(g0)

, |T |2
C0(g0)

}

]
.

Moreover, there exist constants Cm depending only on m such that the estimates

|∇
m�|C0(gt )

, |∇m+1T |C0(gt )
≤

Cm max{|�|C0(g0)
, |∇T |C0(g0)

, |T |2
C0(g0)

}

tm/2

hold for all t in the above interval. Moreover, the solution exists on a maximal time
interval [0, τ ), and if τ <∞ then

lim sup
t→τ

max{|�|C0(gt )
, |∇T |C0(gt )

, |T |C0(gt )
} = ∞.

Finally, if g0 is Kähler, then g(t) is a solution to Kähler–Ricci flow.

In some sense, the simplest possible behavior for this flow should occur near Kähler–
Einstein metrics, where we expect the flow to be not too much different from Kähler–
Ricci flow. In this direction, we prove a stability result for HCF around Kähler–Einstein
metrics with negative or zero first Chern class. Specifically, we show
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Theorem 1.2. Let (M2n, g, J ) be a complex manifold with Kähler–Einstein metric g and
c1(M) < 0 or c1(M) = 0. Then there exists ε = ε(g) so that if g̃ is a Hermitian metric
onM compatible with J and |̃g−g|C∞ < ε then the solution to HCF with initial condition
g̃ exists for all time and converges to a Kähler–Einstein metric.

It is important to note here that these theorems apply to a wide class of equations. In
particular, consider

∂

∂t
g = − S +Q (3)

whereQ is any (1, 1)-tensor which is a quadratic expression of the torsion. As mentioned
above, in this paper we isolate a specific choice ofQ based on a certain unique functional
introduced in Section 3, but Theorems 1.1 and 1.2 apply to solutions of (3), where Q is
any quadratic expression in the torsion. Depending on the ultimate goal one has, different
choices of Q may be appropriate.

There are two natural directions which motivate defining this flow. First, given all of
the success of Ricci flow it is natural to study it on complex manifolds. However, it is
usually the case that the Ricci tensor of a Hermitian metric is not (1, 1), and thus the
Hermitian condition for the metric is not preserved. Thus the Ricci flow is not the best
tool for studying complex geometry which is not already Kähler. The tensor S is a natu-
ral (1, 1) curvature tensor associated to a Hermitian metric which differs from the Ricci
tensor by torsion terms, meaning that it equals the Ricci tensor in the Kähler setting.
Moreover, the operator g 7→ S(g) is strictly elliptic, giving HCF nice existence proper-
ties. Thus from this perspective HCF is the right analogue of Ricci flow for Hermitian
geometry.

The second motivation, and actually our original motivation for HCF, is that it serves
as a “holonomy flow”. If one looks on the level of the Kähler form and asks for a parabolic
flow which preserves the Hermitian condition and is stationary on Kähler manifolds, HCF
comes up quite naturally. There is the side effect that one ends up looking not just for
Kähler metrics, but Kähler–Einstein metrics. Given the excellent existence properties of
the Kähler–Ricci flow, this is an acceptable price to pay. Indeed, other natural analytic
approaches to this question which strictly look for Kähler metrics among Hermitian met-
rics (see for instance [19]) yield equations which are not elliptic. In [4] it is shown that
if the usual Ricci-type curvature of the Chern connection is a nonzero scalar multiple of
the metric, then the metric is automatically Kähler–Einstein. However, this Ricci tensor is
not in general (1, 1), so from the perspective of Hermitian geometry, especially defining
a flow of Hermitian metrics, this condition is not natural.

Here is an outline of the rest of the paper. In Section 2 we define all of the relevant
objects and notation and provide various curvature formulas. In Section 3 we discuss the
Hermitian Hilbert functional. Section 4 gives the definition of HCF and provides various
equivalent formulations using Hodge-type operators and the Levi-Civita connection. In
Sections 5–7 we prove existence and regularity properties for HCF. In Section 8 we prove
the stability result for HCF around Kähler–Einstein metrics. We conclude in Section 9
with a discussion of some related questions. Section 10 is an appendix containing various
useful calculations related to Hermitian geometry.
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2. Differential operators on Hermitian manifolds

Let (M2n, g, J ) be a complex manifold with a Hermitian metric g. In particular J :
TM → TM is an integrable almost complex structure, i.e.

NJ (X, Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ] = 0

for all X, Y ∈ TMp. Furthermore

g(u, v) = g(Ju, Jv).

This equation is written in complex coordinates as

gij = gij = 0, gij = gji = gij .

Recall the Chern connection ∇. In complex coordinates, the nonvanishing components of
the connection are given by

0kij = g
kl∂igj l .

This connection is compatible with g, but has torsion T . In particular in complex coordi-
nates we have

T kij = g
kl(∂igj l − ∂jgil).

Also, there is a natural trace of the torsion

wi = T
j
ij . (4)

As we will see in the next section, w is just a multiple of ∂
∗
ω but this separate defini-

tion will be useful to us. We will also need certain quadratic expressions in the torsion.
Specifically let

Q1
ij
= gklgmnTiknTj lm,

Q2
ij
= gklgmnTlniTkmj ,

Q3
ij
= gklgmnTiklTjnm,

Q4
ij
=

1
2
gklgmn(TmklTnji + TnlkTmij ).

(5)

Note that each Qi is a real symmetric (1, 1)-tensor. The covariant derivatives of torsion
also satisfy an identity.

Lemma 2.1. Given g a Hermitian metric,

∇iTjkl +∇kTij l +∇jTkil = T
p
ij Tkpl + T

p
jkTipl + T

p
kiTjpl .
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Proof. We directly compute

∇iTjkl +∇kTij l +∇jTkil = ∂iTjkl + ∂kTij l + ∂jTkil − 0
p
ijTpkl − 0

p
ikTjpl − 0

p
kiTpjl

− 0
p
kjTipl − 0

p
jkTpil − 0

p
jiTkpl

= T
p
ij Tkpl + T

p
jkTipl + T

p
kiTjpl . ut

Next we collect some useful formulas for the Chern curvature. In particular, let � denote
the curvature of the Chern connection and let S be the trace, i.e.

Sαβ = (trω�)αβ = g
µν�µναβ .

Further, let

s = gαβSαβ .

We will let P denote the trace of the transpose of �, i.e.

Pαβ = g
µν�αβµν .

In the Kähler case Sαβ = Pαβ is the Ricci curvature and s = r is the scalar curvature.

Lemma 2.2. Given g a Hermitian metric we have

Sjk = − g
lmgjk,lm + g

lmgpqgpk,mgjq,l .

Proof. First of all we have

�lmjk = − gkp∂m(g
pq∂lgjq) = − gjk,lm + g

pqgpk,mgjq,l .

Thus
Sjk = g

lm�lmjk = − g
lmgjk,lm + g

lmgpqgpk,mgjq,l

as required. ut

Lemma 2.3 (Bianchi Identity). For X, Y,Z ∈ Tx(M) we have

6{�(X, Y )Z} = 6{T (T (X, Y ), Z)+∇XT (Y, Z)}

6{∇X�(Y,Z)+�(T (X, Y ), Z)} = 0,

where 6 denotes the cyclic sum over the three vectors.

Lemma 2.4. Given g a Hermitian metric we have

Pij − Sij = g
kl(∇lTkij +∇iTljk).

Proof. We compute using the Bianchi identity and the symmetries of the torsion:

�ijkl = �kjil +∇jTkil = �jkli +∇jTkil = �lkj i +∇kTlj i +∇jTkil .

Taking the trace and relabeling indices gives the result. ut
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Now we focus on Hodge operators associated to g. Let

ω(u, v) = −g(u, Jv)

be the Kähler form of g. In local complex coordinates we have

ω =

√
−1
2

gijdz
i
∧ dzj .

Let3k =
⊕
p+q=k 3

p,q denote the usual decomposition of complex differential k-forms
into forms of type (p, q). The exterior differential d decomposes into the operators ∂
and ∂ ,

∂ : 3p,q → 3p+1,q , ∂ : 3p,q → 3p,q+1.

Also the operator d∗g , the L2 adjoint of d, decomposes into ∂∗g and ∂
∗

g ,

∂∗g : 3p+1,q
→ 3p,q , ∂

∗

g : 3p,q+1
→ 3p,q .

Using these operators we can define the complex Laplacians

�ω = ∂
∗
g∂ + ∂∂

∗
g : 3p,q → 3p,q , �ω = ∂

∗

g∂ + ∂∂
∗

g : 3p,q → 3p,q .

It is well known that the operator α 7→ �ωα is a second order elliptic operator with
symbol that of the Laplacian in complex coordinates [12]. Moreover, one has the formula

1d,g = �g +�g + lower order terms. (6)

However, we will be interested in the action of these operators on ω itself, so the terms
which are lower order in (6) become highest order terms in this context. In the lemmas
which follow we compute the action of these differential operators explicitly.

