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Abstract. Expansions in noninteger bases often appear in number theory and probability theory,
and they are closely connected to ergodic theory, measure theory and topology. For two-letter al-
phabets the golden ratio plays a special role: in smaller bases only trivial expansions are unique,
whereas in greater bases there exist nontrivial unique expansions. In this paper we determine the
corresponding critical bases for all three-letter alphabets and we establish the fractal nature of these
bases in dependence on the alphabets.
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1. Introduction

Since the appearance of Rényi’s β-expansions [13] many works have been devoted to
expansions in noninteger bases. Much research was stimulated by the discovery of Erdős,
Horváth and Joó [5] who proved the existence of many real numbers 1 < q < 2 for which
only one sequence (ci) of zeroes and ones satisfies the equality

∞∑
i=1

ci

qi
= 1.

The set of such “univoque” bases has a fractal nature; see, e.g., [6], [8], [10], where
arbitrary bases q > 1 are also considered.
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In contrast to the integer case, in a given noninteger base q > 1 a real number x may
have sometimes many different expansions of the form

πq(c) :=
∞∑
i=1

ci

qi
= x (1.1)

with integer “digits” satisfying 0 ≤ ci < q for every i. On the other hand, the set of num-
bers x having a unique expansion has many unexpected topological and combinatorial
properties, depending on the value of q; see, e.g., Daróczy and Kátai [1], de Vries [2], [3],
Glendinning and Sidorov [7], and [4].

Given a finite alphabet A = {a1, . . . , aJ } of real numbers a1 < · · · < aJ and a real
number q > 1, by an expansion of a real number x we mean a sequence (ci) of numbers
ci ∈ A satisfying (1.1). The expansions of

x1 :=
∞∑
i=1

a1

qi
and x2 :=

∞∑
i=1

aJ

qi

are always unique; they are called the trivial unique expansions.
For two-letter alphabetsA = {a1, a2} the golden ratio p := (1+

√
5)/2 plays a special

role: there exist nontrivial unique expansions in base q if and only if q > p.
The purpose of this paper is to determine analogous critical bases for each ternary

alphabet A = {a1, a2, a3}. Our main tool is a lexicographic characterization of unique
expansions, given in [12], which generalized to arbitrary finite alphabets a theorem of
Parry [11] and its various extensions [1], [5], [6], [9].

By a normalization it suffices to consider the alphabets Am := {0, 1, m} with m ≥ 2.
Our main result is the following:

Theorem 1.1. There exists a continuous function p : [2,∞)→ R, m 7→ pm, satisfying

2 ≤ pm ≤ Pm := 1+
√

m

m− 1

for all m such that the following properties hold true:

(a) for each m ≥ 2, there exist nontrivial univoque expansions if q > pm and there are
no such expansions if q < pm;

(b) pm = 2 if and only if m = 2k for some positive integer k;
(c) the set C := {m ≥ 2 : pm = Pm} is a Cantor set, i.e., an uncountable closed set

having neither interior nor isolated points; its smallest element is 1 + x ≈ 2.3247
where x is the first Pisot number, i.e., the positive root of the equation x3

= x + 1;
(d) each connected component (md ,Md) of [2,∞) \ C has a point µd such that p is

strictly decreasing in [md , µd ] and strictly increasing in [µd ,Md ].

Moreover, we will determine explicitly the function p and the numbers md , Md , µd , and
we will also determine those m for which there exist nontrivial univoque sequences in
base pm (Remark 5.12).
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Since the proofs are rather technical let us explain how we arrived at the above results
and at the particular constructions in the proof. Given a real number m ≥ 2 and a base
1 < q ≤ (2m− 1)/(m− 1), it follows directly from the definition of the expansions that
a sequence (ci) on the alphabet {0, 1, m} is the unique expansion of

x :=
∞∑
i=1

ci

qi

if and only if the following four conditions are satisfied (Lemma 5.1):

∞∑
i=1

cn+i

qi
< 1 whenever cn = 0;

∞∑
i=1

cn+i

qi
< m− 1 whenever cn = 1;

∞∑
i=1

cn+i

qi
>

m

q − 1
− 1 whenever cn = 1;

∞∑
i=1

cn+i

qi
>

m

q − 1
− (m− 1) whenever cn = m.

Then we say that (ci) is a univoque sequence. Using a computer program we have found
univoque sequences for many particular values of m for small values q > 2 containing
only two different digits. Trying to find an explanation, we proved that if q is sufficiently
close to one, namely if 1 < q ≤ Pm := 1 +

√
m/(m− 1), then no sequence satisfy-

ing these conditions (except the trivial sequence 0∞) can contain infinitely many zero
digits (Lemma 5.3). Since after removing a finite number of initial elements a univoque
sequence remains univoque, it follows that if there exists a nontrivial univoque sequence
in some base 1 < q ≤ Pm, then there also exists a nontrivial univoque sequence in this
base which only contains the digits 1 and m. Assuming that there are such sequences in
some base 1 < q ≤ Pm, this allows us to investigate two-digit sequences instead of more
complicated three-digit sequences.

In the next stage we made an extensive computer research in order to find such uni-
voque sequences. For most integer values of m = 2, 3, . . . , 65536 we have found essen-
tially one such sequence, namely the periodic sequence (mh11)∞ with h1 = [log2m].
Using the above characterization it is easy to see that this sequence can be univoque in a
base q only if q > pm := max{p′m, p

′′
m} where p′m and p′′m are defined by the equations

πp′m((m
h11)∞) = m− 1 and πp′′m((m

h11))∞) =
m

p′′m − 1
− 1,

and one can prove that the condition q > pm is also sufficient.
However, there were seven exceptional integer values: 5, 9, 130, 258, 2051, 4099,

32772, for which we have found only univoque sequences of a more complicated form,
for instance (m21m21m1)∞ for m = 5 and (m31m21)∞ for m = 9 (see Example 5.6).
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Each such sequence provided a univoque sequence in some base 1 < q < Pm also for
small perturbations of the integer digit m. In this way we could also cover many real
numbers m ∈ [2, 65536] but not all of them.

In order to find nontrivial univoque sequences in bases 1 < q ≤ Pm for each real
number m ∈ [2,∞), we have generalized the structure of the above sequences. This
led to the notion of admissible sequences. It turned out that each admissible sequence
d 6= 1∞ provides a nontrivial univoque sequence in every base q > Pm for real digits m
belonging to a precisely defined interval Id , and that the intervals Id provide a disjoint
covering of [2,∞) (Lemmas 5.4 and 5.13(a), (b)). The other properties mentioned in
Theorem 1.1 were obtained by a closer investigation of the admissible sequences d and
the corresponding intervals Id (Lemma 5.13 (c)).

In Section 2, we review some basic facts about expansions and we also give some
new results. In Sections 3–4 we introduce the class of admissible sequences and we clarify
their structure and their basic properties. As a byproduct, we obtain a new characterization
of Sturmian sequences (Remark 3.7). These results allow us to determine in Section 5 the
critical bases for all ternary alphabets.

2. Some results on arbitrary alphabets

Throughout this section we consider a fixed finite alphabet A = {a1, . . . , aJ } of real
numbers a1 < · · · < aJ . Given a real number q > 1, by an expansion of a real number x
we mean a sequence c = (ci) of numbers ci ∈ A satisfying the equality

πq(c) :=
∞∑
i=1

ci

qi
= x.

The real number πq(c) is called the value of the expansion c in base q. In order to have
an expansion, x must belong to the interval

[
a1
q−1 ,

aJ
q−1

]
. Conversely, we recall from [12]

the following results:

Theorem 2.1. Every x ∈
[
a1
q−1 ,

aJ
q−1

]
has at least one expansion in base q if and only if

1 < q ≤ QA := 1+
aJ − a1

maxj>1{aj − aj−1}
(≤ J ). (2.1)

A sequence (ci) ∈ A∞ is called univoque in base q if

x :=
∞∑
i=1

ci

qi

has no other expansion in this base. The constant sequences (a1)
∞ and (aJ )∞ are uni-

voque in every base q; they are called the trivial unique expansions. We also recall
from [12] the following characterization of unique expansions:
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Theorem 2.2. Assume (2.1). An expansion (ci) is unique in base q if and only if the
following conditions are satisfied:

∞∑
i=1

cn+i − a1

qi
< aj+1 − aj whenever cn = aj < aJ ;

∞∑
i=1

aJ − cn+i

qi
< aj − aj−1 whenever cn = aj > a1.

Proof of the sufficiency. We have to show that if (di) is another sequence in A∞ then it
represents a different sum. Let n ≥ 1 be the first index such that cn 6= dn. If cn < dn, then
writing cn = aj we have aj < aJ , so that

∞∑
i=1

di

qi
−

∞∑
i=1

ci

qi
≥
aj+1 − aj

qn
+

∞∑
i=n+1

a1 − ci

qi
> 0

by our assumption. If cn > dn, then writing cn = aj we have aj > a1, so that

∞∑
i=1

ci

qi
−

∞∑
i=1

di

qi
≥
aj − aj−1

qn
+

∞∑
i=n+1

ci − aJ

qi
> 0

by our second assumption.

Proof of the necessity. If the first condition is not satisfied for some cn = aj < aJ ,
then by Theorem 2.1 there exists another expansion beginning with c1 · · · cn−1aj+1. If
the second condition is not satisfied for some cn = aj > a1, then by Theorem 2.1 there
exists another expansion beginning with c1 · · · cn−1aj−1. ut

Let us mention some consequences of this characterization.

Corollary 2.3. For every given set C ⊂ A∞ there exists a number 1 ≤ qC ≤ QA such
that

q > qC ⇒ every sequence c ∈ C is univoque in base q;

1 < q < qC ⇒ not every sequence c ∈ C is univoque in base q.

