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Abstract. We compare some natural triangulations of the Teichmüller space of hyperbolic surfaces
with geodesic boundary and of some bordifications. We adapt Scannell–Wolf’s proof to show that
grafting semi-infinite cylinders at the ends of hyperbolic surfaces with fixed boundary lengths is
a homeomorphism. This way, we construct a family of equivariant triangulations of the Teich-
müller space of punctured surfaces that interpolates between Bowditch–Epstein–Penner’s (using
the spine construction) and Harer–Mumford–Thurston’s (using Strebel differentials). Finally, we
show (adapting arguments of Dumas) that on a fixed punctured surface, when the triangulation
approaches HMT’s, the associated Strebel differential is well-approximated by the Schwarzian of
the associated projective structure and by the Hopf differential of the collapsing map.

1. Introduction

1.1. Overview

The aim of this paper is to compare two different ways of triangulating the Teichmüller
space T (R, x) of conformal structures on a compact oriented surface R with distinct or-
dered marked points x = (x1, . . . , xn). Starting with [f : R → R′] ∈ T (R, x) and a
collection of weights p̃ = (p̃1, . . . , p̃n) ∈ 1n−1, both constructions produce a ribbon
graph G embedded in the punctured surface Ṙ = R \ x as a deformation retract, together
with a positive weight for each edge. A suitable completion of the space of such weighted
graphs can be identified with the topological realization of the arc complex A(R, x) via
Poincaré–Lefschetz duality on (R, x) (see for instance [Mon09b]), which is the simplicial
complex of (isotopy classes of) systems of (homotopically nontrivial, pairwise nonhomo-
topic) arcs that join couples of marked points and that admit representatives with disjoint
interior ([Har86], [BE88], [Loo95]).

Thus, both constructions provide a 0(R, x)-equivariant homeomorphism T (R, x) ×
1n−1 → |A◦(R, x)|, where 0(R, x) = π0Diff+(R, x) is the mapping class group of
(R, x) and A◦(R, x) ⊂ A(R, x) consists of proper systems of arcs A = {α0, . . . , αk},
namely such that Ṙ \ (α0 ∪ · · · ∪αk) is a disjoint union of discs and pointed discs. In fact,
properness of A is exactly equivalent to its dual ribbon graph being a deformation retract
of Ṙ.
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The HMT construction (due to Harer, Mumford and Thurston) appears in [Har86].
It uses Strebel’s result [Str67] on existence and uniqueness of a meromorphic quadratic
differential ϕ on a Riemann surface R with prescribed residues p at x to decompose
Ṙ into a disjoint union of semi-infinite |ϕ|-flat cylinders (one for each puncture xi with
p̃i > 0), that are identified along a critical graph G which inherits this way a metric. The
length of each edge of G will be its weight.

The BEP construction (due to Bowditch–Epstein [BE88] and Penner [Pen87]) uses
the unique hyperbolic metric on the punctured Riemann surface Ṙ. Given a (projectively)
decorated surface, that is, a hyperbolic surface Ṙ with cusps plus a weight p̃ ∈ 1n−1,
there are disjoint embedded horoballs of circumference p̃1, . . . , p̃n at the n cusps of Ṙ.
Removing the horoballs, we obtain a truncated surface Rtr with boundary, on which the
function “distance from the boundary” is well-defined. The critical locus of this function
is a spine G embedded in Rtr ⊂ Ṙ as a deformation retract and with geodesic edges,
whose horocyclic lengths provide the associated weights.

Both constructions share similar properties of homogeneity and real-analyticity (see
[HM79] and [Pen87]) and they also enjoy some good compatibility with the Weil–
Petersson symplectic structure on T (R, x), as explained later.

In this paper, we will interpolate these two constructions using the Teichmüller space
T (S) of hyperbolic surfaces with geodesic boundary (see also [Luo07]), where S is a
surface with boundary endowed with a homotopy equivalence S ↪→ Ṙ. The spine con-
struction works perfectly on such surfaces, even when they are nodal (which is the content
of Theorem 3.16), and it can be easily seen to reduce to the BEP case as the boundary
lengths p = (p1, . . . , pn) = rp̃ become infinitesimal (see also [Mon09c]). Also, the
Weil–Petersson Poisson structure can be explicitly determined, thus providing a general-
ization of Penner’s formula [Pen92].

Thus, the limit r := p1 + · · · + pn → 0 is completely understood in terms of hyper-
bolic surfaces with cusps and Bers’s augmented Teichmüller space [Ber74].

On the other hand, our comprehension of the limit r →∞ involves flat surfaces and
it shares some similarities with Thurston’s compactification [FLP79] of the Teichmüller
space. In fact, the space of proper arc systems |A◦(S)| naturally embeds in the space of
projective measured laminations. From a symplectic point of view, the Weil–Petersson
structure admits a precise limit as r → ∞, after a suitable normalization, which agrees
with Kontsevich’s piecewise linear symplectic form on |A(S)| defined in [Kon92] (see
[Mon09c]).

To give a more geometric framework to these limiting considerations, we produce a
few different bordifications of the Teichmüller space T (S) of a surface S with boundary,
whose quotients by the mapping class group 0(S) give different compactifications of the
moduli space. A convenient bordification from the point of view of the Weil–Petersson
Poisson structure is the extended Teichmüller space T̃ (S); whereas the most suitable one
for triangulations and spine constructions is the bordification of arcs T a(S) (described in
Theorem 3.16), whose definition looks a bit like Thurston’s but with some relevant dif-
ferences (for instance, we use t-lengths related to hyperbolic collars instead of hyperbolic
lengths). It is reasonable to believe that careful iterated blow-ups of T a(S) along its sin-



Riemann surfaces with boundary and natural triangulations of the Teichmüller space 637

gular locus would produce finer bordifications of T (S) in the spirit of [Loo95] (see also
[MP07]).

In order to explicitly link the HMT and BEP constructions, we construct a family
of isotopic triangulations of T (R, x) × 1n−1, parametrized by r ∈ [0,∞], that co-
incides with BEP for r = 0 and with HMT for r = ∞ (and this is the content of
Corollary 5.6). In particular, we prove that, for every complex structure on Ṙ and every
(p̃, r) ∈ 1n−1× [0,∞], there exists a unique projective structure P(Ṙ, rp̃) on Ṙ, whose
associated Thurston metric has flat cylindrical ends (with circumferences rp̃) and a hy-
perbolic core. Rescaling the lengths by a factor 1/r , we recognize that at r = ∞ the hy-
perbolic core shrinks to a graphG and the metric on the grafted surface is of the type |ϕ|,
where ϕ is a Strebel differential. This result (Theorem 5.4) can be restated in terms of
infinite grafting at the ends of a hyperbolic surface with geodesic boundary and the proof
adapts arguments of Scannell–Wolf [SW02].

Finally, we show that, for large r , two results of Dumas [Dum06], [Dum07b] for
compact surfaces still hold (Theorem 5.12). The first one says that, for r large, the Strebel
differential ϕ is well-approximated in L1

loc(Ṙ) by the Hopf differential of the collapsing
map associated to P(Ṙ, rp̃), that is the quadratic differential which is dz2 on the flat
cylinders S1 × [0,∞) and is zero on the hyperbolic part. The second result says that ϕ is
also well-approximated by the Schwarzian derivative of the projective structureP(Ṙ, rp).

1.2. Organization of the paper

In Section 2, we recall the definitions of the Teichmüller space T (S) of a surface S with
boundary and its augmentation, hyperbolic boundary lengths p = (p1, . . . , pn), mapping
class group, Weil–Petersson form and arc complex.

Incidentally, we discuss three topologies on the arc complex of S: the standard coher-
ent one, the metric one (which we will regularly use) and the one coming from the natural
embedding in the space of measured laminations on the doubled surface dS; and we show
that they agree on the locus of proper arc systems but they may differ in general.

Section 3 begins by introducing some coordinate systems on the Teichmüller space as-
sociated to a system of arcs, for instance the a-lengths (hyperbolic lengths of the arcs), the
t-lengths (hyperbolic widths of the estimated collars of the arcs) and the actual widths w.

Coordinates associated to arc systems do not allow us to rebuild the whole hyperbolic
surface in general, but only certain “visible” components. Hence, the triangulation maps
will always identify nodal surfaces whose visible components are isomorphic.

Our first main result is Theorem 3.16: the spine construction continuously extends
to the locus of nodal surfaces with finite boundary length and to the locus of projectively
decorated surfaces, there reproducing BEP’s triangulation (namely, the normalized widths
reduce to the λ-lengths as p → 0). The proof of the continuity, which is crucial, is
postponed to Appendix B.

Then we define the bordification of arcs T a(S), which is the space that we are really
able to triangulate: it is the closure of T (S) in the (projective) space of t-length functions.
This construction bears some similarity to Thurston’s, even though we use a stronger
topology on the t-length functions.
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Our second main result (Theorem 3.17) is an explicit description of T a : we construct
a homeomorphism 8 : |A(S)| × [0,∞]r → T a(S) that interpolates between the natural
inclusion |A(S)| ↪→ T a(S) at r := p1 + · · · + pn = ∞ and the inverse of the λ-lengths
at r = 0. This means that the t-lengths behave like w for r large and like λ−1 for r small.

We finally extend the augmented Teichmüller space by adding a copy of the arc com-
plex at r = ∞.

In Section 4 we recall an explicit formula [Mon09c] for the Weil–Petersson Poisson
structure in terms of lengths of arcs (Theorem 4.3) and we describe how it reduces to the
formulae of Penner [Pen92] at r = 0 and Kontsevich [Kon92] at r = ∞.

Moreover, we describe how to extend the previous triangulations to the case of a
surface with boundary S and a marked point on each boundary component, which is
somewhat analogous to having a closed pointed surface together with a nonzero tangent
vector at every marked point.

In Section 5 we relate hyperbolic surfaces with boundary to punctured surfaces. Here
the infinite grafting map plays a key role.

First we define the ribbon graph dual to an arc system and we describe the HMT
triangulation and its extension to nodal surfaces using the flat metrics associated to Strebel
differentials.

Then we introduce the infinite grafting, that takes a hyperbolic surface with geodesic
boundary 6 and returns a punctured surface gr∞(6) obtained by gluing a semi-infinite
flat cylinder at each boundary component of 6.

Our main result is Theorem 5.4: for every nonnegative p, the map gr∞ gives a hom-
eomorphism between the space of hyperbolic surfaces with boundary lengths p and the
Teichmüller space of closed surfaces with n marked points.

Composing the inverse of gr∞ with the spine construction, we obtain a (continuous)
family of triangulations of the Teichmüller space of closed surfaces with nmarked points,
which reduce to BEP’s for infinitesimal p and to HMT’s for infinite p (Corollary 5.6).

The continuity at infinity of gr∞ requires some explicit computations and it is proven
in Appendix D; for the injectivity of gr∞, we simply adapt arguments of Scannell–Wolf
[SW02] to our situation.

It would be interesting to investigate whether the techniques of Appendix D could be
employed to attack the following problem (which I believe was raised by Dennis Sulli-
van).

Problem. Fix the parameter p. Composing BEP’s with the inverse of HMT’s triangula-
tion maps, we obtain a self-homeomorphism S of the Teichmüller space. Given a point
q ∈ T (S), consider the Teichmüller distance between q and S(q). Is this distance uni-
formly bounded?

At the end of Section 5, we investigate the degeneration as r →∞ of the projective struc-
ture induced by the infinite grafting procedure, adapting arguments of Dumas [Dum06],
[Dum07b].

We stress that the proofs of these last results and of the local injectivity of the grafting
map assume the knowledge of the papers [SW02], [Dum06] and [Dum07b].
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In Appendix A we recall the Collar Lemma and a useful convergence criterion in the
augmented Teichmüller space. In Appendix C we prove two simple topological lemmata
that are needed in the main proofs.

After the Appendix, there is a table of the most used symbols.

2. Preliminaries

2.1. Double of a surface with boundary

A nodal surface with boundary is a compact, Hausdorff topological space S with count-
able basis in which every q ∈ S has an open neighbourhood Uq such that (Uq , q) is hom-
eomorphic to either: (C, 0), and then q is called a smooth internal point; ({z ∈ C | Im(z)
≥ 0}, 0), and then q is called a boundary point; or ({(z, w) ∈ C2 | zw = 0}, 0), and then
q is called a node. The smooth locus of a nodal surface is the complement of its nodes,
and the boundary locus ∂S is the union of its boundary points.

A nodal surface with marked points is a nodal surface S together with an ordered
subset x = (x1, . . . , xn) of distinct smooth interior points of S. We will write S◦ :=
S \ (∂S ∪ x).

We will say that a (nodal) surface S is closed if it has no boundary and no marked
points.

By slight abuse of language, we define a hyperbolic metric on (S, x) to be a complete
metric g of finite volume on the smooth locus of the punctured surface Ṡ := S \ x of
constant curvature−1, such that ∂S is geodesic. Notice that Ṡ contains the possible nodes
of S, and g acquires cusps at the marked points and at the nodes (which are points of S).

Given a (possibly nodal) surface S with boundary and/or marked points, we can con-
struct its double dS in the following way. Let S′ be another copy of S, with opposite
orientation, and let q ′ ∈ S′ the point corresponding to q ∈ S. Define dS to be S q S′/∼,
where∼ is the equivalence relation generated by q ∼ q ′ for every q ∈ ∂S and xi ∼ x′i for
every i. Clearly, dS is closed and it is smooth whenever S has no nodes and no marked
points.

dS can be oriented so that the natural embedding ι : S ↪→ dS is orientation-preserv-
ing. Moreover, dS comes naturally equipped with an orientation-reversing involution σ
that fixes ι(∂S) and the nodes ι(x) and such that dS/σ ∼= S. If S is hyperbolic, then dS
can be given a hyperbolic metric such that ι and σ are isometries.

Clearly, on dS there is a correspondence between complex structures and hyperbolic
metrics and, in fact, σ -invariant hyperbolic metrics correspond to complex structures such
that σ is anti-holomorphic. Thus, the datum of a hyperbolic metric with geodesic bound-
ary on S is equivalent to that of a complex structure on S such that ∂S is totally real.

2.2. Teichmüller space

Let S be a smooth surface with n ≥ 0 boundary components C1, . . . , Cn such that
χ(S) < 0.
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Definition 2.1. An S-marked hyperbolic surface is an orientation-preserving map f :
S → 6 of (smooth) surfaces that may shrink boundary components of S to cuspidal
points of 6 and that is a diffeomorphism everywhere else.

Two S-marked surfaces f1 : S → 61 and f2 : S → 62 are equivalent if there exists
an isometry h : 61 → 62 such that h ◦ f1 is homotopic to f2.

Definition 2.2. Denote by Ť (S) the set of equivalence classes of S-marked hyperbolic
surfaces and let T (S) ⊂ Ť (S) be the locus of surfaces 6 with no cusps.

For every point [f : S → 6] of Ť (S), we consider a universal covering space
u : 6̃◦ → 6◦ and we endow 6̃◦ with the pull-back metric. Thus, a locally isometric de-
veloping map dev : 6̃◦→ H is unique up to the action of PSL2(R) ∼= Aut(H). Using the
isomorphism f∗ : π1(S)→ π1(6

◦), the fundamental group π1(S) acts on 6̃◦ via isome-
tries and so we obtain a representation ρ : π1(S)→ PSL2(R). It can be easily shown that
ρ is discrete and faithful and that6 can be recovered as Bers–Nielsen kernel (see [Ber76])
of the complete surface H/ρ(π1(S)). Hence, the map Ť (S)→ Rep(π1(S),PSL2(R)) is
injective, where Rep(π1(S),PSL2(R)) = Hom(π1(S),PSL2(R))/PSL2(R) and PSL2(R)
acts on the space of homomorphisms by conjugation. Thus Rep(π1(S),PSL2(R)) has a
natural topology and we put on Ť (S) the subspace topology.

Definition 2.3. The locus T (S) ⊂ Ť (S) of surfaces 6 with no cusps is called the
Teichmüller space.

Let γ = {C1, . . . , Cn, γ1, . . . , γ3g−3+n} be a maximal system of disjoint simple
closed curves of S such that no γi is contractible and no couple {γi, γj } or {γi, Cj }
bounds a cylinder. The system γ induces a pair of pants decomposition of S, that is,
S◦ \⋃i γi = P1 ∪ · · · ∪ P2g−2+n, and each Ph is a pair of pants (i.e. a surface homeo-
morphic to C \ {0, 1}).

Given [f : S → 6] ∈ T (S), we can define `i(f ) to be the length of the unique
geodesic curve isotopic to f (γi). Fenchel–Nielsen twist deformations along γ1, . . . ,

γ3g−3+n act freely and transitively on the fibres of `γ : Ť (S)→ R3g−3+n
+ × Rn≥0, which

thus becomes an affine R3g−3+n-fibration. In fact, as the base is contractible, this fibration
is trivializable. This means that one can define global twist parameters τi(f ) on Ť (S) that
coordinatize the fibres of `γ (see [Abi80], [BP92] or [Rat06], for instance). The resulting
global functions (pj , `i, τi) are called Fenchel–Nielsen coordinates.