Lemma 2.5. Given g a Hermitian metric we have in complex coordinates

(∂∗gω)k =

√
−1
2

gpq(∂qgpk − ∂kgpq), (7)

(∂
∗

gω)j =

√
−1
2

gpq(∂pgjq − ∂jgpq). (8)

Proof. We compute using integration by parts. Given α ∈ 30,1 we have

(∂∗gω, α) = (ω, ∂α) =

∫
M

gklgij (ωjk∂αil) dV

=

√
−1
2

∫
M

gil(αl,i) dV = −

√
−1
2

∫
M

αl[∂i(g
il dV )]

= −

√
−1
2

∫
M

αl dV [−gim∂igmng
nl
+ gilgpq∂igpq ].

This gives the first formula, and the second follows analogously. ut
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Lemma 2.6. Given g a Hermitian metric we have in complex coordinates

(∂∂∗gω)jk =

√
−1
2

[gpq(gpk,qj − gpq,kj )+ g
pqgrsgrq,j (gps,k − gpk,s)]. (9)

Proof. In general for α ∈ 30,1 we have (∂α)jk = ∂jαk . Thus we compute using Lem-
ma 2.5:

(∂∂∗gω)jk =

√
−1
2

∂j (g
pq(∂qgpk − ∂kgpq))

=

√
−1
2

[gpq(gpk,qj − gpq,kj )− g
pmgmn,jg

nq(gpk,q − gpq,k)].

The result follows. ut

Lemma 2.7. Given g a Hermitian metric we have in complex coordinates

(∂∗g∂ω)jk =

√
−1
2

[gpq(gpk,jq − gjk,pq)+ g
pqgrs(gps,q − gpq,s)(gjk,r − grk,j )

+ gpqgrsgjq,s(gpk,r − grk,p)+ g
pqgrsgpk,s(gjq,r − grq,j )].

Proof. First of all we know that

(∂ω)ijk =

√
−1
2

(gjk,i − gik,j ).

Now, we use the general formula for ∂∗g and compute

(∂∗g∂ω)jk = − gjpgkq

(
∂

∂zm
+

1
g
∂mg

)
(∂ω)mpq

= −

√
−1
2

[
gjpgkq

∂

∂zm
[gmigprgsq(grs,i − gis,r)]

+ gmngpqgpq,m(gjk,n − gnk,j )

]
=

√
−1
2

[
gpq(gpk,jq − gjk,pq)

+ gjpgkq(grs,i − gis,r)[g
muguv,mg

ivgprgsq ]

+ gjpgkq(grs,i − gis,r)[g
migpuguv,mg

vrgsq ]

+ gjpgkq(grs,i − gis,r)[g
migprgsuguv,mg

vq ]

− gmngpqgpq,m(gjk,n − gnk,j )
]

=

√
−1
2

[
gpq(gpk,jq − gjk,pq)+ g

pqgrs(gps,q − gpq,s)(gjk,r − grk,j )

+ gpqgrsgjq,s(gpk,r − grk,p)+ g
pqgrsgpk,s(gjq,r − grq,j )

]
. ut
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Lemma 2.8. Given g a Hermitian metric we have in complex coordinates(√
−1
2

∂∂ log det g
)
jk

=

√
−1
2

(gpq∂j∂kgpq − g
pr∂jgrsg

sq∂kgpq).

Proof. We compute directly in coordinates:(√
−1
2

∂∂ log det g
)
jk

=

√
−1
2

∂j (g
pq∂kgpq)

=

√
−1
2

(gpq∂j∂kgpq − g
pr∂jgrsg

sq∂kgpq). ut

Also in this section we introduce canonical coordinates for g. We know that if g is not
Kähler then we cannot choose complex coordinates so that all the first derivatives of g
vanish. However, we can always ensure that a certain symmetric part of the first deriva-
tives vanishes. This is made clear in the lemma below.

Lemma 2.9. Given a point p ∈ M , there exist coordinates around p so that

gij = δij and ∂igjk + ∂jgik = 0.

Proof. Let {zi} be arbitrary complex coordinate functions around p so that zi(p) = 0 for
all i. We briefly change our point of view and consider the Hermitian metric h associated
to g. The coordinate expression for h takes the form

h = hijdz
idzj

where hij = hji . Without loss of generality by a rotation and rescaling we can assume

hij (p) = δij . (10)

Define new coordinates {wi} by the equation

wi = zi +
1
4

∑
j,k

(
∂

∂zk
hij (p)+

∂

∂zj
hik(p)

)
zjzk

so that

dwi = dzi +
1
2

∑
j,k

(
∂

∂zk
hij (p)+

∂

∂zj
hik(p)

)
zjdzk.

Note also that (10) still holds in these coordinates. In these new coordinates write

h = h̃ijdw
idwj .

It is clear that

h̃ij = hij −
1
2

∑
j,k

(
∂

∂zk
hij (p)+

∂

∂zj
hik(p)

)
zk +O(z2).

The claim follows directly by differentiating. ut
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3. The Hermitian Hilbert functional

Let (M2n, g, J ) be a complex manifold. Consider the functional

F(g) =
∫
M

[s − 1
4 |T |

2
−

1
2 |w|

2] dV
(
∫
M
dV )(n−1)/n .

Lemma 3.1. Let g(a) be a one-parameter family of Hermitian metrics with variation h.
Then

∂

∂a
F(g) =

(∫
M

dV

)(1−n)/n ∫
M

〈
h,−S +

1
2
Q1
−

1
4
Q2
−

1
2
Q3
+Q4

+

(
s −

1
4
|T |2 −

1
2
|w|2 −

n− 1
n

(
∫
M
s − 1

4 |T |
2
−

1
2 |w|

2) dV∫
M
dV

)
g

〉
dV .

Moreover, F is the unique second order functional which yields S̊ as the leading order
term in the traceless part of the variational equation through Hermitian metrics.

Proof. Combining Lemmas 10.7–10.9 we see

∂

∂a

∫
M

[
s −

1
4
|T |2 −

1
2
|w|2

]
dV

=

∫
M

[〈
h,−S +

1
2
Q1
−

1
4
Q2
−

1
2
Q3
+Q4

〉
+ (trh)

(
s −

1
4
|T |2 −

1
2
|w|2

)]
dV .

Likewise we compute

∂

∂a

(∫
M

dV

)(n−1)/n

=
n− 1
n

∫
M

trh dV
(∫

M

dV

)−1/n

.

Combining these two calculations gives the result. The uniqueness claim is also clear by
inspection of the variational formulas in Lemmas 10.7–10.9. ut

Let

Q =
1
2
Q1
−

1
4
Q2
−

1
2
Q3
+Q4 (11)

and let K := S −Q. Note that

k := trg K = s −
1
4
|T |2 −

1
2
|w|2.

We can rephrase the above situation in a very simple manner. In particular

F(g) =
∫
M

k dV
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and
∂

∂a
F(g(a)) =

∫
M

〈
h,−K + kg −

n− 1
n

∫
M
k dV∫

M
dV

g

〉
dV, (12)

which is exactly analogous to the form of the gradient of the normalized Hilbert func-
tional.

Definition 3.2. Given (M2n, g, J ) a complex manifold we say that g is static if g is
critical for F.

Proposition 3.3. Let (M2n, g, J ) be a complex manifold with g static. Then

K −
1
n
kg = 0.

Also k is a constant function. Finally, if F(g) ≥ 0 and
∫
M
s dVg ≤ 0 then g is Kähler–

Einstein.

Proof. The first property follows immediately by letting h = K − (1/n)kg in (12). Next
let h = −(1Dk)g where 1D means the Laplacian with respect to the Levi-Civita con-
nection. Plugging this into (12) yields

0 = −
∫
M

(1Dk)k dV =

∫
M

|dk|2.

To see the last claim we simply note that together the hypotheses imply

0 ≤ F(g) = V −1/nk = V −1/n
(
s −

1
4
|T |2 −

1
2
|w|2

)
≤ −

1
V 1/n |T |

2,

which implies T ≡ 0. If the torsion of g vanishes, then g is Kähler and moreover K is
given by the Ricci tensor of g, so g is Kähler–Einstein. ut

To emphasize, S is in a sense the only natural curvature tensor associated to a Hermitian
metric which is a symmetric (1, 1)-tensor and which is a second order elliptic operator. In
seeking a functional which yields S as the leading term in the Euler–Lagrange equation,
F above is the only choice. We note that the functional

∫
M
s dVg was considered in [9].

Indeed, for this functional one finds automatically that critical points are Kähler–Einstein
if the value of the functional is nonzero. However, there the leading term in the Euler–
Lagrange equation is P , which is not an elliptic operator on Hermitian metrics. Finally,
we remark that F is not the Hilbert functional restricted to Hermitian metrics. Indeed, a
straightforward calculation (see also [8, line (33)]) shows that if r denotes the usual scalar
curvature, ∫

M

r dVg =

∫
M

s −
1
4
|T |2.

Therefore we see that F =
∫
M
(r− 1

2 |w|
2) dVg restricted to Hermitian metrics. This bears

a certain formal similarity to functionals related to renormalization group flows arising in
physical models [13], [16], [17].
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4. Hermitian curvature flow

In this section we give the definition of Hermitian curvature flow in terms of the Chern
curvature. We then provide an equivalent definition using Hodge operators. In all the
calculations below, Q is defined by (11).

