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Abstract. We investigate the structure ofGδ ideals of compact sets. We define a class ofGδ ideals
of compact sets that, on the one hand, avoids certain phenomena present among generalGδ ideals of
compact sets and, on the other hand, includes all naturally occurringGδ ideals of compact sets. We
prove structural theorems for ideals in this class, and we describe how this class is placed among all
Gδ ideals. In particular, we establish a result representing ideals in this class via the meager ideal.
This result is analogous to Choquet’s theorem representing alternating capacities of order ∞ via
Borel probability measures. Methods coming from the structure theory of Banach spaces are used
in constructing important examples of Gδ ideals outside of our class.
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1. Introduction

In the present paper, E stands for a compact metric space and K(E) denotes the compact
space of all compact subsets of E equipped with the Vietoris topology. A subfamily of
K(E) is called downward closed if it is closed under taking compact subsets. A down-
ward closed subfamily of K(E) that is also closed under taking finite unions is called an
ideal of compact sets. A downward closed subfamily of K(E) that is closed under taking
countable unions provided the union is compact is called a σ -ideal of compact sets.

The study of definable ideals of compact sets is by now a classical subject in de-
scriptive set theory. For a comprehensive recent survey of this field the reader can con-
sult [12]. Of particular interest among definable ideals of compact sets are coanalytic
σ -ideals mostly because of a wide range of examples belonging to this class and because
of the theory that can be developed for it. By a dichotomy proved in [8], coanalytic σ -
ideals fall into two major subclasses: they are either coanalytic complete or else they
are Gδ . This paper investigates the structure of the latter class of Gδ σ -ideals of compact
sets.

The following definition will be crucial in our considerations. A set I ⊆ K(E) is said
to have property (∗) if for any sequenceKn ∈ I, n ∈ ω, there exists aGδ setG ⊆ E such
that

⋃
nKn ⊆ G and each compact subset of G is in I.
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As will be proved in Proposition 2.1, families of compact sets with (∗) are σ -ideals
and, if they are additionally assumed to be coanalytic, they are Gδ . Thus, (∗) can be
viewed as a strong version of σ -completeness for Gδ ideals. Some vague analogies with
the results of [18] can be taken to indicate that coanalytic σ -ideals of compact sets
with (∗) are to general coanalytic σ -ideals of compact sets what analytic P-ideals of
subsets of ω are to general analytic ideals of subsets of ω.

A note on terminology. As said above, coanalytic families with (∗) are automatically
Gδ σ -ideals. Thus, there is a range of names such families can be called. We will refer to
them as Gδ ideals with (∗).

In Section 2, we present examples of Gδ ideals with property (∗) and general facts
about this property. Recently, a new phenomenon among Gδ ideals of compact sets was
discovered by Mátrai in [14]. He constructed a Gδ ideal of compact subsets of 2ω con-
taining all singletons and such that each denseGδ subset of 2ω contains a compact set not
in the ideal. At this point, this property seems somewhat pathological for Gδ ideals, and
condition (∗) delineates a natural class of Gδ ideals avoiding it. (Sections 2, 3, and 4 of
the present paper were, however, mostly completed before the appearance of [14].) The
aim of presenting the examples in Section 2 is to show that natural Gδ ideals do have
property (∗). Furthermore, we show in Proposition 2.2 that all calibrated, thin families
of compact sets have (∗). On the other hand, we give an example in Proposition 2.4 of a
calibrated Gδ ideal that does not have (∗).

In Sections 3 and 4, we study the structure of Gδ ideals with (∗). The following
operation will be fundamental in a representation theorem for such ideals. For A ⊆ E, let

A∗ = {K ∈ K(E) : K ∩ A 6= ∅}. (1.1)

In Theorem 3.2 we represent eachGδ ideal with property (∗) via the nowhere dense ideal
by showing that a compact setK is in the ideal if and only ifK∗ is nowhere dense in some
fixed, but depending on the ideal, compact subset of K(E). In fact, Gδ ideals with (∗)
are the only ideals that can be represented in this fashion. Such a representation is new
even for classical ideals like, for example, the ideal of compact measure zero sets or of
compact zero-dimensional sets. This theorem, though not its proof, is analogous to the
classical theorem of Choquet [2] (see also [13, pp. 30–35]) that gives a characterization
of ideals of compact sets that can be represented as follows: a compact set K is in the
ideal if and only if K∗ has measure zero with respect to some Borel probability measure
on K(E); those are precisely the ideals of zero sets with respect to an alternating capacity
of order∞. Thus, our representation result gives a meager ideal analogue of this measure
ideal theorem; in our result, condition (∗) provides the appropriate characterization. As
a consequence to this theorem, we find in Theorem 3.2 a representation for Gδ ideals I
with calibration and (∗), which uses the following operation A 7→ A+ in addition to the
operation A 7→ A∗ defined above:

A+ = {K ∈ K(E) : K ∩ A is not covered by countably many elements of I}. (1.2)

Next we prove in Theorem 4.1 that all Gδ ideals with (∗) are Tukey reducible to the
nowhere dense ideal. This gives, for ideals with (∗), an affirmative answer to a question
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of Louveau and Veličković [10]. (After the present work was completed, Justin Moore
and the author proved [16], using one of the ideals constructed in Section 6 of the present
paper, that the question has a negative answer in general.)

In Sections 5 and 6, we investigate the placement of the class of ideals with (∗) within
the class of all Gδ ideals. This is done by introducing a natural transfinite rank, with
respect to a given ideal, on all open, downward closed families of compact sets. The rank
quantifies the degree of closedness under taking unions such a family enjoys. We prove
in Theorem 5.4 that property (∗) for an ideal is equivalent to having open, downward
closed approximations with the highest possible rank ω1. For each α < ω1, we exhibit
in Theorem 6.1 a Gδ ideal, necessarily without (∗), for whose open, downward closed
approximations the highest value of the rank is precisely α. The combinatorial objects
used in this construction are analogous to objects that come up in the structure theory of
Banach spaces.

Notation. By ω we denote the set of all natural numbers including 0. If n ∈ ω, we
identify n with the set {0, . . . , n − 1}. In particular, 0 = ∅. Similarly, if s̄ is a finite
sequence whose domain is n ∈ ω and if m ≤ n, then s̄�m is the sequence obtained from
s̄ by keeping its first m elements. As usual, if s̄ is a finite sequence and t̄ is another finite
sequence, by s̄_ t̄ we denote the sequence obtained from s̄ by extending it by t̄ . If s̄ is a
sequence of elements of a set A and a ∈ A, then s̄_a stands for the sequence s̄_ t̄ , where
t̄ = (a).

2. Basic facts and examples

Part (i) of the following proposition shows that (∗) can be viewed as a strong version of
σ -completeness, and the proof of the coanalytic part of (ii) shows that it can be thought of
as a separation principle. The proposition below should be compared with a result due to
Dougherty, Kechris, Louveau, and Woodin, [6], [8], that for I ⊆ K(E), I is an analytic
σ -ideal if and only if I is a Gδ ideal.

Proposition 2.1. (i) Let I ⊆ K(E) have property (∗). Then I is a σ -ideal.
(ii) If, additionally, I is assumed to be analytic or coanalytic, then it is a Gδ .

Proof. Note that (∗) immediately implies that I is downward closed and that if a compact
set K can be covered by countably many members of I, then K ∈ I. So (i) follows. If
I is analytic, then it is a Gδ by (i) and [8]. Assume now that it is coanalytic. Then, if it
is not Gδ , by Hurewicz’s theorem there is a continuous map f : 2ω → K(E) such that
f (x) ∈ I iff x ∈ Q where Q consists of all sequences in 2ω which are eventually 0. By
(∗) we can find a Gδ G ⊆ E such that

⋃
x∈Q f (x) ⊆ G and K(G) ⊆ I. But K(G) is

a Gδ , so f−1(K(G)) is a Gδ subset of 2ω. On the other hand, it equals Q, contradiction.
ut

We now list some classes ofGδ ideals of compact subsets of a compact space E that have
property (∗). All these ideals occur naturally in various parts of mathematics. The new
point proved here is that they fulfill (∗). (There exist overlaps among the classes of ideals
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listed below, which I have not investigated.) On the other hand, as follows from [14], there
do exist Gδ ideals of compact subsets of 2ω that do not have (∗).

Examples of Gδ ideals with (∗). For all the ideals listed below it is straightforward to
check directly from their definitions that they are analytic or coanalytic. Thus, in view
of Proposition 2.1, we only need to check property (∗) for them. These arguments will
follow the list below.

1. Compact nowhere dense subsets of E; more generally, for a non-empty σ -compact set
F ⊆ K(E), the ideal

{K ∈ K(E) : ∀L ∈ F K ∩ L is meager in L}. (2.1)

Consideration of the general formula (2.1) was proposed by Alain Louveau. For ex-
amples of ideals given by formula (2.1) in the special case of countable F see [9,
Theorem 2].

2. Compact measure zero sets with respect to a finite Borel measure on E; more gener-
ally, for a non-empty σ -compact (in the weak∗ topology) set M of finite Borel mea-
sures on E, the ideal

{K ∈ K(E) : ∀µ ∈M µ(K) = 0}. (2.2)

For ideals given by the general formula (2.2) see [3], [4, p. 31], [8].
3. Compact zero sets with respect to a Hausdorff measure; see [4, p. 31].
4. Given n ∈ ω, compact subsets of E of topological dimension ≤ n; for definiteness we

consider here, say, the covering dimension. See [15, p. 152].
5. Z-sets for E = [0, 1]ω. Recall that a compact set K ⊆ [0, 1]ω is a Z-set if for any

continuous function f : [0, 1]ω → [0, 1]ω and for any ε > 0 there exists a continuous
function g : [0, 1]ω → [0, 1]ω that is uniformly ε-close to f and whose range is
disjoint from K . See [15, p. 307].

6. The ideals associated with analytic P-ideals of subsets of ω as follows: let I be an
analytic P-ideal of subsets of ω, for K ∈ K(2ω), and put K ∈ I iff for some x ∈ I ,
{y ∩ x : y ∈ K} is meager in P(x) (see [18, p. 55]). Recall that an ideal of subsets of
ω is a P -ideal if for any xn ∈ I , n ∈ ω, there exists x ∈ I with xn \ x finite for each n.

