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Abstract. We prove that all finite simple groups of Lie type, with the exception of the Suzuki
groups, can be made into a family of expanders in a uniform way. This confirms a conjecture of
Babai, Kantor and Lubotzky from 1989, which has already been proved by Kassabov for sufficiently
large rank. The bounded rank case is deduced here from a uniform result for SL2 which is obtained
by combining results of Selberg and Drinfeld via an explicit construction of Ramanujan graphs by
Lubotzky, Samuels and Vishne.

1. Introduction

A finite k-regular graph X, k ∈ N, is called an ε-expander (0 < ε ∈ R) if for every
subset A of vertices of X with |A| ≤ 1

2 |X|, we have |∂A| ≥ ε|A| where ∂A = {y ∈ X |
dist(y,A) = 1}.

The main goal of this paper is to prove:

Theorem 1.1. There exist k ∈ N and 0 < ε ∈ R such that if G is a finite simple group of
Lie type, but not a Suzuki group, then G has a set S of k generators for which the Cayley
graph Cay(G; S) is an ε-expander.

By abuse of language, we will say that these groups are uniform expanders.
Theorem 1.1 is new only for groups of small Lie rank: in [K1], Kassabov proved that

the groups
{SLn(q) | 3 ≤ n ∈ N, q a prime power}

are uniform expanders. Nikolov [N] proved that every classical group is a bounded prod-
uct of SLn(q)’s (with n = 2 possible, but the proof shows that if the Lie rank is sufficiently
high, say≥ 14, one can use SLn(q) with n ≥ 3). Bounded products of uniform expanders
are uniform expanders (see Corollary 2.2 below). Thus together, their results cover all
classical groups of high rank. So, our theorem is new for classical groups of small ranks
as well as for the families of exceptional groups of Lie type.

Theorem 1.1 gives the last step of the result conjectured in [BKL] and announced in
[KLN]:
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Theorem 1.2 ([KLN]). All non-abelian finite simple groups, with the possible exception
of the Suzuki groups, are uniform expanders.

By the classification of the finite simple groups, Theorem 1.1 covers all the simple groups
except finitely many sporadic groups (for which the theorem is trivial) and the alternating
groups. The fact that Theorem 1.2 holds for the alternating and the symmetric groups is a
remarkable result of Kassabov [K2].

The main new family covered by our method is {PSL2(q) | q a prime power}. Unlike
the results mentioned previously ([K1, K2]) whose proofs used ingenious, but relatively
elementary methods, the proof for PSL2(q) will use some deep results from the theory of
automorphic forms. In particular, it will appeal to Selberg’s λ1 ≥ 3/16 Theorem ([Se],
see also [Lu, Chap. 4]) and Drinfeld’s solution to the characteristic p Ramanujan conjec-
ture ([Dr]).

For its importance, let us single it out as:

Theorem 1.3. The groups {PSL2(q) | q a prime power} form a family of uniform ex-
panders.

Let us mention right away that Theorem 1.3 was known before for several subfamilies,
e.g. for {PSL2(p) | p prime} (see [Lu, Chap. 4] ] or {PSL2(p

r) | p a fixed prime and
r ∈ N} ([Mo]). The main novelty is to make them expanders uniformly for all p and
all r . To this end we will use the representation-theoretic reformulation of the expanding
property (see §2) as well as the new explicit constructions of Ramanujan graphs in [LSV2]
as special cases of Ramanujan complexes. We stress that the explicit construction there is
crucial for our method and not only the theoretical construction of [LSV1]. This will be
shown in §3.

The case of SL2 is a key step for the other groups of Lie type: a result of Hadad ([H1],
which is heavily influenced by Kassabov [K1]) enables one to deduce SLn (n ≥ 2) from
SL2. Then in §4, we use a model-theoretic argument to show that simple groups of Lie
type of bounded rank (including the exceptional families except the Suzuki groups) are
bounded products of SL2’s. Together with Nikolov’s result mentioned above, Theorem 1.1
is then fully deduced.

