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Abstract. Assume that 0 is a connected negative definite plumbing graph, and that the associated
plumbed 3-manifold M is a rational homology sphere. We provide two new combinatorial formu-
lae for the Seiberg–Witten invariant of M . The first one is the constant term of a ‘multivariable
Hilbert polynomial’, it reflects in a conceptual way the structure of the graph 0, and emphasizes
the subtle parallelism between these topological invariants and the analytic invariants of normal
surface singularities. The second formula realizes the Seiberg–Witten invariant as the normalized
Euler characteristic of the lattice cohomology associated with 0, supporting the conjectural con-
nections between the Seiberg–Witten Floer homology, or the Heegaard–Floer homology, and the
lattice cohomology.
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1. Introduction

Let 0 be a connected negative definite plumbing graph with vertices V . We assume that
it is a tree, and all the plumbed surfaces have genus zero. Hence, the associated oriented
plumbed 3-manifold M = M(0) is a rational homology sphere. We denote by swσ (M)

the Seiberg–Witten invariants of M indexed by the spinc-structures σ of M . Although in
recent years several combinatorial formulae were established for them, their computation
is still very difficult and involved. E.g., in [Ni04] it is proved that they are equivalent to
Turaev’s torsion normalized by the Casson–Walker invariant (a result based on the surgery
formulas of [MW02]). In terms of 0, a combinatorial formula for the Casson–Walker
invariant can be deduced from Lescop’s book [L96], while Turaev’s torsion is determined
in [NN02]. Nevertheless, this expression of the torsion is based on a Dedekind–Fourier
sum, which, in most of the particular cases, is hard to determine.

For some special graphs, for the computation of the Seiberg–Witten invariant one can
use results of the Heegaard–Floer homology too, especially surgery formulae; see e.g.
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[OSz03b, N05, R04]. Moreover, for arbitrary graphs, [BN10] provides a different type of
surgery formula (motivated by singularity theory). In fact, in this note we rely exactly on
this surgery formula from [BN10].

Our goal is to provide two new combinatorial formulae for swσ (M). One of them
uses qualitative properties of the coefficients of a combinatorial zeta function associated
with 0, the other is the normalized Euler characteristic of the lattice cohomology of 0
(introduced in [N08a]). Both formulae reflect in the most conceptual and optimal way the
structure of the graph 0, and emphasize the subtle parallelism between these topological
invariants and the analytic invariants of normal surface singularities. The main aim is to
establish the identity (and unity) of these three objects: Seiberg–Witten invariant, periodic
constant of the zeta function, and the Euler characteristic of the lattice cohomology.

In order to formulate these correspondences, let us consider the plumbed 4-manifold X̃
associated with 0. Its second homology L is freely generated by the 2-spheres {Ev}v∈V ,
and its second cohomology L′ by the (anti)dual classes {E∗v }v∈V ; the intersection form
I = ( , ) embeds L into L′; for details see Subsection 2.1. (Equivalently, L is the combi-
natorial lattice with intersection form I associated with 0, and L′ is its dual lattice, and
both are endowed with their natural bases.) Set x2 := (x, x).

Let K ∈ L′ be the canonical class (see 2.1.1), σ̃can the canonical spinc-structure on X̃
(with c1(̃σcan) = −K) and σcan ∈ Spinc(M) its restriction on M (see 3.3.1).

Consider the multi-variable Taylor expansion Z(t) =
∑
pl′ tl

′

at the origin of∏
v∈V

(1− tE
∗
v )δv−2, (1.0.1)

where for any l′ =
∑
v lvEv ∈ L

′ we write tl′ =
∏
v t
lv
v , and δv is the valency of v. This

lives in Z[[L′]], the submodule of formal power series Z[[t±1/d ]] in variables {t±1/d
v }v ,

where d = det(−I ). The first identity is the following.

Theorem A. Fix some l′ ∈ L′. Assume that for any v ∈ V the E∗v -coordinate of l′ is
larger than or equal to −(E2

v + 1). Then the sum∑
l∈L, l 6≥0

pl′+l

equals a multivariable quadratic function on l′, namely

−
(K + 2l′)2 + |V|

8
− s[−l′], (1.0.2)

where the constant s[−l′] depends only on the class [−l′] of −l′ in L′/L = H 2(M,Z).
Moreover, if ∗ denotes the (torsor) action of L′/L on Spinc(M), one has

s[l′] = sw[l′]∗σcan(M).

In particular, the normalized Seiberg–Witten invariant appears as the constant term of
the ‘combinatorial multivariable Hilbert polynomial’ (1.0.2).
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For the second identity let us consider the lattice cohomology H∗(0) associated with 0.
It depends only on M , and it has a natural direct sum decomposition indexed by σ ∈
Spinc(M), namely H∗(0) =

⊕
σ H∗(0, σ ). Let eu(H∗(0, σ )) be the normalized Euler

characteristic of the corresponding summand; for more details see 2.3. Then one has

Theorem B. For any 0 and σ as above

−eu(H∗(0, σ )) = swσ (M(0)).

In fact, Theorem A was motivated by a similar formula valid for equivariant geometric
genera of normal surface singularities (cf. [N08c]); this is explained in 2.2. The combina-
torial quadratic Hilbert-polynomial type behaviour (1.0.2) is proved in Theorem 3.1.1. It
uses essentially the preparatory part of Subsection 2.3, where we review and prove some
statements about lattice cohomology, and we identify the two combinatorial objects as

s[−l′] = −eu(H∗(0, [K + 2l′])). (1.0.3)

The second part of Theorem A relies on a surgery formula for the constant term s, which
fits perfectly with the surgery formula proved for the Seiberg–Witten invariant sw in
[BN10]. This allows us to prove in Subsection 3.3 the identity s = sw by induction
on |V|.

