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Abstract. Under a reasonable vanishing hypothesis, Donaldson and Friedman proved that the con-
nected sum of two self-dual Riemannian 4-manifolds is again self-dual. Here we prove that the
same result can be extended to the positive scalar curvature case. This is an analogue of the classi-
cal theorem of Gromov–Lawson and Schoen–Yau in the self-dual category. The proof is based on
twistor theory.

1. Introduction

Let (M, g) be an oriented Riemannian n-manifold. Then the Riemann curvature tensor
viewed as an operator decomposes as R = U ⊕ Z ⊕W where

U =
s

2n(n− 1)
g • g and Z =

1
n− 2

R̊ic g,

s is the scalar curvature, R̊ic = Ric− s
n
g is the trace-free Ricci tensor, “•” is the Kulkarni–

Nomizu product, and W is the Weyl tensor which is defined to be what is left over from
the first two pieces.

When we restrict ourselves to dimension n = 4, the Hodge star operator ∗ : 32
→ 32

is an involution and has ±1-eigenspaces decomposing the space of two-forms as 32
=

32
+ ⊕ 3

2
−, yielding a decomposition of any operator acting on this space. In particular

W± : 32
± → 32

± are called the self-dual and anti-self-dual pieces of the Weyl curvature
operator. We say that g is a self-dual (resp. anti-self-dual) metric if W− (resp. W+) van-
ishes. In this case [AHS] constructs a complex 3-manifold Z called the twistor space of
(M4, g), which comes with a fibration by holomorphically embedded rational curves,

CP1 → Z Complex 3-manifold
↓

M4 Riemannian 4-manifold

This construction drew the attention of geometers, and many examples of self-dual
metrics and related twistor spaces were given afterwards. One result proved to be a quite
effective way to produce infinitely many examples and became a cornerstone in the field:
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Theorem 2.1 (Donaldson–Friedman, 1989, [DF]). If (M1, g1) and (M2, g2) are com-
pact self-dual Riemannian 4-manifolds with H 2(Zi,O(T Zi)) = 0, then the connected
sum M1 #M2 also admits a self-dual metric.

The idea of the proof is to work upstairs in the complex category rather than downstairs.
One glues the blown up twistor spaces from their exceptional divisors to obtain a singular
complex space Z0 = Z̃1 ∪Q Z̃2. Then using the Kodaira–Spencer deformation theory
extended by R. Friedman to singular spaces, one obtains a smooth complex manifold,
which turns out to be the twistor space of the connected sum.

When working in differential geometry, one often deals with the moduli space of met-
rics of a certain kind. The situation is also the same for the self-dual theory. Many people,
in particular LeBrun, Joyce, Pedersen, Poon, Honda, have obtained results on the space of
positive scalar curvature self-dual (PSC-SD) metrics on various kinds of manifolds. Since
the positivity of the scalar curvature imposes some topological restrictions on the moduli
space, people often find it convenient to work under this assumption.

However one realizes that there is no connected sum theorem for self-dual positive
scalar curvature metrics. Donaldson–Friedman’s Theorem 2.1 does not make any state-
ment about the scalar curvature of the metrics produced. Therefore we have attacked the
problem of determining the sign of the scalar curvature for the metrics produced over
the connected sum, beginning by proving the following, using techniques similar to that
of [Le]:

Theorem 4.3 (Vanishing theorem). Let ω : Z → U be a 1-parameter standard deforma-
tion of Z0 = Z̃1 ∪Q Z̃2, and U ⊂ C be a neighborhood of the origin. Let L→ Z be the
holomorphic line bundle defined by

O(L∗) = IZ̃1
(K

1/2
Z ).

If (Mi, [gi]) has positive scalar curvature, then by possibly replacing U with a smaller
neighborhood of 0 ∈ C and simultaneously replacing Z with its inverse image we can
arrange for our complex 4-fold Z to satisfy

H 1(Z,O(L∗)) = H 2(Z,O(L∗)) = 0.

The proof makes use of the Leray spectral sequence, homological algebra and Kodaira–
Spencer deformation theory, involving many steps. Using this technical theorem we next
prove that the Donaldson–Friedman theorem can be generalized to the positive scalar
curvature (PSC) case:

Theorem 6.1. Let (M1, g1) and (M2, g2) be compact self-dual Riemannian 4-manifolds
with H 2(Zi,O(T Zi)) = 0 for their twistor spaces. Moreover suppose that they have
positive scalar curvature. Then, for all sufficiently small t > 0, the self-dual conformal
class [gt] obtained on M1 # M2 by the Donaldson–Friedman Theorem 2.1 contains a
metric of positive scalar curvature.

We work with the self-dual conformal classes constructed in the Donaldson–Friedman
Theorem 2.1. Conformal Green’s functions are used to detect the sign of the scalar curva-
ture of these metrics. Positivity for the scalar curvature is characterized by nontriviality of



Scalar curvature and connected sums of self-dual 4-manifolds 885

the Green’s functions. Then the vanishing theorem 4.3 will provide the Serre–Horrocks
vector bundle construction, which gives the Serre class, a substitute for the Green’s func-
tion introduced by Atiyah. Nontriviality of the Serre class will provide the nontriviality
of the extension described by it.