Proof. If C = ∅, then we may choose qC = 1. If C is nonempty, then for each se-
quence c ∈ C, each condition of Theorem 2.2 is equivalent to an inequality of the form
q > qα . Since we consider only bases q satisfying (2.1), we may assume that qα ≤ QA

for every α. Then qC := max{1, sup qα} has the required properties. ut

Definition 2.4. The number qC is called the critical base of C. If C = {c} is a one-point
set, then qc := qC is also called the critical base of the sequence c.

Remark 2.5. If C is a nonempty finite set of eventually periodic sequences, then the
supremum sup qα in the above proof is actually a maximum. In this case not all sequences
c ∈ C are univoque in base q = qC .
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Example 2.6. Consider the ternary alphabet A = {0, 1, 3} and the periodic sequence
(ci) = (31)∞. By the periodicity of (ci) we have for each n either cn = 3 and (cn+i) =
(13)∞ or cn = 1 and (cn+i) = (31)∞. According to the preceding remark Theorem 2.2
contains only three conditions on q. For cn = 3 we have the condition

∞∑
i=1

3− cn+i
qi

< 2 ⇔
2q

q2 − 1
< 2,

while for cn = 1 we have the following two conditions:

∞∑
i=1

3− cn+i
qi

< 1 ⇔
2

q2 − 1
< 1

and
∞∑
i=1

cn+i

qi
< 2 ⇔

3
q − 1

−
2

q2 − 1
< 2.

They are approximatively equivalent to the inequalities q > 1.61803, q > 1.73205 and
q > 2.18614 respectively, so that qc ≈ 2.18614.

It is well-known that for the alphabet A = {0, 1} there exist nontrivial univoque se-
quences in base q if and only if q > (1 +

√
5)/2. There exists a “generalized golden

ratio” for every alphabet:

Corollary 2.7. There exists a number 1 < GA ≤ QA such that

q > GA ⇒ there exist nontrivial univoque sequences;

1 < q < GA ⇒ there are no nontrivial univoque sequences.

Proof. If a sequence is univoque in some base, then it is also univoque in every larger
base. If there exists a base satisfying (2.1) in which there exist nontrivial univoque se-
quences, then the infimum of such bases satisfies the requirements forGA, except perhaps
the strict inequality GA > 1. Otherwise we may choose GA := QA.

To show thatGA > 1, we prove that if q > 1 is sufficiently close to one, then the only
univoque sequences are a∞1 and a∞J . We show that it suffices to choose q > 1 so small
that the following three conditions are satisfied:

aJ − a1

q − 1
≥ aj+1 − aj−1, j = 2, . . . , J − 1, (2.2)

aj − a1

q
+

1
q
·
aJ − a1

q − 1
≥ (a2 − a1)+

aj − aj−1

q
, j = 2, . . . , J, (2.3)

aJ − aj

q
+

1
q
·
aJ − a1

q − 1
≥ (aJ − a1)+

aj+1 − aj

q
, j = 1, . . . , J − 1. (2.4)

The proof consists of three steps. Let (ci) be a univoque sequence in base q.
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If cn = aj for some n and 1 < j < J , then the conditions of Theorem 2.2 imply that
∞∑
i=1

cn+i − a1

qi
< aj+1 − aj and

∞∑
i=1

aJ − cn+i

qi
< aj − aj−1.

Taking their sum we conclude that
aJ − a1

q − 1
< aj+1 − aj−1,

which contradicts (2.2). This proves that cn ∈ {a1, aJ } for every n.
If cn = a1 and cn+1 = aj > a1 for some n, then applying Theorem 2.2 we obtain

∞∑
i=1

cn+i − a1

qi
< a2 − a1 and

∞∑
i=1

aJ − cn+i+1

qi
< aj − aj−1.

Dividing the second inequality by q and adding the result to the first one we obtain
aj − a1

q
+

1
q
·
aJ − a1

q − 1
< (a2 − a1)+

aj − aj−1

q
,

which contradicts (2.3). This proves that cn = a1 implies cn+1 = a1 for every n.
Finally, if cn = aJ and cn+1 = aj < aJ for some n, then Theorem 2.2 yields

∞∑
i=1

aJ − cn+i

qi
< aJ − aJ−1 and

∞∑
i=1

cn+i+1 − a1

qi
< aj+1 − aj .

Dividing the second inequality by q and adding the result to the first one we now obtain
aJ − aj

q
+

1
q
·
aJ − a1

q − 1
< (aJ − aJ−1)+

aj+1 − aj

q
,

which contradicts (2.4). This proves that cn = aJ implies cn+1 = aJ for every n. ut

Definition 2.8. The number GA is called the critical base of the alphabet A.

The following invariance properties of critical bases readily follow from the defini-
tions; they will simplify our proofs.

Lemma 2.9. The critical base does not change if we replace the alphabet A by:
• b + A = {b + aj | j = 1, . . . , m} for some real number b;
• dA = {daj | j = 1, . . . , m} for some nonzero real number d;
• the conjugate alphabet A′ := {am + a1 − aj | j = 1, . . . , m}.
Proof. First we note that QA = Qb+A = QdA = QA′ . Fix a base 1 < q ≤ QA and a
sequence (ci) of real numbers. It follows from the definitions that the following properties
are equivalent:

• (ci) is an expansion of x for the alphabet A;
• (b + ci) is an expansion of x + b

q−1 for the alphabet b + A;
• (dci) is an expansion of dx for the alphabet dA;
• (am + a1 − ci) is an expansion of am+a1

q−1 − x for the alphabet A′.

Hence if one of these expansions is unique, then the others are unique as well. ut
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3. Admissible sequences

This section contains some preliminary technical results.

Definition 3.1. A sequence d = (di) = d1d2 · · · of zeroes and ones is admissible if

0d2d3 · · · ≤ (dn+i) ≤ d1d2d3 · · · (3.1)

for all n = 0, 1, . . . .

Examples 3.2.

• The trivial sequences 0∞ and 1∞ are admissible.
• More generally, the sequences (1N0)∞ (N = 1, 2, . . .) and (10N )∞ (N = 0, 1, . . .)

are admissible.
• The sequence (11010)∞ is also admissible.
• The (not purely periodic) sequence 10∞ is admissible.

In order to clarify the structure of admissible sequences we give an equivalent recur-
sive definition. Given a sequence h = (hi) of positive integers, starting with

Sh(0, 1) := 1 and Sh(0, 0) := 0

we define the blocks Sh(j, 1) and Sh(j, 0) for j = 1, 2, . . . by the recursive formulae

Sh(j, 1) := Sh(j − 1, 1)hj Sh(j − 1, 0),

Sh(j, 0) := Sh(j − 1, 1)hj−1Sh(j − 1, 0).

Observe that Sh(j, 1) and Sh(j, 0) depend only on h1, . . . , hj , so that they can also be
defined for every finite sequence h = (hj ) of length ≥ j . We also note that Sh(j, 0) =
Sh(j − 1, 0) whenever hj = 1.

Let us denote by j̀ the length of Sh(j, 1), and set furthermore `−1 := 0. Then the
length of Sh(j, 0) is equal to j̀ − j̀−1. We observe that j̀ tends to infinity as j →∞.

If the sequence h = (hj ) is given, we often omit the subscript h and we write simply
S(j, 1) and S(j, 0).

Let us mention some properties of these blocks that we use in what follows. Given
two finite blocks A and B we write for brevity

• A→ B or B = · · ·A if B ends with A;
• A < B orA · · · < B · · · ifAa1a2 · · · < Bb1b2 · · · lexicographically for any sequences
(ai) and (bi) of zeroes and ones;
• A ≤ B or A · · · ≤ B · · · if A < B or A = B.

Lemma 3.3. For any given sequence h = (hj ) the blocks S(j, 1) and S(j, 0) have the
following properties:
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(a) We have

S(j, 1) = 1S(1, 0) · · · S(j, 0) for all j ≥ 0; (3.2)
S(0, 0) · · · S(j − 1, 0)→ S(j, 1) for all j ≥ 1; (3.3)
S(0, 0) · · · S(j − 1, 0)→ S(j, 0) whenever hj ≥ 2; (3.4)
S(j, 0) < S(j, 1) for all j ≥ 0. (3.5)

(b) If Aj → S(j, 1) for some nonempty block Aj , then Aj ≤ S(j, 1).
(c) If Bj → S(j, 0) for some nonempty block Bj , then Bj ≤ S(j, 0).
(d) The finite sequence S(j, 1)S(j, 0) is obtained from S(j, 0)S(j, 1) by changing one

block 10 to 01.

Proof. (a) Proof of (3.2). For j = 0 we have S(j, 1) = 1 by definition. If j ≥ 1 and the
identity is true for j − 1, then the identity for j follows by using the equality S(j, 1) =
S(j − 1, 1)S(j, 0) coming from the definition of S(j, 1) and S(j − 1, 1).

Proof of (3.3) and (3.4). For j = 1 we have S(0, 0) = 0 and S(1, 0) = 1h1−10, so that
S(0, 0)→ S(1, 0)→ S(1, 1). (The condition h1 ≥ 2 is not needed here.) Proceeding by
induction, if (3.3) holds for some j ≥ 1, then both hold for j + 1 because

S(0, 0) · · · S(j − 1, 0)S(j, 0)→ S(j, 1)S(j, 0)→ S(j + 1, 1),

and in case hj+1 ≥ 2 we also have S(j, 1)S(j, 0)→ S(j + 1, 0).
Proof of (3.5). The case j = 0 is obvious because the left side begins with 0 and the

right side begins with 1. If j ≥ 1 and (3.5) holds for j − 1, then we deduce from the
inequality S(j − 1, 0) · · · < S(j − 1, 1) · · · that

S(j, 0) · · · = S(j − 1, 1)hj−1S(j − 1, 0) · · · < S(j − 1, 1)hj · · · .

Since S(j, 1) begins with S(j − 1, 1)hj , this implies (3.5) for j .
(b) We may assume that Aj 6= S(j, 1); this excludes the case j = 0 when we have

necessarily A0 = S(0, 1) = 1. For j = 1 we have S(j, 1) = 1h10 and Aj = 1t0 with
some integer 0 ≤ t < h1, and we conclude by observing that 1t0 · · · < 1h1 · · · .

