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Abstract. For odd-dimensional Poincaré—Einstein manifolds (X", g), we study the set of har-
monic k-forms (for k < n/2) which are C™ (with m € N) on the conformal compactification
X of X. This set is infinite-dimensional for small m but it becomes finite-dimensional if m is
large enough, and in one-to-one correspondence with the direct sum of the relative cohomology
H*(X, 90X ) and the kernel of the Branson—Gover [3] differential operators (L, G) on the confor-
mal infinity X, [hg]). We also relate the set of ch—2k+l (Ak(}_()) forms in the kernel of d + g
to the conformal harmonics on the boundary in the sense of [3]], providing some sort of long exact
sequence adapted to this setting. This study also provides another construction of Branson—-Gover
differential operators, including a parallel construction of the generalization of Q-curvature for
forms.

1. Introduction

Let (M, [ho]) be an n-dimensional compact manifold equipped with a conformal
class [hg]. The k-th cohomology group Hk (M) can be identified with ker(d + §;) for
any h € [ho] by the usual Hodge—de Rham theory. However, the choice of harmonic rep-
resentatives in H¥(M) is not conformally invariant with respect to [/¢], except when # is
even and k = n/2. Recently, Branson and Gover [3]] defined new complexes, new confor-
mally invariant spaces of forms and new operators to somehow generalize this k = n/2
case. More precisely, they introduce conformally covariant differential operators LEG’Z
of order 2¢ on the bundle Ak(M) of k-forms, for £ € N (resp. £ € {1,...,n/2})if n is
odd (resp. n is even). A particularly interesting case is the critical one in even dimension,
that is,

LPO .= 19" H, (1.1)

BG

The main features of this operator are that it factorizes as LEG =G

tor

d for some opera-
GPS) : C®(M, AT (M) — (M, A (M) (1.2)
and that GEG factorizes as GEG = 8y, QEG for some differential operator

0BG . (M, A¥(M)) Nkerd — C®(M, AK(M)) (1.3)
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where 8y, is the adjoint of d with respect to hg. This gives rise to an elliptic complex

LBG B )
ATy S ARy 2 ARy 2% ARy 29 L

named the detour complex, whose cohomology is conformally invariant. Moreover, the
pairs (LEG, GEG) and (d, GEG) on AK(M) @ A*(M) are graded injectively elliptic in the
sense that 8,,d +d GEG and LEG +d GEG are elliptic. Their finite-dimensional kernels

HE (M) = ker(LEC, GBY),  HF(M) := ker(d, GEO) (1.4)

are conformally invariant; the elements of Hk (M) are named conformal harmonics, pro-
viding a type of Hodge theory for conformal structure. The operator QEG above general-
izes Branson Q-curvature in the sense that it satisfies, as operators on closed k-forms,

if fzo = 2"y is another conformal representative.

The general approach of Fefferman—Graham [4] for dealing with conformal invariants
is related to Poincaré—FEinstein manifolds; roughly speaking it provides a correspondence
between Riemannian invariants in the bulk (X, g) and conformal invariants on the confor-
mal infinity (3 X, [ho]) of (X, g), inspired by the identification of the conformal group of
the sphere S” with the isometry group of the hyperbolic space H"*!. A smooth Rieman-
nian manifold (X, g) is said to be a Poincaré—Einstein manifold with conformal infinity
(M, [ho)) if the space X compactifies smoothly to X with boundary 8X = M, and if
there is a boundary defining function of X and some collar neighbourhood (0, €), x 3X
of the boundary such that

dx*+h
g="" T (1.5)
X
Ric(g) = —ng + O (x™), (1.6)

where £, is a one-parameter family of smooth metrics on dX such that there exists some
family of smooth tensors i} (j € Ng) on X, depending smoothly on x € [0, €) with

o0

hy ~ > hi(x"logx) asx — 0 ifn+ 1is odd,
j=0

h, is smooth in x € [0, €) if n + 1 is even,

hxlx=0 € [ho]. (1.8)

(1.7)

The tensor h(l) is called the obstruction tensor of hy; it is defined in [4] and studied further
in [9]. We shall say that (X, g) is a smooth Poincaré—Einstein manifold if xg extends
smoothly on X, i.e. either n + 1 is even, or n + 1 is odd and hj =O0forall j > 0. Itis
proved in [6]] that hl=0 implies that (X, g) is a smooth Poincaré—Einstein manifold.
The boundary 3X = {x = 0} inherits naturally from g the conformal class [hq] of
hy|x=0 since the boundary defining function x satisfying such conditions is not unique.
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A fundamental result of Fefferman—Graham [4]], which we do not state in full generality, is
that for any (M, [ho]) compact that can be realized as the boundary of a smooth compact
manifold with boundary X, there is a Poincaré—Einstein manifold (X, g) for (M, [ho]),
and &, in is uniquely determined by /¢ up to order O (x") and up to diffeomorphism
which restricts to the identity on M. The most basic example is the hyperbolic space H"*!
which is a smooth Poincaré—Einstein manifold for the canonical conformal structure of
the sphere S, as well as quotients of H"*! by convex cocompact groups of isometries.
It has been proved by Mazzeo [16] thalm for a Poincaré—FEinstein manifold (X, g), the
relative cohomology H*(X, 3X) is canonically isomorphic to the L? kernel ker 12(Ag) of
the Laplacian Ay = (d + & g)2 with respect to the metric g, acting on the bundle AR (X)
of k-forms if k < n/2. In other terms the relative cohomology has a basis of L? harmonic
representatives. In this work, we give an interpretation of the spaces H*, J-C’I“ in terms of
harmonic forms on the bulk X with a certain regularity on the compactification X.

Theorem 1.1. Let (X", g) be an odd-dimensional Poincaré—Einstein manifold with
conformal infinity (M, [ho]) and let Ay = (d +5g)2 be the induced Laplacian on k-forms
on X where) <k <n/2—1. Form e Nand 0 < k < n/2 — 1, define

Kk (X) := {w e C"™(X, A¥(X)); Arow =0},

then K,’;l (X) is infinite-dimensional for m < n — 2k + 1 while it is finite-dimensional for
m € [n — 2k 4+ 1, n — 1] and there is a canonical short exact sequence

0— HYX,9%) > KX (X) S 3¢5 (M) > 0 (1.9)

whe_re J{Ii is defined in and H*(X, 3X) is the relative cohomology space ()f_ degree_k
of X, i denotes inclusion and r denotes pull back by the natural inclusion 0X — X.
If in addition the Fefferman—Graham obstruction tensor of (M, [ho]) vanishes, i.e. if
(X, g) is a smooth Poincaré—Einstein manifold, then K’II‘_ZHI()_() = Ké‘o (X). When

k = n/2 — 1, the same results hold with Krlf—Zk—H()_() replaced by the set of harmonic

forms in C"2k+La(x  Ak(X)) Jor some a € (0, 1). When k = 0, K,%(f() is infinite-
dimensional for m < n while K,? (X) is finite-dimensional and the exact sequence (1.9)
holds.

In establishing this theorem, we show that we can recover the Branson—Gover operators
LEG, GfG, QEG from harmonic forms on a Poincaré—Einstein manifold with conformal
infinity (M, [ho]). Let us recall quickly and informally how the GIMS and Branson—
Gover operators are defined in [10, 3]. The ambient metric is a Lorentzian metric on
Q:= M x (0, 00); x (=1, 1),, homogeneous of degree 2 in the ¢ variable, which extends
the tautological tensor 12hy at the cone Q = { p = 0} and with Ricci curvature vanishing
to order n/2 — 1 (resp. to infinite order) at Q when n is even (resp. n odd). The GIMS
operators Py are defined in two ways in [10]: for f a (k — n/2)-homogeneous function

1" The class of manifolds considered by Mazzeo is actually larger and does not require the asymp-
totic Einstein condition (T.6).
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on Q, take a homogeneous extension fon 0 and define P f = Zk f~]|Q where A is the
Laplacian for the ambient metric; the second equivalent way is to consider an extension
f of f to 0 which satisfies A f O (p*=1) and, up to a mutliplicative constant, Py f =
[(pt?)'~ —*A flao. The second definition gives Py as an obstruction to extending smoothly a
harmonic homogeneous function f from the cone. The Branson—Gover operators defined
in [3] are constructed following the first method in [[10] but with many complications
due to the fact that one works with bundle valued objects. Our approach is more closely
related to the harmonic extension approach of GIMS [10]]. We say that a k-form w is
polyhomogeneous on X if it is smooth on X and with an expansion at the boundary M =
{x =0}
oo £(J)
o~y Zx/ log(x) (o (Q + w;"g A dx)

j=0¢=0

for some forms a)](t) € C®(M, A¥(M)) and a)(") € C®(M, A¥=1(M)) and some se-
quence j € Ng — £(j) € Np. We show that the Branson—Gover operators appear natu-
rally in the resolution of the absolute or relative Dirichlet type problems for the Laplacian
on forms on X.

Theorem 1.2. Let (X"t g) be an odd-dimensional Poincaré—Einstein manifold with
conformal infinity (M, [ho)), letk < n/2 and o € (0, 1).
(i) Forany wge C>® (M, AX(M)), there exists a harmonic form w € C*>= %2 (X | AK(X))

with boundary value w|y = wo; @ is unique modulo kery;2(Ay) and is actually
polyhomogeneous with an expansion at M at order O (x"~2*1) given by

n/2—k dx
w=wy+ E X2 (a)(t) + a)(") ) + x" % Jog(x) Lywo
— X

+ X" og(x) (Grwo) A dx + O (x" "2+

where Lk, Gy are, up to a normalization constant, the Branson—Gover operators in

[1.2) and a)(') are forms on M.

(ii) For any closed form wy € C®(M, A¥=1(M)), there exists a harmonic form w such
that xw € CM**ktlhe(x AK(X)) and w = x "(wy A dx) + O(x);  is unique
modulo ker; > (Ag) and xw is polyhomogeneous with expansion at M given by

n/2—k

d dx
w=wg A+ Zx2f< /(t>+w/(n> )
x o P
+ xn—2k+1 log(x)(Qk_la)O) Adx + 0(xn—2k+1)

where Q1 is, up to a normalization constant, the operator (L.3) of Branson—Gover

/()

and w; " are smooth forms on M.
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The Dirichlet problem for functions in this geometric setting is studied by Graham—
Zworski [12] and Joshi—Sa Barreto [[15)]. In a more general setting (but again for func-
tions), it was analyzed by Anderson [1]] and Sullivan [20].

We also prove in Subsection .6|that, with Qg defined by the theorem above,

n(_l)n/2+l

Qol = 2= T(n/2)1(n/2 — 1)!

Q

where Q is Branson’s Q-curvature. So Q can be seen as an obstruction to the existence
of a harmonic 1-form @ with x having a high regularity at the boundary and value dx at
the boundary.

In addition, this method allows us to obtain the conformal change law of Ly, Gy, O,
relations between these operators, and some of their analytic properties (e.g. symmetry
of Ly and Qy); see Subsections .4 and [4.6]

Next, we analyze the set of regular closed and coclosed forms on X. Recall that on
a compact manifold X with boundary, equipped with a smooth metric g, there is an iso-
morphism

HY(X) ~ {w € C®(X, A" (X)); do = 830 = 0, iy,w|y3 = 0}

where 9, is a unit vector field normal to the boundary, and the absolute cohomology
H*(X) is kerd/Imd where d acts on smooth forms. Moreover, one has the long exact
sequence in cohomology

coo > H10X) - HYNX, 0X) — HYX) > H*(OX) - HF'U(X,0X) — - -+,

(1.10)
and all these spaces are represented by forms which are closed and coclosed; the maps in
the sequence are canonical with respect to g. In our Poincaré—Einstein case (X, g), say
when k < n/2, only the space H¥(X, 3X) in the long exact sequence has a canonical
basis of closed and coclosed representatives with respect to g (the L2 harmonic forms), in
particular there is no canonical metric on the boundary induced by g but only a canonical
conformal class. We prove

Theorem 1.3. Let (X", g) be an odd-dimensional Poincaré—Einstein manifold with
conformal infinity (M, [ho]) and let k < n/2. Then the space

ZK(X) = {w € C"*N (X, AK(X)); dow = Sg0 = 0}

is finite-dimensional, and if the obstruction tensor of [hol vanishes, the space is equal to
{w € C®(X, AK(X)); dw = 8y = O}. Then:

(1) Fork < n/2 there is a canonical exact sequence
0—> HNX, M) — ZK(X) — 3+ M) - H (X, M)

where H*(M) is the set of conformal harmonics defined in (T4).
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(i) Let [ZX(X)] and [H* (M)] be regpectively thfz image of Z*(X) and H* (M) under the
natural cohomology maps Zk(X) — Hk (X) and Hk M) — Hk(M). Then there
exists a canonical complex with respect to g

k _ k dak _ k+1 -
0— - 5 [ZKX1 S [HE M) =5 BN, M) = (21X — -

— H"2(X, M) (L.11)
whose cohomology vanishes except possibly the spaces ker i /Im dé"l. Here %, rk
and df denote respectively inclusion, restriction to the boundary and composition of
d with harmonic extension (see Section 7)._ B

(i) [HE(M)] = H¥(M) if and only if [Z¥(X)] = H¥(X) and ker £+ = Imdk. If
this holds for all k < n/2 this is a canonical realization of (half of) the long exact
sequence (I.10) with respect to g.

The surjectivity of the natural map H*(M) — HF(M) is named (k — 1)-regularity by
Branson and Gover, while (k— 1)-strong regularity means that the map is an isomorphism,
or equivalently ker Ly_; = kerd (see [3, Th. 2.6]). Thus, (k — 1)-regularity means that
the cohomology group can be represented by conformally invariant representatives. If
Hk‘H(X , M) = 0, our result implies that (k — 1)-regularity means that the absolute
cohomology group H¥(X) can be represented by C"~2k+1(X AK(X)) forms lying in
ker(d + 8¢). We give a criterion for (k — 1)-regularity:

Proposition 1.4. Let (M, [ho]) be a compact conformal manifold. If Qy is a positive
operator on closed forms in the sense that (Qrw, w);2 > 0 forall w € C°°(M, AN
kerd, then H*(M) — H*(M) is surjective.