Proposition 4.1. Let (M2n, g, J ) be a Hermitian manifold and let

8(g) := (S −Q)(g).

Then 8 is a map
8 : <Sym1,1 T ∗M → <Sym1,1 T ∗M

where <Sym1,1 T ∗M are the real symmetric (1, 1)-tensors. Moreover, 8 is a nonlinear
second order elliptic operator.

Proof. It follows from Lemma 2.2 that 8(g)ij = −g
klgij ,kl + O(∂g) and so 8 is a

nonlinear second order elliptic operator since g is positive definite. Also, by definition
each of the tensorsQi is a real symmetric (1, 1)-tensor and thusQ is. Lemma 2.2 implies
that S is also a real symmetric (1, 1)-tensor. Therefore 8(g) is a real symmetric (1, 1)-
tensor. The result follows. ut

Definition 4.2. Given (M2n, J, g0) a complex manifold with Hermitian metric g0. We
say that a one-parameter family of Hermitian metrics g(t) is a solution to Hermitian
curvature flow (HCF) with initial condition g0 if

∂

∂t
g(t) = −S(g(t))+Q(g(t)),

g(0) = g0.

Next we compute a formula for HCF using Hodge operators. Define

4 = S(·, J ·).

We will write 4(g) using Hodge differentials. Let

9(ω) := ∂∗g∂ω − ∂∂
∗
gω −

√
−1
2

∂∂ log det g − 2
√
−1(∂

∗

gω ∂ω). (13)

We choose to isolate this term because, as we will see in the calculations below, it is a
real (1, 1)-form.

Proposition 4.3. Given g a Hermitian metric, we have

4(g) = 9(ω)−

√
−1
2

(
2Q4

jk
+

1
2
Q2
jk

)
.
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Proof. Choose coordinates according to Lemma 2.9 so that at a fixed point p ∈ M ,

∂igjk = −∂jgik.

Using this we find that at the point p,

1
2
Tijk =

1
2
(∂igjk − ∂jgik) = ∂igjk.

Next we compute a formula for 9 in coordinates. In particular we compute a formula for
∂∂ log det g:

√
−1
2

(∂∂ log det g)jk =
√
−1
2

∂j (g
pq∂kgpq) =

√
−1
2

(gpq∂j∂kgpq−g
pr∂jgrsg

sq∂kgpq)

=

√
−1
2

(
gpqgpq,jk−

1
4
gpqgrsTjrqTksp

)
.

Next we compute using Lemma 2.5:

−2
√
−1(∂

∗

gω ∂ω) = − 2
√
−1gpq(∂

∗

gω)p(∂ω)qjk =

√
−1
2

gpqgrsTrpsTqkj .

We now combine these calculations with Lemmas 2.6 and 2.7 to get

9(ω)jk =

√
−1
2

[
−gpqgjk,pq +

1
2
gpqgrs

[
2TqspTrjk + 2TprqTskj

+ TsqjTrpk + TskpTrjq − TjrqTksp +
1
2
TjrqTksp

]]
=

√
−1
2

[
−gpqgjk,pq +

1
2
gpqgrs

[
2TqspTrjk + 2TprqTskj + TsqjTrpk +

1
2
TjrqTksp

]]
.

Likewise we have, from Lemma 2.2,

4(g)jk =

√
−1
2

[
−gpqgjk,pq +

1
4
gpqgrsTjpsTkqr

]
.

The result follows by combining these calculations. ut

Corollary 4.4. The HCF equation is equivalent to

∂

∂t
ω = −9(ω)+

√
−1
2

(
1
2
Q1
+

1
4
Q2
−

1
2
Q3
+ 3Q4

)
.

Proof. This follows immediately from the definition of HCF and Proposition 4.3. ut
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5. Short-time existence

Proposition 5.1. Given (M2n, J, g0) a compact complex manifold, there exists a unique
solution to HCF with initial condition g0 on [0, ε) for some ε > 0.

Proof. Since the operator 8(g) is strictly elliptic by Proposition 4.1, the HCF equation
is strictly parabolic, and thus short-time existence and uniqueness follow from standard
theory. ut

Proposition 5.2. Given (M2n, J, g0) a compact complex manifold with Kähler metric g0,
let g(s) denote the solution to HCF with initial condition g0, which exists on [0, T ). Then
for all t ∈ [0, T ), g(t) is Kähler, and is a solution to Kähler–Ricci flow.

Proof. Let g̃(t) be the solution to Kähler–Ricci flow with initial condition g0. Ricci flow
preserves the Kähler condition, thus g̃(t) is Kähler for all time, hence T̃ = dω̃ = 0 and
Q̃ = 0. It follows that R̃c = S̃ = S̃ − Q̃ and so

∂

∂t
g̃(t) = −R̃c = −S̃ + Q̃.

Thus g̃(t) is a solution to HCF with initial condition g0. Since solutions to HCF are
unique, it follows that g̃(t) = g(t) for all time and hence g(t) is Kähler for all time and
solves Kähler–Ricci flow. ut

6. Evolution equations

Lemma 6.1. For a solution to HCF we have

∂

∂t
�ijkl = 1�ijkl + g

mn(T
p

nj
∇m�ipkl + T

p
mi∇j�pnkl)

+ gmn(�
p

ijm
�pnkl +�

p

mnj
�ipkl +�

p

mjk
�inpl +�

p

mjl
�inkp)

−�m
ijk
(Sml −Qml)−∇j∇iQkl .

Proof. First consider the term Q in the evolution of g. Using Lemma 10.2 we see that
this contributes

�m
ijk
Qml −∇j∇iQkl

to the evolution of �ijkl . Next we consider the contribution of the term −S in the evolu-
tion of g. Using Lemma 10.2 we see that the evolution ∂

∂t
g = −S yields

∂

∂t
�ijkl = −�

m

ijk
Sml +∇j∇iSkl .

Now we must apply the second Bianchi identity. We have

∇j (∇iSkl) = ∇jg
mn(∇i�mnkl) = ∇jg

mn(∇m�inkl + T
p
mi�pnkl)

= gmn(∇j∇m�inkl +∇jT
p
mi�pnkl + T

p
mi∇j�pnkl).
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Next we commute covariant derivatives to get

gmn∇j∇m�inkl = g
mn(∇m∇j�inkl +�

p

mji
�pnkl +�

p

mjn
�ipkl

+�
p

mjk
�inpl +�

p

mjl
�inkp).

Finally, we apply the Bianchi identity again to get

gmn∇m∇j�inkl = g
mn
∇m(∇n�ijkl + T

p

nj
�ipkl)

= 1�ijkl + g
mn(∇mT

p

nj
�ipkl + T

p

nj
∇m�ipkl).

Combining these calculations yields

∂

∂t
�ijkl = 1�ijkl + g

mn(∇mT
p

nj
�ipkl + T

p

nj
∇m�ipkl +∇jT

p
mi�pnkl + T

p
mi∇j�pnkl)

+ gmn(�
p

mji
�pnkl +�

p

mjn
�ipkl +�

p

mjk
�inpl +�

p

mjl
�inkp)−�

m

ijk
Sml .

Now we can apply the Bianchi identity to the terms

�
p

mjn
= �

p

mnj
+∇mT

p

jn
and �

p

mji
= �

p

ijm
+∇jT

p
im.

Plugging these two in yields

∂

∂t
�ijkl = 1�ijkl + g

mn(T
p

nj
∇m�ipkl + T

p
mi∇j�pnkl)

+ gmn(�
p

ijm
�pnkl +�

p

mnj
�ipkl +�

p

mjk
�inpl +�

p

mjl
�inkp)−�

m

ijk
Sml .

Combining this with the above terms gives the result. ut

Lemma 6.2. For a solution to HCF we have

∂

∂t
Tijk = 1Tijk + g

mn[T pji∇nTmpk +∇nT
p
mjTipk + T

p
mj∇nTipk

+∇nT
p
imTjpk + T

p
im∇nTjpk]

+ gmn[�pnjmTipk +�
p

njk
Timp −�

p

nimTjpk −�
p

nik
Tjmp

−�pnmkT
p
ji ]− T

p
ij (Spk −Qpk)+∇iQjk −∇jQik.

Proof. First we compute the contribution from the term Q in the evolution of g. In par-
ticular using Lemma 10.4 this yields

∇iQjk −∇jQik + T
p
ijQpk.

Next we focus on the term −S. Applying Lemma 10.4 we obtain

∇jSik −∇iSjk − T
p
ij Spk.
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Now using the Bianchi identity we rewrite

∇jSik = g
mn
∇j�mnik = g

mn
∇j (�inmk +∇nTimk),

∇iSjk = g
mn
∇i(�jnmk +∇nTjmk).

Combining these yields

∂

∂t
Tijk = g

mn(∇j�inmk −∇i�jnmk +∇j∇nTimk −∇i∇nTjmk)− T
p
ij Spk.

Applying the Bianchi identity again yields

gmn(∇j�inmk −∇i�jnmk) = −g
mnT

p
ji�pnmk.