We will now give the arguments that the ideals above fulfill (∗).
1. Obviously, if F = {E}, formula (2.1) gives the ideal of all compact nowhere dense

subsets of E. So it suffices to check that ideals given by (2.1) have (∗). In fact, it will be
enough to do it only for F that is assumed to be compact. Indeed, if F =

⋃
n Fn with Fn

compact, and for each n the ideal defined via (2.1) using Fn has (∗), then it immediately
follows that so does the ideal defined using F .

Fix therefore a compact non-empty family F and let I be the ideal defined by (2.1)
using F . Fix a countable topological basis B of E. For U,V ∈ B with U ⊆ V set

FU,V = {L ∩ V : L ∈ F and L ∩ U 6= ∅}.
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By compactness of F it follows that

∀L′ ∈ FU,V ∃L ∈ F (L ∩ U 6= ∅ and L ∩ V ⊆ L′). (2.3)

Moreover, using (2.3), the following equality is rather easy to show and we leave proving
it to the reader:

I = {K ∈ K(E) : ∀U,V ∈ B, U ⊆ V ∀L ∈ FU,V L * K}. (2.4)

Thus, by (2.4), it suffices to show that given Kn ∈ I, n ∈ ω, and U,V ∈ B with U ⊆ V ,
there exists an open O ⊆ E with

⋃
nKn ⊆ O and such that O contains no elements

of FU,V .
To produce such a set O, we will need the following fact. If O ′ ⊆ E is open and

such that O ′ does not contain an element of FU,V , then for any K ∈ I, O ′ ∪K does not
contain an element ofFU,V . To see this, assume that L′ ∈ FU,V is such that L′ ⊆ O ′∪K .
Using (2.3) pick L ∈ F with L ∩ U 6= ∅ and with L ∩ V ⊆ L′. If L ∩ V ⊆ O ′, then
L ∩ V ⊆ O ′, contradicting our assumption onO ′. Thus, ∅ 6= (L∩V )\O ′. It follows that
(L ∩ V ) \ O ′ is a non-empty relatively open subset of L ∈ F and it is clearly contained
in K , so K 6∈ I, contradiction.

Now since K0 ∈ I, it does not contain elements from FU,V . Using compactness
of K0 and of FU,V , we find an open set O0 with K0 ⊆ O0 and withO0 not containing an
element of FU,V . Assume we have an open setOn withK0∪· · ·∪Kn ⊆ On and withOn

not containing sets from FU,V . Using the fact proved above, we see thatOn ∪Kn+1 does
not contain sets from FU,V . Now using compactness of On ∪Kn+1 and of FU,V , we find
an open set On+1 containing On ∪ Kn+1 and such that no compact subset of On+1 is
in FU,V . Once this recursive construction is carried out, let O =

⋃
nOn. This open set is

clearly as required.
2. As in point 1, we can limit our considerations to the situation when F is compact.

If Kn, n ∈ ω, are compact and µ(Kn) = 0 for each n, then, given n and ε > 0, by com-
pactness of F we can find a single open set On such that Kn ⊆ On and µ(On) < ε/2n+1

(see [7, Theorem 17.20(iii)]). Therefore, O =
⋃
nOn is an open set containing

⋃
nKn

and with measure < ε with respect to each µ ∈ M. Repeating this construction for a
sequence of positive reals ε converging to 0 and taking the intersection of the resulting
open sets gives a Gδ with the required properties.

3. Essentially the same proof as for 2 works here.
4. We only need to point out here that the notion of dimension applies to all subsets of

the given ambient compact metric space, that the union of countably many compact sets of
dimension ≤ n has dimension ≤ n (see [15, Theorem 3.2.8]), that each set of dimension
≤ n is contained in a Gδ set of dimension ≤ n, as follows from [15, Theorem 3.2.5], and
that subsets of sets of dimension ≤ n have dimension ≤ n (see [15, Theorem 3.2.9]).

5. This follows from Corollary 5.3.6, Lemma 5.1.3(2), and Lemma 5.1.7(6) of [15]
and the observation that the subset s = (0, 1)ω of [0, 1]ω is a Gδ .

6. LetKn ∈ I, n ∈ ω, and let xn ∈ I be such that {y∩xn : y ∈ Kn} is meager inP(xn).
Since I is a P-ideal, there is x ∈ I with xn \ x finite for each n. Then {y ∩ x : y ∈ Kn}
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is meager in P(x) for each n. Let G ⊆ P(x) be a Gδ set such that P(x) \ G is dense
in P(x) and {

y ∩ x : y ∈
⋃
n

Kn

}
⊆ G.

Then {y ∈ P(ω) : y ∩ x ∈ G} is a Gδ ,
⋃
nKn is included in it, and all compact sets

included in it are in I as witnessed by x.

We now point out one general condition implying property (∗). Recall that a family I
of compact subsets of E is thin if there is no uncountable family of pairwise disjoint
compact sets not in I; and I is called calibrated if for any compact set K ⊆ E, if
K(K \

⋃
nKn) ⊆ I for some Kn ∈ I, n ∈ ω, then K ∈ I. So, for example the ideal of

compact subsets of measure zero with respect to a Borel probability measure is calibrated,
while the ideal of nowhere dense subsets of an uncountable compact space is not.

Proposition 2.2. If I ⊆ K(E) is calibrated and thin, then it has (∗).

Proof. Let Kn ∈ I, n ∈ ω. Let {Ln : n ∈ ω} be a maximal family of compact subsets of
E \

⋃
nKn which are pairwise disjoint and not in I. This family is countable by thinness.

Let G = E \
⋃
n Ln. Then G is a Gδ containing

⋃
nKn. Let K ⊆ G be compact. By

maximality of {Ln : n ∈ ω}, K(K \
⋃
nKn) ⊆ I. Thus, by calibration, K ∈ I. So, G

witnesses that (∗) holds for the sequence (Kn). ut

As an application of property (∗), we deduce a result of Zelený [20]. The original argu-
ment in [20] was rather different and used the fact that coanalytic sets admit coanalytic
ranks.

Corollary 2.3 (Zelený [20]). Let I ⊆ K(E) be calibrated, thin, and coanalytic. Then I
is Gδ .

Proof. By Proposition 2.2, I has (∗) and hence by Proposition 2.1(ii), it is a Gδ . ut

As shown in the proposition below, one cannot remove the assumption that I be thin in
Proposition 2.2 even if I is assumed to be Gδ .

Proposition 2.4. There exists a calibrated Gδ ideal of compact subsets of 2ω that does
not have (∗).

The proof of Proposition 2.4 is postponed till the end of Section 6, where a general con-
struction of Gδ ideals without (∗) is described.

3. Representations of ideals with (∗)

We prove a representation theorem for Gδ ideals with (∗). This representation is some-
what analogous to Choquet’s representation of alternating capacities of order∞ (see [2],
[13, pp. 30–35], [7, 30.4]). Its proof is, however, different.

It follows from Proposition 2.1(ii) that coanalytic families with (∗) are Gδ . How-
ever, we will carry out the proof of the representation assuming only coanalyticity of the



Gδ ideals of compact sets 859

family. This does not make the argument more complicated and, since the form of this
representation implies easily that the family is a Gδ ideal, we will have yet another proof
that coanalytic families with (∗) are Gδ ideals.

The operation A∗ is defined in (1.1).

Theorem 3.1. Let I ⊆ K(E) be coanalytic and non-empty. Then I has (∗) if and only if
there exists a compact set F ⊆ K(E) such that

K ∈ I ⇔ K∗ ∩ F is meager in F .

Proof. Assume that I is coanalytic, non-empty, and has (∗). We construct a family F ⊆
K(E) as in the conclusion of the theorem. Let

E′ = E \
⋃
{U : U open and U ∈ I}.

Clearly E′ is compact. Since I is a σ -ideal, for K ∈ K(E) we see that K ∈ I if and only
if K ∩ E′ ∈ I ∩K(E′). It follows that it suffices to find F ⊆ K(E′) as in the conclusion
of the theorem for the coanalytic, non-empty family I∩K(E′) having property (∗). Thus,
we can, and will from now on, assume that E′ = E. Note that since I is a σ -ideal, all
sets in I ∩ K(E′) are nowhere dense in E′. Therefore, we will assume that all sets in I
are nowhere dense in E.

If I = {∅}, let F = {E}. Thus, from this point on we assume that I ⊆ K(E) is
coanalytic, has property (∗), consists of only nowhere dense sets, and contains {x} for
some x ∈ E. Recall first the operation A+ defined in (1.2). In the course of the argument,
we will prove the following condition, which is therefore also equivalent to (∗) and is of
some interest:

• there exist compact Fn ⊆ K(E), n ∈ ω, that are upward closed (that is, closed under
taking compact supersets) with Fn+1 ⊆ Fn and such that for K ∈ K(E),

K ∈ I ⇒ ∀n K∗ ∩ Fn is meager in Fn,
K 6∈ I ⇒ ∃n K+ ∩ Fn is dense in Fn.

Note that, since K∗ is compact and contains K+, the second part of the above condition
implies that K∗ ⊇ Fn for all but finitely many n.

Fix a continuous surjection f : ωω → K(E) \ I. Such a function exists since I
is coanalytic. First we note that for any non-empty, closed set F ⊆ ωω, there exists a
non-empty, relatively open set U ⊆ F such that

∀(Kl)l∈ω ⊆ I ∃L ∈ K(E)
(
L ∩

⋃
l

Kl = ∅ and ∀x ∈ U f (x) ∩ L 6= ∅
)
. (3.1)

Assume towards a contradiction that this fails. Let Ui , i ∈ ω, be an open basis for F
consisting of non-empty sets. The failure of the above condition allows us to pick for
each i a sequence (K i

l ) ⊆ I so that for each compact L ⊆ E \
⋃
l K

i
l there exists x ∈ Ui

with f (x) ∩ L = ∅. Let now (Kn) enumerate {K i
l : l, i ∈ ω}. By (∗), we can now pick a

Gδ set G so that
⋃
nKn ⊆ G and K(G) ⊆ I. Let Lj , j ∈ ω, be compact and chosen so
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that E \G =
⋃
j Lj . Note that for each x ∈ F , f (x) 6∈ I, and therefore, f (x) intersects

some Lj . Additionally, for each j , the set {x ∈ F : f (x) ∩ Lj 6= ∅} is closed in F . Thus,
by the Baire category theorem, there exist i and j with Ui ⊆ {x ∈ F : f (x) ∩ Lj 6= ∅},
which gives an immediate contradiction with the fact that Lj ⊆ E \

⋃
nK

i
n.

For F ⊆ ωω closed define

F̃ = F \
⋃
{U : U ⊆ F relatively open and fulfilling (3.1)}.

