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Abstract. We show that if a polarised manifold admits an extremal metric then it is K-polystable
relative to a maximal torus of automorphisms.

1. Introduction

Calabi [4] introduced the notion of extremal metrics as candidates for canonical repre-
sentatives of Kähler classes on compact Kähler manifolds. Unfortunately not all Kähler
manifolds admit extremal metrics (see e.g. Levine [11]) and even if they do, they may not
admit them in all Kähler classes (see e.g. Apostolov, Calderbank, Gauduchon, Tønnesen-
Friedman [1]). This makes the question of existence of extremal metrics quite delicate
and there is now a vast literature on the topic. We refer to Phong–Sturm [14] for a recent
survey and an extensive bibliography.

By definition an extremal metric is a Kähler metric whose scalar curvature has holo-
morphic gradient vector field. Thus, special cases are constant scalar curvature Kähler (or
cscK) metrics and Kähler–Einstein metrics. While one can study these metrics in arbi-
trary Kähler classes, perhaps the most interesting case is when the Kähler class is the first
Chern class of an ample line bundle. Indeed, existence of a cscK metric on a manifold M
in the Kähler class c1(L) for an ample line bundle L is expected to be closely related to
algebro-geometric properties of the polarised manifold (M,L). This is expressed by the
following.

Conjecture 1.1 (Yau [20], Tian [19], Donaldson [7]). The manifold M admits a cscK
metric in the class c1(L) if and only if the pair (M,L) is K-polystable.

The notion of K-polystability will be recalled below. Building on the K-semistability
proved by Donaldson [8] and on the work of Arezzo–Pacard [2] on blowing up cscK
metrics, the first named author completed the proof of one direction of this conjecture,
under the assumption that the automorphism group of (M,L) is discrete.
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Theorem 1.2 ([15, Theorem 1.2]). If M admits a cscK metric in c1(L) and Aut(M,L)
is discrete, then (M,L) is K-polystable.

Using a different approach, this was recently extended to manifolds with not necessarily
discrete automorphism groups by Mabuchi [12], [13]. The aim of the present paper is
to generalise this theorem to the case of extremal metrics. In this case the conjecture
analogous to Conjecture 1.1 was formulated by the second named author in [18].

Conjecture 1.3. The manifold M admits an extremal metric in the class c1(L) if and
only if the pair (M,L) is K-polystable relative to a maximal torus of automorphisms of
(M,L).

By generalising the approach in [15] we obtain the following, which is the main result of
this paper.

Theorem 1.4. If M admits an extremal metric in c1(L) then (M,L) is K-polystable rel-
ative to a maximal torus of automorphisms of (M,L).

In particular the theorem applies when M admits a cscK metric and has continuous au-
tomorphisms, proving that M is K-polystable with respect to all test-configurations that
commute with a maximal torus of automorphisms, but note that this is a priori a weaker
condition than K-polystability (see the next section for the detailed definitions).

Note that by an example in [1] relative K-polystability may not be sufficient to ensure
the existence of an extremal metric, so it is likely that Conjectures 1.1 and 1.3 have to be
refined.

2. Relative K-polystability

In this section we recall the notion of relative K-polystability following [18]. This is a
modification of the notion of K-polystability introduced by Donaldson [7].

Suppose that (V , L) is a polarised scheme of dimension n, with a C∗-action α. Let
us write Ak for the infinitesimal generator of the action of α on H 0(V , Lk), and write dk
for the dimension of H 0(V , Lk). Then dk is a polynomial of degree n and Tr(Ak) is a
polynomial of degree n+ 1 for sufficiently large k, so we can write

dk = c0k
n
+ c1k

n−1
+O(kn−2), Tr(Ak) = a0k

n+1
+ a1k

n
+O(kn−1).

Donaldson’s Futaki invariant is defined to be

F(α) =
c1

c0
a0 − a1.