Now let j ≥ 2 and assume that the result holds for j−1. Using the equality S(j, 1) =
S(j − 1, 1)hj S(j − 1, 0) we distinguish three cases.

If Aj → S(j − 1, 0), then we have the implications

Aj → S(j − 1, 0) ⇒ Aj → S(j − 1, 1) and Aj 6= S(j − 1, 1)
⇒ Aj · · · < S(j − 1, 1) · · ·
⇒ Aj · · · < S(j, 1) · · · .

If Aj = Aj−1S(j − 1, 1)tS(j − 1, 0) for some 0 ≤ t < hj , Aj−1 → S(j − 1, 1) and
Aj−1 6= S(j − 1, 1), then

Aj−1 · · · < S(j − 1, 1) · · · ⇒ Aj · · · < S(j − 1, 1) · · ·
⇒ Aj · · · < S(j, 1) · · · .
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Finally, if Aj = S(j − 1, 1)tS(j − 1, 0) for some 0 ≤ t < hj , then by (3.5),

Aj · · · < S(j − 1, 1)t+1
· · · and therefore Aj · · · < S(j, 1) · · · .

(c) We proceed by induction. The case j = 0 is obvious because then we have neces-
sarily B0 = S(0, 0) = 0. Let j ≥ 1 and assume that the property holds for j − 1 instead
of j . If hj > 1, then the case of j follows by applying part (b) with hj replaced by hj −1.
If hj = 1, then we have S(j, 0) = S(j − 1, 0) and applying (b) we conclude that

Bj → S(j, 0) ⇒ Bj → S(j − 1, 0) ⇒ Bj ≤ S(j − 1, 0) = S(j, 0).

(d) The assertion is obvious for j = 0 because S(0, 1) = 1 and S(0, 0) = 0. Proceed-
ing by induction, let j ≥ 1 and assume that the result holds for j − 1. Comparing the
expressions

S(j, 1)S(j, 0) = S(j − 1, 1)hj S(j − 1, 0)S(j − 1, 1)hj−1S(j − 1, 0),

S(j, 0)S(j, 1) = S(j − 1, 1)hj−1S(j − 1, 0)S(j − 1, 1)hj S(j − 1, 0),

we see that S(j, 0)S(j, 1) is obtained from S(j, 1)S(j, 0) by changing the first block
S(j − 1, 1)S(j − 1, 0) to S(j − 1, 0)S(j − 1, 1). ut

The following corollary of Lemma 3.3(d) will not be used in this paper but it can be useful
in similar investigations.

Corollary 3.4. Let (ak) be a sequence of zeroes and ones, containing both infinitely many
zeroes and ones, and j a nonnegative integer. Then

πq(S(j, 0)S(j, a1)S(j, a2) · · · ) < πq(S(j, a1)S(j, a2) · · · )

< πq(S(j, 1)S(j, a1)S(j, a2) · · · )

for every base q > 1.

Proof. We prove the first inequality; the proof of the second one is similar. It is sufficient
to show that the sequenceS(j, 0)S(j, a1)S(j, a2) · · · is obtained fromS(j, a1)S(j, a2) · · ·

by changing certain (infinitely many) blocks S(j, 1)S(j, 0) to S(j, 0)S(j, 1). Indeed,
each such change is equivalent to the change of a block 10 to 01 by Lemma 3.3(d), and
therefore decreases the value of the expansion because if the block 10 figures on the ith
and (i + 1)th places, then

1
qi
+

0
qi+1 >

0
qi
+

1
qi+1 .

Equivalently, we show that 0, a1, a2 . . . is obtained from a1, a2 . . . by changing certain
blocks 10 to 01. If (ak) = 0n01n10n21n30n4 · · · with a nonnegative integer n0 and positive
integers n1, n2 . . . , then we obtain

• 00n01n10n2−11n30n4 · · · from 0n01n10n21n30n4 · · · by n1 such changes,
• 00n01n10n21n30n4−1

· · · from 00n01n10n2−11n30n4 · · · by n3 such changes,

and so on. ut

The following lemma is a partial converse of (3.3).
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Lemma 3.5. If A is a block of length `N−1 in some sequence S(N, a1)S(N, a2) · · · with
N ≥ 1 and (ai) ⊂ {0, 1}, then A ≥ S(0, 0) · · · S(N − 1, 0). Furthermore, we have
A = S(0, 0) · · · S(N − 1, 0) if and only if A→ S(N, ai) with some ai = 1.

Proof. The case N = 1 is obvious because then S(0, 0) = 0 implies that A = 0, and
S(1, 1) = 1h10 ends with 0.

Now let N ≥ 2 and assume by induction that the result holds for N − 1. Writing
A = BC with a block B of the same length as S(0, 0) · · · S(N − 2, 0) and applying the
induction hypothesis to B in the sequence

S(N, a1)S(N, a2) · · · = (S(N − 1, 1)hN−1+aiS(N − 1, 0))

we find that B → S(N − 1, 1) for one of the blocks on the right side and thus B =
S(0, 0) · · · S(N − 2, 0). Then it follows from our assumption that C has the same length
as S(N − 1, 0) and C ≤ S(N − 1, 0). Since S(N − 1, 0) < S(N − 1, 1), the block
containing B must be followed by a block S(N−1, 0). We conclude that C = S(N−1, 0)
and therefore A = BC = S(0, 0) · · · S(N − 1, 0) and

A→ S(N − 1, 1)hN−1+aiS(N − 1, 0) = S(N, ai)

for some ai = 1. ut

Lemma 3.6. A sequence d = (di) is admissible if and only if one of the following three
conditions is satisfied:

• d=0∞;
• d=Sh(N, 1)∞ with some nonnegative integerN and a finite sequence h=(h1, . . . , hN )

of positive integers;
• there exists an infinite sequence h = (hi) of positive integers such that d begins with
Sh(N, 1) for every N = 0, 1, . . . .

Proof. It follows from the definition that d1 = 1 for all admissible sequences other
than 0∞. In the following we consider only admissible sequences beginning with d1 = 1.
We omit the subscript h for brevity.

Let d = (di) be an admissible sequence. Setting d0
i := di we have

d = S(0, d0
1 )S(0, d

0
2 ) · · ·

with the admissible sequence (d0
i ).

Proceeding by recurrence, assume that

d = S(j, d
j

1 )S(j, d
j

2 ) · · ·

for some integer j ≥ 0 with an admissible sequence (dji ) and positive integers h1, . . . , hj .
(We need no such positive integers for j = 0.)

If (dji ) = 1∞, then d = S(j, 1)∞. Otherwise there exists a positive integer hj+1 such
that d begins with S(j, 1)hj+1S(j, 0). Since the sequence (dji ) is admissible, we have

0dj2 d
j

3 · · · ≤ d
j

n+1d
j

n+2 · · · ≤ d
j

1 d
j

2 · · ·
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for all n = 0, 1, . . . . Since the map (ci) 7→ (S(j, ci)) preserves the lexicographic order-
ing by (3.5), it follows that

S(j, 0)S(j, dj2 )S(j, d
j

3 ) · · · ≤ S(j, d
j

n+1)S(j, d
j

n+2) · · · ≤ S(j, d
j

1 )S(j, d
j

2 ) · · ·

for all n = 0, 1, . . . . Thanks to the definition of hj+1 we conclude that

S(j, 0)S(j, 1)hj+1−1S(j, 0) · · · ≤ S(j, djn+1)S(j, d
j

n+2) · · · ≤ S(j, 1)hj+1S(j, 0) · · ·

for all n = 0, 1, . . . . This implies that each block S(j, 0) is followed by at least hj+1 − 1
and at most hj+1 consecutive blocks S(j, 1), so that

d = S(j + 1, dj+1
1 )S(j + 1, dj+1

2 ) · · ·

for a suitable sequence (dj+1
i ) of zeroes and ones. The admissibility of (dji ) can then be

rewritten in the form

S(j, 0)S(j + 1, 0)S(j + 1, dj+1
2 )S(j + 1, dj+1

3 ) · · · ,

≤ S(j, d
j

n+1)S(j, d
j

n+2) · · ·

≤ S(j + 1, 1)S(j + 1, dj+1
2 )S(j + 1, dj+1

3 ) · · · (3.6)

for n = 0, 1, . . . .
We claim that the sequence (dj+1

i ) is also admissible. We have dj+1
1 = 1 by the

definition of hj+1. It remains to show that

S(j + 1, 0)S(j + 1, dj+1
2 )S(j + 1, dj+1

3 ) · · ·

≤ S(j + 1, dj+1
k+1 )S(j + 1, dj+1

k+2 )S(j + 1, dj+1
k+3 ) · · ·

≤ S(j + 1, 1)S(j + 1, dj+1
2 )S(j + 1, dj+1

3 ) · · ·

for k = 0, 1, . . . .
The second inequality is a special case of the second inequality of (3.6). The first

inequality is obvious for k = 0. For k ≥ 1 it is equivalent to

S(j, 0)S(j + 1, 0)S(j + 1, dj+1
2 )S(j + 1, dj+1

3 ) · · ·

≤ S(j, 0)S(j + 1, dj+1
k+1 )S(j + 1, dj+1

k+2 )S(j + 1, dj+1
k+3 ) · · ·

and this is a special case of the first inequality of (3.6) because S(j + 1, dj+1
k ) ends with

S(j, 0).
It follows from the above construction that (di) has one of the two forms specified in

the statement of the lemma.
Turning to the proof of the converse statement, first we observe that if d begins with

S(N, 1) for some sequence h = (hi) and for some integer N ≥ 1, then

dn · · · d`N < d1 · · · d`N−n+1 for n = 2, . . . , `N ; (3.7)

this is just a reformulation of Lemma 3.3(b).
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If d1d2 · · · begins with S(N, 1) for all N , then the second inequality of (3.1) follows
for all n ≥ 1 by using the relation `N →∞. Moreover, the inequality is strict. For n = 0
we clearly have equality.