Define further F 0
= ωω, F α+1

= F̃ α , and F λ =
⋂
α<λ F

α if λ is a limit ordinal. There
exists a countable ordinal β such that F β+1

= F β and by the argument from the previous
paragraph F β = ∅. It follows that ωω can be represented as a countable union of (not
necessarily open) sets fulfilling (3.1). Putting them in one sequence, we obtain Fn, n ∈ ω,
whose union is ωω and with (3.1) holding for each Fn. Let L′n = f [Fn].

Now for each n let
K′n =

⋂
{K∗ : K ∈ L′n}.

Note that each K′n is compact. We claim that

∀(Kl)
(
(Kl) ⊆ I ⇒ K′n 6⊆

⋃
l

K∗l

)
. (3.2)

Indeed, ifK′n ⊆
⋃
l K
∗

l for some (Kl) ⊆ I, then for each L ∈ K′n, L∩Kl 6= ∅ for some l.
This means, by the definition of K′n, that for each compact L,

(∀K ∈ L′n L ∩K 6= ∅) ⇒ L ∩
⋃
l

Kl 6= ∅.

This however directly contradicts (3.1) for Fn since L′n = f [Fn].
Let

Kn = K′n \
⋃{

U : U ⊆ K′n relatively open and ∃(Kl) ⊆ I U ⊆
⋃
l

K∗l

}
.

Then Kn is compact and by (3.2) non-empty. Note also that

K ∈ I ⇒ K∗ ∩Kn is meager in Kn. (3.3)

Otherwise, since K∗ is compact, there would be a V ⊆ Kn non-empty, relatively open
in Kn such that V ⊆ K∗. Then it is easy to see that

V ⊆
⋃{

U : U ⊆ K′n relatively open and such that ∃(Kl) ⊆ I U ⊆
⋃
l

K∗l

}
,

so V ∩Kn = ∅, contradiction. Note also that for compact K ,

K 6∈ I ⇒ ∃n Kn ⊆ K∗. (3.4)

Indeed, if K 6∈ I, then for some n0, K ∈ L′n0
, so Kn0 ⊆ K′n0

⊆ K∗.
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Now we use the sets Kn to produce Fn as in the condition at the beginning of the
proof. Let V ni , i ∈ ω, be an open basis of Kn consisting of non-empty sets. Let Fn be the
closure of the set

{L ∈ K(E) : ∀i, j ≤ n V ji * (E \ L)∗}. (3.5)

It is easy to check that each Fn is upward closed and that Fn+1 ⊆ Fn.
Let K ∈ I, and let n ∈ ω. Let L be in the set given by (3.5). Since, by (3.3), for all

j ≤ n, K∗ ∩Kj is nowhere dense in Kj , we see that, for all i, j ≤ n,

((E \ L) ∪K)∗

does not contain V ji . Therefore, we can find an open set U containing K and such that
for all i, j ≤ n we still have

V
j
i * (E \ L ∪ U)∗ = (E \ (L \ U))∗. (3.6)

Let L′ = L \ U . By (3.6) and the definitions of Fn and U , we see that L′ is in Fn \ K∗.
Since Fn is upward closed, for any finite set F ⊆ E \ U , we find that L′′ = L′ ∪ F is an
element of Fn \K∗. By manipulating the sets U and F (making U close toK and F close
to L ∩ U in the Vietoris topology), we can make L′′ as close to L as we wish. (We use
here the assumption that all elements of I, in particular K , are nowhere dense.) Thus, we
have found an element of Fn \K∗ arbitrarily close to an arbitrary element of the set given
by (3.5). Since the set defined by (3.5) is dense in Fn, we have just shown that Fn \K∗ is
dense in Fn. Since it is also open, K∗ ∩ Fn is meager in Fn.

Let now K ∈ K(E) \ I. Then, by (3.4), for some n and some (in fact, all) i ≤ n, we
have V ni ⊆ K

∗. Let L be in the set given by (3.5). We will show that K ∩ L 6∈ I, hence
K+ is dense in Fn. Note that

K∗ ⊆ (E \ L)∗ ∪ (K ∩ L)∗.

The first of the sets in the union on the right hand side does not contain V ni by (3.5) and
is compact. Therefore, the second set, (K ∩L)∗, intersected with Kn is not meager in Kn
as V ni ⊆ K∗. It follows by (3.3) that K ∩ L 6∈ I. Thus, the required properties of the
sequence Fn are proved.

Fix now x0 with {x0} ∈ I. Note that since {x0} is nowhere dense, x0 is not isolated.
Thus, we can find sets Wn ⊆ E, n ∈ ω, such that each Wn is the interior of its closure,
each neighborhood of x0 contains all but finitely many sets Wn, and W n+1 is properly
included in Wn. Define

F =
⋃
n

{F \Wn : F ∈ Fn}.

We claim that F is such that K ∈ I if and only if K∗ ∩ F is meager.
Assume that K ∈ I, and suppose towards a contradiction that K∗ ∩ F is not meager

in F , that is, it has non-empty interior in F . Then, since
⋃
n{F \Wn : F ∈ Fn} is dense

in F , for some n the relative interior of

K∗ ∩ {F \Wn : F ∈ Fn}
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in the set {F \ Wn : F ∈ Fn} is non-empty. This implies that there are open sets
U,U0, . . . , Up ⊆ E with U0, . . . , Up ⊆ U and such that the set

{F \Wn : F ∈ Fn, F \Wn ⊆ U, and ∀i ≤ p (F \Wn) ∩ Ui 6= ∅} (3.7)

is non-empty and included in K∗. Non-emptiness of (3.7) implies that Ui \Wn 6= ∅ for
each i ≤ p. Since Wn is the interior of its closure, we can find non-empty open sets U ′i ,
i ≤ p, with U ′i ⊆ Ui and U ′i ∩Wn = ∅. Using closedness of Fn under taking compact
supersets and non-emptiness of each U ′i and of the set (3.7), we see that for some F ∈ Fn,

F \Wn ⊆ U and ∀i ≤ p (F \Wn) ∩ U
′

i 6= ∅.

Thus, the set
{F ∈ Fn : F ⊆ U ∪Wn and ∀i ≤ p F ∩ U ′i 6= ∅} (3.8)

is non-empty. Also it is included in K∗ since each of its elements contains an element of
the set (3.7) and since K∗ is upward closed. Thus, K∗ ∩ Fn is not meager as it contains
the non-empty set (3.8) relatively open in Fn, contradicting K ∈ I.

Now assume that K 6∈ I. Since I is a σ -ideal and {x0} ∈ I, there exists m ≥ 1 such
that K \Wm−1 6∈ I. Thus, there exists n0 with (K \Wm−1)

∗
⊇ Fn0 . Since the sequence

(Fn) is decreasing, we can assume that n0 ≥ m. It follows that

{F \Wn0 : F ∈ Fn0} ⊆ K
∗.

Using compactness of K∗ and the fact that the sequence (Fn) is decreasing as is the
sequence (Wn), we deduce from the formula above that⋃

n≥n0

{F \Wn : F ∈ Fn} ⊆ K∗. (3.9)

Pick now a non-empty open set U with U ⊆ Wn0−1 \Wn0 . Since all sets in I are nowhere
dense,U contains a compact setM 6∈ I. Consequently, there exists q ∈ ω withM∗ ⊇ Fq .
Since Fn0 ⊆ Fq or Fq ⊆ Fn0 , we see that some element of Fn0 intersects M , and
therefore it intersects U . Thus, since Wn0 ∩ U = ∅, the set {F ∈ F : F ∩ U 6= ∅} is
non-empty. It is also clearly open in F . Now, from (3.9) and the fact that U ⊆ Wk for all
k < n0, we get

{F ∈ F : F ∩ U 6= ∅} ⊆
⋃
n≥n0

{F \Wn : F ∈ Fn} ⊆ K∗,

which proves that K∗ ∩ F is not meager.
Now for the opposite implication in the theorem. Let F ⊆ K(E) be as on the right

hand side of the equivalence of the theorem. Let Km, m ∈ ω, be such that K∗m ∩ F is
meager in F for each m. We can pick Lk ∈ F , k ∈ ω, so that for each k,m, Lk 6∈ K∗m
and {Lk : k ∈ ω} is dense in F . Define G = E \

⋃
k Lk . Clearly G is a Gδ and contains⋃

mKm. Moreover, if K ⊆ G is compact, then K∗ is compact and does not contain any
of the sets Lk; thus, K∗ ∩ F is nowhere dense in F . ut
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After the present work was completed Maya Saran proved in [17] that given a compact
family F as in Theorem 3.1 above and assuming that I consists only of nowhere dense
sets, one can modify F to obtain an upward closed compact family that still represents I
by the formula from this theorem. Note that the assumption that sets in I are nowhere
dense is necessary here.

We will now give a representation of calibrated Gδ ideals with (∗). (The definition
of a calibrated family is given just before Proposition 2.2.) This representation provides
a characterization of such ideals. Note that by Proposition 2.4 property (∗) cannot be
removed from the left hand side of the equivalence in the theorem below.

Recall the operations A∗ and A+ defined in (1.1) and (1.2). Note that A+ ⊆ A∗.
Furthermore, if K ∈ K(E) and I is a σ -ideal, then K+ = {L ∈ K(E) : L ∩K 6∈ I}.

Theorem 3.2. Let I ⊆ K(E) be coanalytic and non-empty. Then I has (∗) and is cali-
brated if and only if there exists a compact set F ⊆ K(E) such that

K ∈ I ⇔ K∗ ∩ F is meager in F
⇔ K+ ∩ F is meager in F .

Proof. We first show the implication from left to right. Since I is coanalytic and has (∗),
there exists a compact set F ⊆ K(E) as in Theorem 3.1. We prove that the displayed con-
dition holds for this compact set. Of course, it suffices to see the second equivalence. The
direction⇒ is obvious sinceK ∈ I implies thatK∗∩F is meager inF andK+ ⊆ K∗. To
prove⇐, assume thatK 6∈ I. Let U ⊆ F be the relative interior in F of (K∗ \K+) ∩ F .
Pick Kl ∈ (K∗ \ K+) ∩ F so that {Kl : l ∈ ω} is dense in U . Of course, if U = ∅,
then we do not pick the sequence (Kl). Note that for all l, Kl ∩ K ∈ I. Since K 6∈ I,
using calibration of I, we get a compact set L 6∈ I with L ⊆ K \

⋃
l Kl . Then L∗ ⊆ K∗

and Kl 6∈ L∗ for each l. Now, L∗ ∩ F is not meager in F , so it has a non-empty interior
in F . Let us denote this interior by V . Since for all l, Kl 6∈ V , we have V ∩ U = ∅. Thus,
K∗ \K+ is nowhere dense in V . Since V ⊆ K∗, this implies thatK+∩V contains a dense
open subset of V , hence K+ has non-empty interior in F .

