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Abstract. Our main intention in this paper is to demonstrate how some seemingly purely geometric
notions can be presented and understood in an analytic language of inequalities and then, with
this understanding, can be defined for classes of functions and reveal new and hidden structures
in these classes. One main example which we discovered is a new duality transform for convex
non-negative functions on Rn attaining the value 0 at the origin (which we call “geometric convex
functions”).1 This transform, together with the classical Legendre transform, are essentially the only
existing duality relations on this class of functions. Using these dualities we show that the geometric
constructions of support and Minkowski functional may be extended, in a unique way, to the class of
geometric log-concave functions, revealing hidden geometric structures on this class of functions.

1. Introduction

The Legendre transform is a classical and useful mathematical tool. It transforms (convex)
functions on a vector space to functions on the dual space. The Legendre transform is
related to projective duality and tangential coordinates in algebraic geometry, and to the
construction of dual Banach spaces in analysis. It is often encountered in physics, for
example in the definition of thermodynamic quantities, and plays a central role in several
mathematical fields, including for example linear programming and game theory.

To formally define the Legendre transform L for a function φ : Rn → R ∪ {∞}, one
first fixes a scalar product 〈·, ·〉 on Rn (that is, a pairing between the space and the dual
space). The Legendre transform L is then defined by

(Lφ)(x) = sup
y
(〈x, y〉 − φ(y)). (1)

It is an involution on the class of all lower-semicontinuous convex functions on Rn, which
we denote by Cvx(Rn).

The above seems a very concrete definition, with a priori nothing special about it.
However, it was demonstrated in [4] that this is the only order reversing involution on
Cvx(Rn). More precisely, we proved the following theorem:

Theorem 1. Let T : Cvx(Rn)→ Cvx(Rn) be a transform defined on the whole Cvx(Rn)
and such that for all φ,ψ ∈ Cvx(Rn),
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1 See “Added in proof”.
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1. T T φ = φ,
2. φ ≤ ψ implies T φ ≥ T ψ .

Then there exists a constant C0 ∈ R, a vector v0 ∈ Rn and a symmetric transformation
B ∈ GLn such that

(T φ)(x) = (Lφ)(Bx + v0)+ 〈x, v0〉 + C0.

We called these two properties “abstract duality”, so we may say that on the class Cvx(Rn)
there is, up to linear terms, only one duality transform, L.

Note that the linear terms which appear are obvious additions coming from the choice
of the origin and of a scalar product. In the rest of this note, we call two transforms
“essentially” the same if they differ by similar linear terms. In these terms, a duality
transform of Cvx(Rn) (i.e., a bijection with properties 1 and 2) is essentially the Legendre
transform.

Thus we see that the very concrete definition above is not ad hoc, and if one wants
an order reversing transform on Cvx(Rn) (the condition of involution can be relaxed
somewhat) there is no other choice but to define the transform in this way.

There are two different approaches to duality in convex geometry. One is through the
notion of the “polar body”: Let

K0(Rn) = {all closed convex sets in Rn containing 0}

(we omit the notation Rn and simply write K0 when the dimension is clear). Fix a scalar
product 〈·, ·〉 in Rn. Then the polar body of K ∈ K0 is defined by

K◦ = {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K} ∈ K0.

In the other approach, one defines the supporting function of K , hK(x) = supy∈K 〈x, y〉,
which is 1-homogeneous, non-negative, and convex. Clearly the approaches are equiv-
alent as K◦ = {x : hK(x) ≤ 1}. Define H0 to be the family of all 1-homogeneous,
non-negative, and convex functions.

We embed K0(Rn) in Cvx(Rn) by

K 7→ 1∞K =

{
0, x ∈ K,

+∞, otherwise.

The polarity map P : {1K : K ∈ K0} → {1K : K ∈ K0} given by P(1∞K ) = 1∞K◦ is
essentially the only order reversing bijection on this class, and the support map S : {1K :
K ∈ K0} → H0 given by S(K) = hK is essentially the only order reversing bijection
between these classes (see below for exact statements and references).

In this paper, we show that when one considers the class Cvx0(Rn) of non-negative
lower-semicontinuous convex functions f : Rn → [0,∞] which take the value 0 at 0,
there is a unique extension of S to this class, which is the Legendre transform, and, more
surprisingly, there is a unique extension of the geometric polarity P to Cvx0(Rn). This
last extension is given by a new duality transform on Cvx0(Rn), which we callA. So, the
Legendre transform which we usually call “duality” for convex functions actually repre-
sents the support map on this class, whereas geometric polarity for convex functions is
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represented by the new map A. Note that the support map/Legendre transform is defined
on all of Cvx(Rn), in the same way as the support map is actually defined for all convex
bodies, not necessarily including 0, whereas the same is not true for A (or, correspond-
ingly, for geometric polarity).

Thus, when considering the subclass Cvx0(Rn) of Cvx(Rn), instead of the whole
class, for questions of duality, the situation is drastically different. We name Cvx0(Rn)
the “geometric convex functions”. It is an invariant subclass of Cvx(Rn) under L, so that
L acts as abstract duality on it (that is, an order reversing involution). However, one now
has another, very different, transform A which acts on Cvx0(Rn) as abstract duality (and
which cannot be extended to all of Cvx(Rn)). This new transform has the potential of
being just as useful as L (and, as we will see, in some cases more useful) whenever the
class one is interested in does not consist of all convex functions, but only non-negative
ones with f (0) = 0. We define A in Section 2, and name it “geometric duality”, as we
show that it is more suitable for some geometric problems.

We also show that there still remains a uniqueness property, namely these two trans-
forms, A and L, are essentially (up to linear terms) the only duality transforms on
Cvx0(Rn). This is stated in Theorem 2 proven in Section 6.

The new transformA has interesting geometric properties, some resembling the prop-
erties of the well studied Legendre transform L, and some quite different. We also study
the order preserving transform LA, which is essentially the only injective order preserv-
ing (in both directions) transform on Cvx0(Rn) other than the identity transform Id. In
particular, we will see that this implies the commutation relation LA = AL. Since this
transform also plays a special role in this paper, we give it a name,J , and study its proper-
ties. We will see below that an appropriate name for this transform is “gauge transform”,
and it gives an interpretation of what it could mean to be the gauge function of a convex,
or, after a suitable correction, log-concave, function (rather than a convex body).

The new transform A, together with the Legendre transform L, allow us to see new
“hidden” structures on the class of convex functions on Rn. The classical notion of “sup-
port function” and “Minkowski functional” for a convex set play a central role in con-
vexity theory and correspondingly in geometric inequalities. The standard definition of
these two notions uses very strongly the geometry of the convex body to which they are
related (the support function is defined using supporting hyperplanes of the body, and
the Minkowski functional is defined to be the 1-homogeneous function with “unit ball”
equaling the body). After showing that the two notions may be alternatively defined in the
language of order preserving or order reversing transformations, a language equally ap-
plicable to functions as to bodies, these two central notions may be extended to the class
of geometric log-concave functions in a very natural (and, as we will see, unique) way.
We believe, and in some cases know already, that this extension will lead to functional
versions of many geometric inequalities, which is one of the goals of such extensions.
However this is outside the realm of this paper, and will be developed elsewhere. (We
remark that some such extensions for operations involving L were done earlier: see [2],
[13] and [12]; in particular, the Santaló inequality was proved in [2] for the duality in-
volving L. A variant of the Santaló inequality which involves A also exists, and will be
presented in a forthcoming paper.)
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The paper is organized as follows. In Section 2 we define the new transformA, discuss
some of its simple properties, and also very briefly discuss the transform J = LA.
In Section 3 we state the main uniqueness theorems, for L and A, and for J , and a
simple corollary. In Section 4 we give the geometric interpretation of the transform A.
Section 5 includes some more calculus of the three transforms, and an elaboration of
simple properties of J . In Section 6 we provide the full proof of the uniqueness result,
which is divided into many steps. In Section 7 we restate some of the theorems in the
language of log-concave functions, where there is a new geometric meaning to them,
and some new geometric operations can be defined and analyzed. In Section 8 we give a
simple example of a class which exhibits no duality transform. In Section 9 we discuss a
class for which only A acts as duality, and in the last section 10 we discuss the geometric
operations of support map and Minkowski map. We show that they can be defined by
inequalities rather than concrete geometric constructions, and therefore can be naturally
extended, and in a unique way, to the class Cvx0(Rn).

2. The new transforms: definition and first properties

2.1. Defining A

Consider the following transform, defined on Cvx0(Rn):

(Af )(x) =


sup

{y∈Rn:f (y)>0}

〈x, y〉 − 1
f (y)

if x ∈ {f−1(0)}◦,

+∞ if x 6∈ {f−1(0)}◦
(2)

(with the convention sup ∅ = 0). Note that although A implicitly depends on the dimen-
sion n, we do not complicate notation, and use the same letter A for all dimensions.

Note also that for x 6∈ {f (y) = 0}◦ (the second case), there is some y ∈ Rn with
f (y) = 0 and with 〈x, y〉 > 1, so that formally, we can simply let

(Af )(x) = sup
y∈Rn

〈x, y〉 − 1
f (y)

where we define +0 = +∞ (and 0
0 = 0, say). The only exception is that for this definition

to work for the identically 0 function we would need to set −0 = (
−

0 )+ = 0.