If d = S(N, 1)∞ for some N ≥ 0, then d is `N -periodic so that the second inequality
of (3.1) follows from (3.7) for all n, except if n is a multiple of `N ; we get strict inequal-
ities in these cases. If n is a multiple of `N , then we obviously have equality again.

It remains to prove the first inequality of (3.1). If d = S(N, 1)∞ for some N ≥ 0,
then we deduce from Lemma 3.5 that either

(dn+i) > S(0, 0) · · · S(N − 1, 0) or (dn+i) = S(0, 0) · · · S(N − 1, 0)S(N, 1)∞.

Since
0d2d3 · · · = S(0, 0) · · · S(N − 1, 0)S(N, 0)S(N, 1)∞,

we conclude in both cases the strict inequalities

(dn+i) > 0d2d3 · · · .

If d1d2 · · · begins with S(N, 1) for all N , then

0d2d3 · · · = S(0, 0)S(1, 0) · · · S(N, 0) · · · ≤ (dn+i)

by Lemma 3.5. ut

Remark 3.7. The end of the proof also shows that in case d = 0∞ or d = Sh(N, 1)∞

the inequalities (3.1) are not strict for all n ≥ 1. The same is true if d is defined by
an infinite sequence h = (hi) with at most finitely many hi > 1. Indeed, in this case
d = S(N − 1, 1)S(N, 1)∞ for some N ≥ 1, so that

0d2d3 · · · = S(0, 0) · · · S(N − 1, 0)S(N, 1)∞ = (dn+i)

for infinitely many n by (3.2) and (3.3).
On the other hand, if d is defined by an infinite sequence h = (hi) and hi ≥ 2 for

infinitely many n, then the inequalities (3.1) are strict for all n ≥ 1. We already know
from the above proof that the second inequality is always strict. Assume on the contrary
that 0d2d3 · · · = (dn+i) for some n. Since 0d2d3 · · · = S(0, 0)S(1, 0) · · · in this case, it
follows that (dn+i) begins with S(0, 0) · · · S(N − 1, 0) for every N ≥ 1. Writing d in the
form S(N, a1)S(N, a2) · · · and using Lemma 3.5 we conclude that

n+ |S(0, 0)| + · · · + |S(N − 1, 0)| ≥ |S(N, 1)|

for every N , where |w| means the length of the word w. This, however, is impossible
because |S(N+1, 1)|− |S(N, 1)| ≥ |S(N, 0)| for allN , and |S(N+1, 1)|− |S(N, 1)| ≥
|S(N, 0)| + 1 whenever hN ≥ 2, i.e., for infinitely many N .

We have obtained in this way a new characterization of Sturmian sequences: a se-
quence s is Sturmian if and only if 1s is an admissible sequence defined by an infinite
sequence h = (hi) such that hi ≥ 2 for infinitely many i.
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Definition 3.8. We say that an admissible sequence d is of finite type if d = 0∞ or if
d = Sh(N, 1)∞ with some nonnegative integerN and a finite sequence h = (h1, . . . , hN )

of positive integers. Otherwise it is said to be of infinite type.

Lemma 3.9. Let d = (di) 6= 1∞ be an admissible sequence.

(a) If (di) = S(N, 1)∞ (then N ≥ 1 because d 6= 1∞) and (d ′i) = (di+1+`N−`N−1), then

(d ′n+i) ≥ (d
′

i) > (d1+i) whenever d ′n = 0.

Moreover,

(d ′i) = S(1, 0) · · · S(N − 1, 0)S(N, 1)∞, (3.8)
(d1+i) = S(1, 0) · · · S(N − 1, 0)S(N, 0)S(N, 1)∞. (3.9)

(b) In the other cases the sequence (d ′i) := (d1+i) satisfies

(d ′n+i) ≥ (d
′

i) whenever d ′n = 0.

(c) We have d ′ = d if and only if d = (1k−10)∞ for some positive integer k, i.e., d = 0∞

or d = S(N, 1)∞ with N = 1.

Proof. (a) The first inequality follows from Lemma 3.5; the proof also shows that we
have equality if and only if n is a multiple of `N .

The relations (3.2) and (3.3) of Lemma 3.3 imply (3.8)–(3.9) and they imply the sec-
ond inequality because S(N, 0) < S(N, 1).

(b) The case (di) = 0∞ is obvious. Otherwise (di) begins with S(N, 1) for all N ≥ 0
and `N →∞, so that we deduce from the relation (3.2) of Lemma 3.3 the equality

0d2d3 · · · = S(0, 0)S(1, 0) · · · .

On the other hand, it follows from Lemma 3.5 that for any n ≥ 0 we have

(d ′n+i) ≥ S(0, 0) · · · S(N − 1, 0)S(N, 0)∞ for every N ≥ 0.

This implies that
(d ′n+i) ≥ 0d2d3 · · · for every n ≥ 0.

If d ′n = 0, then we conclude that

d ′nd
′

n+1d
′

n+2 · · · ≥ 0d2d3 · · · ,

which is equivalent to the required inequality

d ′n+1d
′

n+2 · · · ≥ d2d3 · · · .

(c) It follows from the above proof that d = d ′ if and only if d = 0∞ or d = S(N, 1)∞

for some integer N ≥ 1 and h such that `N−1 = 1. These conditions are equivalent to
d = (1k−10)∞ for some positive integer k. ut
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Example 3.10. By Lemma 3.6 all admissible sequences d 6= 0∞ are defined by a fi-
nite or infinite sequence h = (hj ). If we add the symbol ∞ to the end of each finite
sequence (hj ), then the map d 7→ h is increasing with respect to the lexicographic or-
ders of sequences. It follows that if d = S(N, 1)∞ is an admissible sequence of finite
type with N ≥ 1 (i.e., d 6= 1∞) and h1, . . . , hN ≥ 1, then there exists a smallest ad-
missible sequence d̂ > d. It is of infinite type, corresponding to the infinite sequence
h = h1 · · ·hN−1h

+

N1∞ with h+N := 1 + hN . Observe that d̂ = S(N − 1, 1)d and hence
d̂ ′ = d ′ and d̂ = 1d ′.

For d = 0∞, there exists a smallest admissible sequence d̂ > d , too. It is also of
infinite type: d̂ = 10∞, corresponding to h = (1, 1, . . .), and d̂ ′ = d ′ = 0∞.

Lemma 3.11. If d = (di) is an admissible sequence of finite type, then no sequence (ci)
of zeroes and ones satisfies

0d2d3 · · · < (cn+i) < d1d2d3 · · · for all n = 1, 2, . . . .

Proof. The case d = 0∞ is obvious because then 0d2d3 · · · = d1d2d3 · · · . The case
d = 1∞ is obvious too, because then (ci) cannot have any zero digit by the first condition,
while (ci) = 1∞ does not satisfy the second condition. We may therefore assume that
d = S(N, 1)∞ for some N ≥ 1 and some h = (hi). Then our assumption takes the form

S(0, 0) · · · S(N − 1, 0)S(N, 0)S(N, 1)∞ < (cn+i) < S(N, 1)∞. (3.10)

First step: the sequence (ci) cannot end with S(K, 0)∞ for any 0 ≤ K ≤ N .
This is true if S(K, 0) = 0 because 0∞ ≤ 0d2d3 · · · .

Otherwise we have K ≥ 1 and there exists 1 ≤ M ≤ K such that hM ≥ 2 and
hM+1 = · · · = hK = 1. Then we have

S(M, 0) = S(M + 1, 0) = · · · = S(K, 0)

and (see (3.4))
S(0, 0) · · · S(M − 1, 0)→ S(M, 0) = S(K, 0).

Therefore in case (ci) ends with S(K, 0)∞ there exists n such that

(cn+i) = S(0, 0) · · · S(M − 1, 0)S(K, 0)∞ = S(0, 0) · · · S(K − 1, 0)S(K, 0)∞

≤ S(0, 0) · · · S(N − 1, 0)S(N, 0)∞ < S(0, 0) · · · S(N − 1, 0)S(N, 0)S(N, 1)∞,

contradicting the first inequality of (3.10).

Second step: the sequence (ci) ends with S(N, cN1 )S(N, c
N
2 ) · · · for a suitable sequence

(cNj ) ⊂ {0, 1}.

We have (ci) = S(0, c0
1)S(0, c

0
2) · · · with c0

i := ci . Now let 1 ≤ M ≤ N and
assume by induction that (ci) ends with S(M−1, cM−1

1 )S(M−1, cM−1
2 ) · · · for a suitable

sequence (cM−1
j ) ⊂ {0, 1}.
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Since S(N, 1) begins with S(M, 1) = S(M − 1, 1)hMS(M − 1, 0), by (3.10) each
block S(M − 1, cM−1

j ) is followed by at most hM consecutive blocks S(M − 1, 1). On
the other hand, since the first expression in (3.10) begins with

S(0, 0) · · · S(M − 2, 0)S(M − 1, 0)S(M − 1, 1)hM−1S(M − 1, 0)

and since (see (3.3))

S(0, 0) · · · S(M − 2, 0)→ S(M − 1, 1)

(for M = 1 the block S(0, 0) · · · S(M − 2, 0) is empty by definition), each block
S(M − 1, 1)S(M − 1, 0) in (S(M − 1, cM−1

j )) is followed by at least hM − 1 consecutive
blocks S(M − 1, 1).

Since (ci) cannot end with S(M − 1, 0)∞ by the first step, we conclude that (ci) ends
with (S(M, cMj )) for a suitable sequence (cMj ) ⊂ {0, 1}.

Third step: the sequence (ci) ends with S(N, 1)S(N, 0)S(N, a1)S(N, a2) · · · for a suit-
able sequence (aj ) ⊂ {0, 1}.

Indeed, in view of the first two steps it suffices to observe that (ci) cannot end with
S(N, 1)∞ by the second condition of (3.10).