The Suzuki groups have to be excluded as they do not contain a copy of (P)SL2(q)

for any q, but we believe that Theorem 1.2 holds for them as well. (Added in proof :
Recently Breuillard, Green and Tao solved this case (“Suzuki groups as expanders”,
arXiv:1005.0782) by a completely different method. So the Babai–Kantor–Lubotzky con-
jecture is now fully proved.)

2. Representation-theoretic reformulation

It is well known (cf. [Lu, Chap. 4]) that expanding properties of Cayley graphs Cay(G; S)
can be reformulated in the language of the representation theory of G. For our purpose
we will also need to consider cases for which S is not of bounded size, in spite of the fact
that our final result deals with S bounded. We therefore need a small extension of some
standard results, for which we need some notation:
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The normalized adjacency matrix of a connected k-regular graph X is defined to be
1 = (1/k)A where A is the adjacency matrix of X. The eigenvalues of 1 are in the
interval [−1, 1]. The largest eigenvalue in absolute value in (−1, 1) is denoted λ(X).

For a groupG, a set S of generators and α > 0, we denote by I (α,G, S) the statement:
For every unitary representation (V , ρ) of G, every v ∈ V and every 0 < δ ∈ R, if

‖ρ(s)v−v‖ < δ for each s ∈ S, then ‖ρ(g)v−v‖ < αδ for every g ∈ G, (i.e., a vector v
which is “S-almost invariant” is also “G-almost invariant”.)

Note that the statement I (α,G, S) refers to all the unitary representations of G,
whether they have invariant vectors or not.

Proposition 2.1. (i) For every α > 0 there is ε = ε(α) > 0 such that if G is a finite
group, S a set of generators, and I (α,G, S) holds, then Cay(G; S) is an ε-expander.

(ii) For every η > 0, there exists α = α(η) such that if G is a finite group, S a set of
generators, and λ(Cay(G; S)) < 1− η, then I (α,G, S) holds.

(iii) If k = |S| is bounded then the implication in (i) can be reversed. (So Cay(G; S) is
an expander iff every “S-almost invariant” vector is also “G-almost invariant”.)

Proof. We note first that property I (α,G, S) implies that there exists β = β(α) > 0 such
that for every unitary representation (V , ρ) of G without a non-zero invariant vector, and
every v ∈ V with ‖v‖ = 1, ‖ρ(s)v−v‖ ≥ β for some s ∈ S. Indeed, take β < 1/(2α) and
so if ‖ρ(s)v−v‖ < β for every s ∈ S, then I (α,G, S) implies that ‖ρ(g)v−v‖ < 1/2 for
every g ∈ G. This implies that v = (1/|G|)

∑
g∈G ρ(g)v, which is clearly a G-invariant

vector, is non-zero since ‖v− v‖ < 1/2. This contradicts our assumption that V does not
contain an invariant vector.

Altogether, I (α,G, S) implies the usual “property (T )” formulation and so the stan-
dard proof of Proposition 3.3.1 of [Lu] applies to show that Cay(G; S) is an ε-expander
for some ε = ε(β(α)). This proves (i). The proof of (ii) is also a small modification of the
standard equivalences (see [Lu, Theorem 4.3.2]): as is well known, a normalized eigen-
value gap (i.e. λ(Cay(G; S)) < 1 − η) implies “average expanding”, i.e. if (V , ρ) does
not contain an invariant vector, then

1
|S|

∑
s∈S

‖ρ(s)v − v‖ ≥ η′‖v‖ (∗)

(where η′ depends only on η). Note that when S is unbounded, this is a stronger property
than “expanding” which gives that for one s ∈ S, ‖ρ(s)v−v‖ ≥ η′′‖v‖ (for η′′ = η′′(η)).
Now, assume (V , ρ) is an arbitrary unitary representation of G and v ∈ V , of norm one,
is δ-invariant under S for some δ < η′. Then (∗) implies that a large portion of v is in the
space VG of G-fixed points. Hence v is G-almost invariant as needed.