In §2–§3 we review the background material. In §4 the vanishing theorem is proven,
and finally in §5–§6 the sign of the scalar curvature is detected.

2. The Donaldson–Friedman construction

One of the main improvements in the field of self-dual Riemannian 4-manifolds is the
connected sum theorem of Donaldson and Friedman [DF] published in 1989. If M1 and
M2 admit self-dual metrics, then under certain circumstances their connected sum admits
one too. This helped create many examples of self-dual manifolds. We state this more
precisely:

Theorem 2.1 (Donaldson–Friedman [DF]). Let (M1, g1) and (M2, g2) be compact self-
dual Riemannian 4-manifolds and Zi denote the corresponding twistor spaces. Suppose
that H 2(Zi,O(T Zi)) = 0 for i = 1, 2. Then there are self-dual conformal classes on
M1 # M2 whose twistor spaces arise as fibers in a 1-parameter standard deformation of
Z0 = Z̃1 ∪Q Z̃2.

We devote the rest of this section to understand the statement and the ideas in the proof
of this theorem since our main result (6.1) is a generalization of this celebrated theorem.
See [Kal] for details.

The idea is to work upstairs in the complex category rather than downstairs. So let
pi ∈ Mi be arbitrary points in the manifolds. Consider their inverse images Ci ≈ CP1
under the twistor fibration, which are twistor lines, i.e. rational curves invariant under
the involution. Blow up the twistor spaces Zi along these rational curves. Denote the
exceptional divisors by Qi ≈ CP1 × CP1 and the blown up twistor spaces by Z̃i =
Bl(Zi, Ci). The normal bundle for the exceptional divisor Q2 in Z̃2 is computed to be

NQ2 = NQ2/Z̃2
≈ O(1,−1)

where the second component is the fiber direction in the blow up process. We then con-
struct the complex analytic space Z0 by identifying Q1 and Q2 so that it has a normal
crossing singularity,

Z0 = Z̃1 ∪Q Z̃2.

Carrying out this identification needs some care. We interchange the components of
CP1 × CP1 in the gluing process so that the normal bundles NQ1/Z̃1

and NQ2/Z̃2
are

dual to each other. Moreover we should respect the real structures. The real structures σ1
and σ2 must agree on Q obtained by identifying Q1 with Q2, so that the real structures
extend over Z0 and form the anti-holomorphic involution σ0 : Z0 → Z0.

Now we will be trying to deform the singular space Z0, for which Kodaira–Spencer’s
standard deformation theory does not work since it only applies to manifolds tells noth-
ing about deformations of singular spaces. We must use the theory of deformations of
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compact reduced complex analytic spaces, due to Friedman [F]. This generalized theory
is quite parallel to the theory of manifolds. The basic modification is that the roles of
H i(2) are now taken up by the groups T i = Exti(�1,O).

We have assumed H 2(Zi,O(T Zi)) = 0 so that the deformations of Zi are unob-
structed. Donaldson and Friedman are able to show that T 2

Z0
= Ext2Z0

(�1,O) = 0
so the deformations of the singular space are unobstructed. We have a versal family of
deformations of Z0. This family is parameterized by a neighborhood of the origin in
Ext1Z0

(�1,O). The generic fiber is nonsingular and the real structure σ0 extends to the
total space of this family.

Instead of working with the entire versal family, it is convenient to work with certain
subfamilies, called standard deformations.

Definition 2.2 ([Le]). A 1-parameter standard deformation of Z0 is a flat proper holo-
morphic map ω : Z → U ⊂ C of a complex 4-manifold to a neighborhood of 0, with an
anti-holomorphic involution σ of Z such that

• ω−1(0) = Z0,
• σ |Z0 = σ0,
• σ descends to the complex conjugation in U ,
• ω is a submersion away from Q ⊂ Z0,
• ω is modeled by (x, y, z, w) 7→ xy near any point of Q.

Then for sufficiently small, nonzero, real t ∈ U the complex space Zt = ω
−1(t) is smooth

and one can show that it is the twistor space of a self-dual metric on M1 #M2.

ω : Z → U for Z0 = Z̃1 ∪Q Z̃2
Z0 7→ 0

Q
Z1 Z2

Zt

3. The Leray spectral sequence

In this section we will go over the tools that we will be using from the theory of spectral
sequences. Consult [H, GH] for details and proofs.

Given a continuous map f : X → Y between topological spaces, and a sheaf F
over X, the q-th direct image sheaf is the sheaf Rq(f∗F) on Y associated to the presheaf
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V → H q(f−1(V ),F |f−1(V )). This is actually the right derived functor of the functor f∗.
The Leray spectral sequence is a spectral sequence {Er} with

E
p,q

2 = Hp(Y,Rq(f∗F)) and E
p,q
∞ = H

p+q(X,F).

The first page of this spectral sequence reads

...
...

...

