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Abstract. We show that the deformation space of complex parallelisable nilmanifolds can be de-
scribed by polynomial equations but is almost never smooth. This is remarkable since these mani-
folds have trivial canonical bundle and are holomorphic symplectic in even dimension. We describe
the Kuranishi space in detail in several examples and also analyse when small deformations remain
complex parallelisable.

1. Introduction

Left-invariant geometric structures on nilmanifolds, i.e., compact quotients of (real) nilpo-
tent Lie groups, have proved to be both very rich and accessible for an in depth study. Thus
many examples and counter-examples in (complex) differential geometry are of this type.

In this paper we want to study deformations of nilmanifolds which are complex paral-
lelisable, that is, have trivial holomorphic tangent bundle. By a result of Wang [Wan54],
all compact complex parallelisable manifolds arise as quotients of complex Lie groups.

The study of deformations of complex structures on compact complex manifolds has
been an important topic since the work of Kodaira and Spencer in [KS58]. In particular
they showed that first order deformations correspond to elements in H 1(X,2X) where
2X is the sheaf of holomorphic tangent vectors.

In this paper we will look at deformations from the following point of view: con-
sider X as a differentiable manifold together with an integrable almost complex structure
(M, J ), i.e., J : TM → TM , J 2

= −IdTM and the Nijenhuis integrability condition
holds (see (1) below). A deformation of X can be given as a family of such complex
structures (Jt )t∈B parametrised by a complex analytic space B such that J = J0 for some
point 0 ∈ B.

A key result is the theorem of Kuranishi [Kur62] which guarantees the existence of a
locally complete space of deformations Kur(X) which is versal at 0. In other words, the
Kuranishi family parametrises all sufficiently small deformations effectively, though not
uniquely, which is roughly due to the existence of automorphisms. The construction of
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the Kuranishi space can then be made explicit after the choice of a hermitian metric on
M . We will go through this construction for our special case of complex parallelisable
nilmanifolds in Section 4.

In general, the Kuranishi space can be arbitrarily singular and non-reduced but we
can hope for better control over deformations if we restrict our class of manifolds. If, for
example, X is Kähler and has trivial canonical bundle, i.e., X is a Calabi–Yau manifold,
then the Tian–Todorov Lemma implies that the Kuranishi space is indeed smooth; we say
thatX has unobstructed deformations. Such manifolds are very important both in physics
and in mathematics, for example in the context of mirror symmetry. The smoothness fails
if we drop the Kähler condition [Ghy95].

The only nilmanifolds which can carry a Kähler structure are tori, but nilmanifolds
with left-invariant complex structure always have trivial canonical bundle. This follows,
as noted in [BDV07], directly from Salamon’s work [Sal01, Theorem 3.1] and is also true
in a slightly more general context [CG04].

Many known examples like complex tori, the Iwasawa manifold [Nak75], Kodaira
surfaces [Bor84], abelian complex structures [CFP06, MPPS06] (see Section 2 for a def-
inition) have indeed unobstructed deformations, and the speculation that a kind of Tian–
Todorov Lemma could be true for large classes of nilmanifolds, including for example
hypercomplex structures, was supported by results on weak homological mirror symme-
try for nilmanifolds [Poo06, CP08]. On the other hand Catanese and Frediani observed
in their study of deformations of principal holomorphic torus bundles, which are in par-
ticular nilmanifolds with left-invariant complex structure, that the Kuranishi space can be
singular [CF06]. Similar obstructedness phenomena in special examples in real dimen-
sion 6 have been noted in [Sal01, Lemma 4.3] and [MPPS06, Section 6].

In this article we want to study deformations in the complex parallelisable case; a lot
of other remarkable properties of such manifolds have been described by Winkelmann
[Win98]. We will show, in particular, that the Kuranishi space of a complex parallelisable
nilmanifold is almost always singular, confirming that even for this well behaved class
there is no general or generic unobstructedness result.

Nevertheless, the Kuranishi space cannot become too ugly:

Theorem 4.5. If X = 0\G is a complex parallelisable nilmanifold and G is ν-step
nilpotent, then Kur(X) is cut out by polynomial equations of degree at most ν.

In Remark 4.6 we will give an example that the bound on the degree does not remain valid
for general nilmanifolds but we believe that there is a larger bound depending on the step
length and the dimension only.

It seems that the Lie algebra g of G cannot be too far from being free if the Kuranishi
space is smooth, and all examples that we found were actually free. Unfortunately, the
analysis of the obstructions of higher order becomes complicated but we can at least
prove the following:

Theorem 4.8/Corollary 4.9. Let X = 0\G be a complex parallelisable nilmanifold and
let g be the Lie algebra of G. If g/[g, [g, g]] is not isomorphic to a free 2-step nilpotent
Lie algebra then there is a non-vanishing obstruction in degree 2 and the Kuranishi space
is singular.
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In particular, if g is 2-step nilpotent then Kur(X) is smooth if and only if g is a free
2-step nilpotent Lie algebra.

It is a natural question which infinitesimal deformations in H 1(X,2X) integrate to a 1-
parameter family of complex parallelisable complex structures. We show in Section 5 that
this is the case if and only if they are infinitesimally complex parallelisable; the analogous
results holds for abelian complex structures [CFP06].

From this we can also deduce that every complex parallelisable nilmanifold which is
not a torus has small deformations which are no longer complex parallelisable (Corol-
lary 5.2). On the other hand it is known that small deformations at least remain in the
category of nilmanifolds with left-invariant complex structure (see Section 4 or [Rol08]).