Sometimes we will write F(V,L, α) to emphasize the space that α is acting on.
Suppose in addition that we have a C∗-action β on (V , L) which commutes with α,

and write Bk for the infinitesimal generator of the action on H 0(V , Lk). Then Tr(AkBk)
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is a polynomial of degree k + 2 for sufficiently large k, and we define the inner product
〈α, β〉 to be the leading coefficient in the expansion

Tr(AkBk)−
Tr(Ak)Tr(Bk)

dk
= 〈α, β〉kn+2

+O(kn+1).

When V is a smooth manifold, this inner product can also be computed differential-
geometrically. It was originally introduced in this form by Futaki–Mabuchi [9].

To define the relative Futaki invariant, suppose that we have a torus action T on (V , L)
commuting with α. Let us write α for the projection of α orthogonal to T , with respect to
the inner product we have defined. Then we define the relative Futaki invariant FT (α) by

FT (α) = F(α).

Equivalently if β1, . . . , βd is a basis of C∗-actions generating the torus T , then

FT (α) = F(α)−

d∑
i=1

〈α, βi〉

〈βi, βi〉
F(βi).

It will be convenient for us to extend these definitions to Q-line bundles using the
relation

F(V,Lr , α) = rnF(V,L, α),

which the reader can readily verify. It will also be useful to allow rational multiples of
C∗-actions. For this we use the relation

F(V,L, rα) = rF (V,L, α).

We next recall the notion of a test-configuration from [7] with the necessary modification
for relative stability.

Definition 2.1. A test-configuration for (X,L) consists of a C∗-equivariant flat family
of schemes π : X → C (where C∗ acts on C by multiplication) and a C∗-equivariant,
relatively ample Q-line bundle L overX . We require that the fibres (Xt ,L|Xt ) are isomor-
phic to (X,L) for t 6= 0, where Xt = π−1(t). The test-configuration is called a product
configuration if X = X × C.

We say that the test-configuration is compatible with a torus T of automorphisms of
(X,L) if there is a torus action on (X ,L) which preserves the fibres of π : X → C,
commutes with the C∗-action, and restricts to T on (Xt ,L|Xt ) for t 6= 0.

Note that given a test-configuration (X ,L), there is an induced C∗-action α on the
central fibre (X0,L|X0). We will write F(X ,L) for the Futaki invariant of this induced
action α. With these preliminaries we can state the main definition.

Definition 2.2. A polarised variety (X,L) is K-semistable relative to a torus T of auto-
morphisms if FT (X ,L) ≥ 0 for all test-configurations compatible with the torus. If in
addition equality holds only for the product configuration, then (X,L) is K-polystable
relative to the torus T .
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If we have two tori T ′ ⊂ T acting on (X,L), then K-polystability relative to T is a
weaker condition than relative to T ′, since there are fewer test-configurations compatible
with a larger torus. Thus, the weakest notion is K-polystability relative to a maximal torus
of automorphisms. The strongest notion is K-polystability relative to the extremal C∗-
action. This is a C∗-action χ defined by Futaki–Mabuchi [9] as follows. Fix a maximal
torus of automorphisms T , and write t for its Lie algebra. The Futaki invariant gives a
linear map t 7→ C, and χ is dual to this map under the inner product on t. This gives a
C∗-action on (X,L), unique up to conjugation. In particular if the Futaki invariant of any
C∗-action on (X,L) vanishes, then χ = 0, and K-polystability relative to χ is simply
K-polystability.

It would be interesting to strengthen the conclusion of Theorem 1.4 to K-polystabi-
lity relative to the extremal C∗-action. Note that the analogous statement is true in finite
dimensional geometric invariant theory, by Theorem 3.5 in [18] (the same proof works if
we replace the maximal torus with any torus containing the extremal C∗-action).

We next recall the two theorems that we will use in the next section.

Theorem 2.3. If M admits an extremal metric in c1(L) then (M,L) is K-semistable rel-
ative to a maximal torus of automorphisms.