H 0(Y,R2(f∗F)) H 1(Y,R2(f∗F)) H 2(Y,R2(f∗F)) · · ·

H 0(Y,R1(f∗F)) H 1(Y,R1(f∗F)) H 2(Y,R1(f∗F)) · · ·

E2 H 0(Y,R0(f∗F)) H 1(Y,R0(f∗F)) H 2(Y,R0(f∗F)) · · ·

A degenerate case is when Ri(f∗F) = 0 for all i > 0.
When the spectral sequence degenerates this way, the second and succeeding rows

of the first page vanish. Since V → H 0(f−1(V ),F |f−1(V )) is the presheaf of the direct
image sheaf, we have R0f∗ = f∗. So the first row consists of H i(Y, f∗F)’s. Vanishing of
the differentials causes immediate convergence to Ei,0∞ = H i+0(X,F). So we get

Proposition 3.1. If Ri(f∗F) = 0 for all i > 0, then H i(X,F) = H i(Y, f∗F) naturally
for all i ≥ 0.

The following proposition gives another sufficient condition for this degeneration. See
[V] for a sketch of proof.

Proposition 3.2 (Small fiber theorem). Let f : X → Y be a holomorphic, proper and
submersive map between complex manifolds, and F a coherent analytic sheaf or a holo-
morphic vector bundle on X. Then H i(f−1(y),F |f−1(y)) = 0 for all y ∈ Y implies that
Ri(f∗F) = 0.

We next state a very useful lemma which we will be using often.

Lemma 3.3 (Projection formula [H]). If f : (X,OX) → (Y,OY ) is a morphism of
ringed spaces, if F is an O-module, and if E is a locally free OY -module of finite rank,
then there is a natural isomorphism

f∗(F ⊗OX f
∗E) = f∗F ⊗OY E,

in particular for F = OX, we have f∗f ∗E = f∗OX ⊗OY E .

As an application of 3.1–3.3 and the weak version of Zariski’s main theorem [H] one
obtains the following classical result.

Proposition 3.4. Let Z be a complex n-manifold with a complex k-dimensional subman-
ifold V . Let Z̃ denote the blow up of Z along V , with blow up map π : Z̃ → Z. Let G
denote a coherent analytic sheaf (or a vector bundle) over Z. Then we can compute the
cohomology of G on either side, i.e.

H i(Z̃, π∗G) = H i(Z,G).
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4. Vanishing theorem

In this section, we are going to prove that a certain cohomology group of a line bundle
vanishes. For that we need some lemmas. Let ω : Z → U be a 1-paramater standard
deformation of Z0, where U ⊂ C is an open disk about the origin. Then the invertible
sheaf KZ has a square root as a holomorphic line bundle as follows.

We are going to show that the Stiefel–Whitney classw2(KZ ) vanishes. We writeZ =
U1∪U2 where Ui is a tubular neighborhood of Z̃i , and U1∩U2 is a tubular neighborhood of
Q = Z̃1∩Z̃2. So U1, U2 and U1∩U2 are deformation retracts of Z̃1, Z̃2 andQ respectively.
SinceQ ≈ P1×P1 is simply connected,H 1(U1∩U2,Z2) = 0 and consequently the map
r12 in the Mayer–Vietoris exact sequence

· · · →H 1(U1 ∩ U2,Z2) → H 2(U1 ∪ U2,Z2)
r12
−→ H 2(U1,Z2)⊕H

2(U2,Z2) → · · ·

= ∈

0 w2(KZ )

is injective. Therefore it is enough to see that the restrictions ri(w2(KZ )) ∈ H 2(Ui,Z2)

are zero. For that, we need to see that KZ |Z̃i has a square root. We have

KZ |Z̃1
= (KZ̃1

−Z̃1)|Z̃1
= (KZ̃1

+Q)|Z̃1
= ((π∗KZ1+Q)+Q)|Z̃1

= 2(π∗K1/2
Z1
+Q)|Z̃1

where the first equality is the application of the adjunction formula on Z̃1, the second
comes from the linear equivalence of 0 with Zt on Z̃1, and Zt with Z0,

0 = O(Zt )|Z̃1
= O(Z0)|Z̃1

= O(Z̃1 + Z̃2)|Z̃1
= O(Z̃1 +Q)|Z̃1

,

and the third is the change of the canonical bundle under the blow up along a submanifold
[GH]. KZ1 has a natural square root,1 so π∗K1/2

Z1
⊗ [Q] is a square root of KZ on Z̃1.

Similarly on Z̃2, so KZ has a square root K1/2
Z .

Next, we are going to state the semicontinuity principle and Hitchin’s vanishing the-
orem, which are involved in the proof of the vanishing theorem.

Lemma 4.1 (Semicontinuity principle [V]). Let φ : X → B be a map of a family of
compact, complex manifolds with fiber Xb for b ∈ B. Let F be a holomorphic vector
bundle over X . Then the function b 7→ hq(Xb,F |Xb ) is upper semicontinuous, i.e.
hq(Xb,F |Xb ) ≤ hq(X0,F |X0) for b in a neighborhood of 0 ∈ B.

Lemma 4.2 (Hitchin’s vanishing theorem [Hi2]). Let Z be the twistor space of an
oriented self-dual Riemannian manifold of positive scalar curvature with canonical
bundle K , then

h0(Z,O(Kn/2)) = h1(Z,O(Kn/2)) = 0 for all n ≥ 1.