Fourth step. Using the relation S(0, 0) · · · S(N − 1, 0)→ S(N, 1) (see (3.3)) we deduce
from the preceding step that (ci) ends with

S(0, 0) · · · S(N − 1, 0)S(N, 0)(S(N, aj )) ≤ S(0, 0) · · · S(N − 1, 0)S(N, 0)S(N, 1)∞,

contradicting the first condition in (3.10) again. ut

Lemma 3.12. If d = (di) 6= 1∞ is an admissible sequence of finite type, then no se-
quence (ci) of zeroes and ones satisfies

0(d ′i) < (cn+i) < 1(d ′i) for all n = 1, 2, . . . .

Proof. If d = 0∞, then d ′ = 0∞ and our hypothesis takes the form 0∞ < (cn+i) < 10∞.
Such a sequence cannot have digits 1 by the second condition, but it cannot be 0∞ either
by the first condition. It remains to consider the case where d = S(N, 1)∞ for some
N ≥ 1 and h = (h1, . . . , hN ). Then by Lemmas 3.3 and 3.9 our hypothesis may be
written in the form

S(0, 0) · · · S(N − 1, 0)S(N, 1)∞ < (cn+i) < S(N − 1, 1)S(N, 1)∞. (3.11)

Using (3.11) instead of (3.10), we may repeat the proof of the preceding proposition
by keeping h1, . . . , hN−1 but changing hN to hN + 1. At the end of the third step we find
that a sequence (ci) satisfying (3.11) must end with

S+(N, 1)S+(N, 0)S+(N, a1)S+(N, a2) · · ·
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for a suitable sequence (aj ) ⊂ {0, 1}, where we use the notation

S+(N, 1) := S(N − 1, 1)hN+1S(N − 1, 0),

S+(N, 0) := S(N, 1) = S(N − 1, 1)hNS(N − 1, 0).

Since

S+(N, 1)S+(N, 0)S+(N, a1)S+(N, a2) · · · ≥ S+(N, 1)S+(N, 0)∞

= S(N − 1, 1)S(N, 1)∞,

this contradicts the second inequality of (3.11). ut

4. m-admissible sequences

Throughout this section we fix an admissible sequence d = (di) 6= 1∞ and we define the
sequence d ′ = (d ′i) as in Lemma 3.9. Furthermore, for any given real number m > 1 we
denote by δ = (δi) and δ′ = (δ′i) the sequences obtained from d and d ′ by the substitutions
1→ m and 0→ 1. We define the numbers p′m, p

′′
m > 1 by the equations

∞∑
i=1

δi

(p′m)
i
= m− 1 (4.1)

and
∞∑
i=1

m− δ′i

(p′′m)
i
= 1 (4.2)

and we put pm := max{p′m, p
′′
m}.

Introducing the conjugate of δ by the formula δ′i := m − δ′i we may also write (4.1)
and (4.2) in the more economical form

πp′m(δ) = m− 1 and πp′′m(δ
′) = 1.

Let us also introduce the number

Pm := 1+
√

m

m− 1
.

A direct computation shows that Pm > 1 can also be defined by any of the following
equivalent conditions:

(Pm − 1)2 =
m

m− 1
; (4.3)

m

Pm
+

1
Pm

(
m

Pm − 1
− 1

)
= m− 1; (4.4)

(m− 1)Pm −m =
m

Pm − 1
− 1; (4.5)

m

Pm − 1
− (m− 1) =

1
Pm
. (4.6)
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We begin by investigating the dependence of Pm, p′m and p′′m on m. The following
two lemmas establish in particular Theorem 1.1(b).

Lemma 4.1. (a) The function m 7→ Pm is continuous and strictly decreasing in (1,∞).
(b) The function m 7→ p′m − Pm is continuous and strictly decreasing in (1,∞), and it

has a unique zero md .
(c) The function m 7→ p′′m − Pm is continuous and strictly increasing in (1,∞), and it

has a unique zero Md .
(d) The function m 7→ p′m − p

′′
m is continuous and strictly decreasing in (1,∞), and it

has a unique zero µd .
(e) The function m 7→ pm is continuous in (1,∞), strictly decreasing in (1, µd ] and

strictly increasing in [µd ,∞), so that it has a strict global minimum in µd .

Proof. (a) A straightforward computation shows that P is infinitely differentiable in
(1,∞) and

P ′(m) =
−1

2(m− 1)
√
m(m− 1)

< 0 for all m > 1.

(b) Since δi = 1+ (m− 1)di , we may rewrite (4.1) in the form

1
m− 1

+ (p′m − 1)
∞∑
i=1

di

(p′m)
i
= p′m − 1. (4.7)

Applying the implicit function theorem it follows that the function m 7→ p′m is C∞.
Differentiating the last identity with respect tom, denoting the derivatives by dots and

setting

A := 1+ (p′m − 1)
∞∑
i=1

di

i(p′m)
i+1 −

∞∑
i=1

di

(p′m)
i
,

we get

Aṗ′m =
−1

(m− 1)2
.

Differentiating (4.3) we find that the right side is equal to 2(Pm − 1)Ṗm, so that

Aṗ′m = 2(Pm − 1)Ṗm.

Since Ṗm < 0 and 2(Pm − 1) > 1, it suffices to show that A ∈ (0, 1). Indeed, then we
will have ṗ′m/Ṗm > 1 and therefore ṗ′m < Ṗm (< 0).

The inequality A > 0 follows by using (4.7):

A = (p′m − 1)
∞∑
i=1

di

i(p′m)
i+1 +

1
(m− 1)(p′m − 1)

> 0,
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while the proof of A < 1 is straightforward:

A ≤ 1+ (p′m − 1)
∞∑
i=1

di

(p′m)
i+1 −

∞∑
i=1

di

(p′m)
i

= 1−
1
p′m

∞∑
i=1

di

(p′m)
i
< 1.

It remains to show that p′m−Pm changes sign in (1,∞). It is clear from the definition
that

lim
m↘1

Pm = ∞ and lim
m→∞

Pm = 2. (4.8)

Furthermore, using the equality d1 = 1 it follows from (4.7) that

1
m− 1

≤ p′m − 1 ≤ 1+
1

m− 1
;

hence
lim
m↘1

p′m = ∞ and lim
m→∞

p′m = 1. (4.9)

We infer from (4.8)–(4.9) that limm→∞ p
′
m − Pm = −1 < 0. The proof is completed by

observing that

p′m − Pm ≥
1

m− 1
− 1−

√
m

m− 1
→∞ > 0 as m↘ 1.

(c) We may rewrite (4.2) in the form

∞∑
i=1

1− d ′i
(p′′m)

i
=

1
m− 1

. (4.10)

Applying the implicit function theorem it follows from (4.10) that the function m 7→ p′′m
is C∞.

The last identity also shows that the function m 7→ p′′m is strictly increasing. Using
(a) we conclude that the function m 7→ p′′m − Pm is strictly increasing, too.

It remains to show that p′′m − Pm changes sign in (1,∞). Since d 6= 1∞, there exists
an index k such that d ′k = 0. Therefore we deduce from (4.10) the inequalities

1
(p′′m)

k
≤

1
m− 1

≤
1

p′′m − 1

and hence
lim
m↘1

p′′m = 1 and lim
m→∞

p′′m = ∞. (4.11)

We conclude from (4.8) and (4.11) that

lim
m↘1

(p′′m − Pm) = −∞ < 0 and lim
m→∞

(p′′m − Pm) = ∞ > 0.
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(d) The proof of (b) and (c) shows that m 7→ p′m is continuous and strictly decreasing
and m 7→ p′′m is continuous and strictly increasing; hence the function m 7→ p′m − p

′′
m

is continuous and strictly decreasing. It remains to observe that p′m − p
′′
m changes sign in

(1,∞) because (4.9) and (4.11) imply that

lim
m↘1

(p′m − p
′′
m) = ∞ > 0 and lim

m→∞
(p′m − p

′′
m) = −∞ < 0.

(e) This follows from the definition pm := max{p′m, p
′′
m} and from the fact that

m 7→ p′m is continuous and strictly decreasing and m 7→ p′′m is continuous and strictly
increasing. ut

The first part of the following lemma is a variant of a similar result in [6].

Lemma 4.2. We consider expansions in some base q > 1 on some alphabet {a, b} with
a < b.

(a) Let (ci) be an expansion of some number s ≤ b − a. If

cn+1cn+2 · · · ≤ c1c2 · · · whenever cn = a,

then
cn+1

qn+1 +
cn+2

qn+2 + · · · ≤
s

qn
whenever cn = a.

Moreover, the inequality is strict if the sequence (ci) is infinite and (cn+i) 6= (ci).
(b) Let c = (ci) and d = (di) be two expansions. If q ≥ 2, then

(ci) ≤ (di) ⇒ πq(c) ≤ πq(d).

Moreover, if q > 2, then

(ci) < (di) ⇔ πq(c) < πq(d).

Proof. (a) Starting with k0 := n we define by recurrence a sequence of indices k0 <

k1 < · · · satisfying for j = 1, 2, . . . the conditions

ckj−1+i = ci for i = 1, . . . , kj − kj−1 − 1, ckj < ckj−kj−1 .

If we obtain an infinite sequence, then we have

∞∑
i=n+1

ci

qi
=

∞∑
j=1

kj−kj−1∑
i=1

ckj−1+i

qkj−1+i
≤

∞∑
j=1

((kj−kj−1∑
i=1

ci

qkj−1+i

)
−
b − a

qkj

)
≤

∞∑
j=1

(
s

qkj−1
−
b − a

qkj

)
≤

∞∑
j=1

(
s

qkj−1
−

s

qkj

)
=

s

qn
.
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Otherwise we have (ckN+i) = (ci) after a finite number of steps (we do not exclude
the possibility that N = 0), and we may conclude as follows:

∞∑
i=n+1

ci

qi
=

( N∑
j=1

kj−kj−1∑
i=1

ci

qkj−1+i

)
+

∞∑
i=1

ckN+i

qkN+i

≤

N∑
j=1

((kj−kj−1∑
i=1

ci

qkj−1+i

)
−
b − a

qkj

)
+

∞∑
i=1

ci

qkN+i

≤

N∑
j=1

(
s

qkj−1
−
b − a

qkj

)
+

s

qkN

≤

N∑
j=1

(
s

qkj−1
−

s

qkj

)
+

s

qkN
=

s

qn
.