2.2. Simple properties of A

1. Order reversing. The transform A is order reversing: if f ≤ g then Af ≥ Ag.
Indeed, if f ≤ g then {y : g(y) = 0} ⊂ {y : f (y) = 0} and so {y : f (y) = 0}◦ ⊂ {y :
g(y) = 0}◦. It is thus clear from the definition that Af ≥ Ag.

2. Involution. One may directly compute that for all f ∈ Cvx0(Rn)we haveAAf = f .
However, this will follow very easily from the geometric interpretation of A in Sec-
tion 4 below.
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These first two properties, when valid for a mapping from a class S of functions to itself,
are what we call “abstract duality” on the class S (see for example the papers [3] or [4]).
The two properties are valid, as noted above, also for the Legendre transform L. Thus
we see that when one restricts the class Cvx(Rn) by requiring the functions to be non-
negative and attain the value 0 at 0, then unlike the case of Cvx(Rn), on Cvx0(Rn) there
are at least two, very different (as will be clear from the properties below) transforms.

Let us observe some more simple properties of A.

3. Homogeneity. For a > 0,

(A(af ))(y) = (1/a)(Af )(y)

and letting fa(x) = f (x/a) we have

(Afa)(y) = (Af )1/a(y).

Note that for L we have L(af ) = a(Lf )a and L(fa) = (Lf )1/a .
4. Action on norms. For any norm ‖ · ‖, we have

(A‖ · ‖)(x) = ‖x‖∗,

where ‖x‖∗ = sup{〈x, y〉 : ‖y‖ ≤ 1} is the dual norm. Indeed,

(A‖ · ‖)(x) = sup
y 6=0

〈x, y〉 − 1
‖y‖

= sup
y∈Sn−1

sup
t>0

t〈x, y〉 − 1
t‖y‖

= sup
y∈Sn−1

〈x, y〉

‖y‖
= ‖x‖∗.

The same is true also when ‖·‖ is a generalized norm, that is, it need not be symmetric
and may assume the values 0 and +∞.
From here onwards we let ‖ · ‖ stand for such a generalized norm, that is, a positively-
homogeneous convex function with values in R≥0∪{+∞} (so that its unit ball is some
closed convex set K , possibly unbounded, containing 0, possibly at its boundary, and
‖ · ‖ = ‖ · ‖K is called the Minkowski functional of the body K).
Note that for L we have

(L‖ · ‖)(x) = 1∞K◦(x)

where 1∞T , as defined also in the introduction, stands for the convex function which
is 0 on the convex body T and +∞ elsewhere, and K◦ is the polar body of the unit
ball of ‖ · ‖, namely

K◦ = {x : 〈x, y〉 ≤ 1 ∀ ‖y‖ ≤ 1} = {x : ‖x‖∗ ≤ 1}.

5. Action on powers of norms. For every power p > 1 we have

(A(‖ · ‖p))(x) =
(p − 1)p−1

pp
(‖x‖∗)p,

where the computation is almost identical to the case of p = 1. In particular,

A(‖ · ‖2/2)(x) = (‖x‖∗)2/2

for any generalized norm.
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Note that for L we have L(p−1
‖ · ‖

p) = q−1(‖ · ‖∗)q where 1/p+ 1/q = 1, that is,A
coincides with L on the subclass of 2-homogeneous functions, but for p-homogeneous
functions with p 6= 2 there is a dramatic difference between the two duality trans-
forms.
We remark that when the class consists of positive-2-homogeneous functions (squares
of generalized norms), which is an invariant subset with respect to both transforms
(A and L coincide on this subset), there is again just one duality transform, the stan-
dard duality of norms (for exact definitions and a proof of this result see [5]).

6. Action on indicators of convex sets. With the same notation as before, we have

A1∞K = 1∞K◦ . (3)

Again, this is very different from the behavior of L (since L1∞K = ‖ · ‖
∗ with ‖ · ‖∗

denoting the norm with unit ball K◦), and so we see that (3) is a property that cannot
hold for any duality transform on the whole of Cvx(Rn), but it does hold for A which
is a duality transform on the restricted class Cvx0(Rn). Actually, (3) shows that A
indeed extends the standard geometric duality for convex sets to the functional level,
and gives a first justification for the choice of the name “geometric duality” for A.

7. Action on norm-radial functions. For a convex function f (t) on R+ with f (0) = 0
and for any norm ‖ · ‖ we have A(f (‖ · ‖)) = (Af )(‖ · ‖∗) where the first transform
is on Rn and the second is the one-dimensional one, on the half-line R+ (one may
defineA on a cone instead of on the full linear space; we do this for R+ in Section 6.6).
Note that the same is true for L, namely L(f (‖ · ‖)) = (Lf )(‖ · ‖∗).

8. Kernel and support. For a convex lower-semicontinuous function f : Rn → R+ ∪
{+∞} we denote by Ker(f ) the subset on which f equals 0 (this is always a closed
convex set), and by supp(f ) the subset on which f is finite (this is a convex set,
but may not be closed; note that we do not take the closure of this set, though it is
sometimes more natural). That is,

Ker(f ) = {x : f (x) = 0}, supp(f ) = {x : f (x) <∞}.

Then

(Ker(Af ))◦ = supp(f ) and (supp(Af ))◦ = Ker(f ).

Clearly, by the involution property of A, we see that A is a bijection between all
functions with Ker(f ) = K and all functions such that supp(f ) = K◦.
For the Legendre transform we have the following property, slightly more difficult to
formulate:

(Lf )(x) ≥ sup
{y:f (y)=0}

〈x, y〉 = ‖x‖(Kerf )◦ ,

and if Lf ≥ ‖x‖T for every x, then T ◦ ⊂ Kerf . (That is, ‖x‖(Kerf )◦ is the largest
norm below Lf .) Similarly, the set (suppf )◦ is the largest set satisfying Lf ≤
‖ · ‖(suppf )◦ .
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2.3. Order preserving maps and the gauge transform

Instead of discussingA and L, we may discuss order preserving transforms on Cvx0(Rn).
One example of such a transform is, of course, the identity transform, or, more generally,
the transform which maps a function to a constant multiple of its composition with any
non-singular linear transformation. This kind of transform is bijective and order preserv-
ing, as is its inverse, and we call such a transform “essentially identity”.

However, when one has (as we do) two order reversing transformations, the two can be
composed to yield an order preserving transformation, and if the two original transforms
differ by more than mere linear terms, the new transform will be “essentially” different
from the identity.

In fact, if we eliminate the condition of involution, and only require the transforms to
be bijective, the discussion of order preserving transformations is equivalent to the dis-
cussion of order reversing ones, since any order reversing transform, when composed,
say, with L, turns into an order preserving one, and vice versa. In particular, a complete
description of order reversing maps on Cvx0(Rn) would also provide a complete descrip-
tion of order preserving maps, as we will indicate below. (In fact, in most of our proofs it
will be easier to work with order preserving maps).

We thus define a new order preserving transformation by

J f = LAf.

Of course, we may also define an order preserving transformation by f 7→ ALf ,
and it can be computed and seen to give the exact same result, a fact which will follow
easily, with hardly any need for computations, from the uniqueness theorem below. This
is explained in Section 3.

The formula for J can be computed, and has the following form:

(J f )(x) = inf {r > 0 : f (x/r) ≤ 1/r}

(where the infimum of an empty set is +∞).
It might not be a priori clear why the resulting function is convex. This will, however,

be immediate from the geometric interpretation for J which we will give below (and
can also be verified directly). We delay the discussion of the simple properties of J
to Section 5, but the reader may easily find its properties corresponding to those of A
above. One of these properties, which we mention here and elaborate on later, is that this
transform, although quite different from the identity, still shares with it the very special
property, that it acts “ray-wise”, i.e., its values on a given ray depend only on the values
of f on this ray.

In other words, the way L “mixes” Rn and the way A does, cancel each other, so that
J = LA acts on each ray separately: If for some ray R = R+y we have f |R = g|R then
also J f |R = J g|R .

Note that
J 1∞K = LA1∞K = L1∞K◦ = ‖ · ‖K ,

which explains why the name “gauge transform” or “gauge map” is appropriate for J .
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3. The uniqueness theorem

It turns out that the second form, A, of duality for the class Cvx0(Rn) is the only option
other than L:

Theorem 2. Let n ≥ 2. Any order reversing involution T : Cvx0(Rn)→ Cvx0(Rn) is of
the form either T f = (Lf ) ◦B or T f = C0(Af ) ◦B for some symmetric B ∈ GLn and
C0 > 0.

In the one-dimensional version a similar theorem holds; however, because Cvx0(R) is a
direct product of Cvx0(R+) with itself (the point 0, when f (0) = 0, disconnecting the
two parts), the mapping can act in two different ways on each part, and can also switch
the two parts. So, there are eight possible variants, listed in the following one-dimensional
theorem which in turn will be a consequence of the theorem for Cvx0(R+)which is stated
as Theorem 17 in Section 6.6 below.