The boundary length map L : Ť (S)→ Rn≥0 is defined as L([f ]) = (p1, . . . , pn) and

we write Ť (S)(p) := L−1(p) for p ∈ Rn≥0. Thus, T (S) = Ť (S)(Rn+).

2.3. The arc complex

Assume that the smooth surface S has at least a boundary component or a marked point.
Let A(S) be the set of all nontrivial isotopy classes of simple arcs α ⊂ S with α◦ ⊂ S◦
and endpoints at ∂S or at the marked points of S. A k-system of arcs A = {α1, . . . , αk}
⊂ A(S) is a subset of arcs of S that admit representatives which can intersect only at the
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marked points. The systemA fills (resp. quasi-fills) S if S\A := S\⋃αi∈A αi is a disjoint
union of discs (resp. discs, pointed discs and annuli homotopic to boundary components);
A is also called proper if it quasi-fills S ([Loo95]).

Definition 2.4 ([Har86]). The complex of arcs A(S) of a surface S with boundary and/or
marked points is the simplicial complex whose k-simplices are (k + 1)-systems of arcs
on S.

Denote by |A(S)| the geometric realization of A(S), which comes endowed with two
natural topologies. The coherent topology is the finest topology that makes the realization
of all simplicial maps continuous. The metric topology is induced by the path metric, for
which every k-simplex is isometric to the standard1k ⊂ Rk+1 and every attachment map
is a local isometry.

We will denote by A◦(S) ⊂ A(S) the subset of proper systems of arcs, which is the
complement of a lower-dimensional simplicial subcomplex, and by |A◦(S)| ⊂ |A(S)|
the locus of weighted proper systems, which is open and dense. The metric topology
on |A(S)| is coarser than the coherent one, but they agree where the complex is locally
finite, namely on |A◦(S)|. Endowing all realizations with the metric topology will be our
standard choice, unless differently specified.

Notation. If A = {α1, . . . , αk} ∈ A(S), then a point w ∈ |A| ⊂ |A(S)| is a formal sum
w = ∑

i wiαi such that wi ≥ 0 and
∑
i wi = 1, which can also be seen as a function

w : A(S)→ R supported on A.

Let ML(dS) be the space of measured laminations on dS and let PML(dS) be
its projectivization (see [FLP79]). Denote by ML(dS)σ and PML(dS)σ the fixed loci
under the involution σ . As an arc αi ⊂ S doubles to a simple closed curve in dS, there is
a set-theoretic inclusion D : |A(S)| ↪→ PML(dS)σ .

Lemma 2.5. (a) The subspace topology induced by D is strictly coarser than the coher-
ent topology and strictly finer than the metric topology.

(b) The image of D is neither open nor closed.
(c) The restriction ofD to |A◦(S)| (where both topologies coincide) is a homeomorphism

onto an open subset of PML(dS)σ .

Proof. To prove (a), fix a maximal system of arcs A = {αi} and let Dαi ⊂ dS be the
double of αi . If w(m) = ∑i w

(m)
i αi → w = ∑i wiαi , then w(m)i → wi for every i and

so D(w(m)) = ∑
i w

(m)
i [Dαi] →

∑
i wi[Dαi] = D(w). This shows that the coherent

topology is finer than the subspace topology.
To compare the subspace and metric topologies, pick w = ∑

wiαi ∈ |A(S)| and
w(m) = ∑

v
(m)
j β

(m)
j ∈ |A(S)| such that D(w(m)) → D(w) in PML(S). Complete

A = {αi} to a maximal system of arcs A′ = {αi} ∪ {α′h} and define w′ = w + δ∑h α
′
h,

where δ = mini wi .
For every m, write w(m) as a sum w̃(m) + ŵ(m) of two nonnegative multi-arcs in such

a way that all arcs in the support of ŵ(m) cross A′ and that i(w̃(m), w′) = 0.
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Let tm be the sum of the weights in ŵ(m), so that d(w,w(m)) ≤ d(w, w̃(m)) + tm,
where d is the path metric on |A(S)|. Because

tmδ ≤ i(ŵ(m), w′) = i(w(m), w′)→ i(w,w′) = 0

it follows that tm → 0. Moreover, w̃(m) has support contained in A′ and so w(m) → w

in |A(S)| for the metric topology. This proves that the subspace topology is finer than the
metric topology.

Now, pick two disjoint arcs {α, β} ∈ A(S) and a simple closed curve γ (possibly, a
boundary component of S) such that α ∩ γ = ∅ and i(β, γ ) = 1. Consider the weighted
arc systems w(m) = (1− εm)α+ εmT mγ (β) in |A(S)|, where T mγ is the k-uple Dehn twist
along γ . If εm > 0 and εm → 0, then w(m) → α for the metric topology but w(m) is
divergent for the coherent topology.

One can check that D(w(m)) → [α] for εm = 1/m2 and that D(w(m)) → [γ ] for
εm = 1/

√
m. As a consequence, the metric topology is strictly coarser than the subspace

topology, which is strictly coarser than the coherent topology; moreover, the image of D
is not closed.

Clearly, the image of D is not open: if α is an arc and γ ⊂ S is simple closed curve
disjoint from α, then [Dα] = D(α) and [Dα + m−1Dγ ] → [Dα], but [Dα + m−1Dγ ]
does not belong to the image of D. This proves (b).

Finally, notice that D(|A◦(S)|) is open by invariance of domain, because |A◦(S)| and
PML(dS)σ are topological manifolds of the same dimension (the former result seems
due to Whitney [HM79] and the latter to Thurston [FLP79]). Hence, (c) follows from (a).

ut

2.4. Weil–Petersson metric

Let S be a smooth surface with (possibly empty) boundary ∂S = C1 ∪ · · · ∪ Cn and
χ(S) < 0. Let [f : S → 6] be a point of T (S).

Define Q6 to be the real vector space of holomorphic quadratic differentials q(z)dz2

whose restriction to ∂6 is real. Similarly, define the real vector space of harmonic Bel-
trami differentials as B6 := {µ = µ(z)dz̄/dz = ϕ̄ ds−2 |ϕ ∈ Q6}, where ds2 is the
hyperbolic metric on 6.

It is well-known that the tangent space T[f ]T (S) to T (S) at [f ] can be identified with
B6 and, similarly, the cotangent space T ∗[f ]T (S) ∼= Q6 . The natural coupling is given by

B6 ×Q6 → C,

(µ, ϕ) 7→
∫
6

µϕ.

Definition 2.6. The Weil–Petersson pairing on T[f ]T (S) is defined as

h(µ, ν) :=
∫
6

µν̄ ds2 with µ, ν ∈ B6 .
Writing h = g + iω, we call g the Weil–Petersson Riemannian metric and ω the Weil–
Petersson form. For T ∗[f ]T (S), we similarly have h∨(ϕ, ψ) := ∫

6
ϕψ̄ ds−2 with ϕ,ψ

∈ Q6 . The Weil–Petersson Poisson structure is η := Im(h∨).
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It follows from the definition that the doubling map D : T (S)→ T (dS) is a homo-
thety of factor 2 onto a real Lagrangian submanifold of T (dS).

From Wolpert’s work [Wol83], we learn that ω =∑N
i=1 d`i∧dτi , where (p1, . . . , pn,

`1, τ1, . . . , `N , τN ) are Fenchel–Nielsen coordinates, and so ω is degenerate whenever
S has boundary. In this case, the symplectic leaves are the T (S)(p), which are not totally
geodesic subspaces for g (unless p1 = · · · = pn = 0 and the boundary components
degenerate to cusps).

Remark 2.7. T (S) is naturally a complex manifold if S is closed. In this case, ω and η
are nondegenerate and the Weil–Petersson metric is Kähler (see [Ahl61]).

2.5. Augmented Teichmüller space

Let S be a smooth surface with boundary ∂S = C1 ∪ · · · ∪ Cn such that χ(S) < 0.

Definition 2.8. An S-marked stable surface 6 is a hyperbolic surface possibly with
geodesic boundary components, cusps and nodes plus an isotopy class of maps f :
S → 6 that shrinks some boundary components of S to the cusps of 6, some loops
of S to the nodes of 6 and is an orientation-preserving diffeomorphism elsewhere.

We say that f1 : S → 61 and f2 : S → 62 are equivalent if there exists an isometry
h : 61 → 62 such that h ◦ f1 is homotopic to f2. We denote by T (S) the set of stable
S-marked surfaces up to equivalence. Clearly, T (S) ⊂ Ť (S) ⊂ T (S).

To describe the topology of T (S) around a stable surface [f : S → 6] with k
cusps and d nodes, choose a system of curves {C1, . . . , Cn, γ1, . . . , γN } on S (with N =
3g − 3 + n) adapted to f , i.e. such that f−1(νj ) = γj for each of the nodes ν1, . . . , νd
of 6. Clearly, the Fenchel–Nielsen coordinates (p1, . . . , pn, `1, τ1, . . . , `N , τN ) extend
over [f ], with the exception of τ1(f ), . . . , τd(f ), which are not defined.

We declare that the sequence {[fm : S → 6m]} ⊂ T (S) converges to [f ] if pi(fm)
→ pi(f ) for 1 ≤ i ≤ n, j̀ (fm) → j̀ (f ) for 1 ≤ j ≤ N and τj (fm) → τj (f ) for
d + 1 ≤ j ≤ N .

Definition 2.9. With the above topology, T (S) is called the augmented Teichmüller
space (see [Ber74]).

By definition, the boundary length map extends by continuity to L : T (S) → Rn≥0
and we denote by T (S)(p) the fibre L−1(p). We will write ‖p‖ for p1 + · · · + pn and
‖L(f )‖ for the L1 norm of L(f ).

Notice that the Weil–Petersson pairing diverges in directions transverse to ∂T (S).
However, the divergence is so mild that points of ∂T (S) are at finite distance from points
in the interior (see [Mas76]). In fact, for every p ∈ Rn≥0 the augmented T (S)(p) is the
completion of T (S)(p) with respect to the Weil–Petersson metric.

Remark 2.10. According to our definition, if S has nonempty boundary, then T (S) is
not WP-complete and in fact the image of T (S) inside T (dS) under the doubling map is
not closed because it misses all surfaces with boundaries of infinite length.
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2.6. The moduli space

Let S be a smooth surface of genus g with boundary components C1, . . . , Cn such that
2 − 2g − n = χ(S) < 0. The augmented Teichmüller space T (S) carries a natural right
action of the group Diff+(S) of orientation-preserving diffeomorphisms of S that send Ci
to Ci for every i = 1, . . . , n:

T (S)× Diff+(S) → T (S)

([f : S → 6], h) 7→ [f ◦ h : S → 6].

Clearly, the connected component Diff0(S) of the identity acts trivially on T (S).

Definition 2.11. The mapping class group of S is the quotient

0(S) := Diff+(S)/Diff0(S) = π0Diff+(S).

The quotient M(S) := T (S)/0(S) is the moduli space of stable hyperbolic surfaces of
genus g with n (ordered) boundary components.

The quotient map π : T (S) → M(S) can be identified with the forgetful map
[f : S → 6] 7→ [6]. Moreover, we can identify the stabilizer Stab[6](0(S)) with
the group Iso+(6) of orientation-preserving isometries of 6, which is finite.

M(S) can be given a natural structure of orbifold (with corners), called the Fenchel–
Nielsen smooth structure. Let [f : S → 6] be a point of T (S) and let (p1, . . . , pn, `1,

τ1, . . . , `N , τN ) be Fenchel–Nielsen coordinates adapted to f . A local chart for (the
Fenchel–Nielsen smooth structure of) M(S) around [6] is given by

Rn≥0 × C3g−3 → M(S)

(p, z) 7→ 6(p, z),

where [f ′ : S → 6(p, z)] is the point of T (S) with coordinates (p1, . . . , pn, `1, τ1, . . . ,

`N , τN ) with j̀ = |zj | and τj = |zj | arg(zj )/2π .

Remark 2.12. As shown by Wolpert [Wol85], the smooth structure on ∂M(S) =
M(S) \M(S) coming from Fenchel–Nielsen coordinates and the one coming from alge-
braic geometry (for instance, see [DM69] or [AC09]) are not the same.

We can identify the (co)tangent space to T (S) at [f : S → 6] with the (co)tangent
space toM(S) at [6]. It follows by its very definition that the Weil–Petersson metric and
the boundary length map descends to M(S) and that M(S)(p) is the metric completion
of M(S)(p) for every p ∈ Rn≥0.

The group Diff+(S) also acts on A(S) asA·h := h−1(A), and so on |A(S)| preserving
the subspace |A◦(S)|. Moreover, this action factors through 0(S). We recall the following
simple fact.

Lemma 2.13. |A(S)|/0(S) is compact.
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Proof. It is sufficient to notice the following facts:

• the above action may not be strictly simplicial, but it is on the second barycentric
subdivision A(S)′′,
• consequently, the action is continuous,
• A(S)/0(S) is a finite set and so is A(S)′′/0(S). ut

3. Triangulations

3.1. Systems of arcs and widths

Let S be a smooth surface of genus g with boundary components C1, . . . , Cn such that
χ(S) < 0. Let A = {α1, . . . , αN } ∈ A◦(S) be a maximal system of arcs on S (so that
N = 6g − 6+ 3n).

Fix a point [f : S → 6] in T (S). For every i = 1, . . . , N there exists a unique
geodesic arc on 6 in the isotopy class of f (αi) that meets ∂6 perpendicularly and which
we will still denote by f (αi); denote by ai = `αi (f ) its length and let si = cosh(ai/2).
Notice that 6 \ f (A) is a disjoint union of right-angled hexagons {H1, . . . , H4g−4+2n},
so that the following is immediate (see also [Ush99], [Mon09c]).

Lemma 3.1. The maps aA : T (S) → RA+ and sA : T (S) → RA+ given by aA =
(a1, . . . , aN ) and sA = (s1, . . . , sN ) are real-analytic diffeomorphisms.

Let H be such a right-angled hexagon and let (Eαi, Eαj , Eαk) be the cyclic set of oriented
arcs that bound H , so that ∂H = Eαi ∗ Eαj ∗ Eαk . If Eαx, Eαy are oriented arcs with endpoint
on the same boundary component C, denote by d(Eαx, Eαy) the length of the portion of C
running from the endpoint of Eαx to the endpoint of Eαy along the positive direction of C.

Define wA(Eαi) = 1
2 [d(Eαi,

E
αj )+ d(Eαk,

E
αi)− d(Eαj ,

E
αk)], where

E
αx is the oriented arc

obtained from Eαx by switching its orientation.

Definition 3.2. For every αi ∈ A, the width of αi associated to [f ] is wA(αi) =
wA(Eαi)+ wA(

E

αi).

3.2. The t-coordinates

Let S be a surface as in the previous section.

Definition 3.3. The t(ransverse)-length of an arc α at [f ] is tα(f ) := T (`α(f )), where
T (x) := 2 arcsinh(1/sinh(x/2)).

Notice that T (x) : [0,∞] → [0,∞] is a decreasing function of x (similar to the
width of the collar of a closed curve of length x provided by Lemma A.1). Moreover, T
is involutive, T (x) ≈ 4e−x/2 as x →∞ and T (x) ≈ 2 log(4/x) as x → 0.

Back to the t-length, the following lemma reduces to a statement about hyperbolic
hexagons with right angles.
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Lemma 3.4. For every maximal system A of arcs,

tA : Ť (S)→ RA≥0

[f ] 7→ (tα1(f ), . . . , tαN (f ))

is a continuous map that restricts to a real-analytic diffeomorphism T (S)→ RA+. More-
over, for every [f ] ∈ Ť (S) with L(f ) 6= 0, there exists an A such that tA is a system of
coordinates around [f ].
Consequently, the t-length map Ť (S) × A(S) → R≥0 defined as (f, α) 7→ tα(f ) gives
an injection

j : T (S)→ P(A(S))× [0,∞]
[f ] 7→ ([t•(f )], ‖t•(f )‖∞),

where L∞(A(S)) is the R+-cone of bounded maps t : A(S)→ R≥0 and P(A(S)) is its
projectivization.

Notice that P(A(S)) has a metric induced from the unit sphere of L∞(A(S)) and that
0(S) acts on P(A(S)) by permuting some coordinates. Thus, P(A(S)) × [0,∞] has a
0(S)-invariant metric.

Fact 3.5. j is continuous.

This will follow from Proposition 3.18.

Definition 3.6. Call the closure T a(S) of T (S) in P(A(S))× [0,∞] the bordification of
arcs. By the “finite part” of T a(S) we will mean T a(S) ∩ P(A(S))× [0,∞). Define the
compactification of arcs to be the quotient Ma

(S) := T a(S)/0(S).
We will give an explicit description of the boundary points in T a(S) and we will show

that Ma
(S) is Hausdorff and compact.

3.3. The spine construction

Let S be a smooth surface with boundary ∂S = C1 ∪ · · · ∪Cn such that χ(S) < 0 and let
[f : S → 6] be a point in T (S).

The valence val(p) of a point p ∈ 6 is the number of paths from p to ∂6 of minimal
length.

Definition 3.7. The spine of 6 is the locus Sp(6) of points of 6 of valence at least 2.

One can easily show that Sp(6) = V ∪ E is a one-dimensional CW-complex em-
bedded in 6, where V = val−1([3,∞)) is a finite set of points, called vertices, and
E = val−1(2) is a disjoint union of finitely many (open) geodesic arcs, called edges.