Part (iii) is just the standard equivalences as in [Lu, Theorem 4.3.2]. ut

An easy corollary of Proposition 2.1 is that “bounded products of expanders are ex-
panders”, or in a precise form:

Corollary 2.2. LetG be a finite group andGi , i = 1, . . . , `, a family of subgroups ofG,
each coming with a set of generators Si ⊆ Gi , i = 1, . . . , `, with |Si | ≤ r . Assume
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G = G1 · . . . ·G`, i.e., every g ∈ G can be written as g = g1 . . . g` with gi ∈ Gi . If all
Cay(Gi; Si) are δ-expanders, then Cay(G; S) is an ε-expander for S =

⋃`
i=1 Si and ε

which depends only on δ and `.

Proof. If (V , ρ) is a unitary representation of G, and v ∈ V is a vector which is almost
invariant under S, then it is almost invariant under each of the subgroups Gi (by 2.1(iii)),
and as G is their product, it is also almost invariant under G. Now use 2.1(i) to deduce
the corollary. ut

Let us mention here another fact that will be used freely later. The following proposition
is a special case of a more general result in [H2]:

Proposition 2.3. Let {Gi}i∈I be a family of perfect finite groups (i.e. [Gi,Gi] = Gi)

with sets Si of generators. Assume πi : G̃i → Gi is a central perfect cover of Gi and
S̃i ⊂ G̃i a subset for which π(S̃i) = Si and |S̃i | = Si . If Cay(Gi; Si) are uniform
expanders, then so are Cay(G̃i; S̃i).

The proposition shows that proving uniform expanding for finite simple groups or for their
central extensions is the same problem. So groups of the form PSLd(q) are expanders iff
SLd(q) are.

3. SL2: Proof of Theorem 1.3

The goal of this section is to show that all the groups {SL2(q) | q a prime power} (and
hence also PSL2(q)) are uniform expanders. Let us recall

Theorem 3.1. The Cayley graphs

Cay
(

PSL2(p);

{
A =

(
1 1
0 1

)
, B =

(
0 1
−1 0

)})
,

for p prime, are 3-regular uniform expanders.

For a proof, see [Lu, Theorem 4.4.2]. The proof uses the Selberg Theorem λ1(0(m)\H2)

≥ 3/16—giving a bound on the eigenvalues of the Laplace–Beltrami operator of the
congruence modular surfaces. For a new method see [BG].

Another preliminary result needed is:

Theorem 3.2. (a) For a fixed prime p, each of the groups PSL2(p
k), k ∈ N and

pk > 17, has a symmetric subset Sp of p + 1 generators for which the Cay-
ley graph X = Cay(SL2(p

k); Sp) is a (p + 1)-regular Ramanujan graph, i.e.
λ(X) ≤ 2

√
p/(p + 1).

(b) The set of generators Sp in part (a) can be chosen to be of the form {h−1Ch |h ∈ H },
where C is some element of SL2(p

k) and H is a fixed non-split torus of PGL2(p).
(The proof will give a more detailed description of Sp.)
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Before proving Theorem 3.2, let us mention that part (a) has already been proven by
Morgenstern [Mo], but the specific form of the generators as in (b) is crucial for our
needs. We therefore appeal to [LSV2] instead of [Mo]. We recall the construction there:
Let Fq be the field of order q (a prime power), Fqd the extension of dimension d , and φ
a generator of the Galois group Gal(Fqd /Fq). Fix a basis {ξ0, . . . , ξd−1} for Fqd over Fq
where ξi = φi(ξ0). Extend φ to an automorphism of the function field k1 = Fqd (y) by
setting φ(y) = y; the fixed subfield is k = Fq(y), of codimension d .

