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Abstract. LetG = SL3(Z/pZ), p a prime. Let A be a set of generators ofG. Then A grows under
the group operation.

To be precise: denote by |S| the number of elements of a finite set S. Assume |A| < |G|1−ε for
some ε > 0. Then |A · A · A| > |A|1+δ , where δ > 0 depends only on ε.

We will also study subsets A ⊂ G that do not generate G. Other results on growth and genera-
tion follow.
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1. Introduction

1.1. Growth in groups and graphs. “Growth” can mean one of many things.

(a) Growth in graphs. Let 0 be a graph. How many vertices can be reached from a given
vertex in a given number of steps?

(b) Growth in infinite groups. Let A be a set of generators of an infinite group G. Let
B(t) be the number of elements that can be expressed as products of at most t ele-
ments of A. How does B(t) grow as t →∞?

(c) Random walks in groups. Let A be a set of generators of a finite group G. Start with
x = 1, and, at each step, multiply x by a random element of A. After how many steps
is x close to being equidistributed in G?

(d) More on growth in graphs: the spectral gap. Let 0 be a graph. Consider its adjacency
matrix. What lower bounds can one give for the difference between its two largest
eigenvalues?
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(e) Growth in arithmetic combinatorics. Let G be an abelian group. Let A ⊂ G. How
large is A+A = {x + y : x, y ∈ A} compared to A, and why? In general, let G be a
group. Let A ⊂ G. How large1 is A · A · A compared to A, and why?

Question (e) has been extensively studied in the abelian setting. Some time ago,
I started studying it for non-abelian groups, and proved [He] that every set of genera-
tors A of G = SL2(Fp) grows: |A · A · A| > |A|1+δ , δ > 0, provided that |A| < |G|1−ε ,
ε > 0. (Here |S| is the number of elements of a set S.) This answered question (a) (on
growth in graphs) immediately in the case of the Cayley graph of SL2(Fp); the bounds
obtained were strong enough to constitute the first proved case of a standard conjecture
(Babai’s). Questions (c) and (d) (on random walks and spectral gaps) are closely related to
each other, and somewhat more indirectly to (a) and (e); the result in [He] gave non-trivial
bounds for (c) and (d). These bounds were greatly improved by Bourgain and Gamburd
([BG1]), who showed how to use a technique of Sarnak and Xue’s [SX] to derive from the
results in [He] bounds for (c) and (d) that are qualitatively optimal (sufficient to amount
to an expander graph property for all sets of generators A of G such that (G,A) has the
large girth property).

1.2. Main result. It remained to be seen whether the result in [He] on growth in SL2(Fp)
could be generalised to other groups. Much of the work in [He] was specific to SL2(Fp).
In [BG2], the result was generalised (in a suitably strong form) to SU2(C); there is also a
recent generalisation by O. Dinai [Din] to SL2(Fq), as well as results [B3] on SL2(Z/dZ).
From the point of view of the Lie algebra, all of these groups are very closely related to
SL2(Fp). Thus, the matter of the extent to which the methods in [He] were truly flexible
remained open.

The point of the present paper is to prove growth for SL3(Z/pZ). Part of the proof
(§5) is ultimately derived from that in [He], and is likely to be valid for all semisimple
groups of Lie type; part of the proof is essentially new.

Main Theorem. Let G = SL3. Let K = Z/pZ, p a prime. Let A ⊂ G(K) be a set of
generators of G(K). Suppose |A| < |G(K)|1−ε , ε > 0. Then

|A · A · A| � |A|1+δ, (1.1)

where δ > 0 and the implied constant depend only on ε.

We could, as in [He], write let A be a subset ofG(K) not contained in a proper subgroup
ofG(K) instead of letA be a set of generators ofG(K); the two statements are equivalent.

The condition thatA generateG(K) is easy to satisfy in applications (see, e.g., [BG1],
where the analogous result ([He]) on SL2(Fp) was applied).

Quite separately, it can be argued that the condition that A generateG(K) is a natural
one. If A does not generate G(K), what we have is no longer a statement about G(K),

1 In the non-abelian case, there are technical reasons why it makes more sense to consider A ·A ·
A = {x · y · z : x, y, z ∈ A} rather than A · A = {x · y : x, y ∈ A}. The product A · A could be
small “by accident”.
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but, rather, a statement about the group 〈A〉 generated by A; the set A cannot know that
elements outside 〈A〉 exist.

We will, nevertheless, study all subsets A of SL3(Z/pZ), whether they generate the
group or not.

Given a positive integer r and a subset A of a group G, we define Ar to be the set of
all products of at most r elements of A ∪ A−1:

Ar = {g1 · · · gr : gi ∈ A ∪ A−1
∪ {1}}. (1.2)

Theorem 1.1. LetG = SL3. Let K = Z/pZ, p a prime. Let A ⊂ G(K). Then, for every
ε > 0, either

|A · A · A| � |A|1+δ, (1.3)

where δ > 0 and the implied constant depend only on ε, or there are subgroups H1 GH2
G 〈A〉 such that

(a) H2/H1 is nilpotent,
(b) Ak contains H1, where k depends only on ε,
(c) A is contained in the union of ≤ |A|ε cosets of H2.

It is tempting to guess that a statement of this sort should be true in general for subsets A
of arbitrary groupsG. As pointed out by Pyber [P], the constants δ and k would then have
to depend on n, where n is the smallest integer such that G is isomorphic to a subgroup
of SLn(Fpα ) for some prime power pα . (See the remarks in §10.2.)

1.3. Consequences

1.3.1. Diameters. By a result of Gowers, Nikolov and Pyber2 [NP, Cor. 1 and Prop. 2],

A · A · A = SLn(K) (1.4)

for A ⊂ G with |A| > 2|G|1−1/(3(n+1)), where G = SLn(K) and K = Z/pZ.
Together with (1.4), the main theorem implies results on diameters. The diameter of

a graph 0 is
max
v1,v2∈V

(shortest distance between v1 and v2),

where V is the vertex set of 0. We are especially interested in the diameters of Cayley
graphs. The Cayley graph 0(G,A) of a pair (G,A) (where G is a group and A ⊂ G) is
defined to be the graph that has G as its set of vertices and {(g, ag) : g ∈ G, a ∈ A}

2 Gowers [Gow] proved a statement from which (1.4) quickly follows, as was pointed out by
Nikolov and Pyber; see [NP]. The results in [Gow] and [NP] are of a general nature; with the aid of
standard lower bounds on the dimensions of complex representations of SLn, the special cases SL2
and PSLn were worked out in [Gow] and [NP], respectively. More general statements can be found
in [BNP]. A weaker version of (1.4) for n = 2 was proven in [He, Key Proposition, part (b)].
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as its set of edges. It is easy to see that the diameter diam(0(G,A)) of the Cayley graph
0(G,A) is the least integer k such that

G = {I } ∪ A ∪ (A · A) ∪ · · · ∪ (A · · ·A︸ ︷︷ ︸
k times

).

If A is a set of generators of G, then, by definition, every element of G can be expressed
as a product of elements of A ∪ A−1; when G is finite, this implies that every element
of G can be expressed as a product of elements of A, i.e., diam(0(G,A)) is finite. The
question remains: how large can diam(0(G,A)) be in terms of G and A?

The following statement is known as Babai’s conjecture.

Conjecture ([BS]). For every non-abelian finite simple group G and any set of genera-
tors A of G,

diam(0(G,A))� (log |G|)c, (1.5)

where c is some absolute constant and |G| is the number of elements of G.

Until recently, there was no infinite family of groups G for which the conjecture was
known for all A. In [He], I proved Babai’s conjecture for G = SL2(Z/pZ) and all A. As
we shall see in §10.1, the conjecture for G = SL3(Z/pZ) follows easily from the main
theorem and (1.4).

Corollary 1.2 (to the Main Theorem and (1.4)). Let p be a prime. LetG = SL3(Z/pZ).
Let A be a set of generators of G. Then

diam(0(G,A))� (log |G|)c, (1.6)

where c and the implied constant are absolute.

It is clear that the corollary, as stated, implies that (1.6) holds for G = PSL3(Z/pZ) as
well. (I bother to say this because PSL3(Z/pZ) is always simple, while SL3(Z/pZ) is
not simple for some p.)

If A ⊂ G = SL3(Z/pZ) is such that 0(G,A) has girth� log |G| (i.e., if it has no
non-trivial cycles of length less than a constant times log |G|), it is easy to see that the
main theorem implies that the diameter of 0(G,A) is in fact � log |G|, not simply �
(log |G|)c (see §10). As we are about to discuss, it is likely that even stronger statements
can be made in this situation.

1.3.2. Spectral gaps and expander graphs. Soon after [He], Bourgain and Gamburd
([BG1]) showed that, for G = SL2(Z/pZ) and A any set of generators such that the
girth of 0(G,A) is � log |G|, the adjacency matrix of the Cayley graph 0(G,A) has
a spectral gap of size ε > 0, i.e., the difference between its largest and second largest
eigenvalues is bounded below by a constant. (This implies that the endpoint of a random
walk on 0(G,A) of length C · log |G|, C large, is close to being equidistributed.)

The starting point was the Key Proposition in [He], viz., the statement |A · A · A| ≥
|A|1+ε for A ⊂ SL2(Z/pZ); Bourgain and Gamburd succeeded in extracting a spectral
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gap ε > 0 therefrom thanks to their use of a technique of Sarnak and Xue [SX]. (In
[SX], as in the work of Gowers et al., the main ingredient is the fact that SL2(Z/pZ) (or
SLn(Fq), for that matter) has no small-dimensional complex representations.)

It is very likely that it will be possible to adapt Bourgain and Gamburd’s procedure
so as to prove a spectral gap λ1 − λ2 > ε, ε > 0, for (SL3(Z/pZ), A) with large girth
starting from the main theorem in the present paper. However, this is not immediate: what
is needed, other than a straightforward translation of [BG1] into SL3, is a bound ruling
out the possibility that the random walks on a Cayley graph of SL3(Z/pZ) with large
girth be highly concentrated on a subgroup early on.

1.4. Outline. Some basic background information will be given in §2. Sections 3 and 4
will be devoted to preparatory results in arithmetic combinatorics and growth in algebraic
groups, respectively. The behaviour of a (hypothetical) non-growing set A in relation to
maximal tori will be treated in §5; we will also examine the number of conjugacy classes
occupied by such a set. The main result will finally be proven—for most of the possible
range of |A|—in §6. Part of the range will be treated in §9; its treatment will necessitate
some detailed work involving the subgroup structure of SL3 (§8).

Section 4 treats algebraic groups in general. Most of the work in §5 will be done for
SLn. Sections 6 to 9 are in part specific to SL3, though many of the results in them are
stated and proved in greater generality.

1.4.1. Plan of proof. Let G = SL3, K = Z/pZ. Suppose there is a subset A ⊂ G(K)
violating the main theorem, i.e., a set A such that (a) A is substantially smaller than G
(|A| < |G|1−ε , ε > 0) and (b) A fails to grow (|A · A · A| � |A|1+δ , δ positive and very
small). Then, as we shall show in §5, the set A must be in some sense very regular. For
example, the number of conjugacy classes ClG(g) occupied by elements g of A will have
to be almost precisely what one would expect out of dimensional reasons.

Perhaps more surprisingly,Awill have to have a large intersection with some maximal
torus T ; in other words, A has many simultaneously diagonalisable elements. Our aim
will be to use A to construct (§6) a set of tuples of elements of Z/pZ× Z/pZ satisfying
too many linear relations too often. This will stand in contradiction to a bound on linearity
(Cor. 3.8) that follows from a sum-product theorem (§3.3–3.4).

The above argument has a blind spot (p4−ε < |A| < p4+ε) resulting from the fact
that sum-product theorems for Z/pZ × Z/pZ do have exceptions—all of size about p.
For sets A of size in the blind spot, it becomes necessary to pass to a maximal parabolic
subgroup and then use the fact that we already know that the main theorem holds for SL2.
If the intersection A−1A ∩M with a maximal parabolic subgroup M fails to generate a
quotient ofM isomorphic to SL2(Z/pZ), then A−1A∩M must (in essence) lie in a Borel
subgroup. We will see how sets grow in Borel subgroups by means of a general result
(Prop. 3.1) of which the sum-product theorem is but a shadow (Lemma 3.4).

1.4.2. Tools. The tools used are elementary in nature—in contrast to the analytical tools
sometimes used to study arithmetic groups.
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The reader may wonder why the main theorem is a statement onA·A·A, as opposed to
one on A ·A or on the product of A with itself ten times. The statement |A ·A| > |A|1+δ

is not always true: let A = H ∪ {g}, where H is a (non-normal) subgroup of G and
g /∈ H , for example. As for a statement on ten or twenty copies of A: we shall, in fact,
be proving such a statement; a result essentially due to Ruzsa (Lemma 2.2) then tells us
that, if |A · A−1

· A · A · A · A| > |A|1+δ (say), then |A · A · A| > |A|1+δ
′

(with δ′ > 0
depending only on δ > 0).

Additive combinatorics appears again in the guise of the Balog–Szemerédi–Gowers
theorem. This is a very useful result, if somewhat rigid in its requirements; Bourgain
showed in [BG2] how to remove it from the proof in [He], and it is likely that it will have
to be replaced in the proof given here as well when the proof is generalised to SLn, n > 3.

There is a rich literature on growth in infinite groups, based on the works of Gromov,
Tits et al. There seems to be now at least one point of intersection with it: the escape
argument of [EMO] will be used time and again in the course of this paper. In essence, it
tells us that we may avoid any non-generic situation, such as, for example, that of matrices
with repeated eigenvalues.

A truly crucial role is played by a sum-product theorem (first proven over finite fields
by Bourgain, Katz and Tao [BKT] and Konyagin [Ko]). The result we need will be derived
here from a more general statement (Prop. 3.1) on growth in groups under commuting
actions without fixed points.

2. Notation and preliminaries

2.1. General notation. As is customary, we denote by Fpα the finite field of order pα .
Given a set A, we write |A| for its number of elements. By A+ B (resp. A · B), we shall
always mean {x + y : x ∈ A, y ∈ B} (resp. {x · y : x ∈ A, y ∈ B}); by A+ ξ and ξ · A
we mean {x + ξ : x ∈ A} and {ξ · x : x ∈ A}, respectively.

Let G be a group and A a subset. As before, we define

Ar = {g1 · · · gr : gi ∈ A ∪ A−1
∪ {1}}.

For us, Ar means {xr : x ∈ A}; in general, if f is a function on A, we take f (A) to mean
{f (x) : x ∈ A}. If ϒ is a set of maps from X to Z, and A and Y are subsets of X and ϒ ,
respectively, then

Y (A) = {y(a) : y ∈ Y, a ∈ A}.

We write Y (a) for Y ({a}) and y(A) for {y}(A) = {y(a) : a ∈ A}.

2.2. Boundedness. We say “a � b, where the implied constant is absolute” or “a =
O(b), where the implied constant is absolute” when we mean that the non-negative real
number a (or the absolute value of the arbitrary real number a) is at most the real number
b multiplied by an absolute constant. We write a �c1,...,cn b or a = Oc1,...,cn(b) when we
mean that the non-negative real number a (or the absolute value of the arbitrary real num-
ber a) is at most the real number b multiplied by a constant depending only on c1, . . . , cn.
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We write a �c1,...,cn b to mean that a is larger than a positive constant depending only
on c1, . . . , cn.

In particular, a �c1,...,cn 1 (or a = Oc1,...,cn(1)) will mean that a is bounded in terms
of c1, . . . , cn alone. We will use this latter notation even when a is not a real number,
provided that we have defined what it means for a to be bounded (in terms of other
variables).

For example, when we say that a vector

Ed = (d0, d1, . . . , dn, 0, 0, . . . ) (di non-negative)

is bounded in terms of a quantity ` alone, we mean that both n and d0, d1, . . . , dn are
bounded in terms of ` alone. We can then write this as follows: Ed �` 1. The quan-
tity ` may itself be a vector: we may write, for example, Ed � Ed ′ 1—meaning that n and
d0, d1, . . . , dn are bounded in terms of a vector Ed ′ alone—or, for that matter, a � Ed 1—
meaning that a number a is bounded in terms of Ed alone.

2.3. Arithmetic combinatorics. We start with a very simple and standard lemma.

Lemma 2.1. Let G be a finite group. Let A ⊂ G. Suppose |A| > 1
2 |G|. Then A ·A = G.

Proof. Suppose there is a g ∈ G not in A · A. Then, for every x ∈ G, either x or gx−1

is not in A. As x goes over all elements of G, we see that no more than one out of every
pair of elements of G can lie in A. In other words, |A| ≤ 1

2 |G|. Contradiction. ut

The following result is based on ideas of Ruzsa’s, and, in particular, on his triangle in-
equality ([He, Lemma 2.1]).

Lemma 2.2 (Tripling lemma). Let k > 2 be an integer. Let A be a finite subset of a
group G. Suppose that

|Ak| ≥ C|A|

for some C ≥ 1. Then
|A · A · A| ≥ Cδ|A|

where δ > 0 depends only on k.

The dependence of δ on k is, in fact, inverse linear (1/δ = O(k)).

Proof. See [T1, Lemma 3.4] or [He, Lemma 2.2]. ut

In the present paper, we shall almost always use the tripling lemma in the following form:
if |Ak| ≥ c|A|1+ε with c, ε > 0, then |A · A · A| �c,ε,k |A|

1+ε′ , where ε′ > 0 depends
only on c, ε and k. This is simply a special case of the lemma: set C = c|A|ε . (The proof
in [He, Lemma 2.2] is stated for this special case, but works in general.)

The Balog–Szemerédi–Gowers theorem is known in several different forms. We de-
rive the one we need from one of the most common formulations. We make no effort to
optimise the constants involved.
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Proposition 2.3 (Balog–Szemerédi–Gowers). Let A1, . . . , An be finite subsets of an
abelian group Z. Let m = minj |Aj | and M = maxj |Aj |. Let S ⊂ A1 × · · · × An
be such that

|S| ≥ cMn and
∣∣∣{ ∑

1≤j≤n

aj : (a1, . . . , an) ∈ S
}∣∣∣ ≤ 1

c
m (2.1)

for some constant c ∈ (0, 1). Then there is a subset A′ ⊂ A1 such that

|A′| � c|A| and |A′ + A′| �
1
cC
|A′|,

where C > 0 and the implied constants are absolute.

Note that condition (2.1) can hold only if min |Aj | ≥ cmax |Aj |.

Proof. Choose the tuple (a3 . . . , an) ∈ A3 × · · · × An such that the number of elements
of the set

Ga3,...,an = {(a1, a2) ∈ A1 × A2 : (a1, a2, a3, . . . , an) ∈ S}

is maximal. We apply the Balog–Szemerédi–Gowers theorem as given in [TV, Thm. 2.29]
with A = A1, B = A2 and G = Ga3,a4,...,an , and deduce that there are sets A′ ⊂ A1,
B ′ ⊂ A2 with |A′| � c|A1|, |B ′| � c|A2| and

|A′ + B ′| � c−7
|A1|

1/2
|A2|

1/2
� c−8

|A′|1/2|B ′|1/2 � c−9
|A′|.

We apply the Plünnecke–Ruzsa estimates [TV, Cor. 6.29] to conclude that |A′ + A′| �
c−18
|A′|. ut

There are non-commutative versions of Balog–Szemerédi–Gowers (see [T1]); we shall
not need them, however.

2.4. Groups and generation. By 〈g〉 we mean the group generated by an element g of a
group G. By 〈A〉 we mean the group generated by a subset A of G. By H < G we mean
that H is a subgroup (proper or not) of G.

We write ClG(g) for the conjugacy class of an element g in G.

2.5. Varieties. Let us speak concretely. An (affine) variety V is given by a finite set of
polynomial equations F(x1, . . . , xn) = 0 in n variables with coefficients in a field. (We
will usually work in an affine space (denoted by An), rather than in projective space Pn;
if we work in projective space, our polynomials F must all be homogeneous.) If the
coefficients all lie in a field K , we say that V is defined over K , or simply write V/K . If
L is another field—containing, contained in, or equal to K—then we write V (L) for the
set of L-valued points of V , i.e., the set of solutions in Ln to our set of equations.

A subvarietyW ⊂ V is a variety that can be defined by a set of equations that contains
a set of equations defining V . By a proper subvariety W ( V we mean simply a subva-
riety with W 6= V . (There is a very different algebraic-geometrical notion of properness;
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we shall not use it.) Clearly, if two varieties V , W defined over K satisfy W ⊂ V , then
W(L) ⊂ V (L) for every extension L of K .

A Zariski-open set 6 in a variety V is the complement of a variety W ⊂ V ; its set of
points6(L) is defined to be V (L)\W(L). A Zariski-open set is not, in general, a variety.

All or nearly all the algebraic geometry we need can be found in [Da], for instance.

2.5.1. Algebraic groups. If we speak of an (affine) algebraic group defined over a field
K , we mean an affine variety G/K with a group law such that the multiplication map
µ : G × G → G and the inverse map ι : G → G are regular and defined over K .
(Between affine varieties, a regular map is simply a map given by polynomials.) Thus,
strictly speaking, an algebraic group G is not a group; rather, its set of points G(L) will
be a group for every field L containing K . The set of points G(L) for L contained in K
may also be a group, if it is closed under the group operation.

The following are typical examples. We may speak of the algebraic group G = SLn
(or, for that matter, G = SOn or G = Sp2n). This is a variety defined over Z, and thus
over an arbitrary field: it is given by the equation det(g) = 1 in the n2 variables gij ,
1 ≤ i, j ≤ n. (Note that the determinant is a polynomial.) The multiplication map from
SLn×SLn to SLn is given by matrix multiplication. For any field K , the set G(K) is
the set SLn(K) of all n-by-n matrices with entries in K and determinant 1; this set is a
group under the group law just given, i.e., matrix multiplication. A maximal torus T in
G = SLn is a group consisting of all diagonal matrices for some choice of basis, i.e.,
a group that can be made into the group of diagonal matrices by conjugation. If T can
be thus diagonalised by conjugation by a matrix in G(K), then T is defined over K;
otherwise, T is defined over K but not over K . Even in the latter case, we may still speak
of the group T (K). For example, if K = R, and we consider the matrices(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, θ ∈ R,

we can see that they are the points over R of a maximal torus T , in that they can all be
diagonalised simultaneously; this torus T is defined over C, but cannot be defined over R.

In general, algebraic groups behave a great deal like Lie groups, even over finite fields;
in particular, they have maximal tori, roots, etc. Every (affine) algebraic group is a closed
algebraic subgroup of GLn for some n ≥ 1 ([Hum, §8.6]). For an introduction to algebraic
groups, see [Bor] or [Hum].

2.5.2. Degree and dimension. The dimension dim(X) of an irreducible variety X is the
length k of the longest chain {x} = X0 ⊂ X1 ⊂ · · · ⊂ Xk = X of irreducible subvarieties
of X; this corresponds to the intuitive notion of dimension. If the irreducible components
of a variety V all have the same dimension, we say V is pure-dimensional, and define the
dimension dim(V ) of V to be that of any of its irreducible components. (An irreducible
component of a variety V is an irreducible subvariety of V not contained in any other
irreducible subvariety of V .)

The degree deg(V ) of a pure-dimensional variety V of dimension r in n-dimensional
affine or projective space is its number of intersection points with a generic linear variety
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of dimension n − r . (Thus, for example, the degree of an irreducible plane curve is its
number of intersection points with a generic line.)

Let us first see what the degree of a variety has to do with the familiar notion of the de-
gree of a polynomial. Let F be an irreducible polynomial in n variables with coefficients
in a field K . Then the equation

F(x1, . . . , xn) = 0

defines an irreducible variety V of codimension 1, i.e., of dimension n − 1 in n-dimen-
sional affine space An. (The irreducibility of V turns out to be an easy consequence of the
irreducibility of F and the fact that K[x1, x2, . . . , xn] is a unique factorisation domain.)

Now, it is not hard to see that the degree of V will be equal to the degree of F : if we
let x1 = a1 + b1t, . . . , xn = an + bnt for some constants a1, . . . , an ∈ K , b1, . . . , bn ∈

K
∗
, the equation F(a1 + b1t, . . . , an + bnt) = 0 will be an equation on t of degree

at most deg(F ), and, for a1, . . . , an, b1, . . . , bn sufficiently “generic”, of degree exactly
deg(F ). That equation on t will hence have deg(F ) roots (all distinct for ai , bi sufficiently
generic). In other words, V and the line given by x1 = a1 + b1t , . . . , xn = an + bnt

have deg(F ) intersection points. (It should be clear now that we mean intersection points
whose coordinates lie in the algebraic closureK , and not necessarily inK .) We have thus
sketched how to show that deg(V ) = deg(F ).

All of the above can be made precise, in that all the statements above remain true when
“generic” is given what we shall see as its precise meaning: namely, “outside a variety
of positive codimension”. Thus, for example, the degree of F(a1 + b1t, . . . , an + bnt)

= 0 is exactly deg(F ) provided that (a1, . . . , an, b1, . . . , bn) lies outside a variety of
codimension 1 in A2n, viz., the variety given by the equation

leading coefficient = 0.

Similarly, the roots t1, t2, . . . of f
Ea,Eb
(t) = F(a1 + b1t, . . . , an + bnt) = 0 are all distinct

if (a1, . . . , an, b1, b2, . . . , bn) lies outside the variety given by the equation

discriminant(f
Ea,Eb
) = 0,

or, alternatively, if the line given by (a1 + b1t, . . . , an + bnt) is not tangent to the surface
F(x1, . . . , xn) = 0 at any point. (Showing that the discriminant is not identically 0 may
not be immediately obvious.)

The degree of a variety is a yardstick of complexity that behaves well under intersec-
tions. We shall need the following general version of Bézout’s theorem.

Lemma 2.4 (Bézout’s theorem, generalised). Let X1, . . . , Xk be pure-dimensional va-
rieties in Pn, and let Z1, . . . , Zl be the irreducible components of the intersection X1 ∩

· · · ∩Xk . Then
l∑

j=1

deg(Zj ) ≤
k∏
i=1

deg(Xi).

As is stated in [Da], the form of the statement goes back to Fulton and MacPherson.

Proof. See [Da, p. 251]. ut
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It remains to see how to define the dimension and the degree of a variety V when V is not
irreducible. We simply define dimV to be the dimension of the irreducible subvariety of
V of largest dimension. As for the degree, it will be best to see it as a vector: we define
the degree

−→
deg(V ) of an arbitrary variety V to be

(d0, d1, . . . , dk, 0, 0, . . . ),

where k = dim(V ) and dj is the degree of the union of the irreducible components of V
of dimension j .

It is easy to see that Bézout’s theorem implies that, for any varieties V1, . . . , Vk , the
degree

−→
deg(W) of the intersection W = V1 ∩ · · · ∩ Vk is bounded in terms of

−→
deg(V1),

−→
deg(V2),. . . ,

−→
deg(Vk) alone. (See §2.2 for an explanation of what we mean by

−→
deg(W)

being bounded in terms of such and such; we mean that both dim(W) and the degree dj
of the union of the irreducible components of V of dimension j are bounded in terms
of such and such.) We can also see easily (without the use of Bézout’s theorem) that the
degree of the variety V = V1 ∪ · · · ∪ Vk is bounded in terms of

−→
deg(V1), . . . ,

−→
deg(Vk); in

fact, if the Vi’s have no components in common, we will have
−→
deg(V ) =

∑
i

−→
deg(Vi).

A very concrete consequence of what we have said so far is the following: if a variety
V is defined by equations

F1(x1 . . . , xn) = 0,
F2(x1, . . . , xn) = 0,

. . .

Fk(x1, . . . , xn) = 0,

then its degree
−→
deg(V ) is bounded in terms of n and deg(F1), . . . , deg(Fn) alone.

If a regular map φ : V → W between two varieties V ⊂ Am, W ⊂ An is de-
fined by polynomials φ1, . . . , φn on the variables x1, . . . , xm, we define degpol(φ) to be
maxj deg(φj ). (If several representations of φ by polynomials φ1, . . . , φn are possible,
we choose—for the purposes of defining degpol—the one that gives us the least value of
degpol.) What we have just seen amounts to stating that, if a subvariety V ′ of V is given

by φ(x) = y for some y ∈ W(K), then
−→
deg(V ′) can be bounded in terms of degpol(φ)

and n (where W ⊂ An).

2.5.3. Fibres and counting. Let V be a subvariety ofX×Y , whereX and Y are varieties.
The fibre Vx=x0 (or Vy=y0 ) is the subvariety of Y (or X) consisting of the points y such
that (x0, y) lies on V (or of the points x such that (x, y0) lies on V ). It is an immediate
consequence of Bézout’s theorem that

−→
deg(Vx=x0) and

−→
deg(Vy=y0) are bounded in terms

of
−→
deg(V ) alone.
Let V be a proper subvariety of X × Y , where X and Y are varieties. Then there is

a proper subvariety W of X such that, for every x0 lying on X \W , the fibre Vx=x0 is a
proper subvariety of Y ; moreover,

−→
deg(W) is bounded in terms of

−→
deg(V ) alone. This is

easy to show: since V is a proper subvariety of X × Y , there is a point (x0, y0) of X × Y
not on V ; then the fibre Vy=y0 is a proper subvariety of X, and, for every x′0 lying on
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X \ Vy=y0 , the fibre Vx=x′0 does not contain the point y0, and hence is a proper subvariety
of Y . Set, then, W = Vy=y0 .

By the same argument, there is also a proper subvarietyW ′ of Y such that, for every y0
lying on Y \W ′, the fibre Vy=y0 is a proper subvariety of X.

Let K be a finite field. Let V/K be a subvariety of An such that all of its irreducible
components have dimension ≤ m. Then

|V (K)| �−→
deg(V ),n

|K|m. (2.2)

This crude bound can be proven as follows.
We will proceed by induction on n. We can assume without loss of generality that V

is irreducible of dimension m. (The number of components of a variety V is�−→
deg(V )

1.)

See An as the product of affine varieties A1
× An−1. Suppose that there is a point t ∈ A1

such that the fibre Vx1=t has components of dimension m. Then V = {t} × Vx1=t , as
otherwise V would have dimension> m (by the definition of dimension). We then obtain
(2.2) by the inductive assumption for n− 1.

Suppose now that there is no point t ∈ A1 such that the fibre Vx1=t has components
of dimension m. By the inductive assumption, (2.2) holds for n− 1, and so, in particular,
|Vx1=t (K)| �−→deg(Vx1=t ),n−1

|K|m−1 for every t . Since there are |K| possible values of t ,

and since
−→
deg(Vx1=t )�1

−→
deg(V ), we conclude that

|V (K)| �−→
deg(V ),n

|K| · |K|m−1
= |K|m,

as we wished to show.
Bounds much more precise than (2.2) are known: take, for instance, the Lang–Weil

theorem [LW]. (We shall not need the later and very deep results of Deligne and others.)

2.5.4. Abuse of language. Given a variety V defined over a field K , and a subvariety
W/K defined over the algebraic completion K of K , we will write W(K) for W(K) ∩
V (K). (We will even speak of the points of W over K , meaning W(K) := W(K)

∩ V (K).)

2.5.5. Independence. Let V1, . . . , Vk be linear subspaces of an affine space An; let them
be defined over a field K . We say that V1, . . . , Vk are linearly independent if there is no
choice of points v1 ∈ V1(K), . . . , vk ∈ Vk(K), not all 0, such that v1 + · · · + vk = 0.

3. Growth in rings and Borel subgroups

3.1. Growth under commuting actions. Ever since the sum-product theorem was
proven by Bourgain, Katz and Tao ([BKT]), it has been subject to a series of refinements
and variations. Of these, one of the most interesting is a result of Glibichuk and Konya-
gin ([GK, Lemma 3.2–Cor. 3.5]), both because it applies to pairs of sets of completely
arbitrary sizes, and because of its rather simple proof.
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It will become apparent that the natural setting of “sum-product theorems” is a much
broader one than the one in [BKT], [GK] or the related literature. It is not really a result
about subsets of the field Z/pZ, but, rather, a result about groups (abelian or non-abelian)
and commuting automorphisms thereof. We shall show that the sum-product theorem over
Z/pZ (say) is a consequence of a special case of the general result below. Before that,
we shall also see how this general result has useful implications on the action of maximal
tori in SLn(K) on unipotent subgroups.