For every edge Ei ⊂ E of Sp(6), we can define a dual arc αi in the following way.
Pick p ∈ Ei and denote by γ1 and γ2 the two shortest paths that join p to ∂6. Then αi is
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the shortest arc in the homotopy class (with endpoints on ∂6) of γ−1
1 ∗ γ2. Let the spinal

arc system Asp(6) be the system of arcs dual to the edges of Sp(6), which is proper
because 6 retracts by deformation onto Sp(6) just flowing away from the boundary.

Even if the spinal arc system is not maximal, widths wsp can be associated to Asp(6)

in the following way. For every oriented arc Eαi ∈ Asp(6) ending at yi ∈ Cm, orient
the dual edge Ei in such a way that ( EEi, Eαi) is positively oriented and call v the starting
point of EEi . Every point of Ei has exactly two projections, that is, two closest points
in ∂6; the endpoint of Eαi selects only one of these, which belongs to Cm. Denote by
v′ ∈ Cm the projection of v determined by Eαi . Define wsp(Eαi) to be the distance with
sign dCm(yi, v

′) along Cm, which is certainly positive if αi and Ei intersect, but might be
negative otherwise. However, the sum wsp(αi) = wsp(Eαi) + wsp(

E

αi) is always positive,
being the length of either of the two projections of Ei .

Example 3.8. In Figure 1, we have Eαi = −→ziyi , v′ = fk and wsp(Eαi) > 0.

zi

yi

mi

fi

zj

yj

mj

fj

zk

yk

mk

fk

v

Eαi

EEi

γi

γj

γk

Fig. 1. Geometry of the spine close to a trivalent vertex.

Theorem 3.9 (Ushijima [Ush99]). Given a hyperbolic surface with nonempty bound-
ary 6, let A(6)+ be the set of all maximal systems of arcs A such that wA(αi) ≥ 0
for all αi ∈ A. Then A(6)+ is nonempty and the intersection of all systems in A(6)+ is
exactlyAsp(6). Moreover,wsp(α) = wA(α) > 0 for all α ∈ Asp(6) and allA ∈ A(6)+.

Remark 3.10. Let H ⊂ 6 be a right-angled hexagon, bounded by (Eαi, Eαj , Eαk), and set
γi = γ (Eαi) as in Figure 1. An easy computation [Mon09c] shows that

sinh(wsp(Eαi)) sinh(ai/2) = cos(γi) =
s2
j + s2

k − s2
i

2sj sk
(∗)
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and so

sinh(wsp(Eαi)) =
s2
j + s2

k − s2
i

2sj sk
√
s2
i − 1

and wsp(Eαi) ≤ 1
2
tαi .

Theorem 3.11 (Luo [Luo07]). Given a smooth surface S with nonempty boundary and
χ(S) < 0, the map

W : T (S) → |A◦(S)| × R+
[f : S → 6] 7→ f ∗wsp

is a 0(S)-equivariant homeomorphism.

Notice that the construction extends to Ť (S) \ Ť (S)(0) but the locus Ť (S)(0) of sur-
faces with n cusps is problematic, because the function “distance from the boundary
∂6” diverges everywhere on 6. This can be easily fixed by considering the real blow-up
Bl0 Ť (S) of Ť (S) along Ť (0). The exceptional locus can be identified with the space of
projectively decorated surfaces ([BE88], [Pen87]), that is, of couples ([f : S → 6], p),
where [f ] is an S-marked hyperbolic surface with n cusps and p ∈ 1n−1 ∼= P(Rn≥0) is a
ray of weights (the decoration).

We recall the following two simple facts. The precise definitions of λ-lengths and
simplicial coordinates can be found in Appendix B.

Lemma 3.12 ([Mon09c]). For every maximal system of arcsA (of cardinalityN = 6g−
6+ 3n), the associated t-lengths extend to a real-analytic map

tA : Bl0 Ť (S)→ 1N−1 × [0,∞).

On the exceptional locus, the projectivized t-lengths are inverses to the projectivized
λ-lengths (see [Pen87] and Definition B.1). Thus, tA gives a system of coordinates on
[Ť (S)(0)× (1n−1)◦]∪T (S). Moreover, for every (f, p) ∈ Ť (S)(0)×∂1n−1 there exists
an A such that tA gives a chart around (f, p).

Theorem 3.13 ([Mon09c]). The mapW extends to a 0(S)-equivariant homeomorphism

W̌ : Bl0 Ť (S)→ |A◦(S)| × [0,∞).

On the exceptional locus, the projectivized widths coincide with the projectived simplicial
coordinates (as they are called in [Pen87]; in [BE88] they are called ϑ-coordinates) and
so there W̌ coincides with BEP’s homeomorphism.

3.4. Spines of stable surfaces

Notice that the spine construction extends to stable hyperbolic surfaces 6 (blowing up
the locus of surfaces with n cusps), discarding the components of 6 where the distance
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from ∂6 is infinite. As a consequence, the weighted arc system we can produce does not
allow us to reconstruct the full surface, but just a visible portion of it.

Definition 3.14. Let6 be a stable hyperbolic surface with boundary (and possibly cusps)
or let (6, p) be a stable (projectively) decorated surface. A component of6 is called visi-
ble if it contains a boundary circle or a positively weighted cusp. Denote by6+ the visible
subsurface of 6, that is, the union of the smooth points of all visible components. Two
points [f1 : S → 61] and [f2 : S → 62] of T̂ (S) := Bl0 T (S) are visibly equivalent,
[f1] ∼vis [f2], if there exists a third point [f : S → 6] and maps hi : 6 → 6i for
i = 1, 2 such that hi restricts to an isometry 6+→ 6i,+ and hi ◦ f ' fi for i = 1, 2.

The spine Sp(6) of a stable hyperbolic surface 6 with geodesic boundary (or with
weighted cusps) can only be defined inside6+, so that its dual system of arcsAsp(6)will
be contained in 6+ too. Given a marking [f : S → 6], we will write S+ = f−1(6+),
so that S+ will be the maximal subsurface of S (unique up to isotopy), quasi-filled by
f−1(Asp(6)), which carries positive weights f ∗wsp.

f

S

6

invisible

Fig. 2. An example of topological type associated to an arc system.

Conversely, given a system of arcs A ∈ A(S), the visible subsurface S+ associated to
A is the isotopy class of maximal open subsurfaces embedded in S◦ such that S+ ' S+
and A is contained in S+ as a proper system of arcs. More concretely, S+ is the union
of a closed tubular neighbourhood of A and all components of S \ A which are discs or
annuli isotopic to some end of S \A. If 6 is obtained from S by collapsing the boundary
components of S+ and the possible resulting two-noded spheres to nodes of 6, then we
obtain an isotopy class of maps f : S → 6, which depends only on A. We will refer to
this map, or just to 6 if we work in the moduli space, as the topological type of A (see
Figure 2).
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Given weights w ∈ |A|◦ × [0,∞), the components of 6+ = f (S+) are quasi-
filled by the arc system f (A); because of Theorem 3.13, they can be given a hyperbolic
metric such that f (A) is its spinal arc system with weights f∗(w). When no confusion is
possible, we will still denote by [f : S → 6] the class of visibly equivalent S-marked
stable surfaces determined by f .

This construction defines a 0(S)-equivariant extension of the previous W−1,

Ŵ
−1 : |A(S)| × [0,∞)→ T̂ vis(S),

where T̂ vis(S) = T̂ (S)/∼vis. Observe that T (S) is a metric space with the Weil–Peters-
son metric, T̂ (S) inherits a 0(S)-equivariant metric from its natural embedding inside
T (S) × 1n−1 × [0,∞) and T̂ vis(S) can be endowed with a 0(S)-equivariant quotient
metric defined as

dT̂ vis([f ], [g]) := inf
k

{ k∑
i=0

dT̂ ([fi], [gi])
∣∣∣ f0 ∼vis f, gi ∼vis fi+1, gk ∼vis g

}
.

The argument above shows that Ŵ−1 is bijective. As already noticed in [BE88] and
[Loo95], the map Ŵ is not continuous if |A(S)| is endowed with the coherent topology.

Remark 3.15. |A(S)| is locally finite at w⇔A = supp(w) is a proper system of arcs⇔
w has a countable fundamental system of coherent neighbourhoods. Moreover, a sequence
converges for the coherent topology if and only if it is eventually in a fixed closed simplex
and there it converges in the Euclidean topology.

The discontinuity of Ŵ at ∂T (S) with respect to the coherent topology can be seen as
follows. Consider a marked surface [f : S → 6] with a node f (γ ) = q ∈ 6 such that
not all the boundary components of 6 are cusps and denote by A a maximal system of
arcs of S such that Ŵ (f ) ∈ |A| × R+. Choose a sequence [fm : S → 6m] with Ŵ (fm)
contained in |A|◦ × R+ and such that [fm] → [f ]. If Tγ is the right Dehn twist along γ
and f ′m = fm ◦ T mγ , then [f ′m] still converges to [f ]. On the other hand, the Ŵ (f ′m)’s all
belong to the interior of distinct maximal simplices of |A(S)| and so the sequence Ŵ (f ′m)
is divergent for the coherent topology.

The correct solution (see [BE88]), which we will adopt without further notice, is to
equip |A(S)| with the metric topology, whose importance will also be clear in the proof
of Lemma C.1.

Theorem 3.16. The 0(S)-equivariant natural extension

Ŵ : T̂ vis(S)→ |A(S)| × [0,∞)
is a homeomorphism.

Proof. We know that Ŵ is bijective. The continuity of Ŵ is dealt with in Lemma B.4. In
order to prove that Ŵ is a homeomorphism, it is sufficient to show that so is the induced
map

Ŵ
′ : M̂vis(S)→ (|A(S)|/0(S))× [0,∞)

where M̂vis(S) = T̂ vis(S)/0(S).
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In fact, T̂ vis(S) and |A(S)| are metric spaces and 0(S) acts on both by isometries.
Moreover, the action on |A(S)| is simplicial on the second baricentric subdivision, and so
its orbits are discrete.

On the other hand, the map Ŵ ′ is clearly proper, because T̂ vis(S)(p)/0(S) is compact

for every p ∈ 1n−1 × [0,∞). Hence, Ŵ ′ is a homeomorphism. By Lemma C.1(b), Ŵ is
a homeomorphism too. ut

3.5. The bordification of arcs

Define a map
8 : |A(S)| × [0,∞] → T a(S)

in the following way:

8(w, ‖p‖) =


([λ−1• (Ŵ

−1
(w, 0))], 0) if ‖p‖ = 0,

j (Ŵ
−1
(w, ‖p‖)) if 0 < ‖p‖ <∞,

([w],∞) if ‖p‖ = ∞.

The situation is thus as in the following diagram:

|A(S)| × [0,∞) oo Ŵ

∼=� _

��

T̂ vis(S)� _

ĵ

��
|A(S)| × [0,∞] 8 // T a(S)

Theorem 3.17. 8 is a 0(S)-equivariant homeomorphism. Thus,Ma
(S) = T a(S)/0(S)

is compact.

For homogeneity of notation, we set W
a := 8−1 : T a(S)→ |A(S)| × [0,∞].

In order to prove Theorem 3.17, we need a few preliminary results.

Proposition 3.18. The map T (S) ↪→ T a(S) extends to a continuous ĵ : T̂ vis(S) ↪→
T a(S).
Proof. The continuity of ĵ follows from Lemma B.2. Moreover, Lemmas 3.4 and 3.12
ensure that the t-lengths separate the points of T̂ vis(S) and so ĵ is injective. ut
Lemma 3.19. Let {[fm : S → 6m]} be a sequence in T (S).
(a) ‖t•(fm)‖∞→ 0 if and only if ‖L(fm)‖ → 0.
(b) ‖t•(fm)‖∞→∞ if and only if ‖L(fm)‖ → ∞.
(c) ‖t•(fm)‖∞ is bounded away from zero⇔ ‖L(fm)‖ is bounded away from zero.

Proof. Because wsp(α, fm) ≤ tα(fm) for α ∈ Asp(fm), we conclude

(6g − 6+ 3n)‖t•(fm)‖∞ ≥ 2‖L(fm)‖.
By the Collar Lemma A.1, `α(fm) ≥ T (‖L(fm)‖)/2 for all α ∈ A(S) and so ‖t•(fm)‖ ≤
T (T (‖L(fm)‖)/2). ut
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Lemma 3.20. The map 8 is continuous and injective.

Proof. The injectivity of 8 is immediate.
As we already know that ĵ is continuous, consider a sequence {[fm : S → 6m]} ⊂

T (S) such that W (fm) → w ∈ |A(S)| × {∞}, where Am := supp(W (fm)) and A :=
supp(w) = {α0, . . . , αk}.

We can assume that Am is maximal, that A ⊆ Am and that w(α0) ≥ w(αi) for every
1 ≤ i ≤ k.

Convergence for the arcs in A. For every αi ∈ A, equation (∗) of Remark 3.10
applied to Am gives `αi (fm)→ 0 and so

cos(γ (Eαi, fm)) ≥ 1− s2
αi
/2 ≥ 1/2− εm

for large m. This implies that

wsp(αi, fm) ≈ 2 log(4 cos(γ (Eαi, fm)))+ 2 log(4 cos(γ (

E

αi, fm)))− 4 log(`αi (fm))

and so
tαi (fm)

tα0(fm)
≈ log(`αi (fm))

log(`α0(fm))
≈ wsp(αi, fm)

wsp(α0, fm)
→ w(αi)

w(α0)
.

Uniform convergence for the arcs not in A. To conclude that proof, we need to show
that for all β /∈ A, tβ(fm)/tα0(fm)→ 0 uniformly.

For contradiction, up to subsequences, we can suppose that there are η > 0 and
{βm} ⊂ A(S)\A such that tβm(fm)/tα0(fm) ≥ η and so `βm(fm)→ 0. As a consequence,
as m becomes large, βm cannot intersect Am and so βm ∈ Am. In fact, if βm ∩ α′ 6= ∅
with α′ ∈ Am, then α′ would be much longer than βm by the Collar Lemma A.1. Hence,
the shortest path from a point in βm ∩ α′ to the boundary would follow βm rather than α′,
and so α′ would not belong to Am. Then, by equation (∗),

sinh(wsp( Eβm, fm)) =
s2
x + s2

y − s2
βm

2sxsy
√
s2
βm
− 1
≈ s2

x + s2
y − 1

sxsy`βm
≥ 1
`βm

.

Thus, asymptotically wsp(βm, fm) ≥ 4 log(2/`βm(fm)) ≈ 2tβm(fm). As wsp(α0, fm) ≈
2tα0(fm), we conclude that wsp(βm, fm)/wsp(α0, fm) ≥ η/2 for m large. But

sup
β∈Am\A

wsp(β, fm)

wsp(α0, fm)
→ 0.

This contradiction proves the claim. ut
Proposition 3.21. 0(S) acts on T a(S) by isometries and with discrete orbits. Hence,
Ma

(S) = T a(S)/0(S) is Hausdorff.

Proof. Suppose t · gm → t with t ∈ T a(S) and gm ∈ 0(S). Consider a sequence
{[fm : S → 6m]} such that j (fm)→ t in T a(S).
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Case ‖t‖∞ > 0 finite. Passing to a subsequence, [fm] · hm → [f : S → 6] ∈
T̂ vis(S) for suitable hm ∈ 0(S). Thus, ĵ (f ) · h−1

m → t .
Let A = f−1(Asp(6)), so that it is supported on f−1(6+) and `α(f ) < ∞ for all

α ∈ A. Because the length spectrum of finite arcs in 6 is discrete (with finite multi-
plicities) and ĵ (f ) · h−1

m is a Cauchy sequence, h−1
m fixes A for m large (up to subse-

quences). Thus, we can assume that hm is a diffeomorphism that restricts to an isometry
on f−1(6+) (with the pull-back metric). Hence, t = ĵ (f ) · h−1

m for m large and so
t = ĵ (f̂ ) for some f̂ : S → 6. Similarly, ĵ (f̂ ) · gm → ĵ (f̂ ) and so gm is a diffeo-
morphism that restricts to an isometry on f̂−1(6+) for large m. Hence, t · gm cannot
accumulate at t .

Case ‖t‖∞ = 0. The surface has n cusps. It follows from the classical case that the
spectrum of the finite reduced lengths (and so of the finite λ-lengths) of (6, p) is discrete
and with finite multiplicities. Because [t•(f )] = [λ•(f )], we can conclude as in the
previous case.

Case ‖t‖∞ = ∞. Let w(m) = W (fm). Up to subsequences, w(m) · hm → w in
|A(S)|×[0,∞] for suitable hm ∈ 0(S) andw ∈ |A(S)|×{∞}. As before,8(w)·h−1

m → t

in T a(S). Because w has finite support, t = 8(w) · h−1
m for m large, and so t = 8(ŵ)

for some ŵ ∈ |A(S)| × {∞}. Thus, 8(ŵ) · gm→ 8(ŵ) and gm is a diffeomorphism that
restricts to an isometry on S+, where S+ is the ŵ-visible subsurface of S. Hence, t · gm
cannot accumulate at t . ut
Proof of Theorem 3.17. In order to apply Lemma C.1(b), we only need to prove that
8′ : |A(S)|/0(S)× [0,∞] →Ma

(S) is a homeomorphism.
We already know that8′ is continuous, injective. Moreover, its image containsM(S),

which is dense inMa
(S). As |A(S)|/0(S) is compact andMa

(S) is Hausdorff, the map
8′ is closed and so it is also surjective. Hence, 8′ is a homeomorphism. ut
Corollary 3.22. ĵ is a homeomorphism onto the finite part of T a(S).

