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Abstract. We study the Torelli morphism from the moduli space of stable curves to the moduli
space of principally polarized stable semi-abelic pairs. We give two characterizations of its fibers,
describe its injectivity locus, and give a sharp upper bound on the cardinality of finite fibers. We
also bound the dimension of infinite fibers.
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1. Introduction

1.1. Problems and results

In modern terms, the classical Torelli theorem ([T13], [ACGH]) asserts the injectivity
of the Torelli map t, : My, — A, from the moduli scheme M,, of smooth projective
curves of genus g, to the moduli scheme A, of principally polarized abelian varieties of
dimension g.

Context. It is well known that, if g > 1, the schemes M, and A, are not complete; the
problem of finding good compactifications for them has been thoroughly investigated and
solved in various ways. For M,, the most widely studied compactification is the moduli
space of Deligne-Mumford stable curves, Mg.

Now, the Torelli map t, does not extend to a regular map from Mg to A,. More
precisely, the largest subset of Mg admitting a regular map to A, extending t, is the locus
of curves of compact type (i.e. every node is a separating node). Therefore the following
question naturally arises: does there exist a good compactification of Ag which contains
the image of an extended Torelli morphism from the whole of Mg? If so, what are the
properties of such an extended map?

It was known to D. Mumford that t, extends to a morphism

“Vor | 7= — Vor
t, M, — Ag ,

where ZZOI is the second Voronoi toroidal compactification of Agz; see [AMRT],
[Nam76b], [Nam80], [FC90]. On the other hand, the map f;,’or fails to be injective: if
g > 3 it has positive-dimensional fibers over the locus of curves having a separating node
(see [Nam80, Thm 9.30(vi)]). Furthermore, although f;lor has finite fibers away from this
locus, it still fails to be injective (see [VO03]). The precise generalization of the Torelli the-
orem with respect to the above map f;/m remains an open problem, since the pioneering
work of Y. Namikawa. —Vor Nor

In recent years, the space A, and the map t,~ have been placed in a new modular
framework by V. Alexeev ([Ale02], [Ale04]). As a consequence, there exists a differ-
ent compactification of the Torelli morphism, whose geometric interpretation ties in well
with the modular descriptions of Mg and of the compactified Jacobian. More precisely,

. . . . —mod .
in [Ale02] a new moduli space is constructed, the coarse moduli space A;,no , parametriz-
ing principally polarized “semi-abelic stable pairs”. The Voronoi compactification A gor

is shown to be the normalization of the irreducible component of K?Od containing Ag;
see Theorem 1.2.5 below. Next, in [Ale04], a new compactified Torelli morphism, Eg,
factoring through f;’or, is defined:

te is the map sending a stable curve X to the principally polarized semi-abelic stable pair
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J(X) Pg_l, ®(X)). Here J(X) is the generalized Jacobian of X, Pf;_l is a stable

semi-abelic variety, called the compactified Picard scheme (in degree g — 1), acted upon
by J(X); finally ®(X) C P§7] is a Cartier, ample divisor, called the theta divisor. As

proved in [Ale04], P§_1 coincides with the previously constructed compactified Picard
schemes of [OS79], [Sim94], and [Cap94]; moreover the definition of the theta divisor
extends the classical one very closely.

The main result. The goal of the present paper is to establish the precise analogue of
the Torelli theorem for stable curves, using the compactified Torelli morphism t,. This
is done in Theorem 2.1.7, our main result, which characterizes curves having the same
image via t,. In particular we find that t, is injective at curves having 3-edge-connected
dual graph (for example irreducible curves, or curves with two components meeting in at
least three points). On the other hand t, fails to be injective at curves with two components
meeting at two points, as soon as g > 5; see Theorem 5.1.5.

We actually obtain two different characterizations of curves having the same Torelli
image: one is based on the classifying morphism of the generalized Jacobian (see Sec-
tion 3), and the other, less sophisticated and more explicit, is of combinatorial type and
we shall now illustrate it.

Let X and X’ be two stable curves free from separating nodes (this is the key case);
our main theorem states that ty(X) = to(X’) if and only if X and X’ are “C1-equivalent”,
i.e. if the following holds. First, X and X’ have the same normalization, Y;letv : Y — X
and v : Y — X' be the normalization maps. Second, v and v’ have the same “gluing
set” G C Y, ie. v_l(Xsing) = v’_l(Xging) = G. The third and last requirement is the
interesting one, and can only be described after a preliminary step: we prove that the set
Xsing of nodes of X has a remarkable partition into disjoint subsets, called “Cl-sets”,
defined as follows. Two nodes of X belong to the same C1-set if the partial normalization
of X at both of them is disconnected. Now, the gluing set G maps two-to-one onto Xging
and onto X ;in , so the partitions of Xjne and of X ;ing into C1-sets induce each a partition
on G, which we call the “Cl-partition”. We are ready to complete our main definition:
two curves are Cl-equivalent if their Cl-partitions on G coincide; see Definition 2.1.1
and Section 2.2 for details.

Let us explain the close, yet not evident, connection between the Cl-sets of X and

the compactified Picard scheme Pf;fl. The scheme P§71 is endowed with a canonical
stratification with respect to the action of the Jacobian of X. Now, every codimension-one
stratum (“C1” stands for “codimension one”) is isomorphic to the Jacobian of the normal-
ization of X at a uniquely determined C1-set; moreover, every Cl-set can be recovered in
this way (although different codimension-one strata may give the same C1-set).

Let us consider two simple cases. Let X be irreducible; then no partial normalization

of X is disconnected, hence every C1-set has cardinality one. On the other hand Pf;*] has
a codimension-one stratum for every node of X. In this case the C1-partition completely
determines X, as it identifies all pairs of branches over the nodes; we conclude that the
Torelli map is injective on the locus of irreducible curves, a fact that, for f;or, was well
known to Namikawa.
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The next case is more interesting; let X be a cycle of 2 > 2 smooth components,
Ci,...,Cp, with h nodes; then G = {p1,q1, ..., pn, qn} With p;, g;i € C;. Now every
pair of nodes disconnects X, therefore there is only one Cl-set, namely Xging. On the

other hand the scheme P§_1 is irreducible, and has a unique codimension-one stratum.
We infer that all the curves of genus g whose normalization is |_|f’=l C; and whose gluing
points are {p1, q1, . .., Pn, qn} are Cl-equivalent, and hence they all have the same image
via the Torelli map t,. This case yields the simplest examples of non-isomorphic curves
whose polarized compactified Jacobians are isomorphic.

Overview of the paper. In Section 2 we state our first version of the Torelli theorem, and
prove a series of useful results of combinatorial type.

The proof of the main theorem, which occupies Section 4, is shaped as follows. The
difficult part is the necessary condition: assume that two curves, stable and free from
separating nodes, have the same image, denoted (J P, ®), under the Torelli map; we
must prove that they are Cl-equivalent. First, the structure of J-scheme of P yields a
stratification whose (unique) smallest stratum determines the normalization of the curves,
apart from rational components. Second, the combinatorics of this stratification (the J-
strata form a partially ordered set, by inclusion of closures) carries enough information
about the combinatorics of the curves to determine the “cyclic equivalence class” (see
1.2.2) of their dual graphs. This second part requires a combinatorial analysis, carried
out in Section 2. From these two steps one easily deduces that the two curves have the
same normalization. It remains to prove that the gluing sets of the normalization maps
are the same, together with their C1-partition. Here is where we use the theta divisor, ©,
its geometry and its connection with the Abel maps of the curves. See Subsection 4.2 for
details on this part.

The proof of the converse (i.e. the fact that C1-equivalent curves have the same Torelli
image) is based on the other, above mentioned, characterization of C1-equivalence, which
we temporarily call “T-equivalence” (the “T” stands for Torelli). The crux of the matter
is to prove that Cl-equivalence and T-equivalence coincide; we do that in Section 3.
Having done that, the proof of the sufficiency follows directly from the general theory of
compactifications of principally polarized semiabelian varieties, on which our definition
of T-equivalence is based.

The paper ends with a fifth section where we compute the upper bounds on the cardi-
nality (Theorem 5.1.5), and on the dimension (Proposition 5.2.1), of the fibers of t;. We
prove that the finite fibers have cardinality at most [(g — 2)!/2]; in particular, since our
bound is sharp, we find that, away from curves with a separating node, t, is injective if
and only if g < 4. In Theorem 5.1.5 we give a geometric description of the injectivity
locus of t,.

1.2. Preliminaries

We work over an algebraically closed field k. A variety over k is a reduced scheme of
finite type over k. A curve is a projective variety of pure dimension 1.
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Throughout the paper X is a connected nodal curve of arithmetic genus g, and ¥ is a
nodal curve, not necessarily connected. We denote by gy the arithmetic genus of Y.

A node n of Y is called separating if the number of connected components of ¥ ~\ n
is greater than the number of connected components of ¥. We denote by Y, the set of
separating nodes of Y.

For any subset § C Xiing := {nodes of X}, we denote by vg : ¥s — X the partial
normalization of X at S. We denote by ys the number of connected components of Y.
The (total) normalization of X will be denoted by

Y
v:X"—>X=|_|Ci
i=1

where the C; are the connected components of X". The points v_l(Xsing) c XV will
often be called gluing points of v.

The dual graph of Y will be denoted by I'y. The irreducible components of Y corre-
spond to the vertices of ['y, and we shall systematically identify these two sets. Likewise
we shall identify the set of nodes of Y with the set E(I'y) of edges of I'y.

A graph I' is a cycle if it is connected and has h edges and & vertices (each of va-
lency 2) for some & > 1. A curve whose dual graph is a cycle will be called a cycle
curve.

1.2.1. The graph I'x (S) and the graph T'x . S. Let S C Xjing be a set of nodes of X; we
associate to S a graph, I'x(S), defined as follows. I"'y (S) is obtained from "'y by con-
tracting to a point every edge not in S. In particular, the set of edges of I'x (S) is naturally
identified with S. Consider vg : Y5 — X (the normalization of X at S). Then the vertices
of I'x (8) correspond to the connected components of Y. For example, I'x (Xsing) = I'x,
and "'y (¥) is a point.

The graph I'y . S is defined as the graph obtained from 'y by removing the edges
in S and leaving everything else unchanged. Of course I'x . § is equal to the dual graph
of Yg.

The above notation was also used in [CV(9].

1.2.2. In graph theory two graphs I' and I' are called cyclically equivalent (or two-
isomorphic), in symbols I' =¢yc I/, if there exists a bijection € : E(I') — E(I'’) inducing
a bijection between the cycles of I' and the cycles of I'’; such an € will be called a cyclic
bijection. In other words, if for any orientation on I there exists an orientation on I'” such
that the following diagram is commutative:

Ci(T,Z) —== C\(I", Z)

J o,

H (T, Z) —=> H(I", Z)

where the vertical arrows are the inclusions, ec is the (linear) isomorphism induced by €
and ey the restriction of ¢ to H| (T, Z).
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1.2.3. The moduli space Z?Od

Definition 1.2.4 ([Ale02]). A principally polarized stable semi-abelic pair (ppSSAP for
short) over k is a pair (G ~ P, ®) where

(i) G is a semiabelian variety over k, that is, an algebraic group which is an extension
of an abelian variety A by a torus T':

1-=T—->G— A—0.

(i) P is a seminormal, connected, projective variety of pure dimension equal to dim G.

(iii) G acts on P with finitely many orbits, and with connected and reduced stabilizers
contained in the toric part 7 of G.

(iv) O is an effective ample Cartier divisor on P which does not contain any G-orbit, and
such that h°(P, Op(®)) = 1.

A G-variety (G ~ P) satisfying the first three properties above is called a stable semi-

abelic variety (SSAV for short).
When G is an abelian variety, the word “semi-abelic” is replaced by “abelic”.