Proposition 3.1. Let G be a group and ϒ an abelian group of automorphisms of G. Let
Y ⊂ ϒ be a non-empty set such that

if y(g) = g for y ∈ Y−1Y , g ∈ G, then either y = e or g = e. (3.1)

Then, for any non-empty A ⊂ G and any Y0 ⊂ ϒ , A0 ⊂ G, either

|A · Y (a1)| ≥ |A| · |Y | (3.2)

or

|{y2(a)·y(y2(a0))·y(a
−1
2 ·a1)·y(y1(a

−1
0 ))·y1(a

−1) : a ∈ A, y ∈ Y }| ≥ |A|·|Y |. (3.3)

for some a0 ∈ A0, a1, a2 ∈ A, y1, y2 ∈ Y , or

|{y2(a) · y0(y(a
−1
2 a1)) · y1(a

−1) : a ∈ A, y ∈ Y }| ≥ |A| · |Y | (3.4)

for some y0 ∈ Y0, a1, a2 ∈ A, y1, y2 ∈ Y , or

|{y2(a) · y(a
−1
2 a1) · y1(a

−1) : a ∈ A, y ∈ Y }| >
|A| |Y | |O|

|A| |Y | + |O|
≥

1
2

min(|A| |Y |, |O|),

(3.5)

where a1, a2 ∈ A, y1, y2 ∈ Y , and O is the union of the orbits of the elements of A under
the operations a 7→ a0 · a (for all a0 ∈ A0) and a 7→ y0(a) (for all y0 ∈ Y0).

It should be easy to see that the inequalities (3.2)–(3.4) must all be equalities; we phrase
them as inequalities simply because we are interested in lower bounds on growth.

If we take A0 = A and Y0 = Y ∪ Y
−1, Proposition 3.1 acquires a particularly simple

form:

Corollary 3.2. Let G be a group G and ϒ an abelian group of automorphisms of G.
Then, for any A ⊂ G and any Y ⊂ ϒ satisfying (3.1),

|(Y2(A))6| >
1
2 min(|A| |Y |, |R|),

where R = 〈〈Y 〉(〈A〉)〉 is the set of all products of elements of the form y(a) with a ∈ 〈A〉
and y ∈ 〈Y 〉.
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Proof. Set A0 = A ∪ A
−1, Y0 = Y ∪ Y

−1 and apply Prop. 3.1. It remains only to prove
that the union O of the orbits of the elements of A under the action of x 7→ a · x (a ∈ A)
and x 7→ y(x) (y ∈ Y ) is equal to the set R described in the statement. It is clear that
O ⊂ R.

To prove R ⊂ O , we proceed by induction: let R(n) be the set of all products of at
most n elements of the form y(a), a ∈ A ∪ A−1, y ∈ 〈Y 〉. Assume R(n) ⊂ O . (This is
certainly true for n = 0, since the identity element e = a · a−1 is in O .) We wish to prove
R(n + 1) ⊂ O . Any g ∈ R(n + 1) can be written in the form y(a) · h, where y ∈ 〈Y 〉
and a ∈ A ∪ A−1. Now y(a) · h = y(a · y−1(h)). Because h ∈ R(n), and because y is
a homomorphism, y−1(h) is also in R(n). Since R(n) ⊂ O , y−1(h) must be in O . Then
y(a · y−1(h)) must also be in O . Thus every element of R(n+ 1) is in O . ut

Examples. Before we prove Prop. 3.1, let us see two of its consequences; we shall ex-
amine them in more detail later.

(a) Let G = Fp (as an additive group), ϒ = F∗p (acting on G by multiplication), A0 =

{1}, G0 = e. Then condition (3.1) is easily seen to be satisfied: it just says that, in a
field, if y · g = g, then either y = 1 or g = 0. (The same is true in any ring without
zero divisors.) Thus we may apply Prop. 3.1, and we see that, for any A ⊂ Fp and
any Y ⊂ F∗p,

|Y · A+ Y · A− Y · A− Y · A+ Y 2
− Y 2
| > 1

2 min(|A| |Y |, p). (3.6)

(This is the result of Glibichuk and Konyagin mentioned before; see [GK, §3].) We
may set Y = A, and then a few applications of the Plünnecke–Ruzsa estimates ([TV,
Cor. 6.29]) suffice to derive from (3.6) the conclusion that

|A · A+ A · A| ≥ |A| · ( 1
2 min(|A|, p/|A|))1/6

for every subset A of F∗p. An application of the Katz–Tao lemma ([TV, Lemma 2.53];
see also [B1], [Ga]) then suffices to show that, for every A ⊂ F∗p with |A| < p1−δ ,
δ > 0, we have either |A + A| > |A|1+ε or |A · A| > |A|1+ε , where ε > 0 depends
only on δ > 0. This is the well-known sum-product theorem of Bourgain, Katz and
Tao ([BKT]), as extended by Konyagin. We shall not use this theorem; instead, we
shall use a sum-product theorem on the ring Fp × Fp, after proving it by proceeding
much as we just did.

(b) Let G be the group of upper-triangular matrices in SLn(K) with 1s on the diagonal.
Let ϒ be the group of diagonal matrices, acting on G by conjugation (not multipli-
cation). Let Y ⊂ ϒ be a set of matrices such that the map g 7→ giig

−1
jj (i.e., a root of

SLn(K) relative to ϒ , in the parlance of groups of Lie type) is injective on Y for all
1 ≤ i, j ≤ n distinct. Then (3.1) is satisfied, and so, by Cor. 3.2,

|(Y2(A))6| ≥
1
2 min(|A| |Y |, |R|),

where R = 〈〈Y 〉(〈A〉)〉. We shall look into this issue with more care in §3.2; see
Prop. 3.3.
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We will now see the proof of Prop. 3.1. It is quite close to that of [B2, Lemma 1],
whose proof is in turn based closely on the argument in [GK, §3]. Our version is self-
contained.

Proof of Proposition 3.1. The idea is to use a “pivot” ξ , meaning an element ξ of G such
that the map φξ from A×Y toG given by (g, y) 7→ (g ·y(ξ)) is injective. If there is such
a pivot, the injectivity of φξ gives us that |A · Y (ξ)| is large: |A · Y (ξ)| ≥ |A| · |Y |. Then
one finishes by showing that one can construct ξ in a bounded number of steps starting
from A and Y . If there is no pivot, then the set of non-pivots must be rather large. We use
this fact itself to prove growth.

Saying that φξ is injective is the same as saying that ξ /∈ δ−1
y1,y2

({a−1
2 · a1}) for all

a1, a2 ∈ A and all distinct y1, y2 ∈ Y , where δy1,y2 : G → G is the map γ 7→
y2(γ ) · (y1(γ ))

−1. Now, if δy1,y2(γ1) = y2(γ1) · (y1(γ1))
−1 equals δy1,y2(γ2) = y2(γ2) ·

(y1(γ2))
−1, then y2(γ

−1
1 γ2) = y1(γ

−1
1 γ2), and so y−1

1 (y2(γ
−1
1 γ2)) = γ−1

1 γ2. Since
y1, y2 ∈ Y are distinct and γ1, γ2 ∈ G are distinct, this contradicts assumption (3.1).
Hence δy1,y2 : G → G is injective for all pairs (y1, y2) of distinct elements of Y . This
shall be crucial later.

We face two cases, depending on whether or not the set

S =
⋃

a1,a2∈A
y1,y2∈Y, y1 6=y2

δ−1
y1,y2

(a−1
2 · a1) (3.7)

contains the orbit O . The set O contains all “easily constructible” elements; if O is not
contained in S, we can construct an element not in S, i.e., a valid pivot.

Case 1: O 6⊂ S. (Read: there is a pivot.) The set O is the union of the orbits of the
elements of A under certain actions. Hence, if O 6⊂ S, then either A 6⊂ S or there is an
element s of S that is taken out of S by one of the actions: that is, either a0 · s /∈ S for
some a0 ∈ A0 or y0(s) /∈ S for some y0 ∈ Y0. Call these three cases (a), (b) and (c). In
case (a), we let ξ be any element of A not in S; in case (b), we let ξ = a0 · s; finally, in
case (c), we let ξ = y0(s).

Now we are almost done. We have a map

φξ : (g, y) 7→ g · y(ξ) (3.8)

from A× Y → G. Because ξ 6∈ S, the map is injective. The map has been constructed in
a finite number of steps from the elements of A and Y , since ξ was defined that way.

Let us work out the meaning and implications of this last statement case by case.

Case 1(a): A 6⊂ S; ξ an element of A not in S. Since φξ is injective,

|A · Y (ξ)| ≥ |A| · |Y |.

We have proven (3.2).

Case 1(b): ξ = a0 · s. Since φξ is injective,

|A · Y (ξ)| ≥ |A| · |Y |. (3.9)



Growth in SL3(Z/pZ) 777

Now we must do a little work: ξ is defined in terms of s, and the definition of s involves
the map δ−1

y1,y2
, which we must now somehow remove. Because δy1,y2 is injective, (3.9)

implies
|δy1,y2(A · Y (ξ))| ≥ |A| · |Y |. (3.10)

Now, for any a ∈ A and y ∈ Y ,

δy1,y2(a · y(ξ)) = y2(a · y(ξ)) · (y1(a · y(ξ)))
−1

= y2(a) · y2(y(ξ)) · (y1(y(ξ)))
−1
· (y1(a))

−1

= y2(a) · y(y2(ξ)(y1(ξ))
−1) · (y1(a))

−1. (3.11)

(It is here that the fact that ϒ is abelian is finally used.) Recall that the definition of δy1,y2

is δy1,y2(ξ) = y2(ξ)(y1(ξ))
−1.

Because we are in case 1(b), there are a0 ∈ A0 and s ∈ S such that ξ = a0 · s.
By the definition (3.7) of S, there are y1, y2 ∈ Y distinct and a1, a2 ∈ A such that
δy1,y2(s) = a

−1
2 · a1. Then

y(y2(ξ) · y1(ξ)
−1) = y(y2(a0) · y2(s) · (y1(s))

−1
· (y1(a0))

−1)

= y(y2(a0)) · y(y2(s)(y1(s))
−1) · y((y1(a0))

−1)

= y(y2(a0)) · y(δy1,y2(s)) · y((y1(a0))
−1)

= y(y2(a0)) · y(a
−1
2 · a1) · y((y1(a0))

−1). (3.12)

Thus

δy1,y2(a · y(ξ)) = y2(a) · y(y2(a0)) · y(a
−1
2 · a1) · y((y1(a0))

−1) · (y1(a))
−1.

We conclude that

|{y2(a) · y(y2(a0)) · y(a
−1
2 · a1) · y(y1(a

−1
0 )) · y1(a

−1) : a ∈ A, y ∈ Y }| ≥ |A| · |Y |.

That is, the conclusion (3.3) is true.

Case 1(c): ξ = y0(s). We start as in case 1(b): (3.10) and (3.11) still hold. By the defini-
tion (3.7) of S, there are y1, y2 ∈ Y distinct and a1, a2 ∈ A such that δy1,y2(s) = a

−1
2 · a1.

Now, because we are in case 1(c) and not in case 1(b), we have ξ = y0(s) instead of
ξ = a0 · s. We replace (3.12) by the following calculation:

y(y2(ξ) · y1(ξ)
−1) = y(y2(y0(s)) · (y1(y0(s)))

−1) = y(y2(y0(s))) · y(y1(y0(s
−1)))

= y0(y(y2(s))) · y0(y(y1(s
−1))) = y0(y(y2(s) · y1(s

−1)))

= y0(y(y2(s) · (y1(s))
−1)) = y0(y(δy1,y2(s))) = y0(y(a

−1
2 a1)).

(It is here that the fact that ϒ is abelian is used for the second time.) Thus

δy1,y2(a · y(ξ)) = y2(a) · y0(y(a
−1
2 a1)) · (y1(a))

−1.

We conclude that

|{y2(a) · y0(y(a
−1
2 a1)) · y1(a

−1) : a ∈ A, y ∈ Y }| ≥ |A| · |Y |.

In other words, (3.4) holds.
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Case 2: O ⊂ S. (Read: there is no pivot.) Then S must be rather large. From the definition
(3.7), it becomes clear that either Y or A must be rather large. It is then no surprise that
some crude techniques appropriate for large sets shall be sufficient for our task.

Since δy1,y2 is injective for y1 6= y2, the sets

Rξ = {(a1, a2, y1, y2) ∈ A× A× Y × Y : y1 6= y2, a1 · y1(ξ) = a2 · y2(ξ)}

are disjoint as ξ ranges in G. Choose ξ0 ∈ S such that |Rξ0 | is minimal. Then

|Rξ0 | ≤
|A|2|Y |(|Y | − 1)

|S|
<
|A|2|Y |2

|S|
≤
|A|2|Y |2

|O|

and so

|{(a1, a2, y1, y2) ∈ A× A× Y × Y : a1 · y1(ξ0) = a2 · y2(ξ0)}| <
|A|2|Y |2

|O|
+ |A| · |Y |.

Hence

|A · Y (ξ0)| >
|A|2|Y |2

|A|2|Y |2

|O| + |A| · |Y |
=
|A| |Y | |O|

|A| |Y | + |O|
. (3.13)

As before, we must somehow remove δ−1
y1,y2

from ξ0. By the injectivity of δy1,y2 , (3.13)
implies

|δy1,y2(A · Y (ξ0))| >
|A| |Y | |O|

|A| |Y | + |O|
.

Equation (3.11) is still valid. Since ξ ∈ S, we know that δy1,y2(ξ0) = a−1
2 a1 for some

a1, a2 ∈ A, y1, y2 ∈ Y distinct. Thus, for a ∈ A, y ∈ Y ,

δy1,y2(a · y(ξ0)) = y2(a · y(ξ0)) · (y1(a · y(ξ0)))
−1

= y2(a) · y2(y(ξ0)) · (y1(y(ξ0)))
−1
· (y1(a))

−1

= y2(a) · y(y2(ξ0) · (y1(ξ0))
−1) · (y1(a))

−1

= y2(a) · y(δy1,y2(ξ0)) · (y1(a))
−1

= y2(a) · y(a
−1
2 a1) · (y1(a))

−1.

(It is here that the fact that ϒ is abelian is used for the third and last time.) Hence

|{y2(a) · y(a
−1
2 a1) · y1(a

−1) : a ∈ A, y ∈ Y }| >
|A| |Y | |O|

|A| |Y | + |O|
.

The inequality ab
a+b
≥

1
2 min(a, b) is easy and true for all positive a, b. Hence we have

proven (3.5). ut

3.2. Growth in unipotent groups under the action of the diagonal. Proposition 3.1
does not require the group G to be abelian. The following is a natural application in
which G is non-abelian.
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Proposition 3.3. Let G be any semisimple group of Lie type. Let B be a Borel subgroup
of G defined over a field K . Let T be a maximal torus of G contained in B, and let U
be the maximal unipotent subgroup of B. Assume that the exponential map exp : u→ U

from the Lie algebra u of U to U itself is bijective. LetD ⊂ T (K) be a finite set such that,
for every root α of G relative to T , the restriction α|D is injective. Then, for any finite set
A ⊂ U(K),

|(A ∪D)20 ∩ U(K)| >
|A| |D| |O|

|A| |D| + |O|
, (3.14)

where O is the subgroup of U(K) generated by {tut−1 : t ∈ 〈D〉, u ∈ 〈A〉}.

If O is infinite and A, D are finite, (3.14) reads: |(A ∪ D)20 ∩ U(K)| ≥ |A| |D|. (We
shall work only with finite fields K , and thus O , A and D will always be finite; we only
mention the case of infinite sets in passing.)

If G is a subgroup of GLn(K), K a field of characteristic = 0 or ≥ n, then the
exponential map exp : u→ U is invertible and, in particular, injective. (The Taylor series
for exp x and log x terminate at xn−1, and the denominators of the coefficients of the
terms up to xn−1 in either series are not divisible by any primes ≥ n.)

Proof of Proposition 3.3. We will apply Prop. 3.1 with G = U(K) and the group ϒ =
{yt : t ∈ T } of automorphisms of U(K), where yt : u 7→ tut−1. The set A will be as
given, the set Y will be {yt : t ∈ D}, and, finally, A0 = A ∪ A

−1 and Y0 = Y ∪ Y
−1.

We need only check condition (3.1). Let t be an element of D−1D other than the
identity. Because α|D is injective for every root α, we know that α(t) 6= 1 for every
root α. We need to show that, if tgt−1

= g for some g ∈ U(K), then g is the identity.
We may write3 g = exp(Ev), where Ev lies on the Lie algebra u of U . We have tgt−1

=

t exp(Ev)t−1
= exp(Adt (Ev)). Because the exponential map exp : u → U is injective, we

shall have tgt−1
= g if and only if Adt (Ev) = Ev.

We may write Ev as a sum
∑
α Evα of elements Evα of the root spaces corresponding to

the positive roots α. Then

Adt (Ev) = Adt
(∑

α

Evα

)
=

∑
α

Adt (Evα) =
∑
α

α(t) · Evα.

Since α(t) 6= 1 for every root α, we conclude that Adt (Ev) = Ev implies Evα = 0 for every α,
i.e., Ev = 0. Hence g = exp(Ev) is the identity. ut

Say that we want to apply Prop. 3.3 to the study of growth in Borel subgroups. An obvious
question arises: how do we obtain a large set of diagonal elements D ⊂ T (K) and a
large set of unipotent elements A ⊂ U(K)? Unipotent elements can generally be got by
means of an easy pigeonhole argument, as, for any two matrices g1, g2 having distinct
eigenvalues and lying in the same conjugacy class in B, the quotient g−1

1 g2 is unipotent.
Obtaining diagonal elements is a harder problem, but we will need to study it at any rate;

3 For G = SLn, what follows amounts to the following prosaic observation: if t is a diagonal
matrix with distinct eigenvalues, and g is an upper-triangular matrix with 1s on the diagonal, then
tgt−1

= g can be true only if g is the identity.
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we will solve it in §5.3. Once we have enough diagonal elements, we will usually be able
to obtain a large subsetD of them on which every root is injective by means of a covering
argument.

An exception occurs when we can obtain many commuting elements inside the kernel
of a root. We can still use Prop. 3.1; the set Y being used need not lie in a torus—it can
lie in any abelian subgroup. Some case work is needed, however. In §7.3, we will study
the matter in detail for the special case G = SL3.

3.3. A sum-product theorem in (Z/pZ)n. We will prove a sum-product theorem of
(Z/pZ)n. As a matter of fact, we shall use only the case n = 2; a theorem close to the
one we need was already proven for n = 2 by Bourgain [B1]. However, [B1] requires the
assumption that |A| > pε . We cannot assume |A| > pε in our applications. We thus need
to prove a sum-product theorem ourselves without that restriction. (Our statement will be
less precise than that in [B1] in another respect.)

We may as well start by reproving the sum-product theorem for Z/pZ using Prop. 3.1.
In this we are simply following upon the steps of [GK] or [B2]. The matter will take only
a few lines.

Lemma 3.4. Let p be a prime. Let A ⊂ Z/pZ. Assume |A| < p1−δ , δ > 0. Then

either |A · A| � |A|1+ε or |A+ A| � |A|1+ε, (3.15)

where ε > 0 and the implied constants depend only on δ.

Proof. Suppose (3.15) does not hold with implied constants equal to 1. Then, by the
Katz–Tao Lemma ([TV, Lemma 2.53]), there is a subset A′ ⊂ A with |A′| ≥ 1

2 |A|
1−ε
−1

and
|A′ · A′ − A′ · A′| � |A|1+O(ε), (3.16)

where the implied constant is absolute. We have to show that this is impossible.
Let G = Z/pZ, ϒ = (Z/pZ)∗ (acting on G by multiplication), A0 = {1}, Y0 = ∅,

and set both A and Y in the statement of Prop. 3.1 equal to A′. Since there are no zero
divisors in Z/pZ, condition (3.1) is satisfied. Thus, we may apply Prop. 3.1 to find that

|A′ · A′ + A′ · A− A′ · A′ + A′ · A′ − A′ · A′ + A′ · A′| ≥ 1
2 min(|A|2, p)� |A|1+δ.

Hence, by the Plünnecke–Ruzsa estimates ([TV, Cor. 6.29]),

|A′ · A′ − A′ · A′| � |A′|1+δ/6.

For any ε < δ/6, this is in contradiction to (3.16) provided that |A| is larger than a
constant depending only on δ and ε. We may in fact assume that |A| is larger than a
constant, as otherwise (3.15) is trivial. We have reached a contradiction. ut

Proposition 3.5. Let p be a prime. Let A ⊂ (Z/pZ)n, n ≥ 1. Assume that either
|A| < p1−δ , δ > 0, or pk+δ < |A| < pk+1−δ , δ > 0, 1 ≤ k < n. Then

either |A · A| � |A|1+ε or |A+ A| � |A|1+ε,

where ε > 0 and the implied constant depend only on n and δ.
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Stronger statements are possible. Doing away with the conditions |A| < p1−δ , pk+δ <
|A| < pk+1−δ would take some detailed case work and a catalogue of counterexamples:
consider A = (Z/pZ)× {0} × · · · × {0}, for example.

Proof. We proceed by induction on n. For n = 1, the statement is true by Lemma 3.4.
Let πj : (Z/pZ)n → Z/pZ be the projection map to the j th coordinate; let π\j :
(Z/pZ)n → (Z/pZ)n−1 be the projection map to all coordinates save the j th one. We
may assume thatA is a subset of ((Z/pZ)∗)n: if at least half ofA lies in ((Z/pZ)∗)n, then
we may work with A ∩ ((Z/pZ)∗)n instead of A, and if more than half of A lies outside
((Z/pZ)∗)n, then |A∩π−1

j (0)| > 1
2n |A| for some j , and we may pass to π\j (A∩π−1

j (0))
and apply the inductive hypothesis.

Assume, then, that n > 1 and A ⊂ ((Z/pZ)∗)n. Suppose first that min(|A|1/n, pδ/n)
≤ |π1(A)| ≤ p

1−δ/n. Then, by Lemma 3.4, either

|π1(A · A)| = |π1(A) · π1(A)| � |π1(A)|
1+ε

≥ min(pδε/n, |A|ε/n) · |π1(A)| ≥ |A|
δe/n2
· |π1(A)| (3.17)

or

|π1(A+ A)| = |π1(A)+ π1(A)| � |π1(A)|
1+ε

≥ min(pδε/n, |A|ε/n) · |π1(A)| ≥ |A|
δε/n2
· |π1(A)|. (3.18)

Let x ∈ Z/pZ be such that the number of elements of Sx = A ∩ π−1
1 ({x}) is maximal.

Then |Sx | ≥ |A|/|π1(A)|. Let us examine the consequences of (3.17) and (3.18).
If (3.17) holds, then

|A · A · A| ≥ |A · A · Sx | ≥ |π1(A · A)| |Sx | ≥ |A|
δε/n2
|π1(A)| |Sx |

≥ |A|δε/n
2
|π1(A)| ·

|A|

|π1(A)|
= |A|1+δε/n

2
.

Since (Z/pZ)∗ is abelian, we may use the Plünnecke’s inequality ([TV, Cor. 6.28]) to
obtain

|A · A| � |A|1+δε/(3n
2). (3.19)

If (3.18) holds, then one shows that

|A+ A| � |A|1+δε/(3n
2)

in exactly the same way that we showed (3.19). Thus we are done with the case pδ/n ≤
|π1(A)| ≤ p

1−δ/n.
Suppose now that either |π(A)| < min(|A|1/n, pδ/n) or p1−δ/n < |π(A)| ≤ p.

Choose x ∈ Z/pZ such that the number of elements of Sx = A∩ (π−1
1 ({x})) is maximal.

If |A| < p1−δ , then |A|(n−1)/n < |Sx | < p1−δ; if pk+δ < |A| < pk+1−δ , k ≥ 1,
then either pk+

n−1
n
δ < |Sx | < pk+1−δ or pk−1+δ < |Sx | < pk−

n−1
n
δ . In all of these

cases, we may apply the inductive hypothesis (with n−1
n
δ instead of δ), and, moreover,

|Sx | > |A|
δ/n. Hence either

|Sx · Sx | � |Sx |
1+ε
≥ |A|δε/n · |Sx | (3.20)
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or
|Sx + Sx | � |Sx |

1+ε
≥ |A|δε/n · |Sx |. (3.21)

If (3.20) holds, then

|A · A · A| ≥ |A · Sx · Sx | ≥ |π1(A)| · |Sx · Sx | � |π1(A)| · |A|
δε/n
· |Sx | ≥ |A|

1+δε/n

and so, by Plünnecke’s inequality, |A · A| � |A|1+δε/(3n). If (3.21) holds instead, in
exactly the same way we obtain |A+ A| � |A|1+δε/(3n). ut

Remark. There is now an alternative route to the one taken in this subsection. Instead of
proceeding as above, one may derive Prop. 3.5 from [T2, Thm. 5.4].

3.4. Linear relations over rings. The consequences of the sum-product theorem we
are about to derive are closely related to incidence theorems. Such theorems have been
linked to sum-product phenomena ever since Elekes’s brief and elegant proof [E] of the
sum-product theorem over R (originally due to Erdős and Szemerédi [ES]) by means of
an incidence theorem over R (first proven by Szemerédi and Trotter [ST]). Over finite
fields, the topological arguments that can be used to prove incidence theorems over R do
not work: over Z/pZ, a line does not divide the plane into two halves. Thus, it seems
necessary to prove incidence theorems using sum-product results, rather than the other
way around. This is exactly what was done in [BKT, §6]: Bourgain, Katz and Tao proved
an incidence theorem over Z/pZ using their sum-product theorem.

We shall now prove—over (Z/pZ)n, not over Z/pZ—some results that are not quite
the same as incidence theorems, but are akin to them. The basic idea is the same: we are
to show that there cannot be too many linear relations among too few objects.

We will need a very simple counting lemma.

Lemma 3.6. Let A, B be finite sets. Let S ⊂ A× B. For every a ∈ A, let Ba = {b ∈ B :
(a, b) ∈ S}. Then there is an a0 ∈ A such that∑

a

|Ba0 ∩ Ba| ≥
|S|2

|A| |B|
.

Proof. For every s ∈ S, let Ab = {a ∈ A : (a, b) ∈ S}. Then∑
b∈B

|Ab|
2
=

∑
a1∈A

∑
a2∈A

|{b ∈ B : a1, a2 ∈ Ab}| =
∑
a1∈A

∑
a2∈A

|Ba1 ∩ Ba2 |.

Thus, if we let a0 be such that
∑
a∈A |Ba0 ∩ Ba| is maximal, then∑

a∈A

|Ba0 ∩ Ba| ≥
1
|A|

∑
b∈B

|Ab|
2.

At the same time, by Cauchy’s inequality,∑
b∈B

|Ab|
2
≥

1
|B|

(∑
b∈B

|Ab|
)2
.

Finally,
∑
b∈B |Ab| = |S|, and so we are done. ut
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The proposition we are about to prove can be summarised as follows. LetX be a subset of
a field (or a ring). Suppose that there are many linear relations satisfied by many (n+ 1)-
tuples of elements of X. Then X has a large subset that grows neither under addition nor
under multiplication.

Proposition 3.7. Let R be a ring. Let X ⊂ R, Y ⊂ (R∗)n, n ≥ 2. Assume that the
projection π1 : (R∗)n → R∗ given by (y1, . . . , yn) 7→ y1 is injective on Y . Assume as
well that |Y | > c|X|, 0 < c < 1. For each Ey, let XEy be a subset of Xn with |XEy | > c|X|n.
Suppose

Ey ·XEy = {y1x1 + · · · + ynxn : Ex ∈ XEy} (3.22)

is contained inX for every Ey ∈ Y . Then there is a subsetX0 ⊂ X such that |X0| � cC |X|

and

|X0 +X0| �
1
cC
|X0|, |X0 ·X0| �

1
cC
|X0|,

where C is a positive absolute constant and the implied constants are absolute.

It would be desirable to replace both the assumption that π1|Y is injective and the as-
sumption that |Y | > c|X| by much weaker postulates. The statement as it stands will
do for SL3, but probably not for SLn, n > 3. Weakening the assumptions would proba-
bly involve using the techniques in [TV, §2.7], instead of the Balog–Gowers–Szemerédi
theorem. (The following proof is, incidentally, the only place where the Balog–Gowers–
Szemerédi theorem is used in this paper.)

Proof. Let X′ be the set of all x1 ∈ X such that

|{((x2, . . . , xn), Ey) ∈ X
n−1
× Y : (x1, x2, . . . , xn) ∈ XEy}| >

1
2c|X|

n−1
|Y |.

We have ∑
Ey∈Y

|{(x1, . . . , xn) ∈ XEy : x1 ∈ X
′
}| > 1

2c|X|
n
|Y | (3.23)

as
∑
Ey∈Y |{(x1, . . . , xn) ∈ XEy}| >

∑
Ey∈Y c|X|

n
= c|X|n|Y | and the contribution of the

terms with x1 /∈ X
′ is clearly ≤ 1

2c|X|
n
|Y |. Immediately from (3.23), |X′| > 1

2c|X|.
Define X′

Ey
= {(x1, . . . , xn) ∈ XEy : x1 ∈ X

′
}. Let Ey0 ∈ Y be such that |X′

Ey0
| is

maximal. By (3.23) and the pigeonhole principle, |X′
Ey0
| > 1

2c|X|
n. Now, by (3.22),

|{y0,1x1 + · · · + y0,nxn : (x1, . . . , xn) ∈ XEy0}
′
| ≤ |X|.

We apply the Balog–Szemerédi–Gowers theorem (Prop. 2.3) with

A1 = y0,1X
′

Ey0
, A2 = y0,2XEy0 , . . . , An = y0,nXEy0

and
S = {(y0,1x1, . . . , y0,nxn) : (x1, . . . , xn) ∈ X

′

Ey0
},

and find that there is a subset X′′ ⊂ X′ such that

|X′′| � c|X′| and |y0,1X
′′
+ y0,1X

′′
| �

1
cC1
|X′′|, (3.24)
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where C1 is a positive absolute constant and the implied constants are also absolute.
Obviously, |X′′ +X′′| = |y0,1X

′′
+ y0,1X

′′
|, and so |X′′ +X′′| � (1/cC1)|X′′|.

Apply Lemma 3.6 with A = X′′, B = Y ×Xn−1, and

S = {(x1, (Ey, (x2, . . . , xn))) ∈ A× B : (x1, x2, . . . , xn) ∈ XEy}.

We deduce that there is a x0 ∈ X
′′ such that∑

x∈X′′

|Bx0 ∩ Bx | ≥
|S|2

|X′′| · |Y | |X|n−1 ,

where Bx = {(y, (x2, . . . , xn)) ∈ Y × X
n−1 : (x, x2, . . . , xn) ∈ XEy}. Now, since X′′ ⊂

X′, we obtain from the definition of X′ that

|S| > |X′′| · 1
2c|X|

n−1
|Y |.

Thus ∑
x∈X′′

|Bx0 ∩ Bx | >
1
4
c2
|X′′| |X|n−1

|Y |. (3.25)

Define the map f : Y ×Xn−1
→ R by

f (Ey, (x2, x3, . . . , xn)) = x0y1 + x2y2 + x3y3 + · · · + xnyn.

Since (3.22) is a subset of X, the set f (Bx0) is a subset of X. Let r0 ∈ f (Bx0) be such
that ∑

x∈X′′

|{b ∈ Bx0 ∩ Bx : f (b) = r0}|

is maximal. By (3.25),
∑
x∈X′′ |{b ∈ Bx0∩Bx : f (b) = r0}| is then≥ 1

4c
2
|X′′| |X|n−2

|Y |.
For x ∈ X′′ and Ey ∈ Y given, there are at most |X|n−2 elements ofBx such that f (b) = r0.
(This is so because, if x2 varies and y, x3, . . . , xn are held fixed, then f (b) varies with x2.)
Thus, there are at least 1

4c
2
|X′′| |Y | pairs (x1, Ey) ∈ X

′′
× Y such that there is at least one

tuple (x2, . . . , xn) ∈ X
n−1 for which

(Ey, (x1, x2, . . . , xn)) ∈ Bx0 ∩ Bx

and
x0 · y1 + x2 · y2 + x3 · y3 + · · · + xn · yn = r.