Proof. This follows easily from Donaldson’s lower bound for the Calabi functional [8].
For details see [17]. For the convenience of the reader we outline the argument here.
Donaldson’s lower bound tells us that for any test-configuration, if α is the induced C∗-
action on the central fibre, then

inf
ω∈c1(L)

cn‖S(ω)− Ŝ‖L2 ≥
−F(α)

‖α‖
, (2.1)

where cn is a constant depending only on the dimension, ‖α‖ = 〈α, α〉1/2 using the inner
product defined above, and Ŝ is the average of the scalar curvature S(ω). Moreover, if ω
is an extremal metric, then

cn‖S(ω)− Ŝ‖L2 =
F(χ)

‖χ‖
= ‖χ‖, (2.2)

where χ is the extremal vector field on (M,L). We are using here the fact that F(χ) =
〈χ, χ〉 by definition of the extremal vector field. It follows from (2.1) and (2.2) that if M
admits an extremal metric in c1(L) then

F(α)

‖α‖
≥ −‖χ‖ (2.3)

for all test-configurations.
Suppose now that M admits an extremal metric in c1(L), and we have a test-configu-

ration for (M,L) which is compatible with a maximal torus of automorphisms T . Write
α for the induced C∗-action on the central fibre. By twisting the C∗-action on the total
space by the projection of α onto T if necessary, we can assume that α is orthogonal
to T . We want to show that F(α) ≥ 0. Suppose on the contrary that F(α) < 0, and let
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µ > 0 satisfy F(µα) = −‖µα‖2. By pulling back the test-configuration under a base
change z 7→ zr , and twisting the action on the total space by the inverse of χ , we obtain a
test-configuration for (M,L) such that the action on the central fibre is r(µα−χ), where
r is large enough to make this a genuine C∗-action. From (2.3) we know that

F(µα − χ)

‖µα − χ‖
=
F(r(µα − χ))

‖r(µα − χ)‖
≥ −‖χ‖.

But at the same time

F(µα − χ) = −‖µα‖2 − ‖χ‖2 = −‖µα − χ‖2,

since α is orthogonal to χ . So

F(µα − χ)

‖µα − χ‖
= −‖µα − χ‖ < −‖χ‖.

This contradiction shows that (M,L) is K-polystable relative to T . The same argument
also shows that (M,L) is K-polystable relative to the extremal C∗-action. ut

Theorem 2.4 (Arezzo–Pacard–Singer [3]). Suppose that M admits an extremal metric
in c1(L), and let T be a maximal torus of automorphisms of (M,L). If p ∈ M is a fixed
point of T , then the blowup BlpM of M at p admits an extremal metric in the class
c1(π

∗L − εE) for sufficiently small ε > 0. Here π is the blowdown map, and E is the
exceptional divisor.

Proof. This follows from [3, Theorem 2.1]. Indeed we can choose an extremal metric ω
on M such that the isometry group of ω contains a compact maximal torus TR, which
is contained in the complex torus T . In the notation of [3] we let K = TR, and let k be
its Lie algebra. Since K is a maximal torus, any K-invariant holomorphic hamiltonian
vector field lies in k. Moreover if we write S(ω) for the scalar curvature then by Calabi’s
theorem [5] the vector field J∇S(ω) lies in the centre of the Lie algebra of Killing fields,
so it also lies in k. This allows us to apply [3, Theorem 2.1], and we get the stated result.

ut

3. Proof of Theorem 1.4

Let us suppose that M admits an extremal metric in c1(L) and choose a maximal torus
T ⊂ Aut(M,L). From Theorem 2.3 we know that if (X ,L) is a test-configuration for
(M,L) compatible with T , then the relative Futaki invariant satisfies FT (X ) ≥ 0. Sup-
pose then that FT (X ) = 0.

We can assume that M ⊂ P(V ), where V = H 0(M,L)∗. Moreover the torus T
acts on P(V ), preserving M . In addition there is an extra C∗-action α on P(V ), commut-
ing with the T -action and such that the flat closure of the family t 7→ α(t) · M across
t = 0 is the test-configuration X . Let us write (M0, L0) for the central fibre of the test-
configuration. Then we have both α and the torus T acting on (M0, L0). By twisting the
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action on the total space by the orthogonal projection of α onto T (which does not change
the relative Futaki invariant), we can assume that 〈α, T 〉 = 0. In this case

FT (X ,L) = F(M0, L0, α).