We should also remark that (k — 1)-regularity holds for all k = 1, ..., n/2 if for instance
(M, [ho]) contains an Einstein metric in [hg]; this is a result of Gover and Silhan [7]. If
n =4, Lyn 2 = Lo is the Paneitz operator (up to a constant factor) and using a result
of Gursky and Viaclovsky [14], we deduce that if the Yamabe invariant Y (M, [ho]) is
positive and

1
/ Q dvoly, + =Y (M, [ho])* > 0
M 6

then H1 (M) ~ HY(M) and there is a basis of conformal harmonics of H!(M).

2. Poincaré-Einstein manifolds and Laplacian on forms

2.1. Poincaré—Einstein manifolds

Let (X, g) be a Poincaré—Einstein manifold with conformal infinity (M, [h]). Graham—
Lee and Graham [11} [8] proved that for any co_nforr_nal representative iy € [h], there
exists a boundary defining function x of M = 9X in X such that

|dx|)2czg =1 neardX, x2g|TM = hg;
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moreover x is the unique defining function near M satisfying these conditions. Such a
function is called a geodesic boundary defining function and if ¥ is the map ¢ : [0, €] x
M — X defined by ¥ (¢, ) := ¥, (y) where ; is the flow of the gradient szgx, then
pulls the metric g back to
dr® +hy
Vg = a7
for some one-parameter family {h,} of metrics on M with hg = x2g|T M. In other words
the special form of the metric near infinity is not unique and corresponds canonically
to a geodesic boundary defining function, or equivalently to a conformal representative
of [ho].
We now discuss the structure of the metric near the boundary; the reader can refer to
Fefferman—Graham [6, Th. 4.8] for proofs and details. Let us define the endomorphism
A, on T M corresponding to d, /1, with respect to ki, i.e. as matrices

Ay =h'0,h,.

Then the Einstein condition Ric(g) = —ng is equivalent to the following differential
equations on Ay:

X0, Ay + (1 —n+ %Tr(A,Q)Ax = 2xh 'Ric(hy) + Tr(A)Id,
Sy (Oxhy) = dTr(Ay),

1 1
3 Tr(Ay) + 5|Ax|2 = —Tr(Ay),

A consequence of these equations and (7)) is that if Ric(g) = —ng + O (x"~2), then h,
has an expansion at x = 0 of the form

n/2—1
ho+ Y x*hyj+ hy1x" log(x) + O(x") if n is even,
j=1
hy = (n—1)/2
ho+ Y x*hyj+ 0" if n is odd,
j=1

for some tensors hy; and hj, ;1 on M, depending in a natural way on Ag and covariant
derivatives of its Ricci tensor. When 7 is even, the tensor 4, 1 is the obstruction tensor of
hg in the terminology of Fefferman—Graham [6], it is trace free (with respect to /) and
so the first log term in Ay is nh 1hn,1x"_1 log(x). A smooth Poincaré—Einstein manifold
such that &, has only even powers of x in the Taylor expansion at x = 0 is called a
smooth even Poincaré—Einstein manifold. If n is even and h, 1 = 0, the metric A, yields
a smooth even Poincaré—Einstein manifold. When n is odd, the term 07 /h |y is trace
free with respect to &g, which implies that A, has an even Taylor expansion at x = 0 to
order O(x" ). If 0%hy|x=0 = O, then h, has an even Taylor expansion in powers of x
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at x = 0 with all coefficients formally determined by /(. The equations satisfied by Ay
easily give (see [4]) the first terms in the expansion

P,
hy :ho—x2—0+0(x4), where Py=
2 n—2

. Scalg
2 Ricy — 1 ho ), 2.1

n—

where P is the Schouten tensor of %, and Ricy and Scaly are the Ricci and scalar curva-
tures of hg.

2.2. The Laplacian, d and §

Let AK(X) be the bundle of k-forms on X. Since for the problem we consider it is some-
how quite natural, we will also use along the paper the b-bundle of k-forms on X in the
sense of [[19]]; it will be denoted A];,()_( ). This is the exterior product of the b cotangent
bundle Tb*)_( , which is canonically isomorphic to 7* X over the interior X and whose local
basis near a point of the boundary 8 X is given by dyi, ..., dy,, ‘i—" where yi, ..., y, are
local coordinates on 3 X near this point. We refer the reader to Chapter 2 of [19] for a
complete analysis of b-structures. Of course one can pass from Ak (X) to A'lj()_( ) when
considering forms on X. The restriction AIIE(UG) of Ak()_( ) to the collar neighbourhood
U := [0, €] x M of M in X can be decomposed as the direct sum

d
AU = A (M) @ (Ak_l(M) A %) =: A} @ A}

In this splitting, the exterior derivative d and its adjoint 8, with respect to g have the form

g d 0 5 — x28x (_1)k*;]x72k+n+38xx2k7n72*x (2 2)
(—=Dkxd, d)° 0 X268, '

and the Hodge Laplace operator is given by

A, = —(x8,)% + (n — 2k)xd, 2(—1)kHg
o 0 —(x0x)* + (n — 2k +2)x 0,
Ay = oxg [ dedy (—1Exld x7 T %] ,
i < (=D x5, x28] x2Ay — xdyxx; [y, *x]> =P+ @3

where the subscript -, means “with respect to the metric 4, on M, and d in the matrices is
the exterior derivative on M. Note that P is the indicial operator of Ay in the terminology
of [19].

If H is an endomorphism of 7 M, we denote by J (H) the operator on AX(M),

k
J(HY (@ A~ Aag) = Z"” Ao Ao (H)A -+ A ag. (2.4)
i=1
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When H is symmetric, a straightforward computation gives xoJ (H)+J (H)xo =Tr(H)*q
and so
[0, J(H)] = 2% J (H) — Tr(H) % . (2.5)

Let us define the following operators on k-forms on M:

Tr(hy ' Po) = 2J(hy 'Rico)  n+2k =2

J— —1 —
Ey = J(hy' Py) 5 n—2 2(n —1)(n —2)

ScalpId. (2.6)

Using the approximate Einstein equation for g, we obtain

Lemma 2.1. The operator Ay has a polyhomogeneous expansion at x = 0 and the first
terms in the expansion are given by

[n/2]
; (Ri + P;x0d S;
Ap =P+ x21 i iA0x i
k Zi_l S! R + P/xdx

J(hy " ha,Dxde  (=DFFd, T (hy i )]

"1
+nx Og(x) ( 0 J(halhn,])(n “anx)

) +0@&") (27
where the operators P;, Pl-’, Si, SI-’, R; and le are universal differential operators on A(M)
that can be expressed in terms of covariant derivatives of the Ricci tensor of hg. Moreover

the operators R; and R; are of order at most 2, the S;, Slf are of order at most 1 and the
P;, Pi’ are of order Q. For instance, we have

(R] + P1x0y S1 )

_ _ 1)k
st S Y (B0 Bt (DA E ) 25
1 1 17X

- (2(—1)k+150 Ao — E1(2 4 xdy)

where E| is defined in (2.6). If k = 0, the x" log(x) coefficient vanishes. Finally, if (X, g)
is smooth Poincaré—Einstein, then Ay is a smooth differential operator on X, and if (X, g)
is smooth even Poincaré—Einstein, then Ay has an even expansion.

Proof. The polyhomogeneity comes from that of the metric g. It is moreover a smooth
expansion if x2g is smooth on X. A priori, by (2.3) the first log(x) term in the expansion
of A at x = 0 appears at order (at least) x” log(x) and it comes from the diagonal terms
in P’ in 23). Let us define p = [n/2] so that the metric 4, has even powers in its
expansion at x = 0 up to order x>?*!. Let D be the Levi-Civita connection of the metric
x2g = dx? + hy. Since Dy, 9, = 0 and Dy dy, = 5 > d:hijh*/9,,, the matrix O,
of the parallel transport along the geodesic x — (x, y) (with respect to the basis (dy,))
satisfies Dy, Ox(9y;) = 0, hence 9, Ox = —%Ax x Oy where A, is the endomorphism
h;l d.h,. Note that A, has a Taylor expansion with only odd powers of x up to x*” and
the first log term is nh lhn,l)c”’1 log(x). We infer that O, is polyhomogeneous in the x
variable and has only even powers of x in its Taylor expansion up to x27, and the first log

—1
term is —ho—;”‘lx” log(x). By (2.1), we have 8%h|x=0 = — Py, hence

1
Ay = —xhy'Pp+0(xh), O, =1d+ szhglpo +0(x?).
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We also denote by O, the parallel transport map. Now the operator I, (o] A -+ A k) =
a1(Ox) A -+ A ag(Oy) is an isometry from Ak(M, hy) to Ak(M, hp). So we have x, =
I '%o I, and we infer that , itself is an operator with a polyhomogeneous expansion in x
and with only even powers of x in its Taylor expansion up to x27, the first log term being

1x"10g(0)[J (hy ' 1), %01 = —x" log(x)*0J (hy 'y 1) by @3). Since

[0x, *xx] = 0x (*x), 0x(*x)lx=0 = [*0, Ox Ix|x=0] = O, 83(*x)|x:0 = [0, a)%lx|x:0]

we see that [y, *] is polyhomogeneous with only odd powers of x up to order x27, with
first log term —nx"~! log(x)*oJ(halhn,l), and that

[y, %] = O (3x) = x*()(J(hglPO) - 2(ic—a_lol)ld) +00D).

Since §, = (—l)k*;ld*x, the operators x4, and x2[*_1[8x, *y], 8x] are odd in x up to
0(x2p+2). In the same way, x2[d, * 1[0, *,]] is odd up to order x2P*+2 and the operators
* 1 [By, *yJx(k — xdy), x2A, and (k — 8, x)xx~[%y, 3] are even in x up to O (x2P+1).
Gathering all these facts completes the proof. U

2.3. Indicial equations

We give the indicial equations satisfied by A, which are essential to the construction of
formal power series solutions of Ayw = 0.

Notation. If f is a function on X and w a k-form defined near the boundary, we will say
that w is O, (f) (resp. O;(f)) if its Aﬁ (resp. Af) components are O (f).

For A € C, the operator x * A;x* can be considered near the boundary as a family of
operators on A¥ @ A% depending on (x, 1), and for any @ € C®(U,, A¥ @ A¥) one has

d
XA (o) = Py <wg> +ol” A —x> + 0®x) 2.9
X

where Pj := x " Px*, a)(()[) = (ixa, (@ A dyx))|x:0 and a)(()") := (iyp,®)|y=0. The operator

P, is named the indicial family and is a one-parameter family of operators on Aﬁ ® Aﬂ‘
viewed as a bundle over M its expression is

5 k+1
. (_k +(n— 2000 2(-1)**d ) (2.10)

0 224+ (n =2k +2)xr

The indicial roots of Ay are the A € C such that Pj, is not invertible on the set of smooth
sections of Af ® A’,‘L over M, i.e. on C®(M, A¥(M) @ A*~1(M)). In our case, a simple
computation shows that these are 0, n — 2k, 0, n — 2k + 2. The first two are roots in the
A]; component and the last two are roots in the Aﬁ component. In particular, this proves



Conformal harmonic forms, Branson—Gover operators and Dirichlet problem at infinity 921

that for j not a root, and (a)g), @, )) e AR(M) @ AF1(M), there exists a unique pair
((xg), oc(()”)) € Ak(M) & A (M) such that near M,

dx o dx
Ak <x ol + xTal” A > =x (a)g) +ol” A ) + 0T,
x

More precisely, and including coefficients with log terms, we have for / € N* (resp.
I =0),

®) () k+1 4, (n)
@, 2k — +2(—1 d
Arx’ log(x) ( . )> = x/ log(x)’ (JEn ok 4 é)w )w(n)( ) 0 )

+ 0/ log(x)™Y  (resp. + Oy 2.11)

if a)g), a)(()") € C®(M, Ak(M) ® Ak_l(M)), and in the critical cases, for any / € Ny =
{OJUN,

Ar(og) ) = 1(n — 2k) log(x) o’ — 1t — 1) log(x)! 2w}
+ 0()62 log(x)),

A" HFlog(n) ) = 12k — m)x" " log(0) ol — 1 = Dx" " log(x) 2w

+ 0" * 2 log(x))
(2.12)

d
Ag ()C"zk+2 10g(x)la)(”) A _x) =12k — 2 — n)x"2k+2 log(x)lfla)(") A
X

d
— 10— D" 2 10g (1) 2™ A EE L 023 log(x)).
X

3. Absolute and relative Dirichlet problems

The goal of this section is to solve the Dirichlet type problems for Ay when k < n/2 for
two natural boundary conditions. Note that the vector field xd, can be seen as the unit,
normal, inward vector field to M in X. A k-form w € A’g()? ) is said to satisfy the absolute
(resp. relative) boundary condition if

d
lim iy w =0 (resp. lim iyp, <_x A a)) =0).
x—0 x—0 X

We denote by CP%(X, Alg()_( )) the sections of A]g(}_( ) which are C?-*, equivalently
ixy, @ and ixax(‘i—x A w) are CP% on X.
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3.1. Absolute boundary condition
Proposition 3.1. Letk < n/2, a € (0, 1) and wy € C®(M, AF(M)).
(i) There exists a solution w to the following absolute Dirichlet problem:

w e CnH=La(x AK(X)),
Arw=0 onX, (3.1)
w|lpy = wo, 1in})ix3xa)=0.

X—>

Moreover, this solution is unique modulo the L? kernel of Ay.

(ii) The solution w is smooth in X when n is odd, while it is polyhomogeneous when n is
even with an expansion at order x" of the form

n—1 n—1 n
. d
w—zﬂwugyw A_+mm(§:x¢m.§:x@ﬁAi)
’ X

j= j=n—2k j=n—2k+2
O, (x" log(x)) + 0, (x"t1og(x)) if k >0,
+{0u% k=0 G2

(ONSNO)

as x — 0, where w; w; ) are smooth forms on M. Moreover,

jo

j(t) P(t)a)() for j <n —2k, a)(") P( )a)o forj <n—2k+2,

(t)
@, _ 2k1_P 2k1“)0’

where P(t) P(n) P(t)zk | are universal smooth differential operators on A(M) de-
pending naturally on covariant derivatives of the curvature tensor of hy.

(iii) If n is even and (X, g) is a smooth Poincaré—Einstein manifold, then w = w +
x""2KJog(x)wy for some forms wy, wy € C®(X, A (X)) with wy = O(xoo) if and

) (n)
only if w,” o | = @, 5y nq =0.

(iv) w satisfies S = 0. If in addition wy is closed, then dw € ker;2(Ak+1) (and dw =0
whenk = (n — 1)/2).

3.1.1. Proof of Proposition [3.1] To prove this proposition, we first need a result of
Mazzeo [16] (note that the ambient manifold has dimension » in [[16] and n + 1 in this

paper):

Theorem 3.2 (Mazzeo). For k < n/2, the operator Ay is Fredholm and there exists a
pseudodifferential inverse E, bounded on L*(X), such that A E = I — Tl where Tl
is the projection on the finite-dimensional space kery2(Ay). This implies an isomorphism
between kery 2 (Ax) and the relative cohomology H*(X, 8X) of X. Moreover any L? har-
monic form « is polyhomogeneous with an expansion near 3X of the form

oo 1())
dx
~ X2k E E ( ](tl)x’log(x)l + x/ 2 log(x) o (") > (3.3)
X

=0 1=0
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for some ot(t) e C®(M, AK(M)), a(") € C®(M, A*"1(M)) and some sequence | :

No — No. In addition E maps the space {w € C®(X, AK(X)); w = O(x™)} into
polyhomogeneous forms on X with a behaviour like (3.3) near M.

Remark. By using duality through the Hodge star operator x¢, one obtains trivially a
corresponding result for the cases k > n/2 + 1. In particular, this gives ker;2(Ay) =~
Hk()_() for k > n/2 + 1. It should be noticed that in the case k = n/2,(n + 1)/2
and n/2 + 1, [16] does not give a bounded pseudodifferential inverse and actually the
Laplacian is not Fredholm in these cases: for k = n/2 or k = n/2 + 1 the range is not
closed while for k = (n 4+ 1)/2 the Laplacian has infinite-dimensional kernel.

We can make the second part of this theorem more precise thanks to the indicial
identities obtained from (2.3).

Corollary 3.3. For k < n/2, any L? harmonic k-form o on (X, g) is polyhomogeneous
and has an expansion at order x" log(x) of the form

n—1
o = 2k2 <Zx a( ) 4 foa(’” @y o@x" 1og(x)))

O]

where ;" are smooth forms on M. If in addition (X, g) is a smooth Poincaré—Einstein

mamfold, then o € x"~*T2C® (X, A¥(X)) and E maps

E:{we C®X, A" (X)); 0= 0x), Myw =0} - x""*C>®(X, AY(X)).

Proof. Note that if

dx
o ~ x" 2k ZZ( ()x/ log(x)! + x/72 log(x)lot(n) ) and Aza = 0(x™),

then the indicial equations in Subsection and Lemma imply that /(0) = 0 and
I(j) < l1forall j =1,...,n—1 (and for all j > O if A, is smooth in x). Moreover
since da = 0 for any o € ker;2(Ag), we first deduce from that oa(()% = 0, and so,
by 2.12), that [(j) = Oforall j =0,...,n — 1 (and for all j > 0 if &, is smooth). The
mapping property of E is straightforward by the same type of argument and the fact that
ArEw = O(x) forw = O(x*®) such that l'Ioa) =0.

We will now use the relations and (2:12) to show that the jet of a so-
lution @ to the Dirichlet problem in Propos1t10n [3.1) is partly determined. Let wy €
C®(M, Ak (M)). Usmg 9) and the form (2.7) of Aj, we can construct a smooth form
wr, on X which solves the problem

{ Akal = Ot(xn_Zk) + Oy (xn—2k+2)’

(3.4)
wF |y = wo;
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it can be taken as a polynomial in x,

n—2k—1 n—2k+1

Z xzja)(t)+ Z X a)(n) (3.5)
2j=0

and it is the unique solution of (3.4) modulo O;(x"~%) + 0, (x"~2k*2). Moreover, by

(2.7) and parity arguments, we see that when # is odd, the remaining term in (3.4) can

be replaced by O; (x"_2k+1) + O, (x”_2k+3) (recall also that &, is smooth in that case).
@) (n)

By construction, the w; Wy are forms on M which can be expressed as differential

operators Pj(t), P™ on M acting on wy, determined by the expansion of P given in (2.7)),
i.e. by hg and the covariant derivatives of its curvature tensor.

The indicial factor in (2.9) vanishes if and only if j = n —2k,l =n —2k+2and n is
even. Therefore, if n is odd, we can continue the construction and there is a formal series

o0
o = Zx/ (a)](-t) + a)](-n) A dx)
Jj=0

such that Aywse = O(x*°). The formal form we, can be realized by Borel’s LemmaE]
in the sense that there exists a form o/, € C (X, A¥(X)) with the same asymptotic
expansion as we at all orders and satisfying Agwl, = O (x*).

Now for n even, we need to add log terms to continue the parametrix: by one
can modify wp, to

_ 1 _
WF, = 0F, + X"k 10g(x)w,(£2k,1, ,(1t) 2%1 = n— 2k [x n+2kAk(UF1]|x=0 (3.6)

such that Aywr, = O(x"~2%*210g(x)). Actually, using (2.7) and parity arguments once
more, we see that

d
Akwp, = 2= 2421000 300, ) A = + 0, (%2 Tog(x))
’ X
+ 0, (X722, (3.7)
Now we want to show

Lemma 3.4. The k-form o 5, | on M satisfies Soo" 5, | = 0.

Proof. From (3.7)), and the expression of §, we obtain
SeArwr, = —2x" " 2500 L+ 0" H 3 log(x)).

But 6, Arwp, = Ay_18,wF, and

2 Borel’s Lemma states that if ( Ji,D1 keN, 1s a given sequence of smooth functions on X
such that, for each k, f;;(y) = O for all but finitely many /, then there exists a smooth
function f on X with an asymptotic expansion at dX = {x = 0} of the form f(x,y) ~

320 o0 fra()xk log(x).
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n—2k+2
8ng2 _ Z X Ll)/(t) + Z X a)/('l) +Xn_2k+2 log(x)aow,(,tlch

+ O(x"_2k+3 log(x))

for some forms a)] ) on M, so by uniqueness of (3:4) and the fact that § (0p, = 0(x?) we
deduce that

Sewp, = X" H 20, + 1" 2 log(x)Sow | + 0" H P log(x)).

Using now ([2.9) and (2.12)), we obtain Ax_18;wr, = 2k —n — 2)x”_2k+280a)512k s
O (x" 243 log(x)), and since k < n/2 this implies (SOa),(lek 1 =0. O

We infer that there is no term of order x"~%*+2 Jog(x) in the A% part of Agwp, and we can
continue to solve the problem modulo O (x°°) using formal power series with log terms
using the indicial equations. The formal solution when 7 is even will be given by

n/2 1 n/2—1 '
S
j=0 Y ok
n/2
i dx
+ Z x2 log(x)a)g;)1 A —
j=n/2—k+1
oo j+1 dx .
+at Z Z(wr(zt—:-j,l +xw,(z'2] A —)x’ log(x)’ (3.8)
=0 1=0

which again is realized through Borel’s Lemma to have Ajws = O(x*°). Notice that
when the metric %, is smooth, the second line in (3.8) has a)(l) (") = 0for/ > 1 since
these terms come from the log terms of the expans10n of hx in h [1.7) (and thus of Ay).
The terms (a) ) i <n—2k> (w ) j<n—2k+2 and a)n 2.1 are formally determined by w( and
are expressed as differential operators on M acting on wy, the terms w! )Zk, r(l )2k 4o are
formally undetermined, and the remaining terms are formally determined by wy, wffi 2%
and “)n 2k+2
So we have proved
Proposition 3.5 (Formal solution). Let wo, v\, v € C*(M, A(M)). Then there
exists a form wso € cr—2k=la(x, A]lj(X)) with o € [0, 1), unique modulo Q(xoo),
which is smooth on X when n is odd and with a polyhomogeneous expansion at d X of the
form B.8) when n is even, such that Ayws = O (x*), wxlyz = wo, @ (’221{ = v® and
;(1n)2k+2 = v in the expansion (3.3).
To correct the approximate solution and obtain a true harmonic form, we add — E A (wxo)

to wso and so
Ap(woo — EApwso) = Ty Apweo.
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We want to prove that [TgArwss = 0 or equivalently that (Arweo, @) = 0 for any o €
ker; 2 (Ag). For that, we use Green’s formula on {x > ¢} and let ¢ — 0, together with the
asymptotics & = O (x"~2*1) obtained from Theorem 3.2} dar = 0 and 8o = 0:

/ (Aweo, @) dvol, = (—1)"/ (xgdwoo) A & — (3g@) A Swg = O(e) 20,
x=e X=¢&

In view of the mapping properties of E from Theorem [3.2} we have thus proved that
W = Woo — E Ajpwso 1s a harmonic k-form of X Sl_lCh that wy = wp, with an asymptotics
of the form (3.8)) when  is even and smooth on X when n is odd, such that

w — a)Fz — Ot(xn72k) + On(xn72k+2)

and with C"~2—La (X Ak(X)) regularity.

Let us now consider the problem of uniqueness. If one assumes polyhomogeneity
of the solution of Ayw = 0 with boundary condition v = wy + o(x), the construction
above with formal series arguments and indicial equations shows that  is unique up to
O0;(x" %) + 0, (x""2k+2) je. the first positive indicial roots; then of course two such
solutions would differ by an L? harmonic form if k < n/2. Indeed, an easy computation
shows that

Remark 3.6. A polyhomogeneous k-form in O, (x"/27k+€) 4 0, (x"/2=k+1%€) for some
€ > 0isin L%(X).

This gives

Lemma 3.7. Polyhomogeneous forms satisfying Arw = 0 and v = wo+o(x) are unique
modulo the L* kernel of Ay.

Here, since we want a sharp condition on regularity for uniqueness, i.e. we do not as-
sume polyhomogeneity but C"~2k~1.¢ regularity, we first need a preliminary result. Let
H’ (A% (M)) be the Sobolev space of order s € Z with k-form values, which we will also
denote by H*(M) to simplify. The sections of the bundle A¥ @ AX over M are equipped
with the natural Sobolev norm || - || gs(ar) induced by H* (A¥(M) @ A*~1(M)). The fol-
lowing property is proved by Mazzeo [18| Th. 7.3]

Lemma 3.8 (Mazzeo). Let k < n/2 and let w € x*L%(A¥(X), dvoly) witha < —n/2

be such that Ayw = 0. Then for all N € N, there exist some forms w](.fl), a)](.nl) e HN(M)
for j, 1 € No and some sequence | : Ng — Nq such that '

= 0(xN727%) 3.9)

N-=31())
H H-N(M)

. d
0= 33 o toatof (off ey n )

=0 1=0

forall e > 0.

3 Notice that the result of Mazzeo is stated for 0-elliptic operators with smooth coefficients and
acting on functions, but it is straightforward to check that it applies on bundles and with polyhomo-
geneous coefficients like this is the case for even-dimensional Poincaré—Einstein manifolds.
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Let w, @' be two harmonic forms which are C*~2k~1.2 (X A¥(X)) and which coincide
on the boundary. We want to show that their Taylor expansions at x = 0 coincide to order
n—2k — 1. Using Lemma[3.8|with N large enough, we see that the arguments used above
on formal series (based on the indicial equations) also apply by considering the norms
I | g7~ (ary o0 A¥ @ A%, in particular [(j) = Ofor j =0, ...,n—2k—1in (3:9) for both
 and o', and that their coefficients of x/ for j=0,...,n—2k—1 in the weak expansion

.. : t _ p® (n)y _ p
(3.9) are the same for w and «’; these are given by W = Pj wo and w; = Pj wo

(and are then continuous on M since w € C*~2¢*1(X, A¥(X))). But by uniqueness of
the expansion (3.9) and the regularity assumption on w, ', this implies that a);t), a);")
are the coefficients in the Taylor expansion of both w and w’ to order n — 2k — 1. The
extra Holder regularity then gives that || — @'|| Lo () = O (x"~Zk=1+e). put this implies
that w — @’ € ker;2(Ag), thus it is in the L? kernel of Ak, so our construction is unique
modulo ker; 2 (Ag). This ends the proof of the solution of (3.1)).

Now to deal with (iv) of Proposition 3.1, we notice that dw is a solution of the problem
(3:1) for (k + 1)-forms with the additional condition that the boundary value is dwy = 0.
When k + 1 < n/2, we can then apply Proposition @Ki); when k > n/2 — 1, we have
do = O(x* and Agi1do = 0. However, the discussion below in Subsections
and about the solutions of Agtjw = O(x®°) gives the same result, namely that
dw € ker;2(Ag41) if w is a solution of B.I) withk =n/2 —lork = (n — 1)/2.

We conclude the proof of Proposition [3.1fiv) using

Proposition 3.9. The forms wr, of (3.4) and w of Proposition[3.1] satisfy

Sew =0, Sgop = 0,(x""2K+2) L 0, (x" 2K+,
Proof. Let w be the exact solution of Ayw = 0, w|x=9 = wo in Proposition Since
8¢Ar = Ag—18g, we deduce that o’ := S, is solution of Arw’ = 0 with '|,—o = 0
and moreover it is polyhomogeneous since w is polyhomogeneous, so Proposition|3.1|and
Lemmaﬁzimply that §gw € kerj2(Ag—1) and thus §g = O (x"~2k+3) by Coroll
Since an L~ harmonic form is closed, 8¢ is closed and integration by parts on {x > €}
shows, by letting € — 0 in

/ |8ga)|2dv01g = —/ (txa, w, Sgw) dvolg = O (€),
x<e x=¢€

that (§,w, 8gw) = 0. The part with wp, is also based on 6o Ay = Ay_18, and the unique-
ness of the solution of (3.4) up to O, (x"~%**2) + 0, (x"~2k**) on (k — 1)-forms. O

3.1.2. The case k = n/2. In this case one only intends to solve the equation Ayw =
O (x®), say in the set of almost bounded forms (log(x) times bounded). The indicial
equation tells us that 0 is a double indicial root for the Af part, while 0, 2 are the two
simple roots for the A, part. By a double root, we mean a root A = XAg of order 2 of
one of the eigenvalues of P; in (2.10). In this case, a straightforward inspection shows
that an additional power of log(x) must come in the formal expansion of solutions. Since
the discussion of this case is not fundamental in our analysis, we prefer to give the result
without details. For wp, w; € A"*(M) and w2 € A™?*~1(M) one can construct, using

(2.11) and (2:12)), a polyhomogeneous form
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dx
WF = wy A - + wy log(x) + wo

Sodwo
3

Sodawy  (—1)"/*!
> 5 dowi

+ x? 10g(x)<— log(x)? + 10g(x)( +

1 1 d
(=) w0 + (—1)"/2550601 — 5d0w, - A(a)g)) A
X

+ 0;(x* log(x)?) + 0, (x%)

such that Aywr = O(x*), and it is unique modulo O (x*°) if the order x2 coefficient in
the A, component is assumed to be 0.