1 The dual of the tangent bundle over the fibers is a canonical square root; equivalently, it is a
spin manifold. Check [AHS] or for a recent exposition [Kal].
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Theorem 4.3 (Vanishing theorem). Let ω : Z → U be a 1-parameter standard defor-
mation of Z0 = Z̃1 ∪Q Z̃2, and U ⊂ C be a neighborhood of the origin. Let L→ Z be
the holomorphic line bundle defined by

O(L∗) = IZ̃1
(K

1/2
Z ).

If (Mi, [gi]) has positive scalar curvature, then by possibly replacing U with a smaller
neighborhood of 0 ∈ C and simultaneously replacing Z with its inverse image we can
arrange for our complex 4-fold Z to satisfy

H 1(Z,O(L∗)) = H 2(Z,O(L∗)) = 0.

Proof. The proof proceeds by analogy to the techniques in [Le], and consists of several
steps.

1. It is enough to show that H j (Z0,O(L∗)) = 0 for j = 1, 2, since that would imply
hj (Zt ,O(L∗)) ≤ 0 for j = 1, 2 in a neighborhood by the semicontinuity principle.
Intuitively, this means that the fibers are too small, so we can apply Proposition 3.2 to see
Rjω∗O(L∗) = 0 for j = 1, 2. The first page of the Leray spectral sequence reads

...
...

...

H 0(U , R3ω∗O(L∗)) H 1(U , R3ω∗O(L∗)) H 2(U , R3ω∗O(L∗)) · · ·

0 0 0 · · ·

0 0 0 · · ·

E2 H 0(U , R0ω∗O(L∗)) H 1(U , R0ω∗O(L∗)) H 2(U , R0ω∗O(L∗)) · · ·

Remember that

E
p,q

2 = Hp(U , Rqω∗O(L∗)), E
p,q
∞ = H

p+q(Z,O(L∗))

and that the differential d2 mapsEp,q2 intoEp+2,q−1
2 .Vanishing of the second row implies

the immediate convergence of the first row till the third column because of the differen-
tials, so

E
p,0
∞ = E

p,0
2 , i.e. Hp+0(Z,O(L∗)) = Hp(U , R0ω∗O(L∗)) for p ≤ 3,

hence Hp(Z,O(L∗)) = Hp(U , R0ω∗O(L∗)) for p ≤ 3.
Since U is one-dimensional, ω : Z → U has to be a flat morphism, so the sheaf

ω∗O(L∗) is coherent [Gun, BaSt]. Since U is an open subset of C, it is Stein, and the
so called Theorem B of Stein manifold theory characterizes them as possessing vanish-
ing higher dimensional (p > 0) coherent sheaf cohomology [Lew, H, Gun, BaSt]. So
Hp(U , ω∗O(L∗)) = 0 for p > 0. This tells us that Hp(Z,O(L∗)) = 0 for 0 < p ≤ 3.

2. Over Z0, we have the Mayer–Vietoris like sheaf exact sequence

0→ OZ0(L
∗)→ ν∗OZ̃1

(L∗)⊕ ν∗OZ̃2
(L∗)→ OQ(L∗)→ 0
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where ν : Z̃1 t Z̃2 → Z0 is the inclusion map on each of the two components of the
disjoint union Z̃1 t Z̃2. This gives the long exact cohomology sequence piece

0→ H 1(OZ0(L
∗))→ H 1(Z0, ν∗OZ̃1

(L∗)⊕ ν∗OZ̃2
(L∗))→ H 1(OQ(L∗))

→ H 2(OZ0(L
∗))→ H 2(Z0, ν∗OZ̃1

(L∗)⊕ ν∗OZ̃2
(L∗))→ 0 (∗)

due to the fact that:

3.H 0(OQ(L∗)) = H 2(OQ(L∗)) = 0: To see this, we have to understand the restric-
tion of O(L∗) to Q:

L∗|Q = (
1
2KZ − Z̃1)|Z̃2

|Q = (
1
2 (KZ̃2

− Z̃2)− Z̃1)|Z̃2
|Q = (

1
2 (KZ̃2

+Q)−Q)|Z̃2
|Q

=
1
2 (KZ̃2

−Q)|Z̃2
|Q =

1
2 (KQ −Q−Q)|Z̃2

|Q = (
1
2KQ −Q)|Z̃2

|Q

=
1
2KQ|Q ⊗NQ

−1
Z̃2
= O(−2,−2)1/2 ⊗O(1,−1)−1

= O(−2, 0).

Here, we know that the normal bundle of Q in Z̃2 is O(1,−1), where the second compo-
nent is the fiber direction in the blowing up process. So the line bundle L∗ is trivial on the
fibers. Since Q = P1 × P1, we have

H 0(P1 × P1,O(−2, 0)) = H 0(P1 × P1, π
∗

1O(−2)) = H 0(P1, π1∗π
∗

1O(−2))

= H 0(P1,O(−2)) = 0

by the Leray spectral sequence and the projection formula since H k(P1,O) = 0 for
k > 0. Similarly, for dimensional reasons,

H 2(P1 × P1,O(−2, 0)) = H 2(P1,O(−2)) = 0.