Now, we prove the other implication. By Theorem 3.1, I has property (∗). To see
calibration, let K and Kp, p ∈ ω, be elements of K(E) such that K 6∈ I, Kp ∈ I,
Kp ⊆ K . We show that there is M ∈ K(E) such that M 6∈ I and M ⊆ K \

⋃
p Kp.

Since K 6∈ I, by our assumption K+ ∩ F is not meager in F . Since I has property (∗),
we can find a Gδ set G such that

⋃
p Kp ⊆ G and K(G) ⊆ I. Fix now compact sets Mk ,

k ∈ ω, so that K \G =
⋃
kMk . For any L ∈ K(E), if L ∈ K+, then L ∩K 6∈ I, which

implies L∩K 6⊆ G. Thus,K+ ⊆
⋃
kM
∗

k . SinceK+ ∩F is not meager in F , we see that
for some k0, M∗k0

∩ F is not meager in F , so Mk0 6∈ I. As Mk0 ⊆ K \
⋃
p Kp, we are

done. ut

We point out that both conditions in Theorem 3.2 are equivalent to the existence of a
closed set F ⊆ K(E) such that

K ∈ I ⇔ K∗ ∩ F is meager in F
⇔ {(L1, L2) : K ∩ L1 ∩ L2 6= ∅} is meager in F × F .
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Indeed, assuming that a compact family F ⊆ K(E) is such that, for K ∈ K(E), K ∈ I if
and only if K∗ ∩ F is meager in F , we have

K+ ∩ F = {L1 ∈ F : L1 ∩K 6∈ I}
= {L1 ∈ F : {L2 ∈ F : (L1 ∩K) ∩ L2 6= ∅} is not meager in F}.

From this, by the Kuratowski–Ulam theorem, we infer that K+ ∩ F is meager in F
precisely when {(L1, L2) : K ∩ L1 ∩ L2 6= ∅} is meager in F × F . It follows that the
condition above is equivalent to the second condition in the conclusion of Theorem 3.2.

4. Property (∗) and Tukey reduction

As is customary, I will denote by NWD the ideal of compact nowhere dense subsets of 2ω.
It is a Gδ ideal with (∗).

Given two partial orders (P,≤P ) and (Q,≤Q) we say that P is Tukey reducible toQ,
in symbols P ≤T Q, if there exists a function f : P → Q such that for each q ∈ Q, {p ∈
P : f (p) ≤Q q} is bounded in P . Below we consider ideals of compact sets as partial
orders where the order relation is inclusion between sets in the ideal. Tukey reduction
among ideals of this sort has been studied in a number of papers (see for example [5],
[10], and [19]). It is a question of some interest whether each Gδ ideal of compact sets
is Tukey reducible to NWD (see [10, p. 194, Question 3]). The following theorem shows
that it is so for Gδ ideals with (∗). However, after completion of the present work, Justin
Moore and the author [16] showed that the answer to this question is negative for general
Gδ ideals of compact sets.

Theorem 4.1. If I ⊆ K(E) is a Gδ ideal with (∗), then I ≤T NWD.

Proof. Let X be a metric compact space with a metric d. Let L ⊆ K ⊆ X be both
compact, and let f ∈ ωω be increasing. Define, taking 1/0 = ∞,

UL,K,f = {x ∈ X : x 6∈ L and ∀n (d(x, L) ≤ 1/n⇒ d(x,K) < 1/f (n))}

for L 6= ∅, and if L = ∅, let

U∅,K,f = {x ∈ X : d(x,K) < 1/f (0)}.

Claim. (i) UL,K,f is open.
(ii) K ∩ UL,K,f = K \ L.

(iii) If M is a compact subset of X with M ∩ K = L, then M ∩ UL,K,f = ∅ for some
increasing f ∈ ωω.

Proof of Claim. All this is completely clear for L = ∅. So assume L 6= ∅. We leave the
proof of (i) and (ii) to the reader. To see (iii), let M be compact with M ∩K = L. Define
f (0) = 0 and for n > 0 let

f (n) = 1+max
{[(

inf
{
d(x,K) : x ∈ M, d(x, L) ≥

1
n+ 1

})−1]
, f (n− 1)

}
,
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where [·] stands for the integer part function, the infimum is taken to be∞ if the set to
which it is applied is empty, and, of course, 1/∞ = 0.

Assume that x0 6∈ L and

∀n (d(x0, L) ≤ 1/n⇒ d(x0,K) < 1/f (n)). (4.1)

We need to see that x0 6∈ M . Assume towards a contradiction that x0 ∈ M . Since x0 6∈ L,
we can find an n0 such that d(x0, L) ≤ 1/n0 and d(x0, L) > 1/(n0+1). Then from (4.1)
we have d(x0,K) < 1/f (n0), so

f (n0) < 1/d(x0,K) ≤

(
inf
{
d(x,K) : x ∈ M, d(x, L) ≥

1
n0 + 1

})−1

≤ f (n0),

contradiction. The claim is proved.

Fix now a compact set F ⊆ K(E) with the properties as in Theorem 3.1. We will now
find a Tukey reduction from I to

{F ∈ K(F) : F is nowhere dense in F} × ωω,
where ωω is taken with the order of pointwise inequality. This will be enough since by [5]
the ideal of compact nowhere dense subsets of any compact metric space is Tukey re-
ducible to NWD and

NWD× ωω ≤T NWD× NWD ≤T NWD.

Pick K ∈ I. Let
LK = K∗ ∩ F .

We will apply the Claim to X = K(E) with some fixed metric d. Claim (iii) allows us to
pick fK ∈ ωω increasing so that

K∗ ∩ UL
K ,F ,fK

= ∅. (4.2)

Define φ : I → NWD× ωω by

φ(K) = (LK , fK).
We check now that φ is a Tukey reduction. It suffices to show that given any F ⊆ F
compact nowhere dense in F and f ∈ ωω, which can be assumed to be increasing, the
set {K : LK ⊆ F, fK ≤ f } is bounded in I, that is, all of its members are included in a
fixed element of I.

If LK ⊆ F and fK ≤ f , then

U = UF,F ,f = {K ′ : K ′ 6∈ F and ∀n (d(K ′, F ) ≤ 1/n⇒ d(K ′,F) < 1/f (n))}

⊆ {K ′ : K ′ 6∈ LK and ∀n (d(K ′,LK) ≤ 1/n⇒ d(K ′,F) < 1/fK(n))}

= UL
K ,F ,fK .

Note now that
(a) U is open by Claim (i).
(b) For K with LK ⊆ F and fK ≤ f , we have K∗ ∩ U = ∅ by the above calculation

and by (4.2).
(c) F \ F = F ∩ U by Claim (ii).
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By (a), {K ∈ K(E) : K∗ ∩ U = ∅} is compact, and therefore so is

M =
⋃
{K ∈ K(E) : K∗ ∩ U = ∅}.

Moreover, M∗ =
⋃
{K∗ : K∗ ∩ U = ∅}, hence M∗ ∩ U = ∅. Now, it follows from (c)

that M∗ ∩ F ⊆ F , which is nowhere dense in F . Thus, M ∈ I. Furthermore, for each
K ∈ K(E) with LK ⊆ F and fK ≤ f , by (b), we have K ⊆ M . This finishes the
proof. ut

One can give an alternative proof of Theorem 4.1 above. Instead of applying Theorem 3.1,
one can apply its consequence, the condition of Theorem 5.4(iii) together with a criterion
of Fremlin from [5, Proposition 3C] used much like in the proof of [5, Corollary 3E].

5. Property (∗) and transfinite ranks

In this section, we will introduce a rank measuring to what extent closedness of a Gδ
ideal I under taking finite unions is reflected by approximations to I, where by an ap-
proximation to I we understand a downward closed, open set U ⊆ K(E) with I ⊆ U .

Let I ⊆ K(E) be downward closed and non-empty, and let U ⊆ K(E) be open and
downward closed. Define

addI(U) ≥ 0 ⇔ U 6= ∅;
addI(U) ≥ α + 1 ⇔ ∀K ∈ I ∃U ⊆ E open (K ⊆ U and

addI({L ∈ K(E) : U ∪ L ∈ U}) ≥ α);
addI(U) ≥ λ ⇔ addI(U) ≥ α for each α < λ if λ is limit.

Note that the set {L ∈ K(E) : U ∪ L ∈ U} in the definition above is open and downward
closed if U is, so the application of addI to it is justified. Note also that the last two
clauses of the above definition can be replaced by one,

addI(U) ≥ α ⇔ ∀β < α ∀K ∈ I ∃U ⊆ E open (K ⊆ U and

addI({L ∈ K(E) : U ∪ L ∈ U}) ≥ β).

It follows immediately from the definition that, for U ⊆ K(E) open and downward closed
and for an ordinal β, addI(U) ≥ β implies addI(U) ≥ α for all α ≤ β. (We are using
here I 6= ∅.)

We point out that addI(U) ≥ 1 is equivalent to saying that I ⊆ U , and that addI(U)
≥ 2 is equivalent to the condition that for anyK ∈ I there exists an open set U ⊆ E such
that K ⊆ U and U ∪ L ∈ U for all L ∈ I.

Some conditions ensuring some degree of closedness under taking unions of open,
downward closed families containing a given ideal have been considered before. For ex-
ample, they are implicit in the proof of [8, Lemma 7] and explicit in [10, p. 194]. Note
however that these conditions are very strong, in particular, each of them easily implies
addI(U) ≥ ω1.

The following lemma is easily proved by induction on the rank.
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Lemma 5.1. Let I and J be downward closed, non-empty families of compact subsets
of E and let U ,V ⊆ K(E) be open and downward closed. If I ⊆ J and U ⊆ V , then

addJ (U) ≤ addI(V).

We have the following lemma saying that addI(U) after reaching ω1 is arbitrarily large.

Lemma 5.2. Let I ⊆ K(E) be downward closed and non-empty, and let U ⊆ K(E)
be downward closed and open. Then addI(U) ≥ ω1 implies addI(U) ≥ α for each
ordinal α.