We now look at the weight decomposition under α given by

V =
⊕
i

Vmi ,

where m0 < m1 < · · · < mL for some L > 0, and consider the least l ≥ 0 such that

red(M0) ⊂ P
(⊕
i≤l

Vmi

)
.

It is proved in [15, Section 3] that if l = 0, so that α acts trivially on red(M0), then either
X is a product test-configuration, or F(M0, L0, α) > 0, which is a contradiction.

Remark. Following an observation of S. Donaldson, we may alternatively take for V a
suitable subspace of H 0(M,Lp)∗ (invariant under α and T ), for p � 1, i.e. take a differ-
ent embedding of the same test configuration given by a Veronese embedding followed
by a linear projection. One advantage is that in this way we can assume that M0 does not
lie on a proper projective subspace of P(V ). Thus in the l = 0 case above we would get
immediately M0 6= red(M0), which is an important step in [15, Section 3].

On the other hand, if l > 0, then consider the repulsive fixed point set

M ′0 = red(M0) ∩ P(Vml ).

The set of points p ∈ M for which the limit

q = lim
t→0

α(t)p

is in M ′0 is precisely

M ′ = M ∩ P
(⊕
i≥l

Vmi

)
.

This is a closed T -invariant set, so it contains a point p fixed by T . To see this, we can
take a basis of C∗-actions βi generating the torus T , and then given any point p in M ′

we can inductively move it to a fixed point of βi by taking the limit of βi(t)p as t → 0.
Doing this for each i, we end up with a fixed point of T . The corresponding limit q will
then be a T -invariant, repulsive fixed point of α in red(M0).

Letting Z ⊂ X be the closure of the orbit of p under α, we obtain a test-configuration

(X̂ , L̂) = (BlZ X , φ∗L− εE)

for the polarised manifold (BlpM,φ∗L − εE), where φ : X̂ → X is the blowdown.
The only nontrivial thing to check is flatness of the composition π ◦ φ : X̂ → X → C.
This holds because blowing up Z ⊂ X does not introduce new associated points (i.e.
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embedded schemes) of X , only the Cartier exceptional divisor E (for details see the proof
of Proposition 2.13 of [15]).

For suitably small ε > 0 the test-configuration (X̂ , L̂) will have negative Futaki in-
variant, and in fact it will even have negative Futaki invariant relative to T . This follows
from the lemma below and its corollary.

At the same time from Theorem 2.4 we know that BlpM admits an extremal metric
in the class c1(φ

∗L− εE) for suitably small ε since p is fixed by the torus T , which is a
maximal torus of automorphisms of M . This contradicts Theorem 2.3, and completes the
proof of the main theorem.

Lemma 3.1. Let (X ,L) be a test-configuration for (M,L) compatible with a torus T
of automorphisms, and suppose that the induced action α on the central fibre satisfies
〈α, T 〉 = 0. Let X̂ be given by the blowup of a T -invariant section as described above.
Then

F(X̂ , L̂) = F(X ,L)+
(
λ(q)−

b0

a0

)
εn−1

2(n− 2)!
+O(εn), (3.1)

and
〈α̂, T̂ 〉 = O(εn),

where we use the Q-polarization L̂ = φ∗L − εE on X̂ for some small rational ε > 0,
and α̂, T̂ are the actions of α and T lifted to the blowup. It follows that the relative Futaki
invariants satisfy

FT (X̂ , L̂) = FT (X ,L)+
(
λ(q)−

b0

a0

)
εn−1

2(n− 2)!
+O(εn).

Here λ(q) is the weight of α on the fibre L0|q , and a0, b0 are defined by the expansions of
the dimension and weight on H 0(M0, L

k
0) calculated at the central fibre of X as usual:

dk = a0k
n
+ a1k

n−1
+ · · · , wk = b0k

n+1
+ b1k

n
+ · · · .