In Section 6 we will give several examples, mostly in small dimensions. As far as
we know, these are the first explicit examples of compact complex manifolds with trivial
canonical bundle (or even holomorphic symplectic structure) which have non-reduced
Kuranishi space.

2. Complex parallelisable nilmanifolds and nilmanifolds with left-invariant
complex structure

LetG be a simply connected, complex, nilpotent Lie group with Lie algebra g, and 0 ⊂ G
a lattice, i.e., a discrete cocompact subgroup. By a theorem of Mal’cev [Mal51] such a
lattice exists if and only if the real Lie algebra underlying g can be defined over Q.

The most important invariant attached to a nilpotent Lie algebra (or Lie group) is
its nilpotency index, also called step length, defined as follows: consider the descending
central series

C0g := g, Ck+1g = [Ckg, g].

Then g is nilpotent if and only if there exists a ν such that Cνg = 0. The smallest such ν
is called the nilpotency index.

The quotient 0\G is a complex parallelisable nilmanifold. Such manifolds are equally
characterised by the fact that they admit a transitive action of a nilpotent complex Lie
group [Wan54].

Nakamura [Nak75] remarked that not all deformations of complex parallelisable nil-
manifolds are again complex parallelisable but, as we will discuss in Section 4, we can
describe all deformations in the slightly more general framework of nilmanifolds with
left-invariant complex structures.

Let H be a simply connected, real, nilpotent Lie group with Lie algebra h and con-
taining a lattice 0. Taking the quotient yields a real nilmanifold M := 0\H .

An almost complex structure J : h→ h defines an almost complex structure onH by
left translation and this almost complex structure is integrable if and only if the Nijenhuis
condition

[x, y]− [Jx, Jy]+ J [Jx, y]+ J [x, Jy] = 0 (1)

holds for all x, y ∈ h. In this case we call the pair (h, J ) a Lie algebra with complex
structure.
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The action of 0 on the left is then holomorphic and we get an induced complex struc-
ture on M; we call (M, J ) a nilmanifold with left-invariant complex structure.

Note that the multiplication in H induces an action on the left on M if and only if 0
is normal if and only if H = Rn is abelian; there is always an action on the right, which
is holomorphic if and only if (H, J ) is a complex Lie group.

By abuse of notation we will call a vector field, differential form or metric on M
left-invariant if its pullback to the universal cover H is left-invariant.

The complexified Lie algebra hC = h⊗R C decomposes as

hC = h1,0
⊕ h0,1

where h1,0 is the i-eigenspace of J and h0,1
= h1,0 is the (−i)-eigenspace.

It is not hard to see that the complex structure is integrable if and only if h1,0 is a
(complex) Lie subalgebra of hC.

The complex structure J makes (h, J ) into a complex Lie algebra if and only if the
bracket is J -linear, i.e., for all x, y ∈ h we have

[Jx, y] = J [x, y]. (2)

In this caseH is a complex Lie group and (M, J ) is complex parallelisable as above. The
following equivalent characterisation, which is proved by a straightforward computation
using the Nijenhuis tensor (1), is also well known.

Lemma 2.1. A Lie algebra with complex structure (h, J ) is a complex Lie algebra if and
only if [h1,0, h0,1] = 0. In this case the canonical projection

π : (h, J )→ h1,0, z 7→ 1
2 (z− iJ z),

is an isomorphism of complex Lie algebras.

Remark 2.2 (Notation). In order to make our notation more transparent, h, H and M
will always denote a real Lie algebra, Lie group or nilmanifold, often equipped with a
(left-invariant) complex structure J . We will only consider integrable complex structures.

The notations g, G and X will be reserved for their complex parallelisable counter-
parts. If we need to access the underlying real object with left-invariant complex structure
we will write for example g = (h, J ). By the above lemma we can then identify

gC = hC = g⊕ ḡ

where the bracket on ḡ is given by [x̄, ȳ] = [x, y] and [g, ḡ] = [h1,0, h0,1] = 0.

Another important class of left-invariant complex structures are so-called abelian
complex structures, which are characterised by [h1,0, h1,0] = 0 or, equivalently, [Jx, Jy]
= [x, y] for all x, y ∈ h. In some sense this is the opposite condition to being a com-
plex Lie algebra and their deformations have been studied in [MPPS06, CFP06]. As we
pointed out in the introduction, deformations behave much more nicely in this case.
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3. Dolbeault cohomology

In this section we will describe how the Dolbeault cohomology of a nilmanifold with
left-invariant complex structure (M, J ) is completely controlled by the Lie algebra with
complex structure (h, J ). This reduces many problems in the study of nilmanifolds to
finite-dimensional linear algebra. We will next concentrate on the complex parallelisable
case.

Let (M, J ) be a nilmanifold with left-invariant complex structure and h be the Lie
algebra of the corresponding Lie group.

We can identify elements in

3p,q := 3p,q(h∗, J )C = 3ph∗
1,0
⊗3qh∗0,1

with left-invariant differential forms of type (p, q) on M . The differential d = ∂ + ∂

restricts to
3∗h∗C =

⊕
3p,q

and can in fact be defined in terms of the Lie bracket only: for α ∈ h∗ and x, y ∈ h
considered as a differential form and vector fields we have

dα(x, y) = x(α(y))− y(α(x))− α([x, y]) = −α([x, y]) (3)

since all left-invariant functions are constant.
Let H k(h,C) be the k-th cohomology group of the complex

3∗h∗C : 0→ C 0
→ h∗C

d
→ 32h∗C

d
→ 33h∗C

d
→ · · ·

and Hp,q(h, J ) be the q-th cohomology group of the complex

3p,∗ : 0→ 3p,0
∂
→ 3p,1

∂
→ 3p,2

∂
→ · · · .