Let S′ ⊂ X′′ × Y be the set of all such pairs (x1, Ey). For any (x1, Ey) ∈ S
′, there are

x2, . . . , xn ∈ X such that

x1 · y1 + x2 · y2 + · · · + xnyn = (x1 − x0) · y1 + x0 · y1 + x2 · y2 + · · · + xn · yn

= (x1 − x0) · y1 + r

and
x1 · y1 + x2 · y2 + · · · + xn · yn ∈ X.

Thus
{(x1 − x0) · y1 : (x1, Ey) ∈ S

′
} ⊂ X − r.
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Hence
|{x · y : (x, y) ∈ S′′}| ≤ |X|,

where S′′ = {(x, y) ∈ (X′′ − x0) × π1(Y ) : (x + x0, π
−1
1 (y)) ∈ S′}. (Recall that

π1 : (y1, . . . , yn) 7→ y1 is injective on Y .) Clearly |S′′| = |S′|, and so |S′′| ≥ 1
4c

2
|X′′| |Y |.

We now apply the Balog–Szemerédi–Gowers theorem (Prop. 2.3) again, this time
with multiplication, not addition, as the operation, and the following inputs: n = 2, A1 =

X′′ − x0, A2 = π(Y ), S = S′′. We conclude that there is a subset X′′′ ⊂ X′′ − x0 with

|X′′′| � c|X′′| and |X′′′ ·X′′′| �
1
cC2
|X′′′|.

At the same time, because of (3.24),

|X′′′ +X′′′| = |(X′′′ − x0)+ (X
′′′
− x0)| �

1
cC1
|X′′| �

1
cC1+C2

|X′′′|.

We let X0 = X
′′′ and are done. ut

We can finally state and prove what we worked for in this subsection.

Corollary 3.8. Let R = (Z/pZ)m, m ≥ 1. Let X ⊂ R, Y ⊂ (R∗)n, n ≥ 2. Assume that,
for some j ∈ {1, . . . , n}, the projection πj : (R∗)n → R∗ given by (y1, . . . , yn) 7→ yj is
injective on Y . Assume that either |X| ≤ p1−δ , δ > 0, or pk+δ ≤ |X| ≤ pk+1−δ for some
k ≥ 1, δ > 0. For each Ey, let XEy be a subset of Xn such that

Ey ·XEy = {y1x1 + · · · + ynxn : Ex ∈ XEy}

is contained in X. Then either

|Y | � |X|1−η or |XEy | � |X|n−η for some Ey ∈ Y , (3.26)

where η > 0 and the implied constants depend only on δ and m.

We could explain this as follows, leaving a few conditions aside. Let X be a subset of a
ring R. Consider an n-dimensional box Xn. Let there be many (≥ |X|1−η, η small) linear
forms f such that for each form f there are many (≥ |X|n−η) elements of the box on
which the form f takes values in X. Corollary 3.8 shows that the situation just described
cannot happen.

Proof. Immediate from Prop. 3.7 and Prop. 3.5. (If j 6= 1, permute the first and j th
coordinates of (R∗)n before applying Prop. 3.7.) ut

4. Escape, non-singularity and their conditions

Much of our work will consist in showing that certain statements are generically true in
an effective sense—that is to say, they are true when their parameters lie outside a variety
of positive codimension and bounded degree. We will then obtain quantitative bounds
from these effective results by means of the technique of escape from subvarieties.
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The following will be a typical situation. Say we are able to show that a map f :
G → V from an algebraic group G/K to a variety V/K is non-singular almost every-
where in an effective sense, meaning that there is a variety XG ⊂ G of positive codimen-
sion in G and bounded degree such that, for every point y in the image of the restriction
g := f |G\XG , the preimage g−1(y) of y consists of a bounded number of points (i.e., it is
the union of a bounded number of irreducible zero-dimensional varieties). This is a use-
ful situation to be in, as then, for any finite subset E ⊂ G(K) \XG(K), the image f (E)
satisfies |f (E)| � |E|; since we are investigating growth, we are certainly interested in
maps that do not make sets smaller.

Suppose we are simply given a setE ⊂ G(K). Then, under a very broad set of circum-
stances, escape from subvarieties will give us that there are� |E| elements ofEk lying in
G(K)\XG(K), where k is bounded by a constant. Call the set of such elementsE′. Then,
by what we said before, |f (E′)| � f |E′|, and so |f (Ek)| ≥ |f (E′)| � |E′| � |E|,
which is a conclusion we will often desire.

4.1. Escape from subvarieties. Eskin, Mozes and Oh [EMO] have shown how to escape
from varieties by means of a group action. While their result was formulated over C, it
carries over easily to other fields. The following proposition is based closely on [EMO,
Prop. 3.2].

Proposition 4.1. Let G be a group. Consider a linear representation of G on a vector
space An(K) over a field K . Let V be an affine subvariety of An. Let A be a subset of G;
let O be an 〈A〉-orbit in An(K) not contained in V . Then there are constants η > 0 and
m depending only on

−→
deg(V ) such that, for every x ∈ O , there are at least max(1, η|A|)

elements g ∈ Am such that gx /∈ V .

This may be phrased as follows: one can escape from V by the action of the elements
of A.

Proof. Let us begin by showing that there are elements g1, . . . , gl ∈ Ar such that, for
every x ∈ O , at least one of the gi · x’s is not in V . (Here l and r are bounded in terms
of
−→
deg(V ) alone.) We will proceed by descent (that is, induction) on

−→
deg(V ), paying

special attention to the number sV of irreducible components of V of maximal dimension
dim(V ). (Notice that sV is bounded in terms of

−→
deg(V ): in fact, sV ≤ (

−→
deg(V ))dim(V ).)

We shall always pass from V to a variety V ′ with either (a) dim(V ′) < dim(V ) or
(b) dim(V ′) = dim(V ) and sV ′ < sV . Moreover,

−→
deg(V ′) will be bounded in terms of

−→
deg(V ) alone. We will iterate until we arrive at a variety V ′ of dimension 0 with sV ′ = 0,
i.e., an empty variety. It is clear that this process terminates in a number of steps bounded
in terms of

−→
deg(V ) alone.

Let V+ be the union of all irreducible components of V of maximal dimension (i.e.,
of dimension dim(V )). If V+ and O are disjoint, we set V ′ = V \ V+ and are done.
Suppose otherwise. Since O is not contained in V+, we can find x0 ∈ V+ ∩ O and
g ∈ A ∪ A−1 such that gx0 /∈ V+, i.e., x0 /∈ g−1V+. Hence the set of components of
maximal dimension dim(V ) in V is not the same as the set of components of maximal
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dimension dim(g−1V ) = dim(V ) in g−1V . It follows that V ′ = g−1V ∩ V does not
contain V+, and thus has fewer components of dimension dim(V ) than V has.

We have thus passed from V to V ′, where either (a) dim(V ′) < dim(V ) or (b)
dim(V ′) = dim(V ) and s′V < sV . Bézout’s theorem assures us that

−→
deg(V ′) is bounded

in terms of
−→
deg(V ) alone. By the inductive hypothesis, we already know that there are

g′1, . . . , g
′

l′
∈ Ar ′ such that, for every x ∈ O , at least one of the g′i · x’s is not in V ′. (Here

l′ and r ′ are bounded in terms of
−→
deg(V ′) alone.) Since at least one of the g′i · x’s is not in

V ′ = g−1V ∩V , either one of the g′i · x’s is not in V or one of the g′i · x’s is not in g−1V ,
i.e., one of the gg′i · x’s is not in V . Set

g1 = g
′

1, g2 = g
′

2, . . . , gl′ = g
′

l′

gl′+1 = gg
′

1, gl′+2 = gg
′

2, . . . , g2l′ = gg
′

l′ , l = 2l′.

(As can be seen, gi ∈ Ar , where r = r ′ + 1.) We conclude that, for every x ∈ O , at least
one of the gi · x’s is not in V .

The rest is easy: for each x ∈ O and each g ∈ A, at least one of the elements gig · x,
1 ≤ i ≤ l (gi ∈ Ar ) will not be in V . Each possible gig can occur for at most l different
g ∈ A; thus, there are at least min(1, |A|/l) elements h = gig of Ar+1 with hx /∈ V . ut

Many statements can be proven by the same kind of induction that one uses to prove
escape.

Proposition 4.2. Let K be a field. Let G/K be an algebraic subgroup of GLn /K . Let
S be a subgroup of G(K) contained in a subvariety V of G of positive codimension.
Then S is contained in an algebraic subgroupH ofG of positive codimension and degree
bounded in terms of

−→
deg(V ) alone.

Proof. We shall show that S is contained in the stabiliser of a subvariety of G, and that
this stabiliser satisfies the conditions required of H in the statement. We will proceed by
induction on

−→
deg(V ), focusing on dim(V ) and sV (defined as in the proof of 4.1), which it

encodes. We shall always pass from V to a variety V ′ with either (a) dim(V ′) < dim(V )
or (b) dim(V ′) = dim(V ) and sV ′ < sV . Moreover,

−→
deg(V ′) will be bounded in terms

of
−→
deg(V ) alone. We will iterate until we either find an algebraic group containing S or

arrive at a variety V ′ with dimension 0 and sV ′ = 0 (i.e., the empty variety).
Let V+ be the union of irreducible components of V of dimension dim(V ). If V+ 6=

V −1
+ , we set V ′ = V ∩V −1; we shall have either (a) dim(V ′) < dim(V ) or (b) dim(V ′) =

dim(V ) and sV ′ < sV , and, by Bézout’s theorem, the degree of V ′ is bounded in terms of
the degree of V . Since S is a group, S = S−1

⊂ V −1(K), and so S ⊂ (V ∩ V −1)(K) =

V ′(K). We then use the inductive hypothesis and are done. We may thus assume from
here on that we are in the other case, viz., V+ = V −1

+ .
Suppose first that there is a pair (g, x) ∈ (S, V+(K)) such that g · x lies outside

V+(K). Then V ′ = gV ∩ V has either (a) dim(V ′) < dim(V ) or (b) dim(V ′) = dim(V )
and sV ′ < sV , and, by Bézout’s theorem, the degree of V ′ is bounded in terms of the
degree of V . Since S is a group, S = gS ⊂ gV (K), and so S ⊂ (V ∩ gV )(K). We
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then use the inductive hypothesis and are done. We may thus assume that there is no pair
(g, x) ∈ (S, V+(K)) such that g · x lies outside V+(K).

Suppose now that there is a pair y, z ∈ V+(K) such that y · z−1 /∈ V+(K). Then
V ′ = V z−1

∩V has either (a) dim(V ′) < dim(V ) or (b) dim(V ′) = dim(V ) and sV ′ < sV ,
etc. At the same time, by our previous assumption, there is no g ∈ S such that gz lies
outside V+(K); hence S ⊂ V z−1. Since S ⊂ V , we conclude that S ⊂ V z−1

∩ V = V ′.
We use the inductive hypothesis and are done.

We are left with the case where V+ = V −1
+ and there is no pair y, z ∈ V+(K) such

that y · z−1 /∈ V+(K). Then V+ is an algebraic group. We are assuming that there is no
pair (g, x) ∈ (S, V+(K)) such that g · x lies outside V+(K); since V+(K) is a group, it
contains the identity, and thus there is no g ∈ S such that g · e = g lies outside V+(K),
i.e., S ⊂ V+(K). We set H = V+ and are done. ut

Remark. In the above, we have implicitly used the fact that multiplication in a linear
algebraic group does not change the degree of the varieties therein:

−→
deg(gV ) =

−→
deg(V )

(and, in particular, deg(gV ) = deg(V ) for pure-dimensional varieties V ). This is the only
sense in which we have used “linearity” (i.e., the assumption in Prop. 4.1 that we are
working with a linear representation, and the condition in Prop. 4.2 that G be a subgroup
of GLn).

4.2. Non-singularity and almost-injectivity. If a map f is injective, then, for every
finite subset E of the domain, |f (E)| = |E|. If f is such that the preimage f−1({x}) of
every point x consists of at most k points, then |f (E)| ≥ 1

k
|E|. This simple fact lies at

the root of several of our arguments.

Remark. Injectivity already played a role in §3. The idea both there and in the applica-
tions we shall later give to the results about to be given here is the following: if f is a map
from a product A× B to a set C, and f is “almost injective” in the sense just described,
then, for any E1 ⊂ A, E2 ⊂ B, the image f (A,B) has ≥ 1

k
|A| |B| elements. In other

words, we have obtained a rather strong kind of growth, provided that f can be defined by
means of “allowable” operations, e.g., group operations involving only already accessible
quantities.

First, let us see how non-singularity gives us “almost injectivity”. (A regular map
f : X → Y is said to be non-singular at a point x = x0 if its derivative Df |x=x0 at
x = x0 is a non-singular linear map from (T X)x=x0 to (T Y )y=f (x0).)

Lemma 4.3. Let X ⊂ Am1 and Y ⊂ Am2 be affine varieties defined over a field K .
Let f : X → Y be a regular map. Let V be a subvariety of X such that the derivative
Df |x=x0 of f at x = x0 is a non-singular linear map for all x0 on X outside V . Let
S ⊂ X(K) \ V (K). Then

|f (S)| �−→
deg(X),degpol(f )

|S|.

Proof. It will be enough to show that the intersection of X(K) \V (K) with the preimage
Z = f−1(y0) of any point y0 on Y consists of a number of irreducible zero-dimensional
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varieties (that is, points) bounded in terms of deg(V ) and the degree of the polynomials
defining f . Now Z is the intersection X ∩

⋂
j Xj , where Xj , 1 ≤ j ≤ n, is the variety

in Am defined by by (f (x))j = (y0)j , where we denote by yj the j th coordinate of an
element y of An. Thus, by Bézout’s theorem (Lemma 2.4), the degree

−→
deg(Z) of Z is

�−→
deg(X),

−→
deg(X1),...,

−→
deg(Xn)

1. The degree
−→
deg(Xj ) of the hypersurface Xj is bounded in

terms of the degree of the polynomial (f (x))j , and so
−→
deg(Z)�−→

deg(X),deg((f (x))1),...,deg((f (x))n)
1.

Thus, it remains only to show that any point x0 on Z not lying on V lies on a component
of Z of dimension 0.

Suppose it were not so. Then there would be a direction Ev 6= 0 such that Df |x=x0(Ev)

= 0; any direction Ev 6= 0 on the tangent space to Z at x = x0 would do. Then Dfx=x0

would have to be singular. However, this would mean that x0 would have to lie on V .
Contradiction. ut

We can avoid a subvariety in an algebraic group by escape from subvarieties.

Lemma 4.4. Let G ⊂ GLn be an algebraic group defined over a field K . Let V be a
subvariety of G such that V (K) is a proper subset of G(K). Let E ⊂ G(K) be a set of
generators of G(K). Then

|Ek ∩ (G(K) \ V (K))| �−→deg(V )
|E|,

where k �−→
deg(V )

1.

Proof. By escape from subvarieties (Prop. 4.1) with A = E, V as given, x = 1, and G
and O both equal to G(K). (We are implicitly using the fact that G is contained in an
affine space, viz., An2

.) ut

Corollary 4.5. Let G ⊂ GLn be an algebraic group and Y ⊂ Am an affine variety, both
defined over a fieldK . Let f : G→ Y be a regular map. Let V be a subvariety ofG such
that V (K) is a proper subset of G(K). Assume that the derivative Df |x of f at x is a
non-singular linear map for all x on G outside V . Let E ⊂ G(K) be a set of generators
of G(K). Then

|f (Ek ∩ (G(K) \ V (K)))| �−→deg(G),
−→
deg(V ),degpol(f )

|E|,

where k �−→
deg(V )

1.

Proof. Immediate from Lemmas 4.4 and 4.3—the latter with m1 = n2, m2 = m and
S = Ek ∩ (G(K) \ V (K)). ut

Lemma 4.4 has as one of its assumptions that V (K) be a proper subset of G(K). In
practice, we will often want to assume instead that V is a proper subvariety of G. Let us
see how to obtain the former assumption using the latter one.

In the statement below, perfect and reductive are standard technical terms (from ab-
stract algebra and the theory of algebraic groups, respectively). The group SLn (defined
over any fieldK) is reductive, and a product of reductive groups is reductive as well. This
is all we will need to know when applying Lemma 4.6 in the present paper.
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Lemma 4.6. Let G ⊂ GLn be an irreducible algebraic group defined over a field K .
Assume either that K is perfect or that G is reductive. Let V/K be a proper subvariety
of G. Then

V (K) ( G(K)

provided that |K| is larger than a constant depending only on n,
−→
deg(V ) and

−→
deg(G).

The assumption that K is perfect or G is reductive will be used only in the case of K
infinite. When K is finite, we will use a counting argument that does not require the as-
sumption. (The assumption would be fulfilled in any case, as every finite field is perfect.)
When K is infinite, we do not need to assume that |K| is larger than a constant depend-
ing only on n,

−→
deg(V ) or

−→
deg(G). (Of course, when K is infinite, such an assumption is

satisfied immediately anyhow, since |K| = ∞.)

Proof. Case 1: K finite. Since G is irreducible and V ⊂ G is a proper subvariety of G,
the maximal dimension m of the components of V is ≤ dim(G)− 1. Hence, by (2.2) and
the fact that V ⊂ GLn ⊂ A2

n,

|V (K)| �−→
deg(V ),n

|K|dim(G)−1.

At the same time, by the Lang–Weil theorem [LW, Thm. 1], the projective closureG ofG
satisfies

|G(K)| − |K|dim(G)
= O−→

deg(G),n
(|K|dim(G)−1/2).

Since G is irreducible, so is G, and hence the intersection of G with the hyperplane at
infinity (i.e., the part of projective space Pn2

that is not in affine space An2
) has dimension

< dim(G). We can use either the Lang–Weil theorem or an estimate such as (2.2) again,
and obtain

|(G \G)(K)| �−→
deg(G),n

|K|dim(G)−1.

Hence

|G(K) \ V (K)| = |G(K)| − |V (K)| �−→
deg(G),n

|K|dim(G)
−O−→

deg(V ),n
(|K|dim(G)−1/2),

which is positive for |K| greater than a constant depending only on
−→
deg(G),

−→
deg(V ) and n.

Case 2: K infinite. By [Bor, Cor. V.18.3], G(K) is Zariski-dense in G, that is, not con-
tained in any proper subvariety of G. In particular, G(K) is not contained in V . ut

It may have seemed odd at first sight that Lemma 4.3 required a map to be non-singular
outside a variety. In fact, this is a natural condition; for example, a map between two
spaces of the same dimension is non-invertible precisely when the determinant δ of its
derivative does not vanish, and we can certainly see that δ = 0 defines a variety.

The following lemma is in the spirit of what was just said. It could be stated in much
more general terms; the fact that G is an algebraic group is helpful but not essential.

Lemma 4.7. Let G ⊂ GLn be an algebraic group defined over a field K . Let X/K
and Y/K be affine varieties such that dim(G) = dim(Y ). Let f : X × G → Y be a
regular map. Let fx : G→ Y be defined by fx(g) = f (x, g). Then there is a subvariety
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ZX×G ⊂ X ×G such that, for all (x, g0) ∈ (X ×G)(K), the derivative

(Dfx)|g=g0 : (T G)|g=g0 → (T Y )|f (x,g0)

is non-singular if and only if (x, g0) does not lie on ZX×G. Moreover,
−→
deg(ZX×G)�−→deg(X×G),degpol(f ),n

1. (4.1)

Proof. For g0 ∈ G(K), consider the map

g 7→ fx(g0g). (4.2)

Its derivative at g = I is non-singular precisely when the derivative of fx at g = g0
is non-singular. Now, the derivative of (4.2) at g = I is non-singular precisely when
a dim(G)-by-dim(G) determinant D is non-zero. The entries of the determinant D are
polynomials on the entries of g and x; hence, D = 0 defines a variety ZX×G. The degree
of D (as a polynomial) is bounded in terms of n and degpol(f ); thus, D = 0 defines a
variety of degree�n,degpol(f ), and so (4.1) follows by Bézout’s theorem. ut

4.3. Sticking subgroups in generic directions. Let H1, . . . Hk be algebraic subgroups
of an algebraic group G/K . Suppose the tangent spaces hj ⊂ g to Hj ⊂ G at the origin
are such that the dimension of their sum equals the sum of their dimensions. Then we
might possibly like to conclude that, for any finite sets Ej ⊂ Hj (K),

|E1 · · ·Ek| � |E1| · · · |Ek|. (4.3)

Unfortunately, matters are not so simple. By escape and a few simple arguments, we
would indeed be able to obtain such a conclusion, provided that we assumed that Ej
generates Hj (K). We will not, however, be able to assume as much in the applications
that will come up later: we will be provided with a generating setA ofG(K), but not with
generating sets ofHj (K). The solution is to multiply conjugates of the subgroupsHj (K),
rather than the subgroups themselves. Because A generates G(K), we will be able—by
escape—to take conjugates of Hj (K) by generic elements of G(K). As we shall see, this
is good enough to obtain conclusions much like (4.3)—except for the fact that they will
involve conjugates of Ej by elements of Ak , rather than the sets Ej themselves.

We recall that every algebraic group G/K acts on its Lie algebra (i.e., its tangent
space g at the origin) by conjugation; the adjoint map Adg : g → g is the action of an
element g ∈ G(K). Recall as well the definition of linear independence of subspaces
given in §2.5.5.

Lemma 4.8. LetG be an algebraic group defined over a fieldK . Let V1, . . . , Vk be linear
subspaces of g(K), where g is the tangent space to G at the origin. Suppose that there
are g1, . . . , gk ∈ G(K) such that the linear spaces

Adg1(V1), . . . ,Adgk (Vk) (4.4)

are linearly independent. Then there is a proper subvariety X ⊂ Gk such that, for all
g = (g1, . . . , gk) ∈ G

k(K) \X(K), the spaces (4.4) are linearly independent. Moreover,
−→
deg(X)�dim(G) 1.
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Proof. Let vr,1, . . . , vr,lr be a basis for Vr , 1 ≤ r ≤ k. For g = (g1, . . . , gk) ∈ G
k(K), let

w1(g) = Adg1(v1,1), . . . , wl1(g) = Adg1(v1,l1), wl1+1(g) = Adg2(v2,1), . . . , wm(g) =
Adgk (vk,lk ), where m =

∑
1≤r≤k lr . We know that the spaces Adg′1(V1), . . . ,Adg′k (Vk)

are linearly independent for some g′1, . . . , g
′

k ∈ G(K); this is the same as saying that the
vectors w1(g

′), . . . , wm(g
′) are linearly independent for some g′ ∈ Gk(K).

Let n = dim(G). Let vm+1, . . . , vn be n−m vectors in g(K) such that

w1(g
′), . . . , wm(g

′), vm+1, . . . , vn

are linearly independent. Then the determinant δ(g) of the n-by-n matrix having

w1(g), . . . , wm(g), vm+1, . . . , vn

as its rows is non-zero for g = g′. Thus, the subvariety X of Gk defined by δ(g) = 0 is a
proper subvariety of Gk . For all g ∈ Gk(K) not on X, the determinant δ(g) is non-zero,
and thus its rows are linearly independent; in particular, w1(g), . . . , wm(g) are linearly
independent. This is the same as saying that the linear spaces (4.4) are linearly indepen-
dent for all g ∈ Gk(K) not on X. ut

Proposition 4.9. Let G, H and F be algebraic groups defined over a field K . Let φ :
G×H → F and ψ : G×H → G be regular maps satisfying

φ(g, h1h2) = φ(g, h1) · φ(ψ(g, h1), h2) (4.5)

for all g ∈ G, h1, h2 ∈ H , and

ψ(ψ(g, h), h−1) = g (4.6)

for all g ∈ G, h ∈ H . Define φg : H → F by φg(h) = φ(g, h). For all g0 ∈ G(K),
h0 ∈ H(K), write (Dφg0)|h=h0 for the linear map from TH |h=h0 to T F |f=φ(g0,h0) given
by

(Dφg0)|h=h0 :=
(
∂

∂h
φg0(h)

∣∣∣∣
h=h0

)
(v). (4.7)

Assume that (Dφg0)|h=e is non-singular for all g0 ∈ G(K) outside a proper subvariety
XG of G. Then

(a) (Dφg0)|h=h0 is non-singular exactly when (g0, h0) ∈ (G × H)(K) lies outside a
proper subvariety YG×H of G×H ,

(b) deg(YG×H )�degpol(φ), degpol(ψ), dim(H) 1,
(c) the fibre (YG×H )g=g0 is a proper subvariety of H for all g0 ∈ G(K) not on XG,
(d) the fibre (YG×H )h=h0 is a proper subvariety of G for all h0 ∈ H(K).

We will need to use conditions (4.5) and (4.6) in order to prove conclusion (d), and only
for that purpose. The said conditions tell us that every point on H is in some sense like
every other point. If we did not have them, (b) and (c) would still hold.

Before we prove Prop. 4.9, let us see why we should care: for a map φ that we are
rather interested in, there is a ψ such that (4.5) and (4.6) hold.
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Lemma 4.10. LetG be an algebraic group defined over a fieldK; letH0/K,H1/K, . . . ,

H`/K be subgroups thereof. Let φ : G′ × H ′ → G and ψ : G′ × H ′ → G′ (where
G′ = G`+1 and H ′ = H0 ×H1 × · · · ×H`, ` arbitrary) be given by

φ((g0, g1, . . . , g`), (h0, h1, . . . , h`)) = g0h0g
−1
0 · g1h1g

−1
1 · · · g`h`g

−1
`

and
ψ((g0, g1, . . . , g`), (h0, h1, . . . , h`)) = (g

′

0, g
′

1, . . . , g
′

`),

where g′` = g` and g′j = g
′

j+1h
−1
j+1g

−1
j+1gj for 0 ≤ j ≤ `− 1. Then ψ and φ satisfy (4.5)

and (4.6).

Proof. Equation (4.6) follows easily from the definition of g′j .
By the definition of g′j ,

g′j = g`h
−1
` g−1

` · g`−1h
−1
`−1g

−1
`−1 · · · gj+1h

−1
j+1g

−1
j+1 · gj

= φ((gj+1, . . . , g`), (hj , hj+1, . . . , h`))
−1
· gj (4.8)

for all 0 ≤ j ≤ `. Hence

φ((gj , gj+1, . . . , g`), (hj , hj+1, . . . , h`))g
′

jh
′

j = gjhjg
−1
j · gj · h

′

j = gjhjh
′

j (4.9)

for h′j arbitrary. Applying (4.9) and then (4.8), we conclude that

φ((gj , gj+1, . . . , g`), (hj , hj+1, . . . , h`))g
′

jh
′

jg
′−1
j

equals
gjhjh

′

jg
−1
j · φ((gj+1, gj+2, . . . , g`), (hj+1, hj+2, . . . , h`)).

Using this last equality in turn for j = 0, 1, . . . , `, we find that

φ((g0, g1, . . . , g`), (h0, h1, . . . , h`))g
′

0h
′

0g
′−1
0 g′1h

′

1g
′−1
1 · · · g′`h

′

`g
′−1
`

equals
g0h0h

′

0g
−1
0 · g1h1h

′

1g
−1
1 · · · g`h`h

′

`g
−1
` ;

this is the same as saying that (4.5) holds. ut

Proof of Proposition 4.9. Define

ρg0,h0(v) :=
(
∂

∂h
((φ(g0, h0))

−1φ(g0, h0h))

)∣∣∣∣
h=e

(v)

=

(
∂

∂h
φ(ψ(g0, h0), h)

)∣∣∣∣
h=e

(v). (4.10)

It is clear that (Dφg0)|h=h0 is non-singular if and only if ρg0,h0 is non-singular. Now ρg0,h0

is a linear map from the vector space V = (T H)|h=e to the vector spaceW = (T F )|f=e;
both V and W are independent of g0 and h0. Hence ρg0,h0 is non-singular exactly when
a dim(V )-by-dim(V ) determinant δ equals 0. The entries of δ are polynomials on the
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coordinates of g0 and h0. Let YG×H be the subvariety of G × H defined by δ = 0.
Then conclusion (a) holds by definition. It is clear that deg(YG×H ) �deg(δ) 1; since
deg(δ)�degpol(φ),degpol(ψ),dim(H) 1, it follows that deg(YG×H )�degpol(φ),degpol(ψ),dim(H) 1.
Thus conclusion (b) holds.

By the assumptions of the proposition, (Dφg0)|h=e is non-singular for all g0 ∈ G(K)

outsideXG. This is the same as saying that (g0, e) lies outside YG×H , and so (YG×H )g=g0

is a subvariety of H not containing e; in particular, (YG×H )g=g0 is a proper subvariety
of H , i.e., conclusion (c) holds.

Now, by (4.10), ρg0,h0 is non-singular exactly when (Dφψ(g0,h0))|h=e is non-singular,
i.e., exactly when ψ(g0, h0) lies outside XG. By (4.6), rh0 : g 7→ ψ(g, h0) is a regular
map with a regular map as its inverse; hence, r−1

h0
(XG) is a proper subvariety of G. By

what we just said, (YG×H )h=h0 = r
−1
h0
(XG), and so we have obtained conclusion (d). ut

We shall now see how to escape from a variety YG×H such as the one given by Prop. 4.9,
even if we are not given a set of generators of H(K).

Lemma 4.11. Let G ⊂ GLn be an irreducible algebraic group defined over a field K .
Assume either thatK is perfect or thatG is reductive. LetH/K be an algebraic subgroup
of G. Let YG×H be a proper subvariety of G × H such that the fibre (YG×H )h=h0 is a
proper subvariety of G for all h0 ∈ H(K). Let A ⊂ G(K) be a set of generators of
G(K), and let E be a subset of H(K). Then there is a gE ∈ Ak , k �−→deg(YG×H )

1, such
that

�−→
deg(YG×H )

|E|

elements of E lie outside (YG×H )|g=gE , provided that |K| is larger than a constant de-
pending only on n and

−→
deg(YG×H ).

Proof. Let h0 ∈ H(K) be arbitrary. By one of the assumptions, the fibre (YG×H )h=h0 is
a proper subvariety ofG. Hence, by escape inG (Lemma 4.4, together with Lemma 4.6),
there is a g1 ∈ Ak1 , k1 �−→deg(YG×H )

1, such that g1 does not lie on (YG×H )h=h0 . Let
Y1 ⊂ H be the union of all connected components of (YG×H )g=g1 that contain elements
of E; since (by the definition of g1 and XG) the fibre (YG×H )g=g1 is a proper subvariety
of H , clearly Y1 is a proper subvariety of H as well. Moreover,

−→
deg(Y1)�−→deg(YG×H )

1.

If |E ∩Y1(K)| <
1
2 |E|, we have |E \ (E ∩Y1(K))| ≥

1
2 |E| and we are done. Assume

otherwise, and let E1 = E ∩ Y1(K). Choose a point h1 ∈ E1 lying on a component
of Y1 of maximal dimension. By escape in G (Lemmas 4.4 and 4.6), there is a g2 ∈ Ak2 ,
k2 �−→deg(YG×H )

1, such that g2 does not lie in (YG×H )h=h1 . Let Y2 be the union of all
connected components of Y1 ∩ (YG×H )g=g2 containing elements of E. Since Y2 does
not contain h1, it does not contain all components of Y1 of maximal dimension. Hence
either (a) dim(Y2) < dim(Y1) or (b) sY2 < sY1 , where, for a variety V , we write sV
for the number of components of maximal dimension. Moreover, by Bézout’s theorem
(Lemma 2.4),

−→
deg(Y2)�−→deg(Y1),

−→
deg(YG×H )

1.

Starting with j = 2, we recur, doing what we just did: if |Ej−1 ∩ Yj (K)| <
1
2 |Ej−1|,

we have |Ej−1 \ (Ej−1 ∩ Yj (K))| ≥
1
2 |Ej−1| ≥

1
2j |E|, and we stop; otherwise, we let
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Ej = Ej−1 ∩ Yj (K), we choose a point hj ∈ Ej lying on a component of Yj of maximal
dimension, we find a gj+1 ∈ Akj+1 , kj+1 �−→deg(YG×H )

1, such that gj+1 does not lie on
(YG×H )h=hj , we let Yj+1 be the union of the connected components of Yj∩(YG×H )g=gj+1

containing elements of E, etc. Thanks to Bézout’s theorem, we reach Yj = ∅ (and thus
we stop) after a number of steps�−→

deg(YG×H )
1. Hence |Ej−1 \ (Ej−1∩Yj (K))| ≥ 2−j |E|

(where j is the index j we are at when we stop) implies |Ej−1 \ (Ej−1 ∩ Yj (K))|

�−→
deg(YG×H )

1. ut

It is time to put together what we have proven in this subsection.