The surgery formula involves in a crucial way the ‘periodic constant’ of a series intro-
duced in [NO09, O08] (see 3.2.8). In fact, via Theorem A, the Seiberg–Witten invariants
can be interpreted as the ‘multivariable periodic constants’ of the series Z(t).

The series Z(t)was used in several articles studying invariants of surface singularities
[CDG04, CDG08, CHR04, N08b, N08c]. Theorem A puts the results of these articles in
a new light. Indeed, as a consequence of the present work, the identity of Z(t) with the
analytic invariant P(t) (see 2.2 for its definition), in some articles called the Campillo–
Delgado–Gusein-Zade type identity, implies automatically the Seiberg–Witten Invariant
Conjecture of Nicolaescu and the author (cf. [NN02, N03]). This provides a conceptual
understanding of how the Seiberg–Witten invariants appear in a natural way in the world
of singularities, and why they can serve as topological candidates for the equivariant
geometric genera.

Theorem B follows from Theorem A and (1.0.3). It also has the following interpre-
tation. It is known that the Seiberg–Witten invariant appears as the normalized Euler
characteristic of the Heegaard–Floer theory of Ozsváth and Szabó (see [OSz03a, N05,
R04]), or of the Seiberg–Witten Floer homology. Theorem B says that the normalized
Euler characteristics of these cohomology theories and of the lattice cohomology coin-
cide. This supports the conjecture from [N08a] which predicts a precise correspondence
between the corresponding cohomology modules and the normalization terms.

2. Notation and preliminary results

2.1. Surface singularities and their graphs

Let (X, o) be a complex normal surface singularity whose link M is a rational homology
sphere. Let π : X̃ → X be a good resolution with dual graph 0 whose vertices are
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denoted by V . Hence 0 is a tree and all the irreducible exceptional divisors have genus 0.
We will write s, or |V|, for the number of vertices.

Set L := H2(X̃,Z). It is freely generated by the classes of the irreducible exceptional
curves {Ev}v∈V . They will also be identified with the integral cycles supported on E =
π−1(o). We set Ivw = (Ev, Ew). The intersection matrix I = {Ivw} is negative definite,
and any connected plumbing graph with negative definite intersection form appears in
this way for some singularity. We write ev for E2

v .
If L′ denotes H 2(X̃,Z), then the intersection form provides an embedding L ↪→ L′

with factor H 2(∂X̃,Z) ' H1(M,Z); [l′] denotes the class of l′. The form ( , ) extends
to L′ (since L′ ⊂ L ⊗ Q). L′ is freely generated by the duals E∗v , where we prefer the
convention (E∗v , Ew) = −1 for v = w, and = 0 otherwise.

The canonical class K ∈ L′ is defined by the adjunction formulae

(K + Ev, Ev)+ 2 = 0 for all v ∈ V . (2.1.1)

For l1, l2 ∈ L′ one writes l1 ≥ l2 if l1 − l2 =
∑
rvEv with all rv ∈ Q≥0. Denote

by S ′ the Lipman cone {l′ ∈ L′ : (l′, Ev) ≤ 0 for all v}. It is generated over Z≥0 by the
elements E∗v . Since all the entries of E∗v are strictly positive, it follows that for any fixed
a ∈ L′,

{l′ ∈ S ′ : l′ � a} is finite. (2.1.2)

2.2. Motivation of Theorem A: Hilbert series

One of the strongest analytic invariants of (X, o) is its equivariant divisorial Hilbert se-
ries H(t). This is defined as follows (for more details, see e.g. [N08c, §2 and §3] and
[N08b]).

Fix a resolution π of (X, o) as in 2.1, let c : (Y, o)→ (X, o) be the universal abelian
cover of (X, o), πY : Ỹ → Y the normalized pullback of π by c, and c̃ : Ỹ → X̃ the
morphism which covers c. Then OY,o inherits the divisorial multi-filtration (cf. [N08b,
(4.1.1)]):

F(l′) := {f ∈ OY,o : div(f ◦ πY ) ≥ c̃∗(l′)}.

Let h(l′) be the dimension of the [l′]-eigenspace of OY,o/F(l′). Then the equivariant
divisorial Hilbert series is

H(t) =
∑

l′=
∑
lvEv∈L′

h(l′)t
l1
1 · · · t

ls
s =

∑
l′∈L′

h(l′)tl
′

∈ Z[[L′]].

In H(t) the exponents l′ of the terms tl′ also reflect the L′/L ' H1(M,Z) eigenspace
decomposition. E.g.,

∑
l∈L h(l)tl corresponds to the H1(M,Z)-invariants, hence it is the

Hilbert series of OX,o associated with the π−1(o)-divisorial multi-filtration (considered
and intensively studied e.g. in [CHR04]; see also the citations therein, and [CDG04]).

If l′ is in the ‘special zone’ −K + S ′, then by vanishing (of a first cohomology), and
by Riemann–Roch, one finds (see [N08c]) that the expression

h(l′)+
(K + 2l′)2 + |V|

8
(2.2.1)
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depends only on the class [l′] ∈ L′/L of l′. In several efforts to connect H(t) with the
topology of the link (i.e. with the combinatorics of the graph 0), the key bridge is provided
by the series (cf. [CDG04, CDG08, N08b, N08c])

P(t) = −H(t) ·
∏
v

(1− t−1
v ) ∈ Z[[L′]].

Moreover, this identity (though it suggests that P contains less information than H) can
be ‘inverted’ (cf. [N08c, (3.2.6)]):

h(l′) =
∑

l∈L, l 6≥0

p̄l′+l, where P(t) =
∑
l′

p̄l′ tl
′

.