Theorem 3. Any order reversing involution T : Cvx0(R) → Cvx0(R) has one of the
following forms, for some α, β, γ > 0:

1. (T f )(x) = α(Af )(βx),
2. (T f )(x) = (Lf )(βx),
3. (T f )(x) = α(Af )(−βx),
4. (T f )(x) = (Lf )(−βx),
5. (T f )(x) = α(Af )(βx) for x > 0 and (Lf )(γ x) for x < 0,
6. (T f )(x) = (Lf )(βx) for x > 0 and α(Af )(γ x) for x < 0,
7. (T f )(x) = α(Af )(−βx) for x > 0 and (Lf )(−γ x) for x < 0,
8. (T f )(x) = (Lf )(−βx) for x > 0 and α(Af )(−γ x) for x < 0.

As in the case of Cvx(Rn), the condition of involution may be replaced by the weaker
condition that both T , which we assume to be 1-1 and onto, and its inverse, are order
reversing, in which case we get the same conclusion but where B need not be symmetric.

Remark. When we write below that a bijective transformation T is order preserving
(respectively reversing) “in both directions”, we mean that both T and T −1 are order
preserving (respectively reversing).

Theorem 4. Let n ≥ 2. Any bijective transform T : Cvx0(Rn) → Cvx0(Rn) which is
order reversing in both directions is either of the form T f = C0(Lf ) ◦ B or of the form
T f = C0(Af ) ◦ B for some B ∈ GLn and C0 > 0.

For order preserving maps we of course have a similar fact, and Theorem 4 will be derived
as a corollary from the following

Theorem 5. Let n ≥ 2. Any bijective transform T : Cvx0(Rn) → Cvx0(Rn) which is
order preserving in both directions is either of the form T f = C0f ◦ B or of the form
T f = C0(J f ) ◦ B for some B ∈ GLn and C0 > 0.
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We leave it to the interested reader to state the one-dimensional results when the condition
of involution is relaxed, and when order reversal is exchanged with order preservation.

We end this section with a simple corollary. One can compute directly thatLA = AL.
This is completely equivalent to the fact that J is an involution, since LAAL = LL
= Id. However, one can also see this as a corollary from Theorem 5. Since AL is order
preserving, it must be either of the form C0J f ◦B or C0f ◦B. However, since we know
that AL‖ · ‖K = 1∞K for every K , it must be of the first form, and also then clearly
B = Idn, and since AL1∞K = ‖ · ‖K , it follows that C0 = 1. We have thus shown

Corollary 6. For any function f ∈ Cvx0(Rn) we have

J f = LAf = ALf

or, in other words, JJ = Id.

4. Geometric interpretations

Some of the basic properties of A (and also of J ) can be understood more clearly when
one sees the geometry behind them. In fact, the geometric interpretation indicates that
A is perhaps a more natural candidate for “duality” than L (this can also be seen from
property 6 of A in Section 2.2).

We begin with a short introduction. There are two different and natural ways to asso-
ciate to a function φ ∈ Cvx0(Rn) a closed convex set in Rn+1 which is contained in the
upper half-space Rn × R≥0, and contains the ray {0} × R≥0. One way is to consider the
epigraph of the function,

epi(φ) = {(x, r) : r ≥ φ(x)}.

Another is to extend φ from the hyperplane {(x, 1) : x ∈ Rn} homogeneously for (x, r)
with r > 0, and to take the closure of the unit ball of the generalized norm obtained by
this procedure. This gives

Kφ = {(x, y) ∈ Rn × R : y > 0 and φ(x/y) ≤ 1/y}.

The resemblance of the definition of this set to the definition of J is no accident.
Note that duality-and-reflection acts invariantly on this class of convex subsets

of Rn+1, namely if K is in the class then so is

{(x,−r) : (x, r) ∈ K◦} =: ref(K◦).

Here for S ⊂ Rn × R, we let ref(S) stand for its reflection with respect to the subspace
spanned by the first n coordinates.

It is an easy exercise to verify that the reflection of the polar of epi(φ) with respect
to Rn is the epigraph of Aφ, that is,

epi(Aφ) = {(x,−r) ∈ Rn × R≥0 : (x, r) ∈ (epi(φ))◦} = ref((epi(φ))◦).
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It is also not difficult to check that the same is true for the second description, that is,

KAφ = {(x,−r) ∈ Rn × R≥0 : (x, r) ∈ K◦φ} = ref(K◦φ).

In particular, the involution property of A follows immediately from either of the two
descriptions.

So, if we stick to one such mapping between Cvx0(Rn) and this class of convex sets,
then up to reflection, A is the classical convex-geometric duality for sets.

The connection between the two descriptions is given by J , namely the relation
epi(ϕ) = Kψ gives an order preserving correspondence ψ ↔ ϕ (which is an involu-
tion), and this is precisely ϕ = Jψ . That is,

J φ = LAφ = epi−1(Kφ) and KLAφ = epi(φ).

We remark that from this one gets a geometric interpretation for the Legendre trans-
form L on Cvx0(Rn) (which seems less natural), for example

Lφ = epi−1(ref(K◦φ)).

Another interesting property of the transform J , which also gives it a geometric
meaning, is the following. The transform J , as acting on epigraphs in Rn × R+, is in
fact induced by a point map. More precisely, if we let (for x ∈ Rn, r > 0)

F(x, r) = (x/r, 1/r)

then, defining the open epigraph of f by Epi(f ) = {(x, r) : f (x) < r} (so that F will be
defined on this set) we have

F(Epi(f )) = {(x/r, 1/r) : f (x) ≤ r} = {(y, s) : f (y/s) < 1/s},

that is,
F(Epi(f )) = {(y, s) : sf (y/s) < 1},

which is exactly our definition of Epi(J f ). (The map F is not defined, and cannot be
extended, to r = 0, which is why, if we worked with epi(f ), we would need to consider F
only on the interior, and then after applying F , take the closure.)

The map F is a special map on Rn ×R+, which one may call fractional-linear, and it
is easily checked that it preserves all intervals, and thus as a map on sets it preserves con-
vexity (in another terminology it is called a “permissible projective transformation”). We
will discuss the family of such maps and the transforms they represent in more detail in
a forthcoming paper [1] where duality and order preservation of convex sets, and convex
functions defined in “windows” (that is, which lie in, or are defined on, subsets of Rn)
will be investigated.

Finally, we remark on a third way to view J . Let e stand for a unit vector in the
direction of R+, orthogonal to Rn where the function is defined. We claim that

ref(epi(J f )) = ((epi(f )− e)◦ + e)◦ − e.
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Transferring this knowledge to L, we see a funny description for the Legendre transform
on the class Cvx0(Rn) (the reflections in A and J cancel):

epi(Lf ) = (((epi f )◦ + e)◦ − e)◦ + e.

Similarly,
epi(Lf ) = (((epi f − e)◦ + e)◦ − e)◦.

By using the other interpretation for J , we can see that defining (for r < 0)

G(x, r) = (x/r,−1/r)

we have, for f ∈ Cvx0(Rn),

epi(Lf ) = G((epi(f ))◦)

(here, again, we do not apply G to (x, r) with r = 0). In other words, the Legendre
transform is, too, a variant of the usual duality for sets, but combined with the fractional
linear map G.

5. More calculus of the new transforms

Recall the definition of the inf-convolution of two functions φ,ψ ∈ Cvx(Rn), given by

(φ � ψ)(z) = inf
x+y=z

(φ(x)+ ψ(y)).

It is easily checked that the new function is convex as well. However, the lower-semi-
continuity may be violated; to simplify notation below, we will not use a different notation
for the lower-semicontinuous regularization of the above defined function, and still denote
it by φ � ψ . Under this convention, it is easily verified that for φ,ψ ∈ Cvx0(Rn), also
φ � ψ ∈ Cvx0(Rn).

The Legendre transform exchanges the operation of inf-convolution with usual sum-
mation:

Lφ + Lψ = L(φ � ψ).

The operation � has a simple geometric meaning: it is the function whose epigraph cor-
responds to the Minkowski sum of the epigraphs of the original functions:

epi(φ � ψ) = epi(φ)+ epi(ψ).

Indeed,

epi(φ)+ epi(ψ) = {(x, y) : x = x1 + x2, y ≥ φ(x1)+ ψ(x2)}

= {(x, y) : y ≥ inf
x1+x2=x

(φ(x1)+ ψ(x2))} = epi(φ � ψ).

Here one should be again careful, as the Minkowski sum of two closed sets need not be
closed; thus, the following identity holds only for the regularized inf-convolution:

Lφ � Lψ = L(φ + ψ),
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and correspondingly
epi(L(φ + ψ)) = epi(Lφ � Lψ).

Since the epigraph description is one of two equally natural ways to associate a convex
set of the aforementioned special form (a closed convex set which lies in the half-space
Rn × R≥0 and includes the ray {0} × R≥0), we can define another kind of “convolution
of functions” by taking the Minkowski sum of the two setsKφ andKψ , and letting φ �ψ

be defined by the relation
Kφ�ψ = Kφ +Kψ .

Indeed, we then actually see that

epi(J (φ � ψ)) = Kφ�ψ = Kφ +Kψ = epi(J φ)+ epi(Jψ) = epi(J φ � Jψ).

Thus we have the relations

J φ � Jψ = J (φ � ψ) and φ � ψ = J ((J φ) � (Jψ))

which could also serve as a definition, and by a change of variables, implies

Aφ �Aψ = A(φ + ψ).