Proof. The central fibre of X̂ will not in general be isomorphic to M̂0 := BlqM0. In fact
it will contain another large component P glued to M̂0 along the exceptional divisor E′

for the morphism M̂0 → M0, as we now explain.
By [10, II Corollary 7.15], there is a closed immersion M̂0 ↪→ X̂0 induced by the

closed immersion M0 ⊂ X under blowing up Z. Let Iq ⊂ OM0 denote the ideal sheaf of
q ∈ M0. By the algebraic definition of blowing up we have M̂0 ∼= Proj

⊕
k≥0 Ikq . On the

other hand the generic fibre of X̂ is Proj
⊕

k≥0 Ikp , where Ip is the ideal of the smooth
point p ∈ M . Thus by the numerical criterion for flatness when the Hilbert–Samuel
polynomial for p ∈ M is larger than that of q ∈ M0 (i.e. when q is singular enough as
a point of M0) there will be an additional component P in the central fibre, given by the
closure of X̂0 \ M̂0. A simple example has been suggested by S. Donaldson: when q is
an isolated threefold ordinary double point inside the central fibre one has P ∼= P3 glued
in along a smooth quadric. Note that this is different from the situation described in [16,
Section 2], where the central fibre of the original test-configuration is smooth (isomorphic
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to M), but one blows up 0-cycles instead of just a point. In any case the restriction L̂0|M̂0
is just φ∗L0 − εE

′ (recall we defined E′ as the exceptional divisor for blowing up q on
the central fibre).

Taking this information into account we now compute the Donaldson–Futaki invariant
for the action α on the central fibre X̂0. In the calculations that follow ε is a fixed positive
rational number, and we tacitly restrict to those k � 1 for which kε is an integer. We also
suppress pullbacks like π∗ or φ∗ when this causes no confusion. By flatness, using the
Riemann–Roch theorem we have

h0(X̂0, L̂k0) = h
0(BlpM,Lk − kεE)

= h0(M,Lk)−
εn

n!
kn −

εn−1

2(n− 2)!
kn−1
+ · · · . (3.2)

Using the restriction C∗-equivariant exact sequence

0→ H 0
P (I

kε
E′ L̂

k
0|P )→ H 0

X̂0
(L̂k0)→ H 0

M̂0
(Lk0 − kεE

′)→ 0 (3.3)

which holds for large k � 1, we find

Tr(H 0
X̂0
(L̂k0)) = Tr(H 0

M̂0
(Lk0 − kεE

′))+ Tr(H 0
P (I

r
E′L̂

k
0|P )).

Note that H 0
M̂0
(Lk0 − kεE

′) ∼= H 0
M0
(Ikεq Lk0) so the first term in the formula above equals

Tr(H 0
M0
(Lk0))− Tr(H 0(Okεq ⊗ Lk0|q )). From the exact sequence

0→ Ikεq Lk0 → Lk0 → Okεq ⊗ Lk0|q → 0,

together with (3.2) and (3.3) we see that the length of the OM0 -module Okεq is given by

h0
P (I

kε
E′ L̂

k
0|P )+

εn

n!
kn +

εn−1

2(n− 2)!
kn−1
+O(kn−2).

It follows that the weight of the action on Okεq ⊗ Lk |q is given by

w(Okεq ⊗ Lk |q ) = w(Okεq)+ kλ(q) len(Okεq)

= kλ(q)h0
P (I

kε
E′ L̂

k
0|P )

+

(
c0ε

n+1
+ λ(q)

εn

n!

)
kn+1
+

(
c1ε

n
+ λ(q)

εn−1

2(n− 2)!

)
kn + · · · ,

where c0, c1 are given by the expansion

w(Okεq) = c0(kε)
n+1
+ c1(kε)

n
+ · · · .

Similarly Ikε
E′
L̂k0|P
∼= Lk0|q ⊗ I

kε
E′
O(−kεE)|P , so one has

Tr(H 0
P (I

kε
E′ L̂

k
0|P )) = kλ(q)h

0
P (I

kε
E′ L̂

k
0|P )+ · · ·
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up to a polynomial in kε of degree n+ 1. After a simple cancellation we find

â0 = a0 +O(ε
n),

â1 = a1 −
εn−1

2(n− 2)!
,

b̂0 = b0 +O(ε
n),

b̂1 = b1 − λ(q)
εn−1

2(n− 2)!
,

where âi, b̂i are computed on X̂ . Using the formula F(X̂ ) = (â1/â0)b̂0 − b̂1 we get

F(X̂ ) = F(X )+
(
λ(q)−

b0

a0

)
εn−1

2(n− 2)!
+O(εn).