(P is supported on S ′, see e.g. [N08c, (3.2.2)], hence the sum is finite, cf. (2.1.2).) In
particular, by (2.2.1), ∑

l∈L, l 6≥0

p̄l′+l = −const[−l′] −
(K + 2l′)2 + |V|

8
(2.2.2)

for any l′ ∈ −K + S ′, where const[−l′] depends only on the class [−l′] of −l′. The right
hand side can be interpreted as a ‘multivariable Hilbert polynomial’ of degree 2 associated
with the series H(t), or with P(t).

The point is that P(t) has a topological candidate, namely Z(t) (for its definition
see (1.0.1) from the Introduction), which for several singularities agrees with P(t) (cf.
[CDG08, N08b, N08c]). In this way, for such singularities, one gets a topological char-
acterization of the constant terms from (2.2.2). Since these constants (equivariant geo-
metric genera, cf. [N08c]) by the conjectures of [NN02, N03, N07] equal the normalized
Seiberg–Witten invariants of the link (for ‘nice’ analytic structures), one expects that the
series Z(t) also admits a multivariable Hilbert polynomial, similar to the right hand side
of (2.2.2) with constant terms the normalized Seiberg–Witten invariants. This fact was
announced in [N08c], and its proof is the subject of the present article.

2.3. The lattice cohomology

First we recall the definition of the lattice cohomology from [N08a] and [N10]. Let
Char := {k ∈ L′ : (k + l, l) ∈ 2Z for all l ∈ L} denote the set of characteristic ele-
ments of L. It is an L′-torsor: Char = K + 2L′.

The set of q-cubes, Qq , consists of pairs (k, I ) ∈ Char × P(V), |I | = q (here
P(V) denotes the power set of V). �q = (k, I ) can be identified with the ‘vertices’
(k+2

∑
j∈I ′ Ej )I ′ , where I ′ runs over all subsets of I , of a q-cube in L′⊗R. One defines

the weight function induced by the intersection form

w : Char→ Q, w(k) := −(k2
+ |V|)/8, (2.3.1)

which extends to a weight function on the q-cubes,

w(�q) = w((k, I )) = max
I ′⊂I

w
(
k + 2

∑
j∈I ′

Ej

)
.
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Let Fq be the direct product of Z≥0×Qq copies of Z. We write the pair (m,�) as Um�.
Then Fq becomes a Z[U ]-module by U(Um�) = Um+1�. One defines ∂ : Fq → Fq−1
as follows. For � = (k, I ) = (k, {v1, . . . , vq}) one sets

∂(k, I ) =

q∑
l=1

(−1)l
(
Uw(k,I )−w(k,I\vl)(k, I\vl)−U

w(k,I )−w(k+2Evl ,I\vl)(k+2Evl , I\vl)
)
.

Then ∂ ◦ ∂ = 0, hence (F∗, ∂) is a chain complex of Z[U ]-modules. The dual cochain
complex is defined by Fq = HomZ[U ](Fq , T +0 ), consisting of finitely supported mor-
phisms with φ(Um�) = Umφ(�). Here, T +0 denotes the Z[U ]-module Z[U,U−1]/
UZ[U ] with grading deg(U−d) = 2d (d ≥ 0), as usual. More generally, for any r ∈ Q
one defines T +r , the same module as T +0 , but graded (by Q) in such a way that the d + r-
homogeneous elements of T +r are isomorphic to the d-homogeneous elements of T +0 .

Fq is a Z[U ]-module with a Q-grading: φ ∈ Fq is homogeneous of degree r if for
each �q ∈ Qq with φ(�q) 6= 0, φ(�q) is a homogeneous element of T +0 of degree
r − 2 · w(�q). The coboundary operator δ : Fq → Fq+1 is defined by δ(φ)(�) =
φ(∂(�)). The cohomology of (F∗, δ) is the lattice cohomology of 0, and it is denoted
byH∗(0). Since the vertices of a cube belong to the same class Char/2L = K + 2L′/2L
(where a class has the form [k] = {k + 2l}l∈L ⊂ Char), the complex (F∗, δ) and the
cohomology H∗(0) have decompositions into natural direct sums of Z[U ]-modules:

(F∗, δ) =
⊕

[k]∈Char/2L

(F∗[k], δ[k]) and H∗(0) =
⊕

[k]∈Char/2L

H∗(0, [k]).

In fact, if [k1] = [k2] then w(k1) − w(k2) ∈ Z, and the set of degrees of F∗[k] is 2Z,
shifted by a rational number. Since 0 is negative definite, for each class [k] ∈ Char/2L
one has a well-defined rational number

d[k] := −max
k∈[k]

k2
+ |V|
4

= 2 · min
k∈[k]

w(k).

One defines an augmentation ε : T +d[k] → F0[k] of the complex (F∗[k], δ[k]); the coho-
mology of the augmented complex is called the reduced cohomology H∗red(0, [k]). One
has Hqred(0, [k]) := Hq(0, [k]) for q > 0, and a decomposition into a direct sum of
Z[U ]-modules:

H0(0, [k]) = T +d[k] ⊕H
0
red(0, [k]).

