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Abstract. For odd-dimensional Poincaré–Einstein manifolds (Xn+1, g), we study the set of har-
monic k-forms (for k < n/2) which are Cm (with m ∈ N) on the conformal compactification
X̄ of X. This set is infinite-dimensional for small m but it becomes finite-dimensional if m is
large enough, and in one-to-one correspondence with the direct sum of the relative cohomology
H k(X̄, ∂X̄) and the kernel of the Branson–Gover [3] differential operators (Lk,Gk) on the confor-
mal infinity (∂X̄, [h0]). We also relate the set of Cn−2k+1(3k(X̄)) forms in the kernel of d + δg
to the conformal harmonics on the boundary in the sense of [3], providing some sort of long exact
sequence adapted to this setting. This study also provides another construction of Branson–Gover
differential operators, including a parallel construction of the generalization of Q-curvature for
forms.

1. Introduction

Let (M, [h0]) be an n-dimensional compact manifold equipped with a conformal
class [h0]. The k-th cohomology group H k(M) can be identified with ker(d + δh) for
any h ∈ [h0] by the usual Hodge–de Rham theory. However, the choice of harmonic rep-
resentatives in H k(M) is not conformally invariant with respect to [h0], except when n is
even and k = n/2. Recently, Branson and Gover [3] defined new complexes, new confor-
mally invariant spaces of forms and new operators to somehow generalize this k = n/2
case. More precisely, they introduce conformally covariant differential operators LBG,`

k

of order 2` on the bundle 3k(M) of k-forms, for ` ∈ N (resp. ` ∈ {1, . . . , n/2}) if n is
odd (resp. n is even). A particularly interesting case is the critical one in even dimension,
that is,

LBG
k := LBG,n/2−k

k . (1.1)

The main features of this operator are that it factorizes as LBG
k = G

BG
k+1d for some opera-

tor
GBG
k+1 : C∞(M,3k+1(M))→ C∞(M,3k(M)) (1.2)

and that GBG
k factorizes as GBG

k = δh0Q
BG
k for some differential operator

QBG
k : C∞(M,3k(M)) ∩ ker d → C∞(M,3k(M)) (1.3)
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where δh0 is the adjoint of d with respect to h0. This gives rise to an elliptic complex

· · ·
d
−→ 3k−1(M)

d
−→ 3k(M)

LBG
k
−−→ 3k(M)

δh0
−→ 3k−1(M)

δh0
−→ · · ·

named the detour complex, whose cohomology is conformally invariant. Moreover, the
pairs (LBG

k ,GBG
k ) and (d,GBG

k ) on3k(M)⊕3k(M) are graded injectively elliptic in the
sense that δh0d + dG

BG
k and LBG

k + dG
BG
k are elliptic. Their finite-dimensional kernels

Hk
L(M) := ker(LBG

k ,GBG
k ), Hk(M) := ker(d,GBG

k ) (1.4)

are conformally invariant; the elements of Hk(M) are named conformal harmonics, pro-
viding a type of Hodge theory for conformal structure. The operator QBG

k above general-
izes Branson Q-curvature in the sense that it satisfies, as operators on closed k-forms,

Q̂BG
k = e

µ(2k−n)(QBG
k + L

BG
k µ)

if ĥ0 = e
2µh0 is another conformal representative.

The general approach of Fefferman–Graham [4] for dealing with conformal invariants
is related to Poincaré–Einstein manifolds; roughly speaking it provides a correspondence
between Riemannian invariants in the bulk (X, g) and conformal invariants on the confor-
mal infinity (∂X̄, [h0]) of (X, g), inspired by the identification of the conformal group of
the sphere Sn with the isometry group of the hyperbolic space Hn+1. A smooth Rieman-
nian manifold (X, g) is said to be a Poincaré–Einstein manifold with conformal infinity
(M, [h0]) if the space X compactifies smoothly to X̄ with boundary ∂X̄ = M , and if
there is a boundary defining function of X̄ and some collar neighbourhood (0, ε)x × ∂X̄
of the boundary such that

g =
dx2
+ hx

x2 , (1.5)

Ric(g) = −ng +O(x∞), (1.6)

where hx is a one-parameter family of smooth metrics on ∂X̄ such that there exists some
family of smooth tensors hjx (j ∈ N0) on ∂X̄, depending smoothly on x ∈ [0, ε) withhx ∼

∞∑
j=0

h
j
x(x

n log x)j as x → 0 if n+ 1 is odd,

hx is smooth in x ∈ [0, ε) if n+ 1 is even,

(1.7)

hx |x=0 ∈ [h0]. (1.8)

The tensor h1
0 is called the obstruction tensor of h0; it is defined in [4] and studied further

in [9]. We shall say that (X, g) is a smooth Poincaré–Einstein manifold if x2g extends
smoothly on X̄, i.e. either n + 1 is even, or n + 1 is odd and hjx = 0 for all j > 0. It is
proved in [6] that h1

0 = 0 implies that (X, g) is a smooth Poincaré–Einstein manifold.
The boundary ∂X̄ = {x = 0} inherits naturally from g the conformal class [h0] of

hx |x=0 since the boundary defining function x satisfying such conditions is not unique.
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A fundamental result of Fefferman–Graham [4], which we do not state in full generality, is
that for any (M, [h0]) compact that can be realized as the boundary of a smooth compact
manifold with boundary X̄, there is a Poincaré–Einstein manifold (X, g) for (M, [h0]),
and hx in (1.7) is uniquely determined by h0 up to orderO(xn) and up to diffeomorphism
which restricts to the identity onM . The most basic example is the hyperbolic space Hn+1

which is a smooth Poincaré–Einstein manifold for the canonical conformal structure of
the sphere Sn, as well as quotients of Hn+1 by convex cocompact groups of isometries.

It has been proved by Mazzeo [16] that1 for a Poincaré–Einstein manifold (X, g), the
relative cohomologyH k(X̄, ∂X̄) is canonically isomorphic to the L2 kernel kerL2(1k) of
the Laplacian 1k = (d + δg)2 with respect to the metric g, acting on the bundle 3k(X̄)
of k-forms if k < n/2. In other terms the relative cohomology has a basis of L2 harmonic
representatives. In this work, we give an interpretation of the spaces Hk,Hk

L in terms of
harmonic forms on the bulk X with a certain regularity on the compactification X̄.

Theorem 1.1. Let (Xn+1, g) be an odd-dimensional Poincaré–Einstein manifold with
conformal infinity (M, [h0]) and let1k = (d+δg)2 be the induced Laplacian on k-forms
on X where 0 ≤ k < n/2− 1. For m ∈ N and 0 < k < n/2− 1, define

Kk
m(X̄) := {ω ∈ Cm(X̄,3k(X̄)); 1kω = 0},

then Kk
m(X̄) is infinite-dimensional for m < n− 2k + 1 while it is finite-dimensional for

m ∈ [n− 2k + 1, n− 1] and there is a canonical short exact sequence

0→ H k(X̄, ∂X̄)
i
−→ Kk

m(X̄)
r
−→ Hk

L(M)→ 0 (1.9)

where Hk
L is defined in (1.4) andH k(X̄, ∂X̄) is the relative cohomology space of degree k

of X̄, i denotes inclusion and r denotes pull back by the natural inclusion ∂X̄ → X̄.
If in addition the Fefferman–Graham obstruction tensor of (M, [h0]) vanishes, i.e. if
(X, g) is a smooth Poincaré–Einstein manifold, then Kk

n−2k+1(X̄) = Kk
∞(X̄). When

k = n/2 − 1, the same results hold with Kk
n−2k+1(X̄) replaced by the set of harmonic

forms in Cn−2k+1,α(X̄,3k(X̄)) for some α ∈ (0, 1). When k = 0, K0
m(X̄) is infinite-

dimensional for m < n while K0
n(X̄) is finite-dimensional and the exact sequence (1.9)

holds.

In establishing this theorem, we show that we can recover the Branson–Gover operators
LBG
k ,GBG

k ,QBG
k from harmonic forms on a Poincaré–Einstein manifold with conformal

infinity (M, [h0]). Let us recall quickly and informally how the GJMS and Branson–
Gover operators are defined in [10, 3]. The ambient metric is a Lorentzian metric on
Q̃ := M × (0,∞)t × (−1, 1)ρ , homogeneous of degree 2 in the t variable, which extends
the tautological tensor t2h0 at the cone Q = {ρ = 0} and with Ricci curvature vanishing
to order n/2 − 1 (resp. to infinite order) at Q when n is even (resp. n odd). The GJMS
operators Pk are defined in two ways in [10]: for f a (k − n/2)-homogeneous function

1 The class of manifolds considered by Mazzeo is actually larger and does not require the asymp-
totic Einstein condition (1.6).



914 Erwann Aubry, Colin Guillarmou

on Q, take a homogeneous extension f̃ on Q̃ and define Pkf := [1̃kf̃ ]|Q where 1̃ is the
Laplacian for the ambient metric; the second equivalent way is to consider an extension
f̃ of f to Q̃ which satisfies 1̃f̃ = O(ρk−1) and, up to a mutliplicative constant, Pkf =
[(ρt2)1−k1̃f ]Q. The second definition gives Pk as an obstruction to extending smoothly a
harmonic homogeneous function f from the cone. The Branson–Gover operators defined
in [3] are constructed following the first method in [10] but with many complications
due to the fact that one works with bundle valued objects. Our approach is more closely
related to the harmonic extension approach of GJMS [10]. We say that a k-form ω is
polyhomogeneous on X̄ if it is smooth on X and with an expansion at the boundary M =
{x = 0}

ω ∼

∞∑
j=0

`(j)∑
`=0

xj log(x)`(ω(t)j,` + ω
(n)
j,` ∧ dx)

for some forms ω(t)j,` ∈ C
∞(M,3k(M)) and ω(n)j,` ∈ C

∞(M,3k−1(M)) and some se-
quence j ∈ N0 7→ `(j) ∈ N0. We show that the Branson–Gover operators appear natu-
rally in the resolution of the absolute or relative Dirichlet type problems for the Laplacian
on forms on X̄.

Theorem 1.2. Let (Xn+1, g) be an odd-dimensional Poincaré–Einstein manifold with
conformal infinity (M, [h0]), let k < n/2 and α ∈ (0, 1).

(i) For any ω0∈C
∞(M,3k(M)), there exists a harmonic form ω∈Cn/2−k,α(X̄,3k(X̄))

with boundary value ω|M = ω0; ω is unique modulo kerL2(1k) and is actually
polyhomogeneous with an expansion at M at order O(xn−2k+1) given by

ω = ω0 +

n/2−k∑
j=1

x2j
(
ω
(t)
j + ω

(n)
j ∧

dx

x

)
+ xn−2k log(x)Lkω0

+ xn−2k+1 log(x)(Gkω0) ∧ dx +O(x
n−2k+1)

where Lk,Gk are, up to a normalization constant, the Branson–Gover operators in
(1.1), (1.2) and ω(·)j are forms on M .

(ii) For any closed form ω0 ∈ C
∞(M,3k−1(M)), there exists a harmonic form ω such

that xω ∈ Cn/2−k+1,α(X̄,3k(X̄)) and ω = x−1(ω0 ∧ dx) + O(x); ω is unique
modulo kerL2(1k) and xω is polyhomogeneous with expansion at M given by

ω = ω0 ∧
dx

x
+

n/2−k∑
j=1

x2j
(
ω′j
(t)
+ ω′j

(n)
∧
dx

x

)
+ xn−2k+1 log(x)(Qk−1ω0) ∧ dx +O(x

n−2k+1)

where Qk−1 is, up to a normalization constant, the operator (1.3) of Branson–Gover
and ω′j

(·) are smooth forms on M .
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The Dirichlet problem for functions in this geometric setting is studied by Graham–
Zworski [12] and Joshi–Sá Barreto [15]. In a more general setting (but again for func-
tions), it was analyzed by Anderson [1] and Sullivan [20].

We also prove in Subsection 4.6 that, with Q0 defined by the theorem above,

Q01 =
n(−1)n/2+1

2n−1(n/2)!(n/2− 1)!
Q

where Q is Branson’s Q-curvature. So Q can be seen as an obstruction to the existence
of a harmonic 1-form ω with xω having a high regularity at the boundary and value dx at
the boundary.

In addition, this method allows us to obtain the conformal change law of Lk,Gk,Qk ,
relations between these operators, and some of their analytic properties (e.g. symmetry
of Lk and Qk); see Subsections 4.4 and 4.6.

Next, we analyze the set of regular closed and coclosed forms on X̄. Recall that on
a compact manifold X̄ with boundary, equipped with a smooth metric ḡ, there is an iso-
morphism

H k(X̄) ' {ω ∈ C∞(X̄,3k(X̄)); dω = δḡω = 0, i∂nω|∂X̄ = 0}

where ∂n is a unit vector field normal to the boundary, and the absolute cohomology
H k(X̄) is ker d/Im d where d acts on smooth forms. Moreover, one has the long exact
sequence in cohomology

· · · −→ H k−1(∂X̄) −→ H k(X̄, ∂X̄) −→ H k(X̄) −→ H k(∂X̄) −→ H k+1(X̄, ∂X̄) −→ · · · ,

(1.10)
and all these spaces are represented by forms which are closed and coclosed; the maps in
the sequence are canonical with respect to ḡ. In our Poincaré–Einstein case (X, g), say
when k < n/2, only the space H k(X̄, ∂X̄) in the long exact sequence has a canonical
basis of closed and coclosed representatives with respect to g (the L2 harmonic forms), in
particular there is no canonical metric on the boundary induced by g but only a canonical
conformal class. We prove

Theorem 1.3. Let (Xn+1, g) be an odd-dimensional Poincaré–Einstein manifold with
conformal infinity (M, [h0]) and let k ≤ n/2. Then the space

Zk(X̄) := {ω ∈ Cn−2k+1(X̄,3k(X̄)); dω = δgω = 0}

is finite-dimensional, and if the obstruction tensor of [h0] vanishes, the space is equal to
{ω ∈ C∞(X̄,3k(X̄)); dω = δgω = 0}. Then:

(i) For k < n/2 there is a canonical exact sequence

0 −→ H k(X̄,M) −→ Zk(X̄) −→ Hk(M) −→ H k+1(X̄,M)

where Hk(M) is the set of conformal harmonics defined in (1.4).
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(ii) Let [Zk(X̄)] and [Hk(M)] be respectively the image ofZk(X̄) and Hk(M) under the
natural cohomology maps Zk(X̄) → H k(X̄) and Hk(M) → H k(M). Then there
exists a canonical complex with respect to g

0 −→ · · ·
ιk

−→ [Zk(X̄)]
rk

−→ [Hk(M)]
dke
−→ H k+1(X̄,M)

ιk+1
−−→ [Zk+1(X̄)] −→ · · ·

−→ H n/2(X̄,M) (1.11)

whose cohomology vanishes except possibly the spaces ker ιk/Im dk−1
e . Here ιk , rk

and dke denote respectively inclusion, restriction to the boundary and composition of
d with harmonic extension (see Section 7).

(iii) [Hk(M)] = H k(M) if and only if [Zk(X̄)] = H k(X̄) and ker ιk+1
= Im dke . If

this holds for all k ≤ n/2 this is a canonical realization of (half of) the long exact
sequence (1.10) with respect to g.

The surjectivity of the natural map Hk(M) → H k(M) is named (k − 1)-regularity by
Branson and Gover, while (k−1)-strong regularity means that the map is an isomorphism,
or equivalently kerLk−1 = ker d (see [3, Th. 2.6]). Thus, (k − 1)-regularity means that
the cohomology group can be represented by conformally invariant representatives. If
H k+1(X,M) = 0, our result implies that (k − 1)-regularity means that the absolute
cohomology group H k(X̄) can be represented by Cn−2k+1(X̄,3k(X̄)) forms lying in
ker(d + δg). We give a criterion for (k − 1)-regularity:

Proposition 1.4. Let (M, [h0]) be a compact conformal manifold. If Qk is a positive
operator on closed forms in the sense that 〈Qkω,ω〉L2 ≥ 0 for all ω ∈ C∞(M,3k(M))∩
ker d, then Hk(M)→ H k(M) is surjective.

We should also remark that (k− 1)-regularity holds for all k = 1, . . . , n/2 if for instance
(M, [h0]) contains an Einstein metric in [h0]; this is a result of Gover and Silhan [7]. If
n = 4, Ln/2−2 = L0 is the Paneitz operator (up to a constant factor) and using a result
of Gursky and Viaclovsky [14], we deduce that if the Yamabe invariant Y (M, [h0]) is
positive and ∫

M

Qdvolh0 +
1
6
Y (M, [h0])2 > 0

then H1(M) ' H 1(M) and there is a basis of conformal harmonics of H 1(M).