3.1.3. The case k = (n + 1)/2. The indicial equation tells us that —1, 0 are the roots
for the Af part, while 0, 1 are the roots for the A, part. For wy € Ak(M) and wy, wy €
AX=1(M), one can construct, using (Z.11)) and (2.12), a polyhomogeneous form such that

dx dx 5 o
wF =wi AN — +wyg+xonoA—+0x") and Arwp = 0™),
X X

and it is unique modulo O (x®°). So if w is a solution of problem (3.1) with k = (n —1)/2
and boundary value wq closed, then dow = O (x?) and Apgny2do =0sodw = O(x™).
But the unique continuation theorem of Mazzeo [17] implies that dw = 0.

We also recall a result proved by Yeganefar [21, Corollary 3.10].

Proposition 3.10. For an odd-dimensional Poincaré-Einstein manifold (X n+l ¢), there
is an isomorp_hism between kery2(Ay 2) and H"Y2(X,3X) and between ker;2(Apj241)
and H"*1(X).

3.2. Relative boundary condition

Proposition 3.11. Let 0 < k < n/2, x be a geodesic boundary defining function and
wy € C®°(M, A=V (M)) be a closed form. Then there exists a unique, modulo ker;2(Ap),
form w such that, for all @ € [0, 1),

w € C"2R (X, Ap(X)),
Arw=0 onX, (3.10)
wly =0, lirr})ixaxa) = wp.

x—

Moreover w is closed, smooth on X when n is odd, while it is polyhomogeneous when n
is even with an expansion at order O (x"~log(x)) of the form

n—1 ") / n—2 ®
— E J 0 - E PRy
(1)—( O.X Q)j A + I.X a)J )
J= J=

n—1 n—2
. dx )
+1og(x)< Y xol A —+ ) xfwj(.f{> + 0" Mog(x)) (3.11)
j=n—2k+2 j=n—2k+2

for some forms a)j(.'), a)j()l on M.
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Proof. The proof is similar to that of Proposition so we do not give the full details
but we shall use the same notation. We search a formal solution o of Arw/, = 0 with
W = wo A 49X 1 O(x). Using the indicial equations of Subsection[2.3|and the form of A
in Lemma@ we can construct the exponents in the formal series as long as the exponent
is not a solution of the indicial equation. Since dwy = 0 by assumption, we have

Ax (a)o A df) =2(=D""dwy + 0(x*) = 0(x?)
and so we can continue the construction of w/, until the power x"~2f in the tangential
part A’; and x"~2k+2 in the A’,‘l part. At that point, since x”~ ¢ and x"~2¥*2 are solutions
of the indicial equation of Ay in respectively the Af and Aﬁ components, there is an
x"~2KJog(x) term to include in the Alt‘ part. Using in addition that Ay begins with a sum
of even powers of x, we see as in Propositionthat when n is odd, a formal series a)go

with no log terms can be constructed to solve Ayw,, = O(x°), while when 7 is even we
can first construct

n—2k n—2k—2
W, = Z xzfa) Ny Z xzfa)(t) + x"2k log(x)a)n %1 (3.12)
2j=0 2j=2
with a)() = o so that Aka)/F2 = 0" ?*2]Jog(x)), and the coefficients are

uniquely determined by wq. First observe that dw’F2 = 0(x?) satisfies Apy ldw%z =
O (x"~2k+210g(x)) and since the indicial roots in [1, n—2k] for Ay are n—2k —2 in the
Af“ part and n — 2k in the Aﬁ“ part, we deduce that da)/F2 = 0,(x""2k=2) 4 0, (x"~ %K)
and so

n—2k—2 0 2 n—2k—2 2 ) o o dx
doly, = Z doy)x* + Z (—DF2jwl +da)2])A7
=2 2j=2

dx dx
+x"*dw ‘")kax a2 1og(x)<dw,§”2kl+( ¥ (n— 2k)a)(t)2k1/\?)

_ dx
+xn 2/{(_1)]{ r(ll)Zkl/\T

dx
"2 log(x) (dwn et H=DFm =200 A 7)

d
+x n— Zk(dw(n) +( l)k (t)Zk 1)/\—x (313)
X

Note that we have used that (=D)f(n — 2k — )0, , = —dw™,, . With these
simplifications, we get

d
App1daly, = (n — 2k)x”_2k<(—1)k+l(n — 20" 1 A+ log(0)do? 1)
I ,

+ 0(X’1_2k+1).
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But since dAka/F2 = O(x""%+2 log(x)), we infer that w,(lek | must vanish, and we

obtain
Aol = O(x"~2+2),

Since the order x"~2*2 is a solution of the indicial equation in the normal part A’,‘l,

we need to add an x—2k+2 log(x) normal term to continue the construction of the for-
mal solution. Since all the subsequent orders are not solutions of the indicial equation
for Ay, we can construct, using the Borel lemma, a polyhomogeneous k-form on X with
expansion to order x"~!log(x) of the form given by (3.I1)), which coincides with wr,
at order O, (x"~?*21og(x)) + O;(x"~2¥). To obtain an exact solution of 3.10), we can
correct ), by setting w = w),, — EArw), where E is defined in Theorem 3.2}

The argument for the uniqueness modulo ker; 2 Ag is similar to that used in the proof
of Proposition[3.1]

To prove that w is closed, it suffices to observe that w = wp, + O, (" 2k+2 log(x)) +
0, (x" 2Ky and so dw = x”’2kda),(1'1)2k A ”i—x + O (x"2), By Remark we have dw €
ker;2(Agy1). Then §gdw = 0 and, considering the decay of dw and w at the boundary,
we see by integration by parts that dw = 0. O

Remarks. It is important to remark that the solution @ of the problem (3.10) depends
on wp but also on the choice of x. Note also that the form @ solving (3.10) satisfies
xw € Ch2ktleax Ak(X)) forall « € (0, 1).

4. Operators Ly, Gy and Qy

In this section we suppose that M has an even dimension 7.

4.1. Definitions
The operators Ly, G derive from the solution of the absolute Dirichlet problem:

Definition 4.1. For k < n/2, the operators L : C®(M, AX(M)) — C®(M, A*(M))
and Gy : C®°(M, AK(M)) — C®(M, A¥~1(M)) are defined by Liwq := a)’(fl% , and

NN ()] () (n) : : .
Grwo = w, 1>, Where "y 1, @,y | are given in the expansion (3.2). When

k = n/2, we define G, /2 := (—1)"/>*15.
The operator Qy derives from the solution of the relative Dirichlet problem:

Definition 4.2. Let n be even and k < n/2. The operator Q1 : C*°(M, AT (M) N
kerd — C(M, AF='(M)) is defined by Q100 = @,y Where o5 | is
given in the expansion (3.11).

By Corollary [3.3] Ly, G and Qy do not depend on the choice of the solution w in
Propositions [3.1] or [3.T1] though Li depends only on the boundary (M, [h¢]), the oper-
ators G and Qy may well depend on the whole manifold (X, g) and not only on the
conformal boundary. We will see that they actually depend only on (M, [h¢]) and that
they are differential operators.
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4.2. A formal construction

We show that the definition of L, G, QO can be given using only the formal series
solutions.

Definition 4.3. For k < n/2, define By, Cy : C®°(M, AK(M)) — C®(M, A*=1(M))
and Dy : C®°(M, AK(M)) Nkerd — C>®(M, AK(M)) by

—n+2k-2.

Brwg = (x ixo, AkwF)|x=0,
dx

Crwp := <x‘”+2k-2ixax <— A agwﬂ)) , 4.1)
x x=0

Drwo := (x " iy dowr,)|i=0

where wr, solves (3.4).

Remark. From the indicial equations and Lemma Brawo is (—1)*(n — 2k + 2) times
the x"~%+21og(x) coefficient in the AX part of w/, defined in Proposition when
v = 0; this is a differential operator on M of order n — 2k + 1 since by construction,
wpF, contains only derivatives of order at most n — 2k — 1 with respect to wg. The operator
Cy is well defined thanks to Proposition 3.9] and it is a differential operator of order
n—2k. As they come from the expansions of A, 8., they are natural differential operators
depending only on & and the covariant derivatives of its curvature tensor.

4.2.1. The case of Ly. Itis clear from the proof of Proposition [3.1]that Ly is also the
coefficient of the x" =2 log(x) term in the expansion of wF, defined in and of the
formal solution w, defined in Proposition [3.5] The indicial equation shows that

1 . dx
o <x2k "ixa, (7 A Akwﬂ))

4.2.2. The case of Gi. Let us return to the construction of the formal series solution in
the proof of Proposition [3.1} Now let wr, be defined in (3.5) and

Liwy = “4.2)

x=0
where wr, solves (3.4).

wF, = 0F, + X2k @ 4 =2k log(x)a),(ltl%1

where v € C (M, Ak (M)) is an arbitrary form. By construction of wp, , wF,, the fact
that n — 2k is an indicial root in the A¥ component and Lemma we have

d
Aror, = (—DF242(g 0 42500 A X 4 0, (x" %2 log(x))
X
+ On (xn—2k+4 log(x))
To solve away the x" =2 term in A¥ we need to define

(_l)k—H

dx
n—2k ) 4
—_—X lo B + 26 VAN 3
2 _ 2k g(x)( k@0 ov’) 4.3)

WF; ‘= OF, +
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so that Aywr, = O, (x" 244 1og(x)) + O; (x"Z*F2Jog(x)). Since v can be chosen
arbitrarily, the coefficient of x"~2**Jog(x) in the Ak component of the formal solu-
tion wr, does not determine a natural operator in terms of the initial data wo, unlike the
X2k log(x) coefficient in A" In the definition of G above, we used an exact solution
on X to fix the v® term through the Green function, which a priori makes Gy depend
on (X, g) and not only on (M, [ho]). However there is an equivalent way of fixing 8ov‘")
without solving a global Dirichlet problem but by adding an additional condition:

Proposition 4.4. Let wy € C®(M, A¥(M)). Then there is a polyhomogeneous k-form

wpF such that
Arwp = Oy (x" D) 4 0, (x" 24,

Sowp = O (x"~2+3), 4.4)
w=wy+ O(x).
It is unique modulo O;(x"~ ) 4+ 0, (x"~2**2) and has an expansion of the form
n/2—k—1 n/2—k
Z x2]w(l‘) + Z 2j 4 (ﬂ)
=0
— d
+x“%kguméwm+xﬂ )2 wwm—zqw@A-f> (4.5)
— X
Proof. First consider the uniqueness. By the discussion above, the condition on Aywp
implies that wf is necessarily of the form wp = wp, defined in @3) for some v®.

Now we notice that §;wp, = O(xz) satisfies in particular Ay _18g0F, = SgArwr, =
O (x"~2k*3), and again by the indicial equation this implies that & cwFy, = 0"~ 2k+2y
since the first positive indicial root for Ag_1 is n — 2k + 2. Using that §gL;wo = 0 and
the form of 6, we obtain

Sga)p3 = (Sga)Fl +xn_2k+2 <50U(1) — }’l—|—2,——2k

(Brwo + 2<sov<’>)) + O (x" T3,

By Proposition Sewr, = Op(x"~2+2) + 0, (x"~%+%) and from the definition of Cy,
a necessary condition to have §,wp = O (x"~2k+3y g

(n — 2k)8ov"” = Brawy — (n — 2k + 2)Crap.

Writing now 8ov® in terms of By, Cy in (#3) proves the uniqueness and the form of the
expansion. Now for the existence, one can take the form in Proposition 3.1} Another way,
which is again formal, is to first construct a polyhomogeneous (k + 1)-form /, such that

Aps10)y = Oy (") + 0, (2" D),
o — 2(_])k+1
F= -2k

which can be done as in Proposition [3.11] by using the indicial equations, and then to set
wF = 8w, Itis easy to see that this form is a polyhomogeneous solution of (#.4). [

dx
log(x)dwy + wg A — + O(x),
X

Since the exact solution in Proposition [3.1]is coclosed, from Proposition[d.4| we deduce
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Corollary 4.5. The operator Gy is a natural differential operator of order n — 2k + 1
which is given by
B, — 2Cy,
Gr = (—1 k+1 2k — <~k
k= (=D Y

and depends only on hy and the covariant derivatives of its curvature tensor.

Remark 4.6. Problem (.4) and Corollary [4.3] allow one to define Ly and Gy on any
even manifold M>" with no need of cobordism assumption (as in Proposition [3.1). We
just have to work on X = M x [0, €[.

4.2.3. The operator Qy. Following the ideas used above for G, we shall show how to
construct Qy from a formal solution wr, . We start with

Definition 4.7. For 1 < k < n/2, define operators B,’H] 1 C® (M, Ak’l(M)) Nkerd —
C®(M, A*=1(M)) and D} _, : C®°(M, A¥='(M)) Nkerd — C°(M, A*(M)) by
B0 := (x " iy Aol )i,

. —n+2k -
D;_wp = (x~ " ixa, @) |x=0

(4.6)
where /. is the form in (3.12) such that Agef, = O (x"~2k+2) and W, = wo A dr 4
0(x?).

Let us now set ', := o, + v x" =2 for some arbitrary smooth form v*) on M; we
obtain

dx
Mgy = (=R BL 00 +26007) A — + 0" 4 0, (",

n—2k+2

so to solve away the x normal coefficient, we need to define

(_1)k+l

dx
n—2k+2 / )
k1o n 2x log(x)(Bj,_jwo + 280v*") A -~ “@.7

Wp, = wp, +
which satisfies Aka)/F3 = 0,(x""2*21og(x)) + 0, (x"~2*3). As for Gy, the term v is

arbitrary and so we have to impose an additional condition to fix this term (or at least to
fix Sov®).