H∗red(0, [k]) :=
⊕

q≥0H
q

red(0, [k]) has finite Z-rank. The ‘normalized’ Euler character-
istic of H∗(0, [k]) is

eu(H∗(0, [k])) := −d[k]/2+
∑
q

(−1)q rankZ(H
q

red(0, [k])). (2.3.2)

H∗(0) and H∗red(0) depend only on M = M(0), and not on the plumbing graph 0. The
involution l′ 7→ −l′ induces an isomorphism H∗(0, [k]) = H∗(0, [−k]), hence

eu(H∗(0, [k])) = eu(H∗(0, [−k])). (2.3.3)
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2.3.4. Rectangles. In combinatorial enumerations of the weighted q-cubes it is con-
venient to replace the set of all cubes by only those which are supported on a fixed
compact subset of L′ ⊗ R. In the simplest case we take rectangles: for any fixed class
[k] = k0 + 2L ⊂ Char, one takes two characteristic elements k1, k2 ∈ [k] with k1 ≥ k2.
We denote by R = R(k1, k2) the rectangle {k ∈ [k] : k1 ≥ k ≥ k2}. Similarly, for one
fixed element k1 ∈ [k], one can take R = R(k1) = {k ∈ [k] : k1 ≥ k}. Once such
an R is identified, one considers the complex (F∗(R), δ(R)), constructed similarly to
(F∗, δ), consisting of all the cubes (k, I ) with all vertices in R (this fact will be denoted
by (k, I ) ∈ R). Using min(w|R) := mink∈R w(k) one also defines the corresponding
augmented complex, and one gets the corresponding lattice cohomologiesH∗(R, [k]) and
H∗red(R, [k]) with H0(R, [k]) = T +2 min(w|R) ⊕H

0
red(R, [k]). For more details, see [N08a].

We also define the ‘normalized Euler characteristic’ of this lattice cohomology, namely

eu(H∗(R, [k]) := −min(w|R)+
∑
q≥0

(−1)q rankZ H
q

red(R, [k]).

Let S ′st be the strict Lipman cone {l′ ∈ L′ : (l′, Ev) < 0 for all v}.

Proposition 2.3.5. Fix a class [k]. Assume that k1 ∈ [k] satisfies k1 ∈ −K + S ′st, that is,
(k1, Ev) ≤ ev + 1 for any v ∈ V . Then the following facts hold:

(a) For any k ∈ [k], k > k1, there exists some Ev in the support |k − k1| of k − k1 such
that w(k − 2Ev) ≤ w(k).

(b) There exists an increasing (computation) sequence {zn}n≥0, zn ∈ L, with z0 = 0, and
zn+1 = zn + Ev(n) for some v(n) ∈ V when n ≥ 0, satisfying:

(i) The coefficients of zn tend to infinity, that is,− limn→∞(zn, E
∗
v ) = ∞ for any v.

(ii) For fixed n ≥ 0, let x ∈ L be such that x ≤ zn and (x, E∗v(n)) = (zn, E
∗

v(n)).
Then w(k1 + 2x) ≤ w(k1 + 2x + 2Ev(n)).

(iii) The restriction H∗(R(k1 + 2zn+1), [k])→ H∗(R(k1 + 2zn), [k]) is an isomor-
phism of weighted Z[U ]-modules compatible with the augmentation.

In particular, H∗(0, [k]) = H∗(R(k1), [k]) compatibly with the augmentation.
Moreover, in a similar way, one can find k2 (with all its Ev-coefficients sufficiently

small) such that H∗(0, [k]) = H∗(R(k1, k2), [k]).

Proof. (a) Assume that w(k − 2Ev) > w(k) for any Ev ∈ |k − k1|. This says that
(k− 2Ev)2 < k2, that is, (k, Ev) > E2

v , or (k+K,Ev) ≥ −1. Since (k1+K,Ev) ≤ −1,
one gets (k − k1, Ev) ≥ 0 for any Ev , hence (k − k1)

2
≥ 0, which is a contradiction.

(b) Fix aD =
∑
v dvEv ∈ S ′∩L with dv ∈ Z>0 for all v. By (a) we get an increasing

computation sequence {yn}
n0
n=0 connecting 0 andD so thatw(k1+2yn) ≤ w(k1+2yn+1).

Then the sequence {zn}n≥0 := {mD + yn}m≥0; 0≤n≤n0 satisfies (i) and w(k1 + 2zn) ≤
w(k1 + 2zn+1). All other properties follow similarly to [N08a, p. 518]. ut

2.3.6. Counting weighted cubes and the Euler characteristic of the lattice cohomol-
ogy. The next result generalizes the classical fact that the alternating sum of the number
of q-cubes is the Euler characteristic of the cohomology. For any finite set A ⊂ [k] define

E(A) :=
∑

(k,I )∈A

(−1)|I |+1w((k, I )) and MA(t) :=
∑

(k,I )∈A

(−1)|I |tw((k,I )).
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Theorem 2.3.7. Let R be a finite rectangle R(k1, k2). Then E(R) = eu(H∗(R, [k])).

Proof. We will reduce the result to the classical case via a certain geometric interpretation
of the lattice cohomology from [N08a, (3.1.12)]. Note that R can also be interpreted
as a real rectangle in L ⊗Z R limited by the vertices k1 and k2. It has a natural cubic
decomposition into the ‘real cubes’ (k, I ) with all vertices in the rectangle. For any non-
negative integer n define Sn as the union of all those real cubes of L ⊗ R with vertices
fromR, and with weights≤ n+min(w|R). Let χ(Sn) be its (classical) Euler characteristic
and χred(Sn) = χ(Sn)− 1 the Euler characteristic of its reduced simplicial cohomology.
Then, by [N08a, (3.1.12)], one has for any q ≥ 0 the Z-module isomorphisms

Hq(R, [k]) =
⊕
n≥0

H q(Sn,Z), Hqred(R, [k]) =
⊕
n≥0

H̃ q(Sn,Z). (2.3.8)

In particular, if we write MR(t)/(1− t) as
∑
n≥0 ant

n+min(w|R), then

an =
∑

(k,I )∈R
w((k,I ))≤n+min(w|R)

(−1)|I | = χ(Sn).