Proof. A moment’s thought tells us that it suffices to show that addI(U) ≥ ω1 implies
addI(U) ≥ ω1 + 1. For each α < ω1, let

Uα = {K ∈ U : ∃U ⊇ K open (addI({L ∈ K(E) : U ∪ L ∈ U}) ≥ α)}.

By our assumption that addI(U) ≥ ω1, each Uα contains I. Moreover Uβ ⊆ Uα if
β > α, and each Uα is open in K(E). Since K(E) has a countable basis, it follows that
there exists α0 such that Uα = Uα0 for α ≥ α0. This implies that

{K ∈ U : ∃U ⊇ K open (addI({L ∈ K(E) : U ∪ L ∈ U}) ≥ ω1)}

contains Uα0 and so contains I, hence addI(U) ≥ ω1 + 1. ut

We will view addI(U) as the ordinal sup{α < ω1 : addI(U) ≥ α}. Note that the
supremum is attained. In view of Lemma 5.2, this ordinal captures all the information
contained in the rank.

Proposition 5.3. Let I ⊆ K(E) be a non-empty family of sets.

(i) I is a downward closed Gδ if and only if I =
⋂
n Un for a sequence of open, down-

ward closed families Un.
(ii) If I =

⋂
n Un, with Un ⊆ K(E) open and downward closed, and addI(Un) ≥ 2 for

each n, then I is a σ -ideal.

Proof. We leave proving (i), which is well known, to the reader. To see (ii) assume that
I is not a σ -ideal. By an observation due to Kechris [6] (see also [11, Lemma 2.1]) we
can find compact sets K0 and L0 such that L0 ⊆ K0, L0 ∈ I, K0 6∈ I, and for each open
set V with L0 ⊆ V , K0 \ V ∈ I. Since K0 6∈ I, we can fix an n with K0 6∈ Un. Since
addI(Un) ≥ 2, there exists an open V ⊇ L0 such that V ∪ K ∈ Un for each K ∈ I.
Since K0 \ V ∈ I, V ∪ (K0 \ V ) ∈ Un. But then K0 ⊆ V ∪ (K0 \ V ) ∈ Un, so K ∈ Un,
contradiction. ut

The ideal I1 constructed in Theorem 6.1 below shows that the implication in point (ii) of
the proposition above cannot be reversed even if I is assumed to be Gδ .

In light of Proposition 5.3, it is natural to consider the following ordinal as a rank
measuring additivity of a downward closed Gδ family I of compact sets:

sup
{
α < ω1 : ∃(Un)n∈ω

(
Un ⊆ K(E) open and downward closed,

I =
⋂
n

Un, and addI(Un) ≥ α for each n
)}
. (5.1)
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The theorem below shows that property (∗) is equivalent to having the largest possible
value ω1 of this rank.

Theorem 5.4. For non-empty I ⊆ K(E) the following conditions are equivalent:

(i) I is Gδ and has (∗);
(ii) for each α < ω1 there exist Un ⊆ K(E), n ∈ ω, open and downward closed and

such that I =
⋂
n Un and addI(Un) ≥ α;

(iii) there exist Un ⊆ K(E), n ∈ ω, open and downward closed and such that I =
⋂
n Un

and for each K ∈ Un there exists m with K ∪ L ∈ Un for each L ∈ Um.

Proof. (ii)⇒(i). We will produce a countable family A of open, downward closed fami-
lies U with

addI(U) ≥ ω1 and I =
⋂
{U : U ∈ A}.

Let K ⊆ K(E) be a non-empty compact set disjoint from I. We start by proving that
there exists V ⊆ K relatively open and non-empty such that

∀α < ω1 ∃U (addI(U) ≥ α and U ∩ V = ∅). (5.2)

Fix a countable basis B of the topology on K consisting of non-empty sets. By (ii), for
each α < ω1 there exist Uαn with addI(Uαn ) ≥ α and I =

⋂
n Uαn . Thus, we can find

Vα ∈ B such that Vα ∩ Uαn = ∅ for some n. Since B is countable, there exists a fixed
V ∈ B with V = Vα for uncountably many α < ω1. This V clearly works.

Now fix V as above and let

V = {K ∈ K(E) : ∀L ∈ V L * K}.

This set is open and downward closed and, by (5.2), it contains for each α < ω1 an open
and downward closed family U with addI(U) ≥ α. Since, by Lemma 5.1, the rank addI
is larger on bigger families, we have addI(V) ≥ ω1. Note also that V ∩ V = ∅. Now
iterating this argument one produces a transfinite sequence of open and downward closed
sets Vξ and sets Vξ ⊆ K (each of which is the intersection of a closed subset and an
open subset of K) with ξ < ξ0 for some countable ordinal ξ0 such that addI(Vξ ) ≥ ω1,
Vξ ∩ Vξ = ∅, and K =

⋃
ξ<ξ0

Vξ . In particular, K ∩
⋂
ξ<ξ0

Vξ = ∅. Since by (ii) the
complement of I is a countable union of compact sets, we obtain the desired family A.

Having a countable family A of open, downward closed U with addI(U) ≥ ω1 and
with I =

⋂
{U : U ∈ A}, to show (∗) for I it suffices to prove the following: if U is

an open, downward closed family with addI(U) ≥ ω1 and Kn ∈ I, n ∈ ω, then there
exists an open W ⊆ E such that

⋃
nKn ⊆ W and K(W) ⊆ U . We now prove this

statement. We construct open, downward closed Wn with addI(Wn) ≥ ω1 and open sets
Wn ⊆ E as follows. Put W0 = U . Assume Wn has been defined. Since addI(Wn) ≥ ω1,
by Lemma 5.2 we have addI(Wn) ≥ ω1 + 1, and therefore the family

{K ∈Wn : ∃U ⊇ K open (addI({L ∈ K(E) : U ∪ L ∈Wn}) ≥ ω1)}

contains I. Pick Wn ⊆ E open so that Kn ⊆ Wn and

addI({L ∈ K(E) : W n ∪ L ∈Wn}) ≥ ω1.
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Let
Wn+1 = {L ∈ K(E) : W n ∪ L ∈Wn}.

After completing the above construction, define W =
⋃
nWn. Clearly

⋃
nKn ⊆ W . It

remains to show thatK(W) ⊆ U . LetK ⊆ W be compact. FixN withK ⊆ W0∪· · ·∪WN .
By the very definitions of WN and WN we obtain WN ∈ WN and then inductively,
assuming Wn+1 ∪ · · · ∪WN ∈Wn+1, we get

W n ∪ (Wn+1 ∪ · · · ∪WN ) ∈Wn.

Thus, ultimately we have
W0 ∪ · · · ∪WN ∈W0 = U .

Therefore K ∈ U .
(iii)⇒(ii). From the definition of the rank addI , one checks that, for each ordinal

α < ω1, for a sequence Un as in (iii) we have addI(Un) ≥ α for each n. This is done by
induction on α for all n simultaneously.

(i)⇒(iii). Since I has property (∗) and is Gδ , we can find a compact subset F of
K(E) as in Theorem 3.1. Let Vi , i ∈ ω, be an open basis of F consisting of non-empty
sets. Now for K ∈ K(E), let K ∈ Un precisely when

∀i ≤ n Vi \K
∗
6= ∅.

It is easy to check that each Un is downward closed, open, and that I =
⋂
n Un. To see

that the sequence (Un)n fulfills the condition in point (iii), let K ∈ Un. Find m ≥ n large
enough so that for each i ≤ n there exists i′ ≤ m with Vi′ ⊆ Vi \ K

∗. Then clearly
K ∪ L ∈ Un for any L ∈ Um. ut

The implication (iii)⇒(i) in the theorem above can be established directly with a com-
pactness argument. In fact, this argument is implicit in the proof of [8, Lemma 7] and can
be used to show the following. If I =

⋂
n Un and for each n and each K ∈ Un, the set

{L ∈ K(E) : K ∪ L ∈ Un} contains I, then I has (∗). Note that the property of Un in the
assumption of this implication easily gives that addI(Un) ≥ ω1.

Games

The results of Section 6 will need a closer analysis of the rank addI . Originally, this goal
was achieved by introducing a new rank derI , whose definition and basic properties are
stated in the following subsection. Subsequently, Alain Louveau indicated that the same
goal can be reached with a game-theoretic approach. Since this point of view gives a more
intuitive presentation, we opted for it in this final version of the paper. The definitions of
the games below and modifications of the proofs of Lemmas 6.3 and 6.4 to the game-
theoretic context are due to Louveau.

Given a downward closed, non-empty family I ⊆ K(E), an open, downward closed
family U ⊆ K(E), and an ordinal α, we define the following gameGα(I,U). It is played
by two players. Player I plays Ki ∈ I and ordinals ξi < α so that ξi+1 < ξi for all i ≥ 0,
while Player II plays open sets Ui ⊆ E so that Ki ⊆ Ui and U i ⊆ Ui+1 for all i ≥ 0.
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The players take turns with Player I making the first move. Note that the empty sequence
is the only run of the game G0(I,U). A run of the game Gα(I,U) terminates with a
move of Player II after finitely many steps since there is no strictly decreasing sequence
of ordinals. If α = 0, we declare Player II the winner of the run of the game G0(I,U)
if and only if U 6= ∅. (So saying that Player II has a winning strategy in G0(I,U) is a
complicated way of expressing the condition U 6= ∅.) If α > 0 and Up is this last move
of Player II, Player II is declared the winner of the run of Gα(I,U) if Up ∈ U .

We have the following lemma connecting the gamesGα(I,U)with the rank addI(U).
This is the only result about the games that will be used in what follows.

Lemma 5.5. Let I be a downward closed, non-empty family of compact subsets of E
and let U be a downward closed, open family of compact subsets of E. Then for each
ordinal α,

addI(U) ≥ α ⇔ II has a winning strategy in Gα(I,U), (5.3)

Proof. The lemma is proved by a straightforward induction on α. Indeed, for α = 0, (5.3)
holds since both sides of it are equivalent to U 6= ∅. To see that (5.3) holds for limit α
assuming it holds for all ordinals < α it suffices to notice that if Player II has a winning
strategy in Gξ (I,U) for each ξ < α, then he also has a winning strategy in Gα(I,U).
Showing (5.3) for α + 1 assuming that it holds for α requires only noticing that after
Players I and II make their first moves (K0, ξ0), U0 in Gα+1(I,U), the rest of the run of
the game is a run of the game

Gξ0(I, {L ∈ K(E) : U0 ∪ L ∈ U}). ut

There is another game connected directly to property (∗). The game G(I,U) is played
by two players taking turns with Player I playing Ki ∈ I and Player II playing Ui ⊆ E
open so that Ki ⊆ Ui and U i ⊆ Ui+1 for all i ≥ 0. Player II wins a run of G(I,U) if
U i ∈ U for each i. The following result can be proved.