By the involution property of A, this implies that also

Aφ +Aψ = A(φ � ψ).

We thus see that theA transform exchanges the operation of �-convolution with usual
summation, just as L exchanges �-convolution (i.e., inf-convolution) with usual summa-
tion. We will call the operation of �-convolution “geometric-inf-convolution” or “g-inf-
convolution” (where “g” can also stand for “gauge”).

To understand better the operation of g-inf-convolution, let us compute several ex-
amples. For two closed convex sets K1 and K2 containing 0,

‖ · ‖K1 � ‖ · ‖K2 = (A‖ · ‖
∗

K1
) � (A‖ · ‖∗K2

) = A(‖ · ‖∗K1
+ ‖ · ‖

∗

K2
) = ‖ · ‖K1+K2 .

Compare this with

‖ · ‖K1 � ‖ · ‖K2 = L(1
∞

K◦1
+ 1∞K◦2 ) = L(1

∞

K◦1∩K
◦

2
) = ‖ · ‖(K◦1∩K

◦

2 )
◦ = ‖ · ‖conv(K1∪K2).

Similarly, 1∞K1
� 1∞K2

= 1∞
conv(K1∪K2)

, which can be compared with 1∞K1
� 1∞K2

= 1∞
K1+K2

.
We end this section with a list of some simple properties of J .

1. Order preserving. Obviously, J is order preserving: if f ≤ g then J f ≤ J g.
2. Involution. One may directly compute that JJ f = f . It is deduced as Corollary 6,

and also follows very easily from the geometric interpretation of J in Section 4.

We remark that the two properties listed above, in the case of Cvx(Rn), characterize
the à-la-identity transforms, which must be of the form f 7→ f ◦ B for some B ∈ GLn
with B ◦ B = Id. The surprising fact is that when one restricts the class, not by much,
to Cvx0(Rn), exactly one new transform, very different from the identity, satisfying these
properties, emerges: J .
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3. Preservation of max and min. Because J is order preserving and bijective it is easy
to see that

J (max(f, g)) = max(J f,J g) and J (m̂in(f, g)) = m̂in(J f,J g)

where as usual m̂in(f, g) denotes the largest function in the class which is below both
f and g. A similar statement holds for sup and ˆinf of an arbitrarily large family of
functions.

4. Homogeneity. For a > 0,

J (af )(y) = (1/a)(J f )a(y), J (fa)(y) = (J f )a(y).

5. Action on norms. For any norm ‖ · ‖, we have

(J ‖ · ‖)(y) = 1∞K ,

where as before K is the unit ball {x : ‖x‖ ≤ 1} and 1∞K is the convex function attain-
ing 0 on K and +∞ elsewhere. Here ‖ · ‖ is a generalized norm, so that for example
one can check that (letting R+z denote the ray emanating from 0 in direction z)

J (1∞[0,z])(x) =
{
x/z, x ∈ R+z
+∞, otherwise

(= ‖x‖[0,z]).

6. Action on powers of norms. In fact, for every power p ≥ 1 we have

J (‖ · ‖p) = ‖ · ‖q

where 1/p+1/q = 1. In particular, J (| · |2/2)(y) = (1/2)|y|2 and J (‖ · ‖2/2)(y) =
‖y‖2/2 for any generalized norm. That is, J coincides with the identity transform on
the subclass of 2-homogeneous functions, but for p-homogeneous functions p 6= 2
these are very different transforms.

6. Ray-wise action. This property is clear from the definition of J , but is worth stating
explicitly none the less: if for some ray R = R+y we have f |R = g|R then also
J f |R = J g|R .

6. Proof of the uniqueness theorem

In this section we prove Theorem 2 which states that if a transform on Cvx0(Rn) satisfies
abstract duality, it must be, up to a choice of coordinates, either A or L.

We will relax the involution condition, as mentioned in Section 3, and concentrate first
on the proof of Theorem 4, that a bijective transformation on Cvx0(Rn) which is order
reversing, and so is its inverse, must be L or A up to linear terms. Theorem 2 will follow
easily from Theorem 4. A theorem completely equivalent to Theorem 4 is Theorem 5,
stating that if a bijective transform on Cvx0(Rn) is order preserving, and so is its inverse,
then it is essentially either the identity or J = LA.
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Note that, since J is an involution, we see in particular that all bijective order pre-
serving (in both directions) maps are essentially involutions, as are all order reversing
maps. In particular, there is no order reversing map which is the “square root” of J , and
in the category of bijective maps which preserve comparability of functions, as do their
inverses, there are, essentially, only four roots of identity, all of them of order 2 (we will
not elaborate on this fact in this paper).

6.1. First simple observations

We recall the following lemma, which is standard in the framework of ordered sets, and
which says that in the case of order preserving transformations, minimum is mapped
to minimum and maximum to maximum. Here minimum should be understood in the
sense of partial order, the largest function in the class which is less than all the functions
participating in the minimum. More precisely, we let ˆinf(fα) stand for sup{g : g ≤ fα ∀α}
and note that this supremum is attained and belongs to Cvx0(Rn).

Lemma 7. If T : Cvx0(Rn)→ Cvx0(Rn) is a bijective transformation, order preserving
in both directions, that is,

1. φ ≤ ψ implies T φ ≤ T ψ ,
2. T φ ≤ T ψ implies φ ≤ ψ ,

then T (sup(fα)) = sup(T fα) and T ( ˆinf(fα)) = ˆinf(T fα).

Lemma 7 was proved in a more general setting for example in [5, Lemma 4].
We will later use the term positively-linearly-independent to mean x and y such that

x 6= ty for any t ≥ 0. We use R+x to denote the ray {tx : t ≥ 0}. Also, we recall that the
support of a function f ∈ Cvx0(Rn) is defined to be the set of points x where f (x) 6= ∞,
in particular 0 is always a point in the support. (Note that we do not take the closure of the
set of finitely valued points, and in general this convex set need not be closed). When we
say that a function is supported on a certain set, we mean that its support is included in the
set (as opposed to saying that its support is a certain set, which means the support equals
the set). Note that the only function in Cvx0(Rn) with support {0} is 1∞

{0}, the function
which is 0 at 0 and +∞ elsewhere.

We begin by an almost trivial fact, that the smallest function in the class Cvx0(Rn),
the constant function 0, and the largest function, 1∞

{0}, are fixed points for T .

Lemma 8. If T : Cvx0(Rn)→ Cvx0(Rn) is a bijective transformation, order preserving
in both directions, then T 1∞

{0} = 1∞
{0} and T 0 = 0.

Proof. 1∞
{0} is the largest function in the class, and 0 the smallest, that is, any f ∈

Cvx0(Rn) satisfies 0 ≤ f ≤ 1∞
{0}. Therefore, any g = T f satisfies T 0 ≤ g ≤ T 1∞

{0}, in
particular g = 0 and g = 1∞

{0} (we are using the assumption that T is onto), which implies
T 1∞
{0} = 1∞

{0} and T 0 = 0. ut

Remark. Although conditions 1 and 2 above are similar, they are by no means equiva-
lent, even under the assumption of bijectivity. Indeed, one may present a bijective map
T : Cvx0(Rn) → Cvx0(Rn) which satisfies condition 1 and does not satisfy 2. An
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example is the following: for a function with bounded support, let T f = 2f , and for
a function with unbounded support, let T f = f . Then if f ≤ g and both are of bounded
support, or both of unbounded support, then clearly also T f ≤ T g. Also, if f ≤ g then
it cannot be that f is of bounded support and g is of unbounded support, so the only
option left is that f is of unbounded support and g of bounded support, in which case
T f = f ≤ g ≤ 2g. So, condition 1 holds. On the other hand, it is easy to construct
two functions f 6≤ g and f ≤ 2g where f is of unbounded support and g is of bounded
support (simply take f = 2g on a bounded region which will be the support of g), so that
condition 2 does not hold for this simple transform—which is clearly non-linear.

6.2. Acting on rays

We next prove a lemma which suggests that the one-dimensional case (in fact, the case of
functions on R+) is almost identical to the n-dimensional one. Indeed, Theorem 5 will be
later proved with the aid of such a restriction.

Lemma 9. If T : Cvx0(Rn)→ Cvx0(Rn) is a bijective transformation, order preserving
in both directions, then there is a bijection 8 : Sn−1

→ Sn−1 such that any function
supported on R+y is mapped to a function supported on R+z for z = 8(y). Moreover,
the function 1∞R+y is mapped to the function 1∞R+z.

As a corollary such a transform must act ray-wise, namely the resulting function’s value
at a point z depends only on the values of f on the ray R+x for x = 8−1z. Indeed,
the values of T f on R+z are the same as the values of max(T f,Rz) where Rz denotes
the function which is 0 on R+z and +∞ elsewhere. This maximum is the image of the
function max(f, Ry) because T Ry = Rz (each being the smallest function supported
on the corresponding ray). Since max(f, Ry) does not depend on the values f attains
outside Ry , our claim follows. We remark that if we were to prove the theorem directly
for order reversing transformations then we would “miss” this ray-wise behavior, and get
a transform A (or L) which, when combined with L, miraculously acts ray-wise.