A homomorphism ® = (¢g, ¢1) : (G ~ P,0) — (G' ~ P’,®) between two
pPpSSAP is given by a homomorphism of algebraic groups ¢ : G — G’, and a morphism
¢1: P — P/, satisfying the following two conditions:

(1) ¢ and ¢ are compatible with the actions of G on P and of G’ on P’.
) ¢;'©)=8.
® = (¢o, ¢1) is an isomorphism if ¢g and ¢; are isomorphisms.

One of the main results of [Ale02] is the following

Theorem 1.2.5. There exists a projective scheme Z;Od which is a coarse moduli space
for principally polarized stable semi-abelic pairs. Moreover the open subset parametriz-
ing principally polarized stable abelic pairs is naturally isomorphic to Ag. The normal-

. . . . —mod .. « . oy e
ization of the irreducible component of A, containing Ag (the “main component”) is

. . . . . . —Vor
isomorphic to the second toroidal Voronoi compactification A, .

.. . —mod .
To the best of our knowledge, it is not known whether the main component of Az,no is
normal; see [Bri07] for an expository account.

1.2.6. The compactified Torelli map t, : Mg — Z?Od. We shall now recall the modular
d

description of the compactified Torelli map t, : M, — Z;no .
Definition 1.2.7. Let Y be a nodal curve of arithmetic genus gy. Let M be a line bundle
on Y of multidegree d and degree gy —1. We say that M, or its multidegree d, is semistable
if for every subcurve Z C Y of arithmetic genus gz, we have

where dz := deg, M. We say that M, or its multidegree d, is stable if equality holds in
(1.1) exactly for every subcurve Z which is a union of connected components of Y. We
denote by X (Y) the set of stable multidegrees on Y.
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We denote by Pic? Y the variety of line bundles of multidegree d on Y. The variety
of line bundles having degree 0 on every component of Y, PiclY = J(Y), is identified
with the generalized Jacobian. Using the notation of 1.2 and 1.2.1, we now recall some

properties of the compactified Jacobian P;g;_l (see [Ale04], [Cap07]).

Fact 1.2.8. Let X be a connected nodal curve of genus g, and J(X) its generalized Ja-
cobian.

@) P§71 is a SSAV with respect to the natural action J (X).

(i) The orbits of the action of J(X) give a stratification of P§_1:

-1 d

P = || Ps. (1.2)
ﬂgsgxsing
dex(¥s)

where each stratum Pg is canonically isomorphic to Pict Y.

(iii) X(Ys) is not empty if and only if Ys has no separating node. In particular, if £ (Ys)
is not empty then Xsep C S.

(iv) Each stratum PSQ is a torsor under the generalized Jacobian J(Ys) of Ys, and the
action of J(X) on Psi factorizes through the pull-back map J(X) — J(Ys). Hence

every non-empty stratum PS4 has dimension
dimPSizdimJ(YS)zg—#S—i-)/s—1:g—b1(FX(S)). (1.3)

) Ing C P;ithenS CSandd > d' (ie.d; > d] foralli =1,...,p).

. —1 —1 . . . .
(vi) The smooth locus P)‘g; of P)‘% consists of the strata of maximal dimension:

. . -1 . . .
The irreducible components of P§ are the closures of the maximal dimension
strata.

To give the definition of the theta divisor we introduce some notation. For any multi-
degree d on a curve Y and for any r > 0 we set

Wy (Y) :={L € PicY : h°(Y, L) > r); (1.4)

when r = 0 the superscript is usually omitted: W[?(Y) = Wu(Y).
The normalization of X at its set of separating nodes, Xep, will be denoted by

X = |i| X; (1.5)

i=1
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where the X ; are connected (and all free from separating nodes). Note that J/ = #X¢ep+1.
We denote by g; the arithmetic genus of X;.
The subsequent facts summarize results of [E97], [Ale04] and [Cap07].

Definition 1.2.9. The theta divisor ® (X) of P§_l is

o)== |J wax) cpr{ .

dex(X)

Fact 1.2.10. (i) The pair (J(X) ~ P§_1, O(X)) is a ppSSAP. In particular ©(X) is
Cartier, ample and hO(Pf:], X)) =1

(ii) The stratification of P)‘%_l given by 1.2.8(ii) induces the stratification

o= || o, (1.6)
MgSnging
dex(¥y)

where ©% := (M € PE : hO(Ys, M) > 0} = WO(Ys) is a divisor in PY.
(iii) Let Ys = U,yil Y; be the decomposition of Y into connected components, and let

d € X (Ys). The irreducible components of @% are given by
d d
(O ={L € Py : h°(Y;, Ly, > 0}
for every 1 <i < yg such that the arithmetic genus of Y; is positive.

Remark 1.2.11. From the description 1.2.8, we derive that there exists a unique J (X)-

stratum in P§_l contained in the closure of every other stratum, namely

We refer to this stratum as the smallest stratum of P){’;_l. Moreover, according to stratifi-
cation (1.6), the restriction of ®(X) to the smallest stratum is given by

Y
OX) e1-tgy—n = [ JPics T Cp -+ x ©(C)) x -+ x Pie¥ ' €, (1)
'PXsing i=1
We can now state the following result of Alexeev ([Ale04]):

Theorem 1.2.12. The classical Torelli morphism is compactified by the morphism t, :
Mg — Z?Od which maps a stable curve X to (J(X) n Pﬁ_l, O(X)).
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1.3. First reductions

We shall now show that the ppSSAP (J(X) ~ P)‘?_l, ® (X)) depends only on the stabi-
lization of every connected component of the partial normalization of X at its separating
nodes. Most of what is in this subsection is well known to the experts.

We first recall the notion of stabilization. A connected nodal curve X of arithmetic
genus g > 0 is called stable if each smooth rational component £ C X meets the com-
plementary subcurve E€ = X \ E in at least three points. So, when g = 0 the only stable
curve is P!, If g = 1 a stable curve is either smooth or irreducible with one node. If g > 2
stable curves are Deligne-Mumford stable curves.

Given any nodal connected curve X, the stabilization of X is defined as the curve X
obtained as follows. If X is stable then X = X; otherwise let E C X be an exceptional
component (i.e. E C X such that #£ N E€ < 2 and E = P, then we contract E to
a point, thereby obtaining a new curve X|. If X is stable we let X; = X, otherwise
we choose an exceptional component of X and contract it to a point. By iterating this
process we certainly arrive at a stable curve X. It is easy to check that X is unique up to
isomorphism.

The stabilization of a disconnected curve will be defined as the union of the stabiliza-
tions of its connected components.

. . —-mod . _
From the moduli properties of Arg]rlo , and the fact that it is a projective scheme, one
derives the following useful

Remark 1.3.1 (Invariance under stabilization). Let X be a connected nodal curve of
arithmetic genus g > 0, and let X be its stabilization. Then

JX) ~ P e) = (X)) ~ PE L o).

Now, we show how to deal with separating nodes. To do that we must deal with
disconnected curves. Let Y = Uf’zl Y; be such a curve and gy its arithmetic genus, so
that gy = ) gy, — h. We have

h h
PO TP and o) =|Jmr@©1) (1.8)
i=1 i=1

T ev—1 =1, . N
where 7; : P{f" ' P)‘iy’ is the i-th projection.

The next lemma illustrates the recursive structure of (P§_1, O(X)). For § C Xging
such that X (Yy) is non-empty (i.e. Y5 has no separating nodes), denote

Ps:= |J PfcP{' and ©5:=0X)NPs. (1.9)
des(Ys)

~

Lemma 1.3.2. Under the assumptions as above, there is a natural isomorphism Ps =

—1 —
Pﬁ:s , inducing an isomorphism between ©g and ©(Yy).
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Proof. Recall that P§_1 is a GIT-quotient, Vy —> P§_1 = Vx/G where Vy is contained
in a certain Hilbert scheme of curves in projective space (there are other descriptions of
P§71 as a GIT-quotient, to which the subsequent proof can be easily adjusted). Denote

Vy = q_l(P_S) so that Vy is a G-invariant, reduced, closed subscheme of Vx and P_S is
the GIT-quotient

Vy — Vy/G = Ps. (1.10)

The restriction to Vy of the universal family over the Hilbert scheme is a family of nodal
curves Z — Vy endowed with a semistable line bundle £ — Z. Let Z be any fiber of
Z — Vy;then Z has X as stabilization, and the stabilization map Z — X blows up some
set S’ of nodes of X; note that S’ certainly contains S. Therefore the exceptional divisors
corresponding to s € S form a family over Vy,

Z2&s — Vy,

such that & = | [,cg & and every & is a P!-bundle over Vy. Consider the family of
curves obtained by removing Es:

Y =Z~&s— Vy.

By construction the above is a family of nodal curves, all admitting a surjective map
to Ys which blows down some exceptional component (over a dense open subset of Vy
the fiber of JJ — Vy is isomorphic to Ys). The restriction £y of £ to ) is a relatively
semistable line bundle. Therefore £y, determines a unique moduli map p from Vy to the

—1
compactified Picard variety of Yg, ie. u : Vy — PfSYS . The map u is of course G-

. . . . —_ grg—1 . .
invariant, and therefore it descends to a unique map it : Vy /G — PYSS . Summarizing,
we have a commutative diagram

Vy/G = Ps

L. — . -1, . . .
By Fact 1.2.8 the morphism 7t is a bijection. Since P;’SYS is seminormal, & is an isomor-

phism. Finally, by Fact 1.2.10 we conclude that 7z maps ® g isomorphically to ®(Ys). O

We say that a ppSSAP (G ~ P, ®) is irreducible if every irreducible component of P
contains a unique irreducible component of ®. In the next result we use the notation (1.5).

Corollary 1.3.3. (i) If Xep = @ then (J(X) ~ P5™', ©(X)) is irreducible.
(1) In general, we have the decomposition into irreducible non-trivial ppSSAP:

) ~ P ) = [JUE) ~ PET o).
gi>0 l
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Proof. The first assertion follows from [Cap07, Thm. 3.1.2]. For the second assertion, by
1.2.8 we have J(X) = 3/:1 J(X;). Now we apply Lemma 1.3.2 to § = Xp. Note that

in this case Py = P)gfl, and hence ®g = @ (X). Therefore we get

P o) = (PFT L 0X) = H(P)%_l, O(X)). =
gi>0

2. Statement of the main theorem

2.1. Cl-equivalence

Assume that X, = #J. We introduce two partially ordered sets (posets for short) associ-

ated to the stratification of P)g(_1 into J(X)-orbits, described in (1.2).

e The poset of strata, denoted ST x, is the set {Pgi} of all strata of P)g(_l, endowed with
the following partial order:

d e d e
Py > P, & Py D Pr. 2.1

o The poset of (strata) supports, denoted SPy, is the set of all subsets S C Xj;iyg such
that the partial normalization of X at S, Yg, is free from separating nodes, or equiva-
lently (recall 1.2.1):

SPx :={S Cc E(T'x) : ['x \ S has no separating edge}. 2.2)

Its partial order is defined as follows:
§S>T & SCT.
There is a natural map
Suppy : ST x — SPyx, Psi — S.
Suppy is order preserving (by Fact 1.2.8(v)), and surjective (by Fact 1.2.8(iii)).
We have the integer valued function, codim, on SPx (cf. 1.2.1 and (1.3)):
codim(S) := dim J(X) — dim J (Ys) = b1 (I'x (S)). (2.3)

Notice that codim(S) is the codimension in P)‘f*] of every stratum PSQ € Supp}l(S).
Moreover codim is strictly order reversing.

Lemma-Definition 2.1.1. Assume Xep = 0; let S € SPx. We say that S is a Cl-set if
the two equivalent conditions below hold.

(1) codim(S) = 1.

(2) The graph T'x(S) (defined in 1.2.1) is a cycle.