Proposition 4.12. LetG⊂ GLn be an irreducible algebraic group defined over a fieldK;
let H0/K,H1/K, . . . , H`/K be algebraic subgroups thereof. Assume either that K is
perfect or that G is reductive. Write g for the Lie algebra of G, and hj for the Lie algebra
of Hj , 0 ≤ j ≤ `. Assume there are g0, g1, . . . , g` ∈ G(K) such that

Adg0(h0),Adg1(h1), . . . ,Adg`(h`) (4.11)

are linearly independent. Let A ⊂ G(K) be a set of generators of G(K). Then there are
g0, g1, . . . , g` ∈ Ak , k �n 1, such that

|g0E0g
−1
0 · g1E1g

−1
1 · · · · · g`E`g

−1
` | �n,

−→
deg(H0),

−→
deg(H1),...,

−→
deg(H`)

|E0| |E1| · · · |E`|

for any non-empty subsets Ej ⊂ Hj (K), 0 ≤ j ≤ `.

In the present paper, we will always use Prop. 4.12 with G = SLn, which is semisimple
and hence reductive.

Proof. We will apply Prop. 4.9 with K instead of K , G′ = G`+1 instead of G, H =
H0 × H1 × · · · × H`, F = G (our G, that is, not G′) and φ and ψ as in Lemma 4.10.
The derivative (4.7) is non-singular for h0 = e whenever the linear spaces (4.11) are lin-
early independent; by Lemma 4.8 and the assumption on (4.11) (namely, that the spaces
are independent for some (g0, g1, . . . , g`) ∈ G

′(K)), the spaces are independent for all
(g0, g1, . . . , g`) ∈ G

′(K) outside a proper subvariety XG′ of G′ (with
−→
deg(XG′) �n 1).

The conditions of Prop. 4.9 are thus fulfilled, and we obtain a variety YG′×H (with
−→
deg(YG′×H )�n 1) as in its statement.

We now apply Lemma 4.11 to G′, H and YG′×H . (We may use Lemma 4.11 because
we may assume that |K| is larger than a constant depending only on n, as otherwise
the statement we seek to prove is trivially true. Notice also that, if G is reductive, then
G′ = G`+1 is reductive.) We then apply Lemma 4.3 with X = H and are done. ut

4.4. Examining subspaces at the origin. Recall the definition of linear independence
of subspaces given in §2.5.5.

Proposition 4.13. Let G ⊂ GLn be an algebraic group defined over a field K; write g
for its Lie algebra. Let h be a subspace of g. Suppose that there are elements Eg1, . . . , Eg`
of g(K) such that the spaces

h, [Eg1, h], . . . , [Eg`, h] (4.12)
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are linearly independent and of dimension dim(h). Suppose that the characteristic
char(K) of K is either 0 or greater than k, where k = dim(h). Then there is a proper
subvariety X of G` such that, for all (g1 . . . , g`) ∈ G

`(K) not on X, the spaces

h,Adg1(h), . . . ,Adg`(h)

are linearly independent and of dimension dim(h). Moreover,
−→
deg(X)�n 1.

Proof. Let e1, . . . , ek be a basis of h. Write

θ = e1 ∧ · · · ∧ ek and θj = [Egj , [Egj , [· · · [Egj , θ] · · · ]]] (k times) for 1 ≤ j ≤ `.

Here recall that, since the bracket [·, ·] is essentially a derivative (namely, the derivative
of Adg), it interacts with ∧ as in the product rule: [Eg, v ∧ w] = [Eg, v] ∧ w + v ∧ [Eg,w].

Let us examine the wedge product

2 = θ ∧ θ1 ∧ · · · ∧ θ`.

Any term of θj containing a term of the form · · · ∧ er ∧ · · · will be lost, as its wedge
product with θ will be 0. The only terms of θj remaining are k! identical terms of the
form

ωj = [Egj , e1] ∧ · · · ∧ [Egj , ek].
We thus have

2 = (k!)` · (θ ∧ ω1 ∧ · · · ∧ ω`).

By the condition stating that the spaces (4.12) are linearly independent, we have 2 6= 0
(provided that, as we are assuming, char(K) does not divide k!).

Now, θj is a derivative, viz., the kth order derivative at the origin of

Adgj,1gj,2···gj,k (θ) = Adgj,1(Adgj,2(· · · (Adgj,k (θ)) · · · ))

taken with respect to the variables gj,1, gj,2,. . . , gj,k one time each, always in the same
direction Egj . Hence 2 is itself a (k · `)th order derivative (at the origin) of

θ ∧
∧

1≤j≤`

Adgj,1···gj,k (θ). (4.13)

Since 2 is non-zero, it follows that (4.13) is not identically zero as the gj,i vary within
G(K). Setting gj = gj,1 · · · gj,k , we see that there are g1, . . . , g` ∈ G(K) such that

θ ∧ Adg1(θ) ∧ · · · ∧ Adgl (θ) = 0 (4.14)

does not hold. Define the variety X by the equation (4.14). ut

4.5. Subgroups of unipotent subgroups and tori. We will later want to know what
kinds of subgroups a torus can have. The following lemma will be enough.

We recall that a torus is an algebraic group isomorphic to (GL1)
m for some m ≥ 1.

(This should be clear by now, though we are used to speaking of maximal or non-maximal
tori of a groupG, i.e., subgroups ofG that happen to be tori.) Just as we often see algebraic
groups G as (algebraic) subgroups of GLn ⊂ An2

, it makes sense to consider tori T
(isomorphic to (GL1)

m) given as algebraic subgroups of (GL1)
n
⊂ An.
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A character α : T → GL1 of a torus T ⊂ (GL1)
n is a map of the form (x1, . . . , xn)

7→ x
a1
1 . . . x

an
n for some a1, . . . , an ∈ Z (called the exponents of α).

Lemma 4.14. Let K be a field. Let T/K ⊂ (GL1)
n be a torus. Let V/K be a proper

algebraic subgroup of T . Then V is contained in the kernel of a non-trivial character
α : T → A1 whose exponents are bounded in terms of n and

−→
deg(V ) alone.

Proof. Let H be the identity component of V ; by the definition of the degree of a variety
(§2.5.2), the degree deg(H) of the irreducible variety H is bounded in terms of

−→
deg(V )

alone. Now [BoG, Prop. 3.3.9(c)] (applied withX = H ) states thatH must be of the form
φA(X̃(H)× (GL1)

r), where r = dim(H), X̃(H) is a closed subvariety of (GL1)
n−r and

φA : (GL1)
n
→ (GL1)

n is an (invertible) monoidal transformation ([BoG, Def. 3.2.4])
given by a matrix A ∈ SLn(Z). Since dim(H) = dim(GLr1) and φA is invertible, X̃(H)

must be 0-dimensional; since H is connected and φA is invertible, X̃(H) must consist
of a single point; since H is a group and φA is an isomorphism of algebraic groups, that
single point must be the identity. In other words, H = φA({e} × (GL1)

r), where e is the
identity in (GL1)

n−r .
Thus H is in the kernel of the character g 7→ ((φA)

−1(g))j = (φA−1(g))j for every
1 ≤ j ≤ n − r . If T were in the kernel of every such character, its dimension would
be r , i.e., the same as the dimension of H ; since T is irreducible and H is a proper
subgroup of T , this cannot be the case. Let, then, α0 : T → A1 be the restriction to T
of the character g 7→ (φA−1(g))j for some j for which such a restriction is not trivial.
The exponents of g are entries of A−1; by [BoG, Remark 3.3.10], the entries of A−1 are
�n,δ(H), where δ(H) is the “essential degree” of H (as defined in [BoG, §3.3.1]). Now,
by [BoG, Prop. 3.3.2], δ(H) ≤ deg(H). Hence the exponents of g are�n,deg(H) 1.

The number m of connected components of V is bounded by
−→
deg(V ). Now V must

consist ofm cosets of the form xH , where x ∈ G(K) is such that xm lies onH . We define
α : T → A1 to be the character such that α(g) = α0(g

m), and are done. ut

Let U be a unipotent subgroup of SL3. We need to classify the subgroups of U(Z/pZ).
This turns out to be an easy task.

Lemma 4.15. Let K = Z/pZ. Let G = SL3, and let B/K be a Borel subgroup thereof;
let U/K be the subgroup of unipotent matrices of B. Then every subgroup H of U(K) is
conjugate in B(K) to one of the following subgroups:

H = {I }, (4.15)
H = U(K), (4.16)

H =


1 x y

0 1 0
0 0 1

 : x, y ∈ Z/pZ

 , (4.17)

H =


1 0 y

0 1 z

0 0 1

 : y, z ∈ Z/pZ

 , (4.18)
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H =


1 0 y

0 1 0
0 0 1

 : y ∈ Z/pZ

 , (4.19)

H =


1 x 0

0 1 0
0 0 1

 : x ∈ Z/pZ

 , (4.20)

H =


1 0 0

0 1 z

0 0 1

 : z ∈ Z/pZ

 , (4.21)

H =


1 x y

0 1 x

0 0 1

 : x, y ∈ Z/pZ

 , (4.22)

H =


1 x x2

2
0 1 x

0 0 1

 : x ∈ Z/pZ

 (if p > 2). (4.23)

Proof. Let N be the normal subgroup of U consisting of the matrices of the form1 0 y

0 1 0
0 0 1

 .
We may identify U(K)/N(K) with Z/pZ× Z/pZ by the bijection1 x y

0 1 z

0 0 1

N(K) 7→ (x, z).

Consider H ′ = H/(H ∩ N(K)), which can be seen as a subgroup of U(K)/N(K) '
Z/pZ× Z/pZ by the inclusion H ⊂ U(K). If H ′ = {(0, 0)}, then either H = {I } or H
is as in (4.19).

Suppose H ′ = Z/pZ× Z/pZ. We may then choose two matrices

g =

1 x y

0 1 z

0 0 1

 ∈ H, g′ =

1 x′ y′

0 1 z′

0 0 1

 ∈ H
with xz′ 6= x′z (as we can specify x, x′, z, z′ arbitrarily). The two matrices g, g′ do
not commute. Hence gg′g−1g′−1

6= I . Because U(K)/N(K) is abelian, gg′g−1g′−1

must lie in N(K); since N(K) ' Z/pZ and gg′g−1g′−1
6= I , we see that gg′g−1g′−1

must generate N(K). Hence N(K) ⊂ H , and so, since H ′ = H/(H ∩ N(K)) is all of
Z/pZ× Z/pZ, we conclude that H is all of U(K).

Suppose H ′ = Z/pZ × {0} or H ′ = {0} × Z/pZ. Then it is easy to show that we
are either in cases (4.17) or (4.20) (if H ′ = Z/pZ × {0}) or cases (4.18) or (4.21) (if
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H ′ = {0} × Z/pZ). (We initially obtain1 x rx

0 1 0
0 0 1


instead of (4.20), but this is conjugate to (4.20) in B(K) by an element of U(K). The
same happens for (4.21).)

Suppose, finally, that H ′ is of the form {(x, rx) : x ∈ Z/pZ} for some r ∈ Z/pZ,
r 6= 0. If H contains a non-trivial element of N , we obtain (4.22) after conjugation by an
element of B(K). Suppose H contains no non-trivial element of N(K). Then, for every
x ∈ Z/pZ, there is exactly one element y = y(x) of Z/pZ such that1 x y(x)

0 1 rx

0 0 1


is in H . Thus, for every m ∈ Z,1 1 y(1)

0 1 r

0 0 1

m =
1 m m · y(1)+ (1+ 2+ · · · + (m− 1)) · r

0 1 rm

0 0 1


must be equal (mod p) to 1 m y(m)

0 1 rm

0 0 1

 ∈ H.
If p = 2, we set m = 2 and obtain a contradiction to our assumption that H contains
no non-trivial element of N(K). Assume, then, that p > 2. Then we obtain y(x) =
xy(1)+ x(x−1)

2 r = x · (y(1)− r/2)+ x2

2 r . Then1 m y(m)

0 1 rm

0 0 1

 =
ρ ρ−2c 0

0 ρ 0
0 0 ρ−2

 ·
1 x x2

2
0 1 x

0 0 1

 ·
ρ ρ−2c 0

0 ρ 0
0 0 ρ−2

−1

where c = y(1)− r/2 and ρ ∈ K is any cube root of r . This means that H is a conjugate
of (4.23) by an element of B(K), and so we are done. ut

5. Tori and conjugacy classes

Let A ⊂ SLn(K), K any field. We mean to show that, if A grows slowly under multi-
plication, then (a) many elements of A lie on a torus, and (b) there are not many more
conjugacy classes intersecting A than there are elements on the torus. Somewhat counter-
intuitively, we shall begin by giving an upper bound on the number of elements of A that
can lie on a torus.

The methods in this section seem to be robust as far as the group type and the ground
field are concerned. We shall work—by and large—on SLn(K), n arbitrary, rather than
only on SL3(Z/pZ). A few lemmas will be proven for all classical Chevalley groups.
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5.1. The intersection with a maximal torus: an upper bound. Let A be a set of gen-
erators ofG = SLn(K). We shall show that, given any torus T , the intersection of A with
T is not too large.

By a classical Lie algebra over a field K we mean sln, son or sp2n (n ≥ 1). By a
classical Chevalley group overK we mean SLn, SOn or Sp2n. We shall see SLn, SOn and
Sp2n as subvarieties of the affine space of matrices Mn. If g is a Lie algebra defined over
a field K , we denote by g∗ the K-linear space of K-linear functions on g(K).

Lemma 5.1. Let g/K be a classical Lie algebra over a field K with char(K) > 2. Let
t be a Cartan subalgebra of g. Let 8 be its set of roots and let V = t∗. Then there is a
partition 8 = 81 ∪ · · · ∪8` such that each 8j , 1 ≤ j ≤ `, is a basis of V .

Proof. Let us consider each of the classical root systems individually. We shall see them
as abstract root systems, i.e., as subsets of V , which can be seen simply as a linear space
over K with no further structure.

We look first at An. Then V can be identified with the subspace of Kn+1 for which
the coordinates sum to 0, and the set of roots 8 with the set of vectors in V having one
coordinate equal to 1, one coordinate equal to −1, and all other coordinates equal to 0.
Define 8j (1 ≤ j ≤ n+ 1) to be the set of roots vj − vi , i 6= j . Then every 8j is a basis
of V .

Now look at Bn. Then V can be identified with Kn, and 8 with the set of vectors
having at most two coordinates in {−1, 1}, and all other coordinates equal to 0. We let
8j (1 ≤ j ≤ n) be the set of roots vj − vi , i 6= j , together with the root vj ; let 8n+j
(1 ≤ j ≤ n) be the set of roots vj + vi , i > j , together with −vj − vi , i < j , and −vj .

Let us now consider Cn. Then V can be identified with Kn, and 8 with the set of
vectors having two coordinates in {−1, 1} and all other coordinates equal to 0, together
with the vectors having one coordinate in {−2, 2} and all other coordinates equal to 0.
The choice of 8j is almost as for Bn: we let 8j (1 ≤ j ≤ n) be the set of roots vj − vi ,
i 6= j , together with the root 2vj ; let 8n+j (1 ≤ j ≤ n) be the set of roots vj + vi , i > j ,
together with −vj − vi , i < j , and −2vj .

Finally, we consider Dn. Then V = Kn, and 8 can be identified with the set of
vectors having two coordinates in {−1, 1} and all other coordinates equal to 0. Then let
8j (1 ≤ j ≤ n − 1) be the set of roots vj − vi , i 6= j , together with the root vj + vn;
let 8j+n−1 (1 ≤ j ≤ n − 1) be the set of roots vj + vi , i > j , together with the roots
−(vj + vi), i < j , and the root −(vj + vn). ut

Lemma 5.2. Let g/K be a classical Lie algebra over a field K with char(K) 6= 2. Let
t be a Cartan subalgebra of g. Let ` = dim(G)/dim(T ) − 1. Then there are elements
Eg1, . . . , Eg` ∈ g such that the spaces

t, [Eg1, t], . . . , [Eg`, t] (5.1)

are linearly independent and of dimension dim(t).

Proof. Let 8 = 81 ∪ · · · ∪ 8` be a partition as in Lemma 5.1. For 1 ≤ k ≤ `, choose
one non-zero element vk,j in the root space corresponding to each element αk,j of 8k;
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denote the set of such elements for given k by {vk,j }1≤j≤m, where m = |8k| = dim(t∗).
Let Egk =

∑
1≤j≤m vk,j . Then, for every t ∈ t(K), we have [t, Egk] =

∑
j αk,j (t) · vk,j .

Now let e1, . . . , em be a basis for t(K). (Since dim(t(K)) = dim(t∗), a basis of
t(K) has m elements.) Then the linear map fk : v → [Egk, v] from t(K) to the span
Vk of the root spaces {αk,j }1≤j≤m is given by a square m-by-m matrix with entries
{αk,j (ei)}1≤i,j≤m. Since (by Lemma 5.1) the roots in 8k form a basis of g∗, they are
linearly independent, and so the matrix is non-singular. Thus, the image of fk is all of Vk .
In other words, [t, Egj ] equals the span of the root spaces {αk,j }1≤j≤m.

By [Hum, §26.2, Cor. B], the Lie algebra g is the direct sum of t and the root spaces.
Since [t, Egj ] = −[Egj , t] = [Egj , t], we are done. ut

If G is a classical Chevalley group, then G and all of its maximal tori are irreducible
varieties over any field K (see, e.g., [Bor, §1.2, §8.5(2) and §8.7]).

Proposition 5.3. Let G ⊂ GLn be a classical Chevalley group defined over a field K
with char(K) 6= 2. Let T be a maximal torus of G defined over K . Let A ⊂ G(K) be a
set of generators of G(K), and let E be a subset of T (K). Let ` = dim(G)/dim(T )− 1.
Then there are g0, g1, . . . , g` ∈ Ak , k �n 1, such that

|g0Eg
−1
0 · g1Eg

−1
1 · · · g`Eg

−1
` | �n |E|

`+1.

Proof. By Prop. 4.12 with Hj = T and Ej = E for 0 ≤ j ≤ `. (The condition on (4.11)
is fulfilled by Lemma 5.2 and Prop. 4.13.) ut

Corollary 5.4. Let G ⊂ GLn be a classical Chevalley group. Let K be a field with
char(K) 6= 2. Let T be a maximal torus of G defined over K . Let A ⊂ G(K) be a set of
generators of G(K). Then

|A ∩ T (K)| �n |Ak|
dim(T )/dim(G),

where k �n 1.

Proof. Immediate by Prop. 5.3 (with E = A ∩ T (K)). ut

5.2. A lower bound on the number of conjugacy classes. Let A be a set of generators
of SLn(K). We shall show that there are many conjugacy classes represented by elements
of A—or, at any rate, by elements of Ak .

Given a matrix g in SLn(K), we define κ(g) ∈ An−1(K) to be the tuple

(an−1, an−2, . . . , a1)

of coefficients of

λn + an−1λ
n−1
+ an−2λ

n−2
+ · · · + a1λ+ (−1)n = det(λI − g) ∈ K[λ]

(the characteristic polynomial of g).
As is well-known, κ(g) = κ(hgh−1) for any h, i.e., κ(g) is invariant under conju-

gation. If g is a regular semisimple element of SLn—that is, if its eigenvalues are all
distinct—then κ(g) actually determines the conjugacy class ClG(g) of g.
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Lemma 5.5. Let G = SLn. Let K be a field. For h0, h1, . . . , hn, define fh0,h1,...,hn to be
the map

fh0,h1,...,hn : g 7→ (κ(h0g), κ(h1g), . . . , κ(hng)) (5.2)

from G to A(n−1)·(n+1)
= An2

−1. Let T/K be a maximal torus of G. Then there are
h0 ∈ G(K), h1 ∈ T (K) and g0 ∈ G(K) such that the derivative of fh0,h1,h

2
1,...,h

n
1

at
g = g0 is a non-singular linear map.

Proof. We may write the elements of G(K) so that the elements of T (K) ⊂ G(K)

become diagonal matrices. Let

g0 =


0 1 · · · 0
...

...
...

...

0 0 · · · 1
(−1)n−1 0 · · · 0

 .
Let Er = (r1, . . . , rn) be a vector in K

n
with r1 · · · rn = 1. Define

h1 =

r1 . . . 0
...

...
...

0 . . . rn

 . (5.3)

Let us look, then, at the derivative at g = I of g 7→ κ(hi1g0g) for 1 ≤ i ≤ n. The
derivative at g = I of the map taking g to the coefficient of λn−1 in det(λI −hi1g0g) (i.e.,
to (−1) times the trace of hi1g0g) is equal to the map taking each matrix γ in the tangent
space g to G at the origin to

(−1) · (r i1γ2,1 + r
i
2γ3,2 + · · · + r

i
j γj+1,j + · · · + (−1)n−1r inγ1,n),

where we write γi,j for the entries of the matrix γ .
The derivative at g = I of the map taking g to the coefficient of λn−2 in det(λI −

hi1g0g) is the map taking each γ in g to

r i1r
i
2γ3,1 + r

i
2r
i
3γ4,2 + · · · + r

i
j r
i
j+1γj+2,j + · · · + r

i
n−3r

i
n−2γn−1,n−3 + r

i
n−2r

i
n−1γn,n−2

+ r in−1 · (−1)n−1r inγ1,n−1 + (−1)n−1r inr
i
1γ2,n.

In general, for 1 ≤ k ≤ n−1, the derivative at g = I of the map taking g to the coefficient
of λn−k in det(λI − hi1g0g) is the map taking γ to

(−1)k
n−k∑
j=1

(r ij ·r
i
j+1 · · · r

i
j+k−1)·γj+k,j+(−1)k+n−1

n∑
j=n−k+1

(r ij ·r
i
j+1 · · · r

i
j+k−1)·γj+k,j ,

(5.4)
where by a we mean the only element of {1, . . . , n} congruent to a modulo n.

We see that the entries of γ present in (5.4) are disjoint for distinct 1 ≤ k ≤ n − 1
(and disjoint from {γ1,1, γ2,2, . . . , γn,n}, which would appear for k = 0). Now, for k fixed,
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(5.4) gives us a linear form on n variables γj+k,j for each 1 ≤ i ≤ n. Let us check that,
for every 1 ≤ k ≤ n− 1, these linear forms are linearly independent, provided that Er was
chosen correctly.

This is the same as checking that the n− 1 determinants∣∣(r ij · r ij+1 · · · r
i
j+k−1)

∣∣
1≤i,j≤n (5.5)

for 1 ≤ k ≤ n − 1 are non-zero for some choice of r1, . . . , rn with r1 · · · rn = 1. (What
we really want to check is that the determinant (5.5) is non-zero after all signs in some
columns are flipped; since those flips do not affect the absolute value of the determinant,
it is just as good to check that the determinant (5.5) itself is non-zero.) These are Vander-
monde determinants, and thus are equal to

(−1)bn/2c ·
∏
j1<j2

(rj2 · rj2+1 · · · rj2+k−1 − rj1 · rj1+1 · · · rj1+k−1).

For any given k, j1, j2 with j1 6= j2, there are certainly r1, . . . , rn ∈ K with r1 · · · rn = 1
such that rj1 · rj1+1 · · · rj1+k−1 6= rj2 · rj2+1 · · · rj2+k−1. Thus, rj1 · rj1+1 · · · rj1+k−1 = rj2 ·

rj2+1 · · · rj2+k−1 defines a subvarietyWk,j1,j2 of positive codimension in the (irreducible)
variety V ⊂ An of all tuples (r1, . . . , rn) 6= 1 with r1 · · · rn = 1. Therefore, W =⋃

1≤k,j1,j2≤n, j1 6=j2
Wk,j1,j2 is a finite union of subvarieties of V of positive codimension.

Take Er to be any point of V (K) outside W(K).
It remains to choose h0 so that the derivative of g 7→ κ(h0g) at g = I is a linear map

of full rank on the diagonal entries γ1,1, γ2,2 . . . , γn−1,n−1 of g. Let

h0 =

s1 . . . 0
...

...
...

0 . . . sn

 , (5.6)

where s1, . . . , sn ∈ K fulfil s1 · · · sn = 1. Then the derivative at g = I of the map taking
g to the coefficient of λn−1 in det(λI − h0g) (i.e., to (−1) times the trace of h0g) equals
the map taking γ to

(−1) · (s1γ1,1 + s2γ2,2 + · · · + snγn,n).

In general, the derivative of the map taking g to the coefficient of λn−k (1 ≤ k ≤ n − 1)
in det(λI − h0g) equals the map taking γ to

(−1)k · (ck,1γ1,1 + ck,2γ2,2 + · · · + ck,nγn,n),

where ck,i is the sum of all monomials sj1 . . . sjk , 1 ≤ j1 < · · · < jk ≤ n, such that one
of the indices jl equals i. (For example, c2,1 = s1 · (s2 + · · · + sn).) Thus, our task is to
find for which s1, . . . , sn the determinant

|ci,j − ci,n|1≤i,j≤n−1

is non-zero. Clearly, this will happen precisely when

|ci−1,j |1≤i,j≤n 6= 0,

where we adopt the (sensible) convention that c0,j = 1 for all j .
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A brief computation gives us that

|ci−1,j |1≤i,j≤n = (−1)bn/2c · |si−1
j |1≤i,j≤n.

This is a Vandermonde determinant; it equals
∏
j1<j2

(sj2 − sj1). The equation sj2 = sj1

defines a subvariety of positive codimension in the variety V ⊂ An of all s1, . . . , sn with
s1 · · · sn = 1. Thus, we may choose s1, . . . , sn such that s1 · · · sn = 1 and

∏
j1<j2

(sj2−sj1)

6= 0. ut

The proposition below can be applied with W empty. We will later need to invoke it with
W equal to the variety of elements of G that are not regular semisimple.

Proposition 5.6. Let G = SLn. Let K be a field. Let X = Gn+1, Y = A(n−1)·(n+1)
=

An2
−1. Let f : X ×G→ Y be the map given by

f ((h0, h1, . . . , hn), g) = (κ(h0g), κ(h1g), . . . , κ(hng)).

Let W be a proper subvariety of G (which may be empty). Let A ⊂ G(K) be a set of
generators of G(K). Then there are h0, h1, . . . , hn ∈ Ak , k �n,

−→
deg(W)

1, such that

|f ((h0, h1, . . . , hn), Ak \ (Ak ∩W(K)))| �n,
−→
deg(W)

|A|.

Proof. Let ZX×G be as in Lemma 4.7. By Lemma 5.5, at least one point of (X ×G)(K)
lies outsideZX×G; thusZX×G is a proper subvariety ofX×G. By the argument in §2.5.3,
the points x0 on X such that (ZX×G)x=x0 is all of G lie on a proper subvariety ZX of X
of degree �−→

deg(ZX×G)
1 (and so, by (4.1),

−→
deg(ZX) �n 1). By Lemma 4.6, there are

points of X(G) outside ZX, provided that we assume that |K| is greater than a constant
depending only on n. (If |K| �n 1, what we seek to prove is trivially true.) We can then
use escape from groups (Lemma 4.4) to the group X = Gn−1 and the set of generators
E = A × · · · × A of X, and conclude that there is a tuple Eh = (h0, h1, . . . , hn) ∈ Ek ,
k �n 1, such that Eh lies on X \ ZX.

Define V = (ZX×G)x=Eh ∪ W . Again by Lemma 4.6, there are points of G(K) out-
side V (assuming again, as we may, that |K| is greater than a constant depending only
on n). We can then use a general result on the consequences of being non-singular almost
everywhere, namely, Cor. 4.5 (with E = A), and obtain

|fEh(Ak′ ∩ (G(K) \ V (K)))| �−→deg(G),
−→
deg(V ),degpol(fEh)

|A|,

and so (since
−→
deg(G)�n 1, degpol(fEh)�n 1,

−→
deg(V )�

n,
−→
deg(W)

1 and W ⊂ V )

|fEh(Ak′ ∩ (G(K) \W(K)))| �n,
−→
deg(W)

|A|,

where k′ �
n,
−→
deg(W)

1. ut

Recall that ClG(A) denotes the set of all conjugacy classes in G that contain at least one
element of A.
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Corollary 5.7. Let G = SLn. Let K be a field. Let A ⊂ G(K) be a set of generators of
G(K). Let W be a (possibly empty) proper subvariety of G. Then

|ClG(Ak \ (Ak ∩W(K)))| �n,
−→
deg(W)

|A|1/(n+1),

where k �
n,
−→
deg(W)

1. In particular,

|ClG(Ak)| �n |A|
1/(n+1),

where k �n 1.

Here 1
n+1 =

n−1
n2−1 is the exponent one would expect for SLn: the variety G = SLn is of

dimension n2
− 1, and the characteristic polynomial of a matrix has n − 1 coefficients

other than the leading and the constant terms, which are identically 1.
Proof. From Prop. 5.6, there are at least �

n,
−→
deg(W)

|A| distinct (n + 1)-tuples
(κ(g0), κ(g1), . . . , κ(gn)), where gj = hjg is an element of A2k , k �n,

−→
deg(W)

1. Clearly,

this implies that there are at least�
n,
−→
deg(W)

|A|1/(n+1) distinct elements κ(g), g ∈ A2k .
Two matrices g, g′ in distinct conjugacy classes in G cannot have the same characteristic
polynomial. The statement now follows immediately. ut

5.3. From conjugacy classes to a maximal torus. The following lemma uses nothing,
and yet the rest of the section spins around it.

Proposition 5.8. Let G be a group. Let A,A′ ⊂ G. Then there is a g ∈ A′ such that

|CG(g) ∩ A
−1A| ≥

|A|

|AA′A−1|
· |ClG(A′)|.

Proof. Write cg for the number of elements of A−1A commuting with a given g ∈ G.
For every g,

|{hgh−1 : h ∈ A}| ≥ |A|/cg.

(Otherwise there would be an h0 ∈ A such that h0gh
−1
0 = hgh−1 for more than cg

elements h of A—and, since h0gh
−1
0 = hgh−1 implies that h−1h0 ∈ A

−1A commutes
with g, we would have a contradiction.) At the same time, for g1, g2 in different conjugacy
classes,

{hg1h
−1 : h ∈ A} and {hg2h

−1 : h ∈ A}
are disjoint. Hence

|{hgh−1 : h ∈ A, g ∈ A′}| ≥
∑
g

|A|

cg
,

where the sum is over representatives g ∈ A′ of conjugacy classes intersecting A′. There-
fore, there is a g ∈ A′ such that

|A|

cg
≤

1
|ClG(A′)|

· |{hgh−1 : h ∈ A, g ∈ A′}|,

and so

cg ≥
|A|

|{hgh−1 : h ∈ A, g ∈ A′}|
· |ClG(A′)| ≥

|A|

|AA′A−1|
· |ClG(A′)|. ut
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Remark. It should be clear from the proof that cg = |CG(g) ∩ A−1A| is large not just
for one g ∈ A′, but for many g ∈ A′. We shall not need this fact.

We say that an element of an algebraic group is regular semisimple if the connected
component of its centraliser that contains the identity is a maximal torus. In SLn, a reg-
ular semisimple element is simply an element with distinct eigenvalues; its centraliser is
always connected, and thus equals a maximal torus.

The following is a special case of a much more general statement.

Lemma 5.9. Let G = SLn. Let K be a field. Then there is a subvariety W/K of G of
positive codimension and degree

−→
deg(W) �n 1 such that every element g ∈ G(K) not

on W is regular semisimple.

In fact, the variety W will be defined over Z, independently of K; we just need to check
that it has positive codimension over K , i.e., that there are points in G(K) \W(K).

Proof. An element of SLn is regular semisimple if (and only if) its eigenvalues are dis-
tinct. Let W be the variety of all g ∈ G whose characteristic polynomials have mul-
tiple roots, i.e., define W by Disc(det(λI − g)) = 0. As we can easily find points in
G(K) \W(K) (say, diagonal elements with distinct entries), we are done. ut

Since W is a subvariety of SLn of positive codimension, we may escape from it.