Notice that for any two non-zero positively-linearly-independent vectors x, y ∈ Rn
we can construct two functions fx and fy supported on R+x and R+y, respectively, such
that max(fx, fy) = 1∞

{0}, and thus also max(T fx, T fy) = 1∞
{0}, which means that they

are supported on different sets. Later we will show that 8 must be linear. For now we
prove Lemma 9.

Proof of Lemma 9. For two functions f, g to have max(f, g) = 1∞
{0} they must be sup-

ported on two sets whose intersection equals {0}. A function with support in a line cannot
be mapped to one whose support includes two positively-linearly-independent points be-
cause then T −1 would map two functions whose supports intersect at {0} only, to func-
tions supported on the same ray—impossible. Thus functions supported on a given ray are
all mapped to functions supported on another fixed ray. From invertibility, we see that this
defines a mapping 8 : Sn−1

→ Sn−1 which is 1-1 and onto. Moreover, the function Rx
which is constant 0 on the ray R+x and+∞ elsewhere is the smallest function supported
on the ray, and hence is mapped (by surjectivity) to the smallest function supported on
the ray R+8(x), which is Rφ(x). The proof is complete. ut
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6.3. Convex functions on one ray

So far, we see that the one-dimensional (half-line) case will determine more or less every-
thing, up to understanding which 8 can arise in Lemma 9, and how the “free variables”
allowed for each ray-transform fit together. We thus restrict our attention to dimension
one (in fact, to a half-line) for a while.

In the case of all convex functions (see [4]), the functions which played a key role
were the à-la-delta functions, 1∞

{u}, assuming the value 0 at u and infinity elsewhere, and
the linear functions lu(x) = 〈u, x〉. The first have the property that any two functions
above 1∞

{u} are comparable, a property holding only for functions of the form 1∞
{u} + C,

and the second have the property that any two functions below lu are comparable, again a
property holding only for functions of the form lu + c.

Since both these classes of functions are outside Cvx0(Rn) (except for the special
functions 1∞

{0} and 0, whose behavior we already determined), we need a slightly more
complicated property. However, we take advantage of considering just one dimension.
Consider the following property of a function f ∈ Cvx0(R+) which we call (P): There
exist no two functions g, h ∈ Cvx0(R+) such that g 6≥ f and h 6≥ f but max(g, h) ≥ f .
We claim that the only two classes of functions satisfying (P) are the following:

(a) 1∞[0,z] which equals 0 on [0, z] and +∞ elsewhere.
(b) lz(t) = tz.

Let us prove this fact.

Lemma 10. The only functions in Cvx0(R+) satisfying (P) are either of the form 1∞[0,z]
for some z ∈ R+ or of the form lz for some z ∈ R+.

Proof. It is easy to check that both families satisfy (P). To show that any function satis-
fying (P) must be of one of the two forms, we first show that if f ∈ Cvx0(R+) assumes
some value 0 < c 6= ∞, it must be linear. Indeed, assume f (x) = c. Consider the func-
tion 1∞[0,x] equal to 0 in [0, x] and +∞ elsewhere. Then (since 1∞[0,x](x) = 0 < f (x)) we
have 1∞[0,x] 6≥ f . Consider the function Lx(y) = y · c/x. Then, on [0, x], we must have
f ≤ Lx from the convexity of f . In particular, since 1∞[0,x] ≥ f outside of [0, x], we see
that max(1∞[0,x], Lx) ≥ f , and so, by (P), f = Lx , that is, f is of the form (b). The only
other option is that f assumes only the values 0 and +∞, which implies it must be of the
form (a). ut

Lemma 11. If T : Cvx0(R+) → Cvx0(R+) is a bijective transformation, order pre-
serving in both directions, then either it maps all functions in the family (a) to functions
in the family (b) and vice versa, or it maps all functions in the family (a) to functions in (a)
and likewise the family (b) to itself.

Proof. First, property (P) is preserved under T . Indeed, if there exist two functions g, h ∈
Cvx0(R+) such that g 6≥ T f and h 6≥ T f but max(g, h) ≥ T f , then the functions T −1g

and T −1h contradict (P) for f . So, the family of functions satisfying (P) is mapped to the
same family, and by Lemma 10 this is the family of functions of the form either (a) or (b).
Since T −1 shares the same properties as T , the map is surjective.
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Secondly, all the functions of the form (a) are comparable to one another and all
functions of the form (b) are comparable to one another, but no function (a) is comparable
to a function (b) (by f and g comparable we mean that either f ≤ g or g ≤ f ). Hence,
once we know that one function of the form (a) is mapped to a function of the form (a)
then all of them must be, and likewise if one function of the form (a) is mapped to a
function of the form (b). ut

In this last lemma, a dichotomy, not apparent at first sight, appears. We have two very
different possibilities, one corresponding to the identity transform (which clearly maps
functions of the form (a) to functions of the same form, and likewise for (b)), and the other
possibility corresponds to the transform LA, which—as can be checked—maps functions
of the form (a) to functions of the form (b) and vice versa. Despite this dichotomy, in the
statement of the next lemma we do not need to separate the two cases.

Define the “triangle” functions (for later use, we define them in Rn for any dimen-
sion n) for z ∈ Rn, z 6= 0, and c > 0 by

�z,c(x) =

{
cx if x ∈ [0, z],
+∞ otherwise.

Lemma 12. If T : Cvx0(R+) → Cvx0(R+) is a bijective transformation, order pre-
serving in both directions, then it maps each triangle function �z,c to a triangle function
�z′,c′ (with z′ = z′(z, c) and c′ = c′(z, c)).

Proof. This follows easily from the last lemma, since a triangle is the maximum of a
function of the form (a) and a function of the form (b), so that, using Lemma 7, in both
cases of Lemma 11, triangles are mapped to triangles. ut

6.4. Triangle functions

Before we determine where triangles go, we show that the full form of the transform is
determined by its behavior on triangles. We formulate this lemma in dimension n, but the
same proof applies for n = 1 and also for R+.

Lemma 13. Assume a bijective transform T : Cvx0(Rn)→ Cvx0(Rn) is order preserv-
ing in both directions, and there exist B ∈ GLn and C0 ∈ R+ such that for any z and c
we have

T (�z,c) = �B−1z,C0c
.

Then T is a variant of the identity transform defined by

(T φ)(x) = C0φ(Bx).

Similarly,

Lemma 14. Assume a bijective transform T : Cvx0(Rn)→ Cvx0(Rn) is order preserv-
ing in both directions, and there exist B ∈ GLn and C0 ∈ R+ such that for any z and c
we have
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T (�z,c) = �B−1z
|z|c

,
C0
|z|

.

Then T is a variant of the aforementioned transform J given by

(T φ)(x) = C0(J φ)(Bx).

Proof of Lemma 13. Any φ ∈ Cvx0(Rn) can be written as φ(x) = ( ˆinfy�y,φ(y))(x), so
that by Lemma 7 we have (T φ)(x) = ˆinfy(T (�y,φ(y)))(x), which equals

(T φ)(x) = ( ˆinf
y
(�B−1y,C0(φ(y))

))(x) = C0( ˆinf
z
(�z,φ(Bz)))(x) = C0φ(Bx). ut

Proof of Lemma 14. Consider the transform T J , which is also order preserving in both
directions. Let us show that T J satisfies the conditions of Lemma 13. Indeed,

T J (�z,c) = T (� z
c|z|
,1/|z|) = �B−1 z

c|z|
1/c|z| ,C0c

= �B−1z,C0c
.

Thus, T J φ = C0φ(Bx), and using the fact that J is an involution we get (T φ)(x) =
C0(J φ)(Bx) as claimed. ut

6.5. The mapping rule for triangles

We start by analyzing the case where functions of the form (a) are mapped to functions
of the same form, and likewise for the form (b). The second case will follow easily by
application of J . Clearly, a function φ : R+ → R+ for which T 1∞[0,x] = 1∞[0,φ(x)] is
bijective and increasing (so it is continuous as well). Similarly for the function c : R+→
R+ for which T (la) = lc(a).

Lemma 15. Assume a bijective transformation T : Cvx0(R+) → Cvx0(R+) is order
preserving in both directions. Assume, further, that for some increasing bijective function
φ : R+ → R+ we have T 1∞[0,x] = 1∞[0,φ(x)], and for another increasing bijective function
c : R+ → R+ we have T la = lc(a). Then there exist constants α, β > 0 such that
φ(x) = αx and c(a) = βa.

Proof. By assumption and Lemma 7 the triangle �z,a is mapped to �φ(z),c(a). Let 0 <
t < 1 and consider the function g = ˆinf(1∞[0,tz], la/(1−t)). Then g ≤ �z,a , and their graphs
have a common point (z, az), so that g 6≤ �z,a′ for any a′ < a (or, similarly, g 6≤ �z′,a

for any z′ > z).
The function g is mapped to ˆinf(1∞[0,φ(tz)], lc(a/(1−t))), which thus must be smaller than

�φ(z),c(a). In particular, we see that

(φ(z)− φ(tz))c(a/(1− t)) ≤ φ(z)c(a).