(i) Player II has a winning strategy in G(I,U) if and only if he has a winning strategy
in Gα(I,U) for each α < ω1.

(ii) I has property (∗) if and only if I =
⋂
n∈N Un with II having a winning strategy in

G(I,Un) for each n.

We omit a detailed proof of the above fact leaving it to the reader. We only notice that
the proof of (i) consists of a standard argument used in analyzing open games. Point (ii)
follows from (i), Lemma 5.5, and Theorem 5.4.

Another rank

Let us make the following observation. Let I ⊆ K(E) be downward closed and non-
empty. An application of the Baire category theorem proves that the following two con-
ditions are equivalent.

• If K ∈ K(E), Kn ∈ I for n ∈ ω, and K =
⋃
nKn, then K ∈ I.

• For anyK ∈ K(E) \I, there exists L ⊆ K with ∅ 6= L ∈ K(E) such that for any open
set U if U ∩ L 6= ∅, then U ∩ L 6∈ I.
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Of course, the first of these conditions says that I is a σ -ideal, while the second one asserts
the existence of a perfect, with respect to I, part in each compact set not in I. The two
conditions give rise to two ranks on approximations of a downward closed, non-empty
family I. Approximations are understood as either downward closed, open sets containing
I or upward closed, closed sets disjoint from I, and the two ranks measure invariance of
the first type of approximations under taking unions, and invariance of the second type
of approximations under taking perfect parts. The first of these ranks, called addI , was
introduced above. The second one, called derI , is introduced below. This second rank
will not be used in the remainder of this paper but may be of some independent interest.

Let I ⊆ K(E) be downward closed and non-empty. For F ⊆ K(E) upward closed,
that is, closed under taking compact supersets, define

dI(F) = {L ∈ K(E) : ∃K ∈ F L ⊆ K and K \ L ∈ I}.
Note that dI(F) is upward closed, dI(F) ⊇ F , and if I is an ideal, then dI(dI(F)) =
dI(F).

Let F ⊆ K(E) be closed and upward closed. For α < ω1 define dαI(F) as follows:

d0
I(F) = F;

dα+1
I (F) = dI(dαI(F));

dλI(F) =
⋃
α<λ

dαI(F) if λ is limit.

The last two equalities in the definition above can be replaced by one,

dαI(F) =
⋃
β<α

dI(d
β

I(F)).

Now define a rank derI on closed, upward closed subsets F of K(E) by letting

derI(F) ≥ α ⇔ dαI(F) ∩ I = ∅.
The following fact, whose proof we omit, shows that the two ranks introduced in this
section are closely related.

Let I ⊆ K(E) be downward closed and non-empty, and let U ⊆ K(E) be open and
downward closed. Then

addI(U) = 1+ derI(K(E) \ U).

6. Unboundedness of the rank

The aim of this section is to prove that there existGδ ideals of compact sets with arbitrary
countable positive value of the rank defined by (5.1). For the sake of the short discussion
below, set

add(I) = sup
{
α < ω1 : ∃(Un)n∈ω

(
Un ⊆ K(E) open and downward closed,

I =
⋂
n

Un, and addI(Un) ≥ α for each n
)}
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for a non-empty, downward closed Gδ family I ⊆ K(E). By Proposition 5.3 for any
such I we have 0 < add(I) ≤ ω1. By Theorem 5.4, add(I) = ω1 is equivalent to I
having property (∗), and Section 2 gives a large number of examples ofGδ ideals with (∗).
In the theorem below we complete the picture, that is, for each ordinal α with 1 < α <

ω1 we construct a Gδ ideal Iα with add(Iα) = α. The main combinatorial tool in the
construction will be certain objects coming from the structure theory of Banach spaces.

Theorem 6.1. For each 0 < α < ω1, there exists an ideal Iα of compact subsets of 2ω

with the following three properties:

(i) there exist open, downward closed Un ⊆ K(E), n ∈ ω, with

Iα =
⋂
n

Un and addIα (Un) = α for each n;

(ii) if Iα =
⋂
n Vn where each Vn is open and downward closed, then there exists n with

addIα (Vn) ≤ α;
(iii) Iα contains all singletons of 2ω, and each non-meager subset of 2ω that has the

Baire property contains a compact subset not in Iα .

It can be shown that for Mátrai’s Gδ ideal J from [14] the following is true: if J =⋂
n Vn with Vn ⊆ K(E) open and downward closed, then addI(Vn) = 1 for some n. In

this respect J is similar to the ideal I1 from the theorem above. These two ideals are
however distinct. For example, one can check that I1 is translation invariant, while J is
not (when 2ω is treated as the infinite countable product of Z/2). In fact, each ideal Iα
from Theorem 6.1 is translation invariant.

We now introduce combinatorial objects, called block sequences, families of which
will be important in defining ideals of compact sets whose existence is asserted in The-
orem 6.1. These objects resemble block sequences used in the study of Banach spaces
(see [1]).

Let FF be the family of all non-empty partial functions from ω to {0, 1} whose do-
mains are finite intervals. For two such functions s and t we write

s < t ⇔ (i < j for all i ∈ dom(s) and j ∈ dom(t)).

By a block sequence we mean a sequence s̄ = (s0, . . . , sn) of elements of FF with s0 <
s1 < · · · < sn. A block sequence can be empty. For two block sequences s̄ = (s0, . . . , sm)
and t̄ = (t0, . . . , tn), let

s̄ < t̄ ⇔ (si < tj for all i ≤ m and j ≤ n).

In particular, s̄ < ∅ < s̄ for any block sequence s̄. For a block sequence s̄ = (s0, . . . , sn),
define the domain of s̄ by

dom(s̄) = dom(s0) ∪ · · · ∪ dom(sn).
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We now introduce a certain operation on families of block sequences. Let B be a
non-empty family of non-empty block sequences. Define

i(B) = B ∪ {s̄ : s̄ is a block sequence and
∃n ({s ∈ FF : s̄_s ∈ B, min dom(s) ≤ n} is infinite)}.

Define i0(B) = B and, for a countable ordinal α,

iα+1(B) = i(iα(B)),

and, for a limit countable ordinal λ,

iλ(B) =
⋃
α<λ

iα(B).

Let
r(B) = sup{α < ω1 : ∅ 6∈ iα(B)}.

Note that since all sequences in B are assumed to be non-empty, the set {α < ω1 :
∅ 6∈ iα(B)} is non-empty and the sup in the above definition is an ordinal ≤ ω1.

We now show how to associate an ideal of compact sets with each family of block
sequences. We treat block sequences as codes for sets that are both closed and open, for
short clopen sets, and certain sequences of block sequences as codes for closed sets. Here
is how the decoding is done. For a block sequence s̄ = (s0, . . . , sn), let

]s̄[ = {x ∈ 2ω : ∃i ≤ n si ⊆ x}.

Let us explicitly point out that ]∅[ = ∅. Note that the set ]s̄[ is clopen. An infinite sequence
(s̄k)k of block sequences is called increasing if for each k we have s̄k < s̄k+1. Similarly
a finite, possibly empty, sequence (s̄k)k<N of block sequences is called increasing if for
each k < N −1 we have s̄k < s̄k+1. For an increasing sequence of block sequences (s̄k)k ,
or (s̄k)k<N if the sequence is finite, let

[(s̄k)k] =
⋂
k

]s̄k[ and [(s̄k)k<N ] =
⋂
k<N

]s̄k[. (6.1)

These sets are clearly closed. We explicitly point out that for the empty increasing se-
quence ∅ we have [∅] = 2ω. Note however that (∅), where ∅ is the empty block sequence,
is an increasing sequence of block sequences and [(∅)] = ∅.

Let B be a non-empty family of non-empty block sequences. Let IN(B) stand for the
set of all increasing, finite or infinite, sequences with entries in B. Define

R(B) = {[S] : S ∈ IN(B)},
I(B) = {K ∈ K(2ω) : ∀L ∈ R(B) K ∩ L is meager in L}.

Note that since ∅ ∈ IN(B), we have 2ω = [∅] ∈ R(B). Thus, all sets in I(B) are nowhere
dense and the following lemma is obvious.
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Lemma 6.2. For any non-empty family B of non-empty block sequences, I(B) is a σ -
ideal of compact sets such that all sets in I(B) are nowhere dense.

Lemma 6.3. Let B be a non-empty family of non-empty block sequences and let α be
a countable ordinal. If r(B) ≥ α, then there exist open, downward closed families Un,
n ∈ ω, such that I(B) =

⋂
n Un and addI(B)(Un) ≥ α for each n.

Proof. We start with a general estimate on the rank of certain downward closed, open
families of closed sets. Let a non-empty family B ′ of non-empty block sequences be
given. Consider the family

U = {K ∈ K(2ω) : ∃O clopen (K ⊆ O and ∀L ∈ R(B ′) L * O)}. (6.2)

Claim. addI(B ′)(U) ≥ r(B ′).

Proof of Claim. For a countable ordinal β define

INβ = IN(B ′) ∪ {(s̄0, . . . , s̄J ) : s̄0 < · · · < s̄J ,∀k < J s̄k ∈ B
′, and s̄J ∈ iβ(B ′)}.

Note that IN0 = IN(B ′).
We now establish the following observation.

Observation 1. Let Sn ∈ INβ , n ∈ ω, be such that [Sn] → L as n → ∞ for some
compact set L ⊆ 2ω. Then L contains a set of the form [T ] for some T ∈ INβ+1.

We split the proof into several cases. We say that an increasing sequence of block se-
quences S has length m if S = (s̄0, . . . , s̄m−1), and s̄i is called the i-th element of S. If S
is infinite, we say that it has infinite length.

Case 1: For each m there exists M such that for each Sn of length > m the maximum
of the domain of the m-th element of Sn is ≤ M .

In this case, it is easy to check that there exists T ∈ INβ ⊆ INβ+1 such that [Sn]→
[T ] = L as n → ∞. To see this, we consider two cases. If there exists N such that for
infinitely many n the length of Sn is ≤ N , then by going to a subsequence we can assume
that all Sn have the same finite length. Then T can be taken to be a sequence of the same
length that is the constant value of a subsequence of (Sn)n. If the lengths of Sn go to
infinity as n→∞, then a sequence of infinite length T can be found that is the limit of a
subsequence of (Sn)n, in which case T ∈ IN(B ′) ⊆ INβ .