In fact, the first complex calculates the usual Lie algebra cohomology with values in
the trivial module C while the second calculates the cohomology of the Lie algebra h0,1

with values in the module 3p,0 (see [Rol08]).

Theorem 3.1. Let M = 0\H be a real nilmanifold with Lie algebra h.

(i) The inclusion of 3∗h∗C into the de Rham complex induces an isomorphism

H ∗dR(M,C) ∼= H
∗(h,C)

in cohomology (Nomizu, [Nom54]).
(ii) The inclusion of 3p,∗ into the Dolbeault complex induces an inclusion

ιJ : Hp,q(h, J )→ Hp,q(M, J ) (4)

which is an isomorphism if (M, J ) is complex parallelisable (Sakane, [Sak76]) or if
J is abelian (Console and Fino, [CF01]). Moreover, there exists an open subset U of
the space of all left-invariant complex structures onM such that ιJ is an isomorphism
for all J ∈ U ([CF01]).
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Other work in this direction was done by Cordero, Fernández, Gray and Ugarte [CFGU00].
Conjecturally ιJ is an isomorphism for all left-invariant complex structures; in particular
no counterexample is known.

For further reference we describe some cohomology groups in these terms. Given
V ⊂ g let Ann(V ) := {α ∈ g∗ | α|V = 0} be the annihilator of V .

Lemma 3.2. Let g be a complex Lie algebra. Denote byKk := im(d : 3k−1h∗C→3
kh∗C)

the space of k-boundaries. Then

H 0(g,C) = C, H 1(g,C) = Ann(C1g) = Ann([g, g]),

K2
= Ann(ker([−,−] : 32g→ g)).

Moreover, H 0,1(g) = H 1(g,C) and im(∂ : ḡ∗→ 32ḡ∗) = K̄2.

Proof. All assertions follow immediately from the fact that the differential d : g∗ →
32g∗ is the dual of the Lie bracket [−,−] : 32g→ g and from the identification gC =
g⊕ ḡ. ut

Since we are interested in deformations, the cohomology of the holomorphic tangent bun-
dle (resp. tangent sheaf) 2(M,J ) is of particular interest. It has been calculated in [Rol08]
for left-invariant complex structures for which (4) is an isomorphism, generalising results
on abelian complex structure in [MPPS06, CFP06].

But for a complex parallelisable nilmanifold X we can calculate it directly (as ob-
served by Nakamura [Nak75]). Any element of the complex Lie algebra g gives rise to a
holomorphic vector field. Hence the tangent sheaf is isomorphic to OX ⊗ g and in coho-
mology we have a natural isomorphism

H q(X,2X) = H
q(X,OX ⊗ g) ∼= H q(X,OX)⊗ g = H 0,q(X)⊗ g ∼= H 0,q(g)⊗ g.

Combining this with the previous results we get

Lemma 3.3. Let X = 0\G be a complex parallelisable nilmanifold. Then the tangent
sheaf satisfies 2X ∼= OX ⊗ g and its cohomology is calculated from the complex

0→ g
0
→ ḡ∗ ⊗ g

∂
→ 32ḡ∗ ⊗ g

∂
→ · · ·

where the differential of ᾱ⊗X ∈ 3p,0g is given by ∂(ᾱ⊗X) = (∂ᾱ)⊗X. In particular

H 0(X,2) = g, H 1(X,2) = H 1(X,OX)⊗ g = Ann([g, g])⊗ g.

4. Kuranishi theory

In [Kur62] Kuranishi showed that for every compact complex manifold X there exists a
locally complete family of deformations which is versal at X. He constructed this family
explicitly as a small neighbourhood of zero in the space of harmonic (0, 1)-forms with
values in the holomorphic tangent bundle after choosing some hermitian metric on X
(which always exists).
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We will now apply his construction to complex parallelisable nilmanifolds using the
results of the last section.

Let (M, J ) = (0\H, J ) be the real nilmanifold with left-invariant complex structure
underlying a complex parallelisable nilmanifold X = 0\G. The complex structure J :
h→ h is uniquely determined by the eigenspace decomposition hC = h1,0

⊕ h0,1.
A (sufficiently small) deformation of this decomposition hC = V ⊕ V̄ can be encoded

in a map 8 : h0,1
→ h1,0 such that V̄ = (Id + 8)h0,1, i.e., the graph of 8 in hC is the

new space of vectors of type (0, 1). This decomposition then determines a unique almost
complex structure JV , which is integrable if and only if [V, V ] ⊂ V .

So far we have only described deformations of J which remain left-invariant; this will
be justified in a moment.

The integrability condition is most conveniently expressed using the so-called Schou-
ten bracket: for X, Y ∈ h1,0 and (0, 1)-forms ᾱ, β̄ ∈ h∗0,1 we set

[ᾱ ⊗X, β̄ ⊗ Y ] := β̄ ∧ LY ᾱ ⊗X + ᾱ ∧ LXβ̄ ⊗ Y + ᾱ ∧ β̄ ⊗ [X, Y ] (5)

where LXβ̄ = iXdβ̄ + d(iXβ̄) is the Lie derivative and iX is the contraction with X.
One can then show that the new complex structure is integrable if and only if 8

satisfies the Maurer–Cartan equation

∂8+ [8,8] = 0 (6)

and it is well known that infinitesimal deformations, which correspond to first-order so-
lutions, are parametrised by classes in H 1(X,2X) (see for example [Cat88] or [Huy05]
for an overview). But different solutions may well yield isomorphic deformations.