3.6. The extended Teichmüller space

We define the extended Teichmüller space T̃ (S) to be

T̃ (S) := T (S) ∪ |A(S)|∞
where |A(S)|∞ is just a copy of |A(S)|.

Clearly, there is a map Bl0 T̃ (S) → T a(S), which identifies visibly equivalent sur-
faces of T̂ (S) ⊂ Bl0 T̃ (S).

We define a topology on T̃ (S) by requiring that T (S) ↪→ T̃ (S) and |A(S)|∞ ↪→
T̃ (S) are homeomorphisms onto their images, that T (S) ⊂ T̃ (S) is open and we declare
that a sequence {fm} ⊂ T (S) is converging to w ∈ |A(S)|∞ if and only if W (fm) →
(w,∞) in |A(S)| × (0,∞].

Notice that M̃(S) := T̃ (S)/0(S) is an orbifold with corners, which acquires some
singularities at infinity. In fact, M̃(S) is homeomorphic toM(R, x)×1n−1×[0,∞]/∼,
where (R, x) is a closed x-marked surface such that S ' R \ x and (R′, p′, t ′) ∼
(R′′, p′′, t ′′)⇔ t ′ = t ′′ = ∞ and (R′, p′) is visibly equivalent to (R′′, p′′).
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4. Weil–Petersson form and circle actions

4.1. Circle actions on moduli spaces

Now we extend some of the previous constructions to the case of surfaces with marked
points on the boundary.

Let S be a compact surface of genus g with boundary components C1, . . . , Cn (as-
sume as usual that 2g − 2 + n > 0). Moreover, let vi be a point of Ci and set v =
(v1, . . . , vn).

We stress that the role of v is different than that of the usual marked points x, as the
metrics we consider are smooth at v. In fact, vi must be understood as a sort of twist
parameter at Ci .

In this new situation, Diff+(S, v) will be the group of orientation-preserving dif-
feomorphisms of S that fix v pointwise, T (S, v) will be the space of hyperbolic met-
rics on S up to the action of Diff0(S, v), and 0(S, v) = Diff+(S, v)/Diff0(S, v). Thus,
M(S, v) = T (S, v)/0(S, v) is the resulting moduli space.

Clearly, Rn acts on T (S, v) by Fenchel–Nielsen twist (with unit angular speed)
around the boundary components and T (S, v)/Rn = T (S). Similarly, the torus Tn =
(R/2πZ)n acts on M(S, v) and the quotient is M(S, v)/Tn =M(S).

Again we can define an augmented Teichmüller space T (S, v) and an action of Rn
on it. However, we want to be a little more careful and require that a marking [f : S →
6] ∈ T (S, v) that shrinks Ci to a cusp yi ∈ 6 is smooth with rk(df ) = 1 at Ci , so that
f identifies Ci with the sphere tangent bundle ST6,yi , and vi with a point in ST6,yi .

Thus, T (S, v) → T (S) is an Rn-bundle and M(S, v) → M(S) is a Tn-bundle,
which is a product L1 × · · · × Ln of circle bundles Li associated to vi ∈ Ci .

If one wishes, one can certainly lift the action to T̂ (S, v) = Bl0 T (S, v).
We also write T̂ vis(S, x) := T̂ (S, x)/∼vis, where the visible equivalence on T̂ (S, x)

is defined as in Section 3.4.
This means that if [f : S → 6] ∈ T̂ vis(S, v) has f (Ci) * 6+, then [f ] does not

record the exact position of the point vi ∈ Ci . In other words, the i-th component of Rn
acts trivially on [f ].

4.2. The arc complex of (S, v)

Denote by A(S, v) the set of nontrivial isotopy classes of simple arcs in S that start and
end at ∂S \ v and let βi be a (fixed) arc from Ci to Ci that separates vi from the rest of the
surface.

A subset A = {β1, . . . , βn, α1, . . . , αk} ⊂ A(S, v) is a k-system of arcs on (S, v)
if β1, . . . , βn, α1, . . . , αk are homotopically nontrivial, pairwise nonhomotopic and they
admit disjoint representatives. A point in the arc complex A(S, v) can be represented as
a sum

∑
j wjαj , provided we remember the βi’s (that is, as

∑
j wjαj +

∑
i 0βi).

As before, A◦(S, v) ⊂ A(S, v) is made of systems of arcs that cut S into a disjoint
union of discs and annuli homotopic to some boundary component.

Remark that there is a natural map A(S, v)→A(S), induced by the inclusion S\v ↪→S

and that forgets the βi’s, and so a simplicial map |A(S, v)| → |A(S)|.
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We can also define a suitable map Ŵ v for the pointed surface (S, v) in such a way
that the following diagram commutes:

T̂ vis(S, v)
Ŵ v //

��

|A(S, v)| × [0,∞)

��
T̂ vis(S)

Ŵ // |A(S)| × [0,∞)

Let [f : S → 6] ∈ T̂ vis(S, v). If we consider it as a point of T̂ vis(S), then Ŵ (f ) is a
system of arcs in S.

For every i = 1, . . . , n such that f (Ci) ∈ 6+, consider the geodesic ρi ⊂ 6 coming
out from f (vi) and perpendicular to f (Ci) (if f (Ci) is a cusp, let ρi be the geodesic
originating at f (Ci) in direction f (vi)). Let zi be the point where ρi first meets the spine
of 6, and ei an infinitesimal portion of ρi starting at zi and going towards f (Ci).

Define Sp(6, f (v)) to be the one-dimensional CW-complex obtained from Sp(6) by
adding the vertices zi (in case zi was not already a vertex) and the infinitesimal edges ei .
Consequently, we have a well-defined system of arcs Asp(6, f (v)) dual to Sp(6, f (v))
and widths wsp,f(v), in which the arc dual to ei plays the role of f (βi) (which thus has
zero weight).

We set Ŵ v(f ) = f ∗wsp,f(v).
The following is an immediate consequence of Theorem 3.16.

Proposition 4.1. The map Ŵ v is a 0(S, v)-equivariant homeomorphism.

We can make Rn act on |A(S, v)| via Ŵ v and so on |A(S, v)| × [0,∞]. Thus, the action
also prolongs to the extended Teichmüller space T̃ (S, v) := T (S, v) ∪ |A(S, v)|∞.

4.3. Weil–Petersson form

If we choose a maximal set of simple closed curves γ = {γ1, . . . , γ6g−6+2n, C1, . . . , Cn}
on S, we can define a symplectic form ωv on T (S, v) by setting

ωv =
6g−6+2n∑
i=1

d`i ∧ dτi +
n∑
j=1

dpj ∧ dtj =
n∑
j=1

d(p2
j /2) ∧ d(ϑj/2π)

where tj = pjϑj/2π is the twist parameter at Cj . As usual, ωv does not depend on the
choice of γ and it descends to M(S, v). Its independence from the particular Fenchel–
Nielsen coordinates permits us to extend ωv to a symplectic form on M(S, v).

Moreover, the twist flow on M(S, v) is Hamiltonian and the associated moment map
is exactly µ = (p2

1/2, . . . , p
2
n/2). Thus, the leaves (M(S)(p), ωp) are exactly the sym-

plectic reductions of (M(S, v), ωv) with respect to the Tn-action.
As remarked by Mirzakhani [Mir07], it follows by standards results of symplectic

geometry that there is a symplectomorphism M(S)(p)→M(S)(0) which pulls [ω0] +∑n
i=1(p

2
i /2)c1(Li) back to [ωp].
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Penner has provided a beautiful formula for ω0 in terms of the ã-coordinates (see
Appendix B for the precise definitions).

Theorem 4.2 ([Pen92]). Let A be a maximal system of arcs on S. If π : T (S)(0)× Rn+
→ T (S)(0) is the projection onto the first factor, then

π∗ω0 = −1
2

∑
H

(dãH1 ∧ dãH2 + dãH2 ∧ dãH3 + dãH3 ∧ dãH1 )

where H ranges over all the ideal triangles in S \ A and it is bounded by the (cyclically
ordered) arcs (αH1 , α

H
2 , α

H
3 ), and ãHi is the reduced length of αHi .

The whole T (S) is naturally a Poisson manifold with the Weil–Petersson pairing η on the
cotangent bundle, whose symplectic leaves are the T (S)(p). A general formula express-
ing η in terms of lengths of arcs and widths is given by the following.

Theorem 4.3 ([Mon09c]). Let A be a maximal system of arcs on S. Then

η = 1
4

n∑
k=1

∑
yi∈αi∩Ck
yj∈αj∩Ck

sinh(pk/2− dCk (yi, yj ))
sinh(pk/2)

∂

∂ai
∧ ∂

∂aj

where dCk (yi, yj ) is the length of the geodesic running from yi to yj along Ck in the
positive direction.

In order to understand the limit for large p, it makes sense to rescale the main quantities
as w̃i = (‖L‖/2)−1wi , ω̃ = (1+ ‖L‖/2)−2ω and η̃ = (1+ ‖L‖/2)2 η.

Lemma 4.4 ([Kon92]). The class [ω̃∞] ∈ H 2
0(S)(|A(S)|) is represented by a piecewise

linear 2-form on |A(S)| whose dual can be written (on the maximal simplices) as

H̃ = 1
2

∑
V

(
∂

∂w̃V1
∧ ∂

∂w̃V2
+ ∂

∂w̃V2
∧ ∂

∂w̃V3
+ ∂

∂w̃V3
∧ ∂

∂w̃V1

)
where V ranges over all the trivalent vertices of the ribbon graph represented by a point
in |A◦(S)|, (EV1 , EV2 , EV3 ) is the cyclically ordered triple of edges incident at V , and w̃Vi
is the normalized width of Ei (see Appendix B).

The above result admits a pointwise sharpening as follows.

Theorem 4.5 ([Mon09c]). The bivector field η̃ extends over T̃ (S) and, on the maximal
simplices of |A(S)|∞, we have

η̃∞ = H̃ pointwise.

Thus, we have a description of the degeneration of η when the boundary lengths of the
hyperbolic surface become very large.
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5. From surfaces with boundary to pointed surfaces

5.1. Ribbon graphs

Let S be a compact oriented surface of genus g with boundary components C1, . . . , Cn
and assume that χ(S) = 2 − 2g − n < 0. Let A = {α0, . . . , αk} ∈ A(S) be a system of
arcs in S with associated visible subsurface S+.

If Eα is an oriented arc supported on α, then we will refer to Eα∗ as the oriented edge
dual to Eα.

Remark 5.1. If S carries a hyperbolic metric and A is its spinal system of arcs, then Eα∗
must be considered the edge of the spine dual to α and oriented in such a way that, at the
point Eα∗ ∩ Eα (unique, up to prolonging Eα∗), the tangent vectors 〈vEα∗ , vEα〉 form a positive
basis of TpS.

Let E(A) := {Eα∗,

E

α∗ |α ∈ A} and define the following operators σ0, σ1, σ∞ on E(A):

(1) σ1 reverses the orientation of each arc (i.e. σ1(Eα∗) =

E

α∗),
(∞) if Eα ends at xα ∈ Ci , then σ∞(Eα∗) is dual to the oriented arc Eβ that ends at xβ ∈ Ci ,

where xβ comes just before xα according to the orientation induced on Ci by S,
(0) σ0 is defined by σ0 = σ1σ

−1∞ .

If we let Ei(A) denote the orbits of E(A) under the action of σi , then

(1) E1(A) can be identified with A,
(∞) E∞(A) can be identified with the subset of the boundary components of S that

belong to S+,
(0) E0(A) can be identified with the set of connected components of S+ \A.

5.2. Flat tiles and Jenkins–Strebel differentials

Keeping the notation as before, let f : S → Ŝ be the topological type of A (see Sec-
tion 3.4).

For every system of weights w supported on A, the surface Ŝ+ can be endowed with
a flat metric (with conical singularities) in the following way.

Every component Ŝi,+ of Ŝ+ is quasi-filled by the arc system f (A)∩ Ŝi,+. As we can
carry on the construction componentwise, we can assume that A quasi-fills S.

In this case, we consider the flat tile FT = [0, 1] × [0,∞]/[0, 1] × {∞} and we call
the class [0, 1] × {∞} the point at infinity. Moreover, we define 6 := ⋃Ee∈E(A) FTEe/∼,
where FTEe := FT × {Ee} and

• (u, 0, Ee) ∼ (1− u, 0,

E

e) for all Ee ∈ E(A) and u ∈ [0, 1],
• (1, v, Ee) ∼ (0, v, σ∞(Ee)) for all Ee ∈ E(A) and v ∈ [0,∞].
We can also define an embedded graphG ⊂ 6 by gluing the segments [0, 1]×{0} ⊂ FT
contained in each tile. Thus, we can identify α∗ with an unoriented edge of G for every
α ∈ A.

It is easy to check that there is a homeomorphism Ŝ → 6, well-defined up to isotopy,
that takes boundary components to points at infinity or to vertices.
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Ee = Eα∗
σ0(Ee) σ0

Ee′

σ1(Ee′)

FTEe′

σ∞
σ∞(Ee′)

xi

Eα

Fig. 3. Local structure of a flat surface quasi-filled by A.

Moreover, for every Eα∗ ∈ E(A), we can endow FTEα∗ with the quadratic differential
dz2, where z = w(α)u+ iv. These quadratic differentials glue to give a global ϕ (and so
a conformal structure on the whole 6), which has double poles with negative quadratic
residues at the points at infinity and is holomorphic elsewhere, with zeroes of order k− 2
at the k-valent vertices ofG. Furthermore, α∗ has lengthw(α) with respect to the induced
flat metric |ϕ|.

Finally, the horizontal trajectories of ϕ (that is, the curves along which ϕ is positive-
definite) are either closed circles that wind around some point at infinity, or edges of G.

Thus, ϕ is a Jenkins–Strebel quadratic differential and G is its critical graph, i.e. the
union of all horizontal trajectories that hit some zero or some pole of ϕ.

If A does not quasi-fill S, then we will define the Jenkins–Strebel differential compo-
nentwise, by setting it to zero on the invisible components.

See [Har86], [Kon92], [Loo95] and [Mon09b] for more details.

5.3. HMT construction

We begin by recalling the following result of Strebel.

Theorem 5.2 ([Str67]). Let R′ be a compact Riemann surface of genus g with x′ =
(x′1, . . . , x

′
n) distinct points such that n ≥ 1 and 2g−2+n > 0. For every (p1, . . . , pn) ∈

Rn≥0 (but not all zero), there exists a unique (nonzero) quadratic differential ϕ on R′ such
that

• ϕ is holomorphic on R′ \ x′,
• horizontal trajectories of ϕ are either circles that wind around some x′i or closed arcs

between critical points,
• the critical graph G of ϕ cuts R′ into semi-infinite flat cylinders (according to the

metric |ϕ|), whose circumferences are closed trajectories,
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• if pi = 0, then x′i belongs to the critical graph,
• if pi > 0, then the cylinder around x′i has circumference length pi .

σ1

x′
1

x′
1

x′
2

x′
3

x′
3

x′
3

v1

v1

v1

v2

v2

R′

G

flat tile

Fig. 4. An example of Jenkins–Strebel differential and its horizontal foliation with p1, p2 > 0 and
p3 = 0.

Notice that the graph G plays a role analogous to the spine of a hyperbolic surface. In
fact, given a point [f : R → R′] ∈ T (R, x) and (p1, . . . , pn) ∈ 1n−1, we can consider
the unique ϕ given by the theorem above and the system of arcs A ∈ A◦(R, x) such that
f (A) is dual to the critical graph G of ϕ, and we can define the width w(α) to be the
|ϕ|-length of the edge α∗ of G dual to α ∈ A.

Theorem 5.3 (Harer–Mumford–Thurston [Har86]). The map T (R, x) × 1n−1 →
|A◦(R, x)| just constructed is a 0(R, x)-equivariant homeomorphism.

Clearly, ifR′ is a stable Riemann surface, then the theorem can be applied on every visible
component of R′ (i.e. on every component that contains some x′i with pi > 0) and ϕ can
be extended by zero on the remaining part of R′. Hence, we can extend the previous map
to

WHMT : T vis
(R, x)×1n−1 → |A(R, x)|

which is also a 0(R, x)-equivariant homeomorphism (see, for instance, [Loo95] and
[Mon09b]).

The purpose of the following sections is to relate thisWHMT to the spine construction.

5.4. The grafting map

Given a hyperbolic surface 6 with boundary components C1, . . . , Cn, we can graft a
semi-infinite flat cylinder at each Ci of circumference pi = `(Ci). The result is a surface
gr∞(6) with a C1,1-metric (see Figure 5), called the Thurston metric (see [Tan97] and
[SW02] for the case of a general lamination, or [KP94] for higher dimensional analogues).
If 6 has cusps, we do not glue any cylinder at the cusps of 6. Notice that gr∞(6) has
the conformal type of a punctured Riemann surface and it will sometimes be regarded as
a closed Riemann surface with marked points.
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6 gr∞(6)

gr∞

Fig. 5. An example of a surface obtained by infinite grafting.