We denote by Set' X the set of all Cl-sets of X.
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Proof. The equivalence between (1) and (2) follows from (2.3), together with the fact that
for any § C Xging the graph I'x () is connected and free from separating edges (because
the same holds for I'y). ]

2.1.2. Under the identification between the nodes of X and the edges of I" (X), our defini-
tion of Cl-sets of X coincides with that of Cl-sets of I'(X) given in [CV09, Def. 2.3.1].
The set of Cl-sets of any graph I', which is a useful tool in graph theory, is denoted by
Set! I'; we shall, as usual, identify Set! 'y = Set! X. The following fact is a rephrasing
of [CV09, Lemma 2.3.2].

Fact 2.1.3. Let X be a connected curve free from separating nodes.

(1) Every node of X is contained in a unique CI-set.

(2) Two nodes of X belong to the same Cl-set if and only if the corresponding edges of
the dual graph I"x belong to the same cycles of T'x.

(3) Two nodes n1 and ny of X belong to the same Cl-set if and only if the normalization
of X at n1 and n; is disconnected.

Remark 2.1.4. Therefore, if Xsep = @ the Cl-sets form a partition of Xjng. The preim-
age under the normalization map v of this partition is a partition of the set of gluing points,
v (X sing) C X". We shall refer to this partition of v (X sing) as the CI-partition.

The main result of this paper, Theorem 2.1.7 below, is based on the following

Definition 2.1.5. Let X and X’ be connected nodal curves free from separating nodes;
denote by v : XY — X and v’ : X" — X’ their normalizations. X and X’ are CI-
equivalent if the following conditions hold:

(A) There exists an isomorphism ¢ : XV 5 X",
(B) There exists a bijection between their C1-sets, denoted by

Set! X > Set' X/, S+ §,
such that ¢ (V=1(5)) = v~ ().

In general, two nodal curves ¥ and Y’ are Cl-equivalent if there exists a bijection be-
tween their connected components such that any two corresponding components are C1-
equivalent.

With the terminology introduced in Remark 2.1.4, we can informally state that two
curves free from separating nodes are Cl-equivalent if and only if they have the same
normalization Y, the same set of gluing points G C Y, and the same C1-partition of G.

Example 2.1.6. (1) Let X be irreducible. Then for every node n € Xy the set {n} is a
Cl-set, and every Cl-set of X is obtained in this way. It is clear that the only curve
Cl-equivalent to X is X itself.

(2) Let X = C1 U C; be the union of two smooth components meeting at § > 3 nodes
(the case 6 = 2 has to be treated apart, see below). Then again for every n € Xjjng
we have {n} € Set! X so that Set! X = Xing. Also in this case X is the only curve in
its Cl-equivalent class. The same holds if the C; have some node.
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(3) Let X be such that its dual graph is a cycle of length at least 2. Now the only C1-set
is the whole X and, apart from some special cases, X will not be the unique curve
in its Cl-equivalence class; see Example 5.1.2 and Section 5 for details.

Theorem 2.1.7. Let X and X' be two stable curves of genus g. Assume that X and X'
are free from separating nodes. Then t,(X) = t,(X") if and only if X and X' are CI-
equivalent.

In general, let X and X' be the normalizations of X and X " at their separating nodes.
Then ty(X) = to(X') if and only if the stabilization of X is C1-equivalent to the stabiliza-
tion of X'

By Example 2.1.6 we know that if X is irreducible, or if X is the union of two components
meeting in at least three points, then the Torelli map is injective (i.e. tgl (te (X)) = {XD).
The locus of curves X € Mg such that t;l (tg (X)) = {X} will be characterized in Theo-
rem 5.1.5. Theorem 2.1.7 will be proved in Section 4.

2.2. Some properties of Cl-sets

Here are a few facts to be applied later.

Remark 2.2.1. Let S € Set! X and consider Y. s, the normalization of X at S. By defi-
nition Y has #S connected components, and "'y (S) can be viewed as the graph whose
vertices are the connected components of Y, and whose edges correspond to S. Since
I'x(S) is a cycle, if X is stable every connected component of Yg has positive arithmetic
genus.

Lemma 2.2.2. Let S and T be two distinct Cl-sets of X. Then T is entirely contained in
a unique connected component of Y.

Proof. Recall that Ys has #S connected components, all free from separating nodes. By
Fact 2.1.3 the set T is contained in the singular locus of Ys. Let ny,ny € T, and let X*
and Y, ;‘ be the normalizations at n; of, respectively, X and Yg. By Fact 2.1.3(3), np is a
separating node of X* and hence of Y¢. Since Y has no separating node we see that ny
belongs to the same connected component as n5. O

In the next lemma we use the notation of 2.1.2 and 2.2.1.

Lemma 2.2.3. Let I" be an oriented connected graph free from separating edges. Then
the inclusion H\(T", Z) C C1(T', Z) factors naturally as

H\(I\Z) — @ Hi(I'(5).Z) — Ci(TI'.Z)
SeSet! I

where the graphs I (S) have the orientation induced by that of T'.
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Proof. Let S € Set! I and consider the natural map o5 : I' — I'(S) contracting all edges
not in S. Recall that I'(S) is a cycle whose set of edges is S. By Fact 2.1.3 we have the
following commutative diagram with exact rows:

0——=Ci(I'\S,Z2) ——C (I Z) ——=C1(I'(S),Z) ——=0

T

0—= Hi(T~ S, Z) —= H\(I', Z) —>= H\(I'(8), Z) —> 0

where I' "\ § C I is the subgraph obtained by removing S from E(I"). We claim that we
have the commutative diagram

H(T,Z) > @gege r HIT(S), Z)

T

Ci1(1,2) = Bseset r C1T'(5). 2)

where the vertical arrows are the usual inclusions. The bottom horizontal arrow is the
obvious map mapping an edge e € E(I'(S)) = S C E(I) to itself. It is injective because
two different Cl-sets of I" are disjoint (by 2.1.3) (and surjective as I has no separating
edges). Finally, the top horizontal arrow is the sum of the maps o, defined in the previous
diagram; it is injective because the diagram is clearly commutative and the other maps are
injective. O

2.3. Gluing points and gluing data

Let X be such that Xs.p =@, and let S Set! X be a Cl-set of cardinality 4. The partial

normalization Y of X at S has a decomposition Yg = |_|f‘=1 Ys i, with Ys; connected
and free from separating nodes. We denote by Y¢ ; the normalization of Y ;. We set

Gs:=v (S c Xx". (2.6)

Each of the connected components Yg; of Ys contains exactly two of the points in G,
let us call them p; and g;. This enables us to define a unique fixed-point free involution
on Gg, denoted tg, such that (g exchanges p; and ¢; forevery 1 <i < h.

The involutions tg and the curves Yy ; are the same for Cl-equivalent curves, by the
next result.

Lemma 2.3.1. Let X be free from separating nodes. The data of X" and of the sets
Gs C X" forevery S € Set! X uniquely determine the curves Yg; C XV and the involu-
tion tg.

Proof. Pick a Cl-set S and let h = #S. Denote Gg := {r1,...,r;} and Y5 = U?:l Y;.
We have
#GsNY =2 @7
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for every i. Consider the point 7| and let Y}’ be the component containing it. Let us show
how to reconstruct Y 1” Let C; C XV be the irreducible component containing ry; of
course C1 C Yy.

Now, by Lemma 2.2.2, for every T € Set! X such that S = T,ifGrNCy #0
then T is entirely contained in the singular locus of Yj. In particular every irreducible
component of X" intersecting G is contained in Y. Define the following subcurve Z;
of XV =]Ci:

Z=Ciu |_| C;.
3T eSet! X (S}
CiNGT#6,C1NGT#
We now argue as before, by replacing C; with Z;. We find that if X hasa Cl-set T # S
such that Gt intersects Z1, then again T C (Y1)sing; therefore, by Lemma 2.2.2, every
component of X" intersecting G is contained in Y}". We can hence inductively define
the following subcurve of Y 1" . We rename Zg := Cy; next for n > 1 we set

Zy = Zu_1 U | | Ci.

ITeSet! X~ (S}
CiNG1#0,Zp_1NG 1 #0

Since all of the nodes of Y; belong to some Cl-set of X, for n large enough we have

Zy = Zpy1 = --- = Y}. Hence Y} is uniquely determined. Now, by (2.7) we find that
Y N Gg = {ry, r;} for a unique j # 1; therefore we must have ¢5(r1) = r;. This shows
that the curves Yg’ ; are all determined, and so are the involutions ¢g. O

2.3.2. Gluing data of X. By Lemma 2.3.1, if X and X’ are Cl-equivalent for every pair of
corresponding Cl-sets S and S’ the isomorphism between their normalizations preserves
the decompositions Ys = |_|'_, Ys; and Yy = LI, Yg ;» as well as the involutions
ts and tg. What extra data should one specify to reconstruct X from its Cl-equivalence
class? We now give an answer to this question. Fix S € Set! X, let h = #S and Y5 =
|_|f-’= 1 Yi. By Lemma 2.3.1 the Cl-equivalence class of X determines the involution tg
of Gg. This enables us to write Gs = {p1,q1, ..., pr, gn} With p;, g; € Y. Of course
this is not enough to determine how G is glued on X. To describe what is further needed,
we introduce an abstract set of cardinality 24, denoted G, = {s1, t1, ..., S, 5}, endowed
with the involution ¢, defined by ¢, (s;) = t; forevery 1 <i < h.

Pick either of the two cyclic orientations of I'x(S). We claim that the gluing data
of Gg determine, and are uniquely determined by, the following two items.

(1) A marking s : (Gp,tp) i (Gs,ts), where g is a bijection mapping the (un-
ordered) pair (s;, t;) to the pair (p;, gi).
(2) A cyclic permutation of {1, ..., h}, denoted by o, free from fixed points.

Indeed the points r5(s;) and ¥s(¢;) correspond, respectively, to the sources and targets
of the orientation of I'x(S); the permutation o is uniquely determined by the fact that
the point s (s;) is glued to the point ¥5(754(;)). The opposite cyclic orientation of I"x (.S)
corresponds to changing

(05, ¥s) = (05, s 0 ); 2.8)
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the above transformation defines an involution on the set of pairs (og, ¥s) as above. We
call the equivalence class [(os, ¥s)], with respect to the above involution, the gluing data
of S on X.

Conversely, it is clear that a nodal curve X is uniquely determined, within its C1-
equivalence class, by an equivalence class [(os, ¥s)] for each Cl-set S € Set!' X. In fact,
X is given as follows:

XU
T Dgesed x1¥s(si) = ¥s(togy) 1 1 <i < #S}

X

The previous analysis would enable us to explicitly, and easily, bound the cardinal-
ity of any Cl-equivalence class. We postpone this to the final section of the paper; see
Lemma 5.1.6.

2.4. Dual graphs of Cl-equivalent curves

In this subsection, we shall prove that two C1-equivalent curves have cyclically equivalent
dual graphs. As a matter of fact, we will prove a slightly stronger result. We first need the
following

Definition 2.4.1. Let I" and T'" be two graphs free from separating edges. We say that
[ and I are strongly cyclically equivalent if they can be obtained from one another via
iterated applications of the following move, called twisting at a separating pair of edges:

\ SN

( \./ﬂﬁ
\ o | 7

Fig. 1. A twisting at the separating pair of edges {e[, e>}.

The above picture means the following. Since (ej, e>) is a separating pair of edges,
I \\ {e1, ez} has two connected components; call them I, and T'. For i = 1,2 let v
(resp. vf? ) be the vertex of ', (resp. of I'p) adjacent to e;. Then I'" is obtained by joining
the two graphs I';, and I';, by an edge ¢ from v{ to vg and by another edge ¢/, from v§
to v{’ . Notice that if v{ = v§ and v{’ = vg, our twisting operation does not change the
isomorphism class of the graph.

Remark 2.4.2. If T and '’ are strongly cyclically equivalent then they are cyclically
equivalent.