4. H 1(Z̃2,OZ̃2
(L∗)) = H 2(Z̃2,OZ̃2

(L∗)) = 0: These are applications of Hitchin’s
second (k = 1) vanishing theorem and are going to help us simplify our exact se-
quence (∗). We have

H 1(Z̃2,OZ̃2
(L∗)) = H 1(Z̃2,O(K1/2

Z − Z̃1)|Z̃2
) = H 1(Z̃2,O(K1/2

Z −Q)|Z̃2
)

= H 1(Z̃2, π
∗K

1/2
Z2
) = H 1(Z2, π∗π

∗K
1/2
Z2
) = H 1(Z2,K

1/2
Z2
) = 0

by the Leray spectral sequence, projection formula and Hitchin’s vanishing theorem
for Z2, since it is the twistor space of a positive scalar curvature space. This implies
H 2(Z2,K

1/2
Z2
) ≈ H 1(Z2,K

1/2
Z2
)∗ = 0 by the Kodaira–Serre duality. Hence our exact

cohomology sequence piece simplifies to

0→ H 1(OZ0(L
∗))→ H 1(Z̃1,OZ̃1

(L∗))→ H 1(OQ(L∗))→ H 2(OZ0(L
∗))

→ H 2(Z̃1,OZ̃1
(L∗))→ 0.

5. H k(OZ̃1
(L∗ ⊗ [Q]−1

Z̃1
)) = 0 for k = 1, 2, 3: This technical result is needed to un-

derstand the exact sequence in the next step. First we simplify the sheaf as

(L∗ −Q)|Z̃1
= ( 1

2KZ − Z̃1 −Q)|Z̃1
=

1
2KZ |Z̃1

=
1
2 (KZ̃1

− Z̃1)|Z̃1
=

1
2 (KZ̃1

+Q)|Z̃1
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by using the definitions and the adjunction formula. So we have

H k(Z̃1, L
∗
−Q) = H k(Z̃1, (KZ̃1

+Q)/2) ≈ H 3−k(Z̃1, (KZ̃1
−Q)/2)∗

= H 3−k(Z̃1,
1
2π
∗KZ1)

∗
= H 3−k(Z1,

1
2π∗π

∗KZ1)
∗

= H 3−k(Z1,K
1/2
Z1
)∗ ≈ H k(Z1,K

1/2
Z1
)

by the Serre duality, Leray spectral sequence, projection formula, and one of the last two
terms vanishes in any case for k = 1, 2, 3. So we apply the Hitchin vanishing theorem for
dimensions 0 and 1.

6. Restriction maps to Q: Consider the short exact sequence of sheaves on Z̃1,

0→ OZ̃1
(L∗ ⊗ [Q]−1

Z̃1
)→ OZ̃1

(L∗)→ OQ(L∗)→ 0.

The previous step implies that the restriction maps

H 1(OZ̃1
(L∗))

restr1
−−−→ H 1(OQ(L∗)), H 2(OZ̃1

(L∗))
restr2
−−−→ H 2(OQ(L∗))

are isomorphisms. In particularH 2(OZ̃1
(L∗)) = 0 by step 4. Incidentally, this exact sheaf

sequence is a substitute of the Hitchin vanishing theorem for the Z̃2 components in the
cohomology sequence. We also assume Hitchin’s theorems for the Z̃1 component.

7. Conclusion: Our exact sequence piece (∗) reduces to

0→ H 1(OZ0(L
∗))→ H 1(Z̃1,OZ̃1

(L∗))
restr1
−−−→ H 1(OQ(L∗))→ H 2(OZ0(L

∗))→ 0.

The isomorphism in the middle forces the rest of the maps to be zero and hence we get
H 1(OZ0(L

∗)) = H 2(OZ0(L
∗)) = 0. ut

The sections after this point are devoted to detecting the sign of the scalar curvature of
the metric we consider on the connected sum. We use Green’s functions for that pur-
pose. Positivity for the scalar curvature is going to be characterized by nontriviality of the
Green’s functions. Then our vanishing theorem will provide the Serre–Horrocks vector
bundle construction, which gives the Serre class, a substitute for the Green’s function due
to Atiyah [At]. And the nontriviality of the Serre class will provide the nontriviality of the
extension described by it.

5. Characterizations of positivity

In this section, we define Green’s functions. To get a unique Green’s function, we need an
operator which has a trivial kernel. So we begin with a compact Riemannian 4-manifold
(M, g), and assume that its Yamabe Laplacian 1 + s/6 has trivial kernel. This is auto-
matic if g is conformally equivalent to a metric of positive scalar curvature, impossible
if it is conformally equivalent to a metric of zero scalar curvature because of the Hodge
Laplacian, and may or may not happen for a metric of negative scalar curvature. Since
the Hodge Laplacian 1 is self-adjoint, 1 + s/6 is also self-adjoint, implying that this
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equation has a trivial cokernel whenever it has a trivial kernel. Therefore it is a bijection
and we have a unique smooth solution u for the equation (1+s/6)u = f for any smooth
function f . It also follows that it has a unique distributional solution u for any distribu-
tion f . Let y ∈ M be any point. Consider the Dirac delta distribution δy at y defined
by

δy : C∞(M)→ R, δy(f ) = f (y);

intuitively, it behaves like a “function” which is identically zero on M − {y} and infinity
at y with integral 1. Then there is a unique distributional solution Gy to the equation

(1+ s/6)Gy = δy

called the conformal Green’s function at y. Since δy is identically zero onM−{y}, elliptic
regularity implies that Gy is smooth on M − {y}. The name comes from the fact that
the Yamabe Laplacian is a conformally invariant differential operator as a map between
sections of some real line bundles. For any nonvanishing smooth function u, we have a
conformally equivalent metric g̃ = u2g, and u−1Gy is the conformal Green’s function
for (M, g̃, y) if Gy is the one for (M, g, y).