Also, we commute derivatives:

∇j∇nTimk = ∇n∇jTimk +�
p

njiTpmk +�
p

njmTipk +�
p

njk
Timp,

∇i∇nTjmk = ∇n∇iTjmk +�
p

nijTpmk +�
p

nimTjpk +�
p

nik
Tjmp.

Finally, using Lemma 2.1 we see

gmn∇n(∇jTimk −∇iTjmk) = g
mn
∇n(∇mTijk + T

p
ji Tmpk + T

p
mjTipk + T

p
imTjpk)

= 1Tijk + g
mn
∇n(T

p
ji Tmpk + T

p
mjTipk + T

p
imTjpk).

Combining these calculations yields

∂

∂t
Tijk = 1Tijk + g

mn
∇n(T

p
ji Tmpk + T

p
mjTipk + T

p
imTjpk)

+ gmn[�pnjiTpmk +�
p

njmTipk +�
p

njk
Timp

−�
p

nijTpmk −�
p

nimTjpk −�
p

nik
Tjmp −�pnmkT

p
ji ]− T

p
ij Spk.

Using the Bianchi identity we can simplify

gmn[�pnjiTpmk −�
p

nijTpmk] = g
mn[�pnji +�

p

inj ]Tpmk = g
mn
∇nT

p
ji Tpmk.

Plugging this in yields

∂

∂t
Tijk = 1Tijk + g

mn[T pji∇nTmpk +∇nT
p
mjTipk + T

p
mj∇nTipk

+∇nT
p
imTjpk + T

p
im∇nTjpk]

+ gmn[�pnjmTipk +�
p

njk
Timp −�

p

nimTjpk −�
p

nik
Tjmp −�pnmkT

p
ji ]

− T
p
ij Spk.

Combining this with the terms from Q gives the result. ut
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7. Higher derivative estimates

In this section we will prove derivative estimates for HCF. It will be most convenient to
phrase these results in terms of the curvature of the Chern connection. All of the calcula-
tions below will be done in canonical coordinates at a fixed point. In particular, in these
coordinates any first derivative of g can be expressed in terms of the torsion T , and any
second derivative can be expressed in terms of a sum of curvature and torsion.

Lemma 7.1. Given (M2n, g(t), J ) a solution to HCF we have

∂

∂t
∇
k� = 1∇k�+

k∑
j=0

∇
jT ∗ ∇k+1−j�+

k∑
j=0

∇
j� ∗ ∇k−j�

+

k∑
j=0

j∑
l=0

∇
lT ∗ ∇j−lT ∗ ∇k−j�+

k+2∑
j=0

∇
jT ∗ ∇k+2−jT .

Proof. The case k = 0 is covered by Lemma 6.1. We directly compute

∂

∂t
∇
k� =

∂

∂t
(∂ + 0) ∗ (∂ + 0) ∗ · · · ∗ (∂ + 0)�

= ∇
k

(
∂

∂t
�

)
+

(
∂

∂t
0

)
∗ (∂ + 0) ∗ · · · ∗ (∂ + 0)�

+ (∂ + 0) ∗

(
∂

∂t
0

)
∗ · · · ∗ (∂ + 0)�+ · · ·

+ (∂ + 0) ∗ · · · ∗ (∂ + 0) ∗

(
∂

∂t
0

)
�.

We apply Lemma 10.1 to see that

∂

∂t
0 = ∇(�+ T ∗2) = ∇�+ T ∗ ∇T .

Plugging this in yields

∂

∂t
∇
k� = ∇k(1�+ T ∗ ∇�+�∗2 +� ∗ T ∗2 +∇2Q)

+

k−1∑
j=0

∇
j (∇�+ T ∗ ∇T ) ∗ ∇k−1−j�

= 1∇k�+

k∑
j=0

∇
jT ∗ ∇k+1−j�+

k∑
j=0

∇
j� ∗ ∇k−j�

+

k∑
j=0

j∑
l=0

∇
lT ∗ ∇j−lT ∗ ∇k−j�+

k+2∑
j=0

∇
jT ∗ ∇k+2−jT . ut
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Lemma 7.2. Given (M2n, g(t), J ) a solution to HCF we have

∂

∂t
∇
kT = 1∇kT +

k+1∑
j=0

∇
jT ∗ ∇k+1−jT +

k∑
j=0

∇
jT ∗ ∇k−j�

+

k−1∑
j=0

j∑
l=0

∇
lT ∗ ∇j−l+1T ∗ ∇k−1−jT .

Proof. The case k = 0 is covered by Lemma 6.2. We directly compute

∂

∂t
∇
kT =

∂

∂t
(∂ + 0) ∗ · · · ∗ (∂ + 0)T

= ∇
k

(
∂

∂t
T

)
+

(
∂

∂t
0

)
∗ (∂ + 0) ∗ · · · ∗ (∂ + 0)T

+ (∂ + 0) ∗

(
∂

∂t
0

)
∗ · · · ∗ (∂ + 0)T + · · ·

+ (∂ + 0) ∗ · · · ∗ (∂ + 0) ∗

(
∂

∂t
0

)
T .

Again we apply Lemma 10.1 to obtain

= ∇
k(1T +∇T ∗ T +� ∗ T )+

k−1∑
j=0

∇
j (∇�+ T ∗ ∇T ) ∗ ∇k−1−jT

= 1∇kT +

k+1∑
j=0

∇
jT ∗ ∇k+1−jT +

k∑
j=0

∇
jT ∗ ∇k−j�

+

k−1∑
j=0

j∑
l=0

∇
lT ∗ ∇j−l+1T ∗ ∇k−1−jT . ut

Theorem 7.3. Let (M2n, g(t), J ) be a solution to HCF for which the maximum principle
holds. Then for each α > 0 and every m ∈ N there exists a constant Cm depending only
on m, n and max{α, 1} such that if

|�|C0(gt )
≤ K, |∇T |C0(gt )

≤ K, |T |2
C0(gt )

≤ K (14)

for all x ∈ M and t ∈ [0, α/K], then

|∇
m�|C0(gt )

≤
CmK

tm/2
, |∇

m+1T |C0(gt )
≤
CmK

tm/2
(15)

for all x ∈ M and t ∈ (0, α/K].



618 Jeffrey Streets, Gang Tian

Proof. Our proof is by induction on m. First consider m = 1. The following evolution
equation for |�|2 follows from Lemma 7.1:

∂

∂t
|�|2 = 1|�|2 − 2|∇�|2 + T ∗ ∇� ∗�+�∗3 + T ∗2 ∗�∗2

+∇T ∗ ∇T ∗�+ T ∗ ∇2T ∗�

≤ 1|�|2 − |∇�|2 +
1
2
|∇

2T |2 + CK3. (16)

In the last line we applied the assumed bound on curvature in the time interval [0, α/K],
and in what follows below C will denote a generic constant depending only on the di-
mension. Also Lemma 7.1 implies

∂

∂t
|∇�|2 = 1|∇�|2 − 2|∇2�|2 + T ∗ ∇2� ∗ ∇�

+� ∗ ∇�∗2 +∇T ∗ ∇�∗2 + T ∗2 ∗ ∇�∗2

+ T ∗ ∇T ∗� ∗ ∇�+ T ∗ ∇3T ∗ ∇�+∇2T ∗ ∇T ∗ ∇�

≤ 1|∇�|2 − |∇2�|2 +
1
2
|∇

3T |2 + CK(|∇�|2 + |∇2T |2)+ CK4. (17)

Also from Lemma 7.2 we conclude
∂

∂t
|∇T |2 = 1|∇T |2 − 2|∇2T |2 + T ∗ ∇2T ∗ ∇T +∇T ∗3

+ T ∗ ∇� ∗ ∇T +∇T ∗�+ T ∗2 ∗ ∇T ∗2

≤ 1|∇T |2 − |∇2T |2 +
1
2
|∇�|2 + CK3 (18)

and
∂

∂t
|∇

2T |2 = 1|∇2T |2 − 2|∇3T |2 + T ∗ ∇3T ∗ ∇2T +∇T ∗ ∇2T ∗ ∇2T

+ T ∗ ∇2� ∗ ∇2T +∇T ∗ ∇� ∗ ∇2T +∇2T ∗2 ∗�

+ T ∗ ∇T ∗2 ∗ ∇2T + T ∗2 ∗ ∇2T ∗2

≤ 1|∇2T |2 − |∇3T |2 +
1
2
|∇

2�|2 + CK(|∇�|2 + |∇2T |2)+ CK4. (19)

Consider the function

F(x, t) := t (|∇�|2 + |∇2T |2)+ β(|�|2 + |∇T |2)

where β is a constant to be chosen below. Putting together (16)–(19) and using t ∈
[0, α/K] gives

∂

∂t
F ≤ 1F −

t

2
(|∇2�|2 + |∇3T |2)+ (tCK − β/2)(|∇�|2 + |∇2T |2)

+ C(tK4
+ βK3)

≤ 1F + (Cα − β/2)(|∇�|2 + |∇2T |2)+ CK3(α + β). (20)
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Choosing β large with respect to dimensional constants and max{α, 1} yields

∂

∂t
F ≤ CβK3.