Now let β be any C∗-action in the torus T . To compute the inner product 〈α̂, β̂〉,
let us write Ak, Bk for the infinitesimal generators of the actions α, β on H 0(M0, L

k
0),

and Âk, B̂k for the infinitesimal actions of the corresponding actions on H 0(X̂0, L̂k0). The
inner product 〈α̂, β̂〉 is the leading order term in

Tr(ÂkB̂k)−
Tr(Âk)Tr(B̂k)

d̂k
. (3.4)

Since the actions α, β commute, we can use precisely the same exact sequences as before
to compute

Tr(AkBk)− Tr(ÂkB̂k) = λα(p)λβ(p)(len(Okεp)− h0
P (I

kε
E′ L̂

k
0|P ))+ d0k

n+2

+ Tr(A′kεB
′

kε),

where A′kε and B ′kε are the infinitesimal generators of the actions α, β on Okεp. We have
an expansion

Tr(A′kεB
′

kε) = c
′

0(εk)
n+2
+O(kn+1).

So up to terms of order εn, the leading order term in (3.4) is the same as that in

Tr(AkBk)−
Tr(Ak)Tr(Bk)

dk
,

which is just 〈α, β〉 = 0. This shows 〈α̂, β̂〉 = O(εn). A similar computation of the inner
product on the blowup is in [6].

The statement about the relative Futaki invariants now follows from the definition

FT (X̂ , α̂) = F(X̂ , α̂)−
d∑
i=1

〈α̂, β̂i〉

〈β̂i, β̂i〉
F(X̂ , β̂i),

where the C∗-actions βi generate the torus T . ut

Corollary 3.2. In the notation above, if q ∈ M0 is a repulsive fixed point for α then
F(X̂ ) < F(X ) for ε small enough.
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Proof. It remains to prove that the highest order correction term

(
λ(q)−

b0

a0

)
εn−1

2(n− 2)!

is negative. It is proved is [16, Section 4] that, possibly after a fixed base change of the
test-configuration, the coefficient λ(q)− b0/a0 is integral and equals minus the Hilbert–
Mumford weight of q under the induced action of α on P(V ). The Hilbert–Mumford
criterion combined with a local computation then shows that the weight of such a repul-
sive fixed point must be positive (for details see the proof of Theorem 1.2 in [15]).

Alternatively we can give a self-contained proof as follows. Let M0 be the central
fibre of our test-configuration and suppose that q is a repulsive fixed point with weightml
and also let r be a point in red(M0) ∩ P(Vm0), i.e. a lowest weight invariant point. Then
as in the Futaki invariant calculation we have the exact sequence

0→ Ikεr Lk0 → Lk0 → Okεr ⊗ Lk0|r → 0.

Write −λ for the weight ml , so λ(q) = λ and m0 ≤ −λ − 1. The weights on L0 are
the opposite by duality and they are all at least λ. Using the notation from the proof of
Theorem 1.4, from the exact sequence we have

wk = w(Ikεr Lk)+ w(Okεr)− km0 len(Okεr)
≥ kλ

(
dk − len(Okεr)

)
+ w(Okεr)+ k(λ+ 1) len(Okεr)

= kλdk + k len(Okεr)+ w(Okεr). (3.5)

Now we need the expansions

len(Okεr) = c(kε)n +O(kn−1),

w(Okεr) = c′(kε)n+1
+O(kn).

It is important here that c > 0. This follows from [10, III Corollary 9.6]. Then looking at
the kn+1 term in (3.5) we get

b0 ≥ λa0 + cε
n
+ c′εn+1.

When ε is chosen sufficiently small we get the required inequality b0/a0 > λ. ut
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