Notation. Choose a closed surface R with distinct marked points x = (x1, . . . , xn) ⊂ R
and an identification R \ x ∼= gr∞(S) such that xi corresponds to Ci . Clearly, we can
identify A(S) ∼= A(R, x) and 0(S) ∼= 0(R, x).

We use the grafting construction to define a map

(gr∞,L) : T̃ (S)→ T (R, x)×1n−1 × [0,∞]/∼
where ∼ identifies ([f1], p,∞) and ([f2], p,∞) if ([f1], p) and ([f2], p) are visibly
equivalent.

We set gr∞(f : S → 6) := [gr∞(f ) : R → gr∞(6)], on the bounded part T (S) ⊂
T̃ (S). On the other hand, if w̃ ∈ |A(S)|∞ represents a point at infinity of T̃ (S), then we
define (gr∞,L)(w̃) := (W−1

HMT(w̃),∞).
The following is our key result.

Theorem 5.4. The map (gr∞,L) is a 0(S)-equivariant homeomorphism that preserves
the topological types and whose restriction to each topological stratum of the finite part
and to each simplex of |A(S)|∞ is a real-analytic diffeomorphism.

Corollary 5.5. (a) The induced map M̃(S) → M(R, x) × 1n−1 × [0,∞]/∼ is a
homeomorphism, which is real-analytic on M̂(S) and piecewise real-analytic on
|A(S)|∞/0(S).

(b) Let T̂ vis(R, x) (resp. M̂vis(R, x)) be obtained from T (R, x) × 1n−1 (resp.
M(R, x) × 1n−1) by identifying visibly equivalent surfaces. Then the induced
T a(S) → T̂ vis(R, x) × [0,∞] and Ma

(S) → M̂vis(R, x) × [0,∞] are homeo-
morphisms.

We can summarize our results in the following commutative diagram:

T̂ vis(R, x)× [0,∞]

9 **VVVVVVVVVVVVVVVVVV T a(S)
(gr∞,L)oo

W
a

��
|A(R, x)| × [0,∞]
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in which 9 = W a ◦ (gr∞,L)−1 and all maps are 0(R, x)-equivariant homeomorphisms.
For every t ∈ [0,∞], denote by 9t : T̂ vis(R, x) → |A(R, x)| the restriction of 9 to
T̂ vis(R, x)× {t} followed by the projection onto |A(R, x)|.
Corollary 5.6. 9t is a continuous family of 0(R, x)-equivariant triangulations of
T̂ vis(R, x), whose extremal cases are Bowditch–Epstein/Penner’s for t = 0 and Harer–
Mumford–Thurston’s for t = ∞.

The continuity of (gr∞,L) is proven in Appendix D. Lemma C.1(a) ensures that this map
is proper. In order to prove Theorem 5.4, we need to show that the restriction of (gr∞,L)
to each stratum is bijective onto its image, and so that (gr∞,L) is bijective.

5.5. Bijectivity of (gr∞,L)

The bijectivity at infinity (namely, for ‖L‖ = ∞) follows from Theorem 5.2. Thus, let
us select a (possibly empty) system of curves γ = {γ1, . . . , γk} on S and consider the
stratum S(γ ) ⊂ T̂ (S) in which ‖L‖ <∞ and `γi = 0 for every i.

To show that (gr∞,L) gives a bijection of S(γ ) onto its image, it is sufficient to
work separately on each component of S \ γ . Thus, we can reduce to the case in which
γi = Ci ⊂ ∂S and gr∞ glues a cylinder at the boundary components Ck+1, . . . , Cn.
Hence, we are reduced to showing that the grafting map

gr′∞ : T (S)(p)→ T (S)(0)

is bijective for every pk+1, . . . , pn ∈ R+ , where p1 = · · · = pk = 0. We already know
that gr′∞ is continuous and proper; we will show that it is a local homeomorphism by
adapting the argument of [SW02]. Here we describe what considerations are needed to
make their proof work in our case.

Remark 5.7. Here we are using the notation T (S)(0) instead of T (R, x) because we
want to stress that we are regarding gr∞(6) as a hyperbolic surface, with the metric
coming from the uniformization.

The grafted metrics are C1,1 but the map gr′∞ is real-analytic. In fact, given a real-
analytic arc [ft : S → 6t ] in T (S)(p) and choosing representatives ft so that f0 ◦ f−1

t :
6t → 60 is an isometry on the boundary components Ck+1,t , . . . , Cn,t and harmonic in
the interior with respect to the hyperbolic metrics (so that the hyperbolic metrics pull back
to a real-analytic family σt on S), we can choose the grafted maps gr′∞(ft ) : S → 6t

so that gr′∞(f0) ◦ gr′∞(ft )−1 extend f0 ◦ f−1
t as isometries on the cylinders C̃i,t :=

Ci,t×[0,∞). Hence, the family of metrics gr′∞(σt ) on S, obtained by pulling the Thurston
metric back via gr′∞(ft ), is real-analytic in t and so the arc [gr′∞(ft )] in T (S)(0) is real-
analytic.

Thus, it is sufficient to show that the differential dgr′∞ is injective at every point of
T (S)(p).

Given a real-analytic one-parameter family ft : S → 6t corresponding to a tangent
vector v ∈ T[f0]T (S)(p), assume that the grafted family [gr′∞(ft ) : S → gr′∞(6t )]
defined above determines the zero tangent vector in T[gr′∞(f0)]T (S)(0).
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Let gr′∞(σt ) be the pull-back via ft of the hyperbolic metric of 6t and construct the
harmonic representative Ft : (S, gr′∞(σt ))→ (S, gr′∞(σ0)) in the class of the identity as
follows.

Give orthonormal coordinates (x, y) to the cylinder C̃i,t ∼= Ci,t ×[0,∞) that is glued
at the boundary component Ci,t ⊂ 6t for i = k + 1, . . . , n, in such a way that x is the
arc-length parameter of the circumferences and y ∈ [0,∞).
Remark 5.8. The (x, y) coordinates can be extended to an orthogonal system in a small
hyperbolic collar of Ci,t in such a way that y is the arc-length parameter along the
geodesics {x = const}. Thus, for y ∈ (−ε, 0), the metric looks like cosh(y)2dx2+dy2 =
dx2 + dy2 +O(ε2).

Define the M-ends of gr′∞(6t ) to be the subcylinders Ci,t × [M,∞) for i = k + 1,
. . . , n and use the same terminology for their images in S via gr′∞(ft )−1.

For every t , let Ft := ⋃M≥0 Ft (M) where Ft (M) is the set of C1,1 diffeomorphisms
gt : (S, gr∞(σt )) → (S, gr∞(σ0)) homotopic to the identity, such that gt isometrically
preserves the M-ends. Clearly, Ft (M) ⊆ Ft (M

′) if M ≤ M ′.
Let e(gt ) = 1

2‖∇gt‖2 be the energy density of gt ,

H(gt ) = ‖dgt (∂z)‖2 dz dz̄

gr′∞(σt )
,

where z is a local conformal coordinate on (S, gr′∞(σt )), and J (gt ) the Jacobian deter-
minant of gt , so that e(gt ) = 2H(gt )−J (gt ). Notice that, if gt is an oriented diffeomor-
phism, then 0 < J (gt ) ≤ H(gt ) ≤ e(gt ) at each point.

Define also the reduced quantities ẽ(gt ) = e(gt )−1, H̃(gt ) = H(gt )−1 and J̃ (gt ) =
J (gt )− 1, so that the reduced energy

Ẽ(gt ) :=
∫
S

ẽ(gt )gr′∞(σt )

is well-defined for every gt ∈ Ft . For instance, the identity map on S belongs to Ft (0)
and its reduced energy is E(f0 ◦ f−1

t )− 2πχ(S).
As gr′∞(σ0) is nonpositively curved, the map Ft,M of least energy in Ft (M) is har-

monic away from the M-ends and so is an oriented diffeomorphism. Thus,

0 =
∫
S

J̃ (Ft,M)gr′∞(σt ) ≤
∫
S

H̃(Ft,M)gr′∞(σt ) ≤ Ẽ(Ft,M)

Hence, {Ft,M}M converges uniformly on compact subsets to the map Ft of least (reduced)
energy in Ft , which is unique. Set H̃t := H̃(Ft ) and similarly ẽt = ẽ(Ft ).

Following Scannell–Wolf (but noticing that the roles of x and y here are exchanged
compared to their paper), one can show that

• the family {Ft } is real-analytic in t ,
• for every small t , the map Ft is (locally) C2,α on S; so is the vector field Ḟ := Ḟ0

(hence, the analyticity of Ft implies that H̃t and ẽt are real-analytic in t too),
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• the function ˙̃H := ˙̃H0 is locally Lipschitz away from the cusps and it is harmonic on
the flat cylinders,
• along every Ck+1, . . . , Cn, we have

V = −1
2
((∂y
˙̃H)+ − (∂y ˙̃H)−)

where V (x, y) is a harmonic function defined on the cylinders C̃i,0 (and on first-order
thickenings of Ci,0) that can be identified with the y-component of Ḟ , and w(x, 0)+
simply means limy→0+ w(x, y).
• Vy = 1

2Ḣ+ ci on each C̃i , where ci is a constant that may depend on the cylinder.

From now on, let all line integrals be with respect to the arc-length parameter dx and
all surface integrals with respect to gr′∞(σ0). Notice that∫

S

Ḣ =
∫
S

˙̃H = lim
t→0

1
t

∫
S

H̃t

because H̃0 = 0. As the integral on the right is a real-analytic function of t which vanishes
at t = 0, we conclude that ˙̃H is integrable and so is ˙̃e.

On the other hand, ˙̃e = 1
2
∂
∂t
‖∇Ft‖2|t=0 = ∂x(Ḟ · ∂x) + Vy . As ∂x(Ḟ · ∂x) has zero

average, Vy is integrable too and all constants ci are 0. Thus, V and ˙̃H decay at least as
exp(−2πy/pi) on C̃i,0 and we can write

0 =
∫
C̃i,0

V1V = −
∫
C̃i,0

‖∇V ‖2 +
∫
Ci,0

V ∂nV.

Moreover,

0 ≤
∫
C̃i,0

‖∇V ‖2 =
∫
Ci,0

VyV = 1
2

∫
Ci,0

˙̃HV. (1)

On the other hand, multiplying by ˙̃H = Ḣ and integrating by parts the linearized equation

(1gr′∞(σ0) + 2K0)Ḣ = 0

where K0 is the curvature of gr′∞(σ0), we obtain
0 ≤

∫
C̃i,0

‖∇Ḣ‖2 =
∫
Ci,0

Ḣ(∂nḢ)+,

0 ≤
∫
Shyp

(‖∇Ḣ‖2 + 2|Ḣ|2) = −
n∑

i=k+1

∫
Ci,0

Ḣ(∂nḢ)−

where Shyp is the gr′∞(σ0)-hyperbolic part of S.
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From 0 ≤∑n
i=k+1

∫
Ci,0

Ḣ((∂yḢ)+ − (∂yḢ)−), we finally get

0 ≤ 2
∫
S

(‖∇Ḣ‖2 − 2K‖Ḣ‖2) = −
n∑

i=k+1

∫
Ci,0

ḢV (2)

Combining (1) and (2), we obtain∫
Ci,0

ḢV = 0 ∀i = k + 1, . . . , n,

and so Ḣ = 0 on S.
Hence, away from the cusps, Ft is a (1+o(t))-isometry between gr′∞(σt ) and gr′∞(σ0)

and one can easily conclude that σt and σ0 are (1+ o(t))-isometric too.

5.6. More on infinitely grafted structures

5.6.1. Projective structures. Consider a Riemann surface R without boundary and of
genus at least 2. A projective structure on a marked surface [f : R → R′] is an equiva-
lence class of holomorphic atlases U = {fi : Ui → CP1 |R′ ⊃ Ui open} for R′ such that
the transition functions belong to Aut(CP1) ∼= PSL(2,C), that is, fi |Ui∩Uj and fj |Ui∩Uj
are projectively equivalent.

Given two projective structures, represented by maximal atlases U and V, on the same
[f : R → R′] ∈ T (R) and a point p ∈ R′, we want to measure how charts of U are not
projectively equivalent to charts in V around p. So, let f : U → CP1 be a chart in U and
g : U → CP1 a chart in V, with U ⊂ R′. There exists a unique σ ∈ PSL(2,C) such that
f and σ ◦ g agree up to second order at p. Then (f − σ ◦ g)′′′ : TpU → Tf (p)CP1 is a
homogeneous cubic map and f ′(p)−1 ◦ (f − σ ◦ g)′′′ is a homogeneous cubic endomor-
phism of TpU , and so an element S(f, g)(p) of (T ∗pU)⊗2. The holomorphic quadratic
differential S(U,V) on R′ is called the Schwarzian derivative. It is known that, given
a U and a holomorphic quadratic differential ϕ ∈ QR′ , there exists a unique projective
structure V on R′ such that S(U,V) = ϕ.

Thus, the natural projection π : P(R) → T (R) from the set P(R) of projective
structures on R (up to isotopy) to the Teichmüller space of R is a principal Q-bundle,
where Q→ T (R) is the bundle of holomorphic quadratic differentials.

Assume now that R is compact. The grafting map gr : T (R) ×ML(R) → T (R)
admits a lifting

Gr : T (R)×ML(R) ∼−→ P(R)

which is a homeomorphism (Thurston [KT92]) and such that Gr0 corresponds to the
Poincaré structure. We recall that a surface with projective structure comes endowed with
a Thurston C1,1 metric: in particular, if λ = c1γ1 + · · · + cnγn is a multi-curve on R,
and R′ is an R-marked hyperbolic surface, then Grλ(R′) is made of a hyperbolic piece,
isometric to R′ \ supp(λ), and n flat cylinders homotopic to γi and of height ci .

It is a general fact that Grλ determines a real-analytic section of π for all λ ∈ML.
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5.6.2. A compactification of P(R). The homeomorphism T (R) ×ML(R) ∼= P(R)
shows that sequences {([fm : R→ R′m], λm)} in P(R) can diverge in two “directions”.

Dumas [Dum06] provides a grafting compactification of P(R) by separately com-
pactifying T (R) and ML(R). In particular, he defines P(R) := T Th

(R) ×ML(R),
where T Th

(R) = T (R) ∪ PML(R) is Thurston’s compactification (see [FLP79]) and
ML(R) =ML(R) ∪ PML(R) is the natural projective compactification of ML(R).

In order to describe the asymptotic properties of P(R), we recall the following well-
known result.

Theorem 5.9 ([HM79]). The map

3 : Q→ T (R)×ML(R)

defined as ([f : R → R′], ϕ) 7→ ([f : R → R′], f ∗3R′(ϕ)) is a homeomorphism,
where3R′(ϕ) is the measured lamination on R′ obtained by straightening the (measured)
horizontal foliation of ϕ.

The antipodal map is the homeomorphism

ι : T (R)×ML(R)→ T (R)×ML(R)

given by ι([f : R → R′], λ) = 3(−3−1([f ], λ)). The following result shows that the
restriction ιf : ML(R) → ML(R) of i to a certain point [f ] ∈ T (R) controls the
asymptotic behaviour of π−1(f ).

Theorem 5.10 ([Dum06], [Dum07b]). Let {([fm : R→ Rm], λm)} ⊂ T (R)×ML(R)
be a diverging sequence such that π ◦ Grλm(fm) = [f : R → R′]. The following are
equivalent:

(1) λm→ [λ] in ML(R), where [λ] ∈ PML(R),
(2) [fm] → [ιf (λ)] in T Th

(R),
(3) 3f (−S(Grλm(fm)))→ [λ] in ML(R),
(4) 3f (S(Grλm(fm))) → [if (λ)] in ML(R), where the Schwarzian derivative is con-

sidered with respect to the Poincaré structure.

When this happens, we also have [H (κm)] → [3−1(R′, λ)] in PL1(R′,K⊗2), where
H (κm) is the Hopf differential of the collapsing map κm : R′→ Rm.

We recall that, if λm is a multi-curve c1γ1 + · · · + cnγn, then κm collapses the n grafted
cylinders onto the respective geodesics and is the identity elsewhere. Thus, if the j -th flat
cylinder is isometric to [0, j̀ ] × [0, cj ]/(0, y) ∼ ( j̀ , y), then H (κm) restricts to dz2 on
the grafted cylinders and vanishes on the remaining hyperbolic portion of R′.

Remark 5.11. The theorem implies that the boundary of π−1(f ) ⊂ P(R) is exactly the
graph of the projectivization of if .
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5.6.3. Surfaces with infinitely grafted ends. We can adapt Theorem 5.10 to our situation,
when we restrict our attention to smooth hyperbolic surfaces with large boundary.

Let S be a compact oriented surface of genus g with boundary components C1, . . . ,

Cn (and χ(S) = 2− 2g − n < 0) and let dS be its double.