Further, we claim that there must be equality in this inequality, since if we replace c(a)
on the right hand side by any c < c(a), the opposite inequality holds.
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We get

1−
c(a)

c(a/(1− t))
=
φ(tz)

φ(z)
. (4)

In particular, the ratio φ(tz)/φ(z) does not depend on z, so it is the same as φ(t)/φ(1),
so that we may write

φ(tz) = φ(z)
φ(t)

φ(1)
. (5)

Note that, formally, we have proved (4) for t < 1. However, for t > 1 we let z′ = tz so
that

φ(tz)

φ(z)
=

1
φ(z′/t)
φ(z′)

=
1

φ(1/t)
φ(1)

=
1
φ(1)
φ(t)

=
φ(t)

φ(1)
,

where for the last but one equality we have used (5) with 1/t instead of t and t instead
of z (which we may, since 1/t > 1).

Equation (5), valid for all t, z > 0, together with the continuity of φ implies that φ is
of the form

φ(z) = αzγ

for some fixed α > 0 and γ .
The same is true for c(a): the ratio c(a)

c(a/(1−t)) does not depend on a, so it is the same

as c(1)
c(1/(1−t)) , so that we may write

c(sa) = c(s)
c(a)

c(1)
,

which applies also for s > 1 by the same argument given for (5) above, and it implies that
for some β > 0 and γ ′ we have

c(a) = βaγ
′

.

Next, by the identity (4) above, for all t > 0,

1− (1− t)γ
′

= tγ ,

which can hold for all t only if γ = γ ′ = 1. ut

Next we analyze the case where functions of the form (a) are mapped to functions of the
form (b), and vice versa. Luckily, we know one transform which indeed works this way,
and we may use it (and the fact that it is an involution), together with the previous lemma,
to give a simple proof of the following lemma.

Lemma 16. Assume a bijective transformation T : Cvx0(R+) → Cvx0(R+) is order
preserving in both directions. Assume, further, that for some increasing bijective function
c : R+ → R+ we have T 1∞[0,x] = lc(x), and for another increasing bijective function
φ : R+ → R+ we have T la = 1∞[0,φ(a)]. Then there exist constants α, β > 0 such that
φ(a) = β/a and c(x) = α/x.
Proof. Apply J , so that J T 1∞[0,x] = 1∞[0,1/c(x)] and J T la = l1/φ(a). (Note that we are
using the properties of the transform J , which were studied in Section 5, specifically
property 3: homogeneity of degree −1). We may thus apply, to the new transform J T ,
Lemma 15, and we see that c(x) = α/x and φ(a) = β/a. ut
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6.6. The theorem on a ray

Let us regroup what we have shown so far. First, we have all the ingredients for the
following one-dimensional theorem.

Theorem 17. If T : Cvx0(R+) → Cvx0(R+) is a bijective transformation, order pre-
serving in both directions, then there exist constants α, β > 0 such that either (à-la-
identity) for every φ ∈ Cvx0(R+),

(T φ)(x) = βφ(x/α),

or (à-la-J ), for every φ ∈ Cvx0(R+),

(T φ)(x) = β(J φ)(x/α).

Proof. Given such a T , we use Lemma 11 to deduce that there are two options: either all
functions of the form (a) are mapped to functions in the family (b), and likewise (b) to (a),
or T maps all functions in (a) to functions in (a), and likewise the family (b) to itself. Let
us start with the second option (which we call à-la-identity). We then infer, by Lemma 15
and the discussion before it, that there exist constants α, β > 0 such that T 1∞[0,x] = 1∞[0,αx]
and T la = lβa . Using Lemma 7 we see that T (�z,a) = �αz,βa for every z and a in R+.
We then use Lemma 13 to get (T φ)(x) = βφ(x/α). The other case is when the families
(a) and (b) are interchanged. Lemma 16 implies that T 1∞[0,x] = lα/x and T la = 1∞[0,β/a].
Using Lemma 7 we see that T (�z,a) = �β/a,α/z, which by Lemma 14 implies that
(T φ)(x) = α(J φ)(x/β). ut

6.7. Completing the proof in n dimensions

We turn next to the higher dimensional case, namely when T : Cvx0(Rn) → Cvx0(Rn)
and n ≥ 2. We know, by Lemma 9, that there is some (bijective) 8 : Sn−1

→ Sn−1

such that any function supported on R+y is mapped to a function supported on R+z for
z = 8(y). Moreover, the function 1∞R+y is mapped to the function 1∞R+z. Thus, for each

y ∈ Sn−1 we actually have a mapping from Cvx0(R+y) (which is isometric, say via I1,
to Cvx0(R+)) to Cvx0(R+8(y)) (again isometric, say via I2, to Cvx0(R+)). So we may
apply Theorem 17 to the transform I2 ◦ T ◦ I−1

1 , and deduce that there are constants βy
and αy for which the conclusion of Theorem 17 holds.

Our goal now is first to show that the same option of Theorem 17 holds for all y ∈
Sn−1 (that is, the transform is either à-la-identity for all y’s, or à-la-J for all y’s), and
secondly that we can specify which αy , βy and 8 can occur.

Let us remark that since 8 clearly sends cones to cones (that is, spherically-convex
sets on the sphere to spherically-convex sets on the sphere), and also preserves, on the
sphere, intersections and convex hulls of unions of cones (by Lemma 7: simply take func-
tions which are 0 on the cone spanned by the set; the intersection is then given by the
supremum, and the convex hull by ˆinf). Thus, in dimension higher than 2, we can use the
theorem of Schneider [17] to deduce that 8 must be linear (as acting on cones). Instead,
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we give an independent proof which works also for lower dimensions, and to this end we
will invoke the full structure of our set Cvx0(Rn).

For the first step, we associate to each y the number j (y) which is 1 if I2 ◦ T ◦ I−1
1

is à-la-J (that is, I2 ◦ T ◦ I−1
1 φ = αy(J φ)(x/βy) and 0 if it is à-la-identity (i.e.,

I2 ◦ T ◦ I−1
1 φ = βyφ(x/αy)). We claim j is constant, either always 0 or always 1.

Indeed, consider the function 1∞B , which is 0 on the unit ball {y : |y| ≤ 1} and +∞
elsewhere. It is mapped to a function which is, in direction 8(y), linear if j (y) = 1 and
of the form 1∞[0,αy8(y)] if j (y) = 0. Note that the function cannot be identically 0 on a ray,
nor 1∞

{0} on a ray, since we already know that the restricted transforms map these functions
to themselves and are injective. We claim that no convex function can be, on rays, only of
the forms either linear (non-zero) or 1∞[0,y], and attain both these forms.

Indeed, it is easy to check that if in two directions the function is linear, then on any
direction which is a convex combination of the two, the function cannot have compact
support (as the support is convex). Similarly, if in two directions the function is of the
form 1∞[0,y] and 1∞[0,z], then it cannot be linear on a direction which is a convex combination
of the two (since it must be 0 on conv(0, y, z)). Thus, the collection of rays for which
j (y) = 0 is convex, as is the subset of rays for which j (y) = 1. Since this splits all rays
into two disjoint subsets, we see that, unless one of them is empty, each is a half-space
through 0. Let us denote by H the half-space of rays where the function is linear. We will
get a contradiction by considering a ray (say, in direction y0) which is on the boundary
of H .

Indeed, if j (y0) = 0, then the support of the function must include the half-space H ,
but does not include the whole ray in direction y0. However, a convex set which includes
an open half-space and at least one extra point outside its closure, must include the clo-
sure itself. Since we know that the support includes points outside the closure (because
on no ray is the function equal to 1∞

{0}), this situation is impossible, and we must have
j (y0) = 1. However, this too leads to a contradiction, because the function then has finite
and non-zero values on the whole ray in direction y0. Take some line in Rn which inter-
sects the ray transversally (not at 0), and restrict the function to this line. It clearly should
remain convex. However, on the half-line which lies inH , the function assumes finite and
non-zero values, and also at the crossing point. On the half-line which lies in the comple-
menting half-space, the function assumes only values 0 and+∞. If it assumes the value 0
on this half-space, then it cannot be convex (it has no way to “jump”, convexly, from the
value 0 to a finite non-zero value). So we see that it must attain only the value +∞. But
this cannot hold true for all lines crossing the ray, as the function is not constant +∞ on
the complementary half-space. This completes the proof that j is a constant function.

Let us next deal with the case that j ≡ 0. We define ϕ : Rn → Rn by T 1∞[0,x] =

1∞[0,ϕ(x)]. (Clearly the “projective” part of ϕ is8.) The function ϕ is clearly bijective. From
the properties of T it follows that T 1∞K = 1∞ϕ(K) for a closed convex set 0 ∈ K ⊂ Rn.
Therefore, ϕ : Rn → Rn preserves convexity and is thus linear, by well known results
(we have used here that n ≥ 2). Denote by B ∈ GLn the inducing linear map, ϕ(x) = Bx.

Next, we denote by a(x, c) the height of the triangle which is the image of the triangle
with base [0, x] and height c.



996 Shiri Artstein-Avidan, Vitali Milman

Since the largest triangle with base [0, λx + (1 − λ)x′] which is smaller than the
infimum of the triangle with base [0, x] and height c and the triangle with base [0, x′]
and height c′ has height λc + (1 − λ)c′, and these are mapped to new triangles of
bases [0, Bx], [0, Bx′] and [0, λBx + (1 − λ)Bx′] with heights a(x, c), a(x′, c′) and
a(λx + (1 − λ)x′, λc + (1 − λ)c′) respectively, we get a(λ(x, c) + (1 − λ)(x′, c′)) =
λa(x, c) + (1 − λ)a(x′, c′) so that a : Rn+1

→ Rn+1 is linear, that is, a(x, c) =
〈x, y0〉 + β0c. However, since a(x, 0) = 0 for all x, we get a(x, c) = β0c.