Proposition 4.8. Let wg € C®(M, AK=1(M)) be closed. Then there is a polyhomoge-
neous k-form ', which satisfies

Ay = Op(x" =Ty 4+ 0, (x" 72K F3),
doly = O(x" 2K+, (4.8)

d 2
wp =wy A S+ 0(x9),
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which is unique modulo O; "2k + 0, (x"2**2) and has an expansion of the form

n/2—k— () n/2—k ( ) 1
2j (t 2j —2k
LI)/F = < ]C() + Z X j(l) ¥ Xn mDé_le
(_l)k n—2k+2 1 230D]/<_la)0 dx
_ Io B - A — 4.9
M Ty O Brywo = — 50 9

Proof. Take o}, = o}, defined in @7); then Ao = O/ (x"~ 1) + 0, (x"~2+3)
by construction. Moreover, since wy is closed, one has da)/F = O0(x?) and Ak+1da); =
O (x"~2+1)_Since the indicial roots for Ay in [2, n—2k+1] are n —2k —2 in the AXT!
part and n — 2k in the AXT! part, this implies that do}, = O,(x""%~2) + 0, (x" =),
Then, using (3:13), we obtain

d
dofy = x""* <du<’) + (=D = 2000 + ") A —xx> + O(x"2H
d
=x" % (dv(t) + ((=D*(n = 2v® + (=¥ D _ 0) A —xx> + O(x" 2+,

So dwy, = O(x"~2**1)if and only if v = —D}_,wo/(n — 2k). O
The first corollary is

Corollary 4.9. For k < n/2, the operator Qy is a natural differential operator of order
n — 2k which is given by

=Dk [, oDy,
= B, —
O n—2k( K apa—k—1)

and it depends only on hy and the covariant derivatives of its curvature tensor.

Remark 4.10. Also this corollary allows one to define the operator Qx on any even man-
ifold by considering problem (4.8).

As a corollary of Propositions [4.4]and 48] we also have

Corollary 4.11. If wg is a closed k-form on M, then there is a polyhomogeneous k-form
wr on X such that
dCL)F — O(Xn_2k+l),
Sewp = O(x"%+3) (4.10)
or = wy+ O(x).
It is unique modulo O; ("2 4 0, (x""2*+2) and has an expansion

/2—k—1 n/2—

. 1
_ 2 <t) (n) _ Diconyn—2
wr Z X a) Z w2k L (WOX
j=0 j=1
—1 k+1 d
x4 2 [og(x) (—(Bkwo —2Cwo) A 1),
n—2k X
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Proof. For the existence, take w’F of Proposition (a)} is a k + 1-form now since
wo € A¥(M)) and consider wr = (=11 /(2k — n))8,w'. It is easy to see that wp =
wo+ O (x?) and that Agwr = O, (x"~F1) 4 0, (x"=2+3). Since d8, 0}, = —8,dw). +
O0;(x"~ %=1y 4+ 0, (x"~2**1) we deduce that dwor = O,(x"~2k=1) 4+ 0, (x"~2+1) But
from Proposition wF = of + p®Oxn=2k 4 O(x"_zk‘H) (note that Lywy = 0 by
Propositionbelow) for some k-form v on M and so we conclude that

n—2k—2 ) n—2k—2 ) dx
dop =Y da)gj)xzj-i— > XZJ((—l)kzng}+dw§’}))A7
2j=2 2j=2

d
+ 2" (o™ + (— D — 2@y A 4 gy ® 4 o
X

— O(xn—2k+])

s0 v has to be (—1)**1dw”, /(n — 2k) to get dop = 0, (x" 1) + 0, (x"~2+1),

But clearly this argument also implies that dof, = x"_dea),(f_)Zk A de and the expansion
of wp is then a consequence of this fact together with the expansion {#.3) in Proposition
-4 and the definition of Dy. O

Remark. In Propositions[d.4] .8 and Corollary .11] we do not really need to take wy €
C® (M, A(M)). Indeed, for an wy in LZ(A(M )), the arguments would work in a similar
fashion except that the expansion in powers of x and log(x) have coefficients in some
H~N(A(M)) with N large enough, as we discussed in the proof of Proposition

4.3. Factorizations

Proposition 4.12. For any k < n/2 — 1, the following identities hold:

8
Gk =(—1)kh°—Qk on closed forms,
n—2k @i
(=D* 8o Qk+1d '
Ly =—F=Gq1d = — ,
(n — 2k) (n—2k)(n —2k —2)
while fork =n/2 — 1,
1
Lyp = E‘Shod' 4.12)

Proof. Let @ be a solution of problem ([@38) with initial data wo closed. Then its first

log term is x2k+2 log(x) Qk—1w0 A de and thus the first normal log term of §,w is

x4 Jog (x) (80 Qr—100) A ‘i—x But §y is a solution of problem #4) with boundary
term Sy = (—D¥2k —n — 2)wp + O(x) . Thus, the form dgw has for first normal log
term (—1)%(2k — n — 2)x"~H+H(G_1wp) A L.

Let w be a solution of (@) with initial data wy. Since Ay11d = dAy and §gdw =
Apyi1dw — dSgw, the form o’ := dw is a solution problem (4.4) with initial data dwo and
first log term (— 1) (n — 2k)x" =% log(x) Lywo A &, which gives (#.11).

X
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To compute L, /> we use equation (4.2)). Using relations (2.9), we get wp, = wo —
(71)}1/2
)

8owo A dx, therefore Ay jn—1wp, = x28odwy + o(x?). O

Remark. Note that this implies that Ly is zero on closed forms and Gy has its range in
coclosed forms.

4.4. Conformal properties

A priori our construction of L, Gk, Qx depends on the choice of a geodesic boundary
defining function x, i.e. on the choice of a conformal representative in [4g]. In order to
study the conformal properties of these operators, we need to compare the splittings of
the differential forms associated to different conformal representatives.

A system of coordinates y = (y;);=1,..., on M near a point p € M gives rise to a
system of coordinates (x, y) in X near the boundary point p through the diffeomorphism
¥ i (x,y) = ¥y (y) where i, is the flow of the gradient V¥’ 8x of x with respect to x2g.
Such a system (x, y) is called a system of geodesic normal coordinates associated to hg.

Lemma 4.13. Let (x, y) and (X, ¥) be two systems of geodesic normal coordinates as-
sociated respectively to ho and hg = €®hg. If & (resp. & A dX) is a k-form tangential
(resp. normal) in the coordinates (X, y) with @|3—¢ = wy, then

n . dx
& = wo + (=) x% iy gyw0) A —+ 0;(x?) + 0, (x%),

A

~

dx dx 5
a)/\7:a)o/\?—l—woAdgao-i-O,(x)—i-On(x ).

Proof. By the proof of Lemma 2.1 in [13]], if ho = X hg is another conformal repre-
sentative, a geodesic boundary defining function x associated to hy satisifies £ = e%x
with ¢ = go + O (x?) atleast C"~" and i (x, y) = yi + (x2/2) Y7_; h'7 9y, 90 + O ().
Hence d; = dyi +x Y_; i/ 8y, ¢odx and d% = xe?dgg + e*dx + O (x?), which gives
the relations above. 0
This implies the following corollary:

Corollary 4.14. Under a conformal change fzo = €2y, the associated operators L,
Hy and Qy. are given by

Ly =e® 0Ly, Gy =270 4 (—1)kivg, Li),

R (4.13)
Orwo = e (Qrwp + (n — 2k) L (gowo))

where wy € C®(M, A¥(M)) is any closed form. Thus Ly is conformally covariant and
Gy, is conformally covariant on the kernel of Ly (hence on closed forms).

Proof. Let w be a solution of problem (@.4) with respect to a system (x, y) associ-
ated to hg. Then by Lemma w is also a solution of problem with respect
to a system (X, y) associated to hg. Now, when we change x to X the first log(x) term
(i.e. the x"~*log(x) term) in the expansion of @ gets multiplied by e@*=%0_ For
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e x og(x) term in the normal part, we have a similar effect but the tangentia
the x"~2k+2Jog(x) t th 1 part, we h lar effect but the tangential
x"~2KJog(x) term gives rise to a £~ 2*2 Jog £ normal term which gives the term i Voo Lk-

Let w be a solution of problem (@8) in the variable x with initial data wg A %X, &

be a solution of problem ([@38) in the variable x with initial data wp A dyx, and @, be a
solution of problem {.10) in the variable  with initial data —wo A dgg. Using Lemma
we find that @ + @, satisfies problem (@.8) in the variable x with initial data wg. So
w = & + @ modulo O;(x"~%*) + 0, (x"~2*2) and the x"~2¥*2Jog(x) normal terms
must be the same. Using @13), we get

dx _ A A dx
Qk—1w0 A = e (0 wp — Gr(wo A dgo)) A o

Now we use the transformation formula of Gy, and @IT) with dwy = 0 to see that
DGy (o A dgo) = (=D Grd (powo) + (= D¥ivg, Lid (powo)
= (n — 2k + 2) Li—1(powo)-
This ends the proof of the transformation law of Q_1 by conformal change. O

Remark. While Qi on kerd is not conformally invariant (by Proposition[4.14), the pair-
ing (Qyu, u) L2(dvolyy) for the metric hg is conformally invariant for u € kerd. Indeed,

using @13)), a conformal change of metric /g = e**hy gives

A (80 Qk+1d(pou), u)p,
/M<Qku,u>,;0dvolho=/M(<Qku,u>h0+ Ll o ) g,

which under integration by parts and du =0 gives {Qyu, u)Lz(dvolﬁ y=A(Qku, u) L2 (dvolyy)*
0

Of course, when we restrict this form to exact forms, this is given by
(Qkdu, du) = (Lk—1u, u),

which is real and conformally invariant.

4.5. Analytical properties

Proposition 4.15. For any k < n/2 we have

B (_l)n/2+k+1 (n— Zk)(AO)n/Z—k

Ok R [(n/2 — DI + lower order terms in 8;1.,
M2kt 2k)(S0d n/2—k .
Ly = D (n ) od) + lower order terms in 85.,
2n=2k[(n/2 — k)!]? ’
-1 n/2+1 Sod n/2—k5 .
Gy = =D (%od) O + lower order terms in 8§i.

2=2%K[(n/2 — k)2
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Proof. We first review the computation of wr, which solves (34). By Lemma2.1} wr,
has the form wr, = Y /547 x2 ) 4 Y27 20,0 A dX here the w*) are images
of wp under differential operators on M We compute the pr1n01pal part of these operators
by recurrence.

The decomposition ([2.7) of Ag and the identity Agwr, = O, (x"~2K) + 0, (x"~2+1)
give

n/2—k i
dx
o (ditri =n/2- Do + 3 Sj0b). 21+Z(R/+2(1—J)P)0)(”) )=
i=1 j=1 j=1
n/2—k—1
+ X ( ik +i—n/2)wy) — (— 1)kdw(")+Z(R +20 — Py,

i=1 j=1
i1
(n)
+) Sj“’zi—zj) =0
j=1

This determines the a)l.(*) uniquely.

Let us write LOT for lower order term operators on M. Then we get

—1)k+1 ds Sod
W — %50600, o = ( o 0 )

2Rk —n)  2Q2k+2—n)
and given the order in d,, of the R;, R, R;, Iélf, Q; and Q}, we have

1
() k+1 (n) Q)

5, ik 12 = )( (-1) @,;" + Apwy;_,) + (wg),

1
(n) k+1 (1) ()
Vo= 1 8 + A + LOT
Wyiho S E Dk E 2 = )( (=D dow,, 0Wy;") (@0).
So we have
“)21 (a2i Sod)" + boi (dSo)" + LOT)wo, “’;’3—2 = (a2i4+1 (80d)' 89 + LOT) g

where the sequences (a;) and (b;) satisfy the relations

@i-2 2(— 1)k by, @i—1
B = s A2+ = T - + — - )
2i(2k +2i — n) 20+ )Rk +2i —n) 20+ 1Rk +2i —n)
2(=D"ag bai—a
T 2i0Qk+2i —n) | 2iQk+2i —n)
and a; = %, a = m, by = m By uniqueness of the solution of this
equation we find
1 (_l)k—H
ayi = — : s A2i4l = = - )
2T @k +2j — ) T gk 2 —n)

1

by = ——— :
2’1!]—[]-:0(216—}-2] —n)
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foralli <n/2 —k — 1. We infer the equality

Ao,
= X" (an—2k-2God)"** + (bn—2x—2 + 2(= 1) a2k 1)(d80)"*7* + LOT)wp

d
+ 32 gy (Bod)" 28y + LOT)ag A = + 0"~ 241
X

- x"_2k< (od)" + LOT) wo
212 k=12 — k — DI @k +2j — )
+x2k_n+2< (=D (8od)" >80 +LOT)wo Ldx
212k~ (n/2 — k — DI @k +2j —n) x
+ o(x" 2+, 4.14)
so we have
(aod)n/Z—k
4+ LOT,
T k1 (yya — k— DT ok +2j —n)
Sod n/2— k(s
(%od) 0 +LOT.

2kl (2 — k= DITE ™ @k +2j —n)

Note also that §, is of order 1 so C has no contribution to the principal part of G and
we get
(=D (Sod)" >80

1 LOT.
" - k(n/2 — k)']‘[”/2 Kok +2j —n)

The proof for Q. is the same (and even easier). We could have deduced the principal parts
of Ly and Gy from the one of Qy, but a slight generalization of the proof above will allow
us to compute the principal part of the non-critical Lf{ in the next section. 0

We finally prove that the operators Ly and Qy are symmetric on C*°(M, A(M)):

Proposition 4.16. Fork < n/2—1, the operators Ly are symmetric on C*°(M, AR(M)),
while for k < n/2 — 1, the operators Qy, are symmetric on C*®°(M, A¥(M)) Nkerd.

Proof. The proof for Ly is done in Proposition [5.4] which covers the non-critical cases.
The proof for Qy is quite similar. We let w, @y, be two closed k-forms on M and w, o’
the forms constructed in the proof of Proposition [3.11] with respective initial conditions
wo and wy,. Then integration by parts and the fact that dw = dw’ = 0 gives

0 =/ (Arw, ')g — (A, w)g) dvolg
X=>€

= / ((ixaxa), (Sga)/)h)( — (ixaxa)/, (Sga))hx)x_n dVOlhx.
x=€
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But a straightforward analysis and the fact that L (wg) = Lk(a)}() = 0 give that the
second line has an expansion of the form

a_ope 2+ 4 a_se 24+ Llog(e) + O(1)  with
L= (=11 2k = n)({Qkwo, @) 12(avoly,) — (@02 Ck®)) 12 vl )):

This completes the proof. g

4.6. Branson Q-curvature
We conclude this section with the observation that Qg is the Q-curvature of Branson.
Proposition 4.17. The operator Qy of Definition[4.2) satisfies
n(—1yn/2+!
2n=L(n/2)\(n/2 — 1)!

Qol =

where Q is Branson’s Q-curvature defined in [2].

Proof. Since the operator Q¢ and the function Q are local on (M, [ho]) and do not depend
on the chosen Poincaré—FEinstein manifold with conformal infinity (M, [ho]), it suffices
to consider the cylinder X = (—1, 1) x M equipped with a Poincaré—Einstein metric with
conformal metric [/o] on the boundary M U M. In [5], Fefferman and Graham showed
that the Q-curvature of Branson is the function Q on M such that if U € C*®°(X) is a
solution of

AU =n, B
U =log(x) + A+ x"Blog(x) with A, B € C*(X),
Alx=0 =0,

then Bl,—o = (—1)"*t1 2"~ (n/2)!(n/2 — 1)!)~1 Q. Clearly dU is a harmonic 1-form
and it is given by

dx dx
dU = — 4+ dA + nx"Blog(x)— + O(x"),
X X

and by uniqueness of the solution in Proposition and the decay of L? harmonic 1-
forms (of order x"), we deduce that Qg1 = nB|,—o; this proves the claim (note that the
log term in the development of Ay does not interfere since it acts trivially on normal zero
forms). O

5. The non-critical case

Let (X, g) be a Poincaré—Einstein manifold with conformal infinity (M, [h¢]). We assume
k < (n + 1)/2 and n may be odd or even in this section, and we let £ be an integer in
[1,n/2 — k] in general, and £ € N if n is odd and (X, g) is an even Poincaré-Einstein
manifold. We want to construct the operators Li of [3] by solving the following equation:
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(Ak — ()2 —k+0(n/2 — k — O)o = O, (x"*7KT8) 4 0, (x"/2~FFEHT

n/2—k—t n/2-k=t) CRY)

with w = x wo + o(x asx — 0.

where O,, O; are defined in the proof of Propositionand where wp € C®(M, A¥ (M)).
This can be done essentially as in the critical case, using the indicial equations of Subsec-
tion Indeed, the indicial roots of Ay — (n/2 — k 4+ £)(n/2 — k — £) can be computed
rather easily: they are

n/f2—k=x¢ in the Af component,

n/2—k+1++v€24+n+1-2k inthe Ak component.

Notice that there are no indicial roots in (n/2 —k — €,n/2 — k 4+ £) when £ < n/2 —k,
but there is one root in this interval when ¢ > n/2 — k and n is odd: it is given by

n/2—k+1—vV24+n+1-2kem/2—k—4£4,n/2—k—£+1] 5.2)
and thus is notin n/2 — k — £ + 2Np. We obtain
Lemma 5.1. For wg € C®(M, Ak (M)) fixed, there exists a series

2-2
xn/z—k—e(zxzjw(t)+ Z 2;( OIN dx)) (5.3)

2j=0 2j=2

(1)

such that v, = wgy and

(Ak — ()2 —k+0(n/2 —k — O))op, = O, x"** 1 0,272 (5.4)

¢)

where the forms w;” on M are uniquely determined by wo and the expansion of Ay in

powers of x given by Lemma

Note that the condition £ < n/2 when #n is even ensures that the first log(x) coefficient
coming from the metric does not show up in (5.1). We remark that when £ > n/2 — k and
n is odd, the fact that the indicial root (5.2)) is not in n/2 — k — £ 4+ 2Ny does not affect the
construction. Since n/2 — k + £ is an indicial root in the A’,‘ component, we can define

@)
n—k+¢,1

wF, = a)Fl + x" 2 og(x)w with

(5.5)
Oy = [x‘"”*k YAk — ()2 — k + 0)(1/2 — k — )op, Ilc—o.

which satisfies
(Ax — ()2 —k 4+ 0)(n)2 — k — ) op, = OX">F 2 1og(x)). (5.6)
Remark. We could continue the construction to get a solution w of
A —(m/2—k—0)n/2—k+0)w = 0(x™)

and even an exact solution (with no O (x°)) using the resolvent of A;. However, since
the mapping properties of (A; — (n/2—k —£)(n/2—k+£))~! are not explicitly available
in the literature when £ # n/2 — k, we do not discuss this case further.

Like we did for L, we can now define an operator on M as follows:
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Definition 5.2. For k < (n + 1)/2, we let £ be an integer in [1, n/2 — k] if n is even and
in N if n is odd. The operator L{ : C®°(M, A¥(M)) — C*(M, AK(M)) is defined by
Lia)o = wffik%’] where a)r(flkfe’] is given in (5.3).

Remark. Clearly, LZ/ 2=k L when n is even.

Lemma 5.3. The form wr, of (5.3) satisfies S;wp, = O (x"/>7k+t+2),
Proof. By (5.4) and §; A = Ag_18,, the form S;wp, solves

(Ak—1 — ()2 =k + ) (n)2 — k — £)8;0F, = O (x"/>7k+t+2) (5.7)
with8gwp, = O(x"/27¥=t+2) The Taylor series T of x /> k45, wp, to order O (x?¢+2)

is such that x"/2=%=¢T solves (5.7), and moreover T is even by Lemma A short
computation shows that the indicial roots of (Ax_1 — (n/2 —k + €)(n/2 — k — £)) are

n/2—k+1E£vV2+n+1-2k in the A¥~! component,

n/2—k+2++/24+2n—2k+2) inthe AK"! component.

Thus if £ < n/2—k, the indicial roots are not contained in [n/2—k—£+2,n/2—k+£+2]
except when 2k = n+ 1 where n/2 —k+ ¢+ 1 is aroot in the A, component; this implies
that the Taylor series of §;wp, vanishes to order O (x"/2=k+t+1y except maybe when 2k =
n+ 1. However in the last case, by parity of T, we see that there isnon/2 —k+£¢+ 1 term
in the expansion of 8,wp, ; this ends the proof for n even. When n is odd and £ > n/2 —k,
the only indicial root in the interval of interestis 7/2 —k + 1 + /€2 +n + 1 — 2k and it
isin(n/2—k+€+4+1,n/2 —k+ €+ 2) thusnotinn/2 — k — £ + Np, which shows that
the argument used for £ < n/2 — k applies similarly. 0

By an obvious integration by parts, we have
Proposition 5.4. The operators Lﬁ are symmetric on C*° (M, AR(M)).
Proof. Consider w}z and w%z as in (5.5) with respective boundary values a)(l) and a)g; they

are well defined forms in some collar neighbourhood X := (0, €p)x X M of M in )_( . Let
@ € Cgo((—eo, €0)) be a cut-off function which equals 1 near 0 and @' := <p(x)a)’F2 for

i = 1,2. Then using Lemmawe have Bga')i = O ">k but since iyy, & =
O(X"/ 2_"_/H‘z), the Green formula gives, for small € > 0,

|t @, - o 3 dvol,
X>e€

= (—1)”/ [(xgd@") A @ — (xgd@) A D]+ Ofe).

But the first line is an O(1) as € — 0 by (5.6), and a straightforward analysis gives that
the second line has an expansion of the form

a_sp—1e 2 o 4 a_1e7 + Llog(e) + 0(1)  with
L:=(=D"n/2—k+20) / [(xoLiw)) A @} — (xoLiwd) A @],
M

and this implies L = 0 by comparing the log(e¢) terms. 0
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Proposition 5.5. We have

. (—=Dttle n—2k—2¢
kT 02e-1(g1)2 n—2k+2¢
Proof. We define T by wp, = x> % T x = n/2 —k+€)(n/2 —k — £) and P =
xKHEn/2(A )/ 27k=L

Then we have T = Zf;é x% cugi) + Zf: 1 x% a)gz) A @ and P admits the same de-

X
composition as Ay in Lemma [2.T]but with indicial operator equal to

(2Kx8x — (x0y)? 2(—=Dktlyg >

[(50d)‘ + (dao)‘} + LOT.

0 —(x0:)% +2(€ + Dxdy +n — 2k —2¢
The equation PT = Oy (x2) + 0, (x2*1) then gives

03,y = (a2i11(80d)' 80 + LOT)wy o} = (a2(80d)" + b2i(d)" +LOT)ay

with
(= Dk -1 —m/2—k+£-2)
al) = —=————» a)y = ————, by =
nj2—k+¢ 46— 1) 46 —1)(n/2 —k+¢)
and
a; 2(= 1) by 4+ agi—y
@42 = @i+l =

4G+ 1D)3E — 0 + 2k —n+2¢°
bai +2(= DM lay; 44
4i+DGE+1-0)

4i+DGE+1-0°

baiyr =

The solutions of these equations are

by — (—Di(n — 2k +2¢ —4i)(t —i — 1)! o (=D¥i@ —i— 1)
A= A — Dl(n — 2k +20) C R TT — D) — 2k + 20)
(=D —i—=1D!
ay; = — .
410 —1)!

Since the equation (3.3)) reads

¢ x 2 dx
Ly =|——ixy, | — A PT
2¢ X lx=0

we get the result. g

6. Relation to Branson—-Gover operators

First we recall a few facts on the ambient metric of Fefferman—Graham (see [4}, 6] for
details). If (M, [ho]) is a compact manifold equipped with a conformal class, we denote
by

Q = {?ho(m); t >0, m € M} C S*T*M
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the conformal bundle; it is identified with LO, 00); X M. Let Q = (=1,1) x Q be the
ambient space with the inclusion ¢ : Q — Q defined by z — (0, z). There are dilations
8s @ (t,m) — (st, m) of Q which extend naturally to Q. The functions on Q which are
w-homogeneous in the sense

f(st,m) = s f(t,m)

are sections of a bundle denoted E[w]; they extend naturally onto 0. We denote by 7 the
ambient metric of Fefferman—Graham [4] on Q. This is a smooth Lorentzian metric on Q
such that

(1) 8*h = s2h forall s > 0,
2) L*h is the tautological tensor 2ho on Q,
(3*) R1c(}l) vanishes to infinite order at Q if n is odd,
(3**) Ric(h) vanishes to order n/2 — 1 at Q if n is even.

We let T be the vector field which generates the dilations §;, and let

Q=nT,T), p:=—120/2, x=+2p, u=uxt

so that Q is homogeneous of degree 2 with respect to §;, u and ¢ are homogeneous of
degree 1 and x of degree 0; moreover Q, p are smooth defining functions of Q, and x, u
are defining functions of Q in {Q < 0} for some finer smooth structure on {Q < 0}. Let
us define C := {Q = —1, p < €} for some small fixed €. Then € can be identified with
acollar (0, €), x M and there is a system of coordinates (u, m) € (0, 1] x C that covers
the part {0 > Q > —1, € > p > 0} which is a neighbourhood of the cone Q near r = oo
In this neighbourhood the metric 4 has the model form (see [4]])

h=—du®+u® g

where g = (dx? 4 hy)/x? is a Poincaré—Einstein metric on the collar €.

The space T[s] is the space of k-form tractors which are homogeneous of degree s,
i.e. restrictions to the null cone Q of k-forms on Q and such that %TF =sF where T =
td; = ud, is the generator of dilations in the cone fibres, V is the Levi-Civita connection
on Q. Since VT* = x for ¥+ = T, 9y, 0,;, we have Ly = VT + k on T*[s], where L
denotes Lie derivative. The bundle E¥[s] consists of the s- homogeneous k-forms on M, in
the sense that they are sections of A¥(M)® E[s] and thus satisfy Lrw = sw. We can view
&k[slasa subspace of Tk[s — k]. We let Gx[s] be the subundle of T¥[s +k — n] consisting
of all forms which are annihilated by the interior product i7. It has a conformally invariant
projection onto E¥[s + 2k — n] denoted by ¢*; this is given for instance by i L, dpA.

If A is the ambient Laplacian on~§ associated to 71, ifwy e E[k+0— n/2] and @y is
a homogeneous extension of wg to Q, then it is proved in 3, Prop. 4.3] that the operator
defined by the formula

~ ~ I~ ~\~,_
Lﬁwoz[LT(d(n+2vT—2)+§dQ/\A>A%o} = [ird(n+2V7=2)AtGollo  (6.1)

lo
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can be viewed as a conformally invariant operator Li : Kk + € —n/2] = Skln/2 —

k — ¢]. Here d denotes the exterior differential on Q. They also define the operators (see
Proposition 4.4 and Theorem 4.5 in [3]])

L3O = gL ek + £ —n/2) — Ek —n/2 - 1),
GBO = ¢ iy LY/ P ko] - e 2k — 2 — n) 6.2)

where Y = —E)p/t2 is a vector field dual to Jt/t via ﬁ; it satisfies in particular JQ(Y) =2.
Finally the operator QEG acting on a closed k-form wy is defined as follows:

~ d dr
08wy := —2(n/2 — k + l)qk[iyiTA"/Zk <TQ A=A a)())]
lo

where @ is any homogeneous extension of wg to Q.
We now prove a lemma whose proof is essentially the same as the one for functions
in [LO].