Theorem 5.12. Let {[fm : S → 6m]} ⊂ T (S) be a sequence such that (gr∞,L)(fm) =
([f : (R, x)→ (R′, x′)], p

m
) ∈ T (R, x)× Rn+. The following are equivalent:

(1) p
m
→ (p,∞) in 1n−1 × (0,∞],

(2) [fm] → w̃ in T a(S), where w̃ is the projective multi-arc associated to the verti-
cal foliation of the Jenkins–Strebel differential ϕJS on (R′, x′) with weights p (see
Theorem 5.2).

When this happens, we also have

(a) 4‖pm‖−2H (κm) → ϕJS in L1
loc(Ṙ

′), where H (κm) is the Hopf differential of the
collapsing map κm : R′→ 6m,

(b) with respect to the Poincaré projective structure on 6◦m, 2‖pm‖−2S(Gr∞(fm)) →
−ϕJS in H 0(R′,K(x′)⊗2).

Remark 5.13. We have denoted by Gr∞(fm : S → 6m) the (S-marked) surface with
projective structure obtained from 6m by grafting cylinders of infinite length at its ends.
This is a somewhat “very exotic” projective structure, whose developing map wraps in-
finitely many times around CP1. Its Schwarzian with respect to the Poincaré structure has
double poles at the cusps.

We have already shown that (1) and (2) are equivalent to each other.

Lemma 5.14. For every compact K ⊂ Ṙ′, there exists t0 > 0 such that K ⊂ K t
m :=

grt‖pm‖∂6m(6m) ⊂ Ṙ′ for every t ≥ t0.

Proof. Let z ∈ K . There exists cz > 0 such that the extremal length of a curve inside
Ṙ′ isotopic to Cj that separates a disk containing {z, xj } from the remaining surface is at
least cz for every j . On the other hand, the extremal length of Cj inside K t

m is at most
1/t . Hence, there is a neighbourhood Uz of z such that Uz ⊂ K t

m for every t > 1/cz.
As K is compact, there exist z1, . . . , zi such that Uz1 , . . . , Uzi cover K and so t0 >

max{1/cz1 , . . . , 1/czi } works. ut
The proof of (a) of Theorem 5.12 follows [Dum06] (see also [Dum07a]) with minor
modifications:

• Let hm : Ṙ′→ 6m be the harmonic map homotopic to κm, that is the limit as s →∞ of
the harmonic maps hsm : grs∂6m(6m)→ 6m that restrict to isometries at the boundary;
we clearly have

‖H (hm)−H (κm)‖L1(K) ≤ ‖H (hm)−H (κm)‖L1(K tm)

and EK tm(hm) < EK tm(κm) = 2π |χ(S)| + t‖pm‖2/2 ≤ EK tm(hm) + 2π |χ(S)|, where
EK tm is the integral of the energy density on K t

m.
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• The statement that [H (hm)] → [ϕ] asm→∞ is basically proven by Wolf in [Wol89];
in fact, the considerations involved in his argument do not require the integrability of
H (hm) or ϕ over the whole Ṙ′: rescaling the Hopf differential in order to have the right
boundary lengths, one obtains

4‖pm‖−2H (hm)→ ϕ in L1
loc(Ṙ

′).
• The local estimate

‖H (hm)−H (κm)‖L1(K) ≤
√

2(EK(hm)− EK(κm))
(√
EK(hm)+

√
EK(κm)

)
is obtained in the proof of Proposition 2.6.3 of [KS93].
• One easily concludes, because‖H (hm) − H (κm)‖L1(K tm)

= O(‖pm‖
√
t) and

‖H (hm)‖L1(K tm)
= O(‖pm‖2t).

Assertion (b) is also basically proven in [Dum07b] up to minor considerations:
• Let ρ be the hyperbolic metric on Ṙ′ and ρm the Thurston metric on Gr∞(6m) ∼= Ṙ′;

moreover, let βm be the Schwarzian tensor β(ρ, ρm) = [Hessρ(σm)− dσm ⊗ dσm]2,0,
where σm = σ(ρ, ρm) = log(ρm/ρ).
• The decomposition ([Dum07b, Theorem 7.1])

S(Gr∞(6m)) = 2βm − 2H (κm)

(where S is computed with respect to the Poincaré structure on Ṙ′) still holds, because
it relies on local considerations.
• Let K be the compact subsurface of Ṙ′ obtained by removing all n horoballs of cir-

cumference 1/4 at x′. Moreover, let ρp be the Thurston metric on 6 obtained by
grafting infinite flat cylinders at the boundary of (gr∞,L)−1([f ], p) and write ρ̂p :=
(1 + ‖p‖2)ρp for the normalized metrics. The set N = {ρ̂p |p ∈ 1n−1 × [0,∞]} is
compact in L∞(K). Thus, ‖ρ̂p/ρ‖L∞(K) < c and all restrictions to K of metrics in N
are pairwise Hölder equivalent with factor and exponent dependent on Ṙ′ only (same
proof as in Theorem 9.2 of [Dum07b]).
• The same estimates of [Dum07b] give (Theorem 11.4)

‖βm‖L1(Dδ/4,ρ)
≤ c

where c depends on Ṙ′ and δ.
• All norms are equivalent onH 0(R′,K(x′)⊗2), so we consider the L1 norm onK ⊂ Ṙ′

and we observe that ‖ψ‖L1(Dδ/4,ρ)
≤ c′‖ψ‖L1(K) for any ρ-ball of radius δ/4 embed-

ded in K .
• By Lemma 5.14, there exists t0 (depending only on Ṙ′ and K) such that K ⊂ K t0

m for
all m. Thus,

‖2S(Gr∞(6m))+ ϕJS‖L1(K)

≤ c1‖2S(Gr∞(6m))+ 4H (κm)‖L1(Dδ/4,ρ)
+ ‖4H (κm)− ‖pm‖2ϕJS‖L1(K

t0
m )

≤ 4c1‖βm‖L1(Dδ/4,ρ)
+ c2(1+ ‖pm‖

√
t0) ≤ c3(1+ ‖pm‖

√
t0)

where c3 depends on Ṙ′ only. We conclude as in (a).
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Appendix A. The collar lemma and a convergence criterion

Lemma A.1 (Collar lemma, [Kee74], [Mat76]). For every simple closed geodesic γ ⊂
6 in a hyperbolic surface and for every “side” of γ , there exists an embedded hypercycle
γ ′ parallel to γ (on the prescribed side) such that the area of the annulus enclosed by
γ and γ ′ is `/(2 sinh(`/2)). For ` = 0, the geodesic γ must be understood to be a cusp
and γ ′ a horocycle of length 1. Furthermore, all such annuli (corresponding to distinct
geodesics and sides) are disjoint.

We recall here a useful criterion of convergence in T (S).

Proposition A.2 ([Mon09a]). Let {[fm : S → (6m, gm)]} be a sequence of points in
T (S) and let [f : S → (6, g)] ∈ T (S). The following are equivalent:

(a) [fm] → [f ] in T (S),
(b) there exists f̃m ∈ [fm] such that the metrics (f̃m ◦ f−1)∗(gm) → g uniformly on

compact subsets of the smooth locus of 6,
(c) there exists f̃m ∈ [fm] such that the conformal distorsion K(f̃m ◦ f−1) → 1 uni-

formly on compact subsets of the smooth locus of 6.

Appendix B. The continuity of Ŵ

The following proof shares some ideas with [ACGH] (to which we refer for a more de-
tailed discussion of the case with n cusps). The bijectivity of Ŵ is a direct consequence
of the work of Bowditch–Epstein, Penner and Luo. We begin with some preparatory ob-
servations.

Definition B.1. Let ([f : S → 6], p) ∈ T̂ (S)(0) be a projectively decorated surface
and let Bi ⊂ 6 be the embedded horoball at xi = f (Ci) with radius pi . The associated
truncated surface is 6tr := 6 \ (B1 ∪ · · · ∪ Bn), the reduced length of an arc α ∈ A(S)
at f is ˜̀α(f ) := `(6tr ∩ f (α)), and the λ-length of α is λα(f ) := exp( ˜̀α(f )/2).

We remark that our definition of λ-length differs from Penner’s original one ([Pen87])
by a factor of

√
2.

Lemma B.2. Let {[fm : S → 6m]} ⊂ T (S) be a sequence that converges to [f : S →
6] ∈ T̂ vis(S).

(a) Assume ‖L(f )‖ > 0 and let A(S) = Afin t A∞, where A∞ is the subset of arcs
β such that `β(f ) = ∞. Then `α(fm)/`α(f ) → 1 uniformly for all α ∈ Afin.
Moreover, if A∞ 6= ∅, then there exists a diverging sequence {Lm} ⊂ R+ such that
`β(fm) ≥ Lm for all β ∈ A∞. Hence, t•(fm)→ t•(f ) uniformly.

(b) Assume L(f ) = (p̃, 0) ∈ 1n−1 × {0} and let A(S) = Afin t A∞, where A∞ is the
subset of arcs β such that ˜̀β(f ) = ∞. Then ˜̀α(fm)/ ˜̀α(f ) → 1 uniformly for all
α ∈ Afin. Moreover, if A∞ 6= ∅, then there exists a diverging sequence {L̃m} ⊂ R+
such that ˜̀β(fm) ≥ L̃m for all β ∈ A∞. Hence, [t•(fm)] → [t•(f )].
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Remark B.3. Here we collect a few facts about how a geodesic boundary component
degenerates to a cusp and we set some notation, which will be useful in the proofs of
Lemma B.2(b) and in Lemma B.4.

(i) A simple computation shows that a loop at distance d from a closed geodesic of
length ` (also called a “hypercycle”) has length ` cosh(d).

(ii) For the purposes of this remark, we will assume that L(fm) → 0 and also that
‖L(fm)‖ ≤ 1. So we can define ϑm ∈ [0, π/2] by sin(ϑm) := ‖L(fm)‖.

(iii) For each boundary circle Ci,m of 6m, let HCi,m ⊂ 6m be the hypercycle parallel
to Ci,m at distance dm = − log tan(ϑm/2) (i.e. cosh(dm) = 1/sin(ϑm)), which has
length p̃i(fm) := pi(fm)/sin(ϑm) ≤ 1 and so is embedded in 6m.

(iv) Notice that the spine of 6m coincides with the spine of its subsurface 6tr
m obtained

by removing the hyperballs bounded by the HCi,m’s; in fact, every geodesic that
meets Ci,m orthogonally also intersects HCi,m orthogonally.

(v) For every arc α, define the reduced length of α at fm to be ˜̀α(fm) := `α(fm)−2dm,
that is, the length of fm(α) ∩ 6tr

m. We can define the λ-length of α as λα(fm) :=
exp( ˜̀α/2).

(vi) Because HCi,m limits to a horocycle of length p̃i = p̃i(f ) as m → ∞, we obtain
λα(fm)→ λα(f, p).

In the following proof, we will denote by S+ the open subsurface f−1(6+) and by
Str+ the preimage under f of the truncated surface 6tr+.

Proof of Lemma B.2. By Proposition A.2, we can assume that f ∗m(gm) → f ∗(g) uni-
formly on compact subsets of S+.

Case (a): arcs of infinite length. IfA∞ 6= ∅, then there exist disjoint loops γ1, . . . , γl
∈ C(S) corresponding to the nodes of 6 such that cm = maxh`γh(fm)→ 0 as m→∞.
Clearly, β ∈ A∞ ⇔ i(β, γ1 + · · · + γl) > 0.

By the collar lemma, `β(fm) > Lm := T (cm)/2 and so tβ(fm) < T (Lm)→ 0 for all
β ∈ A∞. On the other hand, |`α(fm)− `α(f )|/`α(f )→ 0 uniformly for all α ∈ Afin.

Case (a): arcs of finite length. Fix ε > 0. There are finitely many arcs α1, . . . , αk ∈
Afin such that `αi (f ) ≤ T (ε)/(1 − ε) for i = 1, . . . , k. Clearly, |tαi (fm) − tαi (f )| < ε

for m large. If α ∈ Afin and α /∈ {α1, . . . , αk} (that is, α is “long”), then `α(fm) ≥
`α(f )(1− ε) > T (ε) and so tα(fm) < ε for m large. Hence, for α ∈ Afin \ {α1, . . . , αk}
too, |tα(fm)− tα(f )| < ε for m large.

Case (b): arcs of infinite reduced length. Let γ1, . . . , γl be the curves in the interior
of S that are shrunk to nodes of6 and let J = {j | p̃j = 0}. We can assume that pi(fm) <
p̃i(f ) < 1 if i /∈ J and that pj (fm) < 1 if j ∈ J .

Let cm = max{`γh(fm)} and c′m = max{pj | j ∈ J }. Clearly, if β ∈ A∞ intersects
some γh, then ˜̀β(fm) ≥ T (cm)/2 → ∞. If β ∈ A∞ does not intersect any γh, then it
meets some Cj with j ∈ J . Because of the collar lemma, there is a hypercycle embedded
in 6m at distance δj,m from fm(Cj ), with pj (fm) cosh(δj,m) = 1. As pj (fm) cosh(dm) =
pj (fm)/sin(ϑm), we get cosh(δj,m)/cosh(dm) = sin(ϑm)/pj (fm) and so δj,m − dm ≈
2 log(sin(ϑm)/pj (fm)) ≥ 2 log(sin(ϑm)/c′m)→∞ for j ∈ J . Hence, ˜̀β(fm) ≥ L̃m :=
min{T (cm)/2, 2 log(sin(ϑm)/c′m)} → ∞.
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Case (b): arcs of finite reduced length. The uniform convergence of f ∗m(gm) on the
compact subsets of Str+ ensures that | ˜̀α(fm)− ˜̀α(f )|/ ˜̀α(f )→ 0 uniformly for all α ∈
Afin.

Let α0 ∈ Afin be the arc with smallest ˜̀α0(f ). Fix ε > 0. There are finitely many arcs
α1, . . . , αk ∈ Afin such that ˜̀αi (f ) ≤ ˜̀α0(f )− 2 log(ε) for i = 1, . . . , k. Clearly,

tαi (fm)

tα0(fm)
→ tαi (f )

tα0(f )
= λα0(f )

λαi (f )
for i = 1, . . . , k.

If α ∈ Afin and α /∈ {α1, . . . , αk} (and so α is “long”), then

tα(fm)

tα0(fm)
≤ ε +

√
exp[ ˜̀α0(fm)− ˜̀α(fm)] < 2ε

for m large. Hence, |tα(fm)/tα0(f )| < 2ε for m large and α ∈ Afin \ {α1, . . . , αk}. ut
Lemma B.4. Ŵ is continuous.

Notice that T̂ vis(S) and |A(S)| × [0,∞) have countable systems of neighbourhoods at
each point. As T (S) is dense in T̂ vis(S), in order to test the continuity of Ŵ , we can
consider a sequence {[fm : S → 6m]} ⊂ T (S) converging to a point [f : S → 6] ∈
T̂ vis(S). Moreover, because of Proposition A.2, we can assume that f ∗m(gm) → f ∗(g)
uniformly on the compact subsets of S+.

Assume first that [f ] /∈ T̂ vis(S)(0). We break the proof into four steps:

(1) “stabilization” of the spine, that is, f−1(Asp(6)) ⊆ f−1
m (Asp(6m)) for m large,

(2) splitting the arc systems Asp(6m) into subsystems of long arcs and finite arcs,
(3) convergence of the widths of long arcs,
(4) convergence of the width of finite arcs.

In step (4),wsp(Eα, fm) is computed by applying (∗) to a hexagonHm of S\f−1
m (Asp(6m))

that bounds Eα. There are three cases:

(4a) Hm is bordered by three arcs of bounded length,
(4b) Hm is bordered by two arcs of bounded length and one divergent arc,
(4c) Hm is bordered by one arc of bounded length and one divergent arc.

We show that (4b) does not occur and that one has the desired limit in (4a) and (4c).
The case of [f ] ∈ T̂ vis(S)(0) is similar, using reduced lengths and normalized widths.

Proof. Suppose [f ] /∈ T̂ vis(S)(0).
The distance function dfm(−, ∂S+) : S+ → R+ with respect to the metric f ∗mgm

converges uniformly on compact subsets of S+.
Step 1: stability of the spine. Let E be the set of edges of Sp(6) and let mi be the

midpoint of the edge Ei ∈ E in 6. Let γi,1 and γi,2 be the shortest geodesics that join mi
to ∂6 and αi := f−1(γ−1

i,1 ∗ γi,2) the associated arc. Let d(mi, ∂6) = `(γE,1) = `(γE,2)
and write d ′(mi, ∂6) for the minimum length of a geodesic that joinsmi to ∂6 and is not
homotopic to γi,1 or γi,2. Finally, set ε = min{d ′(mi, ∂6)− d(mi, ∂6) |Ei ∈ E} > 0.
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Because dfm(f
−1(mi), ∂S+) and d ′fm(f

−1(mi), ∂S+) also converge asm→∞, their
difference is eventually positive and so the arc αi is still dual to some edge of the spines
f−1
m (Sp(6m)) of (S, f ∗m(gm)) for m large. Thus, up to discarding finitely many terms of

the sequence, we can assume that A := f−1(Asp(6)) ⊆ Am := f−1
m (Asp(6m)).