To sum up, we now know that a function f which is a triangle is mapped to β0f ◦ B,
and by Lemma 13 once we know this for triangles, we know it for all functions.

Finally, to deal with the case that j ≡ 1, we look at T ′ = J ◦ T . Then for the new
transform all the properties hold, and j ≡ 0 so that by the reasoning above T ′f = β0f ◦B

and so T f = J (β0f ◦ B) = (1/β0)J (f ◦ B) as claimed. This completes the proof of
Theorem 5. ut

Remark. The proof of Theorem 3 is a modification of the proof of Theorem 17. Indeed,
we first need to show that the two subclasses of Cvx0(R) consisting of functions which
are identically 0 on R+ (which by abuse of notation we denote Cvx0(R+)) and those
which are identically 0 on R− (which we denote Cvx0(R−)) have the property that ei-
ther T (Cvx0(R−)) = Cvx0(R−) and T (Cvx0(R+)) = Cvx0(R+), or T (Cvx0(R−)) =
Cvx0(R+) and T (Cvx0(R+)) = Cvx0(R−), and each of the restrictions of T must be
bijective. After this is done, all we need is to apply Theorem 17. To show the former, we
fix f ∈ Cvx0(R+) and g ∈ Cvx0(R−); then inf(f, g) = 0 and so inf(T f, T g) = 0. It
is not hard to show that this means that one of T f, T g must be 0 on R+ and the other
on R−. To show bijectivity, do the same for T −1.

7. Log-concave functions

Denote by LC(Rn) (for “log-concave”) the class of upper-semicontinuous non-negative
functions f : Rn → [0,∞) whose logarithm is concave (with log(0) = −∞ of course).
That is,

LC(Rn) = {e−φ : φ ∈ Cvx(Rn)}.
The class of log-concave functions, defined above, is studied in probability and in

convex geometry (see [6], [7] and for more recent developments e.g. [13], [12], [14]).
Duality for this class was first studied in a joint paper of the authors and B. Klartag [2].
Since there is a one-to-one correspondence between LC(Rn) and Cvx(Rn), given by f 7→
− log(f ), and this correspondence is order reversing, we see that any duality transform
on LC(Rn) defines a duality transform on Cvx(Rn) and vice versa.

Indeed, one may translate theorems from one “language” to the other. The reason for
doing this is that the theorems are sometimes more cleanly presented in the language of
convex functions, but on the other hand log-concave functions are understood to be, in the
theory of asymptotic geometric analysis, the “right” generalization of convex bodies. Log-
concave functions have been investigated intensively by many authors, who found that the
intuition coming from the study of convex bodies enables one to formulate functional in-
equalities which turn out to be of independent interest. Also, the functional inequalities
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can sometimes be applied to functions related to a convex body, and yield strong inequal-
ities for convex bodies. This scheme was pursued for example in [12].

A measure µ on Rn is called log-concave if for any measurable A,B ⊂ Rn and any
parameter 0 < λ < 1,

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ, (6)

where A + B = {a + b : a ∈ A, b ∈ B} is the Minkowski sum of A and B and
λA = {λa : a ∈ A} is the λ-homothety of A. The first example of a log-concave measure
is the standard Lebesgue measure Voln on Rn. The log-concavity of the Lebesgue mea-
sure follows from the Brunn–Minkowski inequality. Similarly, a uniform measure on a
convex body is log-concave. More examples of log-concave measures stem from Brunn’s
concavity principle [9]. This principle states that any lower dimensional marginal of a
uniform measure on a convex body is a log-concave measure. Moreover, marginals of
uniform measures on convex bodies are essentially the only source of log-concave mea-
sures, as these marginals form a dense subset in the class of all log-concave measures.

The notion of a log-concave measure, and that of a log-concave function, are closely
related, as was shown in [7]: a measure µ on Rn whose support (here we mean the usual
support of a measure) is not contained in any affine hyperplane is log-concave if and
only if it is absolutely continuous with respect to the Lebesgue measure, and its density
is a log-concave function. Therefore the standard Gaussian measure on Rn with density
(
√

2π)−n/2 exp{−|x|2/2} is a log-concave measure, where | · | is the standard euclidean
norm in Rn.

In generalizing the theory of convex bodies to log-concave functions, one of the first
tasks was to understand what is the correct definition of the dual of a function. A hint
was given by the fact that log-concave functions are essentially marginals of convex bod-
ies, and we may find a way to induce the notion of duality from convex bodies to their
marginals, the log-concave measures. This idea led to the following definition:

f ◦(x) = inf
y∈Rn

e−〈x,y〉/f (y). (7)

Or, equivalently, − log f ◦ = L(− log f ). As explained earlier, this is the only abstract
duality on LC(Rn), up to linear changes.

Denote by LCg(Rn) the class of upper-semicontinuous non-negative functions f :
Rn→ [0, 1] whose logarithm is concave, and with f (0) = 1. That is,

LCg(Rn) = {e−φ : φ ∈ Cvx0(Rn)}.

The name we suggest for this class is “geometric log-concave functions”.
The class of convex bodies (or generalized bodies) can be embedded into LC(Rn) in

various ways, for instance, letting 1K stand for the usual indicator function (equaling 1
on K and 0 elsewhere), we can have

K 7→ 1K , or K 7→ f (x) = e−‖x‖K , or K 7→ f (x) = e−‖x‖
2
K/2,
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and many other possibilities, of which the above three are the most common (and the
first, probably, most intuitive). Each such presentation has its advantages, but notice that
all three mentioned above give in fact a function in LCg(Rn). That is, at least from the
point of view of log-concave functions as a generalization of convex bodies, the “nor-
malization” condition of values between 0 and 1, with maximum 1 attained at 0, is very
natural.

Let us define a new duality transform on the class Cvxg(Rn). The transform f 7→ f�

is given by
f� = e−A(− log f ).

It is clearly, by the properties of A, a duality transform on this class. Let us list a few
simple properties (additional to the obvious duality properties, that it is order reversing,
and involutive):

1. 1�K = 1K◦ .

This shows that our new duality transform is an extension of the standard geometric du-
ality for convex sets, and for this reason we call it “geometric duality” (for log-concave
functions). Note that the previous duality, introduced in [2], gave (1K)◦ = e−‖x‖K◦ , and
in [4] we showed that it is the only possibility if one considers all of LC(Rn): there is no
duality on this class which would satisfy property 1 above. However, we see now that for
LCg(Rn) there is a duality, geometric duality, which extends the duality of convex sets.
Moreover, it is unique. A few more properties of geometric duality:

2. (e−‖·‖)� = e−‖·‖
∗

.

3. (e−‖·‖
p
)� = e−cp(‖·‖

∗)p .

4. (fa)� = (e−φa )� = e−A(φa) = e−(Aφ)1/a = (f�)1/a .
5. (f a)� = (e−aφ)� = e−A(aφ) = e−(Aφ)/a = (f�)1/a .
6. (f · g)� = (e−(φ+ψ))� = e−A(φ+ψ) = e−(Aφ�Aψ).

8. An example of a class with no duality

Let us point out a simple example of a relatively natural class of functions for which there
is no abstract duality.

The class, which we can denote Cvx+(Rn), although we will not use it outside this
section, is the class of all non-negative convex lower-semicontinuous functions; in other
words, {f ∈ Cvx(Rn) : f ≥ 0}.

Theorem 18. There does not exist a bijective T : Cvx+(Rn)→ Cvx+(Rn) such that

f ≤ g ⇔ T f ≥ T g.

Proof. Consider the element Dx which equals 0 at x and +∞ elsewhere. It has the prop-
erty that any two functions greater than it are comparable, that is, f ≥ Dx and g ≥ Dx
implies that either f ≥ g or g ≥ f (since both must be of the form c +Dx). Therefore,
by bijectivity and order reversal, the function T Dx must have the property that any two
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functions smaller than it (and in the class) are comparable. However, for a positive convex
function which is non-constant, we can always find two positive convex functions smaller
than it which are not comparable. Indeed, take some supporting hyperplane 〈u, ·〉 + c
(non-horizontal) of the function; then the function is greater than h = max(〈u, ·〉 + c, 0)
and so it is enough to find two non-comparable functions below h. These can be taken to
be h1 = max(〈u, ·〉 + c − 1, 0) and h2 = h/2 = max(〈u/2, ·〉 + c/2, 0).

Thus, the only function in Cvx+(Rn) such that any two functions below it are com-
parable is a constant function. We infer that each Dx is mapped to a constant function.
But this is impossible, since constant functions are all comparable, and Dx and Dy are
not comparable when x 6= y. ut

An interesting question is to determine abstract conditions for the existence (at all) of
a duality transform on a class of functions (or a general partially ordered set). Or, even
better, to find how many (up to isomorphism) duality relations there exist for a given class.
This number is an invariant (under order-homomorphisms) of the class, and would give a
classification of classes.