Using that F(0) ≤ βK2 and applying the maximum principle gives

sup
x∈M

F(x, t) ≤ βK2
+ CβK3t ≤ (1+ Cα)βK2

≤ C2
1K

2

where again C1 depends only on n and max{α, 1}. Thus

|∇�| + |∇2T | ≤

√
F

t
≤
C1K

t1/2

for all x ∈ M and t ∈ (0, α/K]. This completes the case m = 1.
For the induction step we first deduce from Lemma 7.1 the evolution equation

∂

∂t
|∇
k�|2 = 1|∇k�|2 − 2|∇k+1�|2 +

k∑
j=0

∇
jT ∗ ∇k+1−j� ∗ ∇k�

+

k∑
j=0

∇
j� ∗ ∇k−j� ∗ ∇k�+

k∑
j=0

j∑
l=0

∇
lT ∗ ∇j−lT ∗ ∇k−j� ∗ ∇k�

+

k+2∑
j=0

∇
jT ∗ ∇k+2−jT ∗ ∇k�.

We address the first sum in the above equation. We first make the bound

T ∗ ∇k+1� ∗ ∇k� ≤ C|T | |∇k+1�| |∇k�| ≤
1
2
|∇
k+1�|2 + C|T |2|∇k�|2

≤
1
2
|∇
k+1�|2 + CK|∇k�|2. (21)

Also we have

∇T ∗ ∇k� ∗ ∇k� ≤ C|∇T | |∇k�|2 ≤ CK|∇k�|2. (22)

For the rest of the summand we bound, for j > 0,

∇
jT ∗ ∇k+1−j� ∗ ∇k� ≤ C|∇jT | |∇k+1−j�| |∇k�|

≤ C
K

t (j−1)/2
K

t (k+1−j)/2 |∇
k�| ≤ CK|∇k�|2 + C

K3

tk
. (23)

A similar calculation yields a bound

∇
j� ∗ ∇k−j� ∗ ∇k� ≤ C|∇j�||∇k−j�||∇k�|

≤ C
K

tj/2
K

t (k−j)/2
|∇
k�| ≤ CK|∇k�|2 + C

K3

tk
. (24)
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Next we bound using the inequality K ≤ C/t :

∇
lT ∗ ∇j−lT ∗ ∇k−j� ∗ ∇k� ≤ C|∇ lT | |∇j−lT | |∇k−j�| |∇k�|

≤ C
K

t (l−1)/2
K

t (j−l−1)/2
K

t (k−j)/2
|∇
k�|

≤ C
K3

t (k−2)/2 |∇
k�| ≤ C

K2

t (k−1)/2 |∇
k�|

≤ CK|∇k�|2 + C
K3

tk
. (25)

Finally we bound the last summand. First, for j = 0 we have

T ∗ ∇k+2T ∗ ∇k� ≤
1
2
|∇
k+2T |2 + CK|∇k�|2. (26)

For the general term, estimates as above yield

∇
jT ∗ ∇k+2−jT ∗ ∇k� ≤ CK

(
|∇
k�|2 + |∇k+1T |2 +

K2

tk

)
. (27)

Using (21)–(27) we conclude

∂

∂t
|∇
k�|2 ≤ 1|∇k�|2 − |∇k+1�|2 +

1
2
|∇
k+2T |2

+ CK

(
|∇
k�|2 + |∇k+1T |2 +

K2

tk

)
.

Furthermore, using completely analogous bounds one can conclude

∂

∂t
|∇
k+1T |2 ≤ 1|∇k+1T |2 − |∇k+2T |2 +

1
2
|∇
k+1�|2

+ CK

(
|∇
k�|2 + |∇k+1T |2 +

K2

tk

)
.

Together these yield, if we set Hk = |∇k�|2 + |∇k+1T |2,

∂

∂t
Hk ≤ 1Hk −

1
2
Hk+1 + CKHk +

K3

tk
.

This bound is sufficient to carry out the inductive step analogously to the step k = 1. The
details of this construction are found in [6, pp. 229–230]. ut

Corollary 7.4. There exists a constant c = c(n) such that given (M2n, g, J ) a complex
manifold with Hermitian metric g, the solution to HCF with initial condition g exists
for t ∈ [0, c(n)/max{|�|C0 , |∇T |C0 , |T |2C0

}]. Moreover the solution exists on a maximal
time interval [0, τ ), and if τ <∞ then

lim sup
t→τ

max{|�|C0(gt )
, |∇T |C0(gt )

, |T |2
C0(gt )

} = ∞.
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Proof. This argument is standard. Using the evolution equations for T , ∇T and � it
is easy to prove a “doubling-time” estimate for these quantities on the interval stated
using the maximum principle. Once this is in place, the derivative estimates follow from
Theorem 7.3. These yield bounds on the curvature and torsion and all covariant derivatives
on the stated interval, which can be integrated in time to show smooth existence of the
flow on that interval.

Finally, if one knows that the curvature, torsion and first covariant derivative of torsion
are bounded up to a time τ <∞, one deduces from Theorem 7.3 uniform bounds on the
derivatives of curvature and torsion on [0, τ ]. These bounds can be integrated in time to
get Ck bounds on the metric on this whole time interval, yielding smooth existence up to
this time. ut

Note now that Theorem 1.1 is a consequence of Proposition 5.1, Theorem 7.3 and Corol-
lary 7.4.

8. Stability

In this section we prove dynamic stability of HCF near a Kähler–Einstein metric with
negative or zero first Chern class. By examining the linearized deformation equation we
know that Kähler–Einstein metrics are rigid in case c1(M) < 0. In the case c1(M) = 0,
there can be nontrivial deformation of Kähler–Einstein metrics due to variation of Kähler
class. There is a general technique for dealing with stability of evolution equations around
integrable stationary points [5], [14], [15]. Given the discussion above, our problem falls
squarely into the realm of these techniques, and so we adopt them. We note that since
the c1(M) < 0 case is rigid, there may be an easier proof for this case, but in the inter-
est of covering the most cases possible with a single proof we choose the more general
technique.

Consider the volume-normalized HCF equation

∂

∂t
g = −S +Q+

1
n

(∫
M

trg(S −Q) dV
)
g =: −F(g).

We compute the linearization of F at a Kähler–Einstein metric. Since the tensor F(g) is
only defined for Hermitian metrics we obviously compute the variation of F(g) through
a family of Hermitian metrics.

Proposition 8.1. Let (M2n, J ) be a complex manifold and suppose g(a) is a one-param-
eter family of unit volume Hermitian metrics compatible with J with

∂

∂a
g(a)

∣∣∣∣
a=0
= h.

Moreover suppose g(0) is Kähler–Einstein. Then

∂

∂a
F(g) = ∇∗∇h− R̊(h)

where R̊(h)kl = h
ijRkjil .
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Proof. Choose complex coordinates which are normal for g(0) at a point p ∈ M . First
we note that

∂

∂a
T (a) ∗ T (a)

∣∣∣∣
a=0
= h ∗ T (0) ∗ T (0)+

(
∂

∂a
T (a)

)
∗ T (0) = 0

since the metric g(0) is Kähler and hence torsion-free. Now using Lemma 2.2,

∂

∂a
Sjk

∣∣∣∣
a=0
=

∂

∂a
(g(a)lm(−∂l∂mg(a)jk + ∂g(a) ∗ ∂g(a)))

∣∣∣∣
a=0

= −hlmRlmjk − g
lm∂l∂mhjk.

Now −hijRijkl = −R̊(h)kl from the Bianchi identity using that the metric g(0) is
Kähler–Einstein. Next, we compute an expression for ∇∗∇h using complex coordinates:

(∇∗∇h)jk = −g
lm
∇l∇mhjk = −g

lm(∂l∂mhjk − ∂l0
p

mk
hjp)

= −glm∂l∂mhjk − R
m

k
hjm = −g

lm∂l∂mhjk −
1
n
shjk

where R = S is the Ricci tensor of the Kähler metric g(0) and s = r = trg S is the scalar
curvature. Next we compute using Lemma 10.7:

∂

∂a

(∫
M

trg S dV
)∣∣∣∣
a=0
=

∫
M

(〈h,−S〉 + trg h trg S) dV =
∫
M

(
1−

1
n

)
trg S trg h dV

= 0

where the last equality follows since trg S is the scalar curvature which is constant and∫
M

trg h dV = 0 since the volume is fixed through g(s). Thus

∂

∂a

1
n

(∫
M

trg S dV
)
g

∣∣∣∣
a=0
=

1
n

(∫
M

trg S dV
)
h =

1
n
sh.

Putting together these calculations yields the result. ut

Definition 8.2. Let L = L(g0) = Dg0F be the linearization of F at a static metric g0.
We say that g0 is linearly stable if L ≥ 0.

Definition 8.3. A static metric g0 is integrable if for any solution h of the linearized
equation

Dg0(F(g))(h) = 0

there exists a path g(s), s ∈ (−ε, ε), of static metrics where g(0) = g0 and

d

ds

∣∣∣∣
s=0
g(s) = h.