Step 2: long and finite arc subsystems. The set of long arcs A∞ is the set of all the
arcs that are not supported in S+. The set ofA-compatible finite arcsAfin consists of those
arcs α supported in S+ such that A ∪ {α} is still a system of arcs. Notice that A ⊆ Afin

and that Afin is finite.
Because of Theorem 3.9, we can assume in our computation that Am :=

f−1
m (Asp(6m)) is maximal. Moreover, we split Am as the union of the subsystems
Afin
m := Am ∩Afin and Am ∩A∞.

Step 3: widths of long arcs. By Lemma B.2(a), `β(fm) ≥ Lm equidiverge and so
wAm(

Eβ, fm) ≤ tβ(fm)/2 ≤ T (Lm)/2 for all β ∈ Am ∩A∞, where T (Lm)→ 0.
Step 4: widths of finite arcs. It is sufficient to show the following: for every α ∈

Afin and for every subsequence {fmi } such that α ∈ Ami , we have wAmi (Eα, fmi ) →
wAmi

(Eα, f ). As Ami is maximal, it decomposes S into hexagons: let Hi be a hexagon
bounded by Eα. Up to subsequences, we can assume that we are in either of the following
three cases for every i.

(4a)Hi bounded by three finite arcs. Let Eα, Eα′i, Eα′′i be finite arcs ofAmi that boundHi .
Up to subsequences, we can assume that Eα′i = Eα′ and Eα′′i = Eα′′. Then

sinh(wAmi (Eα, fmi )) =
sα′(fmi )

2 + sα′′(fmi )2 − sα(fmi )2
2sα′(fmi )sα′′(fmi )

√
sα(fmi )

2 − 1
.

Because f ∗mi (gmi )→ f ∗(g) uniformly on compact subsets of S+, the lengths of the arcs
supported in S+ converge and so wAmi (Eα, fmi )→ wAmi

(Eα, f ).
(4b) Hi bounded by two finite arcs. Let Eα, Eα′i, Eβi be the arcs of Ami that bound Hi ,

where α′i is finite and βi is long. Up to subsequences, we can assume that Eα′i = Eα′ is fixed.
The formula

cosh(d(Eα,

E

α′)) = cosh(ai) cosh(a′i)+ cosh(bi)
sinh(ai) sinh(a′i)

(where ai, a′i, bi are the lengths of α, α′, βi at fmi ) and the divergence of bi imply that
d(Eα,

E

α′) diverges, which contradicts the fact that the boundary lengths are bounded.
Hence, this case does not occur.

(4c) Hi bounded by one finite arc. Let Eα, Eβi, Eβ ′i be the arcs in Ami that bound
Hi , where βi, β ′i are long. Let xα,i, xβ,i, xβ ′,i be the lengths of the edges of Hi op-
posite to α, βi, β ′i and let ai, bi, b′i be the lengths of α, βi, β ′i at fmi . Remember that
wAmi

( Eβi, fmi ), wAmi ( Eβ ′i, fmi ) → 0, whereas wAmi (Eα, fmi ) is bounded. Notice that
xβ,i − wAmi (Eα, fmi ) = wAmi

( Eβi, fmi ) → 0 and so cosh(xβ,i) − cosh(wAmi (Eα, fmi ))→ 0. The same holds for β ′i , thus cosh(xβ,i)− cosh(xβ ′,i)→ 0. But

cosh(xβ,i) = cosh(b′i) cosh(ai)+ cosh(bi)
sinh(b′i) sinh(ai)

= 1
tanh(ai) tanh(b′i)

+ cosh(bi)
sinh(ai) sinh(b′i)
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and similarly for xβ ′i , so that we obtain

2 sinh(bi − b′i)
sinh(ai)

= ebi−b′i − eb′i−bi
sinh(ai)

≈ cosh(xβ,i)− cosh(xβ ′,i)→ 0,

which implies that |bi − b′i | → 0, because ai → a ∈ (0,∞).
Consequently,

cosh(wAmi (Eα, fmi ))→
1

tanh(a)
+ 1

sinh(a)
= 1

tanh(a/2)
,

which gives wAmi (Eα, fmi )→ tα(f )/2 = wA(Eα).

Suppose now [f, p] ∈ T̂ vis(S)(0).
We use the notation in Remark B.3 and we assume as before that Am is maximal.
Notice that

λα(fm) = e`α/2−dm = e−dm
(
sα(fm)+

√
sα(fm)2 − 1

)
= tan(ϑm/2)

(
sα(fm)+

√
sα(fm)2 − 1

)
≈ ϑmsα(fm)+O(ϑ3

msα(fm)).

In step (4) below, the normalized widths w̃Am = 2wAm/sin(ϑm) will be shown to limit to
the simplicial coordinates. Since the map Ŵ reduces to BEP’s map for cusped surfaces,
we will also use the term “normalized widths” (instead of “simplicial coordinates”) for
homogeneity.

As ‖p̃‖ = 1, we can assume that pi(fm) < p̃i(fm). The proof follows the same path
as before, with some modifications.

Step 1: stability of the spine. By Proposition A.2 (see [Mon09a] for more details),
we can assume that fm(Str) = 6tr

m and that the metrics f ∗m(gm) converge uniformly on
compact subsets of Str+. Hence, the above argument works by replacing 6 and S by their
truncations.

Step 2: long and finite arc subsystems. We define long and finite arcs as in the pre-
vious case. Because p → 0, the geometry of the cusp implies that w̃Am(Eα, fm) ≤
tα(fm)/sin(ϑm) ≈ 2 exp(− ˜̀α/2) for all α ∈ Am.

Step 3: reduced widths of long arcs. By Lemma B.2(b), ˜̀β(fm) ≥ L̃m and ϑmsβ(fm)
≈ λβ(fm) ≥ exp(L̃m/2) equidiverge and so w̃Am( Eβ, fm) ≤ 2 exp(−L̃m/2) for all β ∈
Am ∩A∞, where exp(−L̃m/2)→ 0.

Step 4: reduced widths of finite arcs. For all α ∈ Afin we have λα(f ) < ∞ and
|λα(fm)− λα(f )| → 0, and |λα(fm)− ϑmsα(fm)| → 0.

Let (fmi ) be a subsequence with α ∈ Ami and let Hi be a hexagon bounded by Eα.
(4a) Hi bounded by three finite arcs. Let Eα, Eα′i, Eα′′i be the arcs bounded by Hi . As

before, we can assume that Eα′i = Eα′ and Eα′′i = Eα′′. Because of the uniform convergence
of f ∗mi (gmi )→ f ∗(g) on compact subsets of Str+, we have w̃Ami (Eα, fmi )→ w̃Ami

(Eα, f ).
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The simplicial coordinate of Eα at fmi is

XAmi
(Eα, fmi ) =

λα′(fmi )
2 + λα′′(fmi )2 − λα(fmi )2

λα′(fmi )λα′′(fmi )λα(fmi )

It is easy to check that w̃Ami (Eα, fmi )→ XAmi
(Eα, f ).

(4b) Hi bounded by two finite arcs. Let Eα, Eα′i, Eβi be the arcs bounded by Hi , with βi
long. There is a simple closed (nonboundary) curve γi ⊂ S that is contracted to a node
by f and that intersects βi . Up to subsequences, we can assume that Eα′i = α′ and γi = γ .
Either α or α′ intersects γ , which contradicts the fact that α and α′ are finite arcs.

(4c) Hi bounded by one finite arc. Let Eα, Eβi, Eβ ′i be the arcs bounded by Hi , where βi
and β ′i are long. Because cosh(xα,i) ≈ 1+ x2

α,i/2 and

cosh(xα,i) = cosh(bi) cosh(b′i)+ cosh(ai)
sinh(bi) sinh(b′i)

≈ 1+ 2 exp(ai − bi − b′i)

+ 2 exp(−2bi)+ 2 exp(−2b′i)

we obtain x2
α,i/ϑ

2
mi
≈ exp(ãi − b̃i − b̃′i)+O(ϑ2

mi
)→ 0.

Remember that w̃Ami (
Eβi, fmi ), w̃Ami ( Eβ ′i, fmi ) → 0 and that w̃Ami (Eα, fmi ) is

bounded. So xβ,i/sin(ϑmi ) and xβ ′,i/sin(ϑmi ) are bounded too.
On the other hand, cosh(xβ ′,i) ≈ 1+2 exp(b′i−bi−ai)+2 exp(−2ai)+2 exp(−2bi)

and so x2
β ′,i ≈ 4 exp(b′i − bi − ai) + 4 exp(−2bi) + 4 exp(−2ai) and x2

β ′,i/sin2(ϑmi ) ≈
exp(b̃′i − b̃i − ãi)+O(ϑ2

mi
).

Finally,

w̃Ami
(Eα, fmi ) ≈

2xβ,i
sin(ϑmi )

≈ 2 exp
(
b̃′i − b̃i − ãi

2

)
+O(ϑ2

mi
)

and an analogous estimate holds with the roles of b̃i and b̃′i switched. This implies that
|b̃′i − b̃i | → 0.

As a consequence, w̃Ami (Eα, fmi ) ≈ 2 exp(−ãi/2) → 2 exp(−ã/2) = 2/λα(f ) =
XAmi

(Eα, f ). ut

Appendix C. Two topological remarks

The following topological lemma will be useful in the proofs of Theorems 3.16, 3.17
and 5.4.

Lemma C.1. Let f : X→ Y be aG-equivariant continuous map between metric spaces
on which the discrete group G acts by isometries. Assume that the G-orbits on Y are
discrete.

(a) If X/G is compact and stab(x) ⊆ stab(f (x)) has finite index for all x ∈ X, then f is
proper.
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(b) If f is injective and the induced map f̄ : X/G→ Y/G is a homeomorphism, then f
is a homeomorphism.

Proof. For (a), let {xm} ⊂ X be a divergent sequence. Up to extracting a subsequence, we
can assume that [xm] → [x] ∈ X/G. Thus there exists gm ∈ G such that xm · gm → x,
that is, dX(xm, x · g−1

m )→ 0. As {xm} is divergent, the sequence {[gm]} ⊂ G/stab(x) is
divergent too, and so it is inG/stab(f (x)). Hence, every point of the orbit f (x)·G occurs
finitely many times in {f (x) · g−1

m }, because f (x) ·G is discrete. As f (xm · gm)→ f (x),
we have dY (f (xm), f (x) · g−1

m )→ 0 and {f (xm)} is divergent too.
For (b), let us show first that f is surjective. Because f̄ is bijective, for every y ∈ Y

there exists a unique [x] ∈ X/G such that f̄ ([x]) = [y]. Hence, f (x) = y · g for some
g ∈ G and so f (x · g−1) = y.

The injectivity of f also implies that stab(x) = stab(f (x)) for all x ∈ X.
To prove that f−1 is continuous, let {xm} ⊂ X be a sequence such that f (xm)→ f (x)

for some x ∈ X. Clearly, [f (xm)] → [f (x)] in Y/G and so [xm] → [x] inX/G, because
f̄ is a homeomorphism.

Hence, there exists gm ∈ G such that zm := xm · g−1
m → x. By continuity

of f , we have f (zm) → f (x) and by hypothesis f (zm) · gm → f (x). Moreover,
dY (f (x) · gm, f (x)) ≤ dY (f (x) · gm, f (xm))+ dY (f (xm), f (x)) = dY (f (x), f (zm))+
dY (f (xm), f (x))→ 0 and so f (x) · gm→ f (x). Hence, gm ∈ stab(f (x)) = stab(x) for
large m, because G acts with discrete orbits on Y . As a consequence, for m large enough
dX(xm, x) = dX(zm, x)→ 0 and so xm→ x and f−1 is continuous at f (x). ut
Notice that, in order to check that the G-orbits on Y are discrete, it is sufficient to show
the following:

(•) whenever y ·gm→ y for a certain y ∈ Y and {gm} ⊂ G, the sequence {gm} eventually
lies in stabG(y).

In fact, because of (•), there is an ε > 0 such that B(y, ε)∩y ·G = {y}. Given a sequence
{gm} ⊂ G with z · gm→ y ∈ Y , we have d(y · g−1

j gi, y) ≤ d(y · g−1
j , z)+ d(z, y · g−1

i )

= d(y, z · gj )+ d(z · gi, y) < ε for i, j ≥ Nε. Thus, g−1
j gi ∈ stabG(y) and d(z · gj , y) =

d(z · gjg−1
j gi, y) = d(z · gi, y) for all i, j ≥ Nε. Hence, z · gi = y for all i ≥ Nε and so

the orbit z ·G is discrete.
Another simple topological statement will be occasionally useful.

Lemma C.2. Let f : X → Y be a map of metric spaces and let U ⊂ X be a dense
subspace. Assume that

(a) f |U is continuous,
(b) for every {um} ⊂ U such that um→ x ∈ X, we have f (um)→ f (x).

Then f is continuous.

Proof. Let {xm} ⊂ X be a sequence such that xm → x. As U is dense in X, by (b) we
can choose {um} ⊂ U such that dX(um, xm) < 1/m and dY (f (um), f (xm)) < 1/m.
Then dX(um, x)→ 0 and so dY (f (um), f (x))→ 0 by (a). Finally, dY (f (xm), f (x)) ≤
dY (f (xm), f (um))+ dY (f (um), f (x))→ 0. ut
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Appendix D. The continuity of the infinite grafting map

To prove the continuity of (gr∞,L) at q ∈ T̃ (S), we split the problem into two distinct
cases:

(1) L(q) bounded and so q = [f : S → 6],
(2) L(q) not bounded and so q = w̃ ∈ |A(S)|∞.

D.1. L(q) bounded

Let {[fm : S → 6m]} ⊂ T (S) be a sequence that converges to [f ], so that L(fm)
→ L(f ).

Condition (b) of Proposition A.2 ensures that there are maps f̃m : S → 6m which
have a standard behaviour on a neighbourhood of the thin part of 6m and such that the
metric f̃ ∗m(gm) converges to f ∗(g) uniformly on the complement (see [Mon09a] for more
details). For some fixed gr∞(f ) : R → gr∞(6), define f̂m : R → gr∞(6m) in such a
way that Fm = gr∞(f ) ◦ f̂−1

m : gr∞(6m)→ gr∞(6) has the following properties.
For every i such that `Ci (f ) > 0, we denote by φim : ∂ i6m → ∂ i6 the restriction of

f ◦ f̃−1
m to the i-th boundary component and we put orthonormal coordinates (x, y) (with

y ≥ 0 and x ∈ [0, `Ci )) on the i-th cylinder C̃i in such a way that Ci = {y = 0} and
S induces on Ci the orientation along which x decreases. Then we define Fm(x, y) :=
(φim(x), y) on the i-th cylinder.

For every j such that `Cj (f ) = 0 and `Cj (fm) > 0, we can assume that `Cj (fm) <
1/2 and we can consider a hypercycle HCj ⊂ 6m ⊂ gr∞(6m) parallel to the j -th
boundary component and of length 2`Cj (fm). We define Fm to agree with f ◦ f̃−1

m on the
portion of gr∞(6m) which is hyperbolic and bounded by the possible hypercycles HCj .

Finally, we extend Fm outside the possible hypercycles HCj by a diffeomorphism.
Clearly, condition (c) of Proposition A.2 for the sequence {f̂m} and gr∞(f ) is satisfied

and so [fm] = [f̂m] → [gr∞(f )] in T̂ (R, x).

D.2. L(q) not bounded

Let S+ ⊂ S be the visible subsurface determined (up to isotopy) by A = supp(w̃).
As gr∞ is continuous on the T (S), by Lemma C.2 it is enough to consider a sequence

{[fm : S → 6m]} ⊂ T (S) that converges to q = w̃ ∈ |A(S)|∞ ⊂ T̃ (S) and such that
Ŵ (fm) ∈ |Am|◦ × R+, with Am maximal.

We must show that gr∞(fm) → gr∞(q) = [f : R → 6] in T (R, x) × 1n−1 ×
[0,∞]/∼, where f and 6 are constructed as in Section 5.2.

It will be convenient to denote by w̃(α, f ) the weight w̃(α) for every α ∈ A.
Moreover, we will use the notation w̃(−, fm) to denote the normalized quantity
2wsp(−, fm)/‖L(fm)‖ and w̃m(Eα, f ) to denote w̃(Eα,fm)

w̃(α,fm)
w̃(α, f ).
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Idea of the proof. We will define a sequence of homeomorphisms f̂m : R →
gr∞(6m) by explicitly describing Fm = f ◦ f̂−1

m : gr∞(6m)→ 6. Then we will show
that Fm is Km-quasi-conformal on the compact subsets of the smooth locus of 6̇+ with
Km→ 1. Hence, Proposition A.2(c) will imply that gr∞(fm)→ gr∞(q).

LetGm be the ribbon graph dual toAm so that fm(Gm) can be identified with Sp(6m).
Similarly, let G be the ribbon graph dual to A, so that f (G) ⊂ 6+ can be identified with
the critical graph of ϕ.

We can assume that A ⊆ Am for every m. One can visualize this inclusion dually as
a surjective morphism of ribbon graphs Gm→ G (see [Mon09b], for instance), in which
the inverse image of an edge is an edge and the inverse image of a vertex v of G is a
subgraph of Gm (made of the edges of Gm that shrink to v).