Case 2: There exists m for which there exists a subsequence Snk , k ∈ ω, of the
sequence Sn, n ∈ ω, such that each Snk has length > m and the maxima of the domains
of the m-th elements of Snk go to∞ as k→∞.

Fix m = m0 smallest with the property as in Case 2. Assume also, by going to a
subsequence, that each Sn has length > m0 and the maxima of the domains of the m0-th
elements of Sn go to∞ as n → ∞. Let (sn0 , . . . , s

n
kn
) be the block sequence that is the

m0-th element of Sn.
Subcase 2a: min snkn →∞ as n→∞.
In this case, it is easy to see that there exists T ∈ IN(B ′) ⊆ INβ+1 with length m0

such that [T ] = L. The sequence T is obtained by taking the limit of a subsequence of
(Sn�m0)n. (Note that m0 may be 0, in which case T = ∅ and [T ] = L = 2ω.)
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Subcase 2b: There exists N such that for infinitely many n we have min snkn ≤ N .
By going to a subsequence, we can assume that for all n we have min snkn ≤ N . In

this case, it is easy to see, using the fact that iβ+1(B ′) = i(iβ(B ′)), that there exists
T ∈ INβ+1 of length m0 such that [T ] ⊆ L. The sequence T is obtained by taking the
limit of a subsequence of

((Sn�m0)
_((s0, . . . , skn−1)))n.

(Note that kn may be 0. In this case, (s0, . . . , skn−1) is the empty sequence, so
[(Sn�m0)

_((s0, . . . , skn−1))] = ∅ and ∅ ∈ iβ+1(B ′).) Thus, Observation 1 is proved.

Let
Uβ = {O : O ⊆ 2ω clopen and [S] * O for S ∈ INβ)}.

Note that U0 is the family of all clopen sets in the family U given by (6.2). We make the
following observation.

Observation 2. Assume K ∈ I(B ′) and O ∈ Uβ . Let ξ < β. There exists O ′ ∈ Uξ such
that K ∪O ⊆ O ′.

To prove this observation, assume towards a contradiction that the conclusion fails. This
assumption allows us to find a sequence Sn ∈ INξ , n ∈ ω, and a compact set L ⊆
K ∪ O such that [Sn] → L as n → ∞. Now, by Observation 1, L contains a set of the
form [T ] with T ∈ INξ+1 ⊆ INβ . Note that by the definition of INβ , for such T either
T ∈ IN(B ′) or [T ] is clopen. Thus, in either case, no relatively open, non-empty subset
of [T ] is contained in K . (We are using here the assumption that K ∈ I(B ′) and also
its consequence: K is nowhere dense.) It follows that [T ] \ O is empty, implying that
[T ] ⊆ O and contradicting O ∈ Uβ .

Now we construct a winning strategy for Player II in Gα(I(B ′),U), which will es-
tablish the Claim by Lemma 5.5. The existence of a winning strategy for Player II in
G0(I(B ′),U) is clear since U 6= ∅. Let α > 0. Assume that Player I in her first move
plays K0 ∈ I(B ′) and ξ0 < α. By Observation 2 with O = ∅ ∈ Uα , there is U0 ∈ Uξ0

with K0 ⊆ U0. This is Player II’s move. Assume n > 0 and suppose that Player I played
Kn−1 and ξn−1 in her n − 1-st move and that Player II responded with Un−1 ∈ Uξn−1 . In
the n-th move, if it occurs, let Player I play Kn ∈ I(B ′) and ξn < ξn−1. Using Observa-
tion 2, Player II responds by playing Un ∈ Uξn with Kn ∪ Un−1 ⊆ Un. This is a winning
strategy since the last move Player II makes, after Player I played Kp and ξp = 0, is
Up ∈ U0 ⊆ U . The Claim is proved.

Let now B be a non-empty family of block sequences with r(B) ≥ α. Let s ∈ FF. Put

Bs = {(s)} ∪ {s̄ ∈ B : (s) < s̄}.

It is easy to check that r(B) ≥ α implies r(Bs) ≥ α. Let

Us = {K ∈ K(2ω) : ∃O clopen (K ⊆ O and ∀L ∈ R(Bs) L * O)}.
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Note further that since each element of R(Bs) is a non-empty clopen set or is a non-
empty relatively clopen subset of an element of R(B), we have I(B) ⊆ I(Bs). Using
this inclusion along with Lemma 5.1 and with the Claim, we get

α ≤ addI(Bs )(Us) ≤ addI(B)(Us). (6.3)

We now show that
I(B) =

⋂
s

Us .

The inclusion⊆ is clear from (6.3) since α ≥ 1. To see the other inclusion, letK ∈ K(E)\
I(B). Then there is (t̄k)k ∈ IN(B), finite or infinite, with K ∩ [(t̄k)k] having non-empty
interior in [(t̄k)k]. This easily translates into the existence of s : {0, . . . , n− 1} → {0, 1}
for some n ∈ ω for which

](s)[ ⊆ K (6.4)

or for which there is k0 such that (s) < t̄k0 and

[(t̄ ′k)k] ⊆ K, (6.5)

where t̄ ′0 = (s) and t̄ ′k = t̄k0+k−1 for k > 0. Note further that ](s)[, [(t̄ ′k)k] ∈ R(Bs) and
so K 6∈ Us by (6.4) or (6.5), as required. ut

Lemma 6.4. Let B be a non-empty family of non-empty block sequences and let α be a
countable ordinal. Assume that all finite subsets of 2ω are in I(B). Assume further that
for each N ∈ ω,

r({s̄ : s̄ ∈ B and min(dom(s̄)) ≥ N}) ≤ α.

If I(B) =
⋂
n Vn for some open, downward closed families Vn, n ∈ ω, then for some n,

addI(B)(Vn) ≤ α.

Proof. Let Vn, n ∈ ω, be open, downward closed and such that I =
⋂
n Vn. Consider

f : {(s̄n) ∈ Bω : s̄0 < s̄1 < · · · } → K(E) \ I

given by f ((s̄n)) = [(s̄n)]. This is a continuous function if Bω is given the product topol-
ogy with B being discrete, and the domain of f is Gδ . By the Baire category theorem,
there exists n0 such that f−1(K(E) \ Vn0) has non-empty interior in the domain of f . It
is easy to check that in this situation there are s̄0, . . . , s̄m ∈ B with s̄0 < · · · < s̄m and

{[(s̄0, . . . , s̄m, s̄)] : s̄ ∈ B and s̄m < s̄} ⊆ K(E) \ Vn0 . (6.6)

Set
B0 = {s̄ ∈ B : s̄ > s̄m} and S0 = (s̄0, . . . , s̄m).

By our assumption we have r(B0) ≤ α. So α, n0, B0, and S0 are fixed.
We claim that addI(B)(Vn0) ≤ α. In order to prove this inequality, in light of Lem-

ma 5.5, it will suffice to find a winning strategy for Player I in the gameGα+1(I(B),Vn0).
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We will need some auxiliary objects. For s̄ ∈ iα+1(B0) \B0, let r(s̄) be the unique ξ such
that s̄ ∈ iξ+1(B0) \ i

ξ (B0). To each such s̄ we associate

(tm(s̄))m∈ω, F (s̄), x(s̄),

where (tm(s̄))m is a sequence of elements of FF, F(s̄) is a finite subset of 2ω, and x(s̄) is
a function from ω \ {0, . . . , k − 1}, for some k ∈ ω, to 2. This assignment is produced
as follows. Setting ξ = r(s̄), we require, for each m, s̄_tm(s̄) ∈ iξ (B0) and, if ξ > 0,
s̄_tm(s̄) 6∈ B0. Furthermore, setting k = min dom(x(s̄)), we require k = min dom(tm(s̄))
for each m, max dom(tm(s̄)) → ∞ as m → ∞, and x(s̄)(j) = tm(s̄)(j) for j ≥ k

and large enough m. Note that the sequence (tm(s̄))m and the function x(s̄) exist by the
definition of the operation i and by compactness of 2ω. Finally, we let

F(s̄) = {x ∈ [S0] : x�dom(x(s̄)) = x(s̄)}.

Note that each F(s̄) is finite, so it is an element of I(B).
At stage n of the game, Player I will produce a block sequence s̄n. As long as

s̄n ∈ iα+1(B0) \ B0, this block sequence will determine Player I’s n-th move in
Gα+1(I(B),Vn0) by the formulas

Kn = F(s̄n) and ξn = r(s̄n). (6.7)

At stage 0, Player I chooses the empty block sequence as s̄0. By assumption, s̄0 = ∅ ∈
iα+1(B0) \ B0, so r(∅) is defined and is ≤ α. Thus, formulas (6.7) give a legal move of
Player I in the game. After stage n is completed, Player I has produced s̄0, . . . , s̄n and her
moves are given by formulas (6.7). They were answered by Player II playing open sets
U0, . . . , Un with U i ⊆ Ui+1 for all i < n. We assume recursively that for each i < n

[S_0 s̄i+1] ⊆ Ui . (6.8)

To determine s̄n+1 for Player I, find q ∈ ω large enough so that

{x ∈ 2ω : ∃y ∈ Kn x�q = y�q} ⊆ Un. (6.9)

Now find m large enough so that

tm(s̄n)(j) = x(s̄n)(j)

for all j ∈ dom(x(s̄n)) with j < q. We let

s̄n+1 = s̄
_
n tm(s̄n).

Note now that since Kn = F(s̄n), it follows from (6.9) that

[S_0 (tm(s̄n))] = {x ∈ [S0] : x�dom(tm(s̄n)) = tm(s̄n)} ⊆ Un.

It follows from this inclusion, from the inductive assumption (6.8), and from Ui ⊆ Un for
i < n that

[S_0 s̄n+1] = [S_0 s̄n] ∪ [S_0 (tm(s̄n))] ⊆ Un.
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Thus, (6.8) holds for i = n. Note that the above procedure of finding s̄n+1 can be per-
formed for an arbitrary value of ξn ≥ 0. However, if additionally ξn > 0, then, by the
definition of tm(s̄n), we see that r(s̄n+1) is defined and is < ξn. Thus, Player I can make
her n+ 1-st move according to formulas (6.7).