Any metric on a compact manifold is conformally equivalent to a metric of constant
scalar curvature sign. Actually, thanks to the proof of the Yamabe Conjecture [Y, T,
A, S] we can choose a metric of constant scalar curvature (CSC). Also if two metrics with
scalar curvatures of fixed signs are conformally equivalent, then their scalar curvatures
have the same sign.

An application of Hopf’s strong maximum principle [PW] provides us with a criterion
for determining the sign of the Yamabe constant using Green’s functions.

Lemma 5.1 (Green’s function characterization for the sign [Le]). Let (M, g) be a com-
pact Riemannian 4-manifold with Ker(1+s/6) = 0, i.e. the Yamabe Laplacian has trivial
kernel, where 1 = d∗d as in [At]. Fix a point y ∈ M . Then for the conformal class [g]
we have the following assertions.

1. It does not contain a metric of zero scalar curvature.
2. It contains a metric of positive scalar curvature iff Gy(x) 6= 0 for all x ∈ M − {y}.
3. It contains a metric of negative scalar curvature iffGy(x) < 0 for some x ∈ M −{y}.

Now let (M4, g) be a compact self-dual Riemannian manifold with twistor space Z. One
of the basic facts of twistor theory [Hi2] is that for any open set U ⊂ M with correspond-
ing inverse image Ũ ⊂ Z in the twistor space, there is a natural isomorphism

pen : H 1(Ũ ,O(K1/2))
∼
−→ {smooth complex-valued solutions of (1+ s/6)u = 0 in U},

which is called the Penrose transform [BaSi, Hi1, At], where K = KZ . Since locally
O(K1/2) ≈ O(−2), for a cohomology class ψ ∈ H 1(Ũ ,O(K1/2)), the value of the
corresponding function penψ at x ∈ U is obtained by restricting ψ to the line Px ⊂ Z to
obtain an element

penψ (x) = ψ |Px ∈ H
1(Px,O(K1/2)) ≈ H 1(CP1,O(−2)) ≈ C.
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Note that penψ is a section of a line bundle over M , but the choice of a metric g in
the conformal class determines a canonical trivialization of this line bundle [Hi1] and
penψ then becomes an ordinary function. Taking U = M − {y}, by uniqueness of the
conformal Green’s function we have (1 + s/6)Gy = 0 on U and Gy(x) as a function
of x corresponds to a canonical element

pen−1
Gy
∈ H 1(Z − Py,O(K1/2))

where Py is the twistor line over the point y.
The nature of this cohomology class was described by Atiyah. It involves the Serre

class of a complex submanifold, a construction due to Serre [Ser] and Horrocks [Hor].
We now give the definition of the Serre class via the following lemma.

Lemma 5.2 (Serre–Horrocks vector bundle, Serre class). LetW be a (possibly noncom-
pact) complex manifold, let V ⊂ W be a closed complex submanifold of complex codi-
mension 2, and N = NV/W be the normal bundle of V . For any holomorphic line bundle
L→ W satisfying

L|V ≈
∧2

N and H 1(W,O(L∗)) = H 2(W,O(L∗)) = 0

there is a rank-2 holomorphic vector bundle E → W called the Serre–Horrocks bundle
of (W, V,L), with a holomorphic section ζ satisfying∧2

E ≈ L, dζ |V : N
∼
−→ E and ζ = 0 exactly on V.

The pair (E, ζ ) is unique up to isomorphism if we also impose that the isomorphism
det dζ :

∧2
N →

∧2
E|V should agree with a given isomorphism

∧2
N → L|V . They

also give rise to an extension

0→ O(L∗)→ O(E∗) ·ζ→ IV → 0,

the class of which is defined to be the Serre class λ(V ) ∈ Ext1W (IV ,O(L∗)), where IV

is the ideal sheaf of V , and this extension determines an element of H 1(W − V,O(L∗))
by restricting to W − V .

We are now ready to state the answer of Atiyah.

Theorem 5.3 ([At]). Let (M4, g) be a compact self-dual Riemannian manifold with
twistor space Z, and assume that the conformally invariant Laplace operator �g =

d∗d + s/6 on M has no global nontrivial solution so that the Green’s functions are well
defined. Let y ∈ M be any point, and Py ⊂ Z be the corresponding twistor line. Then the
image of the Serre class λ(Py) ∈ Ext1Z(IPy ,O(K1/2)) in H 1(Z − Py,O(K1/2)) is the
Penrose transform of the Green’s function Gy times a non-zero constant. More precisely

pen−1
Gy
=

1
4π2 λ(Py).
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Now thanks to this remarkable result of Atiyah, one can substitute the Serre class for
the Green’s functions in the previous characterization (Lemma 5.1) and obtain a better
criterion for positivity.