This is intuitively clear. A cyclic bijection E(I') — E(I') can be obtained by map-
ping every separating pair of edges at which a twisting is performed to its image. To check
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that this bijection preserves the cycles it suffices to observe that if two edges form a sepa-
rating pair then they belong to the same cycles. Alternatively, the twisting at a separating
pair of edges is a particular instance of the so-called second move of Whitney, which does
not change the cyclic equivalence class of a graph (see [Whi33]).

Proposition 2.4.3. Let X and X' be free from separating nodes and C1-equivalent. Then
I'x and Ty are strongly cyclically equivalent (and hence cyclically equivalent).

Proof. By the discussion in 2.3.2, it will be enough to show that for every Cl-set S €
Set! X, any two gluing data associated to S can be transformed into one another by a se-
quence of edge twistings of the type described in 2.4.1. Moreover, it is enough to consider
one Cl-set at a time, in fact by 2.2.2, the twisting at a separating pair of edges {ej, €2}
belonging to S € Set! X does not affect the gluing data of the other C1-sets.

So let us fix § € Set' X of cardinality 4 and let [(os, ¥5)] be the gluing data of S
on X. We consider two types of edge-twisting, as in 2.4.1:

(a) Fix a component Y; of Y, exchange the two gluing points lying on Y}, ¥s(s;) and
Y¥s(t;), and leave everything else unchanged. On I'x this operation corresponds to a
twisting at the separating pair of edges of § that join I'y; to I'yg\y; (both viewed as
subgraphs of I'y). The gluing data are changed according to the rule

[(os, ¥s)] = [(os, ¥s o invj)],

where inv; is the involution of {sq, 71, ..., sy, #;} exchanging s; with ¢; and fixing
everything else.
(b) Fix a connected component Y; of Ys and an integer 1 < a < h — 1. Consider the
curve
Z=YjUYsyu---u Ygg(j) C Ys.

Now change the gluing data between Z and Ys . Z by exchanging the two points
of Z that are glued to Y5 . Z, and leaving everything else unchanged. On I'y this
operation corresponds to a twisting at the separating pair of edges of S that join 'z
to I'yg~z. The gluing data are changed according to the rule

[(05, )] = [(Ta 005 0 T/}, ¥s 0 inv; o),

where 7; , is the element of the symmetric group &), defined by

o= || (@i "G
0<b<la—1/2]
and inv; , is the involution of {s, 1, ..., sp, #} that exchanges s; with 7 for all
k=j,o5(),..., ag(j), and fixes all the other elements.

The proof consists in showing that all the possible gluing data of S can be obtained starting
from [(os, ¥s)] and performing operations of type (a) and (b).

First of all observe that, by iterating operations of type (a), it is possible to arbitrarily
modify the marking g, while keeping the cyclic permutation oy fixed.
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On the other hand, using the fact that any two cyclic permutations of the symmetric
group Sy, are conjugate, and that Sy, is generated by transpositions, it will be enough to
show that for any transposition (jk) € S, by iterating operations of type (b), we can pass
from the gluing data [(os, ¥s)] to gluing data of the form [((jk) o o5 0 k)1, Wg)] for
some marking wg. If the transposition (jk) is such that k = og(j) (resp. k = a?( J)), then
it is enough to apply the operation (b) with respect to the component Y; and the integer
a = 1 (resp. a = 2). In the other cases, we can write k = o§(j) with3 <a < h —1
and then we apply the operation (b) two times: first with respect to the component Y4 )
and the integer a — 2; secondly with respect to the component Y; and the integer a. After
these two operations the cyclic permutation o'g gets changed to (jk) o o5 o (jk)~! since

(jk) = (jog(j)) = Tja © Tog(j).a—2- o

3. T-equivalence: a second version of the Torelli theorem

3.0. The statement of Theorem 2.1.7 characterizes curves having isomorphic ppSSAV in
terms of their normalization, and of the C1-partition of their gluing points, determined by
the codimension-one strata of the compactified Picard scheme.

In this section we shall give a different characterization, based on the classifying mor-
phism of the generalized Jacobian. From the general theory of semiabelian varieties, recall
that the generalized Jacobian J(X) of a nodal curve X is an extension

Y
1> H'(Tx, k) =GR - J(X) > J(X") =[] /(€) - 0
i=1

(recall that Ug/zl C; = X" is the normalization of X). The above extension is determined
by the so-called classifying morphism, from the character group of the torus H'(I'y, k*),
i.e. from H{(I'x, Z), to the dual abelian variety of J(X"). Since J(X") is polarized by
the theta divisor, its dual variety can be canonically identified with J(X") itself. So the
classifying morphism in our case takes the form

cx : Hi(Tx,Z) — J(XV).

This morphism cy will be explicitly described below. We shall use the groups of divisors
and line bundles having degree 0 on every component:

14 14
HDiVO C; =Div? XY — Pic2 X" = l_[Pico Ci = J(X").
i=1 i=1
3.1. Definition of T-equivalence

3.1.1. Fix an orientation of ["'y and consider the source and target maps

s, t: ET'y) > V().
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Now, s(e) and f(e) correspond naturally to the two points of X" lying over the node
corresponding to e. We call such points s., z, € X". The usual boundary map is defined
as follows:

0:C1(I'x,Z) — Co(T'x,Z), er>tle)—s(e),

and H(I'x, Z) = ker 9. We now introduce the map
7x :Ci(Tx,Z) - Div' X",  e+> 1, — se.

We will denote by ny the restriction of fx to H{(I'x, Z), which is easily seen to take
values in the subgroup Div¥ X" of divisors having degree 0 on every component.
Summarizing, we have a commutative diagram

H,(Ty,Z) -~ Div0 xV

o,

f
Ci(Tx.Z) —— Div® X"

The classifying morphism ¢y : Hi(I'x, Z) — J(X") of J(X) is obtained by compos-
ing the homomorphism ny : H;(I'x, Z) — Div? X" with the quotient map Div® X¥ —
Pic? XV = J(XV) sending a divisor to its linear equivalence class. See [Ale04, Sec. 2.4]
or [Bri07, Sec. 1.3].

3.1.2. Recall the set-up and the notation described in 3.0. There are automorphisms of
Pic? XV and Div? X" that do not change the isomorphism class of J(X). We need to take
those into account. In order to do that, consider the group K, := (Z/27Z)" ; note that it acts
diagonally as a subgroup of automorphisms, K, < Aut(Div2 XV), K, — Aut(Div X"),
andK, — Aut(Pic? XV), via multiplication by +1 or —1 on each factor. We shall usually
identify K,, with the image of the above monomorphisms.

For example, if X¥ = C{UC; thenK, C Aut(Div2 XV) is generated by the involutions
(D1, D2) = (=D, D2) and (Dy, D2) + (D1, —D»).

Definition 3.1.3. We say that two nodal connected curves X and X' are T-equivalent if
the following conditions hold:

(a) There exists an isomorphism ¢ : XV = X'’ between their normalizations.
(b) I'x =cyc Cx.
(c) For every orientation on "y there exists an orientation on I"'xs and an automorphism
a €K, C Aut(Div2 X") such that the following diagram commutes:
nx . 0
H\(T'x,Z) — Div=X"
;iéﬂ ;idmoa
Ub'd . 0
H(Ty/, Z) — Div=X""

where ep is defined in 1.2.2 and ¢p : Div2X” — Div2X" is the isomorphism
induced by ¢.
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We say that two disconnected nodal curves Y and Y’ are T-equivalent if there exists a
bijection between their connected components such that any two corresponding compo-
nents are T-equivalent.

We shall prove in 3.2.1 that two curves free from separating nodes are T-equivalent if
and only if they are Cl-equivalent, thereby getting a new statement of Theorem 2.1.7. We
first need some observations.

Remark 3.1.4. Let X and X’ be T-equivalent and free from separating nodes. Then part
(c) of the definition implies that

P Xsing)) = V'™ (Xing)»
where X¥ = X and X"’ — X’ are the normalization maps.

Remark 3.1.5. Suppose that 'y and 'y’ are cyclically equivalent and fix a cyclic bijec-
tione : E('y) - E(I'x/). By [CV09, Cor. 2.3.5], € induces a bijection from the C1-sets
of X to those of X’, mapping S to €(S). For this bijection we shall always use the notation

Set! X — Set' X/, S+ S.

Lemma 3.1.6. Let X and X' be T-equivalent connected curves, free from separating
nodes; pick a pair of corresponding Cl-sets, S € Set' X and S’ € Set' X'. Then the
normalization of X at S is T-equivalent to the normalization of X' at §'.

Proof. Let Y be the normalization of X at S, and Y’ the normalization of X’ at §’. It
is obvious that ¥ and Y’ have isomorphic normalizations. Observe that 'y = I'y \ §
and T'yr = 'y, . §’. The bijection € : E(T'y) — E(I'x/) maps the edges of S to the
edges of §'; hence it induces a bijection ¢y : E(T'y) — E(T'ys). To see that €y induces a
bijection on the cycles it suffices to observe that the cycles of 'y = I'y . § are precisely
the cycles of 'y which do not contain S (by Fact 2.1.3), and the same holds for Y.
Therefore I'y and 'y, are cyclically equivalent.

Finally, let us pick an orientation on I'y and extend it to an orientation on I'y. The
map ny naturally factors as

ny : HH(Tx ~ S, 7Z) — H(Tx,Z) - Divlx".

Choose an orientation on "y so that condition (c) holds. Then we have a commutative
diagram

n
ny + Hy(Ty.Z) — Hy(T'y. Z) ——> Div®X"

;l ;im gla

!

ny:: Hy(Ty:. Z) < Hy(Ty:, Z) — > DivlX"

This proves that condition (¢) holds for Y and Y’, so we are done. ]
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3.2. Cl-equivalence equals T-equivalence

Proposition 3.2.1. Let X and X’ be connected curves free from separating nodes. Then
X and X' are T-equivalent if and only if they are Cl-equivalent.

Proof. Suppose that X and X’ are T-equivalent. Then property (A) of Definition 2.1.5
obviously holds. Let us simplify the notation by identifying X¥ = X'"V. Since the dual
graphs of X and X’ are cyclically equivalent, we have a cardinality preserving bijection
between the Cl-sets of X and X’, by Remark 3.1.5. To prove part (B) of Definition 2.1.5
let S, S’ be any pair as in 3.1.5, and denote, as usual,

Gs:=v i(§)c X' and Gg:=v7'(S) cx".

We must prove that Gg = Gg . Since X and X’ are T-equivalent, by Remark 3.1.4 the
gluing sets are the same:

sting = GX/- . (31)

sing
Let Y be the normalization of X at S, and Y’ the normalization of X’ at §’. By Lemma
3.1.6, Y and Y’ are T-equivalent. Now, the normalization of ¥ and Y’ is X", and by
Remark 3.1.4 applied to ¥ and Y’ we obtain

Gysing = GYs/ino C XV, 3.2)

Now, it is clear that Gg = G Xing N GySing and Gy = G Xing ~ GYs/mu' Therefore by (3.1)
and (3.2) we get Gg = G g as desired. i

Conversely, assume that X and X’ are Cl-equivalent. By 2.4.3 their graphs are cycli-
cally equivalent. Let us identify X* = X", so that by hypothesis Gs = G ¢ for every pair
of corresponding C1-sets. It remains to prove that property (c) of Definition 3.1.3 holds.

We begin with a preliminary definition. From 3.1.2, recall that the group K, =
(Z/2Z) acts as subgroup of automorphisms of Div X" = ]_[3/:1 Div C;, by the natu-
ral diagonal action defined in 3.1.2 (so that any « € K, acts on each DivC; either
as the identity or as multiplication by —1). For every S € Set! X denote as usual by
Y1, ..., Yy the connected components of Yg and let Yl." be the normalization of Y;. We

have Aut(Div XV) = ]_[f’=1 Aut(Div Y"); we define a subgroup of K,,,
Ky (8) := {or € K, C Aut(Div X") : opiy y» = £1).

Let S and S’ be corresponding C1-sets, as above. Let ' = 'y and I'" = I'y. The graphs
['(S) and I''(S’) are cycles of length i = #S = #S’, whose sets of edges are naturally
identified with S and S’ respectively. Hence there is a natural inclusion C1(I'(S), Z) C
C1 (T, Z); ditto for S’. Set (notation in 3.1.1)

T](S) = ﬁ‘cl(r(s)) . Cl(F(S)) — DiVO XV C DiVXU, er—> 1, — Se

(here and throughout the rest of the proof we omit Z). For any orientation on I'(S) we let
n(S) be the restriction of n(S) to Hy(I'(S)),

X |y (resy = N(S) + Hi((S)) — Div X". (3.3)
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We define n(S) : H{(I''(S")) — Div X" analogously. Let us describe 1(S) and n(S’).
As I'(S) is a cycle, for any choice of orientation we have a choice of two generators of
H{(I'(S)) = Z. We pick one of them and call it cg. Write Gs = {p1,q1,---, Ph,qn} as
in 2.3.2. Up to reordering the components Y7, ... Y and switching p; with ¢; we may
assume that

h
n(S)(cs) =Y _(gi — pi). (34)
i=1

Notice that the choice of orientation is essentially irrelevant: for any orientation and any
generator ¢g of Hy(I'(S)) we have n(8)(¢s) = + Z?Zl(qi — Di).
Similarly, choose an orientation for I''(S”) and pick a generator ¢y of Hy(I'(S")).

Then one easily checks that there exists a partition {1, ..., h} = F U G into two disjoint
sets, F' and G, such that
n(SHes) =Y (qi—p)+ Y (pi — qi)- (3.5)
ieF ieG

Let a(S) € K, (S) C Aut(Div X") be the automorphism whose restriction to Div ¥}”
is the identity for i € F, and multiplication by —1 for i € G. Now let

€(8): Hi(T($) = Hi(I'(8")

be the isomorphism mapping cg to cg. By construction n(S) = a(S) o n(S’) o €(9), i.e.
the map 7 (S) factors as

n(S) : HiTS) <% By 2 pivx 2, piv xv. (3.6)

We repeat the above construction for every pair of corresponding Cl-sets (S, ).
Using Lemma 2.2.3 and (3.3) we have

nx=( D n(S)>|H.<F) and an=( D "(S/))ml(r/)'

SeSet! X S’eSet! X’

Now let
o= ]_[ a(s) €K,
SeSet! X
where the product above means composition of the «(S) in any chosen order. We claim
that for every fixed S € Set' X we have

aon(S) =Fa(S) on(s).

Indeed, by 2.2.2, for any T € Set' X with T # S, S is entirely contained in the singu-
lar locus of a unique connected component of Y7, call it Y7 ;. Therefore the gluing set
Gg = Gg is entirely contained in Y. T”’l. By definition, a(7T') acts either as the identity or
as multiplication by —1 on every divisor of X" supported on Y. ;)1 ; in particular «(T) acts
as multiplication by 1 on 7(S8")(cg). The claim is proved.
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As a consequence of this claim and of 3.6 we have
aon(S) oe(S) =£n(S).

Now, if for a certain S the above identity holds with a minus sign on the right, we change
€(S) into —e(S), but we continue to denote it €(S) for simplicity.

Using again Lemma 2.2.3 we let ex : H(I") i H; (') be the restriction to Hy(I")
of the isomorphism

P «s): P mresn> P HTE).

SeSet! X SeSet! T S'eSet! 17

It is trivial to check that €x is an isomorphism. In fact by the proof of Proposition 2.4.3 it
is clear that ey induces the given bijection between the Cl-sets of X and X’. Altogether,
we have a commutative diagram

®n(S)
nx : Hi(D) > @ gegoi ¢ H1(T'(S)) — Div X"
exl; ai; (3.7)

n
nx: Hi(T) > @g gt v H1(T'(S") — Div X"

Set!

so we are done. O

4. Proof of the Main Theorem

The hard part of the proof of Theorem 2.1.7 is the necessary condition: if two stable
curves with no separating nodes have the same image under the Torelli map, then they
are Cl-equivalent. The proof is given in Subsection 4.3 using the preliminary material of
Subsections 4.1 and 4.2. The proof of the converse occupies Subsection 4.4.

4.1. Combinatorial preliminaries

In this subsection we fix a connected curve X free from separating nodes, and study the
precise relation between the posets S7 x and SPx, defined in Subsection 2.1.

We will prove, in Lemma 4.1.6, that the support map Suppy : STx — SPx isa
quotient of posets, that is, given S, T € SPx we have S > T if and only if there exist
PS4 and P% in ST x such that PS4 > Pf. In particular, the poset SPyx is completely de-
termined by S7 x. This fact will play a crucial role later on, to recover the combinatorics
of X from that of P}‘g_l.

We shall here apply some combinatorial results obtained in [CV(09], to which we refer

for further details. First of all, observe that the poset SPx can be defined purely in terms
of the dual graph of X. Namely SPyx is equal to the poset SPr,, defined in [CV09,
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Def. 5.1.1] as the poset of all S C E(I'y) such that 'y \ S is free from separating edges,
ordered by reverse inclusion.

Next, we need to unravel the combinatorial nature of S7 x; recall that its elements
correspond to pairs (S, d) where S € SPx and d is a stable multidegree on the curve Y.
Now, it turns out that stable multidegrees can be defined in terms of so-called totally
cyclic orientations on the graph I'y. To make this precise we introduce a new poset, OPr
(cf. [CV09, Subsec. 5.2]).

Definition 4.1.1. If T" is a connected graph, an orientation of I' is totally cyclic if there
exists no proper non-empty subset W C V(I') such that the edges between W and its
complement V(I') \. W go all in the same direction.

If T is not connected, an orientation is totally cyclic if its restriction to each connected
component of I is totally cyclic.

The poset OPr is defined as the set

OPr = {¢s : ¢s is a totally cyclic orientationon I' \ S, VS € SPr}

together with the following partial order:

¢s > ¢r < S C T and ¢ = (ps)|r~7-

Remark 4.1.2. It is easy to check that if ' admits some separating edge, then I' admits
no totally cyclic orientation. The converse also holds (see loc. cit.).

4.1.3. Relation between OPr, and ST x. How is the poset of totally cyclic orientations
related to the poset S7 x? This amounts to asking about the connection between totally
cyclic orientations and stable multidegrees, which is well known to be the following.

Pick Y5 and any totally cyclic orientation ¢g on I'y; = I' \. S; for every vertex v;
denote by d ™ (¢s)y, the number of edges of I \. S that start from v; according to ¢s. Now
we define a multidegree d(¢s) on Yy as follows:

i((bs)vi =g — 1 +d+(¢)S)U,‘9 i = 13 RN ¢ (4’1)

where g; is the geometric genus of the component corresponding to v;. Now:

A multidegree d is stable on Y if and only if there exists a totally cyclic orientation ¢g
such that d = d(¢s) (see [B77, Lemma 2.1] and [Cap07, Sec.1.3.2]).

Obviously, two totally cyclic orientations define the same multidegree if and only if
the number of edges issuing from every vertex is the same. We shall regard two such
orientations as equivalent:

Definition 4.1.4. Two orientations ¢s and ¢7 of OPr are equivalent if S = T and if
d¥ (¢s)y = d¥(¢p7), for every vertex v of I'. The set of equivalence classes of orienta-
tions will be denoted by OPr. The quotient map OPr — OPr induces a unique poset
structure on OPr such that two classes [¢s], [¢r] € OPr satisfy [¢s] > [¢r] if there
exist respective representatives ¢s and ¢ such that ¢ps > ¢r in OPr.

The above definition coincides with [CV(9, Def. 5.2.3].
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We shall soon prove that there is a natural isomorphism of posets between OPr,

and ST . Before doing that, we recall the key result about the relation between OPr,
and SPr,.

Fact 4.1.5. Let " be a connected graph free from separating edges; consider the natural
maps

—— S
Suppy : OPr — OPr —25 SPr, ¢ > [ps] — S.
(1) The maps Suppr and Suppr are quotients of posets.
(2) The poset SPr is completely determined, up to isomorphism, by the poset OPr (and
conversely).

By [CV09, Lemma 5.3.1] the map Suppr is a quotient of posets, hence so is Suppr (as
OPr — OPr is a quotient of posets by definition). Part (2) is the equivalence between
(iii) and (v) in [CV09, Thm. 5.3.2].

Now, as explained in 4.1.3, to every ¢s € OPr, we can associate a stable mul-
tidegree d(¢s) of Ys (see (4.1)); moreover two equivalent orientations define the same
multidegree. This enables us to define two maps, sty and sty, as follows:

sty 1 OPry — OPry <% STy, ¢s > [ps] > PLOS). 4.2)

Lemma 4.1.6. Let X be connected and free from separating nodes. Then

(1) the map sty : OPr, — ST x is an isomorphism of posets;
(2) there is a commutative diagram

OPr, S STx
N o
Suppr,, OPry Suppx 4.3)
Al‘ X
SPry SPx

where every map is a quotient of posets. In particular the poset SPx is completely
determined (up to isomorphism) by the poset ST x.

Proof. The maps sty and sty are surjective by what we said in 4.1.3. Moreover, by
[Cap94, Prop. 5.1], they are morphisms of posets. From the definitions (4.1) and 4.1.4
it is clear that sty is bijective, and hence an isomorphism of posets.

The commutativity of the diagram is clear by what we said above. Finally, by Fact
4.1.5(2) we know that OPr, completely determines SPx as a poset, hence (2) follows
from (1). m]
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4.2. Recovering gluing points from the theta divisor

Lemma 4.2.1. Let PSQ be a codimension-one stratum of P§71 and let h be the number of
irreducible components of © (X) N PSQ. Then S is a Cl-set of cardinality h.

Proof. We have already proved most of the statement in 2.1. The only part that needs to
be justified is the one concerning ® (X). By 2.2.1 every connected component of Y has
positive genus. Now, according to Fact 1.2.10(iii), the number % of irreducible compo-

nents of ®(X) N Pg is equal to ys = #S. m]

4.2.2. The following set-up will be fixed throughout the rest of this subsection. X is a
stable curve of genus g, Xsp = ¥, and § € Set! X is a Cl-set of cardinality /. As usual
vs : Y¢ — X denotes the normalization at S. We have Yg = |_|lh=] Y;, with Y; connected,
of arithmetic genus g; > 0, free from separating nodes. The gluing set of vg is denoted
{p1.q1. ... pn. qn} With vs(p;) = vs(gj+1) and p;, g; € Y;.

The pull-back via the partial normalization vg induces an exact sequence

vE h
0 — k* — PicX —> PicYy = HPicY,- — 0.
i=1

In the following statement we use notation (1.4).

Lemma 4.2.3. Fixd € X(X). Let M be a general line bundle in Pic Ys, M; :== My, and
di := deg M;. Let y; be a fixed smooth point of Y;. Then fori = 1, ..., h the following
properties hold:
() KOY;, M;) = 1 (hence hO(Ys, M) = h).
(ii) Set di(—y;) := deg M;(—y;). Then d;(—y;) is semistable.
(ili) M; does not have a base point in y; (i.e. hO(Yi, M;(—y;)) =0).
(iv) The restriction of the pull-back map, v; Wa(X) — Pic? Ys, is birational.
(v) dim W, (Y;) < g —2foreveryl <i <h.
(vi) For any point py, define

hO(Ys, M(—px)) = h and

KoY, M(—q;)) <h, V1 < j @4
s, M(—qj)) <h, V1< j<h

Ty = { M € Pic Y5 \ W) (Ys) :

Define T, by replacing py with gy and q; with p; in (4.4). Then

h
Pict Y5 \ vi (W (X)) = | J (T, U T).
k=1
Proof. Since d is stable, Theorem 3.1.2 of [Cap07] shows that W;(X) is irreducible of
dimension g — 1.
For any M € Pic Ys we set Fj(X) :={L € PicX : v¥*L = M} = k*.
To prove (i), observe that the stability of d yields deg(M;) = g;. Therefore the
theorem of Riemann—Roch gives hO(Y,-, M;) > 1. Suppose, for a contradiction, that
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hO(Y;, M;) > 1 for some i. Then h°(Ys, M) = Z?:l hO(Y;, M;) > h + 1 for every
M € Pict vs.

This implies that F(X) C Wy(X) (indeed, there are at most 4 conditions on the
global sections of M to descend to a global section of a fixed L € Fj;(X)). Therefore

h
dim Wy(X) = dimPicl Y5 + 1= g +1=3g,
i=1

a contradiction. This proves (i).

For (ii) and (iii), set d; = d;i(—y;); observe that |d;| = g — 1. Let Z C Y; be
a subcurve of Y; and let Z = v(Z) C X. Then, of course, gz < g7. Denoting by
di/,Z = |(d})|z| the total degree of d; restricted to Z, and setting d7 = |d ,|, we have

r o _ldzzg8z7=4z ifyi ¢ Z,
2T \dz—12g;—-1>gz—1 ify €Z,

where we used that d7 > g7 (d is stable). So (ii) is proved. We can therefore use a result
due to A. Beauville ([B77], see also Proposition 1.3.7 in [Cap07]), stating that every
irreducible component of W, /(Y;) has dimension g; — 1, and in particular W,/ (Y;) #

Picﬁ/(Y[). Therefore for general M € PicZ(Ys), we have h0(Y;, M;(—y;)) = 0, and this
proves part (iii).

In order to prove (iv), we need to make the isomorphism Fj;(X) = k* explicit. Any
¢ € k* determines a unique L¢ € Fy;(X), defined as follows. Forevery j = 1,...,h
consider the two fibers of M over p; and g;41 (with gs+1 = g1 as usual, recall that vg
glues p; with g; 1) and fix an isomorphism between them. Then L€ € F);(X) is obtained
by gluing M, to My, , via the isomorphism

My, > M

g1 forj=1,...,h—1, Mphi>Mq

1°

where the last isomorphism is given by multiplication by c. Conversely, every L € Fy(X)
is of type L¢, for a unique ¢ € k*.

Now, by (i) we know that a general M € PiCQ(YS) does not belong to Wé’ (Ysg),1.e. we
have h0(Y;, M;) = 1 foralli =1, ..., h. Take a generator, call it «;, of HO(Y;, M;) and
set aip = o (p;) and a? = a;(qi). A sectionw = Zf’zl xie; € HO(Ys, M) descends to a
section of L€ € Fj/(X) on X if and only if it satisfies the following system of equations:

xial =a(p)) =algiy1) = xip1al,, forl <i <h-—1, @5)
cxpay, = ca(pp) =r(q1) = xiaf.
The above system of 4 equations in the 4 unknowns x1, . . ., x, admits a non-zero solution

if and only if the determinant of the associated matrix is zero, that is, if and only if

h

c-[]af =[] (4.6)

i=1 i=1
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Since a general M € Pici(YS) satisfies af # 0 and alf] # 0 for every i (by part (iii)),
the above equation has a unique solution ¢ and therefore Fj;(X) has a unique point in
Wa(X). This proves (iv), since dim Wy (X) = dim Picd(Ys) = g— 1.

Now we prove (v). The fiber of the birational map v* : Wy(X) — Pic? Y over
WL?(YS) has dimension 1; hence, as W;(X) is irreducible of dimension Z,h:] gi, we
have dim Wf(Ys) < Z?:l gi — 2. Since Wf(Y) = U?Il(m)_l(Wg}i (Y;)), where m; :
Picd(Ys) — Pic@(Yi) is the projection, we deduce that dim W‘}i Y) <gi —2.

Finally we prove (vi). As observed before, we have a

Pict Y5 \ v(Wa(X)) C Pict Y5\ Wy (Ys).

With the above notation, a line bundle M € PictYs W;,’(YS) does not belong to
v*(W4(X)) if and only if the equation (4.6) does not admit a solution ¢ € k*. This hap-
pens precisely when either a,f = 0 for at least one k and a? # 0 for any i, or aZ = 0 for

at least one k and af # 0 for any i. These conditions are easily seen to be equivalent to
the fact that M € | J, (T, U Tg,). ]

Proposition 4.2.4. Let X be such that Xep = @; pick S € Set! X and d € (X). The
image of the pull-back map v; D We(X) — Pic? Ys uniquely determines vS_I(S), the
gluing set of vs.

Proof. Denote Pic Yg vs(Wa (X)) = Ty U T, where using Lemma 4.2.3(vi) we have

h h
7= JT T=JT,. 4.7)
k=1 k=1
for some set {p1, ..., pn,q1, - - -, qn} Which we must prove is uniquely determined, up to

reordering the p; (or the ¢;) among themselves. Notice that, for any such set, two different
points py, p; lie in two different connected components of Y, and the same holds for any
two g, g;. Therefore T; and T are connected; on the other hand they obviously do not
intersect, therefore they are uniquely determined. It thus suffices to prove that 77 (and
similarly 7>) determines a unique set of 4 smooth points of Yg such that 77 is expressed
as in (4.7).

We begin with a preliminary analysis. Pick any smooth point of Yg, let Y; be the
connected component on which it lies, and name the point yx, for notational purposes.
By Lemma 4.2.3(ii) the multidegree g;c := d; (—yx) is semistable on Y. Therefore we
can apply Proposition 3.2.1 of [Cap07]. This implies that Wg}( (Yx) contains an irreducible
component (of dimension g — 1) equal to the image of the d; -th Abel map; we call this
component A;. We also know (loc. cit.) that A; does not have a fixed base point,! and
that h°(Yg, L) = 1 for the general L € Ay.

We can thus define an irreducible effective divisor as follows:

Dy, == {M € Pict Y5 : My(—yx) € Ax).

'V cPicY hasa fixed base point if there exists a y € Y which is a base point for every L € V.
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Observe that Dy, has no fixed base point other than y,. Indeed, let M € D,, be a general

point. If j # k then M; is general in Pic% Y;, hence by 4.2.3, M; has no fixed base point
and hO(Y i, M;) = 1. On the other hand M varies in a set of dimension g; — 1, therefore
WO(Ye, Mp) = 1 by 4.2.3(v). Therefore, if every M had a base point in r # y;, we would
obtain

1= 1My = BO(My(—y0)) = RO(My(—r)) = BO(My(—yx — ). (4.8)

But My (—yx) € Ag, so every element of A; would have a base point in », which is not
possible (see above).
Summarizing, the general M € Dy, has the following properties:

(Y;,Mj)=1 forany j=1,...,h,
hO(Ys, M) = h°(Ys, M(—y1)) = h, 4.9)
hO(Ys, M(—r)) < h®(Ys, M) ¥r # y smooth point of Y.

Now, back to the proof of the proposition; it suffices to concentrate on 77. For a contra-
diction, suppose there are two different descriptions for 77 as follows:

h h
= UTPj = UTf'j;
=1 =1

we may assume p; € {p1, ..., pn}- By (4.9) applied to yx = pi, together with 4.2.3(vi),
we have L

Dj C T.
But then, since 71 = Uj Tp,;, we conclude that D, has a fixed base point in some pj,
which is impossible by the last property in (4.9). O

4.3. Torelli theorem: proof of the necessary condition

By Corollary 1.3.3 and Remark 1.3.1, to prove the necessary condition of Theorem 2.1.7
it suffices to prove the following.

Let X and X' be stable curves of genus g free from separating nodes, and such that
to(X) = to(X'). Then X and X' are Cl-equivalent.

So, suppose we have an isomorphism

@ = (¢o.¢1) : (J(X) ~ Py, O(X)) S0y~ P§71, 0(X").
We divide the proof into several steps. In the first step we collect the combinatorial parts.
Step 1. (1) The above isomorphism ® induces a bijection
Set! X — Set! X', S 8,

such that #S = #S' for every S € Set! X.
(2) T and T are cyclically equivalent.
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The isomorphism ¢ : P§_1 = Pf;,_l induces an isomorphism between the posets of

strata ST x = ST x/; hence, by Lemma 4.1.6, it induces an isomorphism
SPx =SSPy

of the posets of supports, compatible with the support maps. In particular, we have an
induced bijection

Set' X —> Set' X', S+ §.
Let us show that this bijection preserves cardinalities. By what we just said, every stratum
of type P is mapped isomorphically to a stratum of type P . Moreover, as the theta divi-
sor of X is mapped isomorphically to the theta divisor of X, the intersection ®(X) N P§

is mapped isomorphically to @(X") N P S, ; in particular the number of irreducible com-
ponents of these two intersections is the same. Hence, by Lemma 4.2.1, S and S’ have the
same cardinality.

This proves the first item. At this point the fact I'y and "'y are cyclically equivalent
follows immediately by what we just proved, thanks to the following immediate conse-
quence of [CV09, Prop. 2.3.9(ii)] combined with [CV09, Thm. 5.3.2(1)—(iii)].

Fact4.3.1. Let T and T’ be two connected graphs free from separating edges. Suppose
that there exists an isomorphism of posets, SPr = SPr, whose restriction to C1-sets,
Set! I = Set! I, preserves the cardinality. Then T and T’ are cyclically equivalent.

Step 2. XV = X",
By the previous step, the number of irreducible components of X" and X"V is the same;
indeed, the number of edges and the first Betti number of 'y and I'y’ are the same, hence

the number of vertices is the same. Denote by X!, C X" and X! C X" the union of all
components of positive genus. It is enough to show that

XU =Xy (4.10)

In Remark 1.2.11 we saw that P§_l has a unique stratum of smallest dimension, namely
the unique stratum supported on Xing. This smallest stratum is isomorphic to the product
of the Jacobians of the components of X", and hence to the product of the Jacobians
of the components of X" having positive genus. It is clear that the smallest stratum of

P)‘SFI is mapped by ¢ to the smallest stratum of ngl. Recall now (1.7), expressing the
restriction of the theta divisor to this smallest stratum in terms of the theta divisors of the
components of XV. As a consequence the projection of the smallest stratum onto each
of its factors determines the polarized Jacobian of all the positive genus components of
the normalization. Hence, by the Torelli theorem for smooth curves, we conclude that the
positive genus components of the normalizations of X and X’ are isomorphic, so (4.10)
is proved.

Step 3. Condition (B) of Definition 2.1.5 holds.

We use induction on the number of nodes. The base is the non-singular case, i.e. the
classical Torelli theorem. From now on we assume X and X’ are singular.
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As usual, we denote the normalizations of X and X’ both by X".

Let S € Set! X and S’ € Set! X’ be a pair of corresponding Cl-sets, under the bijec-
tion described in the first step; set h := #S = #5". Let vg : Y5 — X and vy : Y, — X'
be the partial normalizations at S and §’, and call their arithmetic genus gg = g — h. Re-
call that Yg and Y¢, have h connected components, each of which is free from separating
nodes and has positive arithmetic genus. We claim that Y5 and Y/, are C1-equivalent.

Recall (see (1.9)) that we denote by Ps C Pf;_l and Py C P)Z’;,_l the closures of all
strata supported, respectively, on S and S’. By what we said, the isomorphism ¢; induces
an isomorphism

Ps = Py 4.11)

By Lemma 1.3.2 we know that Pg together with the restriction of the theta divisor and the

action of J(Yy) is naturally isomorphic to (J(Ys) Pf;’ssfl, ®(Ys)); similarly for P_S/
Therefore by (4.11) we have

(J(Ys) ~ P 00s) = (J(Yg) ~ PP 0(7g)).

By Proposition 1.3.1, the same holds if Ys and Yé/ are replaced by their stabilizations, Ys
and Y_é/ Therefore we can apply the induction hypothesis to Yg and Y_é/ (which are stable,
free from separating nodes, and have fewer nodes than X and X’). We thus conclude that
Ys is Cl-equivalent , or T-equivalent, to Y.,

On the other hand the normalizations of Y and Y, are isomorphic, as they are equal to
the normalizations of X and X'. Furthermore, as 'y =cyc I'x’ (by Step 2) the dual graphs
of Yy and Y}, are cyclically equivalent (by the same argument used for Lemma 3.1.6).
Therefore, by Lemma 4.3.2, Yy is T-equivalent, hence C1-equivalent, to Yé,. The claim is
proved.

Next, consider the normalization maps

X By Sx, xSy 2 x
where p and p” are the normalizations of Yg and Y,. As Y and Y, are Cl-equivalent,
the gluing sets u_l ((Ys)sing) and ,u/_l ((Y’,)smg) are the same (cf. 3.1.4). The gluing sets
of v and v’ are obtained by adding to the above set the gluing sets of S and §’.

By Proposition 4.2.4, v;l (S) and vs_/l(S’ ) are uniquely determined by the ppSSAV

of Ys or of Yg, which are isomorphic. Therefore (Pffss _1, ®(Ys)) uniquely determines
ntgt$) = v7I(S) and u’_l(vg,l(S’)) = v'~1(§") on X". This says that, up to
automorphisms of X", the sets v~1(8) and v'~1(S") coincide. Denote Gg := v=1(S) =
V' ~1(S’). We also see that the gluing set of v is equal to the gluing set of v’; we call
it Gy, = v_l(Xsing) = \/_I(X;in ). Of course Gy, is the disjoint union of all the
gluing sets associated to all the C1-sets of X.

Now we apply the previous argument to every remaining pair of corresponding C1-
sets, as follows. Pick a pair of corresponding Cl-sets, U and U’, with U # S. Then, as
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before, Yy and Y(’J, are Cl-equivalent, and their (same) ppSSAV uniquely determines

Gy :=v '(U)=v"'U)cGx..~GsCX"

sing

Therefore condition (B) of Definition 2.1.5 holds, i.e. X and X’ are Cl-equivalent. The
proof is complete. O

We used the following basic fact.

Lemma 4.3.2. Let X and X' be free from separating nodes; suppose that their stabiliza-
tions are T-equivalent and that I'x =cyc I'x'. Then X and X " are T-equivalent.

Proof. Let X and X’ be the stabilizations of X and X’. Observe that the dual graph of
X is obtained from 'y by removing some vertices of valence 2 (corresponding to the
exceptional components of X) so that the two edges adjacent to every such vertex become
a unique edge. Therefore there is a natural isomorphism H;(I'x) = H;(I'y). Moreover,
this isomorphism fits in a commutative diagram

H Ty, Z) 2~ Div® XV

1]

H|(T'y,Z) — > Div®X"

where the right vertical arrow is induced by the obvious injection X" <> X".The diagram
immediately shows that the map 7y is determined by nx. The converse is also true, in
fact if E C X is an exceptional component, and 7z : Div2 X¥ — Div® E = Div? P! the
projection (Div° E is a factor of Div? XV), then the map 7 o nx is uniquely determined
up to an automorphism of X. The same observation applies to X', of course.

Now to prove the lemma, notice that X and X’ have the same number of irreducible
components, because their dual graphs are cyclically equivalent. Denote by X C XV,
respectively XV C X', the union of all components of X", respectively X'’, having
positive genus. To show that X¥ = X" it suffices to show that X! = X'} This follows
immediately from the fact that the normalizations of X and X’ are isomorphic.

Finally, by the initial observation, the maps 7y and 5y are determined by those of X
and X', and hence property (c) of Definition 3.1.3 holds for X and X’, because it holds
for their stabilizations. O

4.4. Torelli theorem: proof of the sufficient condition

By Corollary 1.3.3 and Remark 1.3.1 it suffices to prove the first part of Theorem 2.1.7,
i.e. we can assume that X and X’ are Cl-equivalent curves free from separating nodes. By
Proposition 3.2.1, Cl-equivalence and T-equivalence coincide; so we can use the second
concept, which is now more convenient. Indeed the proof consists in applying some well
known (some quite deep) facts about ppSSAV, on which our definition of T-equivalence
is based.
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By [AN99], and by [Ale04, Sec. 5.5] (where a short description, ad-hoc for the present
case, is given) tg(X) is determined by a set of “combinatorial data” (partly known also to
Mumford and Namikawa, see [Nam79, Chap. 18] and [Nam80, Chap. 9.D]). Let us recall
them. Denote by J(X")’ be the dual abelian variety of J(X"). Now let

rx s J(XN) S J(X)
be the isomorphism associated to the class of the theta divisor of X".

Let P be the universal, or Poincaré, line bundle on J(X") x J(X")'. Recall that its
set of k-rational points, P (k), defines a biextension, called the Poincaré biextension, of
J(XV) x J(XV)! by k*; see [Mum68, Sect. 2 p. 311] or [Bre].

Then t, (X) is uniquely determined by the following data:

(1) The free abelian group H(I'x, Z).

(2) The Delaunay decomposition of the real vector space H;(I'x, R) associated to the
lattice H(I"x, Z), with respect to the Euclidean scalar product.

(3) The classifying morphism of the semiabelian variety J(X), together with its dual. In

our present situation, this is the datum of the group homomorphism cx : Hi(I'x, Z)
— J(XV) already described in 3.1.1, together with its dual

¢ Hi(Tx. Z) <5 7(x") 25 J(xvy.
(4) The equivalence class of a trivialization of the pull-back to H;(I'x, Z) x H1(I'x, Z)
of the inverse of the Poincaré biextension, i.e. the class of a map
tx : Hi(Tx, Z) x Hi(Tx,Z) — (s x cx)*P~ (k).
This is determined by composing
nx x nx : Hi(Tx,Z) x Hi(Tx,Z) — Div2 X" x Div? X"
with the Deligne symbol (see [SGA, XVII] and [Ale04, Sec. 5.5]).

Let us show that such data are the same for our T-equivalent curves X and X'.

As the graphs 'y and 'y are cyclically equivalent, there is an isomorphism €y :
H(T'y,Z) = H;(T'y, Z). It induces an isomorphism Del(I"y) = Del(I"y) between the
Delaunay decompositions of X and X’ (see [CV09, Prop. 3.2.3(i)]). Therefore the data (1)
and (2) are the same for X and X'.

Since XY = X'V, we have J(X") = J(X") and the principal polarizations, of course,
coincide:

Ax = Ay J(XY) = J(XY)'.
The classifying morphism has been described in 3.1.1. From 3.1.3(c), we get the commu-
tativity of the diagram

n
cx s Hi(Tx, Z) ——=Divd XY —> J(X")

;leﬁ n gia ;la

cx s Hi(Ty, Z) ——= Div X¥ —> J(XV)
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where @ € Aut(J(X")) is the automorphism induced by « (recall that J(XV) = Pic? XV).
It is clear that the automorphisms of J(X") have no effect on the isomorphism class of the
semiabelian variety corresponding to the classifying morphisms. This shows that data (3)
are also the same for X and X'.
Let now P’ (k) be the Poincaré biextension of X'; see (4). By what we said so far, it is
clear that
(e x €m)*(cly x ex) P k) = (cl x cx)*P k).

Now, the class of the map tx (respectively tx/) is constructed using the Deligne sym-
bol which is canonically defined on the pull-back of P~!(k) (respectively P'~!(k)) to
Div? XV x Div? X". Therefore, using the above isomorphism and the commutative dia-
gram of 3.1.3(c), we get

tx = (eg x eg)*ty : Hi(Tx, Z) x H\(Tx, Z) — (c% x ex)*P~ (k).

Therefore the data of part (4) are also the same for X and X’. We thus proved that the data
defining fg (X) and fg (X’) are the same, hence we are done. O

5. The fibers of the Torelli morphism

5.1. Injectivity locus and fiber cardinality of the Torelli morphism

Where, in Mg, is the compactified Torelli morphism t, injective? At this point it is clear
(as was already known to Namikawa, see [Nam80, Thm. 9.30(iv)]) that this is the case
for irreducible curves; the question is thus really interesting for reducible curves. To give
it a precise answer we introduce some terminology.

5.1.1. A connected graph is 3-edge connected if it remains connected after removing
any two of its edges. We need the following characterization (Corollary 2.3.4 of [CV09]).
A connected graph free from separating edges is 3-edge connected if and only if every
Cl-set has cardinality one.

Note also that given two cyclically equivalent connected graphs, one is 3-edge con-
nected if and only if the other one is. In graph theory, the definition of a 3-edge connected
graph is usually given for graphs having at least two vertices. Here we do not make this
assumption, so for us a graph with one vertex is always 3-edge connected.

We shall define “Torelli curves” to be those stable curves for which the Torelli map is
injective; see Definition 5.1.3 and Theorem 5.1.5. We first illustrate a simple case.

Example 5.1.2. The following is the simplest example of Cl-equivalent stable curves.
Let XY = X"V = C| U C;, where the C; are smooth of genus g; > 1. Let p;, g;i € C; be
distinct points; now define

. CiuCy
(P1=r2.91=q)

. CiuC,
(Pr=q2,q1=p2)

and X'

It is clear that X and X’ are Cl-equivalent.
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Observe now that they are not isomorphic, unless one of them, C; say, has an auto-
morphism switching p; with g;.

Indeed, suppose that there exists «; € Aut Cy such that o1 (p1) = g1 and«1(q1) = p1.
Then the automorphism ¢ € Aut X" which restricts to «; on Cp and to the identity on C;
descends to an isomorphism between X and X', since v’ o ¢(p;) = V' o ¢(p2) and
Vv o ¢(q1) = V' o ¢(q2). This example, when o as above exists, is a special case of
Torelli curve, defined as follows.

Definition 5.1.3. A stable curve X such that X, = @ is called a Torelli curve if for
every Cl-set S such that #S = h > 2, conditions (1) and (2) below hold.

(1) Foreveryi = 1,...,h — 1 there exists an automorphism «; € Aut(Y;) such that
ai(pi) = ¢qi and «; (g;) = p; (where Y1, ..., Y}, are the connected components of Y
and p;, ¢; € Y; are the two gluing points).

(2) There is an isomorphism as marked curves (Y;; p;, g;) = (¥}; pj, q;) forevery i, j <
h — 1; or else h = 3 and there exists «;, € Aut(Yy) such that a,(py) = gp and
an(qn) = pa-

Example 5.1.4. If 'y is 3-edge connected then X is a Torelli curve, by 5.1.1.

Theorem 5.1.5. Let X be a stable curve free from separating nodes. Then

€)) #f;l (ty(X)) < [(g —2)!/21. Furthermore the bound is sharp, and can be attained

for X a cycle curve equal to the union of g — 1 elliptic curves, no two of them iso-
morphic.
) f;l (ty(X)) = {X} if and only if X is a Torelli curve.

Proof. By Theorem 2.1.7 the set fgl (fg (X)) is the Cl-equivalence class of X. The bound
on its cardinality follows from Lemma 5.1.8 below.

Now, let X be the union of g — 1 smooth curves Cy, ..., Cy_1 of genus 1, so that
the dual graph of X is a cycle of length ¢ — 1. Suppose that C; 2 C; for all i # j. The
curve X has a unique Cl-set, namely § = Xgjng, and each curve C; contains exactly two
points of G g, which we call p; and g;. With the notation of 2.3.2, let [(cs, ¥s)] be the
gluing data of X. Since each C; has an automorphism exchanging p; with g;, varying the
marking ¥ ¢ does not change the isomorphism class of the curve X. On the other hand,
any change in og (with the exception of og’ ! of course) changes the isomorphism class of
the curve, because no two C; are isomorphic. Therefore, we conclude that the number of
non-isomorphic curves that are Cl-equivalent to X is equal to 1 if g < 3, and (g — 2)!/2
if g > 4. Part (1) is proved.