The last property follows from the above proof.
(b) If c < d , then let n be the first integer for which cn < dn. Then ci = di for i < n,

dn − cn = b − a, and di − ci ≥ a − b for i > n, so that

πq(d)− πq(c) ≥
b − a

qn
−

∞∑
i=n+1

b − a

qi
=
b − a

qn
−

b − a

qn(q − 1)
≥ 0.

Moreover, in case q > 2 the last inequality is strict. ut

Now we investigate the mutual positions of md , Md and µd .

Lemma 4.3. (a) If d is of finite type, then md < µd < Md , and pm < Pm for all
md < m < Md . Furthermore, pm ≥ 2 for all m ∈ (1,∞) with equality if and only if
d = (1k−10)∞ and m = 2k for some positive integer k.

(b) In the other cases we have md = µd = Md and pm ≥ pµd = Pµd > 2 for all
m ∈ (1,∞).

Proof. (a) In view of Lemma 4.1 the first assertion will follow if we show that pm < Pm
for m := µd . Note that pm = p′m = p

′′
m in this case.

If d = 0∞, then d ′ = 0∞ and therefore

m− 1 = πp′m(δ) = πp′′m(δ
′) =

m

p′′m − 1
− 1 =

m

pm − 1
− 1.

It follows that pm = 2 and therefore Pm = 1+
√
m/(m− 1) > pm.

In the other cases, using the relations (3.8)–(3.9) of Lemma 3.9 we have

m− 1 =
∞∑
i=1

δi

pim
=

m

pm
+

1
pm

∞∑
i=1

δi+1

pim

<
m

pm
+

1
pm

∞∑
i=1

δ′i

pim
=

m

pm
+

1
pm

(
m

pm − 1
− 1

)
.
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In this computation the crucial inequality follows from Lemmas 3.9 and 4.2(a). Indeed,
writing d = S(N, 1)∞, in view of the relations (3.8)–(3.9) of Lemma 3.9 the inequality
is equivalent to

πp′m((δ`N−1+i)) < πp′m(δ),

and this inequality follows from Lemma 4.2(a) with c = δ, q = p′m and n = `N−1. (The
hypotheses of the lemma are satisfied because d is an admissible sequence.)

Using (4.4) we conclude that pm < Pm indeed.
Furthermore, for m := µd we deduce from the equalities

πpm(δ) = m− 1 and πpm(δ
′) = 1

that
∞∑
i=1

m− δ′i + δi

pim
= m.

It follows that pm ≥ 2 if and only if

∞∑
i=1

m− δ′i + δi

2i
≥ m,

which is equivalent to the inequality

π2(δ
′) ≤ π2(δ).

Since δ′ ≤ δ by Lemma 3.9, this is satisfied by a well-known property of dyadic expan-
sions.

The proof also shows that we have equality if and only if δ′ = δ. By Lemma 3.9(c)
this is equivalent to d = (1k−10)∞ for some positive integer k. In this case we infer from
the equalities

m

p′m − 1
−

m− 1
(p′m)

k − 1
= m− 1

and

m

p′′m − 1
−

m− 1
(p′′m)

k − 1
=

m

p′′m − 1
− 1

that p′m = p
′′
m = m

1/k
= 2.

Since by Lemma 4.1, pm has a global strict minimum at m = µd , we have pm > 2
for all other values of m.

(b) Putting m = µd and repeating the first part of the proof of (a), by Lemma 3.9 we
now have equality instead of strict inequality; using (4.4) we conclude that pm = Pm and
so pm = p′m = p

′′
m = Pm. Applying Lemma 4.1 we conclude that md = µd = Md . ut
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5. Univoque sequences in small bases

In this section we determine the generalized golden ratio for every ternary alphabet A =
{a1, a2, a3}. Putting

m := max
{
a3 − a1

a2 − a1
,
a3 − a1

a3 − a2

}
we will show that

2 ≤ GA ≤ Pm := 1+
√

m

m− 1
.

Moreover, we will give an exact expression of GA for each m and we will determine the
values of m for which GA = 2 or GA = Pm.

By Lemma 2.9 we may restrict ourselves without loss of generality to the case of the
alphabets Am = {0, 1, m} with m ≥ 2. Condition (2.1) takes the form

1 < q ≤
2m− 1
m− 1

;

under this assumption, which we make henceforth, the results of the preceding section
apply. In what follows we fix a real number m ≥ 2 and we consider expansions in bases
q > 1 with respect to the ternary alphabet Am := {0, 1, m} .

One of our main tools will be Theorem 2.2, which now takes the following special
form:

Lemma 5.1. An expansion (ci) is unique in base q for the alphabet Am if and only if the
following conditions are satisfied:

∞∑
i=1

cn+i

qi
< 1 whenever cn = 0; (5.1)

∞∑
i=1

cn+i

qi
< m− 1 whenever cn = 1; (5.2)

∞∑
i=1

cn+i

qi
>

m

q − 1
− 1 whenever cn = 1; (5.3)

∞∑
i=1

cn+i

qi
>

m

q − 1
− (m− 1) whenever cn = m. (5.4)

Corollary 5.2. We have GAm ≥ 2.

Proof. Let (ci) be a univoque sequence in some base 1 < q ≤ 2. We infer from (5.2)
and (5.3) that cn 6= 1 for every n. Since m ≥ q, we conclude from (5.1) that each 0
digit is followed by another 0 digit. Therefore condition (5.4) implies that each m digit
is followed by another m digit. For otherwise the left-hand side of (5.4) would be zero,
while the right-hand side is greater than zero. Hence (ci)must be equal to 0∞ orm∞. ut
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Lemma 5.3. If (ci) is a nontrivial univoque sequence in some base 1 < q ≤ Pm, then
(ci) contains at most finitely many zero digits.

Proof. Since a univoque sequence remains univoque in every larger base, we may assume
that q = Pm. It suffices to prove that (ci) does not contain any block of the formm0 or 10.

(ci) does not contain any block of the form m0. If cn = m and cn+1 = 0 for some n,
then we deduce from Lemma 5.1 that

∞∑
i=1

cn+i

P im
>

m

Pm − 1
− (m− 1) and

∞∑
i=1

cn+i+1

P im
< 1.

Hence
m

Pm − 1
− (m− 1) <

∞∑
i=1

cn+i

P im
=

1
Pm

∞∑
i=1

cn+i+1

P im
<

1
Pm
,

contradicting condition (4.6) on Pm.
(ci) does not contain any block of the form 10. If cn = 1 and cn+1 = 0 for some n,

then an application of Lemma 5.1 shows that

∞∑
i=1

cn+i

P im
>

m

Pm − 1
− 1 and

∞∑
i=1

cn+i+1

P im
< 1.

Sincem ≥ 2, these inequalities imply those of the preceding step, contradicting again our
condition on Pm. ut

Next we select a particular admissible sequence for each given m. Given an admissible
sequence d 6= 1∞ we set

Id :=

{
[md ,Md) if md < Md ,

{md} if md = Md .
(5.5)

Lemma 5.4. Given a real number m ≥ 2 there exists a lexicographically largest admis-
sible sequence d = (di) such that using the notation of the preceding section we have

∞∑
i=1

δi

P im
≤ m− 1. (5.6)

Furthermore, d 6= 1∞ and m ∈ Id .

Remark 5.5. The lemma and its proof remain valid for all m ≥ (1+
√

5)/2.

Proof. The sequence d = 0∞ always satisfies (5.6) because using (4.3) we have

∞∑
i=1

δi

P im
=

1
Pm − 1

=

√
m− 1
m
≤ m− 1;

the last inequality is equivalent to m ≥ (1 +
√

5)/2. If it is not the only such admissible
sequence, then applying the monotonicity of the map d 7→ h mentioned in Example 3.10
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we obtain the existence of a lexicographically largest finite or infinite sequence h such
that the corresponding admissible sequence d = (di) satisfies (5.6).

We have d 6= 1∞ because the sequence d = 1∞ does not satisfy (5.6): using (4.3)
again we have

∞∑
i=1

δi

P im
=

m

Pm − 1
=

√
(m− 1)m > m− 1.

It remains to prove that m ∈ Id . We distinguish three cases.
(a) If (di) is defined by an infinite sequence (hj ), then we already know that pm =

p′m = p
′′
m and

∞∑
i=1

δi

P im
≤ m− 1.

It remains to show the reverse inequality

∞∑
i=1

δi

P im
≥ m− 1. (5.7)

It follows from the definition of (δi) that if we denote by (δNi ) the sequence associ-
ated with the admissible sequence defined by the sequence h := h1, . . . , hN−1, hN + 1,
1, 1, . . . , then

∞∑
i=1

δNi

P im
> m− 1.

Since both (di) and (dNi ) begin with S(N − 1, 1)hN and since the length of this block
tends to infinity, letting N →∞ we deduce (5.7).

(b) If (di) = S(N, 1)∞ for some N ≥ 1, then

(ei) := S(N − 1, 1)hN+1S(N − 1, 0)[S(N − 1, 1)hNS(N − 1, 0)]∞

= S(N − 1, 1)S(N, 1)∞

does not satisfy (5.6), so that
∞∑
i=1

εi

P im
> m− 1

where (εi) is obtained from (ei) by the usual substitutions 1→ m and 0→ 1.
Observe that now e1e2 · · · = 1d ′1d

′

2 · · · and therefore (using the notation of the intro-
duction)

m− 1 < πPm(ε) =
m

Pm
+

1
Pm
πPm(δ

′).