Following the notation in [LSV2], we will denote by RT the ring Fq
[
y, 1

1+y

]
and for

every commutative RT -algebra S (with unit), we denote by y the element y · 1 ∈ S. For
such S one defines an S-algebra A(S) =

⊕d−1
i,j=0 Sξiz

j with the relations zξi = φ(ξi)z

and zd = 1+ y. Let R = Fq
[
y, 1

y
, 1

1+y

]
⊆ k and denote b = 1+ z−1

∈ A(R). For every
u ∈ F∗

qd
⊂ A(R)∗, we denote bu = ubu−1. As F∗q is in the center of A(R), bu depends

on the coset of u in F∗
qd
/F∗q . This gives (qd − 1)/(q − 1) elements {bu | u ∈ F∗

qd
/F∗q}

of A(R)∗. The subgroup of A(R)∗ generated by the bu’s is denoted by 0̃ and its image in
A(R)∗/R∗ by 0 = 0d,q . For every ideal I G R, we get a map

πI : A(R)∗/R∗→ A(R/I)∗/(R/I)∗.

The intersection 0 ∩ KerπI is denoted 0(I).
Theorem 6.2 of [LSV2] says:

Theorem 3.3. For every d ≥ 2 and every 0 6= I G R, the Cayley complex of 0/0(I) is
a Ramanujan complex.

The reader is referred to [LSV1] and [LSV2] for the precise definition of Ramanujan
complexes and for the precise complex structure of 0/0(I). What is relevant for us
here is that this gives a spectral gap on the Cayley graph of 0/0(I) with respect to the
(qd − 1)/(q − 1) generators S = {bu | u ∈ F∗

qd
/F∗q}.

When d = 2, S is a symmetric set of generators of 0 and so Cay(0/0(I); S) is
a k = (q + 1)-regular graph. When d ≥ 3, S ∩ S−1

= ∅ and Cay(0/0(I); S) is a
k =

2(qd−1)
q−1 -regular graph. LetA be its adjacency matrix and1 = (1/k)A the normalized

one. Theorem 3.3 implies:

Corollary 3.4. Denote by µd the roots of unity in C of degree d , and Ed = {(y + ȳ)/2 |
y ∈ µd}. Let λ be an eigenvalue of 1. Then either λ ∈ Ed or

|λ| ≤
dq(d−1)/2

(qd − 1)/(q − 1)
.

Remark 3.5. Note that when d = 2, we have k = |S| = q + 1, Ed = {±1} and
Corollary 3.4 states that Cay(0/0(I); S) is a Ramanujan graph. The proof of this bound
for d = 2 requires Drinfeld’s theorem (the Ramanujan conjecture for GL2 over positive
characteristic fields) and for d ≥ 3 is based on Lafforgue’s work [La]. It also requires the
Jacquet–Langlands correspondence in positive characteristic (while this correspondence
is not fully proved in the literature for d ≥ 3, we use it here only for d = 2, which is
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fully proved—see [LSV1, Remark 1.6]). We also mention that for d ≥ 3, quantitative
estimates on Kazhdan’s property (T ) for PGLd(Fq((y))) can give a weaker estimate such
as: either λ ∈ Ed or

λ ≤
1
√
q
+ o(1) ≤

19
20
,

which is valid for every d and q. But the case of d = 2 needs deep results from the theory
of automorphic forms.

Remark 3.6. The description above of the results from [LSV2] brings only what is rele-
vant to this paper. The bigger picture is as follows: The group A(R)∗/R∗ is a discrete co-
compact lattice inA(Fq((y)))∗/Fq((y))∗. The latter is isomorphic toH =PGLd(Fq((y)))
and it acts on its Bruhat–Tits building B. The element b ∈ H takes the initial point of
the building (the vertex x0 corresponding to the lattice Fq [[y]]d ) to a vertex x1 at dis-
tance 1 from it, where the color of the edge (x0, x1) is also one (so x1 corresponds to an
Fq [[y]]-submodule of Fq [[y]]d of index q). The group F∗

qd
/F∗q acts transitively on these

(qd − 1)/(q − 1) neighbors of x0 of this type and the group 0 generated by the bu’s
acts simply transitively on the vertices of B—a result which goes back to Cartwright and
Steger [CS]. For bu ∈ S, b−1

u takes x0 to a neighboring vertex of x0 where the edge is of
color d−1. When d = 2, we have d−1 = 1, S is a symmetric set of size q+1 and Corol-
lary 3.4 says that Cay(0/0(I); S) is a Ramanujan graph. For d ≥ 3, S ∩ S−1