For (2) it suffices to prove the following. Let X be connected with X, = ; then X
is a Torelli curve if and only if the only curve Cl-equivalent to X is X itself.

Assume first that X is a Torelli curve. If 'y is 3-edge connected, then every Cl-set
has cardinality 1 by 5.1.1, therefore we conclude by Lemma 5.1.6. We can henceforth
assume that I'y is not 3-edge connected.
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Let S € Set' X have cardinality 4 > 2 (it exists by 5.1.1). We claim that Aut X acts
transitively on the gluing data of §, described in 2.3.2. We use the notation of Defini-
tion 5.1.3. If A = 3 and Y; has an automorphism exchanging p; with ¢g; fori = 1,2, 3,
then the claim trivially holds.

Next, assume that the first # — 1 marked components (Y;; p;, ¢g;) are isomorphic and
have an automorphism switching the gluing points p;, g;. Using the set-up of 2.3.2, the
gluing data are given by an ordering of the components, which we can assume has Y},
as last element, and by a marking of each pair (p;,q;) foralli = 1,...,y — 1. Now
Aut X acts transitively on the orderings of the components, by permuting Y7, ..., Y;_1,
which are all isomorphic by isomorphisms preserving the gluing points. Moreover for
i =1,...,y — 1 each pair of points (p;, g;) is permuted by the automorphism c;. The
claim is proved. Of course, the claim implies that X is unique in its C1-equivalence class.

Conversely, let X be the unique curve in its C1-equivalence class. If every C1-set of X
has cardinality 1 then I'y is 3-edge connected (by 5.1.1) and we are done.

So, let S € Set! X be such that #S > 2 and let us check that the conditions of
Definition 5.1.3 hold. With no loss of generality, and using the same notation as before,
we may order the connected components of Yg so that g; is glued to p; 11 and p; is glued
to gi—1 (with the cyclic convention, so that p; is glued to gj;). Assume that ¥, has no
automorphism exchanging p;, with gj,; let us change the gluing data of X by switching pj,
with g5, and by leaving everything else unchanged. Then the corresponding curve is C1-
equivalent to X, and hence it is isomorphic to X, by hypothesis. Therefore, the curve
W = X \ Y}, must admit an automorphism switching p; with g,_1 (the two points glued
to g, and pp,). Now it is easy to see, by induction on the number of components of W, that
such an automorphism exists if and only if W is a union of 2z — 1 marked components,
(Y;; pi, qi), all isomorphic to (Y1; p1, q1), and if Y| has an involution switching p1, q1.
Therefore X is a Torelli curve.

If instead Y; has an automorphism exchanging the two gluing points for every i =
1,...,h,and no h — 1 among the Y; are isomorphic, it is clear that for & > 4 there exist
different orderings of the Y; giving different Cl-equivalent curves. Therefore we must
have & = 3, hence X is a Torelli curve. O

The proof of the theorem used the following lemmas.

Lemma 5.1.6. Let X be a connected nodal curve free from separating nodes. Then the
cardinality of the Cl-equivalence class of X is at most

]_[ 2P5=1#s — 1.
SeSet! X

Proof. By the discussion in 2.3.2, the number of curves that are Cl-equivalent to X is
bounded above by the product of the number of all gluing data for each C1-set of X. The
Cl-sets with #5 = 1 admit only one gluing data, so they do not contribute.

Let S be a Cl-set of cardinality at least 2. Clearly there are 2*5 possible markings s,
and (#S — 1)! possible choices for the cyclic permutation og. Furthermore, recall that
each gluing data can be given by two such pairs (s, os), namely the two conjugate pairs
under the involution (2.8). This gives us a total of 2=l (#s — 1)1 gluing data. O
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We shall repeatedly use the following elementary

Remark 5.1.7. Let E be a connected nodal curve of genus at most 1, free from sepa-
rating nodes. For any two smooth points p, g of E, there exists an automorphism of E
exchanging p and q.

Lemma 5.1.8. Ler X be a connected curve of genus g > 2 free from separating nodes;
let e be the number of its exceptional components. Then the Cl-equivalence class of X
has cardinality at most

[(§ —2+e)!/2].

Proof. Throughout this proof, we denote by {Y}c; the Cl-equivalence class of a nodal
curve Y. We will use induction on g.

We begin with the following claim. Let X be the stabilization of X. If [y is 3-edge
connected, then #{X}c1 = 1.

Indeed, there is a natural bijection between the C1-sets of X and those of Y, which we
denote by S > S. By assumption, for every Cl-set S of X the partial normalization Yg of
X at S is connected (since #S = 1). Now, for any S € Set! X, the partial normalization Y
of X at S is equal to the disjoint union of Yg together with some copies of P!. Using this
explicit description and 5.1.7 we find that all the possible gluing data [(os, ¥s)] of S (see
2.3.2) give isomorphic curves, i.e. X is unique inside its C1-equivalence class. The claim
is proved.

Now we start the induction argument. Let us treat the cases g = 2, 3.

Using the above claim, it is easy to see that to prove the lemma for g = 2,3 we
need only worry about curves X of genus 3, whose stabilization X is the union of two
components C; and C; of genus 1, meeting at two points. If e = 0 then X is unique in
its Cl-equivalence class by using 5.1.7. If e > 0 then the curves Cl-equivalent to X are
obtained by inserting two chains of exceptional components between C; and C, one of
length e; for every 0 < e; < |e/2], and the other of length e — e;. It is obvious that
for different values of e; we get non-isomorphic curves, and that we get all of the curves
Cl-equivalent to X in this way. Therefore

#HX}c1 =1+ Le/2] = [(e + 1)!/2].

Assume now g > 4 and let S € Set' X be such that #S = h. As usual, we write
Yg = |_|f-':1 Y;, with Y; free from separating nodes and of genus g; := gy,. We order the
connected components Y; of Y in such a way that:

Yy, ..., Yy have genus at least 4;
Yrit, ..., Yrqr, have genus 3;
Y¢iks+1s -+ Yriks+k, have genus 2;

Yitksthkat1s - - s Ytks+hy+k have genus 13
Y kythy+ky+15 - - - » ¥ have genus O and therefore are isomorphic to P!
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Let ¢; be the number of exceptional components of X contained in Y;; then Y; has at
most e; + 2 exceptional components. We have the obvious relations

h
e=Ze,~=Zei+2ei+h—f—k3—k2—k1, ()
i=1

8i>2 gi=1

g—1=) gi=) gi+k. (%)
i

g2

Consider now the gluing data [(os, ¥s)] associated to S (notation as in 2.3.2). Denote,
as usual, by {p;, g;} the two points of G contained in the component Y;. Since all the
components Y; with g; < 1 have an automorphism that exchanges p; and ¢; (by 5.1.7),
if we compose the marking g with the involution of Gy, that exchanges s; with #; (for
all indices i such that g; < 1) the resulting curve will be isomorphic to the starting one.
Therefore, the number of possible non-isomorphic gluing data associated to S is bounded
above by (h — 1)12/ T 2+k~1. gince g > 4 this number is an integer (if f =k, = k3 =0
then & > 3). We conclude that

h
#X)cr < (h— DRI TT#Yier.
i=1

The components Y; of genus at most 1 are unique inside their C1-equivalence class.
For the components Y; of genus g; > 2 we can apply the induction hypothesis (note that
2 < g; < g)and we get

#HYilcr = [(gi =2+ e +2)!/21 = (g +ei)!/2.
By substituting into the previous formula, we get

ftks+ks 1\ . 1
_ e (=D, 50(g +e)!
#{X}er < (h — D12/ttt T (8 +eD! _ 8iz _
{X}c1 = ( ) 3 5

i=1

The number of (non-trivial) factors of the product (h — 1)! ] g>2(8i + e;)! is equal to
h—2+ Zg,zz(gi + ¢; — 1). Using the formulas (x) and (xx), we get

h—2+2(gi+e,-—l)=g—3+e—Zeigg—S—i—e.
8i=2 gi=1

Since the factorial (g — 2 + ¢)! has g — 3 4 e factors, we conclude from the above

inequalities that

(h = D=0 +ed! (g —2+0)!
2 - 2

as claimed. O

#H X} <

’

Corollary 5.1.9. f;l(fg(X)) = (X} for every X € M, with Xsep = 9 if and only if
g <4
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Remark 5.1.10. Consider a Torelli curve X of genus at least 5 with dual graph not 3-edge
connected. It is not hard to see that X is the specialization of curves for which the Torelli
morphism is not injective. On the other hand we just proved that fgl(fg (X)) = {X}.
Therefore the Torelli morphism, albeit injective at X, necessarily ramifies at X.

5.2. Dimension of the fibers

Let X be a stable curve of genus g; now we shall assume that X, is not empty and bound
the dimension of the fiber of the Torelli map over X. _

Recall the notation of (1.5); the normalization of X at Xsp is denoted X. We denote
by o the number of connected components of X of arithmetic genus 0, by 7| the number
of those of arithmetic genus 1, and by » the number of those having positive arithmetic
genus; that is,

yi=#i:gi=j}, j=0,1, and y,:=#{i:g >1}.
Proposition 5.2.1. Let X be a stable curve of genus g > 2. Then
. ~  ~
dimi, " (X)) =27 — 71 -2

(i.e. the maximal dimension of an irreducible component of f;l(fg(X)) is equal to
Yy =1 = 2).

Proof. According to Theorem 2.1.7, fg(X ) depends on (and determines) the C1-equiv-
alence class of the stabilizations X i of the components of X such that g > 0. The Cl-

equivalence class of X ; determines X ; up to a finite choice. In particular, note that 3, and
the number, call it e, of exceptional components of |_]§’_ -0 Xi is not determined by t, (X).

The dimension of the locus of curves in the fiber f;l (t, (X)) having the same topolog-
ical type of X is equal to
Z#Xsep_3770 -7 —e. 5.1

Indeed, each separating node gives two free parameters, because we can arbitrarily choose
the two branches of the node. The components X; of arithmetic genus 0 reduce the num-
ber of parameters by 3 because they have a 3-dimensional automorphism group, similarly
the components of arithmetic genus 1 reduce the number of parameters by 1. Finally, each
exceptional component of Uﬁi -0 X; reduces the number of parameters by 1, because it
contains at least one branch of one of the separating nodes and exactly two branches of
non-separating nodes.

Formula (5.1) shows that the curves X’ in the fiber fgl (t, (X)) whose topological type
attains the maximal dimension are the ones for which ¢’ = 0 (i.e. each positive genus
component of X’ is stable) and y; = 0 (i.e. X’ has no genus 0 component).

In particular, since ¥} = ¥, such a curve X" has #X{,, = ¥, — 1 separating nodes.

Applying formula (5.1) to the curve X’ we obtain dimfgl(fg (X)) <2y, -y —2.To
conclude that equality holds we must check that the locus of curves X’ is not empty. This
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is easy: given |_]§[,>0 X ; we can glue (in several ways) the stabilizations of the X ; so that

they form a tree. This, by our results, yields curves in f;l (ty(X)). |

Corollary 5.2.2. Let X be a stable curve of genus g. Then

dimfgl (t,(X)) <g—2  withequality iff g; <2 foralli,
dimi, ' (G(X)) > P4 —2  with equality iff § < 1 for all i.

Proof. The first inequality follows from the proposition and

g=M+ Y &= +20 — ) =2% - .
8i>2

with equality if and only if all g; < 2 for all i.
The second inequality follows from y; < ¥, with equality if and only g; < 1. |

Using Theorem 5.1.5 and Corollary 5.2.2, one finds that for g > 3 the locus in ﬁg where
te has finite fibers is exactly the open subset of stable curves free from separating nodes;

see [Nam80, Thm. 9.30(vi)] and [V03, Thm. 1.1] for the analogous results for the map

fvor On the other hand fg is an isomorphism for g = 2; again see [Nam80, Thm. 9.30(v)].

o -
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