2. Poincaré–Einstein manifolds and Laplacian on forms

2.1. Poincaré–Einstein manifolds

Let (X, g) be a Poincaré–Einstein manifold with conformal infinity (M, [h]). Graham–
Lee and Graham [11, 8] proved that for any conformal representative h0 ∈ [h], there
exists a boundary defining function x of M = ∂X̄ in X̄ such that

|dx|2
x2g
= 1 near ∂X̄, x2g|TM = h0;
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moreover x is the unique defining function near M satisfying these conditions. Such a
function is called a geodesic boundary defining function and if ψ is the map ψ : [0, ε]×
M → X̄ defined by ψ(t, y) := ψt (y) where ψt is the flow of the gradient ∇x

2gx, then ψ
pulls the metric g back to

ψ∗g =
dt2 + ht

t2

for some one-parameter family {ht } of metrics on M with h0 = x
2g|TM . In other words

the special form (1.5) of the metric near infinity is not unique and corresponds canonically
to a geodesic boundary defining function, or equivalently to a conformal representative
of [h0].

We now discuss the structure of the metric near the boundary; the reader can refer to
Fefferman–Graham [6, Th. 4.8] for proofs and details. Let us define the endomorphism
Ax on TM corresponding to ∂xhx with respect to hx , i.e. as matrices

Ax = h
−1
x ∂xhx .

Then the Einstein condition Ric(g) = −ng is equivalent to the following differential
equations on Ax :

x∂xAx +

(
1− n+

x

2
Tr(Ax)

)
Ax = 2xh−1

x Ric(hx)+ Tr(Ax)Id,

δhx (∂xhx) = dTr(Ax),

∂xTr(Ax)+
1
2
|Ax |

2
=

1
x

Tr(Ax),

A consequence of these equations and (1.7) is that if Ric(g) = −ng +O(xn−2), then hx
has an expansion at x = 0 of the form

hx =


h0 +

n/2−1∑
j=1

x2jh2j + hn,1x
n log(x)+O(xn) if n is even,

h0 +

(n−1)/2∑
j=1

x2jh2j +O(x
n) if n is odd,

for some tensors h2j and hn,1 on M , depending in a natural way on h0 and covariant
derivatives of its Ricci tensor. When n is even, the tensor hn,1 is the obstruction tensor of
h0 in the terminology of Fefferman–Graham [6], it is trace free (with respect to h0) and
so the first log term in Ax is nh−1

0 hn,1x
n−1 log(x). A smooth Poincaré–Einstein manifold

such that hx has only even powers of x in the Taylor expansion at x = 0 is called a
smooth even Poincaré–Einstein manifold. If n is even and hn,1 = 0, the metric hx yields
a smooth even Poincaré–Einstein manifold. When n is odd, the term ∂nxhx |x=0 is trace
free with respect to h0, which implies that Ax has an even Taylor expansion at x = 0 to
order O(xn−1). If ∂nxhx |x=0 = 0, then hx has an even Taylor expansion in powers of x
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at x = 0 with all coefficients formally determined by h0. The equations satisfied by Ax
easily give (see [4]) the first terms in the expansion

hx = h0 − x
2P0

2
+O(x4), where P0 =

1
n− 2

(
2 Ric0 −

Scal0
n− 1

h0

)
, (2.1)

where P0 is the Schouten tensor of h0, and Ric0 and Scal0 are the Ricci and scalar curva-
tures of h0.

2.2. The Laplacian, d and δ

Let 3k(X̄) be the bundle of k-forms on X̄. Since for the problem we consider it is some-
how quite natural, we will also use along the paper the b-bundle of k-forms on X̄ in the
sense of [19]; it will be denoted 3kb(X̄). This is the exterior product of the b cotangent
bundle T ∗b X̄, which is canonically isomorphic to T ∗X̄ over the interiorX and whose local
basis near a point of the boundary ∂X̄ is given by dy1, . . . , dyn,

dx
x

where y1, . . . , yn are
local coordinates on ∂X̄ near this point. We refer the reader to Chapter 2 of [19] for a
complete analysis of b-structures. Of course one can pass from 3k(X̄) to 3kb(X̄) when
considering forms on X. The restriction 3kb(Uε) of 3k(X̄) to the collar neighbourhood
Uε := [0, ε]×M of M in X̄ can be decomposed as the direct sum

3kb(Uε) = 3
k(M)⊕

(
3k−1(M) ∧

dx

x

)
=: 3kt ⊕3

k
n.

In this splitting, the exterior derivative d and its adjoint δg with respect to g have the form

d =

(
d 0

(−1)kx∂x d

)
, δ =

(
x2δx (−1)k?−1

x x−2k+n+3∂xx
2k−n−2?x

0 x2δx

)
(2.2)

and the Hodge Laplace operator is given by

1k =

(
−(x∂x)

2
+ (n− 2k)x∂x 2(−1)k+1d

0 −(x∂x)
2
+ (n− 2k + 2)x∂x

)
+

(
x21x − x?

−1
x [∂x, ?x]x∂x (−1)kx[d, ?−1

x [∂x, ?x]]
(−1)k+1[x∂x, x2δx] x21x − x∂xx?

−1
x [∂x, ?x]

)
= P + P ′ (2.3)

where the subscript ·x means “with respect to the metric hx onM”, and d in the matrices is
the exterior derivative onM . Note that P is the indicial operator of1k in the terminology
of [19].

If H is an endomorphism of TM , we denote by J (H) the operator on 3k(M),

J (H)(α1 ∧ · · · ∧ αk) :=
k∑
i=1

α1 ∧ · · · ∧ αi(H) ∧ · · · ∧ αk. (2.4)
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WhenH is symmetric, a straightforward computation gives ?0J (H)+J (H)?0=Tr(H)?0
and so

[?0, J (H)] = 2?0J (H)− Tr(H) ?0 . (2.5)

Let us define the following operators on k-forms on M:

E1 = J (h
−1
0 P0)−

Tr(h−1
0 P0)

2
Id =

2J (h−1
0 Ric0)

n− 2
−

n+ 2k − 2
2(n− 1)(n− 2)

Scal0 Id . (2.6)

Using the approximate Einstein equation for g, we obtain

Lemma 2.1. The operator 1k has a polyhomogeneous expansion at x = 0 and the first
terms in the expansion are given by

1k = P +

[n/2]∑
i=1

x2i
(
Ri + Pix∂x Si

S′i R′i + P
′

i x∂x

)
+ nxn log(x)

(
J (h−1

0 hn,1)x∂x (−1)k+1[d, J (h−1
0 hn,1)]

0 J (h−1
0 hn,1)(n+ x∂x)

)
+O(xn) (2.7)

where the operatorsPi, P ′i , Si, S
′

i, Ri andR′i are universal differential operators on3(M)
that can be expressed in terms of covariant derivatives of the Ricci tensor of h0. Moreover
the operators Ri and R′i are of order at most 2, the Si, S′i are of order at most 1 and the
Pi, P

′

i are of order 0. For instance, we have(
R1 + P1x∂x S1

S′1 R′1 + P
′

1x∂x

)
=

(
10 − E1x∂x (−1)k[d,E1]
2(−1)k+1δ0 10 − E1(2+ x∂x)

)
(2.8)

where E1 is defined in (2.6). If k = 0, the xn log(x) coefficient vanishes. Finally, if (X, g)
is smooth Poincaré–Einstein, then1k is a smooth differential operator on X̄, and if (X, g)
is smooth even Poincaré–Einstein, then 1k has an even expansion.

Proof. The polyhomogeneity comes from that of the metric g. It is moreover a smooth
expansion if x2g is smooth on X̄. A priori, by (2.3) the first log(x) term in the expansion
of 1 at x = 0 appears at order (at least) xn log(x) and it comes from the diagonal terms
in P ′ in (2.3). Let us define p = [n/2] so that the metric hx has even powers in its
expansion at x = 0 up to order x2p+1. Let D be the Levi-Civita connection of the metric
x2g = dx2

+ hx . Since D∂x∂x = 0 and D∂x∂yi =
1
2
∑
jk ∂xhijh

kj∂yk , the matrix Ox
of the parallel transport along the geodesic x 7→ (x, y) (with respect to the basis (∂yi ))
satisfies D∂xOx(∂yi ) = 0, hence ∂xOx = − 1

2Ax × Ox where Ax is the endomorphism
h−1
x ∂xhx . Note that Ax has a Taylor expansion with only odd powers of x up to x2p and

the first log term is nh−1
0 hn,1x

n−1 log(x). We infer that Ox is polyhomogeneous in the x
variable and has only even powers of x in its Taylor expansion up to x2p, and the first log

term is −h
−1
0 hn,1

2 xn log(x). By (2.1), we have ∂2
xh|x=0 = −P0, hence

Ax = −xh
−1
0 P0 +O(x

2), Ox = Id+
1
4
x2h−1

0 P0 +O(x
3).
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We also denote by Ox the parallel transport map. Now the operator Ix(α1 ∧ · · · ∧ αk) =

α1(Ox) ∧ · · · ∧ αk(Ox) is an isometry from 3k(M, hx) to 3k(M, h0). So we have ?x =
I−1
x ?0Ix and we infer that ?x itself is an operator with a polyhomogeneous expansion in x

and with only even powers of x in its Taylor expansion up to x2p, the first log term being
1
2x
n log(x)[J (h−1

0 hn,1), ?0] = −xn log(x)?0J (h
−1
0 hn,1) by (2.5). Since

[∂x, ?x] = ∂x(?x), ∂x(?x)|x=0 = [?0, ∂xIx |x=0] = 0, ∂2
x (?x)|x=0 = [?0, ∂

2
x Ix |x=0]

we see that [∂x, ?x] is polyhomogeneous with only odd powers of x up to order x2p, with
first log term −nxn−1 log(x)?0J (h

−1
0 hn,1), and that

[∂x, ?x] = ∂x(?x) = x?0

(
J (h−1

0 P0)−
Scal0

2(n− 1)
Id
)
+O(x2).

Since δx = (−1)k?−1
x d?x , the operators xδx and x2[?−1[∂x, ?x], δx] are odd in x up to

O(x2p+2). In the same way, x2[d, ?−1[∂x, ?x]] is odd up to order x2p+2 and the operators
?−1
x [∂x, ?x]x(k − x∂x), x21x and (k − ∂xx)x?−1[?x, ∂x] are even in x up to O(x2p+1).

Gathering all these facts completes the proof. �

2.3. Indicial equations

We give the indicial equations satisfied by 1k , which are essential to the construction of
formal power series solutions of 1kω = 0.

Notation. If f is a function on X̄ and ω a k-form defined near the boundary, we will say
that ω is On(f ) (resp. Ot (f )) if its 3kn (resp. 3kt ) components are O(f ).

For λ ∈ C, the operator x−λ1kxλ can be considered near the boundary as a family of
operators on 3kt ⊕3

k
n depending on (x, λ), and for any ω ∈ C∞(Uε,3kt ⊕3

k
n) one has

x−λ1k(x
λω) = Pλ

(
ω
(t)
0 + ω

(n)
0 ∧

dx

x

)
+O(x) (2.9)

where Pλ := x−λPxλ, ω(t)0 = (ix∂x (ω ∧
dx
x
))|x=0 and ω(n)0 := (ix∂xω)|x=0. The operator

Pλ is named the indicial family and is a one-parameter family of operators on 3kn ⊕ 3
k
t

viewed as a bundle over M; its expression is

Pλ =

(
−λ2
+ (n− 2k)λ 2(−1)k+1d

0 −λ2
+ (n− 2k + 2)λ

)
. (2.10)

The indicial roots of 1k are the λ ∈ C such that Pλ is not invertible on the set of smooth
sections of 3kt ⊕3

k
n over M , i.e. on C∞(M,3k(M)⊕3k−1(M)). In our case, a simple

computation shows that these are 0, n − 2k, 0, n − 2k + 2. The first two are roots in the
3kt component and the last two are roots in the 3kn component. In particular, this proves
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that for j not a root, and (ω(t)0 , ω
(n)
0 ) ∈ 3k(M) ⊕ 3k−1(M), there exists a unique pair

(α
(t)
0 , α

(n)
0 ) ∈ 3k(M)⊕3k−1(M) such that near M ,

1k

(
xjα

(t)
0 + x

jα
(n)
0 ∧

dx

x

)
= xj

(
ω
(t)
0 + ω

(n)
0 ∧

dx

x

)
+O(xj+1).

More precisely, and including coefficients with log terms, we have for l ∈ N∗ (resp.
l = 0),

1kx
j log(x)l

(
ω
(t)
0

ω
(n)
0

)
= xj log(x)l

(
j (n− 2k − j)ω(t)0 + 2(−1)k+1dω

(n)
0

j (n− 2k + 2− j)ω(n)0

)
+O(xj log(x)l−1) (resp. +O(xj+1)) (2.11)

if ω(t)0 , ω
(n)
0 ∈ C

∞(M,3k(M) ⊕ 3k−1(M)), and in the critical cases, for any l ∈ N0 =

{0} ∪ N,

1k(log(x)lω(t)0 ) = l(n− 2k) log(x)l−1ω
(t)
0 − l(l − 1) log(x)l−2ω

(t)
0

+O(x2 log(x)),

1k(x
n−2k log(x)lω(t)0 ) = l(2k − n)x

n−2k log(x)l−1ω
(t)
0 − l(l − 1)xn−2k log(x)l−2ω

(t)
0

+O(xn−2k+2 log(x)l)
(2.12)

1k

(
xn−2k+2 log(x)lω(n) ∧

dx

x

)
= l(2k − 2− n)xn−2k+2 log(x)l−1ω(n) ∧

dx

x

− l(l − 1)xn−2k+2 log(x)l−2ω(n) ∧
dx

x
+O(xn−2k+3 log(x)l).

3. Absolute and relative Dirichlet problems

The goal of this section is to solve the Dirichlet type problems for 1k when k < n/2 for
two natural boundary conditions. Note that the vector field x∂x can be seen as the unit,
normal, inward vector field toM in X̄. A k-form ω ∈ 3kb(X̄) is said to satisfy the absolute
(resp. relative) boundary condition if

lim
x→0

ix∂xω = 0 (resp. lim
x→0

ix∂x

(
dx

x
∧ ω

)
= 0).

We denote by Cp,α(X̄,3kb(X̄)) the sections of 3kb(X̄) which are Cp,α , equivalently
ix∂xω and ix∂x (

dx
x
∧ ω) are Cp,α on X̄.
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3.1. Absolute boundary condition

Proposition 3.1. Let k < n/2, α ∈ (0, 1) and ω0 ∈ C
∞(M,3k(M)).

(i) There exists a solution ω to the following absolute Dirichlet problem:
ω ∈ Cn−2k−1,α(X̄,3k(X̄)),

1kω = 0 on X,
ω|M = ω0, lim

x→0
ix∂xω = 0.

(3.1)

Moreover, this solution is unique modulo the L2 kernel of 1k .
(ii) The solution ω is smooth in X̄ when n is odd, while it is polyhomogeneous when n is

even with an expansion at order xn of the form

ω =

n−1∑
j=0

xjω
(t)
j +

n−1∑
j=2

xjω
(n)
j ∧

dx

x
+ log(x)

( n−1∑
j=n−2k

xjω
(t)
j,1 +

n∑
j=n−2k+2

xjω
(n)
j,1 ∧

dx

x

)

+

{
Ot (x

n log(x))+On(xn+1 log(x)) if k > 0,
O(xn) if k = 0,

(3.2)

as x → 0, where ω(·)j , ω
(·)
j,1 are smooth forms on M . Moreover,

ω
(t)
j = P

(t)
j ω0 for j < n− 2k, ω

(n)
j = P

(n)
j ω0 for j < n− 2k + 2,

ω
(t)
n−2k,1 = P

(t)
n−2k,1ω0,

where P (t)j , P
(n)
j , P

(t)
n−2k,1 are universal smooth differential operators on 3(M) de-

pending naturally on covariant derivatives of the curvature tensor of h0.
(iii) If n is even and (X, g) is a smooth Poincaré–Einstein manifold, then ω = ω1 +

xn−2k log(x)ω2 for some forms ω1, ω2 ∈ C
∞(X̄,3kb(X̄)) with ω2 = O(x

∞) if and
only if ω(t)n−2k,1 = ω

(n)
n−2k+2,1 = 0.

(iv) ω satisfies δgω = 0. If in addition ω0 is closed, then dω ∈ kerL2(1k+1) (and dω = 0
when k = (n− 1)/2).

3.1.1. Proof of Proposition 3.1. To prove this proposition, we first need a result of
Mazzeo [16] (note that the ambient manifold has dimension n in [16] and n + 1 in this
paper):

Theorem 3.2 (Mazzeo). For k < n/2, the operator 1k is Fredholm and there exists a
pseudodifferential inverse E, bounded on L2(X), such that 1kE = I − 50 where 50
is the projection on the finite-dimensional space kerL2(1k). This implies an isomorphism
between kerL2(1k) and the relative cohomologyH k(X̄, ∂X̄) of X̄. Moreover any L2 har-
monic form α is polyhomogeneous with an expansion near ∂X̄ of the form

α ∼ xn−2k
∞∑
j=0

l(j)∑
l=0

(
α
(t)
j,l x

j log(x)l + xj+2 log(x)lα(n)j,l ∧
dx

x

)
(3.3)
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for some α(t)j,l ∈ C∞(M,3k(M)), α
(n)
j,l ∈ C∞(M,3k−1(M)) and some sequence l :

N0 → N0. In addition E maps the space {ω ∈ C∞(X̄,3k(X̄)); ω = O(x∞)} into
polyhomogeneous forms on X̄ with a behaviour like (3.3) near M .