In order to single out a preferred solution we choose a hermitian structure on g which
induces a left-invariant hermitian structure onX. Using the Hodge star operator associated
to the hermitian metric we can define the formal adjoint ∂

∗
to ∂ and the Laplace operator

1 := ∂ ∂
∗
+ ∂
∗
∂.

Defining the space of harmonic forms to be Hk
= ker(1 : 3k ḡ∗ → 3k ḡ∗) there is

an orthogonal decomposition

3k ḡ∗ = Bk ⊕Hk
⊕ V k

where Bk = im(∂ : 3k−1ḡ∗ → 3k ḡ∗) and V k = im(∂
∗

: 3k+1ḡ∗ → 3k ḡ∗); this
is just the intersection of the usual Hodge decomposition with the subcomplex of left-
invariant differential forms. The main point is that all harmonic forms are left-invariant in
our setting.

Since ker(∂) = Bk ⊕Hk we get an isomorphism

H k(X,2X) ∼= H
k(X,OX)⊗ g ∼= Hk

⊗ g.
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We are especially interested in the first two cohomology groups. By Lemma 3.3 we
have B1

= 0, which yields a commutative diagram

ḡ∗ ⊗ g
∂ // 32ḡ∗ ⊗ g

(H1
⊗ g)⊕ (V 1

⊗ g)
∂ //

pr
��

(B2
⊗ g)⊕ (H2

⊗ g)⊕ (V 2
⊗ g)

P
uukkkkkkkkkkkkkkkk

H

��
V 1
⊗ g B2

⊗ g
δ

∼=oo H2
⊗ g

Here δ denotes the inverse of the isomorphism P ◦ ∂ : V 1
⊗ g→ B2

⊗ g.
We will now use these operators to describe the Kuranishi space. Let X1, . . . , Xn be

a basis of g and ω̄1, . . . , ω̄m be a basis for H1. Then {ω̄i ⊗ Xj } is a basis of H 1(X,2X)

and we define recursively

81(t) =

m∑
i=1

n∑
j=1

t
j
i ω̄

i
⊗Xj , 82(t) := −δ ◦ P [81(t),81(t)],

8k(t) := −δ ◦ P
∑

1≤i<k

[8i(t),8k−i(t)] (k ≥ 2),
(7)

obtaining a formal power series 8(t) =
∑
k≥18k(t).

We see that 8k is a homogeneous polynomial of degree k in the variables tji and it is
easy to verify that

∂8+ [8,8] = H [8,8].

The map 8 does not depend on the choice of the basis and we can define the obstruction
map

obs : H1
⊗ g→ H2

⊗ g, µ =
∑
i,j

t
j
i ω̄

i
⊗Xj 7→ H [8(t),8(t)].

We can now formulate Kuranishi’s theorem in our context.

Theorem 4.1 ([Kur62]). The formal power series 8(t) converges for sufficiently small
values of t and there is a versal family of deformations of X over the space

Kur(X) := {µ ∈ H1(2X) | ‖µ‖ < ε, obs(µ) = 0}

where H1(2X) = H1
⊗ g is the space of harmonic 1-forms with values in 2X. Kur(X)

is called the Kuranishi space of X.

By construction 8 is left-invariant and hence the new complex structure will also be left-
invariant. In fact, the new subbundle of tangent vectors of type (0, 1) in TMC is obtained
by translating the subspace (Id+8)g0,1

⊂ gC. We have reproved that all sufficiently small
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deformations of our complex parallelisable nilmanifold carry a left-invariant complex
structure.

Note that the construction involved the choice of a hermitian structure so Kur(X)
is not uniquely defined. Nevertheless for different choices of a metric the germs of the
resulting spaces are (non-canonically) isomorphic.

The values of t have to be small for two different reasons. First of all we need to
ensure the convergence of the formal power series 8(t), and secondly (Id +8)ḡ should
be the space of (0, 1)-vectors for an integrable almost complex structure, in other words
we need (Id + 8)ḡ ⊕ (Id+8)ḡ = gC. We will see that the first issue does not arise in
our setting.

Remark 4.2. Usually the terms of the formal power series8 are described using Green’s
operator, which inverts the Laplacian on the orthogonal complement of harmonic forms:

8k(t) := −∂
∗
G
∑

1≤i<k

[8i(t),8k−i(t)].

It is straightforward to check that this agrees with our definition above: one uses the
identities G ◦ 1 + H = 1 ◦ G + H = Id and the definition of the Laplacian. Our
formulation using the map δ will simplify the computation of examples in Section 6.

Now that we have seen how the Kuranishi space is constructed we want to investigate
its structure in detail for complex parallelisable nilmanifolds.

The key result is the following:

Lemma 4.3. Let ᾱ ⊗X, β̄ ⊗ Y ∈ ḡ∗ ⊗ g. Then their Schouten bracket is

[ᾱ ⊗X, β̄ ⊗ Y ] = ᾱ ∧ β̄ ⊗ [X, Y ].