Therefore,
MR(t)− t

min(w|R)

1− t
=

∑
n≥0

χred(Sn)t
n+min(w|R),

hence, by (2.3.8),

lim
t→1

MR(t)− t
min(w|R)

1− t
=

∑
n≥0

χred(Sn) =
∑
q≥0

(−1)q rankZ H
q

red(R, [k]),

that is, − d
dt
MR(1) = eu(H∗(R, [k])), the desired statement of the theorem. ut

2.3.9. Counting weighted cubes and the zeta function Z(t). The next result provides
the key step for the identification of the ‘lattice cohomology package’ and numerical
invariants provided by the series Z(t). Before we state it, let us recall that Char =
K + 2L′ ⊂ L′, hence (k −K)/2 runs over L′ when k runs over Char.

Theorem 2.3.10. Let 0 be a connected negative definite graph. Then

Z(t) =
∑
k∈Char

∑
I∈P(V)

(−1)|I |+1w((k, I )) t
1
2 (k−K). (2.3.11)

Since
∑
I (−1)|I | = 0, herew((k, I )) can be replaced byw((k, I ))+c for any constant c.

Proof. For each k =
∑
v avE

∗
v ∈ Char, where av ≡ ev (mod 2), write za :=

∏
v z

av
v and

define the counting function

U0(z) :=
∑
k∈Char

∑
I∈P(V)

(−1)|I |+1w((k, I ))za .
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We determine U0 by induction on |V|. If |V| = 1 and the decoration of the unique vertex
is e < 0, then |e|E∗ = E, (E∗)2 = 1/e, and k = aE∗ ∈ Char with a ≡ e (mod 2).
Hence

8U0(z) =
∑

a≡e (mod 2)

[
−
a2

|e|
+max

{
a2

|e|
,
(a − 2e)2

|e|

}]
· za . (2.3.12)

If a ≤ e then a2
≥ (a − 2e)2, hence the coefficient vanishes. Otherwise we write a =

e + 2n for n ∈ Z>0 and we get U(z) =
∑
n≥1 nz

e+2n
= ze+2/(1− z2)2.

Next, we assume |V| ≥ 2. Let u be a fixed end-vertex of 0 (that is, δu = 1). Set
00 := 0 \u, the graph obtained by deleting u and its supporting edge. If k =

∑
v avE

∗
v ∈

Char(0), we write k0 =
∑
v 6=u avE

∗
v ∈ Char(00). The series U0 can be written as a sum

U (1)0 +U
(2)
0 , where the first series is the sum over those subsets I which do not contain u,

while the second is the sum over the other terms. For the first case when I 63 u,

U (1)0 (z) = U00(z0) ·
∑

au≡eu (mod 2)

zauu , (2.3.13)

where z0 are the variables {zv}v 6=u corresponding to 00. Indeed, one has w((k, I )) −
w(k) = w((k0, I ))− w(k0) and

∑
I 63u(−1)|I |w(k) =

∑
I 63u(−1)|I |w(k0) = 0, hence∑

k∈Char(0)

∑
I 63u

(−1)|I |+1w((k, I ))za

=

∑
k∈Char(0)

∑
I 63u

(−1)|I |+1(w((k, I ))− w(k))za

=

∑
k∈Char(0)

∑
I 63u

(−1)|I |+1(w((k0, I ))− w(k0))za

=

∑
k0∈Char(00)

∑
au≡eu (mod 2)

zauu

∑
I 63u

(−1)|I |+1w((k0, I ))
∏
v 6=u

zavv . (2.3.14)

In the second sum u ∈ I ; set I = I ′ ∪ u with u 6∈ I ′. Since

(k + 2EI ′ + 2Eu)2 − (k + 2EI ′)2 = 4(−au + eu + 2(EI ′ , Eu)),

where (EI ′ , Eu) ∈ {0, 1}, one gets{
if −au + eu < 0, then w((k, I )) = w((k + 2Eu, I ′)),
if −au + eu ≥ 0, then w((k, I )) = w((k, I ′)).

Hence U (2)0 (z) splits into two sums:∑
k0∈Char(00)

∑
au≡eu (mod 2)

au≤eu

∑
I=I ′∪u

(−1)|I |+1w((k, I ′))za

+

∑
k0∈Char(00)

∑
au≡eu (mod 2)

au>eu

∑
I=I ′∪u

(−1)|I |+1w((k + 2Eu, I ′))za .
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For the second one we use Eu = −euE∗u−E
∗
u0

, where u0 is the adjacent vertex of u in 0.
Then, computing both sums similarly to (2.3.14), we get

U (2)0 (z) = −U00(z0) ·
∑

au≡eu (mod 2)
au≤eu

zauu − U00(z0) · z
2
u0
·

∑
au≡eu (mod 2)

au>eu

zauu . (2.3.15)

The contributions (2.3.13) and (2.3.15) combined provide

U0(z) = U00(z0)(1− z2
u0
) ·

∑
au≡eu (mod 2)

au>eu

zauu = U00(z0) ·
1− z2

u0

1− z2
u

· zeu+2
u .

This inductive step, together with the identity valid for |V| = 1, gives

U0(z) =
∏
v∈V

zev+2
v ·

∏
v∈V

(1− z2
v)
δv−2.

From this and from the definition of U0 we obtain∑
k∈Char

∑
I∈P(V)

(−1)|I |+1w((k, I ))
∏
v∈V

x(av−ev−2)/2
v =

∏
v∈V

(1− xv)δv−2.

Then (2.3.11) follows via the substitution xv = tE∗v , since K =
∑
v(2+ ev)E

∗
v . ut

3. The proofs of Theorems A and B

3.1. The definition of the invariant s and its relation to H∗(0)

Let 0 be a graph as in 2.1 and Z(t) the series defined in the introduction.

Theorem 3.1.1. (a) For any l′ ∈ L′, the expression

−

∑
l∈L, l�0

pl′+l −
(K + 2l′)2 + |V|

8
(3.1.2)

depends only on the class [l′] ∈ L′/L of l′ =
∑
v∈V avE

∗
v , provided av ≥ −ev − 1

for all v ∈ V . (Since Z is supported on S ′, the sum in (3.1.2) is finite by (2.1.2).)
(b) Consider the map s : L′/L→ Q, [l′] 7→ s[l′], where s[−l′] is the expression (3.1.2).

Then the set {s[l′]}[l′] is independent of the negative definite plumbing representa-
tion 0, it depends only on the oriented plumbed 3-manifold M = M(0). In fact, for
any l′, one has

s[−l′] = −eu(H∗(0, [K + 2l′])). (3.1.3)
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Proof. We fix k1 = K + 2l′ and k2 as in Proposition 2.3.5, that is, (k1, Ev) ≤ ev + 1
and all the coefficients of k2 are sufficiently small (k2 does not play an essential role, it
only ensures the finiteness of the rectangles), and a computation sequence {zn}n≥0 as in
Proposition 2.3.5(b). Set

R′ :=
{
k ∈ [k] : k ≥ k2, k − k1 =

∑
lvEv so that ∃lv ≤ 0

}
.

Although R′ is not finite, R′ ∩ S ′ is finite by (2.1.2). Fix some ñ so that R′ ∩ S ′ ⊂
R(k1 + 2zñ, k2) and define R̃ := R′ ∩ R(k1 + 2zñ, k2). Take also

∂R̃ :=
{
k ∈ [k] : k1 ≤ k ≤ k1 + 2zñ, k − k1 =

∑
lvEv so that ∃lv = 0

}
.

Then, by Theorem 2.3.10, ∑
l∈L, l�0

pl′+l = E(R̃)− E(∂R̃). (3.1.4)

Now, we claim that by combinatorial cancellation in the sum, E(R̃) = E(R), where
R = R(k1, k2). This follows by induction using the sequence {zn}0≤n≤ñ, since
E(R′ ∩ R(k1 + 2zn+1, k2)) = E(R′ ∩ R(k1 + 2zn, k2)). Indeed, for any I contain-
ing v(n) and cube (k, I ) ∈ R′ ∩ (R(k1 + 2zn+1, k2) \ R(k1 + 2zn, k2)) one has
w((k, I )) = w((k + 2Ev(n), I \ v(n))) by Proposition 2.3.5(b)(ii). Similarly, one gets
E(∂R̃) = −w(k1). Hence (3.1.4) reads

−w(K + 2l′)+
∑

l∈L, l�0

pl′+l = E(R). (3.1.5)

The right hand side is eu(H∗(R, [k1])) by Theorem 2.3.7, which equals eu(H∗(0, [k1]))
by Proposition 2.3.5. In particular, the left hand side too depends only on [l′]. It is invariant
under blow up of the graph since so is the lattice cohomology (cf. [N08a, N10]). ut

3.2. The surgery formula for s

3.2.1. The additivity formula. Similarly to the proof of Theorem 2.3.10, we change
the variables of the series Z(t). By setting xv := tE∗v for all v ∈ V , Z(t) transforms into
Z0(x) =

∏
v∈V (1 − xv)

δv−2, whose Taylor series at the origin is denoted by
∑
qaxa ,

where xa = xa1
1 · · · x

as
s . The exponents av are the coordinates of L′ in the basis {E∗v }v , i.e.

if l′ =
∑
v avE

∗
v then av = −(l′, Ev) and tl′ transforms into xa . In particular, qa = pl′ ,

and we also use the notation a for l′ ∈ L′. For any fixed l′ =
∑
v avE

∗
v we define

h0a :=
∑

l∈L, l 6≥0

pl′+l =
∑

b∈S0(a)

q0b , (3.2.2)

where S0(a) = {b ∈ L′(0) : b = a+
∑
nvEv, nv ∈ Z, ∃nv < 0}. We assume that s ≥ 2

and we fix an end-vertex u of 0. We set

hua :=
∑

q0b (sum over b = a +
∑
nvEv , nv ∈ Z, nu < 0).
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The inclusion of the subgraph 0 \ u induces i : L(0 \ u) → L(0), i(Ev) 7→ Ev (the
symbol i is sometimes omitted), and its dual, the restriction R : L′(0)→ L′(0 \ u) with{

R(E∗,0v ) = E
∗,0\u
v for v 6= u, and R(E

∗,0
u ) = 0;

R(E0v ) = E
0\u
v for v 6= u, and R(E0u ) = −E

∗,0\u
w ,

(3.2.3)

where w is the adjacent vertex of u. We abbreviate R(
∑
v avE

∗
v ) as R(a).

Proposition 3.2.4. Assume that w, the adjacent vertex of u in 0, has valency two. Then,
if au � 0 (compared with R(a)), one has

h0a = h
u
a + h

0\u

R(a).

Proof. Since δw = 2, Z0 and Z0\u have the form

Z0 = Z̃ ·
1

1− xu
, Z0\u = Z̃ ·

1
1− xw

, (3.2.5)

where Z̃ does not depend on the variables xw and xu. Therefore, for any relevant b ∈
S0(a) (i.e. when q0b 6= 0) one has bw = 0 and bu ≥ 0. Hence

h0a − h
u
a =

∑
b∈S′0(a)

q0b

where S′0(a) = {b ∈ S0(a) : bw = 0, bu ≥ 0, nu ≥ 0, ∃nv < 0}.
By a similar argument based on (3.2.5), for any relevant c ∈ S0\u(R(a)), one has

cw ≥ 0, hence it is enough to consider the subset S′0\u(R(a)) = {c ∈ S0\u(R(a)) :

cw ≥ 0} in the computation of h0\uR(a). Applying (·, Eu) to the identity b = a +
∑
v nvEv ,

one gets
bu = au − nw − Iuunu. (3.2.6)

Since nu = −(E
∗,0
u , b − a) in terms of b, for any fixed a one has a well-defined map

8 : S′0(a)→ S′0\u(R(a)), b = ({bv}v 6=w,u, bw = 0, bu) 7→ ({bv}v 6=w,u, nu).