Remark. By using duality through the Hodge star operator ?g , one obtains trivially a
corresponding result for the cases k > n/2 + 1. In particular, this gives kerL2(1k) '

H k(X̄) for k > n/2 + 1. It should be noticed that in the case k = n/2, (n + 1)/2
and n/2 + 1, [16] does not give a bounded pseudodifferential inverse and actually the
Laplacian is not Fredholm in these cases: for k = n/2 or k = n/2 + 1 the range is not
closed while for k = (n+ 1)/2 the Laplacian has infinite-dimensional kernel.

We can make the second part of this theorem more precise thanks to the indicial
identities obtained from (2.3).

Corollary 3.3. For k < n/2, any L2 harmonic k-form α on (X, g) is polyhomogeneous
and has an expansion at order xn log(x) of the form

α = xn−2k+2
(n−1∑
j=0

xjα
(t)
j +

n−1∑
j=0

xjα
(n)
j ∧

dx

x
+O(xn log(x))

)

where α(·)j are smooth forms on M . If in addition (X, g) is a smooth Poincaré–Einstein
manifold, then α ∈ xn−2k+2C∞(X̄,3k(X̄)) and E maps

E : {ω ∈ C∞(X̄,3k(X̄)); ω = O(x∞), 50ω = 0} → xn−2kC∞(X̄,3k(X̄)).

Proof. Note that if

α ∼ xn−2k
∞∑
j=0

l(j)∑
l=0

(
α
(t)
j,l x

j log(x)l + xj+2 log(x)lα(n)j,l ∧
dx

x

)
and 1kα = O(x

∞),

then the indicial equations in Subsection 2.3 and Lemma 2.1 imply that l(0) = 0 and
l(j) ≤ 1 for all j = 1, . . . , n − 1 (and for all j > 0 if hx is smooth in x). Moreover
since dα = 0 for any α ∈ kerL2(1k), we first deduce from (2.2) that α(t)0,0 = 0, and so,
by (2.12), that l(j) = 0 for all j = 0, . . . , n− 1 (and for all j > 0 if hx is smooth). The
mapping property of E is straightforward by the same type of argument and the fact that
1kEω = O(x

∞) for ω = O(x∞) such that 50ω = 0.
We will now use the relations (2.9), (2.11) and (2.12) to show that the jet of a so-

lution ω to the Dirichlet problem in Proposition 3.1 is partly determined. Let ω0 ∈

C∞(M,3k(M)). Using (2.9) and the form (2.7) of 1k , we can construct a smooth form
ωF1 on X̄ which solves the problem{

1kωF1 = Ot (x
n−2k)+On(x

n−2k+2),

ωF1 |M = ω0;
(3.4)
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it can be taken as a polynomial in x,

ωF1 =

n−2k−1∑
2j=0

x2jω
(t)
2j +

n−2k+1∑
2l=2

x2lω
(n)
2l ∧

dx

x
, (3.5)

and it is the unique solution of (3.4) modulo Ot (xn−2k) + On(x
n−2k+2). Moreover, by

(2.7) and parity arguments, we see that when n is odd, the remaining term in (3.4) can
be replaced by Ot (xn−2k+1) + On(x

n−2k+3) (recall also that hx is smooth in that case).
By construction, the ω(t)j , ω

(n)
n are forms on M which can be expressed as differential

operators P (t)j , P
(n)
j onM acting on ω0, determined by the expansion of P given in (2.7),

i.e. by h0 and the covariant derivatives of its curvature tensor.
The indicial factor in (2.9) vanishes if and only if j = n− 2k, l = n− 2k+ 2 and n is

even. Therefore, if n is odd, we can continue the construction and there is a formal series

ω∞ =

∞∑
j=0

xj (ω
(t)
j + ω

(n)
j ∧ dx)

such that 1kω∞ = O(x∞). The formal form ω∞ can be realized by Borel’s Lemma,2

in the sense that there exists a form ω′∞ ∈ C
∞(X̄,3k(X̄)) with the same asymptotic

expansion as ω∞ at all orders and satisfying 1kω′∞ = O(x
∞).

Now for n even, we need to add log terms to continue the parametrix: by (2.12) one
can modify ωF1 to

ωF2 = ωF1 + x
n−2k log(x)ω(t)n−2k,1, ω

(t)
n−2k,1 =

1
n− 2k

[x−n+2k1kωF1 ]|x=0 (3.6)

such that 1kωF2 = O(x
n−2k+2 log(x)). Actually, using (2.7) and parity arguments once

more, we see that

1kωF2 = 2(−1)k+1xn−2k+2 log(x)(δ0ω
(t)
n−2k,1) ∧

dx

x
+Ot (x

n−2k+2 log(x))

+On(x
n−2k+2). (3.7)

Now we want to show

Lemma 3.4. The k-form ω
(t)
n−2k,1 on M satisfies δ0ω

(t)
n−2k,1 = 0.

Proof. From (3.7), and the expression of δ, we obtain

δg1kωF2 = −2xn−2k+2 δ0ω
(t)
n−2k,1 +O(x

n−2k+3 log(x)).

But δg1kωF2 = 1k−1δgωF2 and

2 Borel’s Lemma states that if (fk,l)l,k∈N0 is a given sequence of smooth functions on ∂X̄
such that, for each k, fk,l(y) = 0 for all but finitely many l, then there exists a smooth
function f on X with an asymptotic expansion at ∂X̄ = {x = 0} of the form f (x, y) ∼∑
∞
k=0

∑
∞
l=0 fk,l(y)x

k log(x)l .
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δgωF2 =

n−2k+2∑
j=2

xjω
′(t)
j +

n−2k+3∑
l=3

xlω
′(n)
l ∧

dx

x
+ xn−2k+2 log(x)δ0ω

(t)
n−2k,1

+O(xn−2k+3 log(x))

for some forms ω′(·)j onM , so by uniqueness of (3.4) and the fact that δgωF2 = O(x
2) we

deduce that

δgωF2 = x
n−2k+2ω

′(t)
n−2k+2 + x

n−2k+2 log(x)δ0ω
(t)
n−2k,1 +O(x

n−2k+3 log(x)).

Using now (2.9) and (2.12), we obtain 1k−1δgωF2 = (2k − n − 2)xn−2k+2δ0ω
(t)
n−2k,1 +

O(xn−2k+3 log(x)), and since k < n/2 this implies δ0ω
(t)
n−2k,1 = 0. �

We infer that there is no term of order xn−2k+2 log(x) in the3kn part of1kωF2 and we can
continue to solve the problem modulo O(x∞) using formal power series with log terms
using the indicial equations. The formal solution when n is even will be given by

ω∞ =

n/2−1∑
j=0

x2jω
(t)
2j +

n/2∑
j=1

x2jω
(n)
2j ∧

dx

x
+

n/2−1∑
j=n/2−k

x2j log(x)ω(t)2j,1

+

n/2∑
j=n/2−k+1

x2j log(x)ω(n)2j,1 ∧
dx

x

+ xn
∞∑
j=0

j+1∑
l=0

(
ω
(t)
n+j,l + xω

(n)
n+j,l ∧

dx

x

)
xj log(x)l (3.8)

which again is realized through Borel’s Lemma to have 1kω∞ = O(x∞). Notice that
when the metric hx is smooth, the second line in (3.8) has ω(t)j,l = ω

(n)
j,l = 0 for l > 1 since

these terms come from the log terms of the expansion of hx in (1.7) (and thus of 1k).
The terms (ω(t)j )j<n−2k , (ω

(n)
j )j<n−2k+2 and ω(t)n−2k,1 are formally determined by ω0 and

are expressed as differential operators on M acting on ω0, the terms ω(t)n−2k, ω
(n)
n−2k+2 are

formally undetermined, and the remaining terms are formally determined by ω0, ω
(t)
n−2k

and ω(n)n−2k+2.
So we have proved

Proposition 3.5 (Formal solution). Let ω0, v
(t), v(n) ∈ C∞(M,3(M)). Then there

exists a form ω∞ ∈ Cn−2k−1,α(X̄,3kb(X̄)) with α ∈ [0, 1), unique modulo O(x∞),
which is smooth on X̄ when n is odd and with a polyhomogeneous expansion at ∂X̄ of the
form (3.8) when n is even, such that 1kω∞ = O(x∞), ω∞|∂X̄ = ω0, ω(t)n−2k = v

(t) and

ω
(n)
n−2k+2 = v

(n) in the expansion (3.8).

To correct the approximate solution and obtain a true harmonic form, we add−E1k(ω∞)
to ω∞ and so

1k(ω∞ − E1kω∞) = 501kω∞.
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We want to prove that 501kω∞ = 0 or equivalently that 〈1kω∞, α〉 = 0 for any α ∈
kerL2(1k). For that, we use Green’s formula on {x ≥ ε} and let ε→ 0, together with the
asymptotics α = O(xn−2k+1) obtained from Theorem 3.2, dα = 0 and δα = 0:∫

x≥ε

〈1ω∞, α〉 dvolg = (−1)n
∫
x=ε

(?gdω∞) ∧ α − (?gα) ∧ δω∞ = O(ε)
ε→0
−−→ 0.

In view of the mapping properties of E from Theorem 3.2, we have thus proved that
ω = ω∞ −E1kω∞ is a harmonic k-form of X such that ω|M = ω0, with an asymptotics
of the form (3.8) when n is even and smooth on X̄ when n is odd, such that

ω − ωF2 = Ot (x
n−2k)+On(x

n−2k+2)

and with Cn−2k−1,α(X̄,3k(X̄)) regularity.
Let us now consider the problem of uniqueness. If one assumes polyhomogeneity

of the solution of 1kω = 0 with boundary condition ω = ω0 + o(x), the construction
above with formal series arguments and indicial equations shows that ω is unique up to
Ot (x

n−2k) + On(x
n−2k+2), i.e. the first positive indicial roots; then of course two such

solutions would differ by an L2 harmonic form if k < n/2. Indeed, an easy computation
shows that

Remark 3.6. A polyhomogeneous k-form inOt (xn/2−k+ε)+On(xn/2−k+1+ε) for some
ε > 0 is in L2(X).

This gives

Lemma 3.7. Polyhomogeneous forms satisfying1kω = 0 and ω = ω0+o(x) are unique
modulo the L2 kernel of 1k .

Here, since we want a sharp condition on regularity for uniqueness, i.e. we do not as-
sume polyhomogeneity but Cn−2k−1,α regularity, we first need a preliminary result. Let
H s(3k(M)) be the Sobolev space of order s ∈ Z with k-form values, which we will also
denote by H s(M) to simplify. The sections of the bundle 3kt ⊕3

k
n over M are equipped

with the natural Sobolev norm ‖ · ‖H s (M) induced by H s(3k(M)⊕3k−1(M)). The fol-
lowing property is proved by Mazzeo [18, Th. 7.3]:3

Lemma 3.8 (Mazzeo). Let k < n/2 and let ω ∈ xαL2(3k(X), dvolg) with α < −n/2
be such that 1kω = 0. Then for all N ∈ N, there exist some forms ω(t)j,l , ω

(n)
j,l ∈ H

−N (M)

for j, l ∈ N0 and some sequence l : N0 → N0 such that∥∥∥∥ω − N−3∑
j=0

l(j)∑
l=0

xj log(x)l
(
ω
(t)
j,l − ω

(n)
j,l ∧

dx

x

)∥∥∥∥
H−N (M)

= O(xN−2−ε) (3.9)

for all ε > 0.

3 Notice that the result of Mazzeo is stated for 0-elliptic operators with smooth coefficients and
acting on functions, but it is straightforward to check that it applies on bundles and with polyhomo-
geneous coefficients like this is the case for even-dimensional Poincaré–Einstein manifolds.
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Let ω,ω′ be two harmonic forms which are Cn−2k−1,α(X̄,3k(X̄)) and which coincide
on the boundary. We want to show that their Taylor expansions at x = 0 coincide to order
n−2k−1. Using Lemma 3.8 withN large enough, we see that the arguments used above
on formal series (based on the indicial equations) also apply by considering the norms
‖ ·‖H−N (M) on3kt ⊕3

k
n, in particular l(j) = 0 for j = 0, . . . , n−2k−1 in (3.9) for both

ω and ω′, and that their coefficients of xj for j = 0, . . . , n−2k−1 in the weak expansion
(3.9) are the same for ω and ω′; these are given by ωtj,0 = P

(t)
j ω0 and ω(n)j = P

(n)
j ω0

(and are then continuous on M since ω ∈ Cn−2k+1(X̄,3k(X̄))). But by uniqueness of
the expansion (3.9) and the regularity assumption on ω,ω′, this implies that ω(t)j , ω

(n)
j

are the coefficients in the Taylor expansion of both ω and ω′ to order n − 2k − 1. The
extra Hölder regularity then gives that ‖ω−ω′‖L∞(M) = O(xn−2k−1+α); but this implies
that ω − ω′ ∈ kerL2(1k), thus it is in the L2 kernel of 1k , so our construction is unique
modulo kerL2(1k). This ends the proof of the solution of (3.1).

Now to deal with (iv) of Proposition 3.1, we notice that dω is a solution of the problem
(3.1) for (k + 1)-forms with the additional condition that the boundary value is dω0 = 0.
When k + 1 < n/2, we can then apply Proposition 3.1(i); when k ≥ n/2 − 1, we have
dω = O(x2) and 1k+1dω = 0. However, the discussion below in Subsections 3.1.2
and 3.1.3 about the solutions of 1k+1ω = O(x∞) gives the same result, namely that
dω ∈ kerL2(1k+1) if ω is a solution of (3.1) with k = n/2− 1 or k = (n− 1)/2.

We conclude the proof of Proposition 3.1(iv) using

Proposition 3.9. The forms ωF1 of (3.4) and ω of Proposition 3.1 satisfy

δgω = 0, δgωF1 = Ot (x
n−2k+2)+On(x

n−2k+4).

Proof. Let ω be the exact solution of 1kω = 0, ω|x=0 = ω0 in Proposition 3.1. Since
δg1k = 1k−1δg , we deduce that ω′ := δgω is solution of 1kω′ = 0 with ω′|x=0 = 0
and moreover it is polyhomogeneous since ω is polyhomogeneous, so Proposition 3.1 and
Lemma 3.8 imply that δgω ∈ kerL2(1k−1) and thus δgω = O(xn−2k+3) by Corollary 3.3.
Since an L2 harmonic form is closed, δgω is closed and integration by parts on {x ≥ ε}
shows, by letting ε → 0 in∫

x≤ε

|δgω|
2 dvolg = −

∫
x=ε

〈ιx∂xω, δgω〉 dvolg = O(ε),

that 〈δgω, δgω〉 = 0. The part with ωF1 is also based on δg1k = 1k−1δg and the unique-
ness of the solution of (3.4) up to Ot (xn−2k+2)+On(x

n−2k+4) on (k − 1)-forms. �

3.1.2. The case k = n/2. In this case one only intends to solve the equation 1kω =
O(x∞), say in the set of almost bounded forms (log(x) times bounded). The indicial
equation tells us that 0 is a double indicial root for the 3kt part, while 0, 2 are the two
simple roots for the 3n part. By a double root, we mean a root λ = λ0 of order 2 of
one of the eigenvalues of Pλ in (2.10). In this case, a straightforward inspection shows
that an additional power of log(x) must come in the formal expansion of solutions. Since
the discussion of this case is not fundamental in our analysis, we prefer to give the result
without details. For ω0, ω1 ∈ 3

n/2(M) and ω2 ∈ 3
n/2−1(M) one can construct, using

(2.11) and (2.12), a polyhomogeneous form
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ωF = ω2 ∧
dx

x
+ ω1 log(x)+ ω0

+ x2 log(x)
(
− log(x)2

δ0dω2

3
+ log(x)

(
δ0dω2

2
+
(−1)n/2+1

2
δ0ω1

)
+ (−1)n/2+1δ0ω0 + (−1)n/2

1
2
δ0ω1 −

1
2
dδ0ω2 − A(ω2)

)
∧
dx

x

+Ot (x
2 log(x)2)+On(x2)

such that 1kωF = O(x∞), and it is unique modulo O(x∞) if the order x2 coefficient in
the 3n component is assumed to be 0.