9. Proper convex functions

In this section we discuss one more class, which is again natural for geometric purposes,
and which we call “proper geometric convex functions”. This class consists of all func-
tions in Cvx0(Rn) which are 0 only at 0, and which do not assume the value +∞; that
is, convex functions f : Rn → [0,∞) with f (x) = 0 ⇔ x = 0. We denote this class
by Cvxp(Rn) (the letter “p” stands for “proper” geometric convex functions). It is easy to
check that it is an invariant subclass forA, soA acts as abstract duality on this class. Also,
notice that it is not an invariant subclass for L, since L sends some functions with only
finite values to functions that take the value +∞. We restrict to the case of the domain
being R+, where such functions are sometimes called Young functions.

Not surprisingly, it turns out that for this class, up to linear terms, A is the unique
duality transform.

Theorem 19. Let T : Cvxp(R+)→ Cvxp(R+) be an order reversing involution, that is,
for all φ,ψ ∈ Cvxp(R+),
• T T φ = φ,
• φ ≤ ψ implies T φ ≥ T ψ .
Then there exist constants C0, b ∈ R such that (T φ)(x) = C0(Aφ)(bx).
The proof is rather similar to other proofs given in this paper, and is therefore omitted.

10. Applications of the uniqueness result

In this section we show how two central operations of classical convexity, the support map
and the Minkowski map, which are very geometric constructions, may be uniquely de-
fined in the language of “order preserving” and “order reversing” maps. Through this un-
derstanding they can be extended to the functional class LC(Rn) (or its subclass LCg(Rn))
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in a natural way. It has been realized recently that the extension of geometric notions and
results from convex bodies to log-concave measures is an important goal in asymptotic
geometric analysis and it is now called “geometrization of probability” (see for example
the survey [14] and the references therein), because it allows extending to the probability
setting some important geometric inequalities.

10.1. The Minkowski mapping: classical

Let us denote by Hn the space of positively-homogeneous convex functions h : Rn →
R≥0 ∪ {+∞}, and byHn

(0) the subclass of functions inHn which do not assume the value
+∞ and are equal to 0 only at 0. (The notation is derived from the corresponding notation
for convex bodies: the closed convex set {x : h(x) ≤ 1} belongs to Kn, the closed convex
sets including 0, and to Kn(0), the compact convex sets with 0 in the interior, respectively.)

The Minkowski operator M : Kn → Hn maps a closed convex set which includes 0
to a generalized norm whose unit ball is this set, and is a bijection. Its restriction to
Kn(0) is onto Hn

(0). More precisely, it maps K to the positively-homogeneous function
M(K) = ‖ · ‖K given by

M(K)(x) = ‖x‖K = inf{r > 0 : x/r ∈ K}.

It is clear that the Minkowski map is an order reversing transformation, mapping
K1 ⊂ K2 to M(K2) ≤ M(K1) (with respect to the partial order of pointwise inequality
on functions).

10.2. The support map: classical

Similarly, it is classical and well known that to a convex body K ∈ Kn there corresponds
a convex positively-homogeneous function hK := ‖ · ‖∗K which is its support function,
given also by

hK(u) = sup{〈x, u〉 : x ∈ K}.

We denote S(K) = hK so that S : Kn → Hn is a bijection, as is S : Kn(0) → Hn
(0). It is

easy to see that S is an order preserving transformation (with respect to the partial order
of inclusion for sets and the partial order of pointwise inequality on functions).

We have of course M(K) = S(K◦) and vice versa.

10.3. Uniqueness

Both S and M are (essentially) uniquely defined in the language of inequalities. This is
just a restatement of a theorem from [8] (for the case of Kn(0)) and a theorem from [5] (for
the case of Kn). Recall that “essentially” only means that we allow different choices of
an inner product in the linear space, and some other numerical normalization constants.

Theorem 20 (following from Böröczky–Schneider, [8]). Any bijective mapping T :
Kn(0) → Hn

(0) which preserves the (partial) order is, up to a linear change, the support
map S defined above. Any mapping T : Kn(0) → Hn

(0) which reverses the (partial) order
is, up to a linear change, the Minkowski map M defined above.
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Theorem 21 (following from [5]). Any bijective mapping T : Kn → Hn which pre-
serves the (partial) order is, up to a linear change, the support map S defined above. Any
mapping T : Kn → Hn which reverses the (partial) order is, up to a linear change, the
Minkowski map M defined above.

Indeed, to see this simply consider the mapping T ′K = S−1(T K), which is order pre-
serving if T is order preserving, or the mapping T ′K = M−1(T K), which is order
preserving if T is order reversing, and then use the corresponding theorems which imply
that in these cases T ′ must be essentially the identity mapping of convex bodies (more
precisely, there is some B ∈ GLn such that T ′K = BK).

10.4. Extending the maps to log-concave functions

Next, one may extend the operation of support function from the class Kn to the class
LC(Rn) (where the imbedding Kn ⊂ LC(Rn) is simply K 7→ 1K ). The extension is
given by

S(f ) = L(− log f ).

Again this is an essentially unique order preserving mapping, this time between LC(Rn)
and Cvx(Rn). More precisely we have

Theorem 22. Any bijective mapping S : LC(Rn) → Cvx(Rn) which preserves the
(partial) order must be, up to a linear change, the support map S defined above. more
precisely, there exist constants C0, C1 ∈ R, vectors v0, v1 ∈ Rn and a transformation
B ∈ GLn such that

S(f ) = C1(L(− log f ))(Bx + v0)+ 〈x, v1〉 + C0.

Note that, since the mapping I : LC(Rn) → Cvx(Rn) given by f 7→ − log f is an
order reversing bijection, Theorem 22 is simply a restatement of the theorem mentioned
in the introduction about order reversing bijective maps of convex functions (that they are
essentially L), which was demonstrated in [4]. Note also that for S to map LCg(Rn) onto
Cvx0(Rn) (which is a natural requirement), one should require v0 = v1 = 0 and C0 = 0
as well.

More interestingly, our theorems imply that M does not admit an order reversing
extension to LC(Rn) (under the inclusion Kn ⊂ LC(Rn) given by K 7→ 1K ), and has a
unique extension to a transform from LCg(Rn) to Cvx0(Rn) which reverses the order of
functions.

Theorem 23. There does not exist a bijective extension M̃ : LC(Rn)→ Cvx(Rn) of the
Minkowski map (that is, such that M̃|{1K :K∈Kn} = M) which reverses the (partial) order.
There exists an essentially unique order reversing extension of M to M̃ : LCg(Rn) →
Cvx0(Rn) and it is, up to a linear change, the map M̃(f ) = J (− log f ).
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Indeed, by Theorem 2 there are essentially only two transforms between LCg(Rn) and
Cvx0(Rn) which preserve order: f 7→ L(− log f ) and f 7→ A(− log f ). Thus, an order
reversing transformation between LCg(Rn) and Cvx0(Rn) is either essentially of the form
f 7→ LL(− log f ) = − log f , which does not extend the operation M from the class of
convex sets, or essentially of the form f 7→ LA(− log f ) = J (− log f ), which when
restricted to indicator functions of bodies in Kn, is equal to M (and also equals AS(f )).
Similarly by Theorem 2 the only order reversing transform between Cvx(Rn) and LC(Rn)
is f 7→ − log f , which does not extend M .

10.5. Some calculus of these maps

We end this section with a few simple examples of the behavior of the extensions of the
support and Minkowski maps for geometric convex functions.

The support map is additive with respect to Asplund product (which we consider to be
Minkowski addition for functions, see [2], with Prekopa–Leindler being exactly Brunn–
Minkowski for this addition). That is, defining

(f ? g)(x) = sup
{y+z=x}

f (y)g(z)

(again regularizing if the result is not upper-semicontinuous) we have

S(f ? g) = Sf + Sg.

The support function of a “convex set” is the usual dual norm (that is, S extends the usual
support operation):

S(1K) = L(− log 1K) = ‖ · ‖∗K .

Similarly, M extends the Minkowski functional,

M(1K) = ‖ · ‖K .

When applied to L1K , the support function returns 1∞K◦ :

S(e−‖·‖) = 1∞K◦ .

The Minkowski functional of a function f is the support of the “geometrically dual”
function f� (similarly to the fact that the Minkowski functional of a dual body is the
support function of the original body),

M(f ) = AS(f ) = AL(− log f ) = LA(− log f ) = Sf�.

For the operation of g-inf-convolution we have

M(e−(φ�ψ)) = J (φ � ψ) = J φ � Jψ = M(e−φ) �M(e−ψ ).

This can be compared with

S(e−(φ�ψ)) = L(φ � ψ) = Lφ + Lψ = S(e−φ)+ S(e−ψ ).
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Added in proof. 1. We learned very recently that the definition of the map A was given in the
book by Rockafeller [15, p. 136]. In that book it is also proved that the transform commutes with
the Legendre transform, a geometric interpretation of the transform through the epigraph is given
(which is one of the two interpretations we consider), and a few simple examples are calculated. No
uniqueness characterization is considered there.

2. We learned from Prof. S. S. Kutateladze that in the early ‘90s there was an attempt to develop
a theory of abstract convexity (see for example [16] and references therein), and in particular some
abstract form of duality. The definition of abstract duality which was used was the exchange of
infimum and supremum. However, to our knowledge no characterization of duality in any concrete
case, classical or not, was achieved or even considered.
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