Corollary 5.10 (to Prop. 5.8). Let G = SLn. Let K be a field. Let A ⊂ G(K) be a set
of generators of G(K). Then there is a maximal torus T/K of G such that

|Ak ∩ T (K)| �n

|A|

|Ak+2|
· |A|1/(n+1), (5.7)

where k �n 1.

If |A ·A ·A| � |A|1+ε , then (by the tripling lemma, viz., Lemma 2.2) the inequality (5.7)
reads: |Ak ∩ T (K)| � |A|1/(n+1)−Ok(ε).

Proof. Let W be as in Lemma 5.9. By Cor. 5.7,

|ClG(K)(A′)| � |A|1/(n+1),

where A′ = Ak \ (Ak ∩W(K)). At the same time, by Prop. 5.8,

|CG(K)(g) ∩ A
−1A| ≥

|A|

|AA′A−1|
· |ClG(K)(A′)|

for some g ∈ A′. By the definition of W , all elements of A′ are regular semisimple; in
other words, the centraliser CG(K)(g) lies on a maximal torus. Hence

|T (K) ∩ A−1A| �n

|A|

|AA′A−1|
· |A|1/(n+1)

≥
|A|

|Ak+2|
· |A|1/(n+1),

where T/K is any maximal torus containing CG(K)(g). ut
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5.4. An upper bound on the number of conjugacy classes. Consider a set A ⊂
SLn(K) such that |A · A · A| � |A|1+ε . Using Prop. 5.8 and the fact that there are
not too few conjugacy classes, we have just shown that there is a torus T such that there
are not too few elements on T . Using, again, Prop. 5.8 and the fact that there are not too
many elements on T , we shall now show that there are not too many conjugacy classes.

Corollary 5.11 (to Cor. 5.4 and Prop. 5.8). Let G = SLn. Let K be a field. Let A ⊂
G(K) be any set of generators of G(K). Assume that |A| is greater than a constant
depending on n. Then

|ClG(A ∩6(K))| �n

|AAA−1
|

|A|
|Ak|

1/(n+1),

where k �n 1 and 6 is the Zariski-open set of regular semisimple elements of G.

Proof. Let A′ = A ∩6(K). By Prop. 5.8, there is a g ∈ A′ such that

|CG(g) ∩ A
−1A| ≥

|A|

|AA′A−1|
· |ClG(A′)|.

Since g is regular semisimple, its centraliser T = CG(g) is a maximal torus. By Cor. 5.4
(applied to A−1A rather than A),

|T (K) ∩ A−1A| �n |As |
dim(T )/dim(G)

= |As |
1/(n+1),

where s �n 1. Thus

|ClG(A′)| �n

|AA′A−1
|

|A|
|As |

1/(n+1). ut

In brief: we already knew that, for any set of generators A,

|A ∩ T (K)| � |Ak|
1/(n+1) and |A|1/(n+1)

� |Cl(Ak)|.

We now know that, if A does not grow (i.e., |A · A · A| � |A|1+ε) then the inequalities
can be reversed:

|Ak|
1/(n+1)−O(ε)

� |Ak ∩ T (K)| and |Cl(A′)| � |Ak|1/(n+1)+O(ε), (5.8)

where A′ is the set of regular semisimple elements of A.
Our plan in §6 will be to derive a contradiction from this tight situation. We shall

eventually construct what may be seen as a counterexample to an incidence theorem: the
elements of the torus shall give us the lines (i.e., the linear relations), and the conjugacy
classes shall give us the points. There will be too many lines with many points on each
and too few points in total.

Before we finish this section, we must do some auxiliary work on intersections with
non-maximal tori.

5.5. Intersections with non-maximal tori. We already know that we can find a torus T
such that |A ∩ T (K)| is large; we will now show that, for any T and for any subtorus
T ′ ⊂ T given as the kernel of a character of T , |A ∩ T ′(K)| is small.
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(A character of a maximal torus is a homomorphism from T (K) to K
∗

given as
an algebraic map defined over K . If G = SLn and T is a maximal torus of G given
as the group of diagonal matrices, then the characters are the maps of the form t 7→∏

1≤j≤n t
mj
jj , where mj ∈ Z and

∑
j mj = 0. There is an analogous notion of character

for Lie algebras; the characters of a Cartan subalgebra of sln (seen as the algebra of
diagonal matrices) are maps of the form t 7→

∑
j mj tjj , where mj ∈ Z and

∑
j mj = 0.)

Lemma 5.12. Let g = sln be defined over a field K . Assume char(K) - n. Let t be a
Cartan subalgebra of g. Let t′ be the kernel of a non-trivial character α : t→ A1. Then
there are elements Eg0, Eg1, . . . , Egn ∈ g(K) such that the spaces

t′, [Eg0, t
′], [Eg1, t

′], . . . , [Egn, t′] (5.9)

are linearly independent and of dimension dim(t′).

Compare this with Lemma 5.2, where a result that looks much the same holds for t, [Eg1, t],
. . . , [Egn, t], i.e., for one space fewer than in (5.9). This discrepancy is what we shall use
soon (Cor. 5.14) in order to show that the elements in the intersection of a non-growing
set A and a maximal torus T cannot be concentrated on a proper subtorus T ′.
Proof. Write the elements of g as matrices so that t becomes the algebra of diagonal
matrices with trace 0. Let ei,j be the matrix having a 1 at the (i, j)th entry and 0s at all
other entries. We define

Egj =
∑
i, i 6=j

ei,j

for 1 ≤ j ≤ n, where the sum is over all i from 1 to n other than j . For every t ∈ t,
the matrix [Egj , t] has 0s at the (j, j)th entry and throughout all columns save for the j th
column. In fact, for any g ∈ g(K) and any t ∈ t(K), the matrix [g, t] has 0s throughout
the diagonal.

Thus, it remains only to find a Eg0 ∈ g(K) not in t such that the linear spaces V0 =

[Eg0, t
′] and

V = [Eg1, t
′]+ · · · + [Egn, t′]

intersect only at the origin. (We can already see that each space [Egi, t′], 1 ≤ i ≤ n,
intersects the sum of all the others only at the origin, and that t intersects the sum V of
all of them only at the origin. Since Eg0 will not be in t, V0 = [Eg0, t

′] will have the same
dimension as t.)

For 1 ≤ i0 ≤ n, let s(i0) be the matrix in t having (s(i0))ii = −1 for all i 6= i0 and
(s(i0))i0i0 = n−1. If char(K) - n, such matrices span t(K) as a linear space; since t′ 6= t,
there must be at least one such matrix s(i0) not in t′(K). Fix that i0 from now on. Because
s(i0) /∈ t′(K), there is no non-zero matrix t ′ in t′ with all of its diagonal entries other than
t ′i0,i0

equal to each other. Again as char(K) - n, there is also no non-zero matrix t ′ in t′

with all of its diagonal entries equal to each other.
Now define

Eg0 =
∑
j, j 6=i0

ei0,j . (5.10)

Suppose there is a t ∈ t such that [Eg0, t] ∈ V . Then, for every j between 1 and n, the j th
column of the matrix [Eg0, t] equals the j th column of [Egj , t ′j ] for some t ′j ∈ t.



Growth in SL3(Z/pZ) 809

Let 1 ≤ j ≤ n. If j = i0, then, as can be computed easily from (5.10), the j th column
of Eg0 has all of its entries equal to 0. Suppose j 6= i0. Then the j th column of [Eg0, t] has
all of its entries equal to 0 save for the (i0)th entry, which is equal to tj,j − ti0,i0 . The j th
column of [Egj , t ′j ] is 

t ′jj − t
′

11
t ′jj − t

′

22
...

t ′jj − t
′
nn

 .
If these two j th columns were equal, then all diagonal entries of t ′ (save possibly for
t ′j0,j0

) are equal to each other. As we have seen, this implies that t ′ = 0. Hence the j th
column of [Eg0, t] has all of its entries equal to 0.

We let j vary between 1 and n and obtain that, in every column of [Eg0, t], all of the
entries are equal to 0; in other words, [Eg0, t] = 0. We conclude that the intersection of
[Eg0, t] and V is {0}. ut

Proposition 5.13. Let G = SLn. Let K be a field. Assume that K is either finite with
char(K) - n or infinite with char(K) = 0. Let T be a maximal torus of G defined
over K . Let α : T → A1 be a character of T , and let T ′ be the kernel of α. For every
(g0, g1, . . . , gn) ∈ (G(K))

n+1, let fg0,g1,...,gn : (T ′)n+2
→ G be the map defined by

fg0,g1,...,gn(t, t0, t1, . . . , tn) = t · g0t0g
−1
0 · g1t1g

−1
1 · · · gntng

−1
n . (5.11)

LetA ⊂ G(K) be a set of generators ofG(K), and letE be a non-empty subset of T ′(K).
Then there are g0, g1, . . . , gn ∈ Ak , k �n 1, such that

|fg0,g1,...,gn(E,E, . . . , E)| �n,deg(T ′) |E|
n+2.

Proof. We may assume that the derivative of α does not vanish at the origin: if it does,
then char(K) is a prime p, and α = βp for some character β : T → A1; since the
Frobenius map x 7→ xp is an automorphism forK finite, it follows that ker(α) = ker(β),
and so we can use β instead of α. (Repeat if needed.)

The Lie algebra t′ of T ′ lies in the kernel of the derivative α0 of α at the origin,
which is a character of the Lie algebra t of T ; as we have just said, α0 is not identically
zero. We may thus apply Lemma 5.12; it asserts that the assumptions of Prop. 4.13 are
fulfilled (with ` = n + 1 and h = t′). The conclusions of Prop. 4.13 provide the linear-
independence assumption of Prop. 4.12 (forH0 = H1 = · · · = H` = T

′); we apply Prop.
4.12, and are done. ut

Corollary 5.14. Let G = SLn. Let K be a field. Assume that K is either finite with
char(K) - n or infinite with char(K) = 0. Let T be a maximal torus of G defined over K .
Let α : T → A1 be a character of T , and let T ′ be the kernel of α. Let A ⊂ G(K) be a
set of generators of G(K). Then

|A ∩ T ′(K)| �n,deg(T ′) |Ak|
1/(n+2), (5.12)

where k �n 1.

Proof. Immediate from Prop. 5.13 and the definition of fg0,g1,...,gn . ut
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Since we already know from Cor. 5.10 that |Ar ∩ T (K)| � |Ark|1/(n+1)−O(ε) for some
r �n 1 (assuming that |A ·A ·A| � |A|1+ε), the inequality (5.12) (applied to Ar instead
ofA) implies that only a very small fraction of the elements ofAr ∩T (K) lie in the kernel
T ′ of a given character α.

5.6. Special tuples of coefficients of characteristic polynomials. In §6, we will need
to work with tuples of the form

(κ(h0g), κ(tg), κ(t
2g), . . . , κ(tng)).

We need to show that there are many such tuples. Corollary 5.14 will make a crucial
appearance towards the end.

Proposition 5.15. LetG = SLn. Let K be a finite field. LetW/K be a proper subvariety
of G. Let T/K be a maximal torus of G. Let A ⊂ G(K) be a set of generators of G(K).
Let E ⊂ T (K). Then, provided that |K| is larger than a constant depending only on n,
either
(a) there is an element h0 ∈ Ak , k �n 1, and a subset E′ ⊂ Ek with |E′| �n |E| such

that, for each t ∈ E′, there are�
n,
−→
deg(W)

|A| distinct tuples

(κ(h0g), κ(tg), κ(t
2g), . . . , κ(tng)) ∈ An

2
−1(K)

with g ∈ Ak′ , k′ �n,
−→
deg(W)

1, and h0g /∈ W(K), g, tg, t2g, . . . , tng /∈ W(K), or

(b) E is contained in the kernel of a non-trivial character α : T → A1 whose exponents
are bounded in terms of n alone.

Proof. Let X = G× T and Y = (An−1)n+1
= An2

−1. Let f : X ×G→ Y be given by

f ((h, t), g) = (κ(hg), κ(tg), κ(t2g), . . . , κ(tng)).

Let ZX×G be as in Lemma 4.7; by (4.1),
−→
deg(ZX×G) �n 1. Thanks to Lemma 5.5, we

know ZX×G is a proper subvariety of X ×G.
Let ZG×T×G be ZX×G under the identification G × T × G = X × G; write the

elements of ZG×T×G in the form (h, t, g). By the argument in §2.5.3, there is a proper
subvariety ZG ⊂ G (with

−→
deg(ZG) �−→deg(ZG×T×G)

1, and so
−→
deg(ZG) �n 1) such that,

for all h0 ∈ G(K) not on ZG, the fibre (ZG×T×G)h=h0 is a proper subvariety of T ×G.
By escape from groups (Lemmas 4.4 and 4.6; it is here that |K| �n 1 is used), there

is an h0 ∈ Ak , k �n 1, such that h0 lies outside ZG; thus, by the definition of ZG, the
fibre VT×G := (ZG×T×G)h=h0 is a proper subvariety of T ×G. Again by §2.5.3, there is
a proper subvariety VT with

−→
deg(VT )�−→deg(VT×G)

1 (and so
−→
deg(VT )�n 1) such that, for

all t0 ∈ T (K) not on VT , the fibre (VT×G)t=t0 is a proper subvariety of G.
Suppose first that 〈E〉 6⊂ VT (K). We may then use escape from subvarieties (Prop. 4.1

with A = E, V = VT (K) and G = O = 〈E〉) to obtain a subset E′ ⊂ Ek (k �n 1) with
|E′| �n |E| and E′ ⊂ T (K) \ VT (K). Now consider any t0 ∈ E′. The fibre (VT×G)t=t0
is a proper subvariety of G, and, since W is a proper subvariety of G, we conclude that

V ′ = (VT×G)t=t0 ∪ h
−1
0 W ∪W ∪ t−1

0 W ∪ · · · ∪ t−n0 W
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is a proper subvariety of G as well (with
−→
deg(V ′) �

n,
−→
deg(W)

1). We now recall the
definition of ZX×G (a variety outside which the map f is non-singular) and use the
result on non-singularity (Cor. 4.5 applied to the function fh0,t0 : G → Y given by
fh0,t0(g) = f ((h0, t0), g); here Lemma 4.6 supplies the condition V (K) ( G(K), which
is a requirement for the application of Cor. 4.5) to obtain

|fh0,t0(Ak′ ∩ (G(K) \ V
′(K)))| �

n,
−→
deg(W)

|A|

with k′ �
n,
−→
deg(W)

1. This gives us conclusion (a).
Suppose now that 〈E〉 ⊂ VT (K). Then, by Prop. 4.2, 〈E〉 is contained in an algebraic

subgroup H of T of positive codimension and degree
−→
deg(H) �−→

deg(VT (K))
1 (and so

−→
deg(H) �n 1). By Lemma 4.14, H is contained in the kernel of a non-trivial character
α : T → A1 whose exponents are�n 1. ut

As before, we write 6 for the (algebraic) set of regular semisimple elements of G; in the
case of G = SLn, this is simply the (algebraic) set consisting of all g whose eigenvalues
are all distinct. The sets of points 6(K) and 6(K) are what one would expect, viz.,
the sets consisting of the elements of G(K) and G(K) having distinct eigenvalues. For
G = SLn, the complement of 6 is a variety W with

−→
deg(W)�n 1.

Corollary 5.16. Let G = SLn. Let K be a field. Assume that K is either finite with
char(K) - n or infinite with char(K) = 0. Let T/K be a maximal torus of G. Let
A ⊂ G(K) be a set of generators ofG(K). Suppose that |A| is greater than a constant de-
pending only on n. Then there is an ε0 depending only on n such that, if |A·A·A| ≤ |A|1+ε

for some positive ε < ε0, then there is an element h0 ∈ Ak , k �n 1, and a subset
E′ ⊂ Ak ∩ T (K) with |E′| �n |Ak ∩ T (K)| such that, for each t ∈ E′, there are�n |A|

distinct tuples

(κ(h0g), κ(tg), κ(t
2g), . . . , κ(tng)) ∈ An

2
−1(K)

with g ∈ Ak satisfying h0g ∈ 6(K) and t`g ∈ 6(K) for ` = 0, 1, . . . , n, where k and
the implied constants depend only on n.

Proof. By Cor. 5.10 and the tripling lemma (Lemma 2.2),

|Ak ∩ T (K)| �n |A|
1/(n+1)−On(ε), (5.13)

where k �n 1. Let E = Ak ∩ T (K); let W be the complement of 6. Apply Prop. 5.15.
If case (a) of Prop. 5.15 applies, we are done.

It remains only to rule out case (b) of Prop. 5.15. Suppose E is contained in the
kernel T ′ of a non-trivial character α : T → A1 whose exponents are �n 1. Then
deg(T ′)�n 1. We now apply Cor. 5.14 (to Ak rather than A), and obtain

|E| �n |Akk′ |
1/(n+2)

�n |A|
1/(n+2)+On(ε)

for some k′ �n 1, in contradiction to (5.13). (Recall that E = Ak ∩ T (K).) ut
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6. Growth of small and large sets in SL2 and SL3

For the sake of clarity and completeness, we shall do things twice: once for SL2 and once
for SL3. Of course, in the case of SL2, we could refer to [He] instead; since, however, the
method in this paper is somewhat different—especially in this part of the argument— we
would like to work things out for both SL2 and SL3.

The key observation in the proofs below is the following. Consider n + 1 diagonal
matrices t0, t1, . . . , tn ∈ Ak . The maps g 7→ tr(t0g), g 7→ tr(t1g), . . . , g 7→ tr(tng) from
SLn(K) to K can be seen as linear forms – that is, homogeneous linear polynomials – on
the n variables g1,1, . . . , gn,n (the diagonal entries of g).

Any n + 1 linear forms on n variables must be linearly dependent. Hence there are
coefficients c0, c1, . . . , cn ∈ K

n depending on t1, . . . , tn (but not on g) such that

c0 tr(t0g)+ c1 tr(t1g)+ · · · + cn tr(tng) = 0 (6.1)

for all g. Thus we have a linear relation holding for many tuples (namely, the tuples

(tr(t0g), tr(t1g), . . . , tr(tng))

for any g ∈ A) all of whose entries tr(tjg) lie in a small set (viz., tr(Ak+1)).
As t0, t1, . . . , tn vary, the coefficients c0, c1, . . . , cn will vary as well. We will obtain

too many linear relations (of the form (6.1)), and thus a contradiction to Cor. 3.8.

6.1. Small sets in SL2. The treatment of SL2 in [He] was based on the identity

(x + x−1)(y + y−1) = (xy + (xy)−1)+ (xy−1
+ (xy−1)−1), (6.2)

which is a special case of the identity

tr(g) tr(h) = tr(gh)+ tr(gh−1) (6.3)

valid in SL2 (but not in SLn, n > 2). We shall now do without (6.2) and (6.3).

Proposition 6.1. Let G = SL2(Z/pZ), p a prime. Let A ⊂ G be a set of generators
of G. Assume |A| < p3−δ , δ > 0. Then

|A · A · A| �δ |A|
1+ε, (6.4)

where ε > 0 depends only on δ.

This is part (a) of the Key Proposition in [He].
Proof. Suppose |A · A · A| ≤ |A|1+ε . Then, by the tripling lemma (Lemma 2.2), |A`| ≤
|A|1+O`(ε) for every `. Starting from here, we shall arrive at a contradiction for ε small.

By Cor. 5.10, there is a maximal torus T/K of G such that

|Ak ∩ T (K)| �
|A|

|Ak+2|
|A|1/3 ≥ |A|1/3−O(ε), (6.5)

where k and the implied constants are absolute. We may write the elements of T (K)
as diagonal matrices, after conjugation by an appropriate element of SL2(K). We can
thus see that any three elements t0, t1, t2 ∈ Ak ∩ T (K) are linearly dependent. (Linear
dependences are invariant under conjugation.)
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In particular, for t0 = I , t1 = t , t2 = t2 (t ∈ T (K) given), we have

c0t0 + c1t1 + c2t2 = 0 (6.6)

for c0 = 1, c1 = −(r + r
−1) and c2 = 1, where r and r−1 are the eigenvalues of t . The

map
φ : t 7→ (c0, c1, c2)

from T to A3 is almost injective: the preimage of any point (c0, c1, c2) ∈ K
3 consists of

at most two elements of T (K). (The only thing that is particularly good about the choice
t0 = I , t1 = t , t2 = t2 is that this almost-injectivity is easy to prove for this choice, as we
have just seen.)

It follows immediately from (6.6) that, for any g ∈ G,

c0 tr(t0g)+ c1 tr(t1g)+ c2 tr(t2g) = 0. (6.7)

If g ∈ A, then t0g, t1g, t2g ∈ Ak+2. (To see this, note that, if a basis is chosen for which t
is diagonal and tr(tig) is then written out in full, the only entries of g appearing in tr(tig)
are the diagonal entries gii ; moreover, the coefficient of gii in (6.7) is c0(t0)ii+ c1(t1)ii+

c2(t2)ii , which is 0 by (6.6).)
It is worthwhile to examine Ak+2 in some more detail. By Cor. 5.11,

|tr(A′)| � |A(k+2)k′ |
1/3+O(ε)

� |A|1/3+O(ε),

where A′ is the set of regular semisimple elements of Ak+2, and k′ and the implied con-
stant are absolute. (We may apply Cor. 5.11 because we may assume that |A| is larger
than an absolute constant: if |A| is smaller than an absolute constant, the statement we
seek to prove is trivial.)

In SL2, a non-semisimple element has trace 2; thus, we may write simply

|tr(Ak+2)| � |A|
1/3+O(ε)

+ 1� |A|1/3+O(ε), (6.8)

where the implied constants are absolute. (We are assuming, as we may, that |A| is larger
than an absolute constant, and that ε > 0 is smaller than an absolute constant.)

By escape from subvarieties (as in Lemma 4.4), there is an element z ∈ Ak′′ (k′′

absolute) of the form

z =

(
a b

c d

)
with a, b, c, d non-zero. (We are still writing elements of SL2(K) as matrices in such a
way that T (K) is diagonal.) Then, for any diagonal t 6= ±I , the map

g 7→ (tr(g), tr(tg), tr(zg)) = (g11 + g22, t11g11 + t22g22, ag11 + dg22 + bg21 + cg12)

is almost injective on SL2: since we know that g11g22 − g12g21 = 1, the preimage of
any point (tr(g), tr(tg), tr(zg)) consists of at most two elements. Now tr(zg) ∈ tr(Ak+k′′),
and, as in (6.8),

|tr(Ak+k′′)| � |A|1/3+O(ε),
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where the implied constants (here and everywhere from now on) are absolute. Hence the
image of A under the map g 7→ (tr(g), tr(tg)) has

�
|A|

|A|1/3+O(ε)
= |A|2/3−O(ε) (6.9)

elements.
We are now in the situation covered by Cor. 3.8: we have many tuples (� |A|2/3−O(ε))

with entries (namely, tr(g), tr(tg) and tr(zg)) in a small set (|tr(Ak+1)| � |A|
1/3+O(ε))

and these tuples satisfy many linear relations (one for each element of T (K)∩Ak). More
formally: let R = Z/pZ, X = tr(Ak+2),

Y =

{
(r + r−1,−1) ∈ ((Z/pZ)∗)2 : r 6= ±i,

(
r 0
0 r−1

)
∈ Ak ∩ T (K)

}
.

For each Ey = (r + r−1,−1) ∈ Y , let tEy be an element of Ak ∩ T (K) having r , r−1 as its
eigenvalues. (There can be at most two such elements for given Ey.) We define

XEy = (tr(tEyx), tr(x)).

Then, by (6.7), we have
y0 tr(tEyx)+ y1 tr(x) = tr(t2

Eyx),

and thus
Ey ·XEy ⊂ X.

At the same time,

|Y | ≥ 1
2 |Ak ∩ T (K)| − 1� |A|1/3−O(ε) � |X|1−O(ε)

by (6.5), (6.8) and X = tr(Ak+2), and

|XEy | � |A|
2/3−O(ε)

� |X|2−O(ε)

by (6.9). (All the constants are absolute.) We apply Cor. 3.8 and reach a contradiction,
provided that ε > 0 is smaller than a positive constant depending only on η and that |A|
is larger than a constant depending only on η, ε and δ. (The condition on |A| is needed
so that the condition |X| < p1−δ′ , δ′ > 0, of Cor. 3.8 is fulfilled; we fulfil it by means of
(6.8) and the assumption |A| < p3−δ .)

We set ε > 0 to be smaller than the positive constant just mentioned. As is stated
in Cor. 3.8, η depends only on δ. Hence, for the contradiction to happen, it is enough to
assume that |A| is larger than a constant depending only on δ. We can certainly assume
this, as otherwise the statement (6.4) is trivially true. We have thus indeed reached a
contradiction, and we are done. ut

6.2. Small and fairly large sets in SL3. The main idea is essentially the same as that
in §6.1. Consider four diagonal matrices t0, t1, t2, t3 in SL3(K). The maps from SLn to
K ×K given by

g 7→

(
tr(t0g)

tr((t0g)−1)

)
, g 7→

(
tr(t1g)

tr((t1g)−1)

)
, g 7→

(
tr(t2g)

tr((t2g)−1)

)
, g 7→

(
tr(t3g)

tr((t3g)−1)

)
(6.10)
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can be seen as linear forms (linear over K × K , that is) on three variables. The three
variables in question are(

g11
(g−1)11

)
,

(
g22

(g−1)22

)
,

(
g33

(g−1)33

)
,

which are elements of K ×K .
(We are interested in tuples of the form(

tr(h)
tr(h−1)

)
, h ∈ SL3(K),

because the tuple κ(h) = (a2, a1) of coefficients of the characteristic polynomial t3 +
a2t

2
+ a1t − 1 of an element h of SL3(K) is κ(h) = (− tr(h), tr(h−1)).)

Since the maps (6.10) are linear forms on 3 variables, they must be linearly dependent;
that is, for each choice t0, t1, t2, t3 ∈ Ak ∩ T (K), there are4 c0, c1, c2, c3 ∈ K ×K such
that

c0

(
tr(t0g)

tr((t0g)−1)

)
+c1

(
tr(t1g)

tr((t1g)−1)

)
+c2

(
tr(t2g)

tr((t2g)−1)

)
+c3

(
tr(t3g)

tr((t3g)−1)

)
= 0 (6.11)

for all g ∈ SL3(K).
Varying t0, t1, t2, t3 within Ak ∩ T (K), we will obtain many linear relations of the

form (6.11), and, as in §6.1, we will obtain a contradiction to Cor. 3.8 thereby.

Lemma 6.2. LetG = SL3. LetK be a field. Let T/K be a maximal torus ofG. Let 6 be
the Zariski-open set of regular semisimple matrices in G. Then there is a map

c : (T ∩6)→ A1/K

such that, for any t ∈ (T ∩6)(K),

I − c(t) · t + c(t−1)t2 − t3 = 0. (6.12)

Moreover, the preimage φ−1({x}) of any x ∈ A2 under the map φ : T ∩ 6 → A2 given
by φ(t) = (c(t), c(t−1)) has at most six elements.

We recall that a matrix in SLn is regular semisimple if and only if all of its eigenvalues
are distinct.
Proof. Write the elements of G so that the elements of T become diagonal matrices. Let

t =

(
λ1 0 0
0 λ2 0
0 0 λ3

)
. We define

c0(t)

c1(t)

c2(t)

 =
1 λ1 λ2

1

1 λ2 λ2
2

1 λ3 λ2
3


−1

·

λ
3
1

λ3
2

λ3
3

 . (6.13)

4 Here and henceforth we write elements of K ×K in the form
( a
b

)
. The multiplication rule is( a

b

)
·
( c
d

)
=
( a · c
b · d

)
.
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Then c0(t)I + c1(t)t + c2(t)t
2
= t3. Starting from (6.13), a quick computation (using

Cramer’s rule, say) gives us c0(t) = 1 and c2(t) = −c1(t
−1). Let c(t) = −c1(t). Then

(6.12) holds.
Now, for any four distinct elements λ1, λ2, λ3, λ4 ∈ K

∗
, the determinant of the matrix

1 λ1 λ2
1 λ3

1

1 λ2 λ2
2 λ3

2

1 λ3 λ2
3 λ3

3

1 λ4 λ2
4 λ3

4

 (6.14)

is a Vandermonde determinant, and hence (since λ1, . . . , λ4 are distinct) non-zero. How-
ever, if the same relation (6.12) were satisfied by two matrices the union of whose sets
of eigenvalues has at least four distinct elements λ1, . . . , λ4, then 1, λj , λ2

j and λ3
j would

satisfy the same linear relation (6.12) for j = 1, 2, 3, 4. In other words, the columns of
the matrix (6.14) would be linearly dependent. We have reached a contradiction. Hence
(c(t), c(t−1)) = (c(t ′), c(t ′−1)) can hold for t, t ′ ∈ (T ∩ 6)(K) only if the set of eigen-
values of t equals the set of eigenvalues of t ′. For t given, this can happen for only 3! = 6
possible values of t ′. ut

Proposition 6.3. Let G = SL3(Z/pZ), p a prime. Let A ⊂ G be a set of generators
of G. Assume either |A| ≤ p4−δ , δ > 0, or p4+δ

≤ |A| ≤ p8−δ , δ > 0. Then

|A · A · A| �δ |A|
1+ε, (6.15)

where ε > 0 depends only on δ.

Proof. Let K = Z/pZ. We can assume char(K) = p > 3, as otherwise the result to be
proven is trivial.

Suppose |A · A · A| ≤ |A|1+ε . Then |Al | ≤ |A|1+Ol(ε) for every positive l. We shall
proceed from here and arrive at a contradiction for ε sufficiently small.

By Cor. 5.10, there is a maximal torus T/K of G such that

|Ak ∩ T (K)| � |A|
1/4−O(ε), (6.16)

where k and the implied constants depend only on n = 3, and are hence absolute. (Be-
cause n = 3 is fixed, all constants that would usually depend on n will be absolute.)

Let c : T ∩6→ A1 be as in Lemma 6.2. Then (6.12) implies that(
c(t)

c(t−1)

)
·

(
tr(tg)

tr((tg)−1)

)
−

(
c(t−1)

c(t)

)
·

(
tr(t2g)

tr((t2g)−1)

)
+

(
tr(t3g)

tr((t3g)−1)

)
=

(
tr(g)

tr(g−1)

)
.

(6.17)
It is time to prepare ourselves to use Cor. 3.8. We first apply Cor. 5.16 to obtain a large

subset E′ ⊂ Ak ∩ T (K) (meaning a set E′ ⊂ Ak ∩ T (K) with |E′| � |Ak ∩ T (K)| �
|A|1/4−O(ε), where the constants are absolute) satisfying the conclusion of Cor. 5.16. Let
R = (Z/pZ)2, X = κ(Ak′ ∩6(K)) (where we set k′ equal to the value of k in Cor. 5.16
plus thrice the value of k in (6.16)),

Y =

{((
c(t)

c(t−1)

)
,

(
−c(t−1)

−c(t)

)
,

(
1
1

))
: t ∈ E′

}
;
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let XEy be the set of all tuples

(κ(tg), κ(t2g), κ(t3g))

with g ∈ Ak satisfying h0g ∈ 6(K) (for some fixed h0 ∈ Ak given by Cor. 5.16) and
t`g ∈ 6(K) for ` = 0, 1, 2, 3. (The conclusion of Cor. 5.16 was precisely that there are
many such tuples.)

Having defined the sets to be used in our application of Cor. 3.8, we must now verify
the assumptions of Cor. 3.8. (We already started to do so while defining the sets.) The
projection π1 : (R∗)3 → R∗ onto the first coordinate is clearly injective on Y : if we know(

c(t)

c(t−1)

)
, we know

(
−c(t−1)
−c(t)

)
. By Corollaries 5.7 and 5.11,

|A|1/4 � |X| � |A|1/4+O(ε), (6.18)

where the implied constants are absolute. (In applying Cor. 5.11, we are assuming, as we
may, that |A| is larger than an absolute constant; otherwise the statement we seek to prove
is trivial.)

We are assuming either |A| ≤ p4−δ or p4+δ
≤ |A| ≤ p8−δ . Hence, for ε small

enough in terms of δ and p large enough in terms of δ, (6.18) implies that either

|X| ≤ p1−δ/2 or p1+δ/2
≤ |X| ≤ p2−δ/2.