3.1.3. The case k = (n + 1)/2. The indicial equation tells us that −1, 0 are the roots
for the 3kt part, while 0, 1 are the roots for the 3n part. For ω0 ∈ 3

k(M) and ω1, ω2 ∈

3k−1(M), one can construct, using (2.11) and (2.12), a polyhomogeneous form such that

ωF = ω1 ∧
dx

x
+ ω0 + xω2 ∧

dx

x
+O(x2) and 1kωF = O(x

∞),

and it is unique moduloO(x∞). So if ω is a solution of problem (3.1) with k = (n−1)/2
and boundary value ω0 closed, then dω = O(x2) and 1(n+1)/2dω = 0 so dω = O(x∞).
But the unique continuation theorem of Mazzeo [17] implies that dω = 0.

We also recall a result proved by Yeganefar [21, Corollary 3.10].

Proposition 3.10. For an odd-dimensional Poincaré–Einstein manifold (Xn+1, g), there
is an isomorphism between kerL2(1n/2) and H n/2(X̄, ∂X̄) and between kerL2(1n/2+1)

and H n/2+1(X̄).

3.2. Relative boundary condition

Proposition 3.11. Let 0 < k < n/2, x be a geodesic boundary defining function and
ω0 ∈ C

∞(M,3k−1(M)) be a closed form. Then there exists a unique, modulo kerL2(1k),
form ω such that, for all α ∈ [0, 1),

ω ∈ Cn−2k,α(X̄,3kb(X̄)),

1kω = 0 on X,
ω|M = 0, lim

x→0
ix∂xω = ω0.

(3.10)

Moreover ω is closed, smooth on X̄ when n is odd, while it is polyhomogeneous when n
is even with an expansion at order O(xn−1 log(x)) of the form

ω =

(n−1∑
j=0

xjω
(n)
j ∧

dx

x
+

n−2∑
j=1

xjω
(t)
j

)

+ log(x)
( n−1∑
j=n−2k+2

xjω
(n)
j,1 ∧

dx

x
+

n−2∑
j=n−2k+2

xjω
(t)
j,1

)
+O(xn−1 log(x)) (3.11)

for some forms ω(·)j , ω
(·)
j,1 on M .
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Proof. The proof is similar to that of Proposition 3.1, so we do not give the full details
but we shall use the same notation. We search a formal solution ω′∞ of 1kω′∞ = 0 with
ω′∞ = ω0∧

dx
x
+O(x). Using the indicial equations of Subsection 2.3 and the form of1k

in Lemma 2.1, we can construct the exponents in the formal series as long as the exponent
is not a solution of the indicial equation. Since dω0 = 0 by assumption, we have

1k

(
ω0 ∧

dx

x

)
= 2(−1)k+1dω0 +O(x

2) = O(x2)

and so we can continue the construction of ω′∞ until the power xn−2k in the tangential
part 3kt and xn−2k+2 in the 3kn part. At that point, since xn−2k and xn−2k+2 are solutions
of the indicial equation of 1k in respectively the 3kt and 3kn components, there is an
xn−2k log(x) term to include in the 3kt part. Using in addition that 1k begins with a sum
of even powers of x, we see as in Proposition 3.1 that when n is odd, a formal series ω′∞
with no log terms can be constructed to solve1kω′∞ = O(x

∞), while when n is even we
can first construct

ω′F2
=

n−2k∑
2j=0

x2jω
(n)
2j ∧

dx

x
+

n−2k−2∑
2j=2

x2jω
(t)
2j + x

n−2k log(x)ω(t)n−2k,1 (3.12)

with ω
(n)
0 = ω0 so that 1kω′F2

= O(xn−2k+2 log(x)), and the coefficients are
uniquely determined by ω0. First observe that dω′F2

= O(x2) satisfies 1k+1dω
′

F2
=

O(xn−2k+2 log(x)) and since the indicial roots in [1, n−2k] for1k+1 are n−2k−2 in the
3k+1
t part and n−2k in the3k+1

n part, we deduce that dω′F2
= Ot (x

n−2k−2)+On(x
n−2k)

and so

dω′F2
=

n−2k−2∑
2j=2

dω
(t)
2j x

2j
+

n−2k−2∑
2j=2

x2j ((−1)k2jω(t)2j +dω
(n)
2j )∧

dx

x

+xn−2kdω
(n)
n−2k∧

dx

x
+xn−2k log(x)

(
dω

(t)
n−2k,1+(−1)k(n−2k)ω(t)n−2k,1∧

dx

x

)
+xn−2k(−1)kω(t)n−2k,1∧

dx

x

= xn−2k log(x)
(
dω

(t)
n−2k,1+(−1)k(n−2k)ω(t)n−2k,1∧

dx

x

)
+xn−2k(dω

(n)
n−2k+(−1)kω(t)n−2k,1)∧

dx

x
. (3.13)

Note that we have used that (−1)k(n − 2k − 2)ω(t)n−2k−2 = −dω
(n)
n−2k−2. With these

simplifications, we get

1k+1dω
′

F2
= (n− 2k)xn−2k

(
(−1)k+1(n− 2k)ω(t)n−2k,1 ∧

dx

x
+ log(x)dω(t)n−2k,1

)
+O(xn−2k+1).
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But since d1kω′F2
= O(xn−2k+2 log(x)), we infer that ω(t)n−2k,1 must vanish, and we

obtain
1kω

′

F2
= O(xn−2k+2).

Since the order xn−2k+2 is a solution of the indicial equation in the normal part 3kn,
we need to add an xn−2k+2 log(x) normal term to continue the construction of the for-
mal solution. Since all the subsequent orders are not solutions of the indicial equation
for 1k , we can construct, using the Borel lemma, a polyhomogeneous k-form on X with
expansion to order xn−1 log(x) of the form given by (3.11), which coincides with ωF2

at order On(xn−2k+2 log(x)) +Ot (xn−2k). To obtain an exact solution of (3.10), we can
correct ω′∞ by setting ω = ω′∞ − E1kω

′
∞ where E is defined in Theorem 3.2.

The argument for the uniqueness modulo kerL2 1g is similar to that used in the proof
of Proposition 3.1.

To prove that ω is closed, it suffices to observe that ω = ωF2 +On(x
n−2k+2 log(x))+

Ot (x
n−2k) and so dω = xn−2kdω

(n)
n−2k ∧

dx
x
+O(xn−2k). By Remark 3.6, we have dω ∈

kerL2(1k+1). Then δgdω = 0 and, considering the decay of dω and ω at the boundary,
we see by integration by parts that dω = 0. �

Remarks. It is important to remark that the solution ω of the problem (3.10) depends
on ω0 but also on the choice of x. Note also that the form ω solving (3.10) satisfies
xω ∈ Cn−2k+1,α(X̄,3k(X̄)) for all α ∈ (0, 1).

4. Operators Lk , Gk and Qk

In this section we suppose that M has an even dimension n.

4.1. Definitions

The operators Lk,Gk derive from the solution of the absolute Dirichlet problem:

Definition 4.1. For k < n/2, the operators Lk : C∞(M,3k(M)) → C∞(M,3k(M))

and Gk : C∞(M,3k(M)) → C∞(M,3k−1(M)) are defined by Lkω0 := ω(t)n−2k,1 and

Gkω0 := ω
(n)
n−2k+2,1 where ω(t)n−2k,1, ω

(n)
n−2k+2,1 are given in the expansion (3.2). When

k = n/2, we define Gn/2 := (−1)n/2+1δ0.

The operator Qk derives from the solution of the relative Dirichlet problem:

Definition 4.2. Let n be even and k < n/2. The operator Qk−1 : C∞(M,3k−1(M)) ∩

ker d → C∞(M,3k−1(M)) is defined by Qk−1ω0 := ω
(n)
n−2k+2,1 where ω(n)n−2k+2,1 is

given in the expansion (3.11).

By Corollary 3.3, Lk , Gk and Qk do not depend on the choice of the solution ω in
Propositions 3.1 or 3.11, though Lk depends only on the boundary (M, [h0]), the oper-
ators Gk and Qk may well depend on the whole manifold (X, g) and not only on the
conformal boundary. We will see that they actually depend only on (M, [h0]) and that
they are differential operators.
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4.2. A formal construction

We show that the definition of Lk,Gk,Qk can be given using only the formal series
solutions.

Definition 4.3. For k < n/2, define Bk, Ck : C∞(M,3k(M)) → C∞(M,3k−1(M))

and Dk : C∞(M,3k(M)) ∩ ker d → C∞(M,3k(M)) by

Bkω0 := (x−n+2k−2ix∂x1kωF1)|x=0,

Ckω0 :=
(
x−n+2k−2ix∂x

(
dx

x
∧ δgωF1

))∣∣∣∣
x=0

,

Dkω0 := (x−n+2kix∂xdωF1)|x=0

(4.1)

where ωF1 solves (3.4).

Remark. From the indicial equations and Lemma 3.4, Bkω0 is (−1)k(n− 2k+ 2) times
the xn−2k+2 log(x) coefficient in the 3kn part of ω′∞ defined in Proposition 3.5 when
v(t) = 0; this is a differential operator on M of order n − 2k + 1 since by construction,
ωF1 contains only derivatives of order at most n−2k−1 with respect to ω0. The operator
Ck is well defined thanks to Proposition 3.9, and it is a differential operator of order
n−2k. As they come from the expansions of1k, δg , they are natural differential operators
depending only on h0 and the covariant derivatives of its curvature tensor.

4.2.1. The case of Lk . It is clear from the proof of Proposition 3.1 that Lkω0 is also the
coefficient of the xn−2k log(x) term in the expansion of ωF2 defined in (3.6) and of the
formal solution ω∞ defined in Proposition 3.5. The indicial equation shows that

Lkω0 :=
1

n− 2k

(
x2k−nix∂x

(
dx

x
∧1kωF1

))∣∣∣∣
x=0

(4.2)

where ωF1 solves (3.4).

4.2.2. The case of Gk . Let us return to the construction of the formal series solution in
the proof of Proposition 3.1. Now let ωF1 be defined in (3.5) and

ωF2 := ωF1 + x
n−2kv(t) + xn−2k log(x)ω(t)n−2k,1

where v(t) ∈ C∞(M,3k(M)) is an arbitrary form. By construction of ωF1 , ωF2 , the fact
that n− 2k is an indicial root in the 3kt component and Lemma 2.1, we have

1kωF2 = (−1)k+1xn−2k+2(Bkω0 + 2δ0v
(t)) ∧

dx

x
+Ot (x

n−2k+2 log(x))

+On(x
n−2k+4 log(x)).

To solve away the xn−2k−2 term in 3kn we need to define

ωF3 := ωF2 +
(−1)k+1

n+ 2− 2k
xn−2k log(x)(Bkω0 + 2δ0v

(t)) ∧
dx

x
(4.3)
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so that 1kωF3 = On(x
n−2k+4 log(x)) + Ot (xn−2k+2 log(x)). Since v(t) can be chosen

arbitrarily, the coefficient of xn−2k+4 log(x) in the 3kn component of the formal solu-
tion ωF3 does not determine a natural operator in terms of the initial data ω0, unlike the
xn−2k log(x) coefficient in 3kt . In the definition of Gk above, we used an exact solution
on X to fix the v(t) term through the Green function, which a priori makes Gk depend
on (X, g) and not only on (M, [h0]). However there is an equivalent way of fixing δ0v

(t)

without solving a global Dirichlet problem but by adding an additional condition:

Proposition 4.4. Let ω0 ∈ C
∞(M,3k(M)). Then there is a polyhomogeneous k-form

ωF such that 1kωF = Ot (x
n−2k+1)+On(x

n−2k+3),

δgωF = O(x
n−2k+3),

ω = ω0 +O(x).

(4.4)

It is unique modulo Ot (xn−2k)+On(x
n−2k+2) and has an expansion of the form

ωF =

n/2−k−1∑
j=0

x2jω
(t)
2j +

n/2−k∑
j=1

x2jω
(n)
2j ∧

dx

x

+ xn−2k log(x)
(
Lkω0 + x

2 (−1)k+1

n− 2k
(Bkω0 − 2Ckω0) ∧

dx

x

)
. (4.5)

Proof. First consider the uniqueness. By the discussion above, the condition on 1kωF
implies that ωF is necessarily of the form ωF = ωF3 defined in (4.3) for some v(t).
Now we notice that δgωF3 = O(x2) satisfies in particular 1k−1δgωF3 = δg1kωF3 =

O(xn−2k+3), and again by the indicial equation this implies that δgωF3 = O(xn−2k+2)

since the first positive indicial root for 1k−1 is n − 2k + 2. Using that δ0Lkω0 = 0 and
the form of δg we obtain

δgωF3 = δgωF1 + x
n−2k+2

(
δ0v

(t)
−

1
n+ 2− 2k

(Bkω0 + 2δ0v
(t))

)
+O(xn−2k+3).

By Proposition 3.9, δgωF1 = Ot (x
n−2k+2)+On(x

n−2k+4) and from the definition of Ck ,
a necessary condition to have δgωF = O(xn−2k+3) is

(n− 2k)δ0v
(t)
= Bkω0 − (n− 2k + 2)Ckω0.

Writing now δ0v
(t) in terms of Bk, Ck in (4.3) proves the uniqueness and the form of the

expansion. Now for the existence, one can take the form in Proposition 3.1. Another way,
which is again formal, is to first construct a polyhomogeneous (k+ 1)-form ω′F such that

1k+1ω
′

F = Ot (x
n−2k−1)+On(x

n−2k+1),

ω′F =
2(−1)k+1

n− 2k
log(x)dω0 + ω0 ∧

dx

x
+O(x),

which can be done as in Proposition 3.11 by using the indicial equations, and then to set
ωF := δgω′F . It is easy to see that this form is a polyhomogeneous solution of (4.4). �

Since the exact solution in Proposition 3.1 is coclosed, from Proposition 4.4 we deduce
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Corollary 4.5. The operator Gk is a natural differential operator of order n − 2k + 1
which is given by

Gk = (−1)k+1Bk − 2Ck
n− 2k

and depends only on h0 and the covariant derivatives of its curvature tensor.

Remark 4.6. Problem (4.4) and Corollary 4.5 allow one to define Lk and Gk on any
even manifold M2m with no need of cobordism assumption (as in Proposition 3.1). We
just have to work on X = M × [0, ε[.

4.2.3. The operator Qk . Following the ideas used above for Gk , we shall show how to
construct Qk from a formal solution ωF1 . We start with

Definition 4.7. For 1 ≤ k ≤ n/2, define operators B ′k−1 : C∞(M,3k−1(M))∩ ker d →
C∞(M,3k−1(M)) and D′k−1 : C∞(M,3k−1(M)) ∩ ker d → C∞(M,3k(M)) by

B ′k−1ω0 := (x−n+2k−2ix∂x1kω
′

F1
)|x=0,

D′k−1ω0 := (x−n+2kix∂xdω
′

F1
)|x=0

(4.6)

where ω′F1
is the form in (3.12) such that 1kω′F1

= O(xn−2k+2) and ω′F1
= ω0 ∧

dx
x
+

O(x2).

Let us now set ω′F2
:= ω′F1

+v(t)xn−2k for some arbitrary smooth form v(t) onM; we
obtain

1kω
′

F2
= (−1)k+1xn−2k+2(B ′k−1ω0 + 2δ0v

(t)) ∧
dx

x
+Ot (x

n−2k+2)+On(x
n−2k+3).

so to solve away the xn−2k+2 normal coefficient, we need to define

ω′F3
:= ω′F2

+
(−1)k+1

n− 2k + 2
xn−2k+2 log(x)(B ′k−1ω0 + 2δ0v

(t)) ∧
dx

x
(4.7)

which satisfies 1kω′F3
= Ot (x

n−2k+2 log(x))+On(xn−2k+3). As for Gk , the term v(t) is
arbitrary and so we have to impose an additional condition to fix this term (or at least to
fix δ0v

(t)).

Proposition 4.8. Let ω0 ∈ C
∞(M,3k−1(M)) be closed. Then there is a polyhomoge-

neous k-form ω′F which satisfies
1kω

′

F = Ot (x
n−2k+1)+On(x

n−2k+3),

dω′F = O(x
n−2k+1),

ω′F = ω0 ∧
dx
x
+O(x2),

(4.8)
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which is unique modulo Ot (xn−2k)+On(x
n−2k+2) and has an expansion of the form

ω′F =

n/2−k−1∑
j=1

x2jω
(t)
2j +

n/2−k∑
j=0

x2jω
(n)
2j ∧

dx

x
− xn−2k 1

n− 2k
D′k−1ω0

+
(−1)k+1

n− 2k + 2
xn−2k+2 log(x)

(
B ′k−1ω0 −

2δ0D
′

k−1ω0

n− 2k

)
∧
dx

x
. (4.9)

Proof. Take ω′F = ω′F3
defined in (4.7); then 1kω′F = Ot (x

n−2k+1) + On(x
n−2k+3)

by construction. Moreover, since ω0 is closed, one has dω′F = O(x
2) and 1k+1dω

′

F =

O(xn−2k+1). Since the indicial roots for1k+1 in [2, n−2k+1] are n−2k−2 in the3k+1
t

part and n − 2k in the 3k+1
n part, this implies that dω′F = Ot (x

n−2k−2) + On(x
n−2k).

Then, using (3.13), we obtain

dω′F = x
n−2k

(
dv(t) +

(
(−1)k(n− 2k)v(t) + dω(n)n−2k

)
∧
dx

x

)
+O(xn−2k+1)

= xn−2k
(
dv(t) +

(
(−1)k(n− 2k)v(t) + (−1)kD′k−1ω0

)
∧
dx

x

)
+O(xn−2k+1).

So dω′F = O(x
n−2k+1) if and only if v(t) = −D′k−1ω0/(n− 2k). �

The first corollary is

Corollary 4.9. For k < n/2, the operator Qk is a natural differential operator of order
n− 2k which is given by

Qk =
(−1)k

n− 2k

(
B ′k −

δ0D
′

k

n/2− k − 1

)
,

and it depends only on h0 and the covariant derivatives of its curvature tensor.

Remark 4.10. Also this corollary allows one to define the operatorQk on any even man-
ifold by considering problem (4.8).

As a corollary of Propositions 4.4 and 4.8, we also have

Corollary 4.11. If ω0 is a closed k-form on M , then there is a polyhomogeneous k-form
ωF on X̄ such that  dωF = O(x

n−2k+1),

δgωF = O(x
n−2k+3),

ωF = ω0 +O(x).

(4.10)

It is unique modulo Ot (xn−2k+1)+On(x
n−2k+2) and has an expansion

ωF =

n/2−k−1∑
j=0

x2jω
(t)
2j +

n/2−k∑
j=1

x2jω
(n)
2j ∧

dx

x
−

1
n− 2k

Dkω0x
n−2k

+ xn−2k+2 log(x)
(
(−1)k+1

n− 2k
(Bkω0 − 2Ckω0) ∧

dx

x

)
.
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Proof. For the existence, take ω′F of Proposition 4.8 (ω′F is a k + 1-form now since
ω0 ∈ 3

k(M)) and consider ωF := ((−1)k+1/(2k − n))δgω′F . It is easy to see that ωF =
ω0+O(x

2) and that1kωF = Ot (xn−2k+1)+On(x
n−2k+3). Since dδgω′F = −δgdω

′

F +

Ot (x
n−2k−1)+On(x

n−2k+1), we deduce that dωF = Ot (xn−2k−1)+On(x
n−2k+1). But

from Proposition 4.4, ωF = ωF1 + v
(t)xn−2k

+ O(xn−2k+1) (note that Lkω0 = 0 by
Proposition 4.12 below) for some k-form v(t) on M and so we conclude that

dωF =

n−2k−2∑
2j=2

dω
(t)
2j x

2j
+

n−2k−2∑
2j=2

x2j ((−1)k2jω(t)2j + dω
(n)
2j ) ∧

dx

x

+ xn−2k(dω
(n)
n−2k + (−1)k(n− 2k)v(t)) ∧

dx

x
+ xn−2kdv(t) +O(xn−2k+1)

=O(xn−2k+1)

so v(t) has to be (−1)k+1dω
(n)
n−2k/(n − 2k) to get dωF = Ot (xn−2k−1) + On(x

n−2k+1).

But clearly this argument also implies that dωF1 = x
n−2kdω

(n)
n−2k ∧

dx
x

and the expansion
of ωF is then a consequence of this fact together with the expansion (4.5) in Proposition
4.4 and the definition of Dk . �

Remark. In Propositions 4.4, 4.8 and Corollary 4.11, we do not really need to take ω0 ∈

C∞(M,3(M)). Indeed, for an ω0 in L2(3(M)), the arguments would work in a similar
fashion except that the expansion in powers of x and log(x) have coefficients in some
H−N (3(M)) with N large enough, as we discussed in the proof of Proposition 3.1.

4.3. Factorizations

Proposition 4.12. For any k < n/2− 1, the following identities hold:

Gk =(−1)k
δh0Qk

n− 2k
on closed forms,

Lk =
(−1)k

(n− 2k)
Gk+1d = −

δh0Qk+1d

(n− 2k)(n− 2k − 2)
,

(4.11)

while for k = n/2− 1,

Ln/2−1 =
1
2
δh0d. (4.12)

Proof. Let ω be a solution of problem (4.8) with initial data ω0 closed. Then its first
log term is xn−2k+2 log(x)Qk−1ω0 ∧

dx
x

and thus the first normal log term of δgω is
xn−2k+4 log(x)(δ0Qk−1ω0) ∧

dx
x

. But δgω is a solution of problem (4.4) with boundary
term δgω = (−1)k(2k − n − 2)ω0 + O(x) . Thus, the form δgω has for first normal log
term (−1)k(2k − n− 2)xn−2k+4(Gk−1ω0) ∧

dx
x

.
Let ω be a solution of (3.1) with initial data ω0. Since 1k+1d = d1k and δgdω =

1k+1dω− dδgω, the form ω′ := dω is a solution problem (4.4) with initial data dω0 and
first log term (−1)k(n− 2k)xn−2k log(x)Lkω0 ∧

dx
x

, which gives (4.11).
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To compute Ln/2−1 we use equation (4.2). Using relations (2.9), we get ωF1 = ω0 −

x
(−1)n/2

2 δ0ω0 ∧ dx, therefore 1n/2−1ωF1 = x
2δ0dω0 + o(x

2). �

Remark. Note that this implies that Lk is zero on closed forms and Gk has its range in
coclosed forms.

4.4. Conformal properties

A priori our construction of Lk,Gk,Qk depends on the choice of a geodesic boundary
defining function x, i.e. on the choice of a conformal representative in [h0]. In order to
study the conformal properties of these operators, we need to compare the splittings of
the differential forms associated to different conformal representatives.

A system of coordinates y = (yi)i=1,...,n on M near a point p ∈ M gives rise to a
system of coordinates (x, y) in X̄ near the boundary point p through the diffeomorphism
ψ : (x, y) 7→ ψx(y) where ψt is the flow of the gradient ∇x

2gx of x with respect to x2g.
Such a system (x, y) is called a system of geodesic normal coordinates associated to h0.

Lemma 4.13. Let (x, y) and (x̂, ŷ) be two systems of geodesic normal coordinates as-
sociated respectively to h0 and ĥ0 = e

2ϕ0h0. If ω̂ (resp. ω̂ ∧ dx̂) is a k-form tangential
(resp. normal) in the coordinates (x̂, ŷ) with ω̂|x̂=0 = ω0, then

ω̂ = ω0 + (−1)k+1x2(i∇ϕ0ω0) ∧
dx

x
+Ot (x

2)+On(x
3),

ω̂ ∧
dx̂

x̂
= ω0 ∧

dx

x
+ ω0 ∧ dϕ0 +Ot (x)+On(x

2).

Proof. By the proof of Lemma 2.1 in [13], if ĥ0 = e2ϕ0h0 is another conformal repre-
sentative, a geodesic boundary defining function x̂ associated to ĥ0 satisifies x̂ = eϕx

with ϕ = ϕ0 +O(x
2) at least Cn−1 and ŷi(x, y) = yi + (x2/2)

∑n
j=1 h

ij∂yjϕ0 +O(x
3).

Hence dŷi = dyi + x
∑
j h

ij∂yjϕ0dx and dx̂ = xeϕ0dϕ0 + e
ϕ0dx +O(x2), which gives

the relations above. �

This implies the following corollary:

Corollary 4.14. Under a conformal change ĥ0 = e
2ϕ0h0, the associated operators L̂k ,

Ĥk and Q̂k are given by

L̂k = e
(2k−n)ϕ0Lk, Ĝk = e

(2k−2−n)ϕ0(Gk + (−1)ki∇ϕ0Lk),

Q̂kω0 = e
ϕ0(2k−n)(Qkω0 + (n− 2k)Lk(ϕ0ω0))

(4.13)

where ω0 ∈ C
∞(M,3k(M)) is any closed form. Thus Lk is conformally covariant and

Gk is conformally covariant on the kernel of Lk (hence on closed forms).

Proof. Let ω be a solution of problem (4.4) with respect to a system (x, y) associ-
ated to h0. Then by Lemma 4.13, ω is also a solution of problem (4.4) with respect
to a system (x̂, ŷ) associated to ĥ0. Now, when we change x to x̂ the first log(x) term
(i.e. the xn−2k log(x) term) in the expansion of ω gets multiplied by e(2k−n)ϕ0 . For
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the xn−2k+2 log(x) term in the normal part, we have a similar effect but the tangential
xn−2k log(x) term gives rise to a x̂n−2k+2 log x̂ normal term which gives the term i∇ϕ0Lk .

Let ω be a solution of problem (4.8) in the variable x with initial data ω0 ∧
dx
x

, ω̂1

be a solution of problem (4.8) in the variable x̂ with initial data ω0 ∧
dx̂
x̂

, and ω̂2 be a
solution of problem (4.10) in the variable x̂ with initial data −ω0 ∧ dϕ0. Using Lemma
4.13 we find that ω̂1 + ω̂2 satisfies problem (4.8) in the variable x with initial data ω0. So
ω = ω̂1 + ω̂2 modulo Ot (xn−2k) + On(x

n−2k+2) and the xn−2k+2 log(x) normal terms
must be the same. Using (4.13), we get

Qk−1ω0 ∧
dx

x
= eϕ0(n−2k+2)(Q̂k−1ω0 − Ĝk(ω0 ∧ dϕ0)) ∧

dx

x
.

Now we use the transformation formula of Ĝk and (4.11) with dω0 = 0 to see that

eϕ0(n−2k+2)Ĝk(ω0 ∧ dϕ0) = (−1)k+1Gkd(ϕ0ω0)+ (−1)ki∇ϕ0Lkd(ϕ0ω0)

= (n− 2k + 2)Lk−1(ϕ0ω0).

This ends the proof of the transformation law of Qk−1 by conformal change. �

Remark. WhileQk on ker d is not conformally invariant (by Proposition 4.14), the pair-
ing 〈Qku, u〉L2(dvolh0 )

for the metric h0 is conformally invariant for u ∈ ker d. Indeed,

using (4.13), a conformal change of metric ĥ0 = e
2ϕ0h0 gives∫

M

〈Q̂ku, u〉ĥ0
dvolh0 =

∫
M

(
〈Qku, u〉h0 +

〈δ0Qk+1d(ϕ0u), u〉h0

2k + 2− n

)
dvolh0 ,

which under integration by parts and du=0 gives 〈Q̂ku, u〉L2(dvol
ĥ0
)=〈Qku, u〉L2(dvolh0 )

.

Of course, when we restrict this form to exact forms, this is given by

〈Qkdu, du〉 = 〈Lk−1u, u〉,

which is real and conformally invariant.

4.5. Analytical properties

Proposition 4.15. For any k < n/2 we have

Qk =
(−1)n/2+k+1(n− 2k)(10)

n/2−k

2n−2k[(n/2− k)!]2 + lower order terms in ∂jyi ,

Lk =
(−1)n/2+k+1(n− 2k)(δ0d)

n/2−k

2n−2k[(n/2− k)!]2 + lower order terms in ∂jyi ,

Gk =
(−1)n/2+1(δ0d)

n/2−kδ0

2n−2k[(n/2− k)!]2 + lower order terms in ∂jyi .
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Proof. We first review the computation of ωF1 which solves (3.4). By Lemma 2.1, ωF1

has the form ωF1 =
∑n/2−k−1
i=0 x2iω

(t)
2i +

∑n/2−k
i=1 x2iω

(n)
2i ∧

dx
x

, where the ω(∗)i are images
of ω0 under differential operators onM . We compute the principal part of these operators
by recurrence.

The decomposition (2.7) of 1k and the identity 1kωF1 = Ot (x
n−2k)+On(x

n−2k+1)

give

n/2−k∑
i=1

x2i
(
−4i(k+ i−n/2−1)ω(n)2i +

i∑
j=1

S′jω
(t)
2i−2j +

i−1∑
j=1

(R′j +2(i−j)P ′j )ω
(n)
2i−2j

)
∧
dx

x

+

n/2−k−1∑
i=1

x2i
(
−4i(k + i − n/2)ω(t)2i − (−1)kdω(n)2i +

i∑
j=1

(Rj + 2(i − j)Pj )ω
(t)
2i−2j

+

i−1∑
j=1

Sjω
(n)
2i−2j

)
= 0.

This determines the ω(∗)i uniquely.
Let us write LOT for lower order term operators on M . Then we get

ω
(n)
2 =

(−1)k+1

2k − n
δ0ω0, ω

(t)
2 =

(
dδ0

2(2k − n)
+

δ0d

2(2k + 2− n)

)
ω0

and given the order in ∂yi of the Ri, R′i, R̄i, R̄
′

i,Qi and Q′i , we have

ω
(t)
2i =

1
2i(2k + 2i − n)

(2(−1)k+1dω
(n)
2i +10ω

(t)
2i−2)+ LOT(ω0),

ω
(n)
2i+2 =

1
2(i + 1)(2k + 2i − n)

(2(−1)k+1δ0ω
(t)
2i +10ω

(n)
2i )+ LOT(ω0).

So we have

ω
(t)
2i = (a2i(δ0d)

i
+ b2i(dδ0)

i
+ LOT)ω0, ω

(n)
2i+2 = (a2i+1(δ0d)

lδ0 + LOT)ω0

where the sequences (ai) and (b2i) satisfy the relations

a2i =
a2i−2

2i(2k + 2i − n)
, a2i+1 =

2(−1)k+1b2i

2(i + 1)(2k + 2i − n)
+

a2i−1

2(i + 1)(2k + 2i − n)
,

b2i =
2(−1)k+1a2i−1

2i(2k + 2i − n)
+

b2i−2

2i(2k + 2i − n)

and a1 =
(−1)k+1

2k−n , a2 =
1

2(2k+2−n) , b2 =
1

2(2k−n) . By uniqueness of the solution of this
equation we find

a2i =
1

2i i!
∏i
j=1(2k + 2j − n)

, a2i+1 =
(−1)k+1

2i i!
∏i
j=0(2k + 2j − n)

,

b2i =
1

2i i!
∏i−1
j=0(2k + 2j − n)
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for all i ≤ n/2− k − 1. We infer the equality

1kωF1

= xn−2k(an−2k−2(δ0d)
n/2−k

+ (bn−2k−2 + 2(−1)k+1an−2k−1)(dδ0)
n/2−k

+ LOT
)
ω0

+ x2k−n+2(an−2k−1(δ0d)
n/2−kδ0 + LOT)ω0 ∧

dx

x
+ o(xn−2k+1)

= xn−2k
(

(δ0d)
n/2−k

2n/2−k−1(n/2− k − 1)!
∏n/2−k−1
j=1 (2k + 2j − n)

+ LOT
)
ω0

+ x2k−n+2
(

(−1)k+1(δ0d)
n/2−kδ0

2n/2−k−1(n/2− k − 1)!
∏n/2−k−1
j=0 (2k + 2j − n)

+ LOT
)
ω0 ∧

dx

x

+ o(xn−2k+1), (4.14)

so we have

Lk =
−(δ0d)

n/2−k

2n/2−k−1(n/2− k − 1)!
∏n/2−k−1
j=0 (2k + 2j − n)

+ LOT,

Bk =
(δ0d)

n/2−kδ0

2n/2−k−1(n/2− k − 1)!
∏n/2−k−1
j=0 (2k + 2j − n)

+ LOT.

Note also that δg is of order 1 so Ck has no contribution to the principal part of Gk and
we get

Gk =
(−1)k+1(δ0d)

n/2−kδ0

2n/2−k(n/2− k)!
∏n/2−k−1
j=0 (2k + 2j − n)

+ LOT.

The proof forQk is the same (and even easier). We could have deduced the principal parts
of Lk andGk from the one ofQk , but a slight generalization of the proof above will allow
us to compute the principal part of the non-critical Llk in the next section. �

We finally prove that the operators Lk and Qk are symmetric on C∞(M,3(M)):

Proposition 4.16. For k ≤ n/2−1, the operators Lk are symmetric on C∞(M,3k(M)),
while for k < n/2− 1, the operators Qk are symmetric on C∞(M,3k(M)) ∩ ker d .

Proof. The proof for Lk is done in Proposition 5.4 which covers the non-critical cases.
The proof for Qk is quite similar. We let ω0, ω

′

0 be two closed k-forms on M and ω,ω′

the forms constructed in the proof of Proposition 3.11 with respective initial conditions
ω0 and ω′0. Then integration by parts and the fact that dω = dω′ = 0 gives

0 =
∫
x≥ε

(〈1kω,ω
′
〉g − 〈1kω

′, ω〉g) dvolg

=

∫
x=ε

(〈ix∂xω, δgω
′
〉hx − 〈ix∂xω

′, δgω〉hx )x
−n dvolhx .
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But a straightforward analysis and the fact that Lk(ω0) = Lk(ω
′

k) = 0 give that the
second line has an expansion of the form

a−2`ε
−2`
+ · · · + a−2ε

−2
+ L log(ε)+O(1) with

L := (−1)k+1(2k − n)(〈Qkω0, ω
′

0〉L2(dvolh0 )
− 〈ω0,Qkω

′

0〉L2(dvolh0 )
).