It follows that
πPm(δ

′) > (m− 1)Pm −m =
m

Pm − 1
− 1,

which is equivalent to πPm(δ′) < 1. Since πp′′m(δ
′) = 1 by the definition of p′′m, we

conclude that Pm > p′′m.
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Finally, since πPm(δ) ≤ m − 1 = πp′m(δ) by the definitions of (di) and p′m, we also
have Pm ≥ p′m.

(c) If (di) = 0∞, then we repeat the proof of (b) with (d ′i) = 0∞ and (ei) = 10∞. ut

Example 5.6. Using a computer program we can determine the admissible sequences of
Lemma 5.4 for all integer values 2 ≤ m ≤ 216. For all but seven values the corresponding
admissible sequence is of finite type with N = 1, more precisely d = (1h10)∞ with a
suitable value of h1. (We have h1 = [log2m] − 1 for m = 4, 8, 16–17, 32–33, 64–65,
128–129, 256–257, 512–514, 1024–1026, 2048–2050, 4096–4098, 8192–8195, 16384–
16387, and h1 = [log2m] for the remaining values of m.) For the exceptional values
m = 5, 9, 130, 258, 2051, 4099, 32772 the corresponding admissible sequence is of finite
type with N = 2 and h1 = [log2m] as shown in the following table:

m d N h

5 (12012010)∞ 2 (2, 2)
9 (130120)∞ 2 (3, 1)

130 (170160)∞ 2 (7, 1)
258 (180170)∞ 2 (8, 1)
2051 (11101100)∞ 2 (11, 1)
4099 (11201110)∞ 2 (12, 1)

32772 (11501140)∞ 2 (15, 1)

Now we need two definitions. The quasi-greedy expansion of a real number x in some
base q is its lexicographically largest infinite expansion in the alphabet {0, 1, m}, while
the quasi-lazy expansion of x is the conjugate (m−ci) of the quasi-greedy expansion (ci)
of m

q−1 − x with respect to the conjugate alphabet {0, m − 1, m}. The following lemma
follows at once from these definitions.

Lemma 5.7. Let (ci) be a sequence on the alphabet {0, 1, m} and q > 1 a real number.

(a) The sequence (ci) is a quasi-greedy expansion of some x in base q if and only if

∞∑
i=1

cn+i

qi
≤ 1 whenever cn = 0,

∞∑
i=1

cn+i

qi
≤ m− 1 whenever cn = 1.

Hence, if c = (ci) is a quasi-greedy expansion in base q, then mnc and (cn+i) are
also quasi-greedy expansions in every base ≥ q, for every positive integer n.
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(b) The sequence (ci) is a quasi-lazy expansion of some x in base q if and only if
∞∑
i=1

m− cn+i

qi
≤ 1 whenever cn = 1,

∞∑
i=1

m− cn+i

qi
≤ m− 1 whenever cn = m.

Hence, if c = (ci) is a quasi-lazy expansion in base q, then 0nc and (cn+i) are also
quasi-lazy expansions in every base ≥ q, for every positive integer n.

(c) If x ≥ y and p ≥ q, then the quasi-greedy (resp. the quasi-lazy) expansion of x in
base p is lexicographically larger than or equal to that of y in base q.

Lemma 5.8. Given an admissible sequence d 6= 1∞ and m ∈ Id define the sequences
d ′, δ, δ′ and the numbers p′m, p

′′
m, pm as at the beginning of Section 4.

(a) The sequences δ and mδ′ are quasi-greedy in base pm.
(b) The sequences δ′ and (δ1+i) are quasi-lazy in base pm.

Proof. (a) Using the admissibility of d and applying Lemma 4.2(b) with (ci) := δ and
q := pm ≥ 2 on the alphabet {1, m} we obtain

∞∑
i=1

δn+i

pim
≤

∞∑
i=1

δi

pim
for all n.

Since pm ≥ p′m and
∞∑
i=1

δi

(p′m)
i
= m− 1,

it follows that
∞∑
i=1

δn+i

pim
≤ m− 1 for all n.

Applying Lemma 5.7(a) we conclude that δ is a quasi-greedy expansion in base pm. The
same inequalities ensure that mδ′ is also a quasi-greedy expansion in base pm.

(b) Since (δ1+i) = (δ
′

k+i) for some k ≥ 0, in view of Lemma 5.7(b) it suffices to show
that

∞∑
i=1

m− δ′n+i

pim
≤ 1 whenever δ′n = 1,

∞∑
i=1

m− δ′n+i

pim
≤ m− 1 whenever δ′n = m.

If δ′n = 1, then applying Lemma 3.9 and Lemma 4.2(b) with (ci) := δ′ and q :=
pm ≥ 2 on the alphabet {1, m} we obtain

∞∑
i=1

δ′n+i

pim
≥

∞∑
i=1

δ′i

pim
.
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Using the definition of p′′m and the inequality pm ≥ p′′m, the first property follows:

∞∑
i=1

m− δ′n+i

pim
≤

∞∑
i=1

m− δ′i

pim
≤

∞∑
i=1

m− δ′i

(p′′m)
i
= 1.

If δ′n = m, then let k be the smallest positive integer satisfying δ′n+k = 1. Applying
the first property and the inequalities pm ≥ 2 ≥ m

m−1 , the second property follows:

∞∑
i=1

m− δ′n+i

pim
≤
m− 1
pkm

+
1
pkm
· 1 =

m

pkm
≤
m

2k
≤
m

2
≤ m− 1. ut

Remark 5.9. Applying Lemma 4.2(a) instead of (b) we may obtain the stronger result
that δ and mδ′ are quasi-greedy expansions in every base q ≥ p′m.

Lemma 5.10. Denoting by γ = (γi) and λ = (λi) the quasi-greedy expansion of m− 1
in base pm and the quasi-lazy expansion of m

pm−1 − 1 in base pm, respectively, we have
either

(δ1+i) ≤ λ and γ = δ

or

δ′ = λ and γ ≤ mδ′.

Proof. If p′m ≥ p′′m, then both γ and δ are quasi-greedy expansions of m − 1 in base
pm = p′m by Lemma 5.8, so that γ = δ. Since furthermore both δ̂ := (δ1+i) and λ
are quasi-lazy expansions in base pm, in view of Lemma 5.7 it remains to show that
πpm(δ̂) ≤ πpm(λ). Since

m− 1 = πpm(δ) =
m

pm
+

1
pm
πpm(δ̂)

and pm ≤ Pm, using (4.5) we have

πpm(δ̂) = (m− 1)pm −m ≤
m

pm − 1
− 1 = πpm(λ).

If p′′m ≥ p′m, then both λ and δ′ are quasi-lazy expansions of m
pm−1 − 1 in base

pm = p′′m by Lemma 5.8, so that λ = δ′. Furthermore mδ′ and γ are quasi-greedy
expansions in base pm. Since pm ≤ Pm, using (4.4) we obtain

πpm(mδ
′) =

m

pm
+

1
pm
πpm(δ

′) =
m

pm
+

1
pm

(
m

pm − 1
− 1

)
≥ m− 1 = πpm(γ ).

Applying Lemma 5.7 we conclude that mδ′ ≥ γ . ut

Given m ≥ 2 we choose an admissible sequence d 6= 1∞ satisfying m ∈ Id (see Lemma
5.4) and we define pm as at the beginning of Section 4 (see Lemma 5.8). The following
lemma proves Theorem 1.1(a).
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Lemma 5.11. (a) If q > pm, then δ′ is a nontrivial univoque sequence in base q.
(b) There are no nontrivial univoque sequences in any base 1 < q < pm.

Proof. (a) Since the sequence δ is quasi-greedy and the sequence δ′ is quasi-lazy in
base pm and since δ′ is obtained from δ by removing a finite initial block, δ′ is both
quasi-greedy and quasi-lazy in base pm. Hence

∞∑
i=1

δ′n+i

pim
≤ m− 1 whenever δ′n = 1,

∞∑
i=1

m− δ′n+i

pim
≤ 1 whenever δ′n = 1,

∞∑
i=1

m− δ′n+i

pim
≤ m− 1 whenever δ′n = m.

Since q > pm, it follows that
∞∑
i=1

δ′n+i

qi
< m− 1 whenever δ′n = 1,

∞∑
i=1

m− δ′n+i

qi
< 1 whenever δ′n = 1,

∞∑
i=1

m− δ′n+i

qi
< m− 1 whenever δ′n = m.

Applying Lemma 5.1 we conclude that δ′ is a univoque sequence in base q.
(b) Assume first that d is of finite type and assume on the contrary that there exists

a nontrivial univoque sequence in some base 1 < q ≤ pm. Since a univoque sequence
remains univoque in every greater base and since a univoque sequence remains univoque
if we remove an arbitrary finite initial block, by Lemma 5.3 it follows that there exists a
univoque sequence (ηi) in base pm (≤ Pm) which contains only the digits 1 and m.

It follows from the lexicographic characterization of univoque sequences that

ηn = 1 ⇒ (λi) < (ηn+i) < (γi)

and therefore (using the preceding lemma) that either

ηn = 1 ⇒ (δ1+i) < (ηn+i) < (δi)

or

ηn = 1 ⇒ (δ′i) < (ηn+i) < m(δi).

Setting ci = 0 if ηi = 1 and ci = 1 if ηi = m we obtain a sequence (ci) of zeroes and
ones satisfying either

(d1+i) < (cn+i) < (di) whenever cn = 0 (5.8)
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or

(d ′i) < (cn+i) < 1(d ′i) whenever cn = 0. (5.9)

The second inequalities imply that (ci) has infinitely many zero digits. By removing a
finite initial block if necessary we obtain a new sequence (still denoted by (ci)) which
begins with c1 = 0 and which satisfies (5.8) or (5.9).