Proof. Comparing the expression with the general formula (5) it suffices to show that for
X ∈ g and ᾱ ∈ ḡ the Lie derivative LXᾱ = iXdᾱ+ d(iXᾱ) is zero. But ᾱ is of type (0, 1)
and dᾱ is of type (0, 2) (since [g, ḡ] = 0) so both vanish when contracted with a vector
of type (1, 0). ut

This gives us

Lemma 4.4. For 8 as in the recursive description (7) we have

[8k,8l] ∈ 32ḡ∗ ⊗ Ck+l−1g ⊂ 3
2ḡ∗ ⊗ g.

Proof. We argue by induction. By the Jacobi identity, [Ckg, Clg] ⊂ Ck+l+1g, and certainly
81 ∈ ḡ∗⊗ C0g = ḡ∗⊗ g. Since the Schouten bracket is the Lie bracket on the vector part
and the map δ = ∂

−1
acts only on the form part, our claim follows. ut

We deduce immediately that the Kuranishi space cannot be too complicated:

Theorem 4.5. If g is ν-step nilpotent and 8 is as in (7) then

obs(t) =
∑

1≤i,j<ν,
i+j≤ν

H [8i,8j ].

In particular Kur(X) is cut out by polynomial equations of degree at most ν.
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Proof. Since g is ν-step nilpotent, Ckg = 0 for k ≥ ν. By the previous lemma this implies
that [8i,8j ] = 0 whenever i + j − 1 ≥ ν, and hence the only possibly non-vanishing
terms of obs = H [8,8] are the ones given above. ut

Remark 4.6. We believe that also for general nilmanifolds with left-invariant complex
structure (0\H, J ) there is some bound (depending only on the Lie algebra h) on the
degree of the equations cutting out the Kuranishi space. However it has to be weaker than
the one given in Theorem 4.5 as the following example shows.

Consider the complex vector space V := 〈X1, . . . , X7〉C. There is a natural real vector
space h ⊂ V ⊕ V̄ with a complex structure such that h1,0

= V .
Let ω1, . . . , ω7

∈ V ∗ be the dual basis to the Xi’s. Then, by the formula for the
differential (3), the Lie bracket on h is uniquely determined by

dω1
= dω2

= dω3
= dω4

= dω5
= 0, dω6

= ω1
∧ω2, dω7

= ω3
∧ω4
+ω̄1
∧ω5,

and the complex conjugate equations. The resulting Lie algebra is 2-step nilpotent.
Since d h∗1,0 ⊂ 32,0

⊕31,1, i.e., d = ∂ + ∂ , the complex structure is integrable with
respect to this Lie bracket. However, neither is the complex structure abelian, nor is (h, J )
a complex Lie algebra, because the image of d is not contained in one of the summands
31,1 or 32,0.

The Lie algebra with complex structure (h, J ) is defined over Q and by the theorem
of Mal’cev [Mal51] there exists a lattice 0 in the corresponding real simply connected
nilpotent Lie group H . We obtain a nilmanifold with left-invariant complex structure
M = (0\H, J ).

Using ∂X = [−, X]1,0 for X ∈ h1,0 we see that the element

81 := ω̄3
⊗X1 + ω̄

4
⊗X2

represents a class inH 1(M,2M); in order to check whether it defines an actual deforma-
tion we compute the first terms of the iterative solution (7) of the Maurer–Cartan equation
(see Section 6.2.1 for a similar computation).

The Schouten bracket (5) of the infinitesimal deformation is

[81,81] = −∂(2ω̄7
⊗X6)

and hence the second order obstruction vanishes. Setting 82 = 2ω̄7
⊗ X6 we see that

[81,82] = 2ω̄3
∧ ω̄5
⊗X6 is not ∂-exact and we have found a non-vanishing obstruction

in degree 3, which is higher than the nilpotency index of h. Thus the bound in Theorem 4.5
does not hold for general nilmanifolds.

For further reference we use Lemma 4.3 to calculate the second order obstructions,
i.e., the quadratic term of the obstruction map obs. Let as before ω̄1, . . . , ω̄m be a basis
ofH1

= Ann([g, g]) and X1, . . . , Xn be a basis of g. Then we can represent any element
in H 1(X,2X) as

81(t) =

m∑
i=1

n∑
k=1

tki ω̄
i
⊗Xk
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and consequently

[81(t),81(t)] =
[∑
i,k

tki ω̄
i
⊗Xk,

∑
j,l

t lj ω̄
j
⊗Xl

]
=

∑
i,j,k,l

(tki t
l
j )[ω̄

i
⊗Xk, ω̄

j
⊗Xl] =

∑
i,j,k,l

(tki t
l
j )ω̄

i
∧ ω̄j ⊗ [Xk, Xl]

=

∑
1≤i<j≤m

∑
k,l

(tki t
l
j − t

k
j t
l
i )ω̄

i
∧ ω̄j ⊗ [Xk, Xl]

=

∑
1≤i<j≤m

∑
1≤k<l≤n

2(tki t
l
j − t

k
j t
l
i )ω̄

i
∧ ω̄j ⊗ [Xk, Xl]

= 2
∑

1≤i<j≤m

∑
1≤k<l≤n

det
(
tki t li

tkj t lj

)
ω̄i ∧ ω̄j ⊗ [Xk, Xl]. (8)

We deduce from this formula a necessary condition for the Kuranishi space to be
smooth:

Lemma 4.7. If the subspace 32H1
⊂ 32ḡ is not contained in B2 and g is not abelian

then there is a non-vanishing obstructions in degree 2 and the Kuranishi space is singular.