This completes the proof. �

4.6. Branson Q-curvature

We conclude this section with the observation that Q0 is the Q-curvature of Branson.

Proposition 4.17. The operator Q0 of Definition 4.2 satisfies

Q01 =
n(−1)n/2+1

2n−1(n/2)!(n/2− 1)!
Q

where Q is Branson’s Q-curvature defined in [2].

Proof. Since the operatorQ0 and the functionQ are local on (M, [h0]) and do not depend
on the chosen Poincaré–Einstein manifold with conformal infinity (M, [h0]), it suffices
to consider the cylinderX = (−1, 1)×M equipped with a Poincaré–Einstein metric with
conformal metric [h0] on the boundary M tM . In [5], Fefferman and Graham showed
that the Q-curvature of Branson is the function Q on M such that if U ∈ C∞(X) is a
solution of 

1gU = n,

U = log(x)+ A+ xnB log(x) with A,B ∈ C∞(X̄),
A|x=0 = 0,

then B|x=0 = (−1)n/2+1(2n−1(n/2)!(n/2 − 1)!)−1Q. Clearly dU is a harmonic 1-form
and it is given by

dU =
dx

x
+ dA+ nxnB log(x)

dx

x
+O(xn),

and by uniqueness of the solution in Proposition 3.11 and the decay of L2 harmonic 1-
forms (of order xn), we deduce that Q01 = nB|x=0; this proves the claim (note that the
log term in the development of 1k does not interfere since it acts trivially on normal zero
forms). �

5. The non-critical case

Let (X, g) be a Poincaré–Einstein manifold with conformal infinity (M, [h0]). We assume
k ≤ (n + 1)/2 and n may be odd or even in this section, and we let ` be an integer in
[1, n/2 − k] in general, and ` ∈ N if n is odd and (X, g) is an even Poincaré–Einstein
manifold. We want to construct the operators L`k of [3] by solving the following equation:
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(1k − (n/2− k + `)(n/2− k − `))ω = Ot (xn/2−k+`)+On(xn/2−k+`+1)

with ω = xn/2−k−`ω0 + o(x
n/2−k−`) as x → 0.

(5.1)

whereOn,Ot are defined in the proof of Proposition 3.1 and whereω0∈C
∞(M,3k(M)).

This can be done essentially as in the critical case, using the indicial equations of Subsec-
tion 2.3. Indeed, the indicial roots of 1k − (n/2− k + `)(n/2− k − `) can be computed
rather easily: they are

n/2− k ± ` in the 3kt component,

n/2− k + 1±
√
`2 + n+ 1− 2k in the 3kn component.

Notice that there are no indicial roots in (n/2− k − `, n/2− k + `) when ` ≤ n/2− k,
but there is one root in this interval when ` > n/2− k and n is odd: it is given by

n/2− k + 1−
√
`2 + n+ 1− 2k ∈ (n/2− k − `, n/2− k − `+ 1] (5.2)

and thus is not in n/2− k − `+ 2N0. We obtain

Lemma 5.1. For ω0 ∈ C
∞(M,3k(M)) fixed, there exists a series

ωF1 = x
n/2−k−`

(2l−2∑
2j=0

x2jω
(t)
2j +

2l∑
2j=2

x2j
(
ω
(n)
2j ∧

dx

x

))
(5.3)

such that ω(t)0 = ω0 and

(1k − (n/2− k + `)(n/2− k − `))ωF1 = Ot (x
n/2−k+`)+On(x

n/2−k+`+2) (5.4)

where the forms ω(·)j on M are uniquely determined by ω0 and the expansion of 1k in
powers of x given by Lemma 2.1.

Note that the condition ` ≤ n/2 when n is even ensures that the first log(x) coefficient
coming from the metric does not show up in (5.1). We remark that when ` > n/2− k and
n is odd, the fact that the indicial root (5.2) is not in n/2− k− `+2N0 does not affect the
construction. Since n/2− k + ` is an indicial root in the 3kt component, we can define

ωF2 = ωF1 + x
n/2−k+` log(x)ω(t)n−k+`,1 with

ω
(t)
n−k−`,1 =

1
2`

[x−n/2+k−`(1k − (n/2− k + `)(n/2− k − `))ωF1 ]|x=0,
(5.5)

which satisfies

(1k − (n/2− k + `)(n/2− k − `))ωF2 = O(x
n/2−k+`+2 log(x)). (5.6)

Remark. We could continue the construction to get a solution ω of

(1k − (n/2− k − `)(n/2− k + `))ω = O(x∞)

and even an exact solution (with no O(x∞)) using the resolvent of 1k . However, since
the mapping properties of (1k−(n/2−k−`)(n/2−k+`))−1 are not explicitly available
in the literature when ` 6= n/2− k, we do not discuss this case further.

Like we did for Lk , we can now define an operator on M as follows:
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Definition 5.2. For k ≤ (n+ 1)/2, we let ` be an integer in [1, n/2− k] if n is even and
in N if n is odd. The operator L`k : C∞(M,3k(M)) → C∞(M,3k(M)) is defined by
L`kω0 := ω(t)n−k−`,1 where ω(t)n−k−`,1 is given in (5.5).

Remark. Clearly, Ln/2−kk = Lk when n is even.

Lemma 5.3. The form ωF1 of (5.3) satisfies δgωF1 = O(x
n/2−k+`+2).

Proof. By (5.4) and δg1k = 1k−1δg , the form δgωF1 solves

(1k−1 − (n/2− k + `)(n/2− k − `))δgωF1 = O(x
n/2−k+`+2) (5.7)

with δgωF1 = O(x
n/2−k−`+2). The Taylor series T of x−n/2+k+`δgωF1 to orderO(x2`+2)

is such that xn/2−k−`T solves (5.7), and moreover T is even by Lemma 2.1. A short
computation shows that the indicial roots of (1k−1 − (n/2− k + `)(n/2− k − `)) are

n/2− k + 1±
√
`2 + n+ 1− 2k in the 3k−1

t component,

n/2− k + 2±
√
`2 + 2(n− 2k + 2) in the 3k−1

n component.

Thus if ` ≤ n/2−k, the indicial roots are not contained in [n/2−k−`+2, n/2−k+`+2]
except when 2k = n+1 where n/2−k+`+1 is a root in the3t component; this implies
that the Taylor series of δgωF1 vanishes to orderO(xn/2−k+`+1) except maybe when 2k =
n+1. However in the last case, by parity of T , we see that there is no n/2−k+`+1 term
in the expansion of δgωF1 ; this ends the proof for n even. When n is odd and ` > n/2−k,
the only indicial root in the interval of interest is n/2− k + 1+

√
`2 + n+ 1− 2k and it

is in (n/2− k + `+ 1, n/2− k + `+ 2) thus not in n/2− k − `+N0, which shows that
the argument used for ` ≤ n/2− k applies similarly. �

By an obvious integration by parts, we have

Proposition 5.4. The operators L`k are symmetric on C∞(M,3k(M)).

Proof. Consider ω1
F2

and ω2
F2

as in (5.5) with respective boundary values ω1
0 and ω2

0; they
are well defined forms in some collar neighbourhood X1 := (0, ε0)x ×M ofM in X̄. Let
ϕ ∈ C∞0 ((−ε0, ε0)) be a cut-off function which equals 1 near 0 and ω̃i := ϕ(x)ωiF2

for
i = 1, 2. Then using Lemma 5.3 we have δgω̃i = O(xn/2−k+`+1), but since ix∂x ω̃

i
=

O(xn/2−k−`+2), the Green formula gives, for small ε > 0,∫
x≥ε

(〈1kω̃
1, ω̃2
〉g − 〈1kω̃

2, ω̃1
〉g) dvolg

= (−1)n
∫
x=ε

[(?gdω̃1) ∧ ω̃2
− (?gdω̃

2) ∧ ω̃1]+O(ε).

But the first line is an O(1) as ε → 0 by (5.6), and a straightforward analysis gives that
the second line has an expansion of the form

a−2`−1ε
−2`−1

+ · · · + a−1ε
−1
+ L log(ε)+O(1) with

L := (−1)n(n/2− k + `)
∫
M

[(?0L
`
kω

1
0) ∧ ω

2
0 − (?0L

`
kω

2
0) ∧ ω

1
0],

and this implies L = 0 by comparing the log(ε) terms. �
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Proposition 5.5. We have

L`k =
(−1)`+1`

22`−1(`!)2

[
(δ0d)

`
+
n− 2k − 2`
n− 2k + 2`

(dδ0)
`

]
+ LOT.

Proof. We define T by ωF1 = xn/2−k−`T , λ = (n/2 − k + `)(n/2 − k − `) and P =
xk+`−n/2(1− λ)xn/2−k−`.

Then we have T =
∑`−1
i=0 x

2iω
(t)
2i +

∑`
i=1 x

2iω
(n)
2i ∧

dx
x

and P admits the same de-
composition as 1k in Lemma 2.1 but with indicial operator equal to(

2`x∂x − (x∂x)2 2(−1)k+1d

0 −(x∂x)
2
+ 2(`+ 1)x∂x + n− 2k − 2`

)
.

The equation PT = Ot (x2`)+On(x
2`+1) then gives

ω
(n)
2i+2 = (a2i+1(δ0d)

iδ0 + LOT)ω0 ω
(t)
2i = (a2i(δ0d)

i
+ b2i(dδ0)

i
+ LOT)ω0

with

a1 =
(−1)k

n/2− k + `
, a2 =

−1
4(`− 1)

, b2 =
−(n/2− k + `− 2)

4(`− 1)(n/2− k + `)

and

a2i+2 =
a2i

4(i + 1)(i + 1− `)
, a2i+1 =

2(−1)k+1b2i + a2i−1

4(i + 1)(i − `)+ 2k − n+ 2`
,

b2i+2 =
b2i + 2(−1)k+1a2i+1

4(i + 1)(i + 1− `)
.

The solutions of these equations are

b2i =
(−1)i(n− 2k + 2`− 4i)(`− i − 1)!

4i i!(`− 1)!(n− 2k + 2`)
, a2i+1 =

(−1)k+i(`− i − 1)!
22i−1i!(`− 1)!(n− 2k + 2`)

,

a2i =
(−1)i(`− i − 1)!

4i i!(`− 1)!
.

Since the equation (5.5) reads

L`k =

[
x−2`

2`
ix∂x

(
dx

x
∧ PT

)]
|x=0

we get the result. �

6. Relation to Branson–Gover operators

First we recall a few facts on the ambient metric of Fefferman–Graham (see [4, 6] for
details). If (M, [h0]) is a compact manifold equipped with a conformal class, we denote
by

Q = {t2h0(m); t > 0, m ∈ M} ⊂ S2T ∗M
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the conformal bundle; it is identified with (0,∞)t × M . Let Q̃ = (−1, 1) × Q be the
ambient space with the inclusion ι : Q → Q̃ defined by z 7→ (0, z). There are dilations
δs : (t, m) 7→ (st, m) of Q which extend naturally to Q̃. The functions on Q which are
w-homogeneous in the sense

f (st,m) = swf (t,m)

are sections of a bundle denoted E[w]; they extend naturally onto Q̃. We denote by h̃ the
ambient metric of Fefferman–Graham [4] on Q̃. This is a smooth Lorentzian metric on Q

such that

(1) δ∗s h̃ = s
2h̃ for all s > 0,

(2) ι∗h̃ is the tautological tensor t2h0 on Q,
(3∗) Ric(̃h) vanishes to infinite order at Q if n is odd,
(3∗∗) Ric(̃h) vanishes to order n/2− 1 at Q if n is even.

We let T be the vector field which generates the dilations δs , and let

Q = h̃(T , T ), ρ := −t−2Q/2, x =
√

2ρ, u = xt

so that Q is homogeneous of degree 2 with respect to δs , u and t are homogeneous of
degree 1 and x of degree 0; moreover Q,ρ are smooth defining functions of Q, and x, u
are defining functions of Q in {Q ≤ 0} for some finer smooth structure on {Q ≤ 0}. Let
us define C := {Q = −1, ρ < ε} for some small fixed ε. Then C can be identified with
a collar (0, ε)ρ ×M and there is a system of coordinates (u,m) ∈ (0, 1]× C that covers
the part {0 > Q ≥ −1, ε > ρ > 0} which is a neighbourhood of the cone Q near t = ∞.
In this neighbourhood the metric h̃ has the model form (see [4])

h̃ = −du2
+ u2g

where g = (dx2
+ hx)/x

2 is a Poincaré–Einstein metric on the collar C.
The space Tk[s] is the space of k-form tractors which are homogeneous of degree s,

i.e. restrictions to the null cone Q of k-forms on Q̃ and such that ∇̃T F = sF where T =
t∂t = u∂u is the generator of dilations in the cone fibres, ∇̃ is the Levi-Civita connection
on Q̃. Since ∇̃T ∗ = ∗ for ∗ = T , ∂x, ∂mi , we have LT = ∇̃T + k on Tk[s], where L

denotes Lie derivative. The bundle Ek[s] consists of the s-homogeneous k-forms onM , in
the sense that they are sections of3k(M)⊗E[s] and thus satisfy LTω = sω. We can view
Ek[s] as a subspace of Tk[s− k]. We let Gk[s] be the subundle of Tk[s+ k−n] consisting
of all forms which are annihilated by the interior product iT . It has a conformally invariant
projection onto Ek[s + 2k − n] denoted by qk; this is given for instance by i∂ρdρ∧.

If 1̃ is the ambient Laplacian on Q̃ associated to h̃, if ω0 ∈ Ek[k+ `− n/2] and ω̃0 is
a homogeneous extension of ω0 to Q̃, then it is proved in [3, Prop. 4.3] that the operator
defined by the formula

L`kω0 =

[
ιT

(
d̃(n+2∇̃T−2)+

1
2
d̃Q∧1̃

)
1̃`ω̃0

]
|Q

= [ιT d̃(n+2∇̃T−2)1̃`ω̃0]|Q (6.1)
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can be viewed as a conformally invariant operator L`k : Ek[k + ` − n/2] → Gk[n/2 −
k − `]. Here d̃ denotes the exterior differential on Q̃. They also define the operators (see
Proposition 4.4 and Theorem 4.5 in [3])

L
BG,`
k := qkL`k : Ek[k + `− n/2]→ Ek[k − n/2− `],

GBG
k := qk−1iYLn/2−kk : Ek[0]→ Ek−1[2k − 2− n] (6.2)

where Y = −∂ρ/t2 is a vector field dual to d̃t/t via h̃; it satisfies in particular d̃Q(Y ) = 2.
Finally the operator QBG

k acting on a closed k-form ω0 is defined as follows:

QBG
k ω0 := −2(n/2− k + 1)qk

[
iY iT 1̃

n/2−k
(
dQ

2
∧
d̃t

t
∧ ω̃0

)]
|Q

where ω̃0 is any homogeneous extension of ω0 to Q̃.
We now prove a lemma whose proof is essentially the same as the one for functions

in [10].

Lemma 6.1. Let ω ∈ Tk
′

[−α] and j ∈ N, then

1̃(Qjω) = 4j (α − n/2− j)Qj−1ω +Qj 1̃ω.

Proof. Using ∇̃Q = 2T , we have [1̃,Q] = −2(2∇̃T + n+ 2) and so we can compute

1̃(QjLω0) =

j−1∑
m=0

Qm[1̃,Q]Qj−1−mω +Qj 1̃ω

= −2Qj−1
j−1∑
m=0

(2(−2m+ 2j − 2− α)+ n+ 2)ω +Qj 1̃ω

= 4Qj−1j (α − n/2− j)ω +Qj 1̃ω,

which completes the proof. �

As a consequence, and using Lemma 6.1, we get

Theorem 6.2. (i) Let L`k, Lk and Gk be the operators of Definition 5.2 and 4.1, and let
c`k := (−4)`(`− 1)!(`+ 1)!(k − n/2− `). Then the following identity holds:

L
BG,`
k = c`kL

`
k.

In the critical case ` = n/2 − k, if GBG
k is the Branson–Gover operator of (6.2) we

have
LBG
k = ckLk, GBG

k = (−1)kckGk

with ck := (−1)n/2−k−12n−2k+1((n/2− k)!)2(n/2− k + 1) = cn/2−kk .
(ii) Let Qk be the operator of Definition 4.2. Then

QBG
k = (2k − n− 2)ck+1Qk.
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Proof. (i) For ω0 ∈ 3
k(M), we consider the form ωF1 of Lemma 5.1 of the previous

section and we extend it homogeneously to a smooth k-form of degree k − n/2+ ` by

ω̃F = u
k−n/2+`ωF1 = u

k−n/2+`xn/2−k−`
∑̀
i=0

x2i
(
ω
(t)
i + x

2ω
(n)
i ∧

dx

x

)

= tk−n/2+`
∑̀
i=0

(−Q)i t−2i(ω
(t)
i + ω

(n)
i ∧ dρ).