Here, nu maps to the w-entry in S′0\u(R(a)). In other words, 8(b) = R(b) +

nuE
∗,0\u
w (use (3.2.3)). Moreover, again by (3.2.3), 8(b) − R(a) = R(

∑
v 6=u nvE

0
v ) =∑

v 6=u nvE
0\u
v , hence the integers {nv}v 6=u are the same at the level of 0 and 0 \ u. This

fact and (3.2.6) imply the injectivity of 8. For the surjectivity, for any ({bv}v 6=w,u, nu) ∈
S′0\u(R(a)) define bu by (3.2.6). Then ({bv}v 6=w,u, 0, bu) automatically satisfies all the
conditions of S′0(a), except maybe one, namely bu ≥ 0. In order to guarantee this one
too, we argue as follows: for R(a) fixed, consider all the elements ({bv}v 6=w,u, nu) ∈
S′0\u(R(a)), and associate with them the maximum M of all the possible values
nw + Iuunu. Then, if we take au ≥ M , then by (3.2.6) the inequality bu ≥ 0 is also
satisfied.
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Finally, notice that from (3.2.5), for any b ∈ S′0(a) one has

q0b = q
0\u

8(b),

since both coincide with the
∏
v 6=w,u x

bv -coefficient of Z̃ . ut

Corollary 3.2.7. Fix an end-vertex u as above. For l′ =
∑
v avE

∗,0
v with all av large

(and au large compared with the others), one has

hua = −s0[−l′] −
K2
0 + |V|

8
+ s

0\u

[−R(l′)] +
K2
0\u + |V \ u|

8
−
(l′, E∗u) · (l

′
+K0, E

∗
u)

2(E∗u, E∗u)
.

Proof. Theorem 3.1.1 applied for l′ and R(l′), and Proposition 3.2.4, provide

hua = −s0[−l′] −
(K0 + 2l′)2 + |V|

8
+ s

0\u

[−R(l′)] +
(K0\u + 2R(l′))2 + |V \ u|

8
.

Then use the identity K0\u = R(K0), and

l′′ = iR(l′′)+
(l′′, E∗u)

(E∗u, E
∗
u)
· E∗u

for both l′′ = l′ and l′′ = K0 , and (i(l), E∗u) = 0 for any l ∈ L′(0 \ u). ut

3.2.8. The series H[l′],u(t) and its periodic constant. For any series S(t) ∈ Z[[L′]],
S(t) =

∑
l′ cl′ t

l′ , we have the natural decomposition

S =
∑

h∈L′/L

Sh, where Sh :=
∑

l′ : [l′]=h

cl′ tl
′

.

In particular, for any fixed class [l′] ∈ L′/L, one can consider the component Z[l′](t) of
Z(t). In fact (see e.g. [N08b, (3.1.20)]),

Z[l′](t) =
1
d

∑
ρ∈(L′/L)̂

ρ([l′])−1
·

∏
v∈V

(1− ρ([E∗v ])tE
∗
v )δv−2, (3.2.9)

where (L′/L)̂ is the Pontryagin dual of L′/L, and d = det(−I ) = |L′/L|.

Definition 3.2.10. For any class [l′] ∈ L′/L and vertex u ∈ V of 0 set

H[l′],u(t) := Z[l′](t)|tu=td
tv=1 for v 6=u

∈ Z[[t]].

Definition 3.2.11 ([NO09, 3.9], [O08, 4.8(1)]). Let S(t) =
∑
i≥0 ci t

i be a formal power

series. Suppose that for some positive integer p, the expression
∑pn−1
i=0 ci is a polynomial

Pp(n) in the variable n. Then the constant term of Pp(n) is independent of p. We call this
constant term the periodic constant of S and denote it by pc(S).



972 András Némethi

3.2.12. The surgery formula for s. The relation between the coefficients hua defined in
3.2.1 and the series H[l′],u(t) is as follows (below, {r} will denote the fractional part of
the rational number r):

Theorem 3.2.13. Consider the graph 0 and let u be one of its end-vertices. Fix l′ =∑
v avE

∗
v =

∑
v l
′
vEv with a as in 3.2.7. Abbreviate l′u to `. Then:

(a) If H[l′],u(t) =
∑
i≥0 ci t

i then hua =
∑
i<d` ci .

(b) Take l̄′ ∈ L′ such that (l̄′, E∗u) ∈ (−1, 0]. Then

pc(H[l̄′],u) = −s0[−l̄′]−
(K0 + 2l̄′)2 + |V|

8
+s

0\u

[−R(l̄′)]
+
(K0\u + 2R(l̄′))2 + |V \ u|

8
.

Proof. Write Z[l′](t) =
∑
cl′′ tl

′′

. Then (a) follows from H[l′],u(t) =
∑
cl′′ t

dl′′u and

hua =
∑
b:nu<0

q0b =
∑

l′′:l′′u<l′u

cl′′ .