We claim that the above description produces a winning strategy for Player I. Indeed,
assume a run of the game is played according to this strategy. Assume we reached a
stage p at which Player I played ξp = 0. Note that after Player II made his last, p-th,
move Up, Player I can still produce a block sequence s̄p+1, which is then an element
of B0. Since from (6.8) for i = p we have [S_0 s̄p+1] ⊆ Up, by (6.6) we obtain Up 6∈ Vn0 ,
witnessing the defeat of Player II. ut

A family B of block sequences is called a hedge if for any t0 < t1 < t2 < · · · with
ti ∈ FF there exists k ∈ ω with (t0, . . . , tk) ∈ B. The reader may compare this definition
with the definitions of a front and a barrier from [1].

Lemma 6.5. LetB be a hedge. Each non-meager subset of 2ω that has the Baire property
contains a compact subset not in I(B).

Proof. It will suffice to prove the conclusion for aGδ set that is dense in some open non-
empty subset of 2ω. Let now Un, n ∈ ω, be open subsets of 2ω and let s ∈ FF be such that
each Un is dense in ](s)[ and the Gδ set in question is

⋂
n Un. For each n pick tnk ∈ FF,

k ∈ ω, such that s < tn0 < tn1 < · · · and, for each k,

](s)[∩ ](tn0 , . . . , t
n
k )[⊆ Un.

This is easily done using density ofUn in ](s)[. Note that our assumption that B is a hedge
implies that for any sequence t0 < t1 < · · · of elements of FF and any k0 there exists
k1 ≥ k0 such that (tk0 , . . . , tk1) ∈ B. Using this reformulation, we can recursively find
s̄0, s̄1, . . . ∈ B such that s̄0 < s̄1 < · · · and for each n,

s̄n = (t
n
k0
, . . . , tnk1

)

for some k0 ≤ k1 depending on n. It follows that ](s)[ ∩ ]s̄n[ ⊆ Un, and therefore

∅ 6= ](s)[ ∩ [(s̄n)n] = ](s)[ ∩
⋂
n

]s̄n[ ⊆
⋂
n

Un.

Since (s̄n)n ∈ IN(B), the above inclusion shows that
⋂
n Un contains a non-empty rela-

tively clopen subset of a set from R(B), hence a compact set not in I(B). ut

Finally a general lemma.

Lemma 6.6. Let I ⊆ K(E) be downward closed and non-empty, and let U1,U2 ⊆ K(E)
be open and downward closed. Let α be an ordinal. If addI(U1) ≥ α and addI(U2) ≥ α,
then addI(U1 ∩ U2) ≥ α.
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Proof. This is proved by induction. For α = 0 it amounts to the observation that if U1
and U2 are non-empty, then, since U1 and U2 are downward closed, ∅ ∈ U1 and ∅ ∈ U2,
so U1 ∩ U2 is non-empty. The rest of the induction argument is equally easy and is left to
the reader. ut

Proof of Theorem 6.1. For a family B of block sequences and n ∈ ω, let

(B)n = {s̄ ∈ B : n < min dom(s̄)}.

For each 0 < α < ω1, we will produce a family of block sequences Bα such that

(a) each block sequence in Bα has length ≥ 2,
(b) Bα is a hedge,
(c) r(Bα) ≥ α,
(d) r((Bα)n) ≤ α for each n ∈ ω.

It follows from the first of these conditions that no set in R(Bα) has isolated points;
thus, I(Bα) contains all singletons of elements of 2ω. This, together with (b) which, by
Lemma 6.5, implies that each non-meager subset of 2ω with Baire property contains an
element not in I(Bα), gives (iii) of the theorem. Condition (d) combined with Lemma 6.4
and (iii) of the theorem yields (ii) of the theorem. Condition (c) and Lemma 6.3 produce a
sequence Un of open, downward closed families with

⋂
n Un = I(Bα) and addI(Bα)(Un)

≥ α. By Lemma 6.6, we can assume that for each n we have Un ⊇ Un+1. By (ii), we
know that for some n, addI(Bα)(Un) ≤ α, hence, by Lemma 5.1, this inequality holds for
all large enough n. We get (i) of the theorem by deleting a finite initial segment of the
sequence (Un)n. Thus, the theorem will be proved once the sets Bα have been produced.

Let
B1 = {(s0, s1) : s0, s1 ∈ FF and s0 < s1}. (6.10)

One easily checks conditions (a)–(d).
Assume the construction has been carried out for all α < α0. Let sk , k ∈ ω, be

an injective enumeration of FF. Let Bk , k ∈ ω, be hedges fulfilling (a) and such that
r(Bk) ≤ r(Bk+1), for any α < α0 there is k with r(Bk) ≥ α, and for each k and n we
have α0 > r((Bk)n). Such families exist by our recursive assumption. Define

Bα0 =

⋃
k

{(sk)
_ t̄ : t̄ ∈ (Bk)max dom(sk)}.

Conditions (a) and (b) for Bα0 follow readily from the definition of this family. To
show (c), note that, by our choice of Bk and since r(Bk) ≤ r((Bk)max dom(sk)), for each
α < α0 there are only finitely many k with (sk) ∈ iα(Bα0). Thus, the smallest ordinal α
with (sk) ∈ iα(Bα0) for infinitely many k is ≥ α0. It follows that ∅ 6∈ iα0(Bα0), hence
r(Bα0) ≥ α0. On the other hand, again by the choice of Bk , for each n ∈ ω, (sk) ∈
iα0((Bα0)n) for each k such that min dom(sk) > n. Since there exist infinitely many k
with min dom(sk) = n+ 1, we get ∅ ∈ iα0+1((Bα0)n). Thus, r((Bα0)n) ≤ α0. ut

We still need to prove Proposition 2.4. This proposition shows that in Proposition 2.2 one
cannot remove the assumption of thinness, that is, forGδ ideals calibration alone does not
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imply property (∗). One can modify the ideals Iα from Theorem 6.1 so that they retain
the properties from that theorem and additionally become calibrated. However, we will
only present an argument showing calibration of the ideal I1.

Proof of Proposition 2.4. Recall that the ideal I1 from Theorem 6.1 is defined to be
I1 = I(B1), where B1 is given by (6.10). We prove that this ideal is calibrated. This will
suffice since it follows from Theorems 6.1 and 5.4 that I1 does not have (∗). Thus, we
need to prove that if Kn ∈ I1, n ∈ ω, and K ∈ K(2ω) \ I1, then K \

⋃
nKn contains a

compact set not in I1. Since each compact set not in I1 contains a set of the form

L = [((s), (s0
0 , s

0
1), (s

1
0 , s

1
1), (s

2
0 , s

2
1), . . . )] (6.11)

where, for each n, s, sn0 , s
n
1 ∈ FF and s < s0

0 < s0
1 < s1

0 < s1
1 < · · · , and each compact

set in I1 has nowhere dense intersection with such a set L, it suffices to show that for L as
above and for any compact sets Ln ⊆ L, n ∈ ω, that are nowhere dense in L there is a set
of the form (6.11) contained in L \

⋃
n Ln. This is done as follows. Since L0 is nowhere

dense in L, it is easy to see that there exist m0 ∈ ω and i0, . . . , in0 ∈ {0, 1} such that

{x ∈ 2ω : s ⊆ x and s0
i0
_
· · ·

_s
m0
im0
⊆ x} ∩ L0 = ∅. (6.12)

By the same argument, there exist n0 > m0 and im0+1, . . . , in0 ∈ {0, 1} such that

{x ∈ 2ω : s ⊆ x and sm0+1
im0+1

_
· · ·

_s
n0
in0
⊆ x} ∩ L0 = ∅. (6.13)

Note that s0
i0
_
· · ·

_s
m0
im0

and sm0+1
im0+1

_
· · ·

_s
n0
in0

may not be elements of FF since their

domains may not be intervals. Let t00 be an element of FF that extends s0
i0
_
· · ·

_s
m0
im0

and with the interval [min dom(s0
i0
),max dom(sm0

im0
)] as its domain. Similarly let t01

be an element of FF extending s
m0+1
im0+1

_
· · ·

_s
n0
in0

and whose domain is the interval

[min dom(sm0+1
im0+1

),max dom(sn0
in0
)]. Then, by (6.12) and (6.13), we have

[(s), (t00 , t
0
1 )] ∩ L0 = ∅.

In a similar fashion, we find t10 , t
1
1 ∈ FF andm1, n1 ∈ ω so that n0 < m1 < n1, t10 extends

s
n0+1
in0+1

_
· · ·

_s
m1
im1

for some choice of in0+1, . . . , im1 ∈ {0, 1} and its domain is the interval

[min dom(sn0+1
in0+1

),max dom(sm1
im1
)], t11 extends sm1+1

im1+1
_
· · ·

_s
n1
in1

again for some choice of

im1+1, . . . , in1 ∈ {0, 1} and its domain is the interval [min dom(sm1+1
im1+1

),max dom(sn1
in1
)],

and finally [(s), (t10 , t
1
1 )] ∩ L1 = ∅. Continuing in this way, we obtain tn0 , t

n
1 ∈ FF so that

in the end we have
[(s), (t00 , t

0
1 ), (t

1
0 , t

1
1 ), . . . ] ∩

⋃
n

Ln = ∅.

Note that our choice of t00 , t
0
1 , t

1
0 , t

1
1 , . . . was arranged so that

[(s), (t00 , t
0
1 ), (t

1
0 , t

1
1 ), . . . ] ⊆ L.

Obviously, the set [(s), (t00 , t
0
1 ), (t

1
0 , t

1
1 ), . . . ] is of the form (6.11), so we are done. ut
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7. Questions

The following question is motivated by Propositions 2.2 and 2.4.

1. Let I ⊆ K(E) be a thin Gδ ideal. Does I have (∗)?

An affirmative answer to the following question would generalize Theorem 3.1. Note
that this theorem gives an affirmative answer to the question when the set A is compact.
It also shows that there exists F for which the implication⇒ holds.

2. Let I ⊆ K(E) be a Gδ ideal with (∗). Is it true that there exists a compact family
F ⊆ K(E) such that for any Gδ set A ⊆ E,

A can be covered by countably many elements of I if and only ifA∗∩F is meager
in F?

An affirmative answer to the next question would generalize Theorem 3.2. Again, this
theorem provides an affirmative answer in the case when A is compact. Also it shows that
there exists F for which the implication⇒ holds in the first equivalence mentioned in the
question and the implication⇐ holds in the second one.

3. Let I ⊆ K(E) be a calibratedGδ ideal with (∗). Is it true that there exists a compact
family F ⊆ K(E) such that for any Gδ set A ⊆ E,

A can be covered by countably many elements of I if and only ifA∗∩F is meager
in F , and each compact subset of A is in I if and only if A+ ∩F is meager in F?
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