Idea of the construction of Fm. For everym, we subdivide our surfaces gr∞(6m) and
6 into R̂-regions (rectangular) and V̂ -regions (near a vertex), and we coordinatize them.
We stress that, even though 6 is fixed, some regions and some systems of coordinates
on 6 may depend on m. Then we explicitly define Fm on all these regions, except for
a small neighbourhood of the vertices of Sp(6m) = fm(Gm) and of the edges in some
shrunk subgraph fm(Gm(v)). Where Fm is defined, we check that its conformal distortion
uniformly converges to 1. Finally, we extend Fm over the remaining part of gr∞(6m) and
we use Proposition A.2(c) to obtain the desired convergence.

For every m and every small ε > 0, define the following regions of gr∞(6m) and
of 6.

R̂-region on gr∞(6m) associated to α ∈ Am. Let Eα be an oriented arc on S with
support α ∈ Am. Let P(Eα,6m) be the projection of the geodesic edge fm(α)∗ of Sp(6m)
to the boundary component of 6m pointed by f (Eα) and orient P(Eα,6m) coherently with
Eα∗ (and so reversing the orientation induced by 6m).

Let R(Eα,6m) be the geodesic quadrilateral swept out by the shortest geodesics that
join fm(Eα∗) and P(Eα,6m), and let R̂(Eα,6m) be the union of R(Eα,6m) and the flat
rectangle of gr∞(6m) of infinite height with base P(Eα,6m) (see Figure 6).

R̂ε-region on gr∞(6m) associated to α ∈ A. Assume now α ∈ A and let (Eα, Eβ1, Eβ2)

bound a hexagon of S \Am. The formula

sinh(a/2) sinh(w(Eα)) = s2
β1
+ s2

β2
− s2

α

2sβ1sβ2

shows that wsp(Eα, fm) > 0 for m large enough, because a(fm) = `α(fm)→ 0. Thus, we
can assume that wsp(Eα, fm), wsp(

E

α, fm) > 0 for all α ∈ A and all m.
Let x be the arc-length coordinate on P(Eα,6m) that is zero at the projection of s :=

α∗ ∩ α and let P− = P ∩ {x ≤ 0}. Define

Rε(Eα,6m) :=
⋃
x

rx, where x ∈ [−(1− ε)wsp(Eα, fm), (1− ε)wsp(

E

α, fm)]

where rx is the hypercyclic arc parallel to f (α) that joins x ∈ P(Eα,6m) and f (α)∗, and
let R̂ε(Eα,6m) be the union of Rε(Eα,6m) and the flat rectangle of gr∞(6m) that leans
on it.
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fm(Eα)

fm(Eα∗)

fm(v) s

P−
Rε−Qε−

R̂

R̂−

6m

Sp(6m)

x

rx

Fig. 6. Regions of gr∞(6m) associated to Eα.

We can put coordinates (x, y) on Rε(Eα,6m) ∪ (R̂(Eα,6m) \6m) such that

• x extends the arc-length coordinate of P and y is compatible with the arc-length coor-
dinate on α,
• (x, y) are orthonormal on the flat part R̂(Eα,6m) \ 6m, which corresponds to
[−w(Eα, fm), w(

E

α, fm)] × [0,∞),
• (x, y) are orthogonal on the hyperbolic part Rε(Eα,6m), which corresponds to [−(1−
ε)w(Eα, fm), (1 − ε)w(

E

α, fm)] × [−a(fm)/2, 0] in such a way that {x = const} is a
hypercycle parallel to f (α) and {y = const} is a geodesic that crosses f (α) perpendic-
ularly.

Finally, we set Rε− := Rε∩{x ≤ 0} and R̂ε− := R̂ε∩{x ≤ 0}, and we let Q̂ε− := R̂− \ R̂ε−.
R̂ and R̂ε-region on6 associated to α ∈ A. Some of these regions will depend onm.

First, we denote by R̂(Eα,6,m) the flat tile FTEα∗ ⊂ 6 (see Section 5.2), which comes
endowed with coordinates x̃ = −w̃m(Eα, f ) + w̃(α, f )u (which depends on m) and ỹ =
w̃(α, f )v, so that the Jenkins–Strebel differential ϕ on 6 restricts to (dx̃ + idỹ)2 on
R̂(Eα,6,m).

Then, we define R̂−(Eα,6,m) := R̂(Eα,6,m) ∩ {x̃ ≤ 0} and R̂ε−(Eα,6,m) :=
R̂(Eα,6,m)∩ {−(1− ε)w̃m(Eα, f ) ≤ x̃ ≤ 0} in such a way that the widths of R̂− and R̂ε−
relative to (6,m) are proportional to the widths of the analogous regions of 6m.

Finally we set Q̂ε− := R̂− \ R̂ε− and we define similarly the regions with x̃ ≥ 0.
V̂ ε-regions on 6. Define V̂ ε( Eβh, 6,m) := Q̂ε−( Eβh, 6,m) ∪ Q̂ε+( Eβh+1, 6,m) and

V̂ ε(v,6,m) :=⋃j

h=1 V̂
ε( Eβh, 6,m). See Figure 7 (right).

The total (normalized) width of V̂ ε( Eβh, 6) is w̃m(V̂ ε( Eβh), f ) := w̃m( Eβh, f ) +
w̃m(

E

βh+1, f ).
V̂ ε-region on 6m. Let f ( Eβ1)

∗, . . . , f ( Eβj )∗ be the (cyclically ordered) set of edges
of G outgoing from a vertex v, where βh ∈ A (the indices of the β’s are taken in
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x

6gr∞(6m) V̂ ε(v)
V̂ ε(v)

V̂ ε( Eβh)
V̂ ε( Eβh)

fm( Eβ∗
h
)fm( Eβ∗

h+1
)

f ( Eβ∗
h
)

f ( Eβ∗
h+1

)

f (v)

Fig. 7. The thick edges γh,1 and γh,2 are shrunk to the vertex v. These V̂ -regions refer to 6m on
the left and to (6,m) on the right.

Z/jZ). For every m and h there is an lh ≥ 1 such that Eβ∗h, Eγ ∗h,1 = σ−1∞ ( Eβ∗h), Eγ ∗h,2 =
σ−2∞ ( Eβ∗h), . . . , Eγ ∗h,lh = σ

−lh∞ ( Eβ∗h) =

E

β∗h+1 are distinct oriented edges of Gm and γh,i ∈
Am \A. Define

V̂ ε( Eβh, 6m) := Q̂ε−( Eβh, 6m) ∪ Q̂ε+( Eβh+1, 6m) ∪
lh−1⋃
i=1

R̂( Eγh,i, 6m)

(see Figure 7, left) and let

w̃(V̂ ε( Eβh), fm) = ε(w̃( Eβh, fm)+ w̃(

E

βh+1, fm))+
jh−1∑
i=1

w̃(γh,i, fm)

be the total (normalized) width of V̂ ε( Eβh, 6m).
If v is a nonmarked (smooth or singular) vertex of G, then we simply set V̂ ε(v,6m)

:=⋃j

h=1 V̂
ε( Eβh, 6m).

If f (v) is a smooth vertex of 6 marked by xi , then we set V̂ ε(v,6m) := {xi} ∪ C̃i ∪⋃j

h=1 V̂
ε( Eβh, 6m), where C̃i is the flat cylinder corresponding to xi .

Construction of Fm. We choose εm = max{1/‖L(fm)‖, 1−∑α∈A w̃(α, fm)}1/2, so
that εm → 0, εm‖L(fm)‖ → ∞ and (1 −∑α∈A w̃(α, fm))/εm → 0. Moreover, we set
δm = exp(−εmw(α0, fm)/4) → 0, where α0 ∈ A and w̃(α0, f ) = min{w̃(α, f ) > 0 |
α ∈ A}, so that ai(fm) < δm for m large.

Define Fm : gr∞(6m)→ 6 according to the following prescriptions.
On the R̂εm -regions. For every α ∈ A and every orientation Eα, Fm continuously maps

R̂
εm+ (Eα,6m) onto R̂εm+ (Eα,6,m) in such a way that

Fm(x, y) = 2
‖L(fm)‖

(
w̃m(Eα, f )
w̃(Eα, fm) x, y

)
for y ≥ δm



Riemann surfaces with boundary and natural triangulations of the Teichmüller space 679

and the vertical arcs {x} × [−a/2, δm] (whose length is `x := δm + a cosh(x)/2) are
homothetically mapped to vertical trajectories {x̃′} × [0, 2δm/‖L(fm)‖]. More explicitly,
using the (x, y) coordinates on gr∞(6m) and the (x̃, ỹ) coordinates on 6,

Fm(x, y) =



2
‖L(fm)‖

 w̃m(Eα, f )
w̃(Eα, fm) x,

y

 if y ≥ δm,

2
‖L(fm)‖


w̃m(Eα, f )
w̃(Eα, fm) x

δm + δm
`x
(y − δm)

 if 0 ≤ y ≤ δm,

2
‖L(fm)‖


w̃m(Eα, f )
w̃(Eα, fm) x

δm cosh(x)
`x

(
y + a

2

)
 if −a

2
≤ y ≤ 0.

Thus, the differential of Fm is

dFm =



2
‖L(fm)‖

 w̃m(Eα, f )
w̃(Eα, fm) 0

0 1

 if y ≥ δm,

2
‖L(fm)‖


w̃m(Eα, f )
w̃(Eα, fm) 0

−aδm sinh(x)
2`2
x

(y − δm) δm

`x

 if 0 ≤ y ≤ δm,

2
‖L(fm)‖


w̃m(Eα, f )
w̃(Eα, fm) 0

δ2
m sinh(x)
`2
x

(
y + a

2

) δm cosh(x)
`x

 if −a
2
≤ y ≤ 0.

Because the metric gm on R̂εm+ (Eα,6m) in the xy-coordinates is

gm =



(
1 0
0 1

)
if y ≥ 0,(

1 0
0 cosh(x)2

)
if y ≤ 0,

we obtain (F−1
m )∗(gm) = M t M (with respect to the (x̃, ỹ) coordinates, which are or-

thonormal), where
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M = √gmdF−1
m

=



‖L(fm)‖
2

 w̃(Eα, fm)
w̃m(Eα, f ) 0

0 1

 if y ≥ δm,

‖L(fm)‖
2


w̃(Eα, fm)
w̃m(Eα, f ) 0(

a sinh(x)
2

)(
y − δm
`x

)(
w̃(Eα, fm)
w̃m(Eα, f )

)
`x

δm

 if 0 ≤ y ≤ δm,

‖L(fm)‖
2


w̃(Eα, fm)
w̃m(Eα, f ) 0

−(y + a/2) sinh(x)
(
δm

`x

)(
w̃(Eα, fm)
w̃m(Eα, f )

)
`x

δm

 if −a
2
≤ y ≤ 0.

Look at the locus y ≤ δm. Up to switching the orientation, w(Eα, fm) ≥ w(α, fm)/2 and
so (a/2) sinh(w(Eα, fm)) ≤ 1. This implies

a

2
sinh(x) ≤ a

2
sinh[(1− εm)w(Eα, fm)] / exp(−εmw(Eα, fm)),

and similarly `x/δm−1 / exp(−εmw(α0, fm)/4). We conclude that, on the R̂εm -regions,
the distortion of Fm is bounded by

max
{
w̃m(Eα, f )
w̃(Eα, fm) ,

w̃(Eα, fm)
w̃m(Eα, f )

∣∣∣∣ α ∈ A} · (1+ exp[−εmw(α0, fm)/4])→ 1.

On the V̂ εm -regions away from the vertices. For every oriented edge Eβ∗h of G, we
require Fm to map V̂ εm( Eβh, 6m) ∩ {y ≥ δm} onto V̂ εm( Eβh, 6,m) ∩ {ỹ ≥ 2δm/‖L(fm)‖}
as a constant horizontal stretch. In coordinates,

Fm = 2
‖L(fm)‖

(
c 0
0 1

)
, where c = w̃m(V̂

εm( Eβh), f )
w̃(V̂ εm( Eβh), fm)

Notice that the quantity c − 1 can be rewritten as

(w̃m( Eβh, f )− w̃( Eβh, fm))+ (w̃m(

E

βh+1, f )− w̃(

E

βh+1, fm))− ε−1
m

∑
i w̃(γh,i, fm)

w̃( Eβh, fm)+ w̃(

E

βh+1, fm)+
∑
i ε
−1
m w̃(γh,i, fm)

and so it converges to 0 because ε−1
m

∑
i w̃(γi,h, fm) ≤ ε−1

m (1 −∑α∈A w̃(α, fm))→ 0.
Hence, the distortion of Fm converges to 1.

Extending Fm around the vertices of G. Let v be a vertex of G and let {η∗i } be the set
of edges of Gm shrunk to v.

If f (v) ∈ f (G) ⊂ 6 is smooth, then define Fm to be a diffeomorphism between
V̂ εm(v,6m) \ {y ≥ δm} and V̂ εm(v,6,m) \ {ỹ ≥ 2δm/‖L(fm)‖}. If f (v) is also marked,
then we can require Fm to preserve the marking.
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If f (v) is a node between two visible components, then Fm maps V̂ εm(v,6m) \
{y ≥ δm} onto V̂ εm(v,6,m) \ {ỹ ≥ 2δm/‖L(fm)‖} shrinking the edges {fm(η∗i )} to
f (v) and as a diffeomorphism elsewhere.

If6′ ⊂ 6 is an invisible component and f (v1), . . . , f (vl) are vertices of f (G) ⊂ 6+
and nodes of 6′, then we require Fm to map⋃
k

V̂ εm(vk, 6m) \ {y ≥ δm} onto 6′ ∪
(⋃
k

V̂ εm(vk, 6,m) \ {ỹ ≥ 2δm/‖L(fm)‖}
)

by shrinking each V̂ εm(vk, 6m) ∩ {y = δm/2} to f (vk) and as a diffeomorphism else-
where.

Table of symbols

S◦ open surface S \ (∂S ∪ {marked points})
Ṡ punctured surface S \ {marked points}
dS double of the surface S
σ natural real involutions of dS
H upper half-plane
Ť (S) space of S-marked smooth hyperbolic surfaces
T (S) Teichmüller space of S-marked hyperbolic surfaces with geodesic boundary
`, τ hyperbolic length function and twist parameter
L boundary length map
Ť (S)(p) locus L−1(p) ⊂ Ť (S) of surfaces with boundary lengths p
A(S) set of arcs on S
A(S) complex of arcs on S
A◦(S) subset of proper arc systems in A(S)
|A| topological realization of the set A
|A(S)| topological realization of A(S)
|A◦(S)| subspace of |A(S)| corresponding to proper arc systems
ML(R) space of measured laminations on R
PML(R) space of projective measured laminations on R
i(·, ·) geometric intersection product
Tγ Dehn twist along γ
Q6 space of holomorphic quadratic differentials on 6
B6 space of harmonic Beltrami differentials on 6
ω, η Weil–Petersson 2-form and Poisson structure
T (S) augmented Teichmüller space
0(S) mapping class group Diff+(S)/Diff0(S)
M(S) moduli space of stable hyperbolic surfaces diffeomorphic to S
ai , si hyperbolic length ai of the arc αi and si = cosh(ai/2)
wA(Eαi), wA(αi) width of the oriented arc Eαi or of the arc αi with respect to the arc system A
tαi transverse length T (`αi ) = 2arcsinh(1/sinh(`αi /2)) of αi
L∞(A(S)) space of bounded maps A(S)→ R≥0
P(A(S)) projectivization of L∞(A(S))
‖t‖∞ sup-norm of the function t
j embedding of T (S) in the space of t-length functions
T a(S) bordification of arcs of T (S)
Ma

(S) compactification of arcs of M(S)
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Sp(6) spine of the hyperbolic surface 6 with boundary
Asp(6) arc system on 6 dual to the spine
wsp(Eαi) width of Eαi with respect to the spinal arc system
W triangulation map that associates to [f ] ∈ T (S) its spinal weighted arc system

f ∗wsp
6+ visible subsurface of 6
T̂ (S) real-oriented blow-up of T (S) along T (S)(0)
T̂ vis(S) quotient of T̂ (S) by visible equivalence
Ŵ extension of W to T̂ vis(S)

W
a extension of W to the bordification of arcs T a(S), with inverse 8

ĵ extension of j to T̂ vis(S)
T̃ (S) extended Teichmüller space T (S) ∪ |A(S)|∞
M̃(S) extended moduli space T̃ (S)/0(S)
Eα∗ oriented edge dual to the oriented arc Eα
E(A) set of oriented edges dual to arcs in A
FTEe flat tile associated to the oriented edge Ee
|ϕ| flat metrics associated to the quadratic differential ϕ
gr∞ map that grafts semi-infinite cylinders at ∂6 of a hyperbolic 6
C̃i semi-infinite grafted cylinders Ci × [0,∞) at the boundary component Ci
S Schwarzian derivative (usually with respect to the Poincaré structure)
P(R) space of projective structures on R
Grλ(R′) projective surface obtained from the hyperbolic R′ by grafting along the lamina-

tion λ
H (κ) Hopf differential of the map κ
6tr truncated surface
˜̀α, λα reduced length of the arc α and λ-length of α
HCi hypercycle parallel to the boundary component Ci
p̃i , w̃ normalized i-th boundary length and normalized width
XA simplicial coordinate with respect to the arc system A
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