In particular this implies that the set of Hermitian metrics g satisfying F(g) ≡ 0 has a
smooth manifold structure near g0.
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We note that by the analysis of Koiso’s Theorem it follows that Kähler–Einstein met-
rics with c1(M) < 0 or c1(M) = 0 are integrable. Indeed, any solution to the linearized
deformation equation arises as the variation along a path of Kähler–Einstein metrics,
which are static. This can be seen as follows: If c1(M) < 0, Kähler–Einstein metrics are
linearly stable. If c1(M) = 0, any infinitesimal deformation of Kähler–Einstein metrics is
given by Hermitian symmetric deformation of Einstein metrics which in turn correspond
to (1, 1)-forms; moreover, the eigenvalues L are the eigenvalues of the operator

ψ 7→ 1dψ −
1
n
sψ

acting on (1, 1)-forms ψ ([2, p. 362]). If s = 0, nonnegativity follows easily and the ker-
nel ofL consists of harmonic (1, 1)-forms which are simply variations of Kähler–Einstein
metrics with vanishing scalar curvature due to the Calabi–Yau theorem. So Kähler–Ein-
stein metrics are integrable in the case c1(M) = 0. We now proceed with the proof of
Theorem 1.2.

Proof of Theorem 1.2. Let (M, g0, J ) be a Kähler–Einstein manifold. Fix h a symmetric
two-tensor of type (1, 1) such that |h|C∞ < ε′ < ε where ε′ and ε are small positive
constants to be chosen later. We want to show that the solution to the equation

∂

∂t
g = −S +Q(T )+

1
n

(∫
M

trg(S −Q) dV
)
g,

g(0) = g0 + h,

(28)

exists for all time and converges for ε′ chosen small enough. Let h(t) = g(t) − g0. First
consider

∂

∂t
h = −S +Q+

1
n

(∫
M

trg(S −Q) dV
)
g

= −(F(g0)+DFg0(h)+ A(g0, h))

= −DFg0(h)+ A(g0, h) = −L(h)+ A(g0, h) (29)

where A represents the higher order terms in the approximation of F byDSg0(h). Specif-
ically we have the bounds

|A(g0, h)|Ck ≤ C(|h|Ck |∇
2h|Ck−2 + |∇h|

2
Ck−1) (30)

where the constant C depends on bounds on the geometry of g(t), which we are assuming
is staying bounded along the flow anyway since |g(t) − g0|Ck < ε. So, fix T > 0 and a
small ε > 0. We would like to show that for ε′ small enough as above our solution exists
on [0, T ) and |h(t)|Ck < ε on this interval. We start with an L2 growth estimate.

Lemma 8.4. There exists a uniform (independent of ε, ε′, T ) constant C such that if
|h|Ck < ε for all t ∈ [0, T ), we have∫

M

|h(t)|2 dVg0 ≤ e
Cεt

∫
M

|h0|
2 dVg0 .
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Proof. Multiplying the final equation in (29) by h and integrating over M gives

∂

∂t

∫
M

|h(t)|2 dVg0 ≤

∫
M

(A ∗ h) dVg0

since L is negative semidefinite. By straightforward bounds using integration by parts and
the assumed Ck bound on h we are able to get the bound∣∣∣∣∫

M

(A ∗ h) dVg0

∣∣∣∣ ≤ Cε ∫
M

|h|2 dVg0

where C depends only on g0. The result follows immediately. ut

Lemma 8.5. There exists ε′ = ε′(T , n) � ε such that if |h0|C∞ < ε′, then the solution
h(t) exists on [0, T ) with |h(t)|Ck < ε for all t ∈ [0, T ).

Proof. We use standard parabolic regularity theory. First we rewrite the evolution equa-
tion for h as

∂

∂t
h = 1h+ Rm(h)+ A(g0, h). (31)

Fix a time τ < T . We will first get an estimate for
∫ τ

0

∫
M
|∇h|2 dVg0 dt . Take the inner

product of (31) with h and integrate over M to get

1
2
∂

∂t

∫
M

|h|2 = −

∫
M

|∇h|2 +

∫
M

Rm ∗ h∗2 +
∫
M

∇
2h ∗ h∗2 + h ∗ ∇h∗2

≤ −

∫
M

|∇h|2 + θ

∫
M

|∇h|2 + C(θ)

∫
M

|h|2

≤ −
1
2

∫
M

|∇h|2 + C(θ)

∫
M

|h|2. (32)

Using this bound and integrating over time we conclude that

1
2

∫ τ

0

∫
M

|∇h|2 ≤
1
2

∫
M

|h0|
2
+ C(θ)τ sup

[0,τ )

∫
M

|h(t)|2.

Using Lemma 8.4 we see that
∫ τ

0

∫
M
|∇h|2 can be made very small, in particular bounded

uniformly in terms of ε′. We now show how to get estimates on
∫ τ

0

∫
M
|∇
kh|2 for all

k > 0 in terms of the small constant ε′. Consider
1
2
∂

∂t

∫
M

|∇h|2 =

∫
M

〈∇(1h+ Rm(h)+ A(g0, h)),∇h〉

+

∫
M

∇
2h ∗ ∇h ∗ ∇h+ h ∗ ∇h∗2

≤ −

∫
M

|∇
2h|2 + C

∫
M

|Rm| |∇h|2

+ θ

∫
M

|∇
2h|2 + C(θ)

∫
M

|∇h|4 + Cε′
∫
M

|∇h|2

≤ −
1
2

∫
M

|∇
2h|2 + C

∫
M

|∇h|2.
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This implies the bound

1
2

∫ τ

0

∫
M

|∇
2h|2 ≤

1
2

∫
M

|∇h0|
2
+ C

∫ τ

0

∫
M

|∇h|2 ≤ Cε′.

Continuing in this fashion we can induct to get a bound of the above form for all covariant
derivatives of h. Note that for instance we can now bound∫ τ

0

∫
M

∣∣∣∣ ∂∂t h
∣∣∣∣2 ≤ C(∫ τ

0

∫
M

|∇
2h|2 +

∫ τ

0

∫
M

|h|2
)
≤ Cε′.

It is clear that we can in fact get bounds of the form∫ τ

0

∫
M

∣∣∣∣ ∂p∂tp∇qh
∣∣∣∣2 ≤ Cε′

for all p, q > 0. One can now apply the Sobolev inequality (with respect to g0) to deduce
Ck bounds on h in terms of ε′. These bounds will hold over any time interval where the
L2 norm of h is still small. Since this time can be made arbitrarily large with small choice
of ε′ by Lemma 8.4, the result follows. ut

We now improve these estimates to include L2 decay of h, which will ultimately yield the
stated long-time existence and convergence. Say T is a maximal time such that |h|k < ε

on [0, T ). Divide the interval [0, T ) into intervals of length τ and let N be the integer
such that Nτ < T < (N + 1)τ . Let Ij = [jτ, (j + 1)τ ]. OnMj := M× Ij define a norm

‖f ‖Mj :=
∫ (j+1)τ

jτ

‖f (t)‖L2(g0)
dt, (33)

which defines an inner product in the usual way. Let π j denote the orthogonal projection
onto ker(∂/∂t + L) with respect to ‖f ‖Mj . Since L is positive semidefinite we see that
π has no positive eigenvalues, but there is still the lingering question of zero eigenvalues.
This is where the integrability property comes in. Let π j0 (h) denote the radial component,
i.e. the kernel of L. We will show using integrability that there exists a stationary solution
gj on Mj such that π j0 (g(t)− gj ) is very small compared to g(t)− gj . This will allow us
to deduce the L2 decay of h and then to conclude convergence.

Lemma 8.6. Given α > 0 there exists δ = δ(n, τ ) such that if sup[τ0,τ0+τ ] |h(t)|Ck < δ

then there exists a Kähler–Einstein metric g1 such that

|π
j

0 (g − g1)| ≤ α(t − τ0)|g − g1| (34)

and
|g1 − g0|Ck ≤ C sup

I

|g − g0|Ck . (35)
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Proof. Recall from the discussion above that the set of metrics g near g0 satisfying
F(g) = 0, call it U , has a natural smooth manifold structure. The tangent space to U
is given by the kernel of L, call it K, which is finite-dimensional since L is elliptic. Let
{Bi} be a basis for K orthonormal with respect to the L2 norm induced by g0. Also using
ellipticity, we get a system of eigenvectors {Eλ} for L orthonormal with respect to the L2

inner product above. We see that there exist constants rλ such thatCλ = rλEλeλt is a basis
for ker(∂/∂t + L) which is orthonormal with respect to the inner product corresponding
to (33).

Define the map 9 : U → K by 9(g) =
∑
i〈g, Bi〉 > Bi . A simple calculation using

the bases described above shows that for g1 ∈ U , 9(g1) = 9(π
j (g1)) = π

j

0 (g1). Also
it is easy to see that the differential of 9 at g0 is the identity map, so we can apply the
inverse function theorem. Fix the time τ0 ∈ Ij . If |g(t) − g0|k is small enough, then in
particular π j0 (g(τ0)−g0) = π

j

0 (g(τ0)) can be made small, so that by the argument above
there exists g1 ∈ U such that

9(g1) = π
j

0 (g(τ0)).