Finally, for every Ey ∈ Y and every Ex ∈ XEy , (6.17) gives us that

Ey · Ex =

(
tr(g)

tr(g−1)

)
∈ κ(Ak′).

Because of the way we defined XEy , the tuple Ey · Ex lies in κ(6(K)) as well.
Now we apply Cor. 3.8. It remains only to check that neither assertion in the con-

clusion (3.26) holds. We will then have obtained a contradiction. By Lemma 6.2, |Y | ≥
1
6 |E
′
|; by Cor. 5.10,

|E′| � |A|1/4−O(ε) � |X|1−O(ε),

where the implied constants are absolute. We conclude that the first assertion in (3.26)
fails to hold for ε sufficiently small in terms of η.

Now, by Cor. 5.16, assuming that ε is less than an absolute constant ε0, we have that,
for every t ∈ E′, there are� |A| distinct tuples

(κ(h0g), κ(tg), κ(t
2g), κ(t3g))

with g ∈ Ak satisfying h0g ∈ 6(K) and t`g ∈ 6(K) for ` = 0, 1, 2, 3. Now, by
Cor. 5.11, the number of possible values taken by the first variable κ(h0g) is at most�
|A|1/(n+1)+O(ε)

= |A|1/4+O(ε), where the implied constants are absolute. Thus, the num-
ber of elements of XEy – that is, the number of distinct tuples (κ(tg), κ(t2g), κ(t3g))—is

� |A|3/4−O(ε) � |X|3−O(ε),
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where the implied constants are absolute. Hence the second assertion in (3.26) fails to
hold for ε sufficiently small in terms of η (and of n, which is a constant) and |A| larger
than a constant depending only on η.

By Cor. 3.8, η depends only on n and δ, and thus only on δ. We have it in the statement
that we may assume that ε is smaller than a constant depending on δ. We may also assume
that |A| is larger than a constant depending on δ, as the implied constant in (6.15) may be
taken to depend on δ. Hence we are done. ut

7. Subgroups and solvable groups

We must examine how the existence of growth in subgroups of a group affects growth
in the group itself. In particular, we want to have the tools that will allow us later to do
induction on the group type by passing to subgroups.

We would also like to examine now how sets grow in solvable groups. (We already
started to look into the issue in §3.2.) The growth of sets in a solvable group has a much
more direct relationship to sum-product phenomena than the growth of sets that generate
SL2(K) or SL3(K) does.

7.1. Lemmas on growth and subgroups. Let us start with two very simple lemmas.

Lemma 7.1. Let G be a group and H a subgroup thereof. Let A,B ⊂ G be finite sets.
Then

|A · B| ≥ r · |B ∩H |,

where r is the number of cosets of H intersecting A.

We will usually apply this lemma with A = B.

Proof. Let S ⊂ A be a set consisting of one coset representative g ∈ A for every coset of
H intersecting A. Since any two distinct cosets of a subgroup are disjoint, we see that (a)
|S| = r , (b) all elements of the form g · h (g ∈ S, h ∈ B ∩H ) are distinct. Thus there are
|S| · |B ∩H | = r · |B ∩H | of them. ut

Lemma 7.2. Let G be a group and H a subgroup thereof. Let A ⊂ G be a non-empty
finite set. Then

|A−1A ∩H | ≥ |A|/r,

where r is the number of cosets of H intersecting A. In particular,

|A−1A ∩H | ≥ |A|/[G : H ].

Proof. By the pigeonhole principle, there is at least one coset gH of H containing at
least |A|/r elements of A (and thus, in particular, at least one element of A). Choose an
element a0 ∈ gH ∩ A. Then, for every a ∈ gH ∩ |A|, the element a−1

0 a lies both in H
and in A−1A. As a0 is fixed and a varies, the elements a−1

0 a are distinct. ut

One of the reasons why we are interested in subgroups is that growth in subgroups H
of G gives us growth in the group G.
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Lemma 7.3. Let G be a group and H a subgroup thereof. Let A ⊂ G be a non-empty
finite set. Then, for any k > 0,

|A2k+1| ≥
|(A−1A ∩H)k|

|A−1A ∩H |
|A|.

Proof. Let r be the number of cosets of H intersecting A. It is clear that, for any E ⊂ H ,

|A · E| ≥ r · |E|.

In particular,
|A · (A−1A ∩H)k| ≥ r · |(A

−1A ∩H)k|

and the left side is evidently ≤ |A2k+1|. Now, by Lemma 7.2, |A−1A ∩ H | ≥ |A|/r .
Hence

|A2k+1| ≥ |A · (A
−1A ∩H)k| ≥ r · |(A

−1A ∩H)k| ≥
|(A−1A ∩H)k|

|A−1A ∩H |
|A|. ut

Growth in a quotient set also gives us growth in the group.

Lemma 7.4. Let G be a group and H a subgroup thereof. Let G/H be the quotient set
and π : G→ G/H the quotient map. Then, for any finite non-empty subsetsA1, A2 ⊂ G,

|(A1 ∪ A2)4| ≥
|π(A1A2)|

|π(A1)|
|A1|.

Actually, we will apply this lemma only for normal subgroups H < G, but it is true in
general.

Proof. By Lemma 7.2,

|A−1
1 A1 ∩H | ≥

|A1|

π(A1)
.

At the same time, it is clear that

|A1A2A
−1
1 A1| ≥ |π(A1A2)| · |A

−1
1 A1 ∩H |.

Hence
|A1A2A

−1
1 A1| ≥

|π(A1A2)|

|π(A1)|
|A1|. ut

Lemma 7.5. Let G be a group and H a subgroup thereof. Let G/H be the quotient set
and π : G→ G/H the quotient map. Let A ⊂ G be a finite set. Let A′ be a subset of A.
Then

|A′ · (A−1A ∩H)| ≥
|π(A′)|

|π(A)|
|A|.

Proof. By Lemma 7.2, |A−1A ∩ H | ≥ |A|/|π(A)|. Since any distinct cosets of H are
disjoint, it follows that

|A′ · (A−1A ∩H)| ≥ |π(A′)| · |A−1A ∩H | ≥ |π(A′)| ·
|A|

|π(A)|
. ut
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Let A be a finite subset of G and H a subset of G. By Lemma 7.2, either the intersection
A−1A ∩ H is large or there are many representatives in A of cosets of H . What we are
about to show is that we can in effect remove the condition that H be a subgroup.

Lemma 7.6. Let G be a group. Let R ⊂ G be a subset with R = R−1. Let A ⊂ G be
finite. Then there is a subset A′ ⊂ A with

|A′| ≥ |A|/|A−1A ∩ R|

such that no element of A′−1A′ (other than possibly the identity) lies in R.

Proof. Let O = A−1A ∩ R; since R = R−1, we know that O = O−1.
Let g1 be an arbitrary element ofA. IfA ⊂ g1O, letA′ = {g1} and stop. Otherwise, let

g2 be inA but not in g1O. IfA ⊂ g1O∪g2O, letA′ = {g1, g2} and stop. Otherwise, let g3
be inA but not in g1O∪g2O, etc. We eventually arrive at a coveringA ⊂ g1O∪· · ·∪g`O

such that gj /∈ giO for all have gi /∈ gjO. Since O = A−1A ∩ R, this implies that
g−1
i gj /∈ R for all 1 ≤ i, j ≤ `, i 6= j .

Let A′ = {g1, . . . , g`}. What we have just shown can be restated as follows: no ele-
ment of A′−1A′ \ {e} lies in R.

Now, because A ⊂ g1O ∪ · · · ∪ g`O, there is a gi ∈ A′ ⊂ A such that |A ∩ giO| ≥
|A|/` (by the pigeonhole principle). Hence |O| = |giO| ≥ |A|/`. By the definition ofO,
we conclude that |A−1A ∩ R| ≥ |A|/`. Since ` = |A′|, the conclusion follows. ut

7.2. Lemmas for solvable groups. We will state the following lemmas in general, but
they are especially useful for solvable groups G. We write G(1) := [G,G]={xyx−1y−1 :
x, y ∈ G}.

Lemma 7.7. Let G be a group. Let G(1) = [G,G]. Let A ⊂ G be a finite set. Then, for
every δ > 0, either

(a) |AAA−1
| ≥ |A|1+δ , or

(b) there is a g ∈ A such that

|CG(g) ∩ A
−1A| · |G(1) ∩ A−1A| ≥ |A|1−δ. (7.1)

Proof. By Prop. 5.8, there is a g ∈ A such that the set CG(g) ∩ A−1A has

|A|

|AAA−1|
· |ClG(A)|

elements. By the pigeonhole principle, there is a conjugacy class C in G containing
≥ |A|/|ClG(A)| elements of A. For any two g1, g2 ∈ C, the quotient g−1

1 g2 lies in G(1):
there is an h ∈ G such that g2 = hg1h

−1, and so

g−1
1 g2 = g

−1
1 hg1h

−1
∈ G(1).
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Fixing g1 ∈ C and letting g2 vary within C, we see that there are at least |C| distinct
elements in A−1A ∩G(1). Therefore

|CG(g) ∩ A
−1A| · |G(1) ∩ A−1A| ≥ |CG(g) ∩ A

−1A| · |C|

≥
|A|

|AAA−1|
|ClG(A)| ·

|A|

|ClG(A)|
≥

|A|

|AAA−1|
· |A|.

If |AAA−1
| ≥ |A|1+δ , we have conclusion (a). Otherwise,

|CG(g) ∩ A
−1A| · |G(1) ∩ A−1A| ≥ |A|1−δ,

i.e., conclusion (b). ut

Lemma 7.8. Let G be a group. Let H1, . . . , Hm < G be proper subgroups such that, if
g ∈ G does not lie in any Hj , 1 ≤ j ≤ m, then gxg−1

6= x for every x ∈ G(1) \ {e}. Let
A ⊂ G be finite. Then, for every δ > 0, either

(a) |AAA−1
| � |A|1+δ , where the implied constant is absolute,

(b) |A6 ∩ (Hj ·G
(1))| ≥ 1

2m |A|
1−2δ for some 1 ≤ j ≤ m, or

(c) there is a subset Y ⊂ A−1A with |Y | ≥ |A|δ such that gxg−1
6= x for every x ∈

G(1) \ {e} and every g ∈ Y−1Y \ {e}.

Proof. If |A∩(H1∪· · ·∪Hm)| >
1
2 |A|, we arrive at (a stronger version of) conclusion (b).

Assume otherwise. LetA′ = A\(A∩(H1∪· · ·∪Hm)). Apply Lemma 7.7 withA′ instead
of A. Case (a) of Lemma 7.7 gives us conclusion (a) here. Assume, then, that we are in
case (b) of Lemma 7.7.

Apply Lemma 7.6 with R = H1 ∪ · · · ∪ Hm and CG(g) ∩ A′−1A′ instead of A. We
obtain a subset Y ⊂ CG(g) ∩ A′−1A′ with Y−1Y ∩ R = {e} and

|Y | ≥
|CG(g) ∩ A

′−1A′|

|(CG(g) ∩ A′−1A′)−1(CG(g) ∩ A′−1A′) ∩ R|
≥
|CG(g) ∩ A

′−1A′|

|(CG(g) ∩ A
′

4) ∩ R|
.

If |Y | ≥ |A|δ , we have obtained conclusion (c). Assume |Y | < |A|δ . Then

|(CG(g) ∩ A
′

4) ∩ R| ≥ |A|
−δ
· |CG(g) ∩ A

′−1A′|,

and so
|(CG(g) ∩ A

′

4) ∩Hj | ≥
1
m
|A|−δ · |CG(g) ∩ A

′−1A′|

for some 1 ≤ j ≤ m. Since g /∈ H1∪· · ·∪Hm, we have gxg−1
6= x for every x ∈ G(1) =

[G,G], and thus CG(g) ∩G(1) = {e}. It follows that

|A6 ∩ (Hj ·G
(1))| ≥ |(CG(g) ∩ A

′

4) ∩Hj | · |G
(1)
∩ A′−1A′|

≥
1
m
|A|−δ · |CG(g) ∩ A

′−1A′| · |G(1) ∩ A′−1A′|

≥
1
m
|A|−δ · |A′|1−δ ≥

1
2m
|A|1−2δ,

where we use (7.1). We have obtained conclusion (b). ut

It is now that our generalised sum-product techniques come in.
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Lemma 7.9. Let G be a group. Assume that there is no chain of subgroups

{e} � G1 � · · · � Gr � G(1) (7.2)

with r ≥ `, where ` is an integer. Let A ⊂ G be finite. Suppose that there is a subset
Y ⊂ A, |Y | ≥ |A|δ , δ > 0, such that gxg−1

6= x for every x ∈ G(1) \ {e} and every
g ∈ Y−1Y \ {e}. Then either

(a) |Ak| ≥ |A|1+δ , where k depends only on δ and `, or
(b) there is a subgroup X < G(1) ∩ 〈A〉 such that (i) X G 〈A〉, (ii) 〈A〉/X is abelian,

(iii) Ak contains X for some k depending only on δ and `.

The condition on the non-existence of long chains (7.2) can probably be relaxed; it will
have to be if results uniform over α on algebraic groups over Fpα are to be obtained. (We
will not attempt to do as much in this paper.)

Proof. If 〈A〉 is abelian, conclusion (b) holds with X = {e}. Assume otherwise. Then
there are two elements g1, g2 of A (and not just two elements of 〈A〉) that do no not
commute with each other. Hence g1g2g

−1
1 g−1

2 6= e, and so A4 ∩G
(1)
6= {e}.

We now apply our generalised sum-product statement, Cor. 3.2, with Y acting on
S = A4 ∩G

(1) by conjugation. We obtain

|(Y2(S))6| >
1
2 min(|Y | · |S|, |G1|) ≥

1
2 min(2|A|δ · |S|, |G1|) = min(|A|δ|S|, 1

2 |G1|),

whereG1 = 〈〈Y 〉(〈S〉)〉 is a subgroup ofG(1). Since S 6= {e}, the groupG1 is not just {e}.
We apply Cor. 3.2 again and again—a total of r = d1/δe + 1 times—and obtain

|(Y2r(S))6r | > min(|A|1+δ · |S|, 1
2 |G1|).

If min(|A|1+δ · |S|, 1
2 |G1|) = |A|

1+δ
· |S|, we have reached conclusion (a). Assume, then,

that min(|A|1+δ · |S|, 1
2 |G1|) =

1
2 |G1|. By Lemma 2.1, it follows that

|(Y2r(S))2·6r | = G1.

Since
(Y2r(S))2·6r ⊂ (A4r · A2 · A4r)2·6r ⊂ A2(8r+2)·6r ,

we have shown that G1 ⊂ Ak , where k = 2(8r + 2) · 6r depends only on δ.
If G1 is a normal subgroup of 〈A〉 and G/G1 is abelian, we have obtained conclu-

sion (b) (with X = G1) and are done. Assume otherwise. If G1 is not a normal subgroup
of 〈A〉, there is necessarily a g in A itself (as opposed to just in 〈A〉) and an h ∈ G1 such
that ghg−1 /∈ G1. If G1 is a normal subgroup but 〈A〉/G1 is not abelian, there are two
elements of A (and not just of 〈A〉) that do not commute modulo G1, i.e., g1, g2 ∈ A

such that g1g2g
−1
1 g−1

2 /∈ G1. It is easy to see that, in the former case, ghg−1 is inG(1); in
the latter case, g1g2g

−1
1 g−1

2 is in G(1). At any rate, there is an element g of A4 such that
g ∈ G(1) \G1.
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Now we apply Cor. 3.2 again and again to the set H1 ∪ {g}. After applying it a total
of r = d1/δe + 1 times—say—we obtain

|(Y2r(G1 ∪ {g}))6r | > min(|A|1+δ · |G1 ∪ {g}|,
1
2 |G2|).

If min(|A|1+δ · |G1 ∪ {g}|,
1
2 |G2|) = |A|

1+δ
· |G1 ∪ {g}|, we have reached conclusion (a).

Suppose, then, that min(|A|1+δ · |G1 ∪ {g}|,
1
2 |G2|) =

1
2 |G2|; by Lemma 2.1,

(Y2r(G1 ∪ {g}))2·6r = G2,

and so G2 ⊂ Ak′ , k′ depending only on δ.
IfG2 is a normal subgroup of 〈A〉 stable under the action of J and 〈A〉/G2 is abelian,

we have obtained conclusion (b) and are done. Otherwise, we proceed as before, con-
structing an element g of Ak′′ ∩G(1) not in G2, and applying Cor. 3.2 again and again to
G2 ∪ {g}, then to G3 ∪ {g}, and so on. As there cannot be a chain

{e} � G1 � · · · � Gr � U(K)

with r ≥ `, we reach conclusion (b) in at most ` steps, if we do not reach (a) first. ut

Corollary 7.10 (to Lemmas 7.8 and 7.9). Let G be a group. Let H1, . . . , Hm < G be
proper subgroups such that, if g ∈ G does not lie in anyHj , 1 ≤ j ≤ m, then gxg−1

6= x

for every x ∈ G(1) = [G,G]. Assume that there is no chain of subgroups

{e} � G1 � · · · � Gr � G(1) (7.3)

with r ≥ `, where ` is an integer. Let A ⊂ G be finite. Then, for every δ > 0, one of the
following conclusions holds:

(a) |Ak| � |A|1+δ , where the implied constant is absolute and k depends only on δ and `;
(b) |A6 ∩ (Hj · G

(1))| ≥ 1
2m |A|

1−2δ for some 1 ≤ j ≤ m; moreover, A is contained in
the union of at most |A|3δ cosets of Hj ·G(1) for that same index j ;

(c) there is a subgroup X < G(1) ∩ 〈A〉 such that (i) X G 〈A〉, (ii) 〈A〉/X is abelian,
(iii) Ak contains X for some k depending only on δ and `.

Proof. Apply Lemma 7.8. If conclusion (c) of Lemma 7.8 holds, apply Lemma 7.9 with
A−1A instead of A. (The comment in conclusion (b) on how A is contained in the union
of few cosets of Hj ·G(1) follows from Lemma 7.1: if there were too many cosets inter-
secting A6, conclusion (a) would follow.) ut

The following easy lemma will come in useful later.

Lemma 7.11. Let G be a group. Assume that there is no chain of subgroups

{e} � G1 � · · · � Gr � G(1) (7.4)

with r ≥ `, where ` is an integer. Let A ⊂ G be finite. Let B ⊂ A. Then there are
g1, . . . , gk ∈ Ak′ such that

〈B ∪ g1Bg
−1
1 ∪ · · · ∪ gkBg

−1
k 〉 G 〈A〉,

where k and k′ depend only on `.
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Proof. If 〈B〉 G 〈A〉, we are done. Suppose, then, that 〈B〉 is not a normal subgroup of A.
Then there is a g ∈ A ∪ A−1 such that g〈B〉g−1

6⊂ 〈B〉. Let B1 = B ∪ gBg−1. Since
g〈B〉g−1

= 〈gBg−1
〉, it follows that gbg−1 /∈ 〈B〉 for some b ∈ B. Thus gbg−1b−1

/∈ 〈B〉, and, since gbg−1b−1
∈ G(1), this shows that 〈B〉 ∩G(1) ( 〈B1〉 ∩G

(1).
If 〈B1〉 G 〈A〉, we are done. Otherwise, we iterate: there is a g1 ∈ A ∩ A

−1 such that
g1〈B1〉g

−1
6= 〈B1〉, we set B2 = B1 ∪ g1B1g

−1
1 , etc. We obtain a sequence of subgroups

〈B〉 < 〈B1〉 < 〈B2〉 < · · ·

with Bi+1 = B ∪ gi+1Bg
−1
i+1, gi+1 ∈ A, and

〈B〉 ∩G(1) � 〈B1〉 ∩G
(1) � 〈B2〉 ∩G

(1) � · · · � G(1). (7.5)

By (7.4), the chain (7.5) cannot be of length greater than `; thus, the iteration terminates
after at most ` steps. We obtain the statement of the lemma with k = 2` − 1, k′ = `. ut

7.3. Examples: growth in Borel subgroups of SL2(Z/pZ) and SL3(Z/pZ). We wish
to study the growth of sets in solvable subgroups of SL2(K) and SL3(K), where K =
Z/pZ. The main case of interest is that of Borel subgroups B/K .

Proposition 7.12. Let K = Z/pZ, p a prime. Let B/K be a Borel subgroup of SL2 /K .
Let U/K be the maximal unipotent subgroup of B/K . Let A ⊂ B(K). Then, for every
δ > 0 smaller than an absolute constant, one of the following conclusions holds:

(a) |Ak| � |A|1+δ , where the implied constant is absolute and k depends only on δ;
(b) |A6 ∩ ({±I } · U(K))| ≥

1
2 |A|

1−2δ; moreover, A is contained in the union of at most
|A|3δ cosets of U(K);

(c) A is contained in some maximal torus T/K;
(d) Ak contains U(K) for some k depending only on δ.

Proof. We apply Cor. 7.10 with G = B(K), H1 = {±I } · U(K), m = 1, ` = 1. (Here
` = 1 because U(K) has no proper subgroups.) Cases (a) and (b) of Cor. 7.10 give us
conclusions (a) and (b). Assume, then, that we are in case (c) of Cor. 7.10. If X = {e},
then either conclusion (c) holds or A is contained in {±I } · U(K); in the latter case,
conclusion (b) holds. If X = U(K), then conclusion (d) holds. ut

Proposition 7.13. Let K = Z/pZ, p a prime. Let B/K be a Borel subgroup of SL3 /K .
Let U/K be the maximal unipotent subgroup of B/K . Let A ⊂ B(K). Then, for every
ε > 0, one of the following conclusions holds:

(a) |Ak| � |A|1+δ , where the implied constant is absolute and k and δ > 0 depend only
on ε;

(b) there are subgroups X G Y G 〈A〉 such that (i) X < U(K), (ii) Y/X is nilpotent,
(iii) Ak contains X for some k depending only on ε, (iv) A is contained in the union
of ≤ |A|ε cosets of Y .
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Proof. Let δ = ε/3. Let ρi,j : B(K) → K∗ take an element of B(K) with diagonal
entries r1, r2, r3 to rir−1

j ∈ K∗. (In other words, ρi,j is a root map.) Apply Cor. 7.10
with G = B(K) and H1, H2, H3 equal to the kernels of ρ1,2, ρ2,3, ρ1,3, respectively.
(Condition (7.2) holds with ` = 3.) Cases (a) and (c) in Cor. 7.10 give us conclusions (a)
and (b) here. Assume, then, that we are in case (b) of Cor. 7.10 for some j = 1, 2, 3. Let
H = Hj . From the definition of our Hj , we have H ·G(1) = H for every j = 1, 2, 3, and
thus |A6 ∩H | ≥

1
6 |A|

1−2δ .
We apply Lemma 7.11 with B = A6 ∩H , and obtain a set A′ = B ∪ g1Bg

−1
1 ∪ · · · ∪

gkBg
−1
k ⊂ H such that A6 ∩ H ⊂ A′ ⊂ Ak′ and 〈A′〉 G 〈A〉, where k′ is an absolute

constant. Since |A′| ≥ |A6 ∩ H | ≥
1
6 |A|

1−2δ , by Lemma 7.1 (applied with A′ instead
of B and 〈A′〉 instead of H ), either A is contained in the union of at most |A|3δ cosets
of 〈A′〉, or conclusion (a) holds. Let us assume conclusion (a) does not hold.

Case 1: H = ker(ρ1,2) or H = ker(ρ2,3). Apply Cor. 7.10 once again, this time
with G = H , m = 1, H1 = U(K) and A′ instead of A. Cases (a), (b) and (c) give us
conclusions (a), (b) (with Y = U(K), X = {e}) and again (b) (with Y = 〈A′〉 and X as
in the statement of conclusion (b)), respectively.

Case 2:H = ker(ρ1,3). LetG = B(K), where B/K is the Borel subgroup of SL3 /K

we are studying. Write G(2) = [G(1),G(1)]. If g ∈ H is not contained in U(K), then
g acts without fixed points by conjugation on U(K)/G(2). Apply Cor. 7.10 with G =
H/G(2), m = 1, H1 = U(K)/G

(2) and A′′ = {h ·G(2) : h ∈ A′} instead of A. If case (a)
of Cor. 7.10 holds, then Lemma 7.4 gives us conclusion (a), unless A′′ is much smaller
than A′ (|A′′| < |A′|δ), in which case A′−1A′ ∩ G(2) must be very large (� |A|1−2δ),
giving us conclusion (b) with Y = U(K) ∩ 〈A〉, X = {e}. Case (b) gives us conclusion
(b) with Y = U(K) ∩ 〈A〉, X = {e}. It remains to examine case (c) of Cor. 7.10.

Suppose first that X = U(K)/G(2). A quick calculation suffices to show that, for any
set C ⊂ U(K) such that {cG(2) : c ∈ C} is all of U(K)/G(2), the set of commutators
[C,C] is all ofG(2), and thus C5 = U(K). We conclude that Ak contains U(K) for some
k depending only on δ; we have obtained conclusion (b) with Y = 〈A〉, X = U(K).

Suppose now that X = {e}. Then 〈A′〉/G(2) is abelian, and, since G(2) lies in the
centre of H = H1,3, the group 〈A′〉 must itself be abelian. We have obtained conclusion
(b) with Y = 〈A′〉 and X = {e}.

Suppose, lastly, that X 6= U(K)/G(2) and X 6= {e}. We know that 〈A′〉/X is abelian.
This implies that either

X =


1 a 0

0 1 0
0 0 1

 ·G(2) : a ∈ Z/pZ


and all elements of A′ are contained in the group

R =


r a b

0 r−2 0
0 0 r

 : r ∈ (Z/pZ)∗, a, b ∈ (Z/pZ)

 ,
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or

X =


1 0 0

0 1 a

0 0 1

 ·G(2) : a ∈ Z/pZ


and all elements of A′ are contained in the group

R =


r 0 b

0 r−2 a

0 0 r

 : r ∈ (Z/pZ)∗, a, b ∈ (Z/pZ)

 .
We apply Cor. 7.10 withG = R,m = 1,H1 = U(K)∩R andA′ instead ofA. (We can

do this because all elements of G not in H1 act on G(1) without fixed points: G(1) is now
smaller than it was when G was B(K) or H .) Case (a) of Cor. 7.10 gives us conclusion
(a) here, case (b) gives us conclusion (b) with Y = U(K) ∩ 〈A〉, X = {e}, and case (c)
gives us conclusion (b) with Y = 〈A′〉 and X as in the statement of conclusion (b). ut

7.4. Robustness under passage to subgroups. We will need the fact that results such as
Theorem 1.1 are robust under passage to subgroups. We state the lemmas below only for
H < G with [G : H ] = 2, since that is the only case we will actually use. The arguments
could probably be adapted to any H < G with [G : H ] bounded by a constant.

Lemma 7.14. Let G be a group. Let H < G be a subgroup with [G : H ] = 2. Let
A′ ⊂ G not be contained in H . Write A′ = C ∪ gC′, where C and C′ are subsets of H ,
g is not contained in H and C′ contains the identity. Then there is a subset A ⊂ A′3 ∩H
such that 〈A′〉 = 〈A〉 ∪ g〈A〉. Moreover, 1

2 |A
′
| ≤ |A| ≤ 4|A′|, C ∪ C′ ⊂ A, g2

∈ A and
g−1Ag ⊂ A3.

Proof. Define

A = (C ∪ C−1
∪ C′ ∪ (C′)−1) ∪ g(C ∪ C−1

∪ C′ ∪ (C′)−1)g−1
∪ {g2

} ⊂ A′3. (7.6)

Since [G : H ] = 2, H is normal in G, and thus A ⊂ H . Clearly 1
2 |A
′
| ≤ |A| ≤ 4|A′|. It

is also clear that g−1Ag ⊂ A3.
It remains to prove that 〈A′〉 = 〈A〉∪g〈A〉, where g is as above. Clearly 〈A〉∪g〈A〉 is

contained in 〈A′〉. To show that 〈A′〉 = 〈C ∪gC′〉 is contained in 〈A〉∪g〈A〉, it is enough
to show that, if x ∈ C ∪ gC′ and y ∈ 〈A〉 ∪ g〈A〉, then xy and x−1y are in 〈A〉 ∪ g〈A〉.
Let us see:

(a) if c ∈ C ⊂ A and y ∈ 〈A〉, then c · y ∈ 〈A〉;
(b) if c′ ∈ C′ ⊂ A and y ∈ 〈A〉, then gc′y ∈ g〈A〉;
(c) if c ∈ C and y ∈ g〈A〉, then c · y = g · g−2

· gcg−1
· gy, and, since g−2

∈ A−1,
gcg−1

∈ A and gy ∈ gg〈A〉 = 〈A〉, we obtain cy ∈ g〈A〉;
(d) if c′ ∈ C′ and y ∈ g〈A〉, then gc′y = gc′g−1

· gy ∈ A · g2
〈A〉 = 〈A〉.

Thus xy ∈ 〈A〉 ∪ g〈A〉. We obtain x−1y ∈ 〈A〉 ∪ g〈A〉 by a similar argument. Hence
〈A′〉 = 〈C ∪ gC′〉 ⊂ 〈A〉 ∪ g〈A〉, and so 〈A′〉 = 〈A〉 ∪ g〈A〉. ut
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Lemma 7.15. Let H be a group. Let H1 G H , H ′ < H . Then H1 ∩ H
′
G H ′. Moreover,

H ′/(H1 ∩H
′) is isomorphic to a subgroup of H/H1.

Proof. For any g ∈ H ′ and any h ∈ H1 ∩ H
′, we have ghg−1

∈ H1 (because H1 is
normal) and ghg−1

∈ H ′ (because g and h are in H ′). Thus, H1 ∩H
′
GH ′.

We define ι : H ′/(H1 ∩H
′)→ H/H1 as follows: ι(g(H1 ∩H

′)) = gH1. It is easy to
see that ι is a well-defined homomorphism. Since its kernel is {e}, it is also injective. ut

Lemma 7.16. Let M be a group. Let N1, N2 GM . Let A ⊂ M . Suppose that A is con-
tained in the union of ≤ n1 cosets of N1; suppose also that A is contained in the union of
≤ n2 cosets of N2. Then A is contained in the union of ≤ n1n2 cosets of N1 ∩N2.

Proof. The map ι : M/(N1 ∩ N2) → M/N1 × M/N2 given by ι(g(N1 ∩ N2)) =

(gN1, gN2) is a well-defined homomorphism; since its kernel is {e}, it is also injective.
The image of ι(A·(N1∩N2)) is of size at most n1 ·n2; henceA·(N1∩N2) ⊂ M/(N1∩N2)

is of size at most n1 · n2. ut

Proposition 7.17. Let G be a group. Let H < G be a subgroup with [G : H ] = 2.
Suppose that, for every finite subset A ⊂ H and every ε > 0, either

|Ak| � |A|
1+δ, (7.7)

where k and δ depend only on ε, or there are subgroups H1 GH2 G 〈A〉 such that

(a) H2/H1 is nilpotent,
(b) Ak contains H1, where k depends only on ε,
(c) A is contained in the union of ≤ |A|ε cosets of H2.

Then, for every finite subset A′ ⊂ G and every ε′ > 0, either

|A′k| � |A
′
|
1+δ′ , (7.8)

where k and δ depend only on ε′, or there are subgroups H ′1 GH
′

2 G 〈A〉 such that

(a) H ′2/H
′

1 is nilpotent,
(b) A′k contains H ′1, where k depends only on ε′,
(c) A′ is contained in the union of ≤ |A′|ε

′

cosets of H ′2.

Proof. LetA′ and ε′ > 0 be given. IfA′ is contained inH , we are done. AssumeA′ 6⊂ H .
Write A′ = C ∪ gC, g ∈ G \ H , as in the statement of Lemma 7.14. By Lemma 7.14,
there is a subset A ⊂ A′3 ∩ H such that 〈A′〉 = 〈A〉 ∪ g〈A〉, 1

2 |A
′
| ≤ |A| ≤ 4|A′|

and C ∪ C′ ⊂ A. We apply our assumptions to A with ε = ε′/5. If (7.7) holds, (7.8)
follows immediately and we are done. Assume (7.7) does not hold. We obtain subgroups
H1 GH2 G 〈A〉 as in the statement.