Proof. As 32H1
⊂ 32ḡ is not contained in B2, there is some basis vector ω̄i ∧ ω̄j

which is not in the image of ∂ . Since g is not abelian there are vectors Xk, Xl such that
[Xk, Xl] 6= 0. Setting tqp = 0 if p 6= i, j or q 6= k, l and choosing the remaining coeffi-

cient such that det
(
tki t li

tkj t lj

)
6= 0 we have found an obstructed element in H 1(X,2X).

ut

The condition that the Kuranishi space be smooth is very strong. To make this more
precise we need to recall the definition of the free 2-step Lie algebra. Letm ≥ 2, V = Cm
and bm := V ⊕32V . Then bm with the Lie bracket

[·, ·] : bm × bm→ bm, [a + b ∧ c, a′ + b′ ∧ c′] := a ∧ a′,

is the free 2-step nilpotent Lie algebra.

Theorem 4.8. If g is not abelian then there is a non-vanishing obstruction in degree 2 if
and only if g/C2g is not isomorphic to the free 2-step nilpotent Lie algebra.

Hence, if g/C2g is not free then the Kuranishi space is singular.

The vanishing of all obstructions in degree 2 is not sufficient for the Kuranishi space to
be smooth. A 4-dimensional example where Kur(X) is cut out by a single cubic equation
can be found in Section 6.2.1.

All examples with smooth Kuranishi space which we could find were actually free
Lie algebras and at least in the 2-step nilpotent case there are no other:

Corollary 4.9. If g is 2-step nilpotent then the Kuranishi space is smooth if and only if g
is a free 2-step nilpotent Lie algebra, i.e., g ∼= bm with m = h0,1(X).
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Proof. This follows immediately from the theorem since for a 2-step nilpotent Lie algebra
we have C2g = 0, hence g/C2g ∼= g. ut

Note that b2 is the complex Heisenberg algebra, which is the Lie algebra of the universal
cover of the Iwasawa manifold. So we have reproved the smoothness of the Kuranishi
space of the Iwasawa manifold first observed by Nakamura [Nak75].

It is very easy to produce examples with singular Kuranishi space:

Corollary 4.10. If g ∼= g′ ⊕ a where a ∼= Cn is an abelian Lie algebra and g′ is not
abelian, then the Kuranishi space is singular.

In particular, if X is any complex parallelisable nilmanifold which is not a torus and
T is a complex torus then X × T has obstructed deformations.

Proof. We have g/C2g = g′/C2g
′
⊕ a, which is not free. An application of the theorem

proves the assertion. ut

Before we can address the proof of Theorem 4.8 we need a technical lemma. Let g =
C0g ⊃ C1g ⊃ · · · ⊃ Cνg = 0 be the descending central series and let Ckg∗ = Ann Ckg.
We get a filtration

0 = C0g∗ ⊂ C1g∗ = Ann(C1g) ⊂ · · · ⊂ Cνg∗ = g∗.

Lemma 4.11. Considering the vector space

W k := 〈α ∧ β ∈ 32g∗ | α ∈ Cig∗, β ∈ Cjg∗, i + j ≤ k〉C ⊂ 32g∗

we have
dα ∈ W k

⇔ α ∈ Ckg∗.

Proof. Assume that there is α /∈ Ckg∗ with dα ∈ W k . By the Jacobi identity, Ckg is
generated by elements of the form X = [Y,Z] where Y /∈ C1g and Z ∈ Ck−1g and hence
α(X) 6= 0 for one such element. By the definition of Cig∗ we have β(Y,Z) = 0 for all
β ∈ W k . On the other hand

dα(Y, Z) = −α([Y,Z]) = −α(X) 6= 0

so dα /∈ Wk—a contradiction.
The other direction is a well known fact for nilpotent Lie algebras. It can be easily

seen by picking a basis adapted to the descending central series (often called a Mal’cev
or Engel basis) and writing α as a linear combination of elements of the dual basis. ut

Proof of Theorem 4.8. Let g be a non-abelian Lie algebra. By Lemma 4.7 it suffices to
show that 32H1

⊂ B22 if and only if g/C2g is a free 2-step Lie algebra.
Recalling thatH1

= C1g∗ and B2
= im(d) we have to prove that32C1g∗ = W 1 is in

the image of the differential if and only if g/C2g is free.
The Lie bracket in g can also be considered as a linear map

b : 32g→ C1g,
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which is, by definition, surjective. Dualising we get (the restriction of) the differential

d : (C1g)
∗
→ 32g∗,

which is now injective.
Let A be the annihilator of C2g in (C1g)

∗. Then we infer from Lemma 4.11 that d|A :
A→ W 2

= 32C1g∗, in fact,

dA = im(d) ∩W 2
= im(d) ∩32C1g∗.

The dual map
b′ : (32C1g∗)∗ = 32(g/C1g)→ A∗ = C1g/C2g

gives an anti-symmetric bilinear form on g/C1g with values in C1g/C2g which is exactly
the Lie bracket in the quotient Lie algebra g/C2g.

Hence we see that32C1g∗ is in the image of d if and only if d : A→ W 2 is surjective
if and only if b′ is injective. But b′ is by definition surjective so it is injective if and only
if it is bijective, in which case32(g/C1g) ∼= C1g/C2g and the Lie algebra g/C2g is indeed
free. ut

5. Complex parallelisable deformations

It is a natural question if there are conditions which guarantee that a given small defor-
mation of our complex parallelisable manifold X is again complex parallelisable. So let
µ ∈ H 1(X,2X) = H1

⊗ g be an infinitesimal deformation and 8 the corresponding it-
erative solution of the Maurer–Cartan equation as in (7). The new space of (0, 1)-vectors
is (Id+8)ḡ. (Recall that we identified gC = g⊕ ḡ.)