In the coordinates u, x, y representing a neighbourhood {−1 ≤ Q < 0, ρ < ε} and
in the k-form bundle decomposition 3k(C) ⊕ 3k−1(C) ∧ du

u
, the exterior derivative, its

dual and the form Laplacian of h̃ are given by

d̃ =

(
d 0

(−1)ku∂u d

)
, δ̃ = u−2

(
δg (−1)k+1(n+ 2− 2k + u∂u)
0 δg

)
(6.3)

and

1̃ = u−2
(
(u∂u)(u∂u + n− 2k)+1k 2(−1)k+1d

2(−1)kδg (u∂u − 2)(u∂u + n− 2k + 2)+1k−1

)
.

(6.4)
So, using the properties of ωF1 in Lemmas 5.1 and 5.3, we have (where s = k− n/2+ `)

1̃ω̃F = u
s−2(1k + s(s + n− 2k))ωF1 + 2(−1)kus−3δgωF1 ∧ du

= 2`us−2x`−k+n/2(L`kω0 +Ot (x
2))+ us−2x`−k+n/2+2

(
B ∧

dx

x
+On(x

2)

)
+ 2(−1)kus−3x`−k+n/2+2(C +O(x2)) ∧ du

= (−Q)`−1tk−`−n/2(2`L`kω0 + (B + 2(−1)kC) ∧ d)+O(Q`)

for some (k − 1)-forms B,C on M . We can now apply Lemma 6.1 `− 1 times to get

1̃`ω̃F = 1̃
`−11̃ωF

= (−4)`−1[(`− 1)!]2tk−`−n/2(2`L`kω0 + (B + 2(−1)kC) ∧ dρ)+O(Q).

Since n+ 2∇̃T − 2 acts on homogeneous k-forms of degree k−`−n/2 by multiplication
by −2(`+ 1), and iT d̃ = LT on Gk[n/2− k − `], we get

L`k = (`+ 1)(k − `− n/2)(−4)`[(`− 1)!]2tk−`−n/2(`L`kω0 + (B/2+ (−1)kC) ∧ dρ).

Note that by definition of Bk, Ck,Gk we have, in the case ` = n/2− k,

B/2+ (−1)kC = (−1)k−1(Bk/2− Ck)ω0 = `Gkω0.

(ii) Similarly, for ω0 ∈ 3
k(M) closed, we set ω̃F := ω′F1

∧
1
2 d̃Q in {Q < 0, ρ ≤ ε}

where the form ω′F1
is the 0-homogeneous expansion of ω′F1

∈ 3k+1(C) given by (3.12).
Since d̃Q/2 = −t2dρ +Q dt

t
, we have
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ω̃F =

n/2−k∑
j=0

x2j
(
ω
(n)
2j ∧

dx

x
+x2ω

(t)
2j

)
∧
d̃Q

2

=

n/2−k∑
j=0

−(−Q)j t−2(j−1)ω
(n)
2j ∧dρ∧

dt

t
+ (−Q)j+1t−2j−2ω

(t)
2j ∧

(
−t2dρ+Q

dt

t

)
and so ω̃F is a smooth (k + 2)-form. By (6.4) and the definition of B ′k,D

′

k we have

1̃ω̃F = 1̃

(
−u2ω′F1

∧
du

u

)
= 2(−1)kdω′F1

−(1k+1ω
′

F1
)∧
du

u

= −xn−2k−22D′kω0∧
dx

x
+(−1)k+1xn−2k

(
B ′kω0∧

dx

x
+ω1

)
∧
du

u
+O(Qn/2−k)

= (−1)n/2−k−12Qn/2−k−2t2k−n+4D′kω0∧dρ

+ (−1)n/2+1Qn/2−k−1t2k−n+2
(
B ′kω0∧

dt

t
+(−1)kω1

)
∧dρ+O(Qn/2−k)

for some form ω1 on M , the value of which is not important for our purpose. By Lemma
6.1, we have

1̃2ω̃F = (−1)n/2−k−12Qn/2−k−2t2k−n+41̃(D′kω0 ∧ dρ)

+ 4(n/2− k − 1)(−1)n/2+1Qn/2−k−2t2k−n+2
(
B ′kω0 ∧

dt

t
+ (−1)kω1

)
∧ dρ

+O(Qn/2−k−1)

and by (6.4), we have

1̃(D′kω0 ∧ dρ) = 1̃

(
x2D′kω0 ∧

dx

x

)
= u−21k+2

(
x2D′kω0 ∧

dx

x

)
+ 2u−2(−1)kδg

(
x2D′kω0 ∧

dx

x

)
∧
du

u

= 2(−1)kt−2δ0D
′

kω0 ∧ dρ ∧
dt

t
+ 2(2k − n− 4)t−2D′kω0 ∧

dt

t

where we have used (2.2), (2.3) and dD′kω0 = 0. We thus have

1̃2ω̃F = Q
n/2−k−2t2k−n+2

[
4(−1)n/2−1(δ0D

′

kω0 − (n/2− k − 1)B ′kω0) ∧ dρ ∧
dt

t

+ ω′1 ∧
dt

t
+ ω′2 ∧ dρ

]
+O(Qn/2−k−1)

= Qn/2−k−2t2k−n+2
[

4(n− 2k)(n/2− k − 1)(−1)n/2+kQkω0 ∧ dρ ∧
dt

t

+ ω′1 ∧
dt

t
+ ω′2 ∧ dρ

]
+O(Qn/2−k−1)
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by Corollary 4.9, and where ω′1, ω
′

2 are forms in 3k+1(M). By iterative use of Lemma
6.1, we get

1̃n/2−kω̃F = 1̃
n/2−k−21̃2ω̃F

= t2k−n+2
[

2n−2k−1(n/2− k)[(n/2− k − 1)!]2(−1)n/2+kQkω0 ∧ dρ ∧
dt

t

+ ω′1 ∧
dt

t
+ ω′2 ∧ dρ

]
+O(Q)

we infer from the definition of QBG
k that

QBG
k = (−1)n/2+k+12n−2k(n/2− k + 1)!(n/2− k − 1)!Qk. �

7. Proof of the main results

We start with the proof of Theorem 1.2.

Proof of Theorem 1.2. The existence of ω in (i) is proved in Proposition 3.1. The fact that
the log terms Lk,Qk coincide with the Branson–Gover operators follows from Theorem
6.2. The uniqueness of the solution is rather clear by construction: using the arguments
used in the proof of Proposition 3.1, a solution in Cn/2−k,α(X̄,3k(X̄)) would have its
first n/2− k Taylor coefficients uniquely (and locally) determined by the boundary value
ω0 and then two such solutions with same boundary data would have a difference in
Ot (x

n/2−k+α) + On(x
n/2−k+1+α) and so would be in kerL2(1k) (see Remark 3.6). We

conclude that any Cn/2−k,α solution is in fact a solution of Proposition 3.1. The proof of
(ii) is similar and follows from Proposition 3.11 and Theorem 6.2. �

Proof of Theorem 1.1. The infinite-dimensionality ofKk
m(X̄) form < n−2k+1 follows

from Proposition 3.1. Indeed for m < n− 2k this is clear since the solutions of (3.1) are
parametrized by C∞(M,3k(M)). If m = n − 2k, one can use that there is an infinite
set of ω0 ∈ C

∞(M,3k(M)) such that Gkω0 6= 0 and Lkω0 = 0 since kerLk is infinite-
dimensional and kerGk∩kerLk is finite-dimensional by ellipticity of dGk+Lk . Solutions
of (3.1) are then in Cn−2k(X̄,3k(X̄)).

The finite-dimensionality for m = n − 2k + 1 is a little more involved. Let ω be
a harmonic form in Cn−2k+1(X̄,3k(X̄)). Then by Taylor expansion, there exist some
forms ω(n)j , ω

(t)
j ∈ C

n−2k+1−j (M,3(M)) so that

ω −

n−2k∑
j=0

xj (ω
(t)
j + ω

(n)
j ∧ dx) ∈ x

n−2k+1L∞(3k(X̄)),

and Lkω0 = 0. Now by Lemma 3.8 we know that ω has a weak expansion to order
xN with values in H−N (M) as in (3.9) for any N > 0 large. Moreover δgω is also a
harmonic form in Cn−2k(X̄,3k−1(M)), and using (2.2) after decomposing the form in
3k−1
t ⊕3k−1

n , we see that it is an O(x) and has an expansion to order xN with values in
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H−N−1(M) for anyN . Now, using the indicial equation as in the proof of Proposition 3.1,
the weak expansion of δgω vanishes to order xn−2k+2, so in particular we obtain δgω ∈
xn−2kL∞(3k−1(X̄)) from the regularity of ω. Then δgω ∈ L2(3k−1(X)) for k < n/2−1,
while for k = n/2−1 it is in L2 if we assume in addition that ω ∈ Cn−2k+1,α(X̄,3k(X̄))

for some α > 0 (since then δgω ∈ xn−2k+αL∞(3k(X̄))). But as shown in Corollary 3.3,
δgω is then smooth and vanishing to order xn−2k+3. Then, as in the proof of Proposition
3.9, an integration by parts of ‖δgω‖2L2 shows that δgω = 0. Now we can apply the result
of Proposition 4.4 (see the Remark following Corollary 4.11), which gives Gkω0 = 0.
Since dGk+Lk is elliptic, kerLk∩kerGk is finite-dimensional and contains only smooth
forms, so ω0 is smooth. Then ω is polyhomogeneous and is the solution of Proposition
3.1, up to an element of kerL2(1k); hence it is in Cn−1(X̄,3k(X̄)) in general and in
C∞(X̄,3k(X̄)) if (X, g) is a smooth Poincaré–Einstein manifold.

Letm ∈ [n−2k+1, n−1] be an integer. The exact sequence (1.9) is defined by inclu-
sion of ι : H k(X̄, ∂X̄)→ Kk

m(X̄) and restriction to the boundary r : Kk
m(X̄)→ Hk

L(M);
here of course we use the identification H k(X̄, ∂X̄) ' kerL2(1k) and the regularity of
harmonicL2 forms in Theorem 3.2. The injectivity of ι is clear, the surjectivity of r comes
from Proposition 3.1, the definition of Hk

L and Theorem 6.2. The kernel of r is composed
of those forms of Kk

m(X̄) which vanish at M , but by Proposition 3.1, these are L2, and
thus in the image of H k(X̄, ∂X̄) under the map ι. �

Proof of Theorem 1.3. First note that the space Zk(X̄) in Theorem 1.3 is included in
Kk
n−2k+1(X̄), and thus of finite dimension and composed of forms in Cn−1(X̄,3k(X̄))

(even in the case k = n/2 by the arguments above).
(i) The maps in the complex

0 −→ H k(X̄, ∂X̄)
ι
−→ Zk(X̄)

r
−→ Hk(∂X̄)

de
−→ H k+1(X̄, ∂X̄)

are defined as follows: ι is given by inclusion where H k(X̄, ∂X̄) ' kerL2(1k), this is
well defined since L2 harmonic forms are closed, coclosed and in Cn−2k+1(X̄,3k(X̄));
r is defined as restriction to the boundary and it maps into Hk(M) since r(ω) ∈ kerLk ∩
kerGk by the discussion above and dω = 0 implies dr(ω) = 0; the last map de is the
composition de = d ◦ 8 where 8 : C∞(M,3k(M)) → C∞(X,3k(X))/kerL2(1k) is
defined by 8(ω0) = ω where ω is the solution of (3.1) in Proposition 3.1. Note that 8
is only defined modulo kerL2(1k) and is linear by uniqueness of the solution in (3.1)
modulo kerL2(1k). Applying d kills the indeterminacy with respect to kerL2(1k) since
L2 harmonic forms are closed. Hence d8(ω0) is harmonic and since the boundary value
of 8(ω0) is closed, we have d8(ω0) = O(x), and by Proposition 3.1 it is in L2. For the
exactness of the sequence, first note that ker r is composed of closed and coclosed forms
which are O(x); this implies that those forms are L2 by Proposition 3.1, so Im ι = ker r
since also L2 harmonic forms vanish at the boundary. Now ω0 ∈ ker de if 8(ω0) is
closed, but it is also coclosed and in Cn−2k+1(X̄,3k(X̄)) by Proposition 3.1 and the fact
that ω0 ∈ ker d ∩ kerGk ⊂ kerLk ∩ kerGk , therefore 8(ω0) ∈ Z

k(X̄) and ω0 ∈ Im r .
Moreover by Proposition 3.1 we have 8(r(ω)) − ω ∈ kerL2(1k); this implies Im r ⊂

ker de, proving the exactness of the sequence.
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(ii) The maps in the complex (1.11) are defined similarly: first ι : H k(X̄, ∂X̄) →

[Zk(X̄)] is the composition of the inclusion kerL2(1k) → Zk(X̄) with the natural map
Zk(X̄) → [Zk(X̄)] obtained by taking cohomology class. The map r : [Zk(X̄)] →
[Hk(∂X̄)] is induced by the restriction map Zk(X̄) → Hk(∂X̄) used in (i). This is well
defined since if dα ∈ Zk(X̄), then r(dα) = dα0 where α0 = α|∂X̄, and so [r(dα)] = 0 if
[ · ] denotes cohomology class in H k(∂X̄). The last map de : [Zk(∂X̄)]→ H k+1(X̄, ∂X̄)

is the map induced by de defined in (i), i.e. de = d ◦8where8maps ω0 to the solution of
(3.1). Note that it is well defined since for dα0 ∈ Hk(∂X̄), we have de(dα0) = d8(dα0)

and, by uniqueness of the solution of (3.1), 8(dα0) − d8(α0) ∈ kerL2(1k+1), thus
d8(dα0) = 0.

To show that ker r = Im ι, we need to show that if ω ∈ Zk(X̄) is a representative
in [Zk(X̄)] such that r(ω) = dα0 for some smooth α0, then there is ω′ ∈ kerL2(1k)

such that ω − ω′ is exact. But as said above, we have 8(dα0) − d8(α0) ∈ kerL2(1k)

and 8(r(ω)) − ω ∈ kerL2(1k), thus ω − d8(α0) ∈ kerL2(1k) and we are done. To
show that ker de = Im r , we need to prove that for a representative ω0 ∈ Hk(∂X̄) in
[Hk(∂X̄)], 8(ω0) is closed if and only if there exists ω ∈ Zk(X̄) such that r(ω) − ω0
is exact. But 8(ω0) is in Zk(X̄) if d8(ω0) = 0, thus ker de ⊂ Im r; conversely if there
is ω ∈ Zk(X̄) with ω = ω0 + dα0 + O(x), then ω − 8(ω0 + dα0) ∈ kerL2(1k) and
so d8(ω0) = 0 since 8(dα0) − d8(α0) ∈ kerL2(1k). To conclude, we need to prove
that Im de ⊂ ker ι. But this is clear since deω0 = d8(ω0) is an exact (k + 1)-form in
L2 with 8(ω0) ∈ C

n−2k+1(X̄,3k(X̄)). Note that in the case k = n/2, we make use of
Proposition 3.10.

(iii) Suppose that [Hk(∂X̄)] = H k(∂X̄). If ω ∈ ker ι, it is a k-form in kerL2(1k)

which can be written ω = dα with α smooth. Moreover if α0 = α|∂X̄, then d(8(α0)−α)

∈ kerL2(1k) and 8(α0) − α = O(x), and an easy integration by parts shows that
d8(α0) = dα = ω. Here α0 is closed since ω = O(x), but by assumption there is an α′0 ∈
Hk(∂X̄) such that α0−α

′

0 = dβ for some smooth β. Since now d8(dβ) = d[8, d]β = 0,
we have deα′0 = ω and ω ∈ Im de, which gives ker ι = Im de. Eventually, the equality
[Zk(X̄)] = H k(X̄) is clear from the discussion above since [Zk(X̄)] ⊂ H k(X̄) and

H k(X̄, ∂X̄)
ι
−→ [Zk(X̄)]

r
−→ H k(∂X̄)

de
−→ H k+1(X̄, ∂X̄),

H k(X̄, ∂X̄)
ι
−→ H k(X̄)

r
−→ H k(∂X̄)

de
−→ H k+1(X̄, ∂X̄)

are both exact sequences.
For the converse, if ker ιk+1

= Im dke and [Zk(X̄)] = H k(X̄), then we have the exact
sequences

H k(X̄)
r
−→ [Hk(M)]

de
−→ H k+1(X̄,M)

ι
−→ [Zk+1(X̄)],

H k(X̄)
r
−→ H k(M)

de
−→ H k+1(X̄,M)

ι′

−→ H k+1(X̄),

and since [Zk+1(X̄)] ⊂ H k+1(X̄), we obviously have ker ι = ker ι′ = Im de and so
[Hk(M)] = H k(M) (recall [Hk(M)] ⊂ H k(M)). �

Proof of Proposition 1.4. Assume 〈Qkv, v〉 ≥ 0. To show surjectivity of Hk(M) →

H k(M), we need to prove that for all ω0 ∈ C
∞(M,3k(M)) closed, there exists an exact
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form dα (with α ∈ C∞(M,3k(M))) such that Gk(ω0 + dα) = 0. Consider � :=
δ0Qkd + (dδ0)

n/2−k+1, which is elliptic, self-adjoint and non-negative if Qk ≥ 0. Its
kernel is finite-dimensional (containing ker(d + δ0)) and all v ∈ ker � are smooth by
elliptic regularity, and satisfy 〈δ0Qkdv, v〉L2 = 0, which implies 〈Qkdv, dv〉L2 = 0. Let
H ⊂ L2(3k(M)) be the L2 completion of the set C∞(M,3k(M)) ∩ ker d of smooth
closed forms and define the symmetric form Q(v, v) := 〈Qkv, v〉L2 on H; it is the non-
negative form induced by5HQk on H where5H denotes the orthogonal projection from
L2(3k(M)) to H. The form has domain D(Q), and the Friedrichs extension theorem
implies that there exists a self-adjoint operator QFr

k : H→ H with domain D(QFr) such
that 〈QFr

k u, u〉 = Q(u, u) for u ∈ D(Q) ∩D(QFr). But clearly d(C∞(M,3k−1(M))) ⊂

D(QFr
k ) and so 5HQkdv = QFr

k dv for v smooth. Using now the spectral theorem for
QFr
k , we see that QFr

k dv = 0 with v smooth if and only if 〈Qkdv, dv〉 = 0 and v is
smooth, thus in particular if v ∈ ker �. Thus Qkdv ⊥ ω for all ω ∈ H if v ∈ ker �. Now
this implies that, with ω closed and smooth, we have 〈v,Gkω〉 = 〈Qkdv, ω〉 = 0 for
v ∈ ker � since Qk is symmetric on closed forms, and so Gkω is in the range of �, that
is, there exists α such that �α = −Gkω; but since ImGk ⊂ Im δ0 which is orthogonal to
Im d, we deduce that (dδ0)

n/2−k+1α = 0, and this completes the proof. Note in particular
that in this case {dϕ; Lk−1ϕ = 0} = {dϕ; Qkdϕ ∈ Im δ0} (see Corollaries 2.12 and 2.13
of [3] for discussions about these spaces). �

8. Computations in some special cases

In this section we compute the operators Lk , Gk and Qk in dimensions 4 and 6.

Proposition 8.1. Let (M4, h) be a four-dimensional Riemannian manifold and define,
for any symmetric 2-tensor H , the map j (H) := J (h−1H) where J is defined in (2.4).
Then

L1 =
1
2
δd, G1 = −

1
4
δ

(
1−2j (Ric)+

2
3

Scal
)
, Q1 =

1
2

(
1−2j (Ric)+

2
3

Scal
)
,

L0 = −
1

16
δ

(
1−2j (Ric)+

2
3

Scal
)
d, G0 = 0, Q0 = −

1
24

(
1Scal−3|Ric|2+Scal2

)
,

where Ric is the Ricci tensor of h and Scal its scalar curvature.

Remark. If n = 4, then Ln/2−2 is the Paneitz operator (up to a constant factor). The
result of Gursky and Viaclovsky [14] says that if the Yamabe invariant Y (M, [h0]) is
positive and ∫

M

Qdvolh0 +
1
6
Y (M, [h0])2 > 0

then L0 is a non-negative operator with kernel reduced to constants. Combining this with
Theorem 2.6 of Branson–Gover [3], we obtain H1(M) ' H 1(M) and there is a confor-
mally invariant basis of H 1(M) with respect to [h0] made of conformal harmonics.



952 Erwann Aubry, Colin Guillarmou

Corollary 8.2. Let M4 be a four-dimensional manifold and λ1(x) ≥ · · · ≥ λ4(x) the
eigenvalues of its Ricci curvature at x. If λ2(x)+ λ3(x)+ λ4(x) ≥ 0 for all x ∈ M then
H1(M)→ H 1(M) is surjective.

Proof. Let D be the Levi-Civita connection of the metric h, and ω be a closed 1-form.
By decomposing orthogonally the bilinear tensor Dω into the antisymmetric part dω/2,
symmetric trace free part S0 and trace part (−δω/4)h, we get (recall that ω is closed)

|Dω|2 =
|dω|2

2
+ |S0|

2
+
(δω)2

4
≥
(δω)2

4
.

Now, by the Bochner formula,

〈1ω,ω〉 = ‖Dω‖22+

∫
M

Ric(ω, ω)≥
‖δω‖2

4
+

∫
M

Ric(ω, ω)=
〈1ω,ω〉

4
+

∫
M

Ric(ω, ω),

and so 〈1ω,ω〉 ≥ 4
3

∫
M

Ric(ω, ω). Therefore,

〈Q1ω,ω〉 =
1
2
〈1ω,ω〉+

∫
M

[
−Ric(ω, ω)+

Scal
3
|ω|2

]
≥

1
3

∫
M

[Scal |ω|2−Ric(ω, ω)]

≥

∫
M

[(λ1+λ2+λ3+λ4)|ω|
2
−λ1|ω|

2] ≥
∫
M

(λ2+λ3+λ4)|ω|
2
≥ 0,

and we conclude by using Proposition 1.4. �

Proposition 8.3. Let (M6, h) be a six-dimensional manifold. Let j be defined as in Lem-
ma 8.1 and let Tr(H) denote the trace of a symmetric tensor H with respect to h. Then
we have

L2 =
1
2
δd, G2 =

1
4
δ

(
1− j (Ric)+

2
5

Scal
)
, Q2 =

1
2

(
1− j (Ric)+

2
5

Scal
)
,

L1 = −
1

16
δ

(
1− j (Ric)+

2
5

Scal
)
d,

G1 =
(δd)2δ

64
+
δdE1δ

32
−
δE1δd

16
−
δE1dδ

16
−
δdδE1

16
+
δE2

16
+
δE2

1
8
,

Q1 = −
12

16
+
dδE1

4
+
δdE1

4
−
dE1δ

8
+
E1dδ

4
−

2E2
1 + E2

4
,

L0 =
1

384
(δd)3 +

δdE1δd

192
−
δE1dδd

96
−
δdδE1d

96
+
δE2d

96
+
δE2

1d

48
,

Q01 = −
12 Scal

800
+
δ0(E1(d Scal))

160
+
1|P |2

48
−
1Scal2

800

−
Scal3

8000
−

Tr(P 3)

32
−
h0(Ric, B)

32
,

where E2 := J (P 2
+ 2B) − |P |2/2 and E1 := J (P ) − Tr(P )/2, B denotes the Bach

tensor of h, P the Schouten tensor, Ric the Ricci tensor and Scal the scalar curvature.
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Proposition 8.4. For any n ≥ 4, we have the identities

Gn/2−1 = (−1)n/2+1
(
δdδ

4
−
δj (P )

2
+ δ

Tr(P )Id
4

)
= (−1)n/2+1

(
δdδ

4
− δ

(
j (Ric)
n− 2

−
Scal Id

2(n− 1)

))
,

Qn/2−1 =

(
1

2
−

2j (Ric)
n− 2

+
Scal Id
n− 1

)
,

Ln/2−2 = −δ

(
dδ

16
−

j (Ric)
4(n− 2)

+
Scal Id

8(n− 1)

)
d,

Gn/2−2 = (−1)n/2+1
(
(δd)2δ

64
+
δdE1δ

32
−
δE1δd

16
−
δE1dδ

16
−
δdδE1

16
+
δE2

16
+
δE2

1
8

)
,

Qn/2−2 = −
12

16
+
dδE1

4
+
δdE1

4
−
dE1δ

8
+
E1dδ

4
−

2E2
1 +E2

4
,

Ln/2−3 =
(δd)3

384
+
δdE1δd

192
−
δE1dδd

96
−
δdδE1d

96
+
δE2d

96
+
δE2

1d

48
,

where E2 := J (P 2
+

4B
n−4 ) − |P |

2/2 and E1 := J (P ) − Tr(P )/2, B denotes the Bach
tensor of h, P the Schouten tensor, Ric the Ricci tensor and Scal the scalar curvature.

For the non-critical case, we have

Proposition 8.5. We set j ](H) = 2j (H)− Tr(H) Id. For any n ≥ 3, we have

L1
k =

δd

2
+
(n− 2k − 2)dδ
2(n− 2k + 2)

+
(n+ k − 2)(n− 2k − 2)

8(n− 1)(n− 2)
Scal−

(n− 2k − 2)j (Ric)
2(n− 2)

which generalizes the conformal Laplacian on functions, and

L2
k = −

n− 2k − 4
16

(
(dδ)2

n− 2k + 4
+

(δd)2

n− 2k − 4
+

2dj ](P )δ
n− 2k + 4

−
2δj ](P )d
n− 2k − 4

−
j (P )1+1j ](P )

2
+ j ]

(
P 2
+

B

n− 4

)
+
(n− 2k)j ](P )2

4

)
which generalizes the Paneitz–Branson operator on functions.

Proofs of Propositions 8.1, 8.3, 8.4 and 8.5. This is a quite tedious computation, therefore
we do not give the full details. By [6, Eq. (3.18)], we have

h−1
0 hx = I − x

2P

2
+ x4 h2

8
− x6 h3

48
+ o(x6),
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with P = 1
n−2

(
2h−1

0 Ric − Scal
n−1I

)
, h2 =

P 2

2 for n = 4 and h2 = −
2h−1

0 B

n−4 +
P 2

2 and

Tr(h3) = −
4Tr(P (h−1

0 B))

n−4 for n = 6 (where B is the Bach tensor); note that we have
ignored the first log term in the metric expansion (i.e. the obstruction tensor) in dimension
4 and 6 since, as is clear from Lemma 2.1, they do not show up in the construction of the

L`k,Gk,Qk . We set B ′ = 0 for n = 4 and B ′ = 2h−1
0 B

n−4 for n = 6. Using the relations

L−1
= I − A1x

2
− (A2 − A

2
1)x

4
− (A3 + A

3
1 − A1A2 − A2A1)x

6
+ o(x6),

L−1QL = I + A′1x
2
+ (A′2 + [A′1, A1])x4

+ (A′3 + [A′1, A2]+ [A′2, A1]

+ A1[A1, A
′

1])x6
+ o(x6),

for

L = I +A1x
2
+A2x

4
+A3x

6
+ o(x6) and Q = I +A′1x

2
+A′2x

4
+A′3x

6
+ o(x6),

and the notation of the proof of Lemma 2.1, we get

h−1
x h0 = I +x

2P

2
+x4 3P 2

+2B ′

16
+x6 h3+3P 2

+3B ′P +3PB ′

48
+o(x6),

Ax = −xP −x
3P

2
+2B ′

4
−x5 2h3+P

3
+4PB ′+2B ′P

16
+o(x6),

Ox = I +x
2P

4
+x4P

2
+B ′

16
+x6 2h3+3P 3

+5PB ′+4B ′P
192

+o(x6),

Ix = I +x
2 J (P )

4
+x4 J (P

2
+2B ′)+J (P )2

32
,

+x6 J (4h3+2P 3
+10PB ′+2B ′P)+3J (P )J (2B ′+P 2)+J (P )3

384
+o(x6),

I−1
x = I −x

2 J (P )

4
+x4−J (P

2
+2B ′)+J (P )2

32
,

+x6−J (4h3+2P 3
+10PB ′+2B ′P)+3J (P )J (2B ′+P 2)−J (P )3

384
+o(x6).

Then we obtain

?x = ?0 − x
2 [J (P ), ?0]

4
+ x4 [J (P ), [J (P ), ?0]]− [J (P 2

+ 2B ′), ?0]
32

+ x6
(
−

[J (P )3 + J (4h3 + 2P 3
+ 10PB ′ + 2B ′P), ?0]

384

+
J (P )[J (P ), ?0]J (P )+ [J (2B ′ + P 2), [J (P ), ?0]]

128

)
+ o(x6).

Using the relations ?0J (H) + J (H)?0 = Tr(H)?0 and [J (H), J (H ′)] = −J ([H,H ′]),
we get

?−1
x [∂x, ?x] = xE1 + x

3E2

4
+ x5C

′

32
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with

C′1 = −2Tr(PB ′)− Tr(P 3)−
3
2

Tr(P )Tr(P 2),

E1 = J (P )−
Tr(P )

2
, E2 := J (P 2

+ 2B ′)−
Tr(P 2)

2
,

δx = δ0 + x
2 [δ0, E1]

2
+ x4 D

16
, where D := [δ0, E2]+ 2[[δ0, E1], E1].

Therefore,

1k =

(
−(x∂x)

2
+ (n− 2k)x∂x 2(−1)k+1d

0 −(x∂x)
2
+ (n− 2k + 2)x∂x

)
+ x2

(
10 − E1x∂x (−1)k[d,E1]
2(−1)k+1δ0 10 − E1(2+ x∂x)

)
+ x4

(
A1 − A2x∂x (−1)k[d,A2]

2(−1)k+1[δ0, E1] A1 − A2(4+ x∂x)

)
+ x6

(
A3 A4
A5 A6

)
+ o(x6)

whereA1 := (d[δ0, E1]+ [δ0, E1]d)/2,A2 := E2/4 (since the Bach tensor is trace-free),
A5 := −(−1)k3D/8 and, when k = 1,

A61 :=
9

160
Scal |P |2 +

3
16

Tr(P 3)+
3
16
h0(Ric, B).

For n = 6 and k = 1 we follow the formal method of Subection 4.2.3. We first have

ω′F1
=
dx

x
− x2

(
d Scal

80
+

Scal dx
40x

)
+ x4

(
1Scal

160
+

Scal2

800
−
|P |2

16

)
dx

x

and so, by computing dω′F1
and 1kω′F1

, we find

D′01 = −
d1Scal

160
−
d Scal2

800
+
d|P |2

16
= −

d1Scal
160

−
11d Scal2

3200
+
d|Ric|2

64
,

−B ′01 = A61+
[E1, δ0]d Scal

40
−
(A1 − 6A2)Scal

40

+ (10 − 6E1)

(
1Scal

160
+

Scal2

800
−
|P |2

16

)
=

3
16

Tr(P 3)+
3

16
h0(Ric, B)−

3δ0(E1(d Scal))
80

+
12 Scal

160
+
1Scal2

800
−
1|P |2

16
+

3 Scal3

4000
.

Hence we get Q01 in the case n = 6 by Corollary 4.9.
The other computations are similar. For instance, for k = n/2− 1,

1ωF1 = x
2δ0dω0 + x

3(−1)n/2+1
(
δ0dδ0ω0

2
− 2δ0E1ω0

)
∧ dx +O(x4),
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and so

Bn/2−1ω0 = −
δ0dδ0ω0

2
+ 2δ0E1ω0.

We have δωF1 = (x
4/2)δ0E1ω0 +O(x

5), and so Cn/2−1 = δ0E1/2. By Proposition 4.5,

Gn/2−1 = (−1)n/2+1
(
δ0dδ0

4
−
δ0E1

2

)
,

which implies the expression for Ln/2−2 by (4.11). For k = n/2− 2, we have

ωF1 = ω0 + x
2
(
−
dδω0

8
−
δdω0

4
+
(−1)n/2δω0

4
∧
dx

x

)
+ (−1)n/2x4

(
δE1ω0

4
−
δdδω0

16
−
E1δω0

8

)
∧
dx

x

δ =

(
0 (−1)n/2(x∂x − 6)
0 0

)
+ x2

(
δ0 (−1)n/2E1
0 δ0

)
+ x4

(
[δ0, E1]/2 (−1)n/2A2

0 [δ0, E1]/2

)
+ x6

(
2[δ0, A2]+ [[δ0, E1], E1]/8 ∗

0 ∗

)
and so

Cn/2−2 =
δ0A2

4
+
δ0E

2
1

8
−
δ0E1dδ0

16
−
δ0E1δ0d

8
,

Bn/2−2 =
3δ0A2

2
−
δE1δd

2
−

3δE1dδ

8
−
δdδE1

4
+
(δd)2δ

16
+
δdE1δ

8
+

3δE2
1

4
,

Gn/2−2 = (−1)n/2+1
(
(δd)2δ

64
+
δdE1δ

32
−
δE1δd

16
−
δE1dδ

16
−
δdδE1

16
+
δE2

16
+
δE2

1
8

)
.

In the case k = n/2− 1, we have ω′F1
= ω0 ∧

dx
x
+ x2(−dδ/4+E1/2)∧ dx

x
, D′n/2−2 =

(−1)n/2+1dE1/2 and B ′n/2−2 = (−1)n/2dδE1−dE1δ/2−E2−(dδ)
2/4+δdE1+E1dδ−

2E2
1 + δdE1/2. So we get

Qn/2−2 = −
12

16
+
dδE1

4
+
δdE1

4
−
dE1δ

8
+
E1dδ

4
−

2E2
1 + E2

4
. �
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