Proposition 5.4 (Cohomological characterization, [Le]). Let (M4, g) be a compact self-
dual Riemannian manifold with twistor space Z. Let Py be a twistor line in Z. Then
the conformal class [g] contains a metric of positive scalar curvature if and only if
H 1(Z,O(K1/2)) = 0, and the Serre–Horrocks vector bundle in Lemma 5.2 on Z tak-
ing L = K−1/2 associated to Py satisfies E|Px ≈ O(1)⊕O(1) for every twistor line Px .

6. The sign of the scalar curvature

We are now ready to approach the problem of determining the sign of the Yamabe constant
for the self-dual conformal classes constructed in Theorem 2.1. The techniques used here
are analogous to the ones used by LeBrun [Le].

Theorem 6.1. Let (M1, g1) and (M2, g2) be compact self-dual Riemannian 4-manifolds
with H 2(Zi,O(T Zi)) = 0 for their twistor spaces. Moreover suppose that they have
positive scalar curvature. Then, for all sufficiently small t > 0, the self-dual conformal
class [gt] obtained on M1 # M2 by the Donaldson–Friedman Theorem 2.1 contains a
metric of positive scalar curvature.

Proof. Pick a point y ∈ (M1 #M2)\M1. Consider the real twistor line Py ⊂ Z̃2, and ex-
tend it as a 1-parameter family of twistor lines Pyt ⊂ Zt for t near 0 ∈ C and such that Pyt
is a real twistor line for t real. By shrinking U if needed, we may arrange that P =

⋃
t Pyt

is a closed codimension-2 submanifold of Z and H 1(Z,O(L∗)) = H 2(Z,O(L∗)) = 0
by the vanishing theorem 4.3. Next we check that L|P ≈

∧2
NP . Over a twistor line Pyt

we have ∧2
NP |Pyt =

∧2
(O(1)⊕O(1)) = OPyt (2)

by considering the first Chern classes. On the other hand, notice that the restriction of L∗

to any smooth fiber Zt, t 6= 0, is simply K1/2 :

L∗|Zt = (
1
2KZ − Z̃1)|Zt =

1
2KZ |Zt =

1
2 (KZt − Zt)|Zt =

1
2KZt |Zt .

Here, Z̃1|Zt = 0 because Z̃1 and Zt do not intersect for t 6= 0. The normal bundle of Zt

is trivial, because we have a standard deformation. Then

L|Pyt = K
−1/2
Zt
|Pyt
= T F |Pyt = OPyt (2) for t 6= 0

since T F is the tangent bundle of the fibers, the square root of the anti-canonical bundle.
For the case t = 0, we need the fact that L∗|Z̃2

= π∗K
1/2
Z2

which we have computed in
step 4 of the proof of the vanishing theorem 4.3. This yields

L|Py0
= π∗K

−1/2
Z2
|Z̃2
|Py0
= OPy0

(2).
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Then the Serre–Horrocks construction (5.2) is available to obtain the holomorphic
vector bundle E → Z and a holomorphic section ζ vanishing exactly along P; also, the
corresponding extension

0→ O(L∗)→ O(E∗) ·ζ→ IP → 0

gives us the Serre class λ(P) ∈ H 1(Z − P,O(L∗)).
Since L∗|Zt = K

1/2
Zt

for t 6= 0 by the above computation, Proposition 5.3 of Atiyah
tells us that the restriction of λ(P) to Zt, t > 0, has Penrose transform equal to a positive
constant times the conformal Green’s function of (M1 #M2, gt, yt) for any t > 0.

Now, we will restrict (E, ζ ) to the two components of the divisor Z0. First restrict
to Z̃2. We have L|Py0

= OP0(2) =
∧2

NPy0/Z̃2
and

H k(Z̃2, L
∗) = H k(Z̃2, π

∗K
1/2
Z2
) = H k(Z2, π∗π

∗K
1/2
Z2
) = H k(Z2,K

1/2
Z2
) = 0

for k = 1, 2 by the projection lemma, Leray spectral sequence and Hitchin’s vanishing
theorem for positive scalar curvature on M2. So that we have the Serre–Horrocks bundle
for the triple (Z̃2, Py0 , L|Z̃2

= π∗K
−1/2
Z2

). On the other hand it is possible to construct

the Serre–Horrocks bundle E2 for the triple (Z2, Py0 ,K
−1/2
Z2

) for which all conditions
are already checked. In the construction of these Serre–Horrocks bundles, if we stick to a
chosen isomorphism

∧2
N → L|Py0

, these bundles are isomorphic by (5.2). The splitting
type of E on the twistor lines corresponding to the points inM2−{y0, p2} is supposed to
be the same as the splitting type of E2, which is O(1)⊕O(1) since Z2 already admits a
self-dual metric of positive scalar curvature.