In the case of (5.8) we claim that

0d2d3 · · · < (cn+i) < (di) for all n ≥ 0. (5.10)

Indeed, if cn = 1 for some n then there exist m < n ≤ M such that cm = cM+1 = 0 and
cm+1 = · · · = cM = 1. Using (5.8) it follows that

(cn+i) ≤ (cm+i) < (di),

(cn+i) ≥ (cM+i) = 0(cM+1+i) > 0(d1+i) = 0d2d3 · · · .

However, (5.10) contradicts Lemma 3.11.
In the case of (5.9) we claim that

0(d ′i) < (cn+i) < 1(d ′i) for all n ≥ 0. (5.11)

Indeed, if cn = 1 for some n then choosing again m < n ≤ M such that cm = cM+1 = 0
and cm+1 = · · · = cM = 1, we have

(cn+i) ≤ (cm+i) < 1(d ′i),
(cn+i) ≥ (cM+i) = 0(cM+1+i) > 0(d ′i).

However, (5.11) contradicts Lemma 3.12.
Now assume that d is of infinite type, associated with an infinite sequence h =

(h1, h2, . . .), and that there exists a nontrivial univoque sequence (ηi) in some base
1 < q < pm. (Note that m > 2.) We will then prove the existence of a nontrivial
univoque sequence in some base 1 < q ′ < pm′ wherem′ ∈ Id ′ with d ′ of finite type, con-
tradicting what we have already established. (In this part of the proof, d ′ does not mean
the sequence defined in Lemma 3.9.)

We may assume again that ηi ≡ 1 + (m − 1)ci for some sequence (ci) ⊂ {0, 1}. By
Lemma 5.1 we have

m

q − 1
− 1 < πq((ηn+i)) < m− 1 whenever ηn = 1

and

πq((ηn+i)) >
m

q − 1
− (m− 1) whenever ηn = m.
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These may be rewritten in the following equivalent form:

πq((cn+i)) < 1−
1

(q − 1)(m− 1)
whenever cn = 0;

πq((1− cn+i)) <
1

m− 1
whenever cn = 0;

πq((1− cn+i)) < 1 whenever cn = 1.

If 2 < m′ < m and q ′ is defined by the equation (q ′ − 1)(m′ − 1) = (q − 1)(m− 1),
then q ′ > q, so that the above three conditions remain valid on changing q to q ′ and m
tom′. (Observe that the left sides decrease and the right sides increase.) Applying Lemma
5.1 again we conclude that the formula η′i := 1+ (m′−1)ci defines a nontrivial univoque
sequence in base q ′ for the alphabet {0, 1, m′}. To end the proof it remains to show that
we can choose m′ such that 1 < q ′ < pm′ and m′ ∈ Id ′ for some d ′ of finite type. Thanks
to the continuity of the maps m′ 7→ q ′ and m′ 7→ pm′ the first condition is satisfied for
all m′ sufficiently close to m.

If h = (h1, h2, . . .) contains infinitely many elements hj ≥ 2, then we may choose d ′

associated with the finite sequence h = (h1, h2, . . . , hj−1, hj − 1) for a sufficiently large
index j such that hj ≥ 2, and an arbitrary elementm′ ∈ Id ′ . If h = (h1, h2, . . .) has a last
element hj ≥ 2, then m is the right endpoint of the interval Id ′ for d ′ associated with the
finite sequence h = (h1, h2, . . . , hj−1, hj − 1) (see Example 3.10), and we may choose
m′ ∈ Id ′ sufficiently close to m. The only remaining case h = (1, 1, . . .) is similar: m is
the right endpoint of the interval Id ′ for d ′ = 0∞, and we may choosem′ ∈ Id ′ sufficiently
close to m. (See Example 3.10 again.) ut

Remark 5.12. If d is of finite type and m ∈ Id , then the first part of the proof of Lemma
5.11(b) shows that there are no nontrivial univoque sequences in base q = pm either.
This is also true for m ∈ I

d̂
where d̂ is the smallest admissible sequence of infinite

type, following an admissible sequence d of finite type (see Example 3.10). Indeed, since
(d̂1+i) = (d̂)′ = d ′ we may apply Lemma 3.12 in the first part of the proof of Lemma
5.11(b).

In the other cases, i.e., when m does not belong to [md ,Md ] for any d of finite type,
δ′ is a nontrivial univoque sequence in base q = pm = Pm. Indeed, in this case the first
three inequalities in the proof of Lemma 5.11(a) are strict. For otherwise we would have
two different quasi-greedy expansions (δ′ and (δ′n+i)) ofm−1, m

pm−1−1 or m
pm−1−(m−1)

in base pm.

The following lemma completes the proof of Theorem 1.1.

Lemma 5.13. (a) If d < d̃ < 1∞ are admissible sequences, then Md ≤ md̃ with equal-
ity if and only if d = S(N, 1)∞ is of finite type and d̃ = S(N − 1, 1)S(N, 1)∞.

(b) The sets Id , where d runs over all admissible sequences d 6= 1∞, form a partition of
the interval [(1+

√
5)/2,∞).

(c) The set C of numbers m > (1 +
√

5)/2 satisfying pm = Pm is a Cantor set, i.e., a
nonempty closed set having neither interior, nor isolated points. Its smallest element
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is 1 + x ≈ 2.3247 where x is the first Pisot number, i.e., the positive root of the
equation x3

= x + 1.

Proof. (a) If d and d̃ are of infinite type, then md = Md and m
d̃
= M

d̃
, so that it suffices

to prove the inequality Md < M
d̃
. For this, it is sufficient to show that p′′d,m > p′′

d̃,m
for

each m ∈ (1,∞) where p′′d,m and p′′
d̃,m

denote the expressions p′′m of Section 4 for the

admissible sequences d and d̃ , respectively. Indeed, then we can conclude that p′′d,M
d̃
>

p′′
d̃,M

d̃

= PM
d̃

and therefore, since the function m 7→ p′′d,m − Pm is strictly increasing by

Lemma 4.1, Md < M
d̃
.

Assuming on the contrary that p′′d,m ≤ p
′′

d̃,m
for some m, in base q := p′′

d̃,m
we have

πq(m− δ̃
′) = 1 = πp′′d,m(m− δ

′) ≥ πq(m− δ
′) ⇒ πq(δ

′) ≥ πq(δ̃
′).

Since d and d̃ are of infinite type, we have δ = mδ′ and δ̃ = mδ̃′ by Lemma 3.9, so that
the last inequality is equivalent to πq(δ) ≥ πq(δ̃).

Since quasi-greedy expansions remain quasi-greedy in larger bases, it follows from
Lemma 5.8 that both δ and δ̃ are quasi-greedy expansions in base q. Therefore we deduce
from the last inequality that δ ≥ δ̃, contradicting our assumption.

If d = S(N, 1)∞ is of finite type and d̃ of infinite type, then we recall from Example
3.10 that d̂ = S(N−1, 1)S(N, 1)∞ is the smallest admissible sequence satisfying d̂ > d,
and thatmd < Md = md̂ = Md̂

. Since d̂ is of infinite type, we conclude thatMd = Md̂
<

M
d̃
= m

d̃
. The case of d = 0∞ is similar with d̂ = 10∞.

If d is arbitrary and d̃ of finite type, then d̃ is associated with a finite sequence
(h1, . . . , hN ) of length N ≥ 1. If k is a sufficiently large positive integer, then the ad-
missible sequence dk associated with the infinite sequence (h1, . . . , hN , k, 1, 1, . . .) sat-
isfies d < dk < d̃, so that Md ≤ mdk . Letting k → ∞ we conclude that Md ≤ m

d̃
.

Indeed, for any fixed m < m
d̃

we have p′
d̃,m
− Pm > 0 by Lemma 4.1(b) and therefore

πPm(δ̃) > m− 1. Since the first k digits of δ̃ and δk coincide, for k→∞ we have

πPm(δ
k) =

k∑
i=1

δ̃i

P im
+

∞∑
i=k+1

δki

P im
=

k∑
i=1

δ̃i

P im
+O

(
1
P km

)
→ πPm(δ̃),

so that πPm(δ
k) > m − 1 if k is sufficiently large. Hence p′

dk,m
> Pm and therefore

m < mdk by Lemma 4.1(b). Similarly, for any fixed m > m
d̃

we have m > mdk for all
sufficiently large k.

(b) The sets Id are disjoint by (a) and they cover the interval [(1 +
√

5)/2,∞) by
Lemma 5.4. In view of (a) the proof will be completed if we show that for the smallest
admissible sequence we have

I0∞ = [(1+
√

5)/2, 1+ P1) (5.12)

where x > 1 is the first Pisot number.
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The values md and Md are the solutions of the equations

πPm(δ) = m− 1 and πPm(δ
′) =

m

Pm − 1
− 1.

Now we have δ = δ′ = 1∞, so that our equations take the form

1
Pm − 1

= m− 1 and
1

Pm − 1
=

m

Pm − 1
− 1.

Using (4.3) we conclude that they are equivalent to m = (1 +
√

5)/2 and m = 1 + P1,
respectively.

(c) If we denote by D1 and D2 the set of admissible sequences d 6= 1∞ of finite and
infinite type, respectively, then

C = [2,∞) \
⋃
d∈D1

(md ,Md)

so that C is a closed set. The relation (5.12) shows that its smallest element is 1+ P1. In
order to prove that it is a Cantor set, it suffices to show that

• the intervals [md ,Md ] (d ∈ D1) are disjoint;
• for each m ∈ C there exist two sequences (aN ) ⊂ [2,∞) \ C and (bN ) ⊂ C \ {m},

both converging to m.

The first property follows from (a). To prove the second, consider the infinite sequence
h = (hj ) of positive integers defining the admissible sequence d for which md = m,
and set dN := Sh(N, 1)∞, N = 1, 2, . . . . This is a decreasing sequence of admissible
sequences, converging pointwise to d. Using (a) we conclude that both (mdN ) and (MdN )

converge to md = Md . Since mdN ∈ D1 and MdN ∈ D2 for every N , the proof is
complete. ut
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