Lemma 6.1. Letw € ‘J'k/[—a] and j € N, then
AQ/w)=4j(@—n/2— j)0' o+ 0/ Aw.
Proof. Using %Q = 2T, we have [Z, 0]l = —2(2§T + n + 2) and so we can compute
ji—1

A(Q/Lwg) = Y Q"[A, 0107w+ Q' Aw

m=0

ol .
=-20/7! Z(2(—2m+2j —2—a)+n+2w+ Q0 Aw

m=0
=40/ Vj(@ —n/2 — jw+ 0 Aw,
which completes the proof. g
As a consequence, and using Lemma[6.1] we get

Theorem 6.2. (i) Let L¢, Ly and Gy be the operators of Deﬁnitionand H and let
cﬁ = (=He - DI+ DIk — n/2 — £). Then the following identity holds:
L% =Lt

In the critical case £ = n/2 — k, if G?G is the Branson—Gover operator of (6.2) we
have
LB =Ly, GBC = (—1)feGy

with ¢ = (=121 (/2 — ) )2 (/2 = K+ 1) = ¢
(i) Let Qx be the operator of Definition[d.2] Then

079 = (2k —n = 2)c41 Ok
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Proof. (i) For wg € A¥(M), we consider the form wp, of Lemma of the previous
section and we extend it homogeneously to a smooth k-form of degree k — n/2 + £ by

4
- ; dx
B = ub g, = k2 Y 2 (wlm + 220" A
: X
i=0

14
— tk—n/2+E Z(_Q)it—zi (a)l(t) + a)l(n) A dp)
i=0

In the coordinates u, x, y representing a neighbourhood {—1 < QO < 0, p < €} and
in the k-form bundle decomposition AR@) @ AF1e) A dT”, the exterior derivative, its

dual and the form Laplacian of h are given by

g: ( d 0) ’ 'g: u,z <8g (—1)k+1(n +2 -2k + uau)> 6.3)

(—Dkud, d 0 8¢
and
R -2 (@) @dy +n = 2k) + A 2(—Dktlg
- 2(—1)ks, Udy —2)(udy +n —2k+2)+ A1) -
(6.4)

So, using the properties of wr, in Lemmas|[5.T]and[5.3} we have (where s = k —n/2 +¢)
ABF = ' T2(Ag + 5(s +n — 2k)op, + 2(=D*u 38,05, A du
d
— 2£u3—2xl—k+n/2(L£w0 + 0[(X2)) + MS—ZxZ—k+n/2+2 (B A 7)6 + On(.x2))
+ 2(=D*u 3 K220 4+ 0(x%)) A du
= (=) UL wy + (B +2(-=1DFC) Ad) + 0(0Y)
for some (k — 1)-forms B, C on M. We can now apply Lemma[6.1]¢ — 1 times to get
Z’%F = KZ_IZwF
= (=) = DIPAE22eLLwy + (B +2(=1DFC) A dp) + 0(0).

Since n + 2%7 — 2 acts on homogeneous k-forms of degree k—¢—n /2 by multiplication
by —2(£ + 1), and ird = L7 on Gi[n/2 — k — £], we get

Li = (€ + 1)k — € —n/2) (=) 1€ — DI 2L w4+ (B/2 4 (—=1)FC) A dp).
Note that by definition of By, Cx, G we have, in the case £ = n/2 — k,
B/2+ (—=D*C = (=D (Br/2 — Cr)wy = LG ray.

(ii) Similarly, for wy € AX(M) closed, we set @f := w%l A %gQ in{Q <0, p<e}
where ihe form a)%l is the O-homogeneous expansion of a);l e A*1(@) given by (B.12).
Since dQ/2 = —t*dp + Q%, we have
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n/2—k 21
: dx do
~ 2j () \ &4 2 (1)
WF = jE:O X <a)2j A T +x w2j>A )
n/2—k
. . dt . . dt
= —(—Q)]t_z(]_l)a)g;-)/\dp/\T—i-(—Q)]Ht_Z]_za)gj)/\(—tzd,o-l-QT)
Jj=0

and so & is a smooth (k 4 2)-form. By (6.4) and the definition of B;, D; we have
~_ ~ d d
Adp = A(—u%)}l A —“) = 2(= )k dw)y, — (Aps10p) A

u u

d d d
= X" %22 oA Tx (= k=2 (B,QwOA % +w1> A 7“ +0(Q"*Hy
— (_1)”/2—]{—12Qn/2—k—2t2k—ﬂ+4DI/{w0/\dp

dt
+ (_l)n/2+1Qﬂ/z—k—ltzk—n+2<Bl/(a)0/\7_’_(_1)/60)1) /\dp+0(Q"/2—k)

for some form w; on M, the value of which is not important for our purpose. By Lemma

[6-1] we have

12517 — (_1)]1/27/{712Qn/27k72t2k*n+4Z(Dl/€w0 /\dp)
dt
+4(n/2 —k — 1) (=1 Q"/”?ﬂk"“(B,;wo At (—1)’%01) Adp

+0(Q"*7*h
and by (6.4), we have

~ ~ dx
A(Djwo A dp) = A(xZD,QwO A —>
X

dx

d d
=u" A2 <x2D,/(a)o A —x> +2u2(—1)*8, <x2D,Qwo A —) A
X X

u
dt dt
= 2(=)kt7280Djwo A dp A —+ 22k —n — 4t 2 Djwo A —

where we have used (2.2), (23) and d D wo = 0. We thus have

~n i dt
Ao = QMR =22kt 2 4 (1) 2N (So Do — ()2 — k — 1) Brawo) A dp A -

dt
+ o} A —+ wh A d,o] + 0(Q"* kT

i dt
= QMFR2p2k=n 42 Ay — 2k)(n)2 — k — D)(=1)"* K Qrawg A dp A —

dt
+ o] A - + o) /\dp] + 0(Q"?7k=1y
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lj@leorollary and where o}, ) are forms in AL (M). By iterative use of Lemma
we get

Anl2—kgs, — Rn/2k=2X25

d
= (Zn+2 [2"—2k—‘ (/2 = B[(n/2 — k — DI (D" Qrwp A dp A Tt
;o dr
+Cl)1 A\ T +a)2/\d,0 + O(Q)

we infer from the definition of QEG that

0BG = (—1yr/2HRHIn =2k 2 — k4 1)I(n/2 — k — 1)1 Q4. O

7. Proof of the main results

We start with the proof of Theorem |1.2]

Proof of Theorem[I.2] The existence of w in (i) is proved in Proposition[3.1] The fact that
the log terms L, Qy coincide with the Branson—Gover operators follows from Theorem
The uniqueness of the solution is rather clear by construction: using the arguments
used in the proof of Proposition a solution in C"/2-k.@ (X, Ak (X)) would have its
first n/2 — k Taylor coefficients uniquely (and locally) determined by the boundary value
wp and then two such solutions with same boundary data would have a difference in
O, (x"/?>~k+ay 1 0, (x"/>~*+1+@) and so would be in ker;2(Ay) (see Remark . We
conclude that any C"/?>7%¢ solution is in fact a solution of Proposition The proof of
(ii) is similar and follows from Proposition [3.11]and Theorem[6.2] d

Proof of Theorem The infinite-dimensionality of K,’jl (X) form < n—2k+ 1 follows
from Proposition [3.1] Indeed for m < n — 2k this is clear since the solutions of are
parametrized by C*(M, Ak (M)). If m = n — 2k, one can use that there is an infinite
set of wg € C*°(M, Ak (M)) such that Gywy # 0 and Liwg = 0 since ker Ly, is infinite-
dimensional and ker Gy Nker Ly is finite-dimensional by ellipticity of d G+ L. Solutions
of are then in C" 2K (X, A% (X)).
The finite-dimensionality for m = n — 2k 4 1 is a little more involved. Let @ be

a harmonic form in C”_2k+l()_( , AK (X)). Then by Taylor expansion, there exist some
forms w;”), wj(.t) € C2 1= (M, A(M)) so that

n—2k

w— Y 2@+ rdx)ex"HHLXAKX)),
j=0

and Lywy = 0. Now by Lemma [3.8 we know that w has a weak expansion to order
xN with values in H=" (M) as in for any N > 0 large. Moreover §,w is also a
harmonic form in C"~2X(X, A¥~1(M)), and using after decomposing the form in
Af_l ® Aﬁ_l, we see that it is an O (x) and has an expansion to order x™ with values in
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H~N=1(M) for any N. Now, using the indicial equation as in the proof of Proposition
the weak expansion of g vanishes to order x"~2+2 50 in particular we obtain dyw €
X" [ (A1 (X)) from the regularity of . Then §,w € L2(A*1(X)) fork < n/2—1,
while for k = n/2 — 1 itis in L? if we assume in addition that w € C"~2+T1Lo (X, AK(X))
for some o > 0 (since then §,w € x 2kt p o0 (Ak(X))). But as shown in Corollary
8 is then smooth and vanishing to order x"~2f*3_ Then, as in the proof of Proposition
an integration by parts of ||8ga)||i2 shows that 6,0 = 0. Now we can apply the result
of Proposition 4.4 (see the Remark following Corollary {f.TT]), which gives Grwo = 0.
Since d Gy + Ly is elliptic, ker Ly Nker Gy is finite-dimensional and contains only smooth
forms, so wg is smooth. Then w is polyhomogeneous and is the solution of Proposition
up to an element of ker;2(A); hence it is in C" (X, A¥(X)) in general and in
C>®(X, AK(X)) if (X, g) is a smooth Poincaré—Einstein manifold.

Letm € [n—2k+1, n—1] be an integer. The exact sequence is defined by inclu-
sion of ¢ : Hk()_(, 9X) — K,’;()_() and restriction to the boundary r : K,’ﬁl (X) —> %E(M);
here of course we use the identification H*(X, 8X) ~ ker;2(Ag) and the regularity of
harmonic L? forms in Theorem The injectivity of ¢ is clear, the surjectivity of » comes
from Proposition the definition of J-C]i and Theorem The kernel of r is composed
of those forms of K ,’,‘1 (X) which vanish at M, but by Proposition these are L2, and
thus in the image of H*(X, X) under the map ¢. d

Proof of Theorem First note that the space Z¥(X) in Theorem is included in
K,];_ZkH(}_(), and thus of finite dimension and composed of forms in crl(x, Ak()_())
(even in the case k = n/2 by the arguments above).

(i) The maps in the complex

0— HYX. %) 5 2530 5> 35 (0X%) % H1(X, 9%)

are defined as follows: ¢ is given by inclusion where Hk()_(, 9X) ~ ker;2(Ag), this is
well defined since L? harmonic forms are closed, coclosed and in C*~2+1(X, A*(X));
r is defined as restriction to the boundary and it maps into HK(M) since r(w) € ker Ly N
ker G by the discussion above and dw = 0 implies dr(w) = 0; the last map d, is the
composition d, = d o ® where ® : C®(M, AK(M)) — C®(X, AK(X))/ker;2(Ay) is
defined by ®(wp) = w where w is the solution of in Proposition Note that ®
is only defined modulo ker;2(Ay) and is linear by uniqueness of the solution in (3.1))
modulo ker;2(Ag). Applying d kills the indeterminacy with respect to ker;2(Ay) since
L? harmonic forms are closed. Hence d® (wy) is harmonic and since the boundary value
of ®(wyp) is closed, we have dP(wg) = O(x), and by Propositionit is in L2. For the
exactness of the sequence, first note that ker r is composed of closed and coclosed forms
which are O (x); this implies that those forms are L? by Proposition soIm¢ = kerr
since also L2 harmonic forms vanish at the boundary. Now wo € kerd, if ®(wp) is
closed, but it is also coclosed and in C"~2+1 (X, AK(X )) by Proposition and the fact
that wo € kerd Nker Gy C ker Ly N ker Gy, therefore ®(wg) € Z¥(X) and wp € Imr.
Moreover by Proposition we have ®(r(w)) — w € kery2(Ag); this implies Imr C
kerd,, proving the exactness of the sequence.
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(ii) The maps in the complex are defined similarly: first ¢ : H¥(X,3X) —
[Zk(X)] is the composition of the inclusion ker;2(Ax) — Zk()_( ) with the natural map
ZK(X) — [ZK(X)] obtained by taking cohomology class. The map r : [ZK(X)] —
[F*(8X)] is induced by the restriction map Z¥(X) — H¥(8X) used in (i). This is well
defined since if do € Zk()_(), then r(da) = dag where g = o[, 5, and so [r (da)] = 0 if
[ -] denotes cohomology class in H¥(3X). The last map d, : [ZK(8X)] — H*t1 (X, 8X)
is the map induced by d, defined in (i), i.e. d, = d o ® where ® maps wy to the solution of
(3-1). Note that it is well defined since for dag € H*(3X), we have d, (dap) = d®(dap)
and, by uniqueness of the solution of (3.I), ®(dap) — dP (o) € kery2(Ag+1), thus
dd(dagy) = 0.

To show that kerr = Im¢, we need to show that if ® € Z* ()_( ) is a representative
in [Z¥(X)] such that r(®) = dag for some smooth ag, then there is ' € ker;2(Ay)
such that  — o' is exact. But as said above, we have ®(dag) — d®(xp) € ker2(Ag)
and ®(r(w)) — w € kerp2(Ag), thus @ — dP(ag) € kery2(Ag) and we are done. To
show that kerd, = Imr, we need to prove that for a representative wy € H¥(3X) in
[FH*(3X)], ®(wp) is closed if and only if there exists w € ZK(X) such that r(w) — w
is exact. But ®(wp) is in Z¥(X) if d®(wo) = 0, thus kerd, C Imr; conversely if there
is w € ZK(X) with o = wp + dag + O(x), then w — ®(wp + dap) € ker;2(Ax) and
50 d®(wp) = 0 since ®(dag) — dP(ap) € ker2(Ag). To conclude, we need to prove
that Imd, C ker:. But this is clear since d,wy = d®(wq) is an exact (k + 1)-form in
L? with ®(wp) € C"2**1(X, A¥(X)). Note that in the case k = n/2, we make use of
Proposition [3.10]

(iii) Suppose that [H*(8X)] = H*(3X). If @ € kery, it is a k-form in ker;>(A)
which can be written w = da with & smooth. Moreover if ag = a3, then d (P (ap) — )
€ ker;2(Ag) and ®(ap) — o = O(x), and an easy integration by parts shows that
d®(ap) = do = w. Here «y is closed since w = O (x), but by assumption there is an a(’) €
HK (9 X) such that op—ay, = dp for some smooth 8. Since now d®(df) = d[P, d]p =0,
we have d.ay = w and @ € Imd,, which gives kert = Imd,. Eventually, the equality
[Z¥(X)] = H*(X) is clear from the discussion above since [Z¥(X)] ¢ H¥(X) and

HY(X. 0X) 5 (25301 5> HF0X) % H'(X, 9%).
HY(X. 0X) & H*(X) 5> H*0X) % H*''(X.9%)
are both exact sequences.