(b) For any fixed l̄′ as in the assumption of (b), take l′ such that [l′] = [l̄′], and
[R(l′)] = [R(l̄′)] and l′ =

∑
v avE

∗
v =

∑
v l
′
vEv with a � 0. Since l̄′ − l′ ∈ L, we find

that l′u + (l̄
′, E∗u) = (l̄

′
− l′, E∗u) ∈ Z, hence −(l̄′, E∗u) is the fractional part of l′u. Write

l′u = ` and let n be its integral part. For this l′ we apply part (a) and Corollary 3.2.7.
In order to compute the periodic constant of H[l′],u(t), notice that if cl′′ 6= 0 then

l′′− l′ ∈ L, hence l′′u − l
′
u = (E

∗
u, l
′
− l′′) ∈ Z. Therefore, if the coefficient ci ofH[l′],u is

nonzero, then i − d{`} ∈ dZ. In particular, for ci 6= 0, i < d` if and only if i ≤ dn− 1.
This shows that one has to write hua as P(n) for some polynomial P , and then the periodic
constant of H[l′],u is P(0). We deduce that P(n) is the right hand side of the identity of
Corollary 3.2.7 after the substitution (l′, E∗u) = −l

′
u = −{`} − n. Therefore

pc(H[l′],u) = −s0[−l′]−
K2
0 + |V|

8
+s

0\u

[−R(l′)]+
K2
0\u + |V \ u|

8
−
{`} · ({`} − (K0, E

∗
u))

2(E∗u, E∗u)
.

Now, this identity provides (b) by a straightforward computation (similar to the computa-
tion from the proof of 3.2.7).

Strictly speaking, the above argument proves the surgery formula (b) only if δw = 2
(cf. the assumption of Proposition 3.2.4). In general we argue as follows: let u be an end-
vertex, and let us blow up the unique edge adjacent to u getting in this way 0b. Then
the newly created vertex w has δw = 2. Hence in this situation we can apply the above
proof for 0b and 0b \ u. Since blowing down the w-vertex in 0b \ u we get 0 \ u, and all
the invariants involved in (b) are stable with respect to blow up/down, the result follows.
Indeed,

(K + 2l′)2 + |0| = (Kb
+ 2π∗(l′))2 + |0b|,

the s-terms are stable by Theorem 3.1.1(b), andH[l′],u by the fact that it depends only on
the numbers (E∗v1

, E∗v2
) where δvi 6= 2. ut
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3.3. The identification of s with the Seiberg–Witten invariant

3.3.1. Some facts about the Seiberg–Witten invariant of M . Let 0 be a connected
negative definite plumbing graph, and let X̃ be the plumbed 4-manifold constructed
from 0. If 0 is a resolution graph, e.g. as in Subsection 2.1, then the (diffeomorphism
type of the) resolution serves for X̃. Let σ̃can be the canonical spinc-structure on X̃;
its first Chern class c1(̃σcan) is −K ∈ L′ (cf. [GS99, p. 415]). The set of spinc-structures
Spinc(X̃) is an L′-torsor; if we denote the L′-action by l′∗σ̃ , then c1(l

′
∗σ̃ ) = c1(̃σ )+2l′.

If M = M(0) is the plumbed 3-manifold associated with 0, then M = ∂X̃, and
all the spinc-structures of M are obtained by restrictions from X̃. Spinc(M) is an L′/L-
torsor, compatible with the restriction and the projection L′ → L′/L. The canonical
spinc-structure σcan of M is the restriction of σ̃can.

We denote the Seiberg–Witten invariant by sw : Spinc(M) → Q, σ 7→ swσ . Next
we recall a surgery formula satisfied by them, proved in [BN10].

Let us fix one of the end-vertices u of 0 (though the statement is true for any vertex,
cf. loc.cit). Let X̃(0 \ u) be the tubular neighbourhood of

⋃
v 6=u Ev in X̃, and Mu its

boundary. Hence, Mu is the plumbed 3-manifold associated with 0 \ u.
Fix any σ ∈ Spinc(M), extend it to a spinc-structure σ̃ ∈ Spinc(X̃) of the form

σ̃ = l̃′ ∗ σ̃can with l̃′ ∈ L′, (̃l′, E∗u) ∈ [0, 1). Then consider R(̃l′) ∈ L′(0 \ u) and
the restrictions σ̃u and σu of σ̃ to X̃(0 \ u) and ∂X̃(0 \ u) respectively. Then the main
result of [BN10] is the following identity. (Here we wish to draw the reader’s attention to
the notational differences between the present note and [BN10]: in that article the ‘dual’
E∗v has opposite sign, this creates a sign difference in (̃l′, E∗u) ∈ [0, 1), and also in the
expression of H from (3.2.9) the characters ρ ∈ (L′/L)̂ should be replaced by their
inverses. Hence, Hσ,u of [BN10] is our H[−̃l′],u.)

Theorem 3.3.2 ([BN10]).

swσ (M)+
c1(̃σ )

2
+ |V|

8
= −pc(H[−̃l′],u)+ swσu(Mu)+

c1(̃σu)
2
+ |V \ u|
8

.

3.3.3. Proof of Theorem A. This is completed by the next result.

Theorem 3.3.4. Let s : L′/L→ Q be the invariant defined from the series Z(t) in 3.1.2.
Then for any [l′] ∈ L′/L one has

s[l′] = sw[l′]∗σcan .

Proof. Notice that −l̄′ considered in Theorem 3.2.13 satisfies the needed assumptions
for l̃′ in 3.3.1. Moreover, c1(̃σ ) = −(2l̄′ + K), and c1(̃σu) = −R(2l̄′ + K), and σ =
[−l̄′]∗σcan. Hence, the surgery identities in Theorems 3.3.2 and 3.2.13(b) show that s[−l′]
satisfies the same surgery formula as sw[−l′]∗σcan . One can verify that they coincide for
graphs with one vertex (or one can apply [N08c, §4] which shows that they coincide
for links of splice-quotient singularities, including all Seifert manifolds). Therefore, by
induction on the number of vertices, we get the result. ut

3.3.5. Proof of Theorem B. Combine (2.3.3), (3.1.3) and Theorem 3.3.4.
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