Let H ′2 = H2 ∩ gH2g
−1, H ′1 = H1 ∩ H

′

2. By Lemma 7.15 with H = H2, H1 = H1
and H ′ = H ′2, we see that H ′1 G H

′

2 and H ′2/H
′

1 is isomorphic to a subgroup of H2/H1.
Since H2/H1 is nilpotent, so is H ′2/H

′

1. We now want to show that H ′2 G 〈A
′
〉. Recall that

H2 G 〈A〉, 〈A′〉 = 〈A〉 ∪ g〈A〉 and g−1Ag ⊂ A3. If a ∈ A, then

aH ′2a
−1
= aH2a

−1
∩ agH2g

−1a−1
= H2 ∩ (g · g

−1ag ·H2 · (g
−1ag)−1

· g−1)

= H2 ∩ (g · a
′H2(a

′)−1
· g−1

= H2 ∩ gH2g
−1) = H ′2,
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where a′ = g−1ag ∈ A3 ⊂ 〈A〉. It remains to check that gH ′2g
−1
= H ′2. Indeed,

gH ′2g
−1
= gH2g

−1
∩ g2H2g

−2
= gH2g

−1
∩H2 = H

′

2,

where we use the facts that H2 G 〈A〉 and, by Lemma 7.14, g2
∈ A.

Since A ⊂ A′3 and Ak contains H1, we see that A′3k contains H ′1. It remains only to
bound the number of cosets of H ′2 on which A′ lies. Since A′ = C ∪ gC′ and C,C′ ⊂ A,
this is no greater than twice the number of cosets of H ′2 on which A lies. We know that
A lies in ≤ |A|ε cosets of H2. Since g−1Ag ⊂ A3 and H2 G 〈A〉, we deduce that g−1Ag

lies in ≤ |A|3ε cosets of H2, and thus A lies in ≤ |A|3ε cosets of gH2g
−1. Lemma 7.16

now implies that A lies on ≤ |A|4ε cosets of H ′2 = H2 ∩ gH2g
−1. Thus, A′ lies on

≤ 2|A|4ε ≤ 8|A′|4ε ≤ |A|ε
′

cosets of H2. (We may assume |A′|ε ≥ 8, as otherwise |A′|
is less than a constant and (7.8) holds trivially.) ut

8. Growth in proper subgroups of SL3(Z/pZ)

Let K = Z/pZ and G = SL3. Suppose A ⊂ G(K) does not generate G(K). Then A
generates a proper subgroup 〈A〉 of G. Does A grow? That is: does |A · A · A| > |A|1+δ

hold?
The answer depends on which subgroup of G the group 〈A〉 happens to be. The sub-

groups of G = SL3(Z/pZ) are not particularly hard to classify.

Proposition 8.1 (Mitchell [Mi]). LetG = PSL3(Z/pZ), p odd. The maximal subgroups
of G are

(a) the stabiliser of a point in P3(Z/pZ),
(b) the stabiliser of a line in P3 defined over Z/pZ,
(c) the stabiliser of a set of three points in P3(Z/pZ),
(d) the stabiliser of a conic in P3(Z/pZ),
(e) groups of order ≤ 360.

Proof. This is Theorem 2.4 for q prime in the survey paper [Ki]. Cases (a) and (b) in [Ki,
Thm. 2.4] correspond to cases (a) and (b) here; cases (c) and (d) correspond to case (c)
here; case (e) is (d) here; cases (f)–(i) do not happen; finally, cases (j) and (k) in [Ki, Thm.
2.4] go into case (e) here. ut

From this, we get the following classification.

Corollary 8.2. Let G = SL3(Z/pZ), p odd. Let H be a proper subgroup of G. Then at
least one of the following statements holds:

(a) H is contained in the stabiliser of a point in P3(Z/pZ),
(b) H is contained in the stabiliser of a line in P3 defined over Z/pZ,
(c) H has an abelian subgroup of index ≤ 6,
(d) H is contained in a subgroup of G isomorphic to SO3(Z/pZ),
(e) H is of order ≤ 1080.
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Proof. Let M be a maximal subgroup of G = SL3(Z/pZ) containing H . Let M be the
image of M under the natural map π : SL3(Z/pZ) → PSL3(Z/pZ). If M were not
a proper subgroup of PSL3(Z/pZ), then M would have index 3 in G. The action of G
on cosets of M would induce a non-trivial homomorphism φ from G to the symmetric
group S3. Then ker(φ) would be a proper normal subgroup of G of index at most 6.
Now, G/Z(G) = SL3(Z/pZ)/Z(SL3(Z/pZ)) is simple, and so ker(φ) would have to
be contained in Z(G). Since Z(G) has at most three elements, it would follow that G
has at most 6 · 3 = 18 elements. This is clearly false. Thus, M is a proper subgroup of
PSL3(Z/pZ).

Moreover, M is a maximal subgroup of PSL3(Z/pZ), as otherwise M would not be
maximal in G = SL3(Z/pZ). Now apply Prop. 8.1.

IfM is the stabiliser of a line, thenM is contained in the stabiliser inG = SL3(Z/pZ)
of a line. (The action ofG on P3 factors through PSL3(Z/pZ).) IfM is the stabiliser of a
point, then M is contained in the stabiliser of a point. This takes care of cases (a) and (b)
of Prop. 8.1.

Suppose now that we are in case (c) of Prop. 8.1. Since M is the stabiliser of a set of
three points, M is contained in the stabiliser of a set of three points. The stabiliser in G
of a set of three points in P3(Z/pZ) is equal to the semidirect product of the points over
Z/pZ of a torus T in G (defined over Z/pZ) and the elements of G that induce elements
of the Weyl group of the torus. Since the Weyl group of a torus in SL3 has index 6, we
see that the group M must have an abelian subgroup of index ≤ 6, and thus H itself has
an abelian subgroup of index ≤ 6. We have obtained conclusion (c).

Suppose that we are in case (d) of Prop. 8.1. The conic in question is given by an
equation Q(v) = 0, where Q is some non-degenerate quadratic form. The group GQ of
all elements g ∈ G such that Q(gv) = Q(v) is isomorphic to SO3(Z/pZ) ([KL, Prop.
2.5.4]). The group GQ is certainly contained in the stabiliser of Q(v) = 0. Comparing
orders (where the order of the stabiliser of a conic Q(v) = 0 is given by [Ki, Thm. 2.4])
we see that GQ is actually equal to the stabiliser of Q(v) = 0.

Finally, case (e) of Prop. 8.1 corresponds to case (e) here, and so we are done. ut

Let us see what we can say about each of the cases of Cor. 8.2.
For groups of bounded order, the statement |A · A · A| � |A|1+δ is trivially true (as

one may adjust δ and the implied constant if needed). Thus, we may ignore case (e). As
for case (a), it reduces to case (b): the stabiliser in G of a point in P3(Z/pZ) is always
conjugate (and hence isomorphic) to the subgroupg =

∗ ∗ ∗0 ∗ ∗

0 ∗ ∗

 : det(g) = 1

 (8.1)

of G, whereas the stabiliser in G of a line in P3 defined over Z/pZ is always conjugate
(and hence isomorphic) to the subgroupg =

∗ ∗ ∗∗ ∗ ∗

0 0 ∗

 : det(g) = 1

 (8.2)
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of G. The subgroups (8.1) and (8.2) are isomorphic as groups. (They and their conju-
gates are called the maximal parabolic subgroups of G.) Thus, case (a) and case (b) are
essentially the same.

We hence have three cases to study: (1) subgroups of SO3(Z/pZ) (case (d) in Cor.
8.2); (2) subgroups of G having abelian subgroups of small index (case (c) in Cor. 8.2);
(3) subgroups of maximal parabolic subgroups ofG = SL3(Z/pZ) (that is, subgroups of
stabilisers of points and lines, i.e., cases (a) and (b) in Cor. 8.2). Let us consider them in
order.

(1) The group SO3(Z/pZ) ∼ PGL2(Z/pZ). As it happens, SO3(Z/pZ) is isomorphic
as a group to PGL2(Z/pZ) ([Ta, Thm. 11.6]). We will conclude our study of growth in
SL2(Z/pZ), and then use the fact that PGL2(Z/pZ) has a subgroup of index 2 isomorphic
to SL2(Z/pZ)/Z(SL2(Z/pZ)).

(2) Subgroups of G = SL3(Z/pZ) having abelian subgroups of small index. This is a
different kettle of fish. Some subsets of abelian groups grow and others do not. (This
matter is the classical object of study of additive combinatorics.) A great deal has been
said on this general subject, but very little is known on the question of which subsets of
abelian groups grow truly rapidly (|A ·A ·A| � |A|1+δ). All we know is which sets grow
very slowly (|A ·A ·A| � (log |A|)1/3|A|, say); this is Freiman’s theorem, generalised to
arbitrary abelian groups by Green and Ruzsa [GR]).

We will not attempt to improve on this; we will do no more than set aside the abelian
case whenever we come across it.

(3) Subgroups of maximal parabolic subgroups of G = SL3(Z/pZ). These are the
groups isomorphic to (8.1) and (8.2). They are the main subject of this section (§8.2 –
§8.5). A subset A of a maximal parabolic subgroup of G may or may not be contained
in a Borel subgroup of G. Growth in Borel subgroups is closely related to Prop. 3.1, i.e.,
to generalised sum-product phenomena. If a subset A of a parabolic subgroup is not con-
tained in a Borel subgroup, the study of its growth amounts more or less to the study of
growth in SL2 plus a little cohomology (8.3).

8.1. Growth in subgroups of SL2(Fp) and SO3(Fp) ∼ PGL2(Fp). The classification
of the proper subgroups of SL2(Z/pZ) is classical.

Proposition 8.3. Let K = Z/pZ. Let G = SL2(K). Let H be a proper subgroup of G
with more than 120 elements. Then either

(a) H is contained in a Borel subgroup B of G defined over K , or
(b) there is a maximal torus T/K such that H ≤ NG(K)(T (K)).

If T is defined over K , then the normaliser NG(K)(T (K)) is a dihedral group containing
T (K) as a subgroup of index ≤ 2. If T is not defined over K , then NG(K)(T (K)) =
T (K).

Proof. See [Di, p. 286]. ut

We now need to do very little work given what we already did in §7.3.
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Theorem 8.4. LetG = SL2. Let K = Z/pZ, p a prime. Let A ⊂ G(K). Then, for every
ε > 0, either

|A · A · A| � |A|1+δ, (8.3)

where δ > 0 and the implied constant depend only on ε, or one of the following cases
holds:

(a) A generates G(K) and |A| > |G(K)|1−ε ,
(b) there is a maximal torus T/K such that H ≤ NG(K)(T (K)),
(c) there is a Borel subgroup B/K such that A ⊂ B(K) and either

(i) |A6 ∩ ({±I } · U(K))| ≥ |A|
1−ε (where U/K is the maximal unipotent subgroup

of B) and A intersects at most |A|2ε cosets of U(K), or
(ii) Ak contains U(K) for some k depending only on ε.

Proof. If A generates G(K), then, by Prop. 6.1, either (8.3) or conclusion (a) holds.
Assume, then, that A does not generate G(K).

Thanks to the classification of the proper subgroups of G(K) (Prop. 8.3), either con-
clusion (b) holds or A is contained in B(K), where B/K is a Borel subgroup ofG. In the
latter case, we apply Prop. 7.12. If case (d) in Prop. 7.12 holds, then (8.3) follows by the
tripling lemma (Lemma 2.2).

(We use the fact that we can assume that |A| is larger than an absolute constant, as
otherwise (8.3) holds trivially; this allows us, for example, to do without a factor of 1

4 in
front of |A|1−ε when deriving conclusion c(i) from case (b) of Prop. 7.12.) ut

One may ask how tight Thm. 8.4 is. There are examples of sets A falling into one of the
cases b, c(i), c(ii) in Thm. 8.4 and failing to grow (i.e., failing to satisfy (8.3)). To wit:

Case b, example 1: Let

A =

{(
xn 0
0 x−n

)
: 1 ≤ n ≤ N

}
,

where x is a generator of (Z/pZ)∗ and N ≤ p − 1. Then |A| = N and |A · A · A| <
3N = 3|A|.

Case b, example 2: Let

A =

{(
xn 0
0 x−n

)
: −N ≤ n ≤ N

}
∪

{(
0 xn

x−n 0

)
: −N ≤ n ≤ N

}
,

where x is a generator of (Z/pZ)∗ andN ≤ (p−1)/2. Then |A| = 4N+2 and |A·A·A| <
2 · (6N + 1) < 3|A|.

Case c(i): Let

A =

{(
n m

0 n−1

)
: 1 ≤ n ≤ N ε, 1 ≤ m ≤ N

}
.

(Here n−1 stands for inverse of n modp.) Then |A| ∼ N1+ε and |A · A · A| � N1+9ε .
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Case c(ii): Let

A =

{(
xn m

0 x−n

)
: 1 ≤ n ≤ N, m ∈ Z/pZ

}
,

where x is a generator of (Z/pZ)∗ and N ≤ p − 1. Then |A| = pN and |A · A · A| <
3pN = 3|A|.

We can rewrite the conclusion of Thm. 8.4 so that it looks more like what a general
statement on all groups would be likely to look like. (See the remarks after Thm. 1.1.)

Corollary 8.5 (to Thm. 8.4). Let G = SL2. Let K = Z/pZ, p a prime. Let A ⊂ G(K).
Then, for every ε > 0, either

|A · A · A| � |A|1+δ, (8.4)

where δ > 0 and the implied constant depend only on ε, or there are normal subgroups
H1, H2 G 〈A〉, H1 < H2 such that

(a) H2/H1 is abelian,
(b) Ak contains H1, where k depends only on ε,
(c) A is contained in the union of ≤ |A|ε cosets of H2.

In other groups, “abelian” would be replaced by “nilpotent” (as in the statement of Theo-
rem 1.1). We have “abelian” here simply because there is not much room for non-abelian
nilpotent groups in SL2.

Proof. Apply Thm. 8.4 (with ε/2 instead of ε). Equation (8.3) in Thm. 8.4 is equation
(8.4) here. By the Key Proposition (part (b)) in [He, §1], case (a) in Thm. 8.4 implies that
Ak contains H1 and is contained in H2, where H1 = H2 = G(K). Case (b) in Thm. 8.4
gives us that A is contained in the union of ≤ 2 cosets of H2 = T (K) G 〈A〉; since H2
is abelian, we can set H1 = {e}. Case c(i) in Thm. 8.4 gives us that A is contained in
few subsets of the abelian group H2 = ({±I } · U(K)) G B(K); again, we set H1 = {e}.
Finally, case c(ii) tells us that A contains H1 = U(K) and is contained in H2 = B(K);
H1 is a normal subgroup of H2, H2 is a normal subgroup of 〈A〉 = H2, and H2/H1 is
abelian. ut

Corollary 8.6 (to Cor. 8.5). Let G = PGL2, G = SO3 or G = PSL2. Let K = Z/pZ,
p a prime. Let A ⊂ G(K). Then, for every ε > 0, either

|A · A · A| � |A|1+δ, (8.5)

where δ > 0 and the implied constant depend only on ε, or there are subgroups H1 GH2
G 〈A〉 such that

(a) H2/H1 is abelian,
(b) Ak contains H1, where k depends only on ε,
(c) A is contained in the union of ≤ |A|ε cosets of H2.

Proof. Since SO3(Z/pZ) and PGL2(Z/pZ) are isomorphic as groups, it is enough to
prove the statement for G = PGL2 or G = PSL2. Since PSL2(K) < PGL2(K) and
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[PGL2(K) : PSL2(K)] = 2, Prop. 7.17 implies it is enough to prove the statement for
G = PSL2. Let, then, G = PSL2 and A ⊂ PSL2(K).

Let π : SL2(K)→ PSL2(K) be the natural projection map, and let A′ = π−1(A) ⊂

SL2(K). Apply Cor. 8.5 to A′. Clearly (8.4) implies (8.5) (with the implied constant
changing by a factor of at most 2). If (8.4) does not hold, then Cor. 8.5 provides subgroups
H ′1 G H

′

2 G 〈A
′
〉; we use them to define subgroups H1 = π(H

′

1), H2 = π(H
′

2) satisfying
the desired properties. ut

8.2. Parabolic subgroups of SL3(Z/pZ): general setup. LetK=Z/pZ,G=SL3(K).
Let e1, e2, e3 ∈ K3 be a basis of K3. Let P ⊂ G be the stabiliser of the subspace
Ke1 +Ke2 of K3 under the natural action of G in K3. (This is the same as the stabiliser
of Ke1 + Ke2 seen as a line in P3(K); we prefer to use affine rather than projective
language.) Let H0 be the group consisting of the elements g ∈ P(K) sending e3 to
elements of the form a1e1 + a2e2 + a3e3, with a1, a2 ∈ K and a3 ∈ K

∗ a square in K∗.
LetM be the subgroup ofH0 consisting of the elements g ∈ P(K) sending e3 to elements
a1e1 + a2e2 + e3 with a1, a2 ∈ K . Let

• G+ be the subgroup of H0 consisting of all g ∈ H0 fixing the space Ke3,
• G− be the subgroup of M consisting of all g ∈ M fixing e3,
• A0 be the subgroup of M consisting of all g ∈ M fixing both e1 and e2,
• Z(G+) be the center of G+,
• π+ : H0 → G+, π− : M → G− be the natural projections.

More legibly, in matrix form (with e1, e2, e3 as the basis),

H0 =

g =
∗ ∗ ∗

∗ ∗ ∗

0 0 s2

 : det(g) = 1, s ∈ K∗

 ,
G+ =

g =
∗ ∗ 0
∗ ∗ 0
0 0 s2

 : det(g) = 1, s ∈ K∗

 ,
M =

g =
a b ∗

c d ∗

0 0 1

 : det
(
a b

c d

)
= 1

 ,
G− =

g =
a b 0
c d 0
0 0 1

 : det
(
a b

c d

)
= 1

 ,
Z(G+) =

g =
s−1 0 0

0 s−1 0
0 0 s2

 : s ∈ (Z/pZ)∗
 ,

A0 =


1 0 e

0 1 f

0 0 1

 ,

(8.6)
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where all entries are understood to lie in K . The projections π+ : H0 → G+ and π− :
M → G− are given by

π+

a b e

c d f

0 0 s2

 =
a b 0
c d 0
0 0 s2

 , π−

a b e

c d f

0 0 1

 =
a b 0
c d 0
0 0 1

 . (8.7)

It is clear that G− ' SL2(K) and A0 ' K
2. Moreover, A0 is a normal subgroup of M;

the projection π− : M → G− can be identified with the quotient homomorphism M →

A0\M ' G−. (Here we write A0\M for the group of right cosets of A0 in M .) We can
thus see M as a semidirect product A0 oG− of A0 and G−. The action of G− on A0 in
the semidirect product M = A0 oG− is the natural one, as is shown by the identitya b 0
c d 0
0 0 1

 ·
1 0 e

0 1 f

0 0 1

 ·
a b 0
c d 0
0 0 1

−1

=

1 0 ae + bf

0 1 ce + df

0 0 1

=(I (
a b
c d

)
·
( e
f

)
0 1

)
.

In other words, we may write the elements of M as pairs (a, g), a ∈ A0, g ∈ G−, and
then the group law of M looks as follows:

(a1, g1) · (a2, g2) = (a1 + g1 · a2, g1g2),

where g1 ∈ G− ' SL2(K) acts on a2 ∈ A0 ' K2 by the natural action of SL2(K)

on K2.
We can also decompose G+ as a product, namely, G+ ' SL2(K) × {x

2 : x ∈ K∗}.
We let the projection maps π1 : G+→ SL2(K) and π2 : G+→ K∗ be given by

π1

a b 0
c d 0
0 0 s2

 = (sa sb

sc sd

)
∈ SL2(K), π2

a b 0
c d 0
0 0 s2

 = s2. (8.8)

The above setup will be somewhat familiar to some readers from the theory of auto-
morphic forms. (The group M is of a kind called mirabolic by some; the decomposition
M = A0 oG− treated above is well-known in general.)

In the following, we shall examine a subset E of H0, and determine its growth. (We
call our set E rather than A so as to avoid confusion with the group A0, which is usu-
ally called A in the literature.) Since π1(π+(E)) is a subset of SL2(K), it generates a
subgroup of SL2(K). This subgroup can be all of SL2(K), or it can lie inside one of the
maximal subgroups of SL2(K) (which were classified in Prop. 8.3). We treat these two
cases individually.

8.3. Parabolic subgroups: passage to SL2, or the case 〈π1(π+(E))〉 = SL2(K)

Proposition 8.7. Let K = Z/pZ, p a prime. Let G = SL3. Let G+, G− and H0 be as in
(8.6); let π+ : H0 → G+ and π1 : G+ → SL2(K) be as in (8.7) and (8.8). Let E be a
subset of H0 such that π1(π+(E)) generates SL2(K). Then either

|E · E · E| > |π1(π+(E))|
ε
· |E| (8.9)
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or
π1(π+(Ek)) = SL2(K), (8.10)

where ε > 0 and k are absolute constants.

Proof. It is here that the inductive step happens; we will use what we know on SL2. By
the Key Proposition in [He, §1], there are absolute constants δ, ε, k > 0 such that, for
A ⊂ SL2(K) generating SL2(K), we have two cases:

• If |A| ≤ |SL2(K)|
1−δ , then |A · A · A| > |A|1+ε .

• If |A| > |SL2(K)|
1−δ , then Ak = SL2(K).

Now define π = π1 ◦ π+. By the statement of the lemma, π(E) generates SL2(K). If
|π(E)| > |SL2(K)|

1−δ , then

π(Ek) = π(E)k = SL2(K),

and we are done. Suppose |π(E)| ≤ |SL2(K)|
1−δ . Then

|π(E · E · E)| = |π(E) · π(E) · π(E)| > |π(E)|1+ε,

and so, by Lemma 7.4 (applied with A1 = E, A2 = E · E),

|E8| > |π(E)|
ε
· |E|.

Statement (8.9) then follows by the tripling lemma (Lemma 2.2). ut

If we have (8.9) and |π1(π+(E))| > |E|
δ for some fixed δ > 0, the problem is solved. We

will leave the case of |π1(π+(E))| ≤ |E|
δ for later. We focus for now on (8.10), i.e., on

the case of sets E with π1(π+(E)) = SL2(K). (The case of sets E with π1(π+(Ek)) =

SL2(K) reduces to this after we multiply E with itself and its inverse a few times.)
We will need the following result, credited by Dickson to Galois.

Proposition 8.8 (Galois). Let p>11 be a prime. LetG be SL2(Z/pZ) or PSL2(Z/pZ).
Let H be a proper subgroup of G. Then [G : H ] ≥ p + 1.

This can be derived quickly from Prop. 8.3.

Proof. See, e.g., [Di], e.g., Ch. XII, Theorem 261. ut

We can now proceed.

Lemma 8.9. Let K = Z/pZ, p > 11 a prime. Let G, H0 and M be as in (8.6); let
π+ : H0 → G+, π− : M → G− and π1 : G+→ SL2(K) be as in (8.7) and (8.8). Let E
be a subset of H0 such that π1(π+(E)) = SL2(K). Then

π−(Ek ∩M) = G−,

where k is an absolute constant.
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Proof. Since π1(π+(E)) = SL2(K), we know that |π+(E)| ≥ |SL2(K)|. Let

R = (π+(E)
−1π+(E)) ∩G−.

Then, by Lemma 7.2,

|R| ≥
|π+(E)|

|[G+ : G−]|
≥
|SL2(K)|

(p − 1)/2
=

|G−|

(p − 1)/2
. (8.11)

By Prop. 8.8,G− ' SL2(K) has no proper subgroups of index≤ (p−1)/2; henceR gen-
erates G−. Now, (8.11) also gives us that |R| > |G−|2/3. We apply the Key Proposition
in [He] (part (b)) and obtain Rk = G−, where k is an absolute constant.

Since R = π+(E−1E) ∩G− ⊂ π+(E2) ∩G−, it follows that

π−(E2k ∩M) ⊇ π−((E2 ∩M)k) = (π−(E2 ∩M))k = (π+(E2) ∩G−)k ⊇ Rk = G−,

as we desired. ut

We need a little lemma on cohomology.

Lemma 8.10. Let G be a group acting on an abelian group R. Suppose the centre Z of
G contains an element z ∈ Z with z2

= e such that zv = −v for all v ∈ R. Suppose
furthermore that every element of R is uniquely 2-divisible, i.e., for every r ∈ R, there is
a unique r ′ ∈ R such that r = 2r ′. Then

H 1(G,R) = 0. (8.12)

We can restate (8.12) in non-cohomological language as follows: given a map s : G→ R

satisfying s(g1g2) = s(g1) + g1s(g2) for all g1, g2 ∈ G, there is a v such that s(g) =
gv − v for all g.

One can show [Hi] that H n(G,R) = 0, n ≥ 1, under the same conditions we have
given; we shall need only the case n = 1. The conditions of the lemma are clearly satisfied
when G = SL2(K), R = K2, K a finite field of odd order: set z = −I .

Proof. Let g ∈ G. Because z is in the centre, z and g commute; moreover, z is an involu-
tion, i.e., z2

= e. Thus

s(g) = s(g · z2) = s(z · g · z) = s(z)+ z · s(g · z) = s(z)− s(g · z)

= s(z)− (s(g)+ g · s(z)) = −s(g)+ s(z)− g · s(z).

Thus s(g) = 1
2 (s(z)− g · s(z)). So s(g) = gv − v for v = − 1

2 s(z). ut

Lemma 8.11. Let K = Z/pZ, where p is an odd prime. Let M , G− and A0 be as in
(8.6). Let π− : M → G− be as in (8.7). Let E ⊂ M be such that π−(E) = G−. Then
either

Ek = M,

where k is an absolute constant, or

E = gG−g
−1 for some g ∈ M .
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Proof. Suppose first that there are two distinct g1, g2 ∈ E such that π−(g1) = π−(g2).
Then g−1

1 g2 is an element of A0 other than I . Since SL2(K) acts transitively on the set
of non-zero elements of K2, we conclude thatG− acts transitively on A0 by conjugation.
(Recall thatM ' A0oG−,A0 ' K

2,G− ' SL2(K), and that the action ofG− onA0 by
conjugation is described by the action of SL2(K) on K2.) Since π−(E) = G−, it follows
that Eg−1

1 g2E
−1
⊂ M is all of A0, and so

Eg−1
1 g2E

−1E ⊂ E5

is equal to all of M .
Now suppose that there are no two distinct g1, g2 ∈ E with π−(g1) = π−(g2). Then

E is of the form {(s(h), h) : h ∈ G−}, where s is a map s : G− → A0. If there are
h1, h2 ∈ G− such that

(s(h1), h1) · (s(h2), h2) 6= (s(h1h2), h1h2),

then the argument is as before: there are two distinct elements (namely, (s(h1), h1) ·

(s(h2), h2) and (s(h1h2), h1h2)) whose image h1h2 under π− is the same, and so

E10 = M.

Suppose, then, that

(s(h1), h1) · (s(h2), h2) = (s(h1h2), h1h2)

for all h1, h2 ∈ G−, or what is the same,

s(h1h2) = s(h1)+ h1s(h2)

for all h1, h2 ∈ G−. We now use Lemma 8.10, and conclude that s(h) = hv− v for some
v ∈ A0. Hence

E = {(s(h), h) : h ∈ G−} = (−v, 1) · {(0, h) : h ∈ G−} · (v, 1) = g ·G− · g−1,

where g is the element of M corresponding to (−v, 1) under the isomorphism M '

A0 oG−. ut

We can now draw certain conclusions.

Proposition 8.12. Let K = Z/pZ, p a prime. Let G = SL3. Let H0 < G(K) and
G+ < G(K) be as in (8.6); let π+ and π1 be as in (8.7) and (8.8). Let E ⊂ H0 be such
that π1(π+(E)) generates SL2(K). Then, for every ε > 0, one of the following conditions
is satisfied:

(a) |E · E · E| > |E|1+δ , where δ > 0 depends only on ε,
(b) Ek contains M , where k is an absolute constant,
(c) Ek contains gG−g−1 and is contained in gG+g−1, where g ∈ M and k is an absolute

constant,
(d) E−1E has ≥ |E|1−ε elements in the subgroup H ′ = π−1

+ (Z(G+)) of H0; moreover,
E intersects at most |E|2ε cosets of H0.
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Here (d) is in effect a reduction to one of the cases to be treated in the next subsection
(Lemma 8.14). We will treat it further there.

Proof. Suppose |π1(π+(E))| ≤ |E|
ε . Then, by Lemma 7.2, there are ≥ |E|1−ε ele-

ments of E−1E lying in the kernel of π1 ◦ π+. The kernel of π1 ◦ π+ is precisely
H ′ = π−1

+ (Z(G+)), and so we obtain (d). (If the statement on the number of cosets
of H0 that E intersects did not hold, conclusion (a) would follow by Lemma 7.1.)

Suppose now that |π1(π+(E))| > |E|
ε . If we have (8.9), we are done. It remains

to consider what happens if we have (8.10). Applying Lemma 8.9 (with E = Ek , k an
absolute constant), we see that π−(Ekk′ ∩M) = G− for k′ an absolute constant. (We may
assume that p > 11 (as is required by Lemma 8.9) because (a) is trivially true otherwise.)
We now apply Lemma 8.11 to find that (Ekk′ ∩ M)k′′ (k′′ an absolute constant) equals
either M or a conjugate gG−g−1, g ∈ M , of G−. If (Ekk′ ∩ M)k′′ = M , we have
obtained (b).

Suppose, then, that (Ekk′ ∩M)k′′ = gG−g−1. If E is contained in the group gG+g−1,
we have (c) and are done. Assume, then, that there is a g1 ∈ E such that g1 /∈ gG+g

−1.
We can write g1 = gazg−1g2, where a ∈ A, z ∈ Z(G+), g2 ∈ gG−g

−1, a 6= I . The
orbit of gazg−1 under the action of gG−g−1 by conjugation is all of gA0zg

−1. (This
is so because the action of G− on A0 by conjugation can be identified with the action of
SL2(K) onK2 by left multiplication; since the latter action is transitive, the former action
is transitive too.) Thus gG−g−1

· g1 · gG−g
−1 contains gA0zg

−1, and hence

gG−g
−1
· g1 · gG−g

−1
= gG−g

−1
· (gG−g

−1
· g1 · gG−g

−1)

⊃ gG−A0zg
−1
= gMzg−1

= Mz.

Therefore, E2kk′+1 contains Mz, and so E4kk′+2 contains M . We have obtained (b). ut

We have spent enough time for now studying subsets E ⊂ H0(K) such that π1(π+(E))

generates SL2(K); let us now pass to the other cases.

8.4. Parabolic subgroups: solvable groups. Let K = Z/pZ, G = SL3(K). Let H0 <

G(K) be as in (8.6); let π+, π1 be as in (8.7) and (8.8). Consider a subset E ⊂ H0 such
that π1(π+(E)) does not generate SL2(K).

By Prop. 8.3, either (a) π1(π+(E)) is contained in a Borel subgroup B/K of SL2(K)

or (b) π1(π+(E)) is contained in a subgroup H < SL2(K) having a subgroup of index
≤ 2 lying within a maximal torus T0/K of SL2.

In case (a), E must be contained in a Borel subgroup B ′/K of SL3(K). We have
already examined this situation in §7.3 (Prop. 7.13).

In case (b), we can use Prop. 7.17 to assume that H ⊂ T0(K). We will examine this
in detail; the solution will be a simple application of Cor. 7.10.

Proposition 8.13. Let K = Z/pZ, p a prime. Let H0 < G(K) and A0 < G(K) be as
in (8.6); let π+ and π− be as in (8.7) and (8.8). Let T0/K be a maximal torus of SL2 not
defined overK . LetH < H0 be the preimage (π1 ◦π+)

−1(T0(K)). Let E ⊂ H . Then, for
every ε > 0, either

|Ek| ≥ |E|
1+δ, (8.13)
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where k and δ > 0 depend only on ε, or one of the following cases holds:

(a) E is contained in at most |E|ε cosets of A0,
(b) Ek contains a subgroup X of Z(G(K)) · A0 for some k depending only on ε; more-

over, X is a normal subgroup of 〈E〉 and 〈E〉/X is abelian.