By Lemma 2.1 the new complex structure is again complex parallelisable if and only
if

[(Id+ 8̄)X, (Id+8)Ȳ ] = 0

for all X, Y ∈ g. Looking at the terms up to first order yields

[X, Ȳ ]+ [µ̄X, Ȳ ]+ [X,µȲ ] = [µ̄X, Ȳ ]+ [X,µȲ ] = 0.

The first of these terms is in ḡ while the second is in g, and they are complex conju-
gate to each other up to sign and renaming. Thus we call µ an infinitesimally complex
parallelisable deformation if

∀X, Y ∈ g : [X,µȲ ] = 0 ⇔ µ ∈ H1
⊗ Zg,

where Zg denotes the centre of g. Such infinitesimal deformations are always unob-
structed: if µ ∈ H1

⊗ Zg then [µ,µ] ∈ 32ḡ∗ ⊗ [Zg,Zg] = 0. Hence in the recursive
definition (7) all higher order terms vanish, 8 = µ and obs(µ) = 0.

We have proved

Theorem 5.1. For an element µ ∈ H 1(X,2X) = H 1(X,OX) ⊗ g the following are
equivalent:
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(i) µ ∈ H 1(X,OX)⊗ Zg.
(ii) µ defines an infinitesimally complex parallelisable deformation.

(iii) tµ induces a one-parameter family of complex parallelisable manifolds for t small
enough, i.e., provided that (Id+ tµ)ḡ⊕ (Id+ tµ̄)g = gC.

Hence the Kuranishi family is (locally) a cylinder over an analytic subset of the quotient
H 1(X,OX)⊗ (g/Zg).

For abelian complex structures there is a similar characterisation of infinitesimally abelian
deformations [CFP06, Theorem 4].

Since g = Zg if and only if g is abelian we deduce:

Corollary 5.2. If g is not abelian then there are small deformations of X which are not
complex parallelisable.

6. Examples

We continue to use the notation introduced in Remark 2.2. The deformation theory of the
complex parallelisable nilmanifold X is completely determined by the Lie algebra g and
we have already discussed two series of examples where Kur(X) is smooth.

• If g = ak is the k-dimensional abelian Lie algebra then X is a torus and Kur(X) is
smooth of dimension k2(k + 1)/2.
• If g = bm is the free 2-step nilpotent Lie algebra onm generators, which has dimension
m(m+ 3)/2, then Kur(X) is smooth of dimension m2(m+ 3)/2 (see Corollary 4.9).

6.1. Examples in low dimension—overview

Nilpotent complex Lie algebras are classified up to dimension 7 [Mag86] and partial
results are known in dimension 8. Starting from dimension 7 there are infinitely many
non-isomorphic cases.

We will now describe the Kuranishi space of complex parallelisable nilmanifolds up
to dimension 5.

There is a convenient way to describe a nilpotent Lie algebra g using the differential
d : g→ 32g. The expression

g = (0, 0, 0, 0, 12+ 34)

means the following: with respect to a basis ω1, . . . , ω5 the differential is given by

dω1
= dω2

= dω3
= dω4

= 0 and dω5
= ω1

∧ ω2
+ ω3

∧ ω4.

This determines the Lie bracket, which is the dual map (see (3)).
More precisely, if we denote by X1, . . . , X5 the dual basis then the only non-zero Lie

brackets are [X1, X2] = [X3, X4] = −X5.
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Table 1. Kuranishi spaces up to dimension 5.

dim Lie algebra ν h1(2X) smooth irreducible reduced

1 a1 1 1
√ √ √

2 a2 1 6
√ √ √

3 a3 1 18
√ √ √

3 b1 2 6
√ √ √

4 a4 1 40
√ √ √

4 (0, 0, 0, 12) 2 12 − −
√

4 (0, 0, 12, 13) 3 8 − −
√

5 a5 1 75
√ √ √

5 (0, 0, 0, 12, 13) 2 15 − −
√

5 (0, 0, 0, 0, 12+ 34) 2 20 − −
√

5 (0, 0, 12, 13, 23) 3 10
√ √ √

5 (0, 0, 0, 12, 13+ 24) 3 15 − − −

5 (0, 0, 12, 13, 14) 4 10 − − −

5 (0, 0, 12, 13, 14+ 23) 4 10 − − −

(ν = nilpotency index)

Table 1 lists all Lie algebras up to dimension 5 in this notation together with some
information on the Kuranishi space of an associated complex parallelisable nilmanifold.
We denote the nilpotency index by ν.

Note that all Lie algebras with smooth Kuranishi space are either free or abelian. One
can check that also the free 4-step nilpotent Lie algebra on two generators (0, 0, 12, 13,
23, 14, 25, 24+ 15) has smooth Kuranishi space.

6.2. Examples in low dimension—explicit descriptions

In this section we will give explicit equations for the Kuranishi space of some examples.
In order to avoid cumbersome notation we will only consider the germ of the Kuranishi
space at zero which will be denoted by Kur(X)0. Since nothing interesting happens in
dimensions 1, 2, and 3 we start in dimension 4.

6.2.1. Computations in dimension 4. We will now compute the Kuranishi space explic-
itly for the two singular examples in dimension 4.

The structure equations of the Lie algebras in question are given with respect to the
bases X1, . . . , Xn and ω1, . . . , ωn as described at the beginning of this section. Thus we
will always start the computation of the iterative solution of the Maurer–Cartan equation
with the element

81(t) =

m∑
i=1

n∑
j=1

t
j
i ω̄

i
⊗Xj

where n = dim g and m = codim C1g = h
0,1(X).