For the converse, if ker *T! = Im df and [Z¥(X)] = H¥(X), then we have the exact
sequences

HE(X) 5 (3] 25 HEU(R, M) S (29 (X)),

HYX) 5 HE M) Y BN R M) S BRY (D,
and since [Z¥T1(X)] ¢ H*1(X), we obviously have kert = kert/ = Imd, and so
[HK(M)] = H*(M) (recall [HX(M)] € HX(M)). O

Proof of Proposition Assume (Qrv,v) > 0. To show surjectivity of H*(M) —
H* (M), we need to prove that for all wy € C*°(M, AF (M)) closed, there exists an exact
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form da (with & € C®(M, A¥(M))) such that Gy(wy + da) = 0. Consider O :=
80Qxd + (d8p)™*~**1, which is elliptic, self-adjoint and non-negative if Q; > 0. Its
kernel is finite-dimensional (containing ker(d + &p)) and all v € ker[J are smooth by
elliptic regularity, and satisfy (8o Qxdv, v);2> = 0, which implies (Qxdv, dv) ;> = 0. Let
H c L?>(A*(M)) be the L? completion of the set C>°(M, AK(M)) Nkerd of smooth
closed forms and define the symmetric form Q(v, v) := (Qkv, v);2 on H; it is the non-
negative form induced by I1g QO on H where ITg denotes the orthogonal projection from
L2(Ak (M)) to H. The form has domain D(Q), and the Friedrichs extension theorem
implies that there exists a self-adjoint operator er : H — H with domain D(QF") such
that (QF"u, u) = Q(u, u) for u € D(Q) N D(Q™). But clearly d(C®°(M, AK=1(M))) C
D(Qgr) and so [Ty Qrdv = erdv for v smooth. Using now the spectral theorem for
OF", we see that Qf'dv = 0 with v smooth if and only if (Qxdv,dv) = 0 and v is
smooth, thus in particular if v € ker . Thus Qxdv L w for all w € Hif v € ker[J. Now
this implies that, with @ closed and smooth, we have (v, Gyw) = (Qrdv, w) = 0 for
v € kerd since Qf is symmetric on closed forms, and so Gy is in the range of [, that
is, there exists « such that o = —Gyw; but since Im G C Im §p which is orthogonal to
Imd, we deduce that (d8y)"/>*+1a = 0, and this completes the proof. Note in particular
that in this case {d¢; Li_1¢ = 0} = {d¢; Qrdp € Im§p} (see Corollaries 2.12 and 2.13
of [3]] for discussions about these spaces). Il

8. Computations in some special cases

In this section we compute the operators Ly, G and Qf in dimensions 4 and 6.

Proposition 8.1. Let (M*, h) be a four-dimensional Riemannian manifold and define,
for any symmetric 2-tensor H, the map j(H) := J(h~'H) where J is defined in 24).
Then

1 1 2 1 2
L= §8d, G = —Z5<A—2J(RiC)+§ Scal), 0 = E(A—QJ(RiCH‘g 5031)7

1 2 1
Lo = —E8<A—2j(Ric)+§ Scal)d, Go=0, Qo= _ﬂ(A Scal —3|Ric|2+Sca12),

where Ric is the Ricci tensor of h and Scal its scalar curvature.

Remark. If n = 4, then L/, is the Paneitz operator (up to a constant factor). The
result of Gursky and Viaclovsky [14] says that if the Yamabe invariant Y (M, [hg]) is
positive and

1
/ Q dvoly, + =Y (M, [ho])* > 0
v 6

then L is a non-negative operator with kernel reduced to constants. Combining this with
Theorem 2.6 of Branson-Gover [3]], we obtain H' (M) ~ H'(M) and there is a confor-
mally invariant basis of H L(M) with respect to [ho] made of conformal harmonics.
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Corollary 8.2. Let M* be a four-dimensional manifold and »1(x) > --- > Aa(x) the
eigenvalues of its Ricci curvature at x. If A2(x) + A3(x) + Aa(x) > O for all x € M then
HY (M) — HY (M) is surjective.

Proof. Let D be the Levi-Civita connection of the metric 4, and w be a closed 1-form.
By decomposing orthogonally the bilinear tensor Dw into the antisymmetric part dw/2,
symmetric trace free part So and trace part (—Sw/4)h, we get (recall that w is closed)

ldo|? (8w)2 (Sw)?
Dol = —— + 1S, )
|Dow| > + 1So1? + —— 7 23

Now, by the Bochner formula,
2 : 130 . (Aw, o) .
(Aw, w) = ||Dow|5+ | Ric(w, w) > + | Ric(w, w)= + | Ric(w, w),
M 4 M 4 M

and so (Aw, w) > 3 i o Ric(w, w). Therefore,

1 /[ Scal } 1/ .
(Q10, w) = = (Aw, w) + Ric(w, w)+—|w| > = [ [Scal |w|” —Ric(w, )]
2 M 3 mu

v

f[(M+x2+x3+x4)|w|2—xl|w|2]z/ (o433 + )02 = 0,
M M

and we conclude by using Proposition[T.4] O

Proposition 8.3. Let (M, h) be a six-dimensional manifold. Let j be defined as in Lem-
ma [8.1| and let Tr(H) denote the trace of a symmetric tensor H with respect to h. Then
we have

1 1 2 1 2
Ly=3dd, Gy= Z(S(A —j(Rie) + % Scal), 0, = E(A — Jj(Rio) + < Scal),

1 2
L= ——(S(A — j(Ric) + 3 Scal)d,

16
(8d)?s  8dE\8 SE\8d SE\dS 8dSE; SE, SEj
G = + - - - +—+—,
64 32 16 16 16 16 8
0, — A? L d8Ey  8dEi dES | EidS 2E} + E»
'TT6 T T4 4 8 4 4
1 8dE18d  SE\déd  8dSE;d SExd SEid
Lo = —(8d)* - — ,
0= 340D+ g 96 % o6 a3
AZScal  8o(Ei(dScal)) A|P|>  AScal®
Qol = — + -
800 160 48 800
Scal>*  Tr(P?®)  ho(Ric, B)
8000 32 32

where Ey := J(P?> +2B) — |P|*/2 and E; := J(P) — Tr(P)/2, B denotes the Bach
tensor of h, P the Schouten tensor, Ric the Ricci tensor and Scal the scalar curvature.
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Proposition 8.4. For any n > 4, we have the identities

8ds  §j(P Tr(P)Id
Gl‘[/z—l:(_])n/2+l(T_ .]( )+8 r( ) >

2 4

= (_l)n/2+1 @ P J (Ric) _ Scal Id
4 n— 2 2(1’1 _ 1) 3

0 (A 2j(Ric)+ScaIId
LAY T TS TS )

. _ 5[ i®Ri) | Scalld ),
2= N6 T 4n—2)  8m—-0n)"

(6d)25+8dE16 SE\8d SEdS SdSE, SE» 5Ef>

G = (=1 n/2+1 o=z
n2-2= (=) 64 32 16 16 6 16 3
A% dSE, S8dE; dE\8 Eds 2E}+E;
Onpr=—qet—( et
. _(d)? | SdE\3d_SEiddd _SdSEd | SExd SE3d
/2737 384 192 96 96 96 48

where Ey = J(P? + 2£) —|P|2/2 and E| := J(P) — Tt(P)/2, B denotes the Bach
tensor of h, P the Schouten tensor, Ric the Ricci tensor and Scal the scalar curvature.

For the non-critical case, we have
Proposition 8.5. We set j3(H) = 2j(H) — Tr(H) 1d. For any n > 3, we have

—2k—-2 —2)(n—2k -2 — 2k —2)j(Ri
L}CZ%_I_(n k )d5+(n+k )(n k )Scal—(n k —2)j(Ric)

2 2m—2k+2) 8(n— (n—2) 2(n —2)

which generalizes the conformal Laplacian on functions, and

L=

n—2k—4 (d5)? (8d)? 2dj*(P)s 28j%(P)d
16 n—2k+4 n—-2k—4 n—-2k+4 n—-2k-—4
i(P)A + Aj*(P B — 2k) jE(P)?
_]() ]()_I_jﬁ P2+ +(”l )jr(P)
2 n—4 4

which generalizes the Paneitz—Branson operator on functions.
Proofs of Propositions[8.1| [8-3|[8-4|and[83] This is a quite tedious computation, therefore
we do not give the full details. By [6, Eq. (3.18)], we have

_ P ha h3
hy "he=1 _XZE +x4§ — X6E +0(x6),
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—1
with P = ;L5 (2hg'Ric = $941) hy = & forn = 4 and hy = —220_43 + £ and
4Te(P(hy ' B)) )
Tr(h3) = ——— —— for n = 6 (where B is the Bach tensor); note that we have

ignored the first log term in the metric expansion (i.e. the obstruction tensor) in dimension
4 and 6 since, as is clear from Lemma[2.]] they do not show up in the construction of the

—1
LY, Gy, Qr. Weset B' = 0 forn =4 and B = 200

n—4

for n = 6. Using the relations
L7V =1 — A% — (A — ADx* — (A3 + A — A1 Ay — A ADX® + 0(x9),
L7'QL = I+ Ajx? + (A) + [A], AlDx* + (A + [A], A2l + [A), A]
+ Al[A1L A|Dx® 4 0(x%),
for
L=1+Ax*+Ax* + A3x®+ 0% and Q=1+ Ajx? + Apx* 4+ A5x0 +0(x%),

and the notation of the proof of Lemma [2.T] we get

P 3P242B h3+3P24+3B'P+3PB’
-1 2 4 6 6
hy'ho=1+x E—I—x T +x 13 +o(x"),
P2 +4+2B 2h3+ P3+4PB +2B'P
Ay = —xP—x> + —x° sH + +0(x6),
4 16
P ,P+B  (2h3+3P°+5PB'+4B'P
OX:I+x2Z+x4 T +x° 2 +0(x%,
J(P J(P2+2B')+ J(P)?
L= 1422 ( )+x4 (P*+ 32)+ ( )’
¢J(4h3+2P>+10PB' +2B'P)+3J(P)J (2B + P} +J(P)? p
+x +o(x7),
384
B J(P) —J(P2+2B")+ J(P)?
1 2 4
I7 =1—x 1 +x 0 ,
¢ —J (4h3+2P3+10PB'+2B'P)+3J(P)J (2B’ + P?) —J(P)? 6
4x +o(x7).
384
Then we obtain
2 [J(P), %0] A [J(P), [J(P), %011 — [J(P? +2B'), %]
*y = *x) — X +x
4 32
6 [J(P)3 + J(4h3 +2P3 + 10PB’ + 2B’ P), %]
¥~
384
J(P)[J(P), x0]J(P) + [J(2B' + P2),[J(P),
+ (P)LJ(P), *0]J (P) 1[28( ), [J(P) O]]>+o(x6).

Using the relations =0 (H) -+ J (H)xo = Te(H)wo and [J (H), J (H')] = —J ([H, H']),
we get

_ E2 C/

*x 1[8)(7 *X] = .XE[ +X37 +x53_2
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with
/ / 3 3 2
C'l = =2Tr(PB') = Te(P?) = ZTe(P)Tr(P?),
Tr(P Tr(P?
E = J(P)— r(z ) By J(P242B) — r(z ).
80, E D
8 = 8o +x2[02—1] + x41—6, where D := [89, E2] + 2[[80, E1], E1].
Therefore,
Ab — —(x3x)% + (n — 2k)x 0, 2(—1)k+lg
k= 0 —(x8x)% + (n — 2k + 2)xd,

2 (Ao — Ewxdy  (=DF[d, Ei]
2(=DF1sy  Ag— E1(2 + xdy)

af Ar— Axxdy (=D*d, Az) 6 (A3 Aa 6
o (2(—1)“1[80,&] A — Asb+xan) T a5 ag) TOED

where A1 := (d[Sg, E1]1+ [0, E11d)/2, A> := E3/4 (since the Bach tensor is trace-free),
As := —(—1)¥3D/8 and, when k = 1,

Asl ? 5 1P + 3T(P3)+ 3 (Ric, B)
:= —— Sca —Tr - ic, B).
%"~ 160 16 160
For n = 6 and k = 1 we follow the formal method of Subection#.2.3] We first have

, dx ofdScal  Scaldx 4 AScal Scal? |P|2 dx
= —X + +x -
80 40x 160 800 16

W, = — -
Fy X

and so, by computing o’ and Axwp, , we find

dAScal dScal®  d|P>  dAScal 11dScal®  d[Ric|?

160 800 16 160 3200 64
| [E1 dold Seal (A1 — 6A,) Scal

40 40

(Ao — 6ED AScal+Sca12 |P?
0 U\ 7160 800 16

Dyl =

3 3 . 380(E 1 (d Scal))
= —Tr(P}) + —ho(Ric, B) - ———— "2
6 r( )+16 o(Ric, B) 20
N AZ Scal N AScal>  A|P|>  3Scal®
160 800 16 4000

Hence we get Qo1 in the case n = 6 by Corollary .9
The other computations are similar. For instance, for k = n/2 — 1,

SodSowy
2

Awp, = x*8odwy + x> (—1)"/* ! - 280E1w0> Adx + O(x%),
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and so
Soddowo

2
We have dwp, = (x*/2)80E1wp + O(x%), and so Cpjo—1 = 80 E1/2. By Proposition[4.5]

Soddyg  SoEq
G, 1 n/2+1 ,
n/2—1 = ( ) 4 )

Bujp_1wp = — + 280 E wp.

which implies the expression for L, > by @.IT)). For k = n/2 — 2, we have

2( déwy  S8dwy  (—1)"*8wy dx)
wp = wy +x7| — N —

8 4 4 x
n (—l)”/2x4 SE 1w B Sdc‘ia)o E18a)0 N4 dx
4 16
_1\n/2 _ n/2
s— (0 D=0 o 60 ( 1) E;
0 0
4ot (180, B2 (=12 A5N 2[80,Az] [[ao,El] Eil/8
0 (80, E11/2 *
and so
c _ SpAr n 30E% B SoE1ddo _ SoE180d
"2 Ty 8 16 8§
B _ 380Ay SEi8d  38EdS 5daE1+(ad)25+5dE15+3aEf
n2m2 = T 2 8 4 16 8 4
(6d)®8 SdE;8 SE8d SEdS SdSE, OSE, OFE?
G = (—1)/2H] _ B _ 8Ey  OETY
w2 =D o : 16 16 6 16 8

In the case k = n/2 — 1, we have o, = wo A % +x*(=d8/4+ E1/2) A%, D, ), =

(—D)"**dE /2and B} ;) 5 = (—=1)"?dSE\~dE18/2—E>—(d8)* /A+8d E1+E1dé—
2E? + 8dE1 /2. So we get
A’ dSE; 8dE; dE§ Eds 2E}+E>

)= ——— - - . D
Onj2-2 16+ 1 + 1 5 + : 2
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