Thus in particular using the above equalities we have π j0 (g1 − g(τ0)) = 0. Using the
evolution equations satisfied by g and g1 it is clear that one has estimate (34). Also note
that g1 = 9

−1((π jg)0) and g0 = 9
−1((π jg0)0), thus using our bound from the inverse

function theorem we get

‖g1 − g0‖Mj ≤ C‖π
j (g − g0)‖Mj

and again using that these are all solutions of the same parabolic equation, we can get the
bound

|g1 − g0|Ck ≤ C sup
Ij

|g − g0|Ck . ut

Lemma 8.7. Let I = [τ0, τ0 + τ ] and take g1 as in Lemma 8.6. Then there exists ε > 0
depending only on g0 such that if |h1(0)|Ck < ε where h1 = g − g1 then

sup
[τ0+τ/2,τ0+τ ]

∫
M

|g − g1|
2 dVg0 ≤ e

−τλ/2 sup
[τ0,τ0+τ/2]

∫
M

|g − g1|
2 dVg0 (36)

where λ = min{λi : λi is an eigenvalue of L, λi 6= 0} > 0.

Proof. Let h1(t) = g(t) − g1. If |h1(0)|Ck < ε, a calculation like that in Lemma 8.4
combined with the bound on π0(h1(t)) shows that

d

dt

∫
M

|h1|
2
=

∫
M

〈2Lh1, h1〉 dVg0 +

∫
M

A(h1, g0) ∗ h1 dVg0

≤ −2λ
∫
M

|h1 − π
j

0 (h1)|
2 dVg0 + Cε

∫
M

|h1|
2 dVg0

≤

(
−

3
2
λ+ Cε

)∫
M

|h1|
2
≤ −λ

∫
M

|h1|
2

as long as ε < λ/C. Thus
∫
M
|h1(t)|

2 dVg0 ≤ e
−λ(t−τ)

∫
M
|h1(τ )|

2 dVg0 , from which the
claim follows immediately. ut
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We will need one more lemma, which roughly says that if a solution to (28) is decaying
at a certain rate at a particular time then it decayed at that rate earlier in time. This lemma
is inspired by Lemma 5.31 in [5], and the proof is the same.

Lemma 8.8. There exists a constant ν(n, τ ) > 0 with the following property. Let h be a
symmetric two-tensor satisfying the equation

∂

∂t
h = −Lh+ A(g0, h),

and
sup

[τ0,τ0+τ ]
|h|Ck < ν and |π0(h)| ≤ α(t − τ0)|h|

where π0 is the projection onto the kernel of ∂/∂t + L restricted to the interval
[τ0 − τ/2, τ0 + τ ]. Then if

sup
[τ0+τ/2,τ0+τ ]

∫
M

|h|2 dVg0 ≤ e
−τλ/2 sup

[τ0,τ0+τ/2]

∫
M

|h|2 dVg0 (37)

then
sup

[τ0,τ0+τ/2]

∫
M

|h|2 dVg0 ≤ e
−τλ/2 sup

[τ0−τ/2,τ0]

∫
M

|h|2 dVg0 . (38)

Proof. First note that the analogous claim where h satisfies the linear equation (∂/∂t+L)h
=0 and π0(h) = 0 is obvious since L is positive semidefinite and by definition π(h)0=0.
In fact there is decay at the rate λ as opposed to the λ/2 in the statement above. So,
if the claim were false, then for a sequence νi → 0 we would have hi satisfying the
hypothesis but not the conclusion with the bound |hi |Ck < νi . By standard compactness
arguments we can parabolically rescale hi and extract a subsequence converging to h∞,
which satisfies the initial decay hypothesis but not the conclusion. Moreover, given that
A is quadratic in h, it is clear that this h∞ satisfies the linear equation (∂/∂t + L)h = 0
and π0(h) = 0, contradicting the above. ut

We now proceed with the main proof. Suppose the maximal existence time satisfies
T < ∞, and subdivide [0, T ] into N intervals of length τ labeled Ij as above. For
fixed j , let gj be the metric such that π j0 (g(t) − gj ) = 0 on Ij given by Lemma 8.6.
Define hj := g(t)− gj . By Lemma 8.7 and parabolic regularity we have

sup
[(j+1/2)τ,(j+1)τ ]

|hj | ≤ Ce
−τλ/2 sup

[jτ,(j+1/2)τ ]
|hj |. (39)

We can apply Lemma 8.8 inductively to deduce

sup
[jτ,(j+1)τ ]

|hj | ≤ e
−λτ(j−1) sup

[0,τ/2]
|hj |.

This allows us to conclude that on Ij we have∣∣∣∣ ∂∂t g
∣∣∣∣ = ∣∣∣∣ ∂∂t (g − gj )

∣∣∣∣ ≤ C sup
Ij

|hj |Ck ≤ Cεe
−λτ(j−1)

=
Cε

pj−1 .
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Now note that simply integrating over time we see that

sup
Ij

|g − g0| ≤ 2τ sup
Ij∪Ij−1

∣∣∣∣ ∂∂t g
∣∣∣∣+ sup

Ij−1

|g − g0|.

Applying this estimate inductively we find that

sup
Ij

|g − g0| ≤ 2τ
N∑
k=1

sup
Ik∪···∪IN

∣∣∣∣ ∂∂t g
∣∣∣∣+ sup

I0

|g − g0|

≤

∞∑
k=1

2τCε
pk−1 + sup

I0

|h0| ≤
2τCε
p − 1

+ sup
I0

|h0|. (40)

Now we want to choose our constants ε, ε′ and τ to derive a contradiction from this
inequality. So, choose τ initially so large that

1
c(n)eτλ

+
2Cτ
eτλ − 1

<
1
C
e−τλ/4 (41)

where c(n) is a fixed large constant and C is a constant depending only on g0.
Now let ε = min{δ(n, τ ), ν(n, τ ), λ/C0} where δ(n, τ ) is as in Lemma 8.6, ν(n, τ ) is

as in Lemma 8.8, and C0 is a constant depending only on g0 and the dimension which we
now make explicit. By Lemma 8.4 we can bound the growth of L2 derivatives of h, and
then by Sobolev embeddings we can bound Ck norms. Specifically there exists a constant
depending only on g0 such that

|h|C4 < CeCετ |h(0)|C0 .

Then let C0 := 12C. Note that if ε < λ/C0 and we start our flow with some h(t0) satis-
fying |h(t0)|C4 < (ε/C)e−τλ/4, the solution exists at least on [t0, t0 + 3τ) and moreover
sup[t0,t0+3τ) |h(t)|C4 < ε.

Now again using Lemma 8.4 we see that we may choose ε′ so that the solution exists
on [0, 3τ ] and further

sup
[0,3τ ]
|h(t)|Ck <

ε

c(n)
e−τλ.

Since ε < min{δ(n, τ ), ν(n, τ )} we can apply (40) to get

sup
IN

|g − g0| ≤ ε

(
1

c(n)eτλ
+

2Cτ
eτλ − 1

)
≤
ε

C
e−τλ/4.

Thus the solution to HCF with initial metric g(T − τ) exists on an interval of length 3τ
with |h|C2 < ε, contradicting the maximality of T . Thus the solution exists for all time
and |g(t)− g0|Ck < ε for all time. Indeed we have decay

|g(t)− gj | ≤ Ce
−λt

for all t ∈ [0, jτ ) and for all j . Since {gj } is a sequence of Kähler–Einstein metrics with
uniform Ck bounds, we get a subsequence gj → g∞ convergent to a critical metric, with
exponential convergence g(t)→ g∞. ut
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9. Further questions

It bears mentioning again that Theorems 1.1 and 1.2 are both true for solutions to (3)
whereQ can be any quadratic expression in the torsion. It remains to be discovered which
choices of Q lead to flows with favorable existence properties. Ideally one would like to
find choices of Q for which either integrability conditions for ω are preserved, or certain
curvature conditions are preserved.

The HCF is similar in some regards to certain renormalization group flows arising in
physics where external fields, say Yang–Mills or B-fields, are added to the pure gravity
theory and then arise in the flow equations (see for instance [13], [16], [17]). In these
flows the torsion is given as an external field, whereas in HCF everything is defined in
terms of the metric. A similar case is studied in [3], [10] where a “holonomy flow” is
proposed for closedG2 structures. Here one evolves the definite three-form σ defining the
G2 structure by the Hodge Laplacian of σ taken with the metric induced by σ . This is a
quasilinear equation which bears a certain resemblance to HCF in that it can be written as
“Ricci flow plus torsion”, where the torsion is defined in terms of the underlying metric.
The techniques of our stability theorem likely apply to show stability of this flow near
G2-holonomy spaces with negative semidefinite Lichnerowicz operator.