In order to use harmonic forms we equip g with the unique hermitian metric such that
the Xi form an orthonormal basis.
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In every step of the recursion (7) we will decompose [8k,8l] = β + χ where χ
is harmonic and β is exact. Then χ will contribute to the obstruction map and δ(β) =
(∂)
−1
β will, if necessary, be used to compute the next iterative step.

The Lie algebra g = (0, 0, 0, 12). Since g is 2-step nilpotent we only have to look at
obstructions in degree 2, i.e., obs = H [81,81]. Since [X1, X2] = −X4 is the only
non-zero bracket we deduce from (8) that

[81(t),81(t)] = −2
∑

1≤i<j≤3

det
(
t1i t2i

t1j t2j

)
ω̄i ∧ ω̄j ⊗X4

= −2 det
(
t11 t21

t13 t23

)
ω̄1
∧ ω̄3

⊗X4 − 2 det
(
t12 t22

t13 t23

)
ω̄2
∧ ω̄3

⊗X4

− ∂

(
2 det

(
t11 t21

t12 t22

)
ω̄4
⊗X4

)
.

Hence

Kur(X)0 =
{
t ∈ C12

∣∣∣∣ det
(
t11 t21

t13 t23

)
= det

(
t12 t22

t13 t23

)
= 0

}
0
= (C6

× Y )0

where

Y = {t13 = t
2
3 = 0} ∪

{
rk
(
t11 t12 t13

t21 t22 t23

)
≤ 1

}
.

In particular we see that the Kuranishi space is a cylinder over the reducible space Y .

The Lie algebra g = (0, 0, 12, 13) We infer from (8) that

[81(t),81(t)] = −2 det
(
t11 t21

t12 t22

)
ω̄1
∧ ω̄2

⊗X3 − 2 det
(
t11 t31

t12 t32

)
ω̄1
∧ ω̄2

⊗X4

= −∂

(
2 det

(
t11 t21

t12 t22

)
ω̄3
⊗X3 + 2 det

(
t11 t31

t12 t32

)
ω̄3
⊗X4

)
and by the recursion formula we set

82 := 2 det
(
t11 t21

t12 t22

)
ω̄3
⊗X3 + 2 det

(
t11 t31

t12 t32

)
ω̄3
⊗X4.

We see that there are no obstructions of second order and calculate (noting that X4 is
in the centre and that [X2, X3] = 0)
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[81(t),82(t)] =
[
t11 ω̄

1
⊗X1 + t

1
2 ω̄

2
⊗X1, 2 det

(
t11 t21

t12 t22

)
ω̄3
⊗X3

]
= −2 det

(
t11 t21

t12 t22

)
(t11 ω̄

1
∧ ω̄3

⊗X4 + t
1
2 ω̄

2
∧ ω̄3

⊗X4)

= −2 det
(
t11 t21

t12 t22

)
(t12 ω̄

2
∧ ω̄3

⊗X4 + t
1
1 ∂ω̄

4
⊗X4)

= −2t12 det
(
t11 t21

t12 t22

)
ω̄2
∧ ω̄3

⊗X4 modB2.

Hence we have

Kur(X)0 =
{
t ∈ C2

⊗ C4
= C8

∣∣∣∣ t12 det
(
t11 t21

t12 t22

)
= 0

}
0
,

in other words, Kur(X)0 is a cylinder over the cone over the union of a plane and a quadric
in P3.

6.2.2. Remarks on dimension 5. The computations in dimension 5 proceed along the
same lines as in dimension 4 but are, as one might imagine, much more involved. Thus,
we will only present the results.

In view of Theorem 5.1 the Kuranishi space is a cylinder over an analytic subset of
the vector space H 1(ḡ,C)⊗ (g/Zg) whose dimension we denote by d.

Let I be the ideal generated by the functions cutting out the Kuranishi space. Each
ideal in the primary decomposition of I corresponds to an irreducible component of
Kur(X)0. Non-reduced components may occur if there are infinitesimal deformations
which can be lifted up to a certain order but not to actual deformations. If some com-
ponent is set-theoretically contained in another component, it is called embedded; such
components are always non-reduced.

In all examples the Kuranishi space has several irreducible components. We denote
by k the number of components of the reduced space and by e the number of embedded
components. Note that in the case g = (0, 0, 12, 13, 14 + 23) there are two non-reduced
components which are not embedded; both are supported on linear subspaces. The results,
which were computed using Singular [GPS05], can be found in Table 2, where we also
give the codimension and the degree of the various components.

Table 2. Singular deformation spaces in dimension 5 (notation as in Sect. 6.2.2).

g d (k, e) codim degree reduced

(0, 0, 0, 12, 13) 9 (2, 0) (2, 2) (3, 1) (
√
,
√
)

(0, 0, 0, 12, 13+ 24) 12 (3, 2) (4, 5, 4); (5, 5) (9, 3, 3); (2, 4) (
√
,
√
,
√
)

(0, 0, 12, 13, 14) 8 (2, 1) (2, 1); (2) (3, 1); (2) (
√
,
√
)

(0, 0, 12, 13, 14+ 23) 8 (4, 0) (2, 2, 2, 2) (3, 2, 2, 3) (
√
,
√
,−,−)

(0, 0, 0, 0, 12+ 34) 16 (2, 0) (5, 5) (20, 12) (
√
,
√
)
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