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Abstract. We investigate the question under which conditions the algebraic difference between
two independent random Cantor sets C1 and C2 almost surely contains an interval, and when not.
The natural condition is whether the sum d1+ d2 of the Hausdorff dimensions of the sets is smaller
(no interval) or larger (an interval) than 1. Palis conjectured that generically it should be true that
d1 + d2 > 1 should imply that C1 − C2 contains an interval. We prove that for 2-adic random
Cantor sets generated by a vector of probabilities (p0, p1) the interior of the region where the Palis
conjecture does not hold is given by those p0, p1 which satisfy p0 + p1 >

√
2 and p0p1(1 +

p2
0 + p

2
1) < 1. We furthermore prove a general result which characterizes the interval/no interval

property in terms of the lower spectral radius of a set of 2× 2 matrices.

1. Introduction

The algebraic difference of two sets A,B of real numbers is defined as

A− B := {x − y : x ∈ A, y ∈ B}.

An interesting situation arises when A and B are relatively small, and A − B large. For
example, A and B are Cantor sets, but A − B contains an interval. Whether this will
happen or not depends on the size of A and B. For instance, if the sum of the Hausdorff
dimensions of A and B is smaller than 1, then A − B will have a Hausdorff dimension
smaller than 1, and cannot contain an interval. A well known conjecture by Palis ([Pal87])
states that—conversely—if

dimHA+ dimH B > 1, (1)

then generically it should be true that A − B contains an interval. In this paper we will
follow [Lar90] and [DS08] and interpret ‘generically’ as ‘almost surely’ with respect to a
probability measure. The central question in this paper is:

Under which conditions does the algebraic difference between two independent ran-
dom Cantor sets almost surely contain an interval, and when not?

Here we will consider a canonical class of random Cantor sets, which randomize the
classical triadic Cantor set C in a natural way. In this introduction we will give a loose
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description. Instead of discarding the middle interval and keeping the left and the right
interval at every step in the construction of C by decreasing intersections of unions of
triadic intervals, we do the following: fix three numbers p0, p1 and p2 between 0 and 1.
Then at every step, retain the left interval with probability p0 (discard it with probability
1−p0), the middle with probability p1 and the right interval with probability p2, indepen-
dently of each other, and of the actions in other intervals at all levels. (See also Figure 1,
where we use trees to describe this recursive construction).

More generally we consider the M-adic case for integers M = 2, 3, . . . , where inter-
vals are recursively divided into M subintervals of equal length, which are retained with
survival probabilities p0, . . . , pM−1.

It turns out that the cyclic correlation coefficients γk , defined by

γk :=
M−1∑
i=0

pipi+k, (2)

for k = 0, . . . ,M − 1 play an important role (here the indices i + k should be taken
modulo M). Indeed, the main result in [DS08] is the following.

Theorem 1.1 ([DS08]). Consider two independent random Cantor sets F1 and F2 with
survival probabilities p0, . . . , pM−1.

(a) If γk > 1 for all k = 0, . . . ,M − 1, then F1 − F2 contains an interval a.s. on
{F1 − F2 6= ∅}.

(b) If γk, γk+1 < 1 for some k, then F1 − F2 contains no interval a.s.

This implies that if F1 and F2 are two independent copies of the random triadic Cantor set
described above, then their difference F1 −F2 contains an interval a.s. if p0p1 + p1p2 +

p2p0 > 1, and does not contain an interval a.s. if p0p1+p1p2+p2p0 < 1. However, the
triadic case is special, and Theorem 1.1 gives only a partial solution to, e.g., the dyadic
case, where intervals are split in two all the time, and retained with probability p0 and p1.
Here Theorem 1.1 merely implies that F1 − F2 contains an interval a.s. if 2p0p1 > 1,
and does not contain an interval if p2

0 + p
2
1 < 1. In Section 8 we will fill the gap, and

completely classify dyadic random Cantor sets with respect to this property (except on
the separating curve).

The tool that is used in the proof of this result is that of higher order Cantor sets,
which has been introduced in [DS08]. The same tool will enable us in Section 7 to obtain
a general classification result in terms of the lower spectral radius of a certain set of
matrices.

A major problem that arises is that the ‘independent interval’ property gets lost if one
passes to higher order Cantor sets. It is therefore important (and not just for the sake of
generalization) to consider a more complex mechanism to generate random Cantor sets.
The obvious way to allow for dependence is to define a joint survival distribution µ on
the set of all subsets of {0, . . . ,M − 1}. In Section 4 we give a version of Theorem 1.1
for this case.

Finally we remark that the recent paper [MSS09] considers the weaker property of the
difference F1 − F2 having positive Lebesgue measure. This time it is not the minimal γk



Differences of random Cantor sets and lower spectral radii 735

which is determining, but the product of the γk’s. Thus one obtains interesting examples
of differences of Cantor sets which have positive Lebesgue measure, but do not contain
an interval.

2. Construction

The construction of M-adic Cantor sets is intimately related to M-ary trees and M-ary
expansions of numbers.

LetM ≥ 2 be an integer. AnM-ary tree is a tree in which every node has preciselyM
children. The nodes are conveniently identified with strings over an alphabet of size M;
we use the alphabet A := {0, . . . ,M − 1}.

Strings over A of length n are denoted as in = i1 . . . in, where i1, . . . , in ∈ A. The
empty string is denoted by ∅ and has length 0. The concatenation of strings i1 . . . in and
j1 . . . jn is simply denoted by i1 . . . inj1 . . . jn.

TheM-ary tree T is defined as the set of all strings over the alphabet A. The root node
is the empty string ∅. The children of each node i1 . . . in ∈ T are the nodes i1 . . . inin+1
for all in+1 ∈ A. The level of a node corresponds to its length as a string. For each n ≥ 0,
the set of all nodes at level n is denoted by Tn. We thus have

T =
⋃
n≥0

Tn =
⋃
n≥0

⋃
i1∈A
· · ·

⋃
in∈A
{i1 . . . in}.

Strings over the alphabet A can also be interpreted as M-ary expansions of numbers.
For all i1 . . . in ∈ T we let [i1 . . . in]M denote the value of i1 . . . in as an M-ary number:

[i1 . . . in]M :=
n∑
k=1

Mn−kik. (3)

Consequently, [i1 . . . in]M takes its value in the range 0, . . . ,Mn
− 1.

2.1. Random Cantor sets

We consider the construction of random M-adic Cantor sets on the interval [0, 1]. The
construction is iterative: we start with the entire interval [0, 1], and at each level of the
construction, the intervals surviving so far are ‘split’ intoM equally sized closed subinter-
vals, of which a certain random subset is allowed to survive at the next level. The random
Cantor set is a stochastic object which consists of those points in [0, 1] that persist at all
levels. Here, when we speak of ‘splitting’ a closed set into some smaller closed sets, it
should be understood that the smaller sets need not be disjoint, but their interiors are.

We consider the probability measure Pµ on the space of {0, 1}-labelled trees {0, 1}T ,
where we label each node i1 . . . in ∈ T with Xi1...in ∈ {0, 1} and µ is a probability mea-
sure on 22A

called the joint survival measure. It is of course determined by its restriction
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to 2A, which we also denote µ, and call the joint survival distribution. The measure Pµ is
defined by requiring that Pµ(X∅ = 1) = 1 and that for all i1 . . . in ∈ T the random sets

{in+1 ∈ A : Xi1...inin+1 = 1} (4)

are independent and identically distributed according to µ.
The nth level M-adic subintervals of [0, 1] are defined by

Ii1...in :=
1
Mn

[[i1 . . . in]M , [i1 . . . in]M + 1] (5)

for all i1 . . . in ∈ T. The nth level intervals that survive in the nth level approximation of
the random Cantor set are the ones that are indexed by the nodes in the level n survival
set

Sn := {i1 . . . in : Xi1 = Xi1i2 = · · · = Xi1...in = 1} (6)

for all n ≥ 0. The random Cantor set F is given as the intersection of all its nth level
approximations, which we denote by F n:

F :=
∞⋂
n=0

F n =

∞⋂
n=0

⋃
i1...in∈Sn

Ii1...in .