Finally, Hermitian curvature flow may provide a framework for addressing questions
on the existence of integrable complex structures. In particular, if one had a complete
description of the behavior of this flow for certain geometric conditions and a complete
understanding of the limiting objects, one could then describe the manifolds admitting
integrable complex structures with Hermitian metrics satisfying the initial geometric con-
ditions. Therefore with strong enough convergence results for this flow one could possibly
rule out integrable complex structures on certain manifolds.

10. Appendix: Variational formulas

In this appendix we collect variational formulas for quantities related to the curvature and
torsion of Hermitian metrics.

Lemma 10.1. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J . Then

∂

∂a
0lik = g

lm
∇ihkm,

∂

∂a
0l
ik
= glm∇ihmk.

Proof. We compute directly in canonical complex coordinates:

∂

∂a
0lik =

∂

∂a
glm(∂igkm) = −h

lm∂igkm + g
lm∂ihkm

= glm(∂ihkm − 0
p
ikhpm) = g

lm
∇ihkm.

This gives the first formula, and the second follows by conjugation. ut
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Lemma 10.2. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J . Then

∂

∂a
�l
ijk
= −gml∇j∇ihkm,

∂

∂a
�ijkl = �

m

ijk
hml −∇j∇ihkl .

Proof. We compute directly:

∂

∂a
�l
ijk
=

∂

∂a
(−∂j0

l
ik) = −∂j (g

lm
∇ihkm)

= glp∂jgpqg
qm
∇ihkm − g

lm∂j∇ihkm

= −gml(∂j∇ihkm − 0
p

jm
∇ihkp) = −g

ml
∇j∇ihkm.

This gives the first formula, and the second follows easily. ut

Lemma 10.3. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J . Then

∂

∂a
s = −1 trh− 〈h, S + div∇ T −∇w〉.

Proof. We compute using Lemma 10.2:

∂

∂a
s =

∂

∂a
gklSkl = −h

klSkl + g
kl[−1hkl − h

ij�ijkl + hkmS
m

l
] = −1 trh− 〈h, P 〉.

The result now follows from Lemma 2.4. ut

Lemma 10.4. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J . Then

∂

∂a
Tijk = ∇ihjk −∇jhik + T

m
ij hmk,

∂

∂a
w = ∇ trh− div∇ h.

Proof. We compute directly:

∂

∂a
Tijk =

∂

∂a
(∂igjk − ∂jgik) = ∂ihjk − ∂jhik = ∇ihjk + 0

m
ijhmk −∇jhik − 0

p
jihpk

= ∇ihjk −∇jhik + T
m
ij hmk.

This gives the first formula. For the second we see that

∂

∂a
wi =

∂

∂a
gjkTijk = −h

jkTijk + g
jk(∇ihjk −∇jhik + T

m
ij hmk)

= ∇i trh− div∇ hi . ut
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Lemma 10.5. Let g(s) be a family of Hermitian metrics compatible with the given com-
plex structure J . Then

∂

∂s
|T |2 = 〈h,−2Q1

+Q2
〉 + 4〈∇h, T 〉

where

〈∇h, T 〉 =
1
2
gijgklgmn(∇ihknTj lm + Tikn∇jhlm).

Proof. We compute directly:

∂

∂s
|T |2 =

∂

∂s
gipgjqgkrTijkTpqr

= −hipgjqgkrTijkTpqr − h
jqgipgkrTijkTpqr − h

krgipgjqTijkTpqr

+ gipgjqgkr [(∇ihjk −∇jhik + T
m
ij hmk)Tpqr + Tijk(∇phqr −∇qhpr + T

s
pqhrs)]

= 〈h,−2Q1
+Q2

〉 + 4〈∇h, T 〉. ut

Lemma 10.6. Let g(s) be a family of Hermitian metrics compatible with the given com-
plex structure J . Then

∂

∂s
|w|2 = −〈h,Q3

〉 + 2〈∇ trh− div∇ h,w〉.

Proof. In canonical complex coordinates at a point we compute

∂

∂s
gijgmngrsTimnTjsr

= −hijgmngrsTimnTjsr − g
ijhmngrsTimnTjsr − g

ijgmnhrsTimnTjsr

+ gijgmngrs[(∇ihmn −∇mhin + T
p
imhpn)Tjsr

+ (∇jhsr −∇shjr + T
q

js
hqr)Timn]

= −〈h,Q3
〉 + 2〈∇ trh− div∇ h,w〉. ut

Lemma 10.7. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J . Then

∂

∂a

∫
M

s dV =

∫
M

[〈h,−S − div∇ T +∇w〉 + (trh)(s − div∇ w − |w|2)] dV .

Proof. From Lemma 10.3 we obtain

∂

∂a

∫
M

s dV =

∫
M

[−1 trh+ 〈h,−S − div∇ T +∇w〉 + s trh] dV .

Now by Lemma 10.11 we see∫
M

−1 trh dV =
∫
M

(trh)(− div∇ w − |w|2) dV,

and the result follows. ut
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Lemma 10.8. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J . Then

∂

∂a

∫
M

|T |2 dV =

∫
M

[〈h,−2Q1
+Q2

− 4Q4
− 4 div∇ T 〉 + (trh)|T |2] dV .

Proof. We directly compute using Lemma 10.5:

∂

∂a

∫
M

|T |2 dV =

∫
M

[〈h,−2Q1
+Q2

〉 + 4〈∇h, T 〉 + (trh)|T |2] dV .

We now integrate by parts:∫
M

〈∇h, T 〉 dV =

∫
M

gipgjqgkr∇ihjkTpqr dV

=

∫
M

gipgjqgkr(∂ihjk − 0
s
ijhsk)Tpqr dV

= −

∫
M

hjk∂i(g
ipgjqgkrTpqr dV )+ g

ipgjqgkr0sijhskTpqr dV

=

∫
M

hjk[g
in∂igmng

mpgjqgkrTpqr + g
ipgjn∂igmng

mqgkrTpqr

+ gipgjqgkm∂igmng
nrTpqr − g

ipgjqgkr∂iTpqr

− gipgjqgkrTpqrg
mn∂igmn

− gmpgnqgkr0
j
mnTpqr ] dV

=

∫
M

〈h,− div∇ T −Q4
〉 dV .

Plugging in this simplification yields the result. ut

Lemma 10.9. Let g(a) be a family of Hermitian metrics compatible with the given com-
plex structure J . Then

∂

∂a

∫
M

|w|2 dV =

∫
M

[
〈h,Q3

+ 2∇w〉 + (trh)[−2 div∇ w − |w|2]
]
dV .

Proof. We directly compute using Lemma 10.6 and integrating by parts using Lemmas
10.10 and 10.12:

∂

∂a

∫
M

|w|2 dV =

∫
M

[〈h,−Q3
〉 + 2〈∇ trh− div∇ h,w〉 + (trh)|w|2] dV

=

∫
M

[
〈h,−Q3

〉 + 2(trh)[− div∇ w − |w|2]

+ 2〈h,∇w +Q3
〉 + (trh)|w|2

]
dV . ut
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Lemma 10.10. Given φ ∈ C∞(M) and α ∈ T 1,0(M) we have∫
M

〈∇φ, α〉 =

∫
M

φ[− div∇ α − 〈w, α〉] dV .

Proof. We directly compute∫
M

〈∇φ, α〉 dV =

∫
M

gij∂iφαj dV = −

∫
M

φ∂i[gijαj dV ]

=

∫
M

φ[gis∂igrsgrjαj − g
ij∂iαj − g

ijαjg
pq∂igpq ] dV

=

∫
M

φ[− div∇ α − 〈w, α〉] dV . ut

Lemma 10.11. Given φ ∈ C∞(M) we have∫
M

1φ dV =

∫
M

φ[div∇ w + |w|2] dV .

Proof. We directly compute∫
M

1φ dV =

∫
M

gij∂j∂iφ dV = −

∫
M

∂iφ∂j (g
ij dV )

=

∫
M

∂iφ[gis∂jgrsg
rj
− gijgpq∂jgpq ] dV =

∫
M

∂iφ[gijgpqTqjp] dV

= −

∫
M

〈∇φ,w〉 dV =

∫
M

φ[div∇ w + |w|2] dV .

For the last equality we applied Lemma 10.10. ut

Lemma 10.12. Given β ∈ T 1,0(M) and h ∈ Sym1,1(M) we have∫
M

〈div∇ h, β〉 dV =
∫
M

[〈h,−∇β − w ⊗ β〉] dV .

Proof.∫
M

〈div∇ h, β〉 dV =
∫
M

gj lgki∇khijβl dV =

∫
M

gikglj [∂khij − 0
p

kj
hip]βl dV

= −

∫
M

hij∂k[g
ikgljβl dV ]+

∫
M

gikglj0
p

kj
hipβl dV

=

∫
M

hij [gis∂kgrsg
rkgljβl + g

ikgls∂kgrsg
rjβl − g

ikglj∂kβl − g
ikgljgrs∂kgrsβl] dV

−

∫
M

gikglj0
p

kj
hipβl dV

=

∫
M

[〈h,−∇β − w ⊗ β〉] dV . ut
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