Secondly, we restrict (E, ζ ) to Z̃1. Alternatively we restrict the Serre class λ(P) to
H 1(Z̃1,O(L∗)) where

L∗|Z̃1
=

1
2KZ − Z̃1|Z̃1

=
1
2KZ +Q|Z̃1

=
1
2 (KZ̃1

− Z̃1)+Q|Z̃1

=
1
2 (KZ̃1

+Q)+Q|Z̃1
=

1
2 (π
∗KZ1 + 2Q)+Q|Z̃1

= π∗ 1
2KZ1 + 2Q|Z̃1

,

and show that it is nonzero on every real twistor line away from Q. Remember that we
have the restriction isomorphism obtained in step 4 of the proof of the vanishing theo-
rem 4.3,

H 1(OZ̃1
(L∗))

∼
−→ H 1(OQ(L∗)) ≈ C,

as a consequence of Hitchin’s vanishing theorems for positive scalar curvature on M1, as
mentioned in step 4, and H 1(OQ(L∗)) = H 1(P1 × P1,O(−2, 0)) = C, as computed
in step 4. This shows that if there is a rational curve of Q on which the Serre class is
nonzero, then this class is nonzero and a generator ofH 1(OZ̃1

(L∗)). The Serre–Horrocks
bundle construction on Z2 shows that E|C2 = O(1)⊕O(1) where C2 is the twistor line
on which the blow up is done. We know thatQ = P1×P1 ≈ P(NC2). So the exceptional
divisor has one set of rational curves which are the fibers, and another set of rational
curves, coming from the sections of the projective bundle P(NC2). Take the zero section
of P(NC2), on which E has splitting type O(1) ⊕ O(1). So over the zero section in Q,
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E is the same, hence has nontrivial splitting type. This shows that over this rational curve
on Q, the Serre class is nonzero. Hence by the isomorphism above, the Serre class is (up
to a constant) the nontrivial class in H 1(Z̃1,O(L∗)) ≈ C.

Next we have to show that this nontrivial class is nonzero on every real twistor line
in Z̃1 − Q or Z1 − C1.2 For this purpose consider the Serre–Horrocks vector bundle
E1 and its section ζ1 for the triple (Z1, C1,K

−1/2
Z1

), so that π∗ζ1 is a section of π∗E1
vanishing exactly along Q. Remember the construction of the line bundle associated to
the divisor Q in Z̃1 [GH]. Consider the local defining functions sα ∈M∗(Uα) of Q over
some open cover {Uα} of Z̃1.3 These functions are holomorphic and vanish to first order
along Q. Then the corresponding line bundle is constructed via the transition functions
gαβ = sα/sβ . Since sα’s transform according to the transition functions, they constitute a
holomorphic section s of this line bundle [Q], which vanishes up to first order along Q.
The set of local holomorphic sections of this bundle is denoted by O([Q]); they are local
functions with simple poles along Q. If we multiply π∗ζ1 with these functions, we will
get a holomorphic section of π∗E1 on the corresponding local open set, since ζ1 has a
nondegenerate zero onQ, so that it vanishes up to degree 1 there. This guarantees that the
map is one-to-one, and the multiplication embeds O([Q]) into π∗E1. The quotient has
rank 1, and the transition functions of π∗E1 relative to a suitable trivialization will then
look like (

gαβ kαβ

0 dαβ · g
−1
αβ

)
where dαβ stands for the determinant of the transition matrix of the bundle π∗E1 in this
coordinate chart. The bundle detπ∗E1 ⊗ [Q]−1 has the right transition functions to be
isomorphic to the quotient bundle. Hence we have the exact sequence

0→ [Q]→ π∗E1 → π∗K−1/2
⊗ [Q]−1

→ 0,

since detE1 = K
−1/2
Z1

as an essential feature of the Serre–Horrocks construction. This
line bundle extension is classified by an element in

Ext1
Z̃1
(π∗K−1/2

⊗ [Q]−1, [Q]) ≈ H 1(Z̃1, π
∗K1/2

⊗ [Q]2)

by [At]. If we restrict our exact sequence to Z̃1 −Q = Z1 − C1, since the bundle [Q] is
trivial on the complement of Q, this extension class will be the Serre class of the triple
(Z1, C1,K

−1/2
Z1

). Finally, since M1 has positive scalar curvature, this class is nonzero on
every real twistor line in Z1 − C1. So nontriviality of the class forces nontriviality over
the real twistor lines. In other words, E has a nontrivial splitting type over the real twistor
lines of Z̃1.

Thus we have shown that the Serre–Horrocks vector bundle E determined by λ(P)
splits asO(1)⊕O(1) on all the σ0-invariant rational curves in Z0 which are limits of real

2 Thanks to C. LeBrun for this idea.
3 Here, M∗ stands for the multiplicative sheaf of meromorphic functions which are not identi-

cally zero in the convention of [GH]. Actually the local defining functions here are holomorphic
because Q is effective.
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twistor lines in Zt as t→ 0. It therefore has the same splitting type on all the real twistor
lines of Zt for t small. Moreover,

hj (Zt ,O(L∗)) ≤ hj (Z0,O(L∗)) = 0 for j = 1, 2

by the semicontinuity principle and the proof of the vanishing theorem 4.3. So via L∗|Zt

≈ K1/2,
H 1(Zt,O(K1/2)) ≈ Ker(1+ s/6) = 0.

Since we met the two conditions, the cohomological characterization 5.4 guarantees
the positivity of the conformal class. ut
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