An important property of random Cantor sets is their self-similarity: conditional on the
survival of any nth level M-adic interval, the process starting at that interval (scaled
by Mn) has the same distribution as the whole process, which starts at I∅ = [0, 1].

F 0 X∅
0 1

F 1 X0 X1 X2

0 1
3

2
3 1

F 2 X00 X01 X02 X10 X11 X12 X20 X21 X22

0 1
9

2
3

7
9

8
9 1

Fig. 1. The first three levels of a realization of a tree labelled by (Xi1...in) with p = (1, 0, 1/2),
with the surviving intervals in the approximations F n. The encircled Xi1...in correspond to nodes
obtaining the value 1.

The vector of marginal probabilities p := (p0, . . . , pM−1) is defined by

pi := Pµ(Xi = 1) (7)

for all i ∈ A. Note that these marginal probabilities do not need to sum up to 1. The
joint survival distribution µ can be chosen such that the Xi , i ∈ A, are M independent
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Bernoulli variables; the respective probabilities of success then equal the marginal prob-
abilities p0, . . . , pM−1. In this case we call F an ‘independent interval’ Cantor set.

The traditional deterministic triadic (so M = 3) Cantor set is obtained with the mea-
sure µ defined by µ({0, 2}) = 1. Its vector of marginal probabilities is p = (1, 0, 1).

The number #Sn of level n intervals selected in F n is a branching process with, as
offspring distribution, the distribution of #S1. Since the F n are non-increasing, F = ∅ if
and only if the branching process (#Sn) dies out. Since Eµ [#S1] = p0 + · · · + pM−1 =

‖p‖1, it follows that F 6= ∅ with positive probability if and only if

‖p‖1 > 1 or Pµ(#S1 = 1) = 1.

Discarding the uninteresting case on the right, we will assume henceforth that

‖p‖1 > 1. (8)

2.2. Algebraic difference

We consider the algebraic difference F1 − F2 between two independent random M-adic
Cantor sets F1 and F2. In general, we denote the joint survival distribution of F1 by
µ and that of F2 by λ. The corresponding marginal distributions will be denoted by p
and q respectively. In Section 6 and further we will restrict ourselves to the symmetric
case, where p = q. The algebraic difference F1 − F2 can be seen as a 45◦ projection
of the Cartesian product F1 × F2. Thus F1 − F2 is defined on the product space of the
probability spaces of F1 and F2. We will use P := Pµ × Pλ to denote the corresponding
product measure and E to denote expectations with respect to this probability.

3. Triangles and expectations

Let F1 and F2 be two independentM-adic random Cantor sets with joint survival distribu-
tions µ and λ, respectively. Denote by F n1 and F n2 their nth level approximations (n ≥ 0)
and define the following subsets of the unit square [0, 1]2:

3n := F n1 × F
n
2 , n ≥ 0, 3 := F1 × F2 =

∞⋂
n=0

3n.

Note that as F n1 ↓ F1 and F n2 ↓ F2, also 3n ↓ 3. Let φ : R2
→ R denote the 45◦

projection given by φ(x, y) = x − y; then F1 − F2 = φ(3). As φ is a continuous
function and {3n}∞n=0 is a non-increasing sequence of compact sets, it follows that the
algebraic difference F1 − F2 can be written as

F1 − F2 = φ(3) = φ
( ∞⋂
n=0

3n
)
=

∞⋂
n=0

φ(3n) =

∞⋂
n=0

φ(F n1 × F
n
2 ) =

∞⋂
n=0

(F n1 − F
n
2 ).
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Fig. 2. An illustration forM = 3 of the unit square [0, 1]2 rotated by 45◦, being projected by φ to a
√

2-scaled-down version of [−1, 1]. The columns CU
kn

split the nth level squaresQin,jn = Iin×Ijn
into the ‘left’ and ‘right’ triangles Lin,jn and Rin,jn .

3.1. Squares, columns and triangles

The 3n are unions of M-adic squares

Qi1...in,j1...jn := Ii1...in × Ij1...jn

with i1 . . . in, j1 . . . jn ∈ Tn and n ≥ 0. See Figure 2 for a graphical representation of these
M-adic squares and their φ-projections. Observe that the projections φ(Qi1...in,j1...jn) are
equal to unions of two subsequent level n M-adic intervals in [−1, 1].

In order to be able to represent the M-adic intervals that are in [−1, 0], we generalize
our notation of M-adic intervals on [0, 1] to the entire real line. For any n ≥ 0 and k ∈ Z
we define

In(k) :=
1
Mn

[k, k + 1] =
[
k

Mn
,
k + 1
Mn

]
. (9)

Note that In(k+Mni) = Ik1...kn + i for all k = [k1 . . . kn]M and i ∈ Z. See also Figure 3.
The inverse images of these intervals under φ form diagonal ‘columns’ in the plane R2,
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Fig. 3. Two ways of enumerating M-adic intervals (with M = 2) — In(i), i ∈ Z, and IU
kn

, with
U ∈ {L,R} and kn ∈ T. Here n = 0, 1, 2.

denoted by
Cn(k) := φ−1(In(k))

for all k ∈ Z.
When rotating the unit square [0, 1]2 by 45◦, as in Figure 2, the columns with φ-image

in [−1, 0] intersect with the ‘left’ half of the unit square and those with φ-image in [0, 1]
intersect with the ‘right’ half. For this reason we distinguish between ‘left’ and ‘right’
M-adic intervals and columns by defining, for any k1 . . . kn ∈ T,

ILk1...kn
:= Ik1...kn − 1 = In([k1 . . . kn]M −M

n), IRk1...kn
:= Ik1...kn = In([k1 . . . kn]M),

CLk1...kn
:= Cn([k1 . . . kn]M −M

n), CRk1...kn
:= Cn([k1 . . . kn]M).

In fact, any nth level M-adic square Qi1...in,j1...jn is split into a ‘left’ and a ‘right’ triangle
by the M-adic columns. These triangles are called L-triangles and R-triangles, and are
denoted by

Li1...in,j1...jn := Qi1...in,j1...jn ∩ Cn([i1 . . . in]M − [j1 . . . jn]M − 1),
Ri1...in,j1...jn := Qi1...in,j1...jn ∩ Cn([i1 . . . in]M − [j1 . . . jn]M),

(10)

for any i1 . . . in, j1 . . . jn ∈ T.

3.2. Triangle counts

For all U,V ∈ {L,R} and kn ∈ T we let

ZUV (kn) := #{(in, jn) : Qin,jn
⊆ 3n, Vin,jn

⊆ CUkn
}

denote the number of level n V -triangles in 3n ∩ CUkn . Note that these V -triangles have
been generated by the level 0 U -triangle. We also denote the total number of V -triangles
in columns CLkn and CRkn together by

ZV (kn) := ZLV (kn)+ Z
RV (kn),
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CR
knk

CR
kn

Ln

Rn
Rn looks like R

Ln looks like L

CL
kn

RL

Fig. 4. A comparison of a level n left triangle Ln and right triangle Rn with the level 0 left triangle
L and right triangle R. In particular, the expected number of (level n + 1) V -triangles in the inter-
section of the subcolumn CR

knk
with the triangles Ln and Rn together equals EZV (k), the expected

number of (level 1) V -triangles in CL
k

and CR
k

together.

for all kn ∈ T. These triangle counts (and their self-similarity property) are illustrated in
Figure 4.

An important observation is that an M-adic interval IUkn is absent in φ(3n) exactly

when there are no triangles in the corresponding column CUkn in 3n:

IUkn
6⊆ φ(3n) ⇔ ZUL(kn) = Z

UR(kn) = 0. (11)

The triangle counts ZUV (kn), with k1, k2, . . . a fixed path, constitute a two-type
branching process in a varying environment with interaction: the interaction comes from
the dependence between triangles that are aligned, i.e., triangles contained in respective
squares Qi1...in,j1...jn and Qi′1...i

′
n,j
′

1...j
′
n

with i1 . . . in = i′1 . . . i
′
n or j1 . . . jn = j ′1 . . . j

′
n.

The expectation matrices of the two type branching process are given by

M(kn) :=
[
EZLL(kn) EZLR(kn)
EZRL(kn) EZRR(kn)

]
, (12)

where kn ∈ T. These matrices satisfy the basic relation

M(k1 . . . kn) =M(k1) · · ·M(kn) (13)

for all k1 . . . kn ∈ T.
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3.3. Correlation coefficients

Define the cyclic cross-correlation coefficients

γk :=
M−1∑
i=0

qipi+k, (14)

where the indices of p should be taken modulo M , and k ∈ A.
This definition is extended to Z by setting γk+iM := γk for all i ∈ Z. For the sym-

metric case p = q, these coefficients are called the cyclic auto-correlation coefficients.
For brevity, however, we will use the shorter term correlation coefficients. The smallest
correlation coefficient value is denoted by

γ := min
k∈A

γk. (15)

Lemma 3.1 below motivates the definition of the correlation coefficients, as they are in
fact the triangle count expectations EZV (k), V ∈ {L,R}.

For convenience, we define the vector e := [1 1].

Lemma 3.1 ([DS08]). For all k ∈ A we have

eM(k) = [1 1]M(k) = [EZL(k) EZR(k)] = [γk+1 γk].

Proof. As in [DS08] this follows from (10) with n = 1,

P(Qi,j ⊆ 3
1) = P(Ii ⊆ F 1

1 , Ij ⊆ F
1
2 ) = Pµ(Ii ⊆ F 1

1 )Pλ(Ij ⊆ F
1
2 ) = piqj

and some careful bookkeeping. ut

A property that in general holds only for the symmetric case (i.e., p = q) is that γ0 is the
largest of the auto-correlation coefficients:

0 ≤ γk ≤ γ0. (16)

This follows easily from the Cauchy–Schwarz inequality.

4. The basic result with joint survival distributions

In this section we generalize Theorem 1.1 of [DS08] to joint survival distributions, and
to the asymmetric case.

In the setting of general joint survival distributionsµ and λ, the condition stated below
is sufficient for the theorem to hold.

For a joint survival distribution µ : 2A
→ [0, 1] we define its marginal support by

Suppm(µ) :=
⋃
{S ⊆ A : µ(S) > 0}. (17)

In other words, the marginal support is the set of i ∈ A for which pi = Pµ(Xi = 1) > 0.
For example, take M = 4 and µ defined by µ({0, 3}) = µ({1, 3}) = µ({3}) = 1/3; then
Suppm(µ) = {0, 1, 3}.
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Condition 4.1. A joint survival distribution µ : 2A
→ [0, 1] satisfies the joint survival

condition (JSC) if it assigns a positive probability to its marginal support: µ(Suppm(µ))

> 0.

In the ‘independent interval’ case, µ satisfies the joint survival condition since in that
case µ(Suppm(µ)) =

∏
i∈Suppm(µ)

pi > 0. In the example above, where Suppm(µ) =

{0, 1, 3}, the JSC is not satisfied.

Theorem 4.1. Consider two independent random Cantor sets F1 and F2 whose joint
survival distributions satisfy Condition 4.1, the joint survival condition.
(a) If γk > 1 for all k ∈ A, then F1 − F2 contains an interval a.s. on {F1 − F2 6= ∅}.
(b) If γk, γk+1 < 1 for some k ∈ A, then F1 − F2 contains no interval a.s.

We will give a proof of this result in the next section.
The joint survival condition is not a necessary condition. Here is an example where the

JSC does not hold, but where F1−F2 contains an interval: takeM = 5, andµ({0, 1, 2, 3})
= p = 1 − µ({1, 2, 3, 4}) where p is arbitrary between 0 and 1. Then γ = 3 for all p,
but the JSC does not hold. However, any realisation 3n contains the deterministic set 3̃n

generated by µ̃ defined by µ̃({1, 2, 3}) = 1. A simple geometric analysis shows that
F̃ = [−1/2, 1/2], and hence F must contain this interval. (An algebraic alternative is to
use Theorem 2 of [DS08]: the collection of reduced matrices of µ̃ is {T3, T9, T12}, and
since this set is closed under (mutual) multiplications, this theorem tells us that F̃ will
contain an interval.) See [DD10] for a weaker condition than the joint survival condition
under which Theorem 4.1 still holds.

5. Proof of Theorem 4.1

A proof for the symmetric case and ‘independent interval’ Cantor sets is given in [DS08].
An extension of the proof to the asymmetric case and general survival distributions sat-
isfying the joint survival condition is easy for part (b) (where, moreover, the JSC is not
needed), but for part (a) several complications arise. The proof for this part is based on
the following observations. The process of nth level M-adic squares that are surviving
in the level n approximations 3n inherits the self-similarity property of the individual
random Cantor sets F1 and F2: conditional on the survival of an nth level M-adic square
Qi1...in,j1...jn , the (scaled) process starting at this surviving square has the same distribu-
tion as the whole process, which starts at [0, 1]2. Moreover, conditional on the survival
of a set of nth level M-adic squares that are pairwise unaligned, the processes in each of
these squares are independent.

The columns behave very inhomogeneously: for every n there are columns which
contain at most one triangle. This observation led to the idea in [DS08] to pair unaligned
left and right triangles that survive in the same column into what are called 1-pairs. The
main idea of the proof for part (a) is to show that with positive probability a 1-pair will
occur in some column C of some3m (Lemma 5.2), and that conditional on this, the pairs
in all subcolumns will grow exponentially, so the projection of the 1-pairs within C ∩3
will be an M-adic interval (Lemma 5.4). We will follow the structure of the proof in
[DS08]; each lemma there corresponds to a subsection with lemma here.
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5.1. Joint growth of 1-pairs

For the ‘kn
th subcolumn of a level m 1-pair’ (Lm, Rm) that is contained in a column

C = CUlm
we will write

CUlmkn
∩ (Lm ∪ Rm)

for the intersection of the 1-pair with CUlmkn , the kn
th subcolumn of CUlm .

For such a1-pair (Lm, Rm), the distribution of the number of levelm+n V -triangles
surviving in 3m+n in the kn

th subcolumn of (Lm, Rm), conditional on the survival of
(Lm, Rm) in 3m, is independent of m, the particular choice of the column C and the
1-pair in it. Therefore, we can unambiguously denote a random variable having this
distribution by

Z̃V (kn) (18)

for all V ∈ {L,R} and kn ∈ T.
In general Z̃V (kn) does not have the distribution of ZV (kn) because there is possible

dependence between the offspring generation of the two level 0 triangles, whereas there
is no dependence between the offspring generation of the L-triangle and the R-triangle of
a level m 1-pair by unalignedness. Essentially, Z̃V (kn) has the distribution of the sum of
independent copies of the random variablesZRV (kn) andZLV (kn), butZV (kn) is just the
sum of these random variables, which may be dependent. (Compare the level 0 triangles
with the 1-pair in Figure 5.) Clearly, the ZUV (kn) are dependent if they count triangles
that are aligned, e.g., ZRR(kn) and ZLL(kn) will in general not be independent. However,

CU
lm

The level 0 triangles, whose union is [0, 1]2

Dependence allowed at level 1

L R

CL
kn

CR
kn

Rm

Lm

A level m ∆-pair in a column CU
lm

(magnified by a factor Mm)

Independent

CU
lmkn

Fig. 5. The distinction between level 0 triangles and a 1-pair.
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ZRV (kn) and ZLV (kn) will never be aligned. But there can also be dependence between
the offspring of level 0 squares—if that is dictated by the joint survival distributions—
which induces dependence between the random variables ZUV (kn), at any level n. See
Figure 5. Despite these differences, both do have the same expected value (by linearity of
expectations), and this is all that is needed in the proof.

Let
Ñ(kn) = min{Z̃L(kn), Z̃

R(kn)} (19)
for all kn ∈ T. This is the distribution of the minimum number of triangles of each triangle
type that survive in the kn

th subcolumn of a 1-pair. The next lemma states that with
positive probability the growth of Ñ(kn) for all kn up to a certain level n is exponential.

Lemma 5.1 (Extension of Lemma 1 in [DS08]). If γ > 1, and the joint survival distri-
bution(s) satisfy the joint survival condition, then for all n ≥ 0,

P(Ñ(km) ≥ γ
m for all km ∈ Tm for all 0 ≤ m ≤ n) > 0.

Proof. The proof is similar to the proof of Lemma 1 in [DS08], but it shows where and
how the JSC emerges for general survival distributions.

For a joint survival distribution µ we uniquely define the joint survival distribution
µ∗ by requiring that µ∗(Suppm(µ)) = 1. (See (17) for the definition of the marginal
support Suppm(µ).) For example, if p = (1, 1/π, 0, 1/2), then Suppm(µ) = {0, 1, 3}
and p∗ = (1, 1, 0, 1). Note that Suppm(µ) = Suppm(µ

∗). We obtain µ∗, λ∗ from µ, λ

in this way. We mark all entities that refer to the substitution of µ, λ by µ∗, λ∗ with a ∗

superscript. Note thatM∗(kn) ≥M(kn) componentwise for all kn ∈ T .
Consider for each n ≥ 0 the event

Jn :=
n⋂

m=0

⋃
{Qim,jm

⊆ 3m : im, jm ∈ Tm with pim , pjm > 0}.

This is the event that in the first n steps of the construction, all squares that have positive
marginal survival probability do survive all jointly. Let a be the number of level 1 squares
having positive marginal survival probability. For each n ≥ 0 the number of such squares
at level n is given by an and the event Jn has probability P(Jn) = P(J1)

1+a+···+an−1
where

P(J1) = µ(Suppm(µ))λ(Suppm(λ)). At this point we use the joint survival condition,
since it implies that P(J1) > 0 and thus P(Jn) > 0. Note that by construction we have
P∗(Jn) = 1.

Let Ñ(km) = min{Z̃L(km), Z̃
R(km)}. By the self-similarity of the process and the

requirement that the process runs independently in the triangles of a 1-pair, the event
that in the first n ≥ 0 sublevels of the surviving 1-pair all triangles (in the 1-pair) that
have positive probability to survive, do survive simultaneously, occurs with probability at
least (P(Jn))2 > 0. Conditional on this latter event—which has positive probability—the
following chain of componentwise (in)equalities holds:

[Z̃L(km) Z̃
R(km)] = [Z̃∗;L(km) Z̃

∗;R(km)]

= [EZ̃∗;L(km) EZ̃∗;R(km)] = [EZ∗;L(km) EZ∗;R(km)]
= eM∗(km) ≥ eM(km) ≥ γ eM(k2) · · ·M(km) ≥ · · · ≥ γ

me
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for all 0 ≤ m ≤ n and km ∈ Tm, and where e is the 2-dimensional all-one row vector.
This directly implies the statement of the lemma. ut

5.2. Existence of a 1-pair

Lemma 5.2 (Extension of Lemma 2 in [DS08]). If γ > 1, then

p1 := P(∃m ≥ 0 such that there exists a level m 1-pair in 3m) > 0.

Proof. We will show that one can take m = 2: if γ > 1, then

P(there exists a level 2 1-pair in CR00 ∩3
2) > 0.

The corresponding geometric structure is depicted in Figure 2.
From γ0 =

∑M−1
i=0 P(Qi,i ⊆ 31) > 1 we may conclude that there exist distinct a, b ∈

{0, . . . ,M − 1} such that

pab := P(Qa,a,Qb,b ⊆ 3
1) > 0.

From γ1 = P(Q0,M−1 ⊆ 3
1) +

∑M−1
i=1 P(Qi,i−1 ⊆ 3

1) > 1 we may conclude that
there exists at least one c ∈ {1, . . . ,M − 1} such that pc := P(Qc,c−1 ⊆ 3

1) > 0.
Using the independence of the process in the unaligned squares Qa,a and Qb,b and

the self-similarity of the process, we now conclude that

P(Qaa,aa,Qbc,b(c−1) ⊆ 3
2)

= P(Qaa,aa,Qbc,b(c−1) ⊆ 3
2
| Qa,a,Qb,b ⊆ 3

1)P(Qa,a,Qb,b ⊆ 3
1)

= P(Qaa,aa ⊆ 3
2
| Qa,a,Qb,b ⊆ 3

1)P(Qbc,b(c−1) ⊆ 3
2
| Qa,a,Qb,b ⊆ 3

1)pab

= P(Qa,a ⊆ 3
1)P(Qc,c−1 ⊆ 3

1)pab ≥ pabpcpab > 0,

which finishes the proof, as (Lbc,b(c−1), Raa,aa) is a level 2 1-pair in CR00. ut

5.3. Unaligned triangles

The following lemma is purely combinatorial, and serves to obtain independence between
the triangles in a 1-pair.

Lemma 5.3 (Lemma 3 in [DS08]). We are given N distinct odd numbers o1, . . . , oN
and N distinct even numbers e1, . . . , eN . Then we can couple the odd numbers with the
even numbers and we can colour the N couples with three colours (say r,g and b) such
that no two numbers in pairs of the same colour are adjacent and all colours are used
for at least bN/3c pairs. That is, there exists a permutation π of {1, . . . , N} such that we
can colour the pairs

(e1, oπ(1)), . . . , (eN , oπ(N))

with the three colours such that with each colour we paint at least bN/3c pairs and for
any (also if ` = k) (ek, oπ(k)) and (e`, oπ(`)) having the same colour it is true that

|e` − oπ(k)| > 1.
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5.4. Exponential growth

Lemma 5.4 (Adaptation of Lemma 4 of [DS08]). If γ > 1, then there exists an 1 <

η < γ such that

pI := P(Ñ(kn) ≥ η
n for all kn ∈ Tn for all n ≥ 0) > 0.

Proof. We can follow literally the proof of Lemma 4 in [DS08], except that we define
here the sets

An := {Ñ(km) ≥ η
m for all km ∈ Tm for all 0 ≤ m ≤ n}, (20)

instead of An = {Ñ(km) ≥ ηm for all km ∈ Tm}. The (rather embarrassing) reason is
that the equality P(Acn+1 | Ar ∩ · · · ∩ An) = P(Acn+1 | An) on the bottom of page 10 in
[DS08] is wrong in general. All one needs is that the equality sign can be replaced by a ≤
sign, but since proving this seems to be rather involved (although intuitively obvious) we
chose to redefine An as in (20), since this conveniently leads to a sequence of decreasing
sets with intersection the set in the statement of Lemma 5.4. The proof then continues as
in [DS08], deducing from Lemmas 5.1 and 5.3 that

pI = P
(⋂
n≥0

An

)
= lim
n→∞

P(An) > 0,

which finishes the proof. ut

Lemma 5.4 ensures that with positive probability pI the offspring in all subcolumns of a
surviving 1-pair never dies out. Lemma 5.2 ensures that with positive probability p1 a
surviving 1-pair exists. Using the self-similarity of the process, we thus have the follow-
ing corollary:

Corollary 5.5. If γ > 1, then for all in, jn ∈ T,

P(φ(3 ∩Qin,jn
) contains an interval | Qin,jn

⊆ 3n) ≥ p1pI > 0.

As the next step, it is shown in [DS08] that when 3 6= ∅, the maximum number of
unaligned surviving squares at level n grows to infinity as n → ∞. In each unaligned
surviving square the process runs independently and identically distributed to the process
starting at [0, 1]2. Because the number of these squares grows arbitrarily large, and in each
square there is a positive probability that its projection contains a non-empty interval, this
implies that almost surely the projection of 3 contains an interval.

6. Higher order Cantor sets

From now on we restrict ourselves to the symmetric case, that is, the vectors of marginal
probabilities satisfy p = q. Whether similar results can be obtained for p 6= q is yet
unknown. The major difficulty is that relation (16) will no longer hold (in general) in the
asymmetric case.
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Essentially, the nth order random Cantor set is constructed by ‘collapsing’ n steps of
its construction into one step. We denote all entities of an nth order random Cantor set
with a superscript (n).

The alphabet A(n) of the nth order random Cantor set is {0, . . . ,Mn
−1}, with elements

i(n) = [i1 . . . in]M . To reduce the overloaded notation we will omit the superscript here,
and simply write i = i(n).

The joint survival distribution µ(n) : 2A(n)
→ [0, 1], which by definition is the distri-

bution of the sets
{im+1 ∈ A(n) : X(n)i1...imim+1

= 1}

for all i1 . . . im ∈ T (n), is determined uniquely by requiring that

X
(n)
i ∼

n∏
d=1

Xi1...id = Xi1Xi1i2 · · ·Xi1...in

for all i = [i1 . . . in]M ∈ A(n), where the Xi1...id are defined in (4).
It is clear that the higher order marginal probabilities are given by

p
(n)
i := Pµ(n)(X

(n)
i = 1) =

n∏
d=1

Pµ(Xi1...id = 1) =
n∏
d=1

pid (21)

for all i = [i1 . . . in]M ∈ A(n).

6.1. Joint survival

Note that when µ describes an ‘independent interval’ Cantor set, it is not true in general
that µ(n) corresponds to an ‘independent interval’ Cantor set with marginals p(n)i . This is
because e.g. the products X0X00 and X0X01 are not independent: they share the X0 term.

However, the joint survival condition (Condition 4.1) nicely propagates to higher or-
der Cantor sets. Suppose µ satisfies the JSC. We have

Suppm(µ
(n)) =

{
i = [i1 . . . in]M ∈ A(n) : p(n)i =

n∏
d=1

pid > 0
}
,

which implies that µ(n) satisfies the joint survival condition as well:

µ(n)(Suppm(µ
(n))) = (µ(Suppm(µ)))

1+a+a2
+···+an−1

> 0,

where a := #Suppm(µ) is the cardinality of the marginal support of µ.
The key observation regarding higher order Cantor sets is that for all n ≥ 1,

F (n) ∼

∞⋂
m=1

F n·m = F, (22)

hence statements such as Theorem 4.1 can be applied to higher order correlation coeffi-
cients γ (n)k in order to get results not only for F (n)1 − F

(n)
2 , but for F1 − F2 as well.
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6.2. Expectation matrices

The expectation matrices of the higher order Cantor sets satisfy the following factoriza-
tion property: for all k1 . . . kn ∈ T,

M(n)([k1 . . . kn]M) =M(k1 . . . kn) =M(k1) · · ·M(kn). (23)

For the γ (n)k we can use Lemma 3.1, which relates the γ (n)k to the expectation matrices.
Recall that e := [1 1]. For all k1 . . . kn ∈ T,

[γ (n)k+1 γ
(n)
k ] = eM(n)(k) = eM(k1) · · ·M(kn), (24)

where k = [k1 . . . kn]M . We define γ (0)k = 1 for all k ∈ Z. A direct consequence of (24)
is the following recursive relation between γ (n)k of different orders, written as a matrix
multiplication:

[γ (n)
Mn−mk+l+1 γ

(n)

Mn−mk+l
] = [γ (m)k+1 γ

(m)
k ]M(n−m)(l) (25)

for all 0 ≤ m ≤ n, k ∈ A(m) and l ∈ A(n−m). In fact we can take k ∈ Z here because, by
definition, γ (m)k+Mmi = γ

(m)
k for all i ∈ Z, m ≥ 0 and k ∈ Z. Note that in particular

[γ (n+1)
Mk+l+1 γ

(n+1)
Mk+l ] = [γ (n)k+1 γ

(n)
k ]M(l) (26)

for all n ≥ 0, k ∈ Z and l ∈ A.

6.3. An alternative notation

In (12) the expectations EZUV (kn) are put into the matrices M(kn). In this section we
discuss another way to alias these expectations in such a way that equivalent entries get the
same alias. This aliasing scheme also provides an alternative representation of recursion
relation (26).

The expectation matrices M(k) together contain 4M entries, but not all entries are
distinct. The number of left triangles in column k for example equals the number of right
triangles in column k+1. The reason is simple: the left triangles in column k and the right
triangles in column k + 1 are the respective halves of the same M-adic squares—those
that have the same projection under φ. The following equations point out which triangle
count expectations are always equal to each other, and define the aliasing scheme me,
e ∈ {−M, . . . ,M}, for those e satisfying |e| < M:

mk−M := EZLL(k − 1) = EZLR(k), 0 < k < M,

m0 := EZLL(M − 1) = EZRR(0),

mk := EZRL(k − 1) = EZRR(k), 0 < k < M.

The remaining two aliases, me with |e| = M , are given by

m−M := EZLR(0) = 0, mM := EZRL(M − 1) = 0.
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These expectations are always zero because there are no right triangles in the leftmost
column and no left triangles in the rightmost column.

The matricesM(k) take their entries from these me as follows:

M(k) =

[
mk+1−M mk−M
mk+1 mk

]
(27)

for k ∈ {0, . . . ,M − 1}. Consequently, recursion relation (26) can be written using the
me as

γ
(n+1)
Mk+l = ml−Mγ

(n)
k+1 +mlγ

(n)
k (28)

for any n ≥ 0, k ∈ Z and l ∈ {0, . . . ,M}. Note in particular that the case l = M is
allowed and valid here; it corresponds to the left column of (26) with l = M − 1 there.

Relation (25) can also be written in terms of the me, though the higher order version
m
(n−m)
e is required as we are dealing with entries from M(n−m)(l) instead of M(l). The

equation that relates the nth order to the mth order is

γ
(n)

Mn−mk+l
= m

(n−m)

l−Mn−mγ
(m)
k+1 +m

(n−m)
l γ

(m)
k (29)

for all 0 ≤ m ≤ n, k ∈ Z and l ∈ {0, . . . ,Mn−m
}.

An explicit formula for the me can also be given; some careful bookkeeping yields
the following set of formulas:

me =
∑

i,j∈A: i−j=e

pipj =

min(M,M+e)−1∑
i=max(0,e)

pipi−e =

min(M,M−e)−1∑
j=max(0,−e)

pj+epj (30)

for e ∈ {−M, . . . ,M}. For |e| = M , these are sums over empty sets, which by convention
evaluate to 0.

From equation (30) it is immediately clear that me = m−e for all e ∈ {−M, . . . ,M},
so m0, . . . , mM is all we need to encode the matrices.

6.4. Bounded skewness

The scope of Theorem 4.1 can be extended if eventually for some n all γ (n)k are strictly
greater than 1, or when two subsequent ones, say γ (n)k and γ (n)k+1, are strictly less than 1. If
it were possible that the ratio between two successive γ (n)k could become arbitrarily large
as n → ∞, it could be hard to show that we would eventually end up in one of these
cases; perhaps one γ (n)k would always remain below 1, while all the others would already
be above 1.

The next lemma shows that the scenario of unbounded neighbour ratio is not the case
if all me are positive for |e| < M . In the next section this lemma will play a key role
in proving that—except for a (topologically) negligible set of marginal probabilities p—
Theorem 4.1 can always be fruitfully applied to higher order Cantor sets for orders n that
are large enough.
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Suppose that me > 0 for |e| < M . Then

R := min
0<k<M

k′∈{k−1,k+1}

min(mk−M , mk)
max(mk′−M , mk′)

(31)

is well defined, and R ∈ (0, 1].

Lemma 6.1. If me > 0 for e = 1, . . . ,M − 1, then

min(γ (n)k , γ
(n)
k+1)

max(γ (n)k , γ
(n)
k+1)
≥ R (32)

for all n ≥ 0 and k ∈ Z, where R is defined as in (31).

Proof. Assume that me > 0 for all |e| < M . Note that by applying a simple inductive
argument over n to recursion relation (28) with initial conditions γ (0)k = 1 for all k ∈ Z—
and using the fact that for l ∈ {0, . . . ,M}, ml−M and ml are never both equal to zero—it
follows that γ (n)k > 0 for all n ≥ 0 and k ∈ Z. Hence the fraction in (32) is well defined.

An equivalent formulation of (32) is that for all n ≥ 0 and all neighbour indices
k, k′ ∈ Z—i.e., |k − k′| = 1—we have γ (n)k /γ

(n)

k′
≥ R. We will prove this version, as it

turns out to be slightly more convenient to work with.
We will use induction on n. For n = 0 we have γ (0)k /γ

(0)
k′
= 1/1 = 1 ≥ R. Now

assume that the lemma holds for an n ≥ 0. Let k, k′ ∈ Z with |k − k′| = 1 be arbitrary.
First assume that M does not divide k; then we can write k = Mk1 + k2 for some

k1 ∈ Z and some 0 < k2 < M . If we define k′2 by setting k′2 − k2 = k′ − k, then
k′ = Mk1 + k

′

2 with 0 ≤ k′2 ≤ M . Using recursion relation (28), we obtain

γ
(n+1)
k

γ
(n+1)
k′

=
γ
(n+1)
Mk1+k2

γ
(n+1)
Mk1+k

′

2

=
mk2−Mγ

(n)
k1+1 +mk2γ

(n)
k1

mk′2−M
γ
(n)
k1+1 +mk′2

γ
(n)
k1

≥
min(mk2−M , mk2)(γ

(n)
k1+1 + γ

(n)
k1
)

max(mk′2−M , mk′2)(γ
(n)
k1+1 + γ

(n)
k1
)
≥ R.

Note how the fact that 0 < k2 < M is used in the last inequality. Also, we did not need to
use the induction hypothesis for this case.

Now assume that M does divide k, and write k = Mk1 for some k1 ∈ Z. Because
me + me−M = γe ≤ γ0 = m0 for all e ∈ {0, . . . ,M}—here we use equation (16)—we
have the bounds

γ
(n+1)
k+1 = γ

(n+1)
Mk1+1 = m1−Mγ

(n)
k1+1 +m1γ

(n)
k1
≤ m0 max(γ (n)k1

, γ
(n)
k1+1),

γ
(n+1)
k−1 = γ

(n+1)
M(k1−1)+(M−1) = m−1γ

(n)
k1
+mM−1γ

(n)
k1−1 ≤ m0 max(γ (n)k1

, γ
(n)
k1−1).
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If we define k′1 by setting k′1 − k1 = k
′
− k, k′1 and k1 are neighbours, we can use these

bounds as follows:

γ
(n+1)
k

γ
(n+1)
k′

=
γ
(n+1)
Mk1

γ
(n+1)
k′

≥
m0γ

(n)
k1

m0 max(γ (n)k1
, γ

(n)

k′1
)
= min

(
1,
γ
(n)
k1

γ
(n)

k′1

)
≥ R,

where in the last step we used the induction hypothesis. ut

7. The lower spectral radius connection

In the previous section higher order Cantor sets were introduced. The corresponding
higher order expectation matricesM(n)(k) are products of the first order matricesM(k),
as (24) shows. It will turn out that, for most p the lower spectral radius of the set of matri-
cesM(k), k ∈ A, captures exactly the information needed to determine whether F1−F2
contains an interval or not. The following definition generalizes the concept of ‘spectral
radius’ to a set of matrices.

Definition 7.1 ([Gur95]). Let ‖·‖ be a submultiplicative norm on Rd×d and 6 ⊆ Rd×d
a finite non-empty set of square matrices. The lower spectral radius of 6 is defined by

ρ(6) := lim inf
n→∞

ρ
n
(6, ‖·‖), ρ

n
(6, ‖·‖) := min

A1,...,An∈6
‖A1 · · ·An‖

1/n. (33)

It is easily seen that the definition of the lower spectral radius is independent of the
particular choice of matrix norm.

7.1. A spectral radius characterization

For the algebraic difference between two M-adic random Cantor sets, we are interested
in the lower spectral radius of the set of matrices

6M := {M(0), . . . ,M(M − 1)}. (34)

The following theorem provides a generalization of Theorem 4.1 for the symmetric
case using the concept of the lower spectral radius.

First we need yet another notion. We call the collection {M(0), . . . ,M(M − 1)} of
matrices irreducible if

EZLR(k) > 0, k = 1, . . . ,M − 1,

EZRL(k) > 0, k = 0, . . . ,M − 2.

Note that the constraints on k are natural, because we always have EZLR(0) = 0 and
EZRL(M − 1) = 0.
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Theorem 7.1. Consider the algebraic difference F1 − F2 between two M-adic indepen-
dent random Cantor sets F1 and F2 whose joint survival distributions satisfy the joint
survival condition, have equal marginal probabilities and lead to an irreducible collec-
tion 6M as in (34).

(a) If ρ(6M) > 1, then F1 − F2 contains an interval a.s. on {F1 − F2 6= ∅}.
(b) If ρ(6M) < 1, then F1 − F2 contains no intervals a.s.

Proof. Let ‖·‖1 denote the maximum absolute column sum norm.
First assume that ρ(6M) < 1. Then there exists a number n such that ρ

n
(6M, ‖·‖1)

< 1. In particular, there exist k1, . . . , kn ∈ A such that

‖M(k1) · · ·M(kn)‖1 < 1.

It follows that for k = [k1 . . . kn]M ∈ A(n),

max(γ (n)k+1, γ
(n)
k ) = ‖M(n)

k ‖1 = ‖M(k1) · · ·M(kn)‖1 < 1. (35)

From Theorem 4.1 statement (b) follows.
Now assume that ρ(6M) ≥ 1+δ with δ > 0. Then there exist infinitely many n such

that for all k1, . . . , kn ∈ A,

‖M(k1) · · ·M(kn)‖
1/n
1 ≥ ρ

n
(6M, ‖·‖1) > 1+ δ/2.

This implies that there exists an n such that for all k = [k1 . . . kn]M ∈ A(n),

max(γ (n)k+1, γ
(n)
k ) = ‖M(n)

k ‖1 = ‖M(k1) · · ·M(kn)‖1 >
1
R
,

where by irreducibility we can take the constant R as in (31). Using Lemma 6.1, this
implies that for this n and all k ∈ A(n),

γ
(n)
k ≥

min(γ (n)k , γ
(n)
k+1)

max(γ (n)k , γ
(n)
k+1)
·max(γ (n)k , γ

(n)
k+1) > R ·

1
R
= 1,

so statement (a) also follows by applying Theorem 4.1. ut

We remark that the assumptions p = q and irreducibility are used only in the second part
of the proof, hence these conditions are not necessary for statement (b) in the theorem.

7.2. Scope of the theorem

We consider the following two questions:

• When do we get ρ(6M) = 1 or a reducible 6M, the cases the theorem says nothing
about?
• How can we calculate ρ(6M)? Is there an explicit expression or algorithm for calcu-

lating it?
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There is good and there is bad news here: the good news is that the cases ρ(6M) = 1
and me = 0 for some |e| < M happen only for a very limited set of vectors of marginal
probabilities p in [0, 1]M , but the bad news is that the lower spectral radius is in general
hard to calculate (see [TB97]).

First note that me = 0 for some |e| < M happens only when at least one of the pi ,
i ∈ A, is zero. Thus

E0 := {p ∈ [0, 1]M : 6M reducible}

has dimension at most M − 1, and hence has empty interior and Lebesgue measure zero.
The other exceptional set in the theorem is

E1 := {p ∈ [0, 1]M : ρ(6M) = 1}. (36)

The lower spectral radius has the following scaling property with respect to the vector of
marginal probabilities: if p̃ = cp for some c ≥ 0, then M̃(k) = c2M(k) for all k ∈ A
and hence ρ(6M̃) = c2ρ(6M). Thus for each vector of marginal probabilities p at most
one scalar multiple is in E1. Similarly, if p̃ ≥ p componentwise, then M̃(k) ≥ M(k)

componentwise and hence ρ(6M̃) ≥ ρ(6M). Combining this with the scaling property,
it follows that if p̃ > p componentwise, then also ρ(6M̃) > ρ(6M). From the scaling
property it also follows that E1 has empty interior.

With respect to the irreducibility condition for 6M it is interesting to consider the
second example given in [DS08, Section 7]. Here p = (1, 0, p, 0, 1) with p ∈ [0, 1] (see
Figure 6). The corresponding (reducible) set of expectation matrices is given by

(M(k))k∈A =

([
1 0
0 2+ p2

]
,

[
0 1

2p 0

]
,

[
2p 0
0 2p

]
,

[
0 2p
1 0

]
,

[
2+ p2 0

0 1

])
,

hence (γk)k∈A = (2+ p
2, 1, 2p, 2p, 1).

CL
2

· · · = 1

· · · = p

· · · = p2

· · · = 0

P
(
Q ⊆ Λ1

)
=

CL
1 CL

3 CR
0 CR

4CR
2 CR

3CL
4CL

0 CR
1

Fig. 6. The parameterized family p = (1, 0, p, 0, 1), p ∈ [0, 1].
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The level 1 expectation matrices have the property that each row and column contains
at most one non-zero element. We will call matrices having this property permutative
matrices. Clearly any product of permutative matrices is permutative again. Moreover,
letting π(A) denote the product of the non-zero entries of a permutative matrix A, it
follows that

π(M(k1 . . . kn)) =

n∏
i=1

π(M(ki))

for all k1 . . . kn ∈ T. It is easy to see that for any permutative D ×D matrix A,

‖A‖∞ = ‖A‖1 ≥
D
√
|π(A)|.

If p ≥ 1/2, then π(M(k)) ≥ 2p for all k ∈ A. Altogether, by plugging the two equations
above into the definition of the lower spectral radius, we find that

ρ(6M) ≥
√

2p > 1 if p > 1/2.

However, in [DS08] it is shown that for all p < 1 the algebraic difference F1−F2 contains
no interval a.s. This example thus shows that at least some irreducibility condition is
necessary in Theorem 7.1.

8. Classifying 2-adic random Cantor sets

In this section we consider the symmetric case for M = 2. For short we write (α, β) :=
(p0, p1) = (q0, q1) for the marginals. Note that

p0 + p1 = µ({0})+ µ({1})+ 2µ({0, 1}).

Since we require p0 + p1 > 1 (recall (8)), it follows that µ({0, 1}) > 0, and so the joint
survival condition is always satisfied.

8.1. Expectations

The expectation matrices are given by

M(0) =
[
αβ 0
αβ α2

+ β2

]
, M(1) =

[
α2
+ β2 αβ

0 αβ

]
, (37)

and the γk and me are given by

γ0 = α
2
+ β2, γ1 = 2αβ, m0 = α

2
+ β2, m1 = αβ, m2 = 0.

Recursion relation (28) hence becomes

γ
(n+1)
2k = m0γ

(n)
k = (α

2
+ β2)γ

(n)
k ,

γ
(n+1)
2k+1 = m1(γ

(n)
k + γ

(n)
k+1) = αβ(γ

(n)
k + γ

(n)
k+1),

(38)

for all n ≥ 0 and k ∈ Z.
Note that p0 + p1 > 1 implies that α, β > 0. Therefore both m0 > 0 and m1 > 0.
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8.2. Neighbour bounds

The skewness lower bound from Lemma 6.1 is reduced to the simple expression

R =
m1

m0
=

αβ

α2 + β2 . (39)

The following lemma provides a bound that is even sharper than that of Lemma 6.1 and
shows a specific ordering of neighbouring γ (n)k that appears in the symmetric 2-adic alge-
braic difference. See also Figure 7.

R
1−Rγk′′

4|k′′ k 2|k′

γk′′

γk

γk′

0

(k′′, k′) = (k − 1, k + 1)

0
2|k′ k 4|k′′

γk′

γk

γk′′

(k′, k′′) = (k − 1, k + 1)

R
1−Rγk′

R
1−Rγk′

R
1−Rγk′′

Fig. 7. A graphical representation of Lemma 8.1, with the γ
k

displayed as a bar graph. The situation
is shown for the two solutions to the equation {k′, k′′} = {k − 1, k + 1}. The arrows indicate the
order of the inequalities in the lemma.

Lemma 8.1. Consider the algebraic difference between two independent 2-adic random
Cantor sets that have equal vectors of marginal probabilities. Then

R

1− R
γ
(n)

k′
≤

R

1− R
γ
(n)

k′′
≤ γ

(n)
k ≤ γ

(n)

k′
≤ γ

(n)

k′′
(40)

for all n ≥ 0, odd k ∈ Z and {k′, k′′} = {k − 1, k + 1} such that 4 | k′′ and 2 | k′.

Proof. First note that since m0 = γ0 ≥ γ1 = m−1 + m1 = 2m1, we have R ≤ 1/2, so
the fraction R/(1− R) is always well defined.

The proof is by induction on n. Since γ (0)k = 1 for all k ∈ Z, the case n = 0 is trivial.
Now assume that (40) holds for some n ≥ 0, and let k, k′, k′′ be as stated. Note that k′/2
is odd and k′′/2 even, and |k′/2− k′′/2| = 1. The first and the last inequality of (40)
follow from

γ
(n+1)
k′

(38)
= m0γ

(n)

k′/2

(40)
≤ m0γ

(n)

k′′/2
(38)
= γ

(n+1)
k′′

. (41)
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The middle two inequalities of (40) follow from

R

1− R
γ
(n+1)
k′′

(39)
=

m1

m0

(
R

1− R
+ 1

)
γ
(n+1)
k′′

(38)
= m1

(
R

1− R
+ 1

)
γ
(n)

k′′/2

(40)
≤ m1(γ

(n)

k′/2 + γ
(n)

k′′/2)
(38)
= γ

(n+1)
k

(40)
≤ m1

(
1+

1− R
R

)
γ
(n)

k′/2

(38)
=

m1

m0

(
1+

1− R
R

)
γ
(n+1)
k′

(39)
= γ

(n+1)
k′

,

where in the last inequality we used (40), multiplied by a factor (1− R)/R. ut

8.3. The smallest correlation coefficient

Lemma 8.1 allows us to pinpoint for each n ≥ 0 a kn such that γ (n)kn
equals the minimal

value

γ (n) = min
k∈Z

γ
(n)
k = min

k∈A(n)
γ
(n)
k .

Obviously kn should be an odd number, but we can say more: one of the two neighbours
of 2kn will turn out to serve well as kn+1. Even though this selection procedure is very
‘local’, it will still pinpoint a global minimum.

In order to decide which neighbour of 2kn has to be chosen, an auxiliary sequence
(k′n) is defined. This is done in such a way that k′n is the neighbour of kn that has the
smallest value of γ (n)

k′n
. Define the sequences (kn) and (k′n) by

k0 := 0, kn+1 := 2kn + (k′n − kn) = k
′
n + kn,

k′0 := 1, k′n+1 := 2kn,
(42)

for all n ≥ 0. Note that this indeed makes k′n a neighbour of kn for all n ≥ 0, but their
relative order alternates for subsequent n: k′2n = k2n + 1, but k′2n+1 = k2n+1 − 1 for all
n ≥ 0.

We mention that the sequence (kn) is also known as the Jacobsthal sequence, since
kn+2 = kn+1 + 2kn for n ≥ 0 and k0 = 0, k1 = 1.

Lemma 8.2. Let (kn)n≥0 and (k′n)n≥0 be as defined in (42). Then for all n ≥ 0,

γ
(n)
kn
= min

k∈Z
γ
(n)
k = min

k∈Z
γ
(n)
2k+1, γ

(n)

k′n
= min

k∈Z
γ
(n)
2k . (43)

Proof. The proof is by induction on n. For n = 0 the statements are trivial because
γ
(0)
k = 1 for all k ∈ Z. Now suppose that the statement of the lemma holds for a certain
n ≥ 0. Then, by using the induction hypothesis, the last equality of (43) follows from

min
k∈Z

γ
(n+1)
2k = m0 min

k∈Z
γ
(n)
k = m0γ

(n)
kn
= γ

(n+1)
2kn = γ

(n+1)
k′
n+1

. (44)



Differences of random Cantor sets and lower spectral radii 757

Note that by the induction hypothesis

γ
(n)
kn
= min

k∈Z
γ
(n)
2k+1 and γ

(n)

k′n
= min

k∈Z
γ
(n)
2k ,

thus by observing that of any two consecutive integers one is always even and one is
always odd, it follows that

min
k∈Z

(γ
(n)
k + γ

(n)
k+1) = γ

(n)
kn
+ γ

(n)

k′n
.

By applying Lemma 8.1, the first, double equality from (43) follows:

min
k∈Z

γ
(n+1)
k = min

k∈Z
γ
(n+1)
2k+1 = m1 min

k∈Z
(γ
(n)
k + γ

(n)
k+1)

= m1(γ
(n)
kn
+ γ

(n)

k′n
) = γ

(n+1)
2kn+(k′n−kn)

= γ
(n+1)
kn+1

. (45)

ut

8.4. Limit behaviour of γ (n)

Define the sequence (an)n≥0 of minimum values by setting

an := γ (n)kn
(46)

for all n ≥ 0. Using (45) and (44) the following recurrence relation is obtained:

an+2 = γ
(n+2)
kn+2

= m1(γ
(n+1)
kn+1

+ γ
(n+1)
k′
n+1

)

= m1(γ
(n+1)
kn+1

+m0γ
(n)
kn
) = m1an+1 +m1m0an (47)

for all n ≥ 0. The initial conditions are given by

a0 = γ
(0)
k0
= 1, a1 = γ

(1)
k1
= γ1 = 2m1. (48)

The characteristic polynomial of this linear recurrence relation is h(x) = x2
− m1x −

m0m1 with roots

x± =
1
2m1 ±

√
m1m0 +

1
4m

2
1.

Since m1 > 0, x+ and x− are two distinct roots of the characteristic equation, so the
general form of the solution to the recurrence relation is

an = c+x
n
+ + c−x

n
−

for all n ≥ 0, where the constants c+ and c− are determined by the initial conditions.
Since x+ > 0 is the largest zero of the parabola h we have

|x+| < 1 ⇔ h(1) > 0 ⇔ m1(m0 + 1) < 1,
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thus we can conclude that

lim
n→∞

γ
(n)
kn
= lim
n→∞

an =

{
0, |x+| < 1
∞, |x+| > 1

=

{
0, m1(m0 + 1) < 1,
∞, m1(m0 + 1) > 1.

(49)

Using the rightmost equations in (44), we find that the neighbour sequence γ (n)
k′n

behaves
in exactly the same way.

Altogether this leads to the following result:

Theorem 8.3. Consider the algebraic difference F1−F2 between two independent 2-adic
random Cantor sets F1 and F2 whose joint survival distributions have the same marginal
probability vectors.

• If C > 1, then F1 − F2 contains an interval a.s. on {F1 − F2 6= ∅}.
• If C < 1, then F1 − F2 contains no interval a.s.

Here the number C is defined by

C := m1(1+m0) = αβ(1+ α2
+ β2) = p0p1(1+ p2

0 + p
2
1). (50)

Proof. We will show that the conditions of Theorem 4.1 do hold for Cantor sets of appro-
priate higher order. We already remarked that the JSC holds for 2-adic Cantor sets, and
so it holds for all higher order Cantor sets.

If m1(1 + m0) < 1, then γ (n)kn
→ 0 and γ (n)

k′n
→ 0 as n → ∞, so for some n large

enough, γ (n)kn
and γ (n)

k′n
are both strictly smaller than 1.

If m1(1 + m0) > 1, then γ (n)kn
→∞ as n→∞, so for some n large enough, γ (n)kn

is

strictly larger than 1, and by Lemma 8.2 this holds for all γ (n)k . ut

Remark 8.4. The number C in Theorem 8.3 is not the spectral radius of the collection

6M = {M(0),M(1)}.

In fact, let λPF(A) denote the Perron–Frobenius eigenvalue of a matrixA. It is well known
that λPF(A) is sandwiched between the smallest and the largest column sum of A. Com-
bining this with Lemma 6.1 we obtain

γ
(n)
kn
= min

k∈Z
min{γ (n)k , γ

(n)
k+1} ≤ min

k∈Z
λPF(M(n)k) ≤

1
R

min
k∈Z

min{γ (n)k , γ
(n)
k+1} =

1
R
γ
(n)
kn
.

According to Theorem B.1 of [Gur95], (mink∈Z λPF(M(k)))1/n, which is nothing other
than the nth root of the smallest spectral radius of all length n products of matrices from6,
converges to ρ(6M). Together with our results above, it follows that the lower spectral
radius of 6M = {M(0),M(1)} is equal to

lim
n→∞

a
1/n
n = lim

n→∞
(c+x

n
+ + c−x

n
−)

1/n
= x+ =

1
2m1 +

√
m1m0 +

1
4m

2
1.
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p0 = α

p
1

=
β

‖p‖1=1
‖p‖1=

√
2

γ0 = 1
γ1 = 1
C = 1

0
0

0.1
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0.3

0.4

0.4
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1

1

Fig. 8. Classification of the 2-adic symmetric algebraic difference in the (p0, p1) plane: (1) Be-
low ‖p‖1 = 1 a.s. F1 = F2 = ∅. (2) Below ‖p‖1 =

√
2 there are no intervals because

dimH(F1 − F2) < 1. (3) Below γ0 = 1 the ‘no intervals’ part of Theorem 4.1 holds. (4) Above
γ1 = 1 the ‘intervals’ part holds. (5) The line C = 1 is the separating boundary of Theorem 8.3.
The area where the Palis conjecture fails is shaded grey.

This might be of independent interest: we have shown that for max{2b, 1 − 2b} ≤ a ≤
1+ b2 the lower spectral radius of the collection consisting of

M(0) =
[
a b

0 b

]
, M(1) =

[
b 0
b a

]
(51)

is equal to 1
2b +

1
2

√
4ab + b2.

Figure 8 gives an overview of boundaries in the space of vectors of marginal probabil-
ities p that separate areas where different sets of conditions imply the absence or presence
of intervals. The figure also indicates the area where the Palis conjecture fails, i.e., the area
where (1) does not imply that F1 − F2 contains an interval (on {F1 − F2 6= ∅}).
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