Proof. Consider any g ∈ H with π1(π+(g)) 6= ±I . We wish to show that g has three dis-
tinct eigenvalues. (This will simplify matters when we apply Cor. 7.10.) Since π1(π+(g))

6= ±1 belongs to a torus, it must have two distinct eigenvalues λ1, λ2 ∈ K . If either were
inK , the other one would be inK as well (because λ1λ2 = 1), and then π1(π+(g))would
be diagonalisable over K , i.e., T0/K would be defined over K . Since we are assuming
that this cannot happen, it follows that λ1, λ2 /∈ K . Thus g has one rational (that is, ∈ K)
eigenvalue s2, and two irrational and distinct eigenvalues s−1λ1, s−1λ2. In particular, g
has three distinct eigenvalues.

Consider now any g ∈ H . If g has three distinct eigenvalues, then it clearly has no
fixed points when acting on H (1)

⊂ A0 by conjugation. If, instead, π1(π+(g)) = ±I ,
then, unless g is actually in Z(G(K)) · A0, it is also easy to see that g acts without fixed
points on H (1).

We can thus apply Cor. 7.10 with G = H , m = 1, H1 = Z(G(K)) · A0, ` = 2. Case
(a) of Cor. 7.10 gives us (8.13); cases (b) and (c) give us conclusions (a) and (b). ut

We can now study the case of Prop. 8.12 that we left for later.

Lemma 8.14. Let K = Z/pZ, p a prime. Let H0,G+, A0 < SL3(K) be as in (8.6);
let π+ and π1 be as in (8.7) and (8.8). Let E ⊂ H0 be such that π1(π+(E)) generates
SL2(K). Suppose that E−1E lies in the union of at most |E|δ (δ > 0) cosets of the
subgroup H ′ = π−1

+ (Z(G+)) of H0 . Then either

|Ek| ≥ |E|
1+δ, (8.14)

where k and δ > 0 depend only on ε, or one of the following cases holds:

(a) E is contained in at most |E|4δ cosets of A0,
(b) E is contained in the union of at most |E|δ cosets of gZ(G+)g−1, where g ∈ M;

moreover, E ⊂ gG+g−1;
(c) Ek contains A0 for some k depending only on δ.

Proof. Apply Cor. 7.10 with G = H ′, m = 1, H1 = A0 · Z(G), ` = 2, A = H ′ ∩E−1E

and 2δ instead of δ. Case (a) in Cor. 7.10 gives us (8.14). Case (b) (together with Lemma
7.1) gives us conclusion (a). Assume, then, that case (c) holds.

Suppose first that X 6= {e}. If X = A0, we have obtained conclusion (c). Suppose
X is neither {e} nor A0. Since π1(π+(E)) generates SL2(K), X is not stabilised by the
action of 〈E〉 by conjugation. Thus, there is an h ∈ E such that hXh−1, while in A0, is
not equal to X. Hence hXh−1X is all of A0, and thus we have reached conclusion (c)
again.

Suppose now that X = {e}. Then 〈E〉 is abelian. Unless conclusion (a) holds, this
means that 〈E〉 lies in a conjugate gZ(G+)g−1 of Z(G+) (g ∈ M). If every element
of E lies in gG+g−1, we have obtained conclusion (b). If there is an element h of E not
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in gG+g−1, then h〈E〉h−1, while certainly in H ′, is a different torus from 〈E〉, and so
hEh−1E−1 contains an element of A0 other than the identity. We apply Cor. 7.10 with
G = H , m = 1, H1 = A0 · Z(G), ` = 2 and hEh−1E−1 instead of E; each case works
out as before, except that X = {e} is no longer a possibility. ut

8.5. Conclusions. We can now give a detailed account of what happens inside a para-
bolic subgroup.

Proposition 8.15. Let K = Z/pZ, p a prime. Let G = SL3. Let G+, G− and H0 be as
in (8.6). Let A be a subset of H0. Then, for every ε > 0, either

|AAA| � |A|1+δ, (8.15)

where δ and the implied constant depend only on ε, or there are subgroupsH1 GH2 G 〈A〉

such that
(a) H2/H1 is nilpotent,
(b) Ak contains H1 for some k depending only on ε,
(c) A is contained in the union of ≤ |A|ε cosets of H2.
Moreover, either H1 is trivial (= {e}) or it contains a non-trivial subgroup of U(K) for
some maximal unipotent subgroup U/K of G(K).
Proof. If A is contained in a Borel subgroup B/K ofG = SL3, we apply Prop. 7.13 with
E = A; we set H1 = X, H2 = 〈E〉 and are done. Suppose, then, that A is not contained
in any Borel subgroup B/K of SL3. Let π+ and π1 be as in (8.7) and (8.8). Assume first
that π1(π+(A)) generates SL2(K). We apply Prop. 8.12 (with A instead of E and ε/8
instead of ε). Case (a) in Prop. 8.12 gives us (8.15), case (b) gives us the statement of
the present proposition with H1 = M , H2 = H0, and case (c) gives us the statement
with H1 = gG−g

−1, H2 = gG+g
−1. If case (d) in Prop. 8.12 holds, apply Lemma 8.14

(with E = A). Equation (8.14) gives us (8.15); cases (a), (b) and (c) of Lemma 8.14
give us (a) H1 = {e}, H2 = A0, (b) H1 = {e}, H2 = gZ(G+)g

−1, and (c) H1 = A0,
H2 = π

−1
+ (Z(G+)), respectively.

Assume now, lastly, that (a) A is not contained in any Borel subgroup of G, and (b)
π1(π+(A)) does not generate SL2(K). Then, as we discussed at the beginning of §8.4,
Prop. 7.17 allows us to reduce the situation to that of Prop. 8.13 (by passage to a subgroup
of 〈A〉 of index at most 2). Equation (8.13) gives us (8.15); case (a) of Prop. 8.13) gives
us H1 = {e}, H2 = A0, and case (b) of Prop. 8.13 gives us H1 = X ∩A0, H2 = 〈E〉. ut
We can now prove Thm. 1.1 in the case where A does not generate G = SL3(K).

Proposition 8.16. LetG = SL3. LetK = Z/pZ, p a prime. Let A ⊂ G(K) be a set that
does not generate G(K). Then, for every ε > 0, either

|A · A · A| � |A|1+δ, (8.16)

where δ > 0 and the implied constant depend only on ε, or there are subgroups H1 GH2
G 〈A〉 such that
(a) H2/H1 is nilpotent,
(b) Ak contains H1, where k depends only on ε,
(c) A is contained in the union of ≤ |A|ε cosets of H2.
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Proof. Let H = 〈A〉. Then H satisfies one of the descriptions in Cor. 8.2, cases (a)–(e).
If case (a) of Cor. 8.2 holds, then H is contained in a conjugate of the maximal

parabolic group P(K) havingH0 as a subgroup of index 2. (H0 is as defined at the begin-
ning of §8.1.) We then apply Prop. 8.15, follow it by Prop. 7.17, and are done.

Since stabilisers of lines in P3 defined over Z/pZ are isomorphic as groups to stabilis-
ers of points in P3 defined over Z/pZ (see (8.1) and (8.2)), case (b) of Cor. 8.2 reduces
to case (a) of Cor. 8.2. Case (d) of Cor. 8.2 gives us desired conclusion immediately (with
H1 = {e}). If case (c) of Cor. 8.2 holds, apply Cor. 8.6. Finally, if case (e) holds, then |A|
is bounded by an absolute constant and so (8.16) holds trivially. ut

This is as good a place as any to note that the conclusion “H2/H1 is nilpotent” in Prop.
8.16 (and like results) cannot be strengthened to “H2/H1 is abelian”. Indeed, there are
non-abelian nilpotent groups where some sets of generators fail to grow even though they
are not too large to grow. Take N <

√
p. Let

A =


1 a b

0 1 c

0 0 1

 : |a|, |c| ≤ N, |b| ≤ N2

 .
Then |A| = (2N + 1)2(2N2

+ 1) ≥ 8N4 and |A · A · A| � N4; in other words, A does
not grow, and yet it is neither too large to grow nor a subset of an abelian group.

9. Growth of medium-sized and large sets

Let G = SL3, K = Z/pZ. Let A be a set of generators of G(K). We must show that, if
p4−δ

≤ |A| ≤ p4+δ , δ > 0, then A grows. We will, in fact, be able to show something
stronger: if |A| ≥ p3.2+δ′ , δ′ > 0, then A grows.

The key here will be to pass to a subgroup. We let H0 be as in §8.2. The group
H0 is then a subgroup of index 2 in a maximal parabolic subgroup of G(K), and so
[G(K) : H0] = 2(p2

+ p+ 1). Then A is a great deal larger than [G(K) : H0], and thus,
by Lemma 7.2, the intersection A−1A ∩ H0 will be large. We devoted most of §8 to the
question of which subsets ofH0 grow. IfA−1A∩H0 ⊂ H0 grows, then, by Lemma 7.3,A
itself grows. If, instead, there are subgroups H1, H2 as in Prop. 8.15 – so that A−1A∩H0
essentially contains H1 and is essentially contained in H2 – we can multiply conjugates
of H1 or H2 (“sticking subgroups in different directions”) to conclude that A grows.

9.1. Sticking subgroups of SL3 in different directions. Let us begin by considering
abelian subgroups H of SL3(K) that (a) are not contained in tori and (b) do not have
subgroups of index ≤ 3 lying on unipotent subgroups. It is easy to show that every such
abelian subgroup H is conjugate over SL3(K) to a subgroup of one of the following
groups:

H1,2 =


r x 0

0 r 0
0 0 r−2

 : r ∈ K∗, x ∈ K

 , (9.1)
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H2,3 =


r−2 0 0

0 r z

0 0 r

 : r ∈ K∗, z ∈ K

 , (9.2)

H1,3 =


r 0 y

0 r−1 0
0 0 r

 : r ∈ K∗, y ∈ K

 . (9.3)

(IfH contained at least one element with three distinct eigenvalues, thenH would lie on a
torus. IfH contains at least one element with two distinct eigenvalues, thenH is contained
in a conjugate of one of the groups H1,2, H2,3, H1,3. If no element of H contains at least
two distinct eigenvalues, then H has a subgroup H ′ of index ≤ 3 such that every element
of H ′ has 1 as its only eigenvalue, and then H ′ is, by definition, a unipotent group.)

Lemma 9.1. Let G = SL3, seen as a group defined over a field K of characteristic 6= 3.
Let H be one of the subgroups Hi,j listed above. Let g be the Lie algebra of G and h
the Lie algebra of H . Then there are Eg1, Eg2 ∈ g such that h, [Eg1, h], [Eg2, h] are linearly
independent and of dimension dim(h).

Proof. Since the three subgroups Hi,j listed above are conjugate over G(K), we can
assume without loss of generality thatH = H1,2. Then h is spanned by e1,1+e2,2−2e3,3
and e1,2, where ei,j is the 3-by-3 matrix having a 1 at the (i, j)th entry and 0s elsewhere.
Set Eg1 = e3,1, Eg2 = e2,3. ut

Proposition 9.2. Let G = SL3, seen as a group defined over a field K with char(K) = 0
or char(K) > 3. Let H ⊂ G be conjugate over G(K) to one of the subgroups Hi,j ⊂ H
listed above. Let A be a set of generators of G(K), and E a non-empty subset of H(K).
Then there are g0, g1, g2 ∈ Ak , k � 1, such that

|g0Eg
−1
0 · g1Eg

−1
1 · g2Eg

−1
2 | � |E|

3,

where the implied constants are absolute.

Proof. By Lemma 9.1, the assumptions of Prop. 4.13 are fulfilled. The conclusions of
Prop. 4.13 provide the linear-independence assumption of Prop. 4.12; we apply Prop. 4.12,
and are done. The implied constants are absolute because they depend only on n, which
is fixed (n = 3). ut

Let us now look at algebraic subgroups of a unipotent subgroup of SL3.

Lemma 9.3. Let G = SL3, defined over a field K . Let H be one of the algebraic sub-
groups of G listed in Lemma 4.15 ((4.16)–(4.23)) other than {I }. Let T ⊂ G be the
subgroup of diagonal matrices of G. Write g for the Lie algebra of G, h ⊂ g for the Lie
algebra of H , and t ⊂ g for the Lie algebra of T . Then there are g0, g1, . . . , g` ∈ G(K)

such that
Adg0(t),Adg1(h), . . . ,Adg`(h)

are linearly independent. Here ` = (dim(g)− dim(t))/dim(h).

Strictly speaking, Lemma 4.15 actually lists the sets of points H(K); it should be clear
which algebraic groups H are thereby listed.
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Proof. Set g0 = g1 = I . In every case, we will set g2, . . . , g` equal to permutation
matrices. If H is the whole group U of upper-triangular unipotent matrices, then ` = 2;
set g2 equal to the permutation matrix corresponding to the permutation (1 3)—that is,

g2 =

0 0 1
0 1 0
1 0 0

 .
IfH is as in (4.17), let g2, g3 be the matrices corresponding to the permutations (1 2) and
(1 3). For (4.18), choose g2, g3 corresponding to (1 3) and (2 3). For (4.18), (4.20) or
(4.21), we use the entire permutation group S3, i.e., we let g1, . . . , g6 be the permutation
matrices corresponding to each element of S3 in turn. For (4.22), we let g2 and g3 be the
permutation matrices corresponding to the 3-cycles in S3. Finally, for (4.23), we use the
entire permutation group S3. ut

Proposition 9.4. Let G = SL3, defined over a field K . Let H be conjugate to one of the
algebraic subgroups of G listed in Lemma 4.15 ((4.16)–(4.23)) other than {I }. Let T/K
be a maximal torus of G. Let ` = (dim(G) − dim(T ))/dim(H), where dim(X) is the
dimension ofX as variety. Let A be a set of generators ofG(K),D a non-empty subset of
T (K), and E a non-empty subset of H(K). Then there are g0, g1, . . . , g` ∈ Ak , k � 1,
such that

|g0Dg
−1
0 · g1Eg

−1
1 · · · g`Eg

−1
` | � |D| · |E|

`,

where the implied constants are absolute.

Proof. Lemma 9.3 states that the linear-independence assumption of Prop. 4.12 is true.
We apply Prop. 4.12, and we are done. The implied constants are absolute because they
depend only on n, which is fixed (n = 3). ut

9.2. Growth

Lemma 9.5. Let G = SL3. Let K = Z/pZ, p a prime. Let H0 < G(K) be as in (8.6).
Let A ⊂ G(K) be a set of generators of G(K), and let E be a non-empty subset of H0.
Then, for every ε > 0, one of the following conclusions holds:

(a) |Ak| � |A|1+ε , where k and the implied constant are absolute,
(b) |E · E · E| � |E|1+δ , where δ and the implied constant depend only on ε,
(c) |(A∪E)k| � |A|1/4−ε ·|E|2−2ε , where the implied constant is absolute and k depends

only on ε,
(d) |(A ∪ E)k| � |E|3−3ε , where k and the implied constant are absolute,
(e) |(A ∪ E)k| � p6

· |A|1/4−ε , where k and the implied constant are absolute.

Proof. Apply Prop. 8.15 with E instead of A. If (8.15) holds, we have conclusion (b).
Assume (8.15) does not hold. Then there are subgroups H1 GH2 G 〈A〉 as in Prop. 8.15.

Suppose first that H1 = {e}. Since H2 is then a nilpotent subgroup of SL3(K), ei-
ther H2 is an abelian group containing at least one element with at least two distinct
eigenvalues or H2 has a subgroup of index ≤ 3 contained in U(K) for some maximal
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unipotent subgroup U/K of G = SL3. Consider the latter case first. Since E is contained
in ≤ |E|ε cosets of H2, Lemma 7.2 implies |E2k ∩ U(K)| ≥ 3|E|1−ε . By Cor. 5.10,
either conclusion (a) holds (with k + 2 instead of k) or |Ak ∩ T (K)| � |A|1/4−ε for
some maximal torus T/K of G, where k and the implied constant are absolute. Suppose
|Ak ∩ T (K)| � |A|

1/4−ε . By Prop. 9.4, it follows that

|(A ∪ E)6k′+5k| � |Ak ∩ T (K)| |E2k ∩ U(K)|
2
� |A|1/4−ε |E|2−2ε,

where k′ and the implied constant are absolute (k′ is the constant k from Prop. 9.4).
Conclusion (c) follows (with 6k′ + 5k instead of k).

Suppose now thatH1 = {e} andH2 is an abelian group containing at least one element
with at least two distinct eigenvalues. Then eitherH2 is one of the groupsH1,2,H2,3,H1,3
in (9.1)–(9.3) or H2 lies in a maximal torus. Suppose first that H2 lies in a maximal torus.
Then, by Prop. 5.3,

|(A ∪ E)8k+8| � |E2 ∩H2|
4
≥ |E|4−4ε,

where k and the implied constant are absolute. Conclusion (d) follows (with 8k+8 instead
of k; we may assume ε < 1, and so 4 − 4ε > 3 − 3ε). Now suppose H2 is as in (9.1),
(9.2) or (9.3). Then, by Prop. 9.2,

|(A ∪ E)6k+3| � |E2 ∩H2|
3
≥ |E|3−3ε,

where k and the implied constant are absolute. Conclusion (d) follows again (with 6k+ 3
instead of k).

Suppose now that H1 6= {e}. We know from Prop. 8.15 that H1 contains a non-trivial
subgroup H of U(K), where U/K is a maximal unipotent subgroup of G. Then H is
conjugate to one of the subgroups listed in Lemma 4.15, (4.17)–(4.23). By Cor. 5.10,
either conclusion (a) holds (with k + 2 instead of k) or |Ak ∩ T (K)| � |A|1/4−ε , where
the implied constant is absolute. Suppose |Ak ∩ T (K)| � |A|1/4−ε . Then, by Prop. 9.4,

|(A ∪ E)k+12k′+6k′′ | � |A|
1/4−ε

· p6,

where k, k′, k′′ and the implied constants are absolute. Conclusion (e) follows (with k +
12k′ + 6k′′ instead of k). ut

Proposition 9.6. Let G = SL3. Let K = Z/pZ, p a prime. Let A ⊂ G(K) be a set of
generators of G(K). Suppose p3.2+η

≤ |A| ≤ p8−η, where η > 0. Then

|A · A · A| � |A|1+δ, (9.4)

where δ > 0 and the implied constant depend only on η.

Proof. Let E = A−1A ∩H0, where H0 < G(K) is as in (8.6). By Lemma 7.2,

|E| ≥
|A|

[G(K) : H0]
=

|A|

2(p2 + p + 1)
>
|A|

3p2 .

Apply Lemma 9.5 with ε = min(1/32, η/3).
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If case (a) of Lemma 9.5 holds, we obtain (9.4) by the tripling lemma (Lemma 2.2).
If case (b) of Lemma 9.5 holds, we obtain (9.4) by Lemma 7.3.

Suppose case (c) of Lemma 9.5 holds. Then

|A2k| ≥ |(A ∪ E)k| � |A|
1/4−ε
|E|2−2ε >

1
9p4 |A|

2+1/4−3ε,

where the implied constant is absolute. Since |A| ≥ p3.2+η, we see that |A|1+1/4
≥

p4+5η/4, and so
|A2k| � |A|

1+5η/4−3ε
= |A|1+η/4,

where the implied constant is absolute. We then obtain (9.4) by the tripling lemma.
Suppose case (d) of Lemma 9.5 holds. Then

|A2k| ≥ |(A ∪ E)k| � |E|
3−3ε >

1
27p6 |A|

3−3ε,

where the implied constant is absolute. Since |A| ≥ p3.2+η, we have |A|2·
3

3.2 � p6, and
thus

|A2k| � |A|
1+(2−2· 3

3.2 )−3ε
= |A|1+1/8−3ε

≥ |A|1+1/32,

where the implied constant is absolute. We obtain (9.4) by the tripling lemma.
Suppose, finally, that (e) of Lemma 9.5 holds. Then

|A2k| ≥ |(A ∪ E)k| � |E|
3−3ε > p6

· |A|1/4−ε .

Since |A| ≤ p8−η, where η > 0, we have p6
≥ |A|6/(8−η) ≥ |A|3/4+η (as η is certainly

< 7) and so |A2k| ≥ |A|
1+η−ε . We obtain (9.4) by the tripling lemma. ut

10. General conclusions and final remarks

10.1. The Main Theorem, related results and their consequences. We must now sim-
ply put together our work on small and large sets (§3—§6) with our work on medium-
sized and large sets (§9). (As should be clear from the wording, there is an overlap; we
have no use for it.)

Main Theorem. Let G = SL3. Let K = Z/pZ, p a prime. Let A ⊂ G(K) be a set of
generators of G(K). Suppose |A| ≤ |G(K)|1−ε , ε > 0. Then

|A · A · A| � |A|1+δ, (10.1)

where δ > 0 and the implied constant depend only on ε.

Proof. The condition |A| ≤ |G(K)|1−ε implies |A| ≤ p8−8ε < p8−ε . If |A| ≤ p3.5

(say) or p4.5
≤ |A| ≤ p8−ε , use Prop. 6.3. If p3.5 < |A| < p4.5, use Prop. 9.6 (with

η = 3.5− 3.2 = 0.3, say). ut

In the remainder, we shall need the following extremely simple lemma.
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Lemma 10.1. Let G be a group. Let A be a finite set of generators of G. Then, for every
` ≥ 1, either

|A`+1| ≥ |A`| + 1 or A` = G.

Proof. Since A` ⊂ A`+1, either |A`+1| ≥ |A`| + 1 or A`+1 = A`. If A`+1 = A`, then
A` is closed under multiplication by elements of A ∪ A−1. By the definition of A`, this
implies that A` is closed under the group operation. We already know that A` is closed
under inversion by the definition of A` (see (1.2)). Hence A` is a subgroup of G. Since A
generates G, this means that A` = G. ut

The Main Theorem has the following alternative statement. It looks stronger, but it is not
really; it is merely simpler to use sometimes.

Proposition 10.2. Let G = SL3. Let K = Z/pZ, p a prime. Let A ⊂ G(K) be a set of
generators of G(K). Suppose |A| ≤ |G(K)|1−ε , ε > 0. Then

|A · A · A| ≥ |A|1+δ,

where δ > 0 and the implied constant depend only on ε.

This amounts simply to the following: the� in (10.1) has been replaced by a ≥.

Proof. First, notice that (10.1) (that is, |A ·A ·A| � |A|1+δ) implies |A ·A ·A| ≥ |A|1+δ/2

for |A| larger than a constant C depending only on δ and on the implied constant in (10.1).
Since δ and the implied constant in (10.1) depend only on ε, which is fixed, we conclude
that the Main Theorem implies that

|A · A · A| ≥ |A|1+δ/2 (10.2)

whenever |A| ≤ |G|1−ε and |A| ≥ C, where C is an absolute constant.
If |A| < C, then (10.2) and Lemma 10.1 imply that |A3| ≥ |A| + 2 ≥ |A|1+2/C . By

the tripling lemma (Lemma 2.2), it follows that |A · A · A| ≥ |A|1+δ , δ depending only
on C, which is an absolute constant. ut

For most applications, it is necessary to supplement the Main Theorem with a result on
very large sets. The result we need was proven by Gowers [Gow] and (in great generality)
by Babai, Nikolov and Pyber ([NP], [BNP]).

Lemma 10.3. Let G = SL3. Let K = Z/pZ, p a prime. Let A ⊂ G(K) be a set of
generators of G(K). There is an absolute constant ε > 0 such that, if |A| > |G|1−ε , then

A · A · A = G(K). (10.3)

Proof. By [NP, Cor. 1 and Prop. 2],

A · A · A = G(K) (10.4)

provided that |A| > 2|G|1−1/(3(n+1))
= 2|G|1−1/12.
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Let ε = 1/13. Now |A| > |G(K)|1−1/13 implies |A| > 2|G(K)|1−1/12, provided that
p is larger than an absolute constant, and so (10.4) follows. (If p is not larger than an
absolute constant, Lemma 10.1 gives us (10.3) easily.) ut

Proof of Theorem 1.1. If A does not generate G(K), apply Prop. 8.16. Assume A gen-
erates G(K). If |A| > |G|1−ε , where ε is as in Lemma 10.3, then, by Lemma 10.3,
A ·A ·A = G(K). If |A| ≤ |G|1−ε , the Main Theorem shows that |A ·A ·A| � |A|1+δ ,
where δ is absolute. ut

We recall that Cor. 1.2 states that, for any set of generators A of G = SL3(Z/pZ),

diam(0(G,A))� (log |G|)c, (10.5)

where c and the implied constant are absolute.

Proof of Corollary 1.2. Let ε be as in Lemma 10.3. Apply Prop. 10.2 to A, then to A′ =
A · A · A, then to A′′ = A′ · A′ · A′, etc. After at most

k = log(1+δ)
log |G|
log |A|

=
log((log |G|)/(log |A|))

log(1+ δ)
≤

log((log |G|)/(log 2))
log(1+ δ)

�
1
δ
· log log |G|

steps, we shall have obtained a set A(k) with |A(k)| > |G|1−ε elements, where ε is as in
Lemma 10.3. We now apply Lemma 10.3 to A(k). We conclude that

A · · ·A︸ ︷︷ ︸
` times

= G,

where ` = 3k+1
= 3 · eO(

1
δ
·log log |G|)

= 3 · (log |G|)O(1/δ). Thus, (10.5) holds with
c = O(1/δ), where the implied constant is absolute. Since δ depends only on ε, and ε is
as in Lemma 10.3, i.e., an absolute constant, we see that δ itself is an absolute constant.

ut

For the sake of making matters self-contained, we could replace Lemma 10.3 with a
weaker result that we can prove “by hand”, namely, Lemma 10.3 with

Ak = G(K) (10.6)

instead of (10.3). (Here k is an absolute constant.) This weaker version of Lemma 10.3
can be proven as follows.

Sketch of proof of (10.6). Let U1, U2 and T be the algebraic subgroups of G consist-
ing of the unipotent upper triangular, unipotent lower triangular and diagonal matrices,
respectively. By Lemma 7.2, there are many (≥ p3−ε) elements of A−1A in U1(K),
many (≥ p3−ε) elements of A−1A in U2(K), and many (≥ p2−ε) elements of A−1A in
T (K). Assume ε < 1. Then the set A−1A ∩ U1(K) is too large not to generate U1(K)

(Lemma 4.15), and thus indeed generates U1(K). For the same reason, A−1A ∩ U2(K)

generates U2(K).
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Let D0 = A
−1A ∩ T (K). There are fewer than 3p elements of T (K) with repeated

eigenvalues; hence, for every g ∈ G, there are fewer than 3p elements g′ ∈ T (K) such
that g−1g′ has repeated eigenvalues. We choose an element g1 ∈ D0, then an element
g2 ∈ D0 such that g−1

1 g2 does not have repeated eigenvalues, then a g3 ∈ D0 such that
neither g−1

1 g3 nor g−1
2 g3 has repeated eigenvalues, etc. We stop when we cannot find a

gk+1 ∈ D0 such that each of g−1
1 gk+1, g−1

2 gk+1, . . . , g
−1
k gk+1 has distinct eigenvalues.

Now, for each 1 ≤ j ≤ k, the condition that g−1
j gk+1 have distinct eigenvalues rules out

fewer than 3p possible elements gk+1 of D0. Thus

k >
|D0|

3p
� p1−ε,

where the constant is absolute. Let D = {g1, . . . , gk}. Then every element of D−1D has
distinct eigenvalues.

Therefore, every element of D−1D acts on U1(K) and U2(K) without fixed points
(condition (3.1)). We now apply Cor. 3.2, once to the action of T (K) on U1(K) and once
to the action of T (K) on U2(K). We obtain

U1(K) ⊂ Ak and U2(K) ⊂ Ak (10.7)

(where k is absolute provided that ε is less than some fixed constant less than 1).
By direct computation, one can verify that every matrix g ∈ G(K) that is not upper

triangular can be written in the form g = u1 ·u2 ·u
′

1, where u1, u
′

1 ∈ U1(K), u2 ∈ U2(K),
and every matrix g ∈ G(K) that is not lower triangular can be written in the form g =

u2 ·u1 ·u
′

2, where u1 ∈ U1(K) and u2, u
′

2 ∈ U2(K). It can then be easily shown that every
g ∈ G(K) can be written in the form g = u1 · u2 · u

′

1 · u
′

2, where u1, u
′

1 ∈ U1(K) and
u2, u

′

2 ∈ U2(K). Thus, by (10.7), we conclude that G(K) ⊂ A4k, as was desired. ut

If, for the sake of making the paper relatively self-contained, one were to use (10.6)
instead of Lemma 10.3 in the proof of Cor. 1.2, one would obtain diam(0(G,A∪A−1))�

(log |G|)c instead of (10.5). (One could then deduce (10.5) by [Ba, Thm. 1.4].) Neither
the proof nor the statement of Thm. 1.1 would require any changes.

10.2. Work to do: other groups. It is natural to hope for a broad generalisation. The
methods in §5 are very likely to carry over to all semisimple groups of Lie type over arbi-
trary fields. One can thus arguably hope for a proof of the main theorem with SL3(Z/pZ)
replaced by G(K), G semisimple of Lie type, K a finite field. (The methods in §5 are
such that ε would have to depend on the Lie type ofG. Some very recent results of Pyber
[P] show that this is a reality, and not just a limitation of the method—a statement such
as the main theorem with ε independent of the rank of G would be false.)

Results such as those in §3.4 can probably be strengthened at least to the extent needed
for SLn. The main difficulties reside in generalising §6 and §9. As it stands, §6 uses the
fact that, for n = 2, 3, the conjugacy class of an element g ∈ SL3(K) is given by the
values χ(g) of characters χ of dimension n. This is no longer the case for n > 3. There
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do seem to be somewhat involved ways to avoid this problem by the use of a single
character of dimension n (such as the trace).

One of the problems in generalising §8—which is used in §9—lies in the fact that
SLn−1 can have a rather complicated subgroup structure for n > 3. (We are speaking of
SLn−1 because it is the more interesting part of any maximal parabolic subgroup of SLn.)
It does seem that, if one’s goal is simply to prove results on medium-sized sets as in §9—
rather than to study growth in subgroups for its own sake—there are ways to limit oneself
to the consideration of algebraic subgroups (of bounded degree) of SLn−1, as opposed to
all subgroups of SLn−1(K). This does simplify matters. However, the problem remains
that growth in some algebraic subgroups of SLn−1 may be harder to study than in SLn
itself. For example, right now, we are farther away from understanding growth in SOn−1
(n > 5) than in SLn.

Thus, one must either study all groups of Lie type together (since they are all isomor-
phic to some algebraic subgroup of SLn−1 for some n) or find a way to do things so that
one needs to examine only those subgroups of SLn−1 that are more or less isomorphic
to products of copies of SLm, m ≤ n − 1 (times something they act on). There seems to
be a way to carry out the latter plan—and thus arrive at results for SLn before the avail-
able techniques can be successfully modified to work for SOn—but substantial technical
difficulties remain.

Needless to say, what we have just discussed makes sense only if we aim at a statement
like the main theorem in the present paper—that is, a statement valid for sets A ⊂ G(K)
that generateG(K). If we do not require that A generateG(K), then, by definition, prov-
ing growth in G(K) involves proving growth in all subgroups of G(K), algebraic or not.
(There will be some subgroups where growth does not actually happen, namely, solvable
groups; they are not the real difficulty.) Thus, for example, proving an analogue of The-
orem 1.1 for G(K) = SLn(Fq) would involve proving growth in all finite groups (with
bounds allowed to depend only on n, where n is the dimension of the smallest faithful
representation over Fq of the finite group in question). This seems to be far away, and
will probably be rather cumbersome once it becomes possible: it would have to involve
the classification of finite simple groups.

* * *

The main theorem is still true if Z/pZ is replaced by R or C; it is easy to modify the
proof slightly to show as much. (Sum-product results over R and C are older and stronger
than those over finite fields.) However, this would arguably not be the right generalisation
to R or C. What is needed for results on expansion is a statement on convolutions of
measures; in the case of Z/pZ, such statements follow from results such as the main
theorem—namely, results on multiplication of sets—but, for infinite fields such as C, one
needs to start from stronger results. Over C, one should show that A · A · A not only has
more elements than A, but, furthermore, has more elements that are at a certain distance
from each other. Bourgain and Gamburd [BG2] showed how to strengthen the proof in
[He] accordingly in the case of SU(2). It remains to be seen how difficult it will be to do
the same to the proof in the present paper.
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