= ∅ and
Cay(0/0(I); S) is a regular graph of degree 2|S| = 2(qd − 1)/(q − 1). The Ramanujan
complex 0/0(I) is in fact isomorphic to the quotient 0(I)\B of the Bruhat–Tits build-
ing. On the building B (and on its quotients 0(I)\B) we have an action of d − 1 Hecke
operators A1, . . . , Ad−1 and the Ramanujan property gives bounds on their eigenvalues.
For d ≥ 3, A1 + Ad−1 is nothing other than the adjacency operator of the Cayley graph
of 0/0(I) with generators SUS−1, and for d = 2, A1 = Ad−1 and A1 is the adjacency
operator.

The structure of the quotient group 0/0(I) is analyzed in [LSV2]; if I is a prime
ideal of R with R/I ' Fqe , then 0/0(I) is isomorphic to a subgroup of PGLd(qe)
containing PSLd(qe). Theorem 7.1 of [LSV2] gives a more precise description, showing
that essentially all subgroups between PSLd(qe) and PGLd(qe) can be obtained, if I is
chosen properly. The image of S in PGLd(qe), which we also denote by S, is composed
of one element C, the image of b in the notation above, and the conjugates of C by the
non-split tori in PGLd(qe) of order (qd − 1)/(q − 1).

Note that PGLd(qe)/PSLd(qe) is a cyclic group and the image of S there is a single
element—the image ofC, since all the other elements of S are conjugates ofC. The eigen-
values in Ed above may appear as “lifts” of the eigenvalues of the cyclic group generated
by C (which is a subgroup of PGLd(qe)/PSLd(qe) and a quotient of 0/0(I)) whose or-
der divides d. These eigenvalues will be called the trivial eigenvalues of Cay(0/0(I); S)
and they are in the subset Ed defined in Corollary 3.4. If the image of 0 in PGLd(qe)
is only PSLd(qe), then 1 is the only trivial eigenvalue of 1 and all the others satisfy the
bound of Corollary 3.4.
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For d large the issue of which subgroup of PGLd(qe) is obtained is somewhat delicate.
For d = 2, which is what is needed here for the proof of Theorem 3.2, Theorem 7.1 of
[LSV2] ensures that for pe > 17, PSL2(p

e) can be obtained if I is chosen properly.
Thus Cay(PSL2(p

e); S) is a (p + 1)-regular Ramanujan graph. It is, therefore, also an
ε-expander by Proposition 2.1(ii), but with an unbounded number of generators when p
goes to infinity.

We now show that this is true also with a bounded number of generators. An explicit
form of Theorem 1.3 is:

Theorem 3.7. The Cayley graphs Cay(PSL2(`); {A,B,C,C
′
}), when ` = pe is any

prime power, are uniform expanders. (Here A =
(

1 1
0 1
)
, B =

( 0 1
−1 0

)
, C is as in the

description above when d = 2 and q = p, and C′ will be described in the proof.)

Proof. Let C be as described above (with d = 2 and q = p a prime). The image of S in
PSL2(p

e), as described above, is the set of conjugates of C under the action of the non-
split torus T of PGL2(p) which is isomorphic to F∗

p2/F∗p and of order p + 1. Denote by
T1 = T ∩ PSL2(p) a subgroup of index at most 2 in T (in fact of index 2, unless p = 2).
Let C and C′ be two representatives of the orbits of S, under conjugation by T1 : C as
before and C′ a representative of the other orbit (if any).

We can now prove the theorem by using Proposition 2.1. Let (V , ρ) be a unitary
representation of PSL2(`), with an {A,B,C,C′}-almost invariant vector v. Restrict the
representation ρ to the subgroup PSL2(p). By Theorem 3.1, Cay(PSL2(p); {A,B}) is
an expander and hence by Proposition 2.1(iii), v is PSL2(p)-almost invariant. As it is
also C-almost invariant, it is almost invariant under the set PSL2(p) · C · PSL2(p) and
similarly for PSL2(p) · C

′
· PSL2(p). The union of these last two sets contains S. So,

v is S-almost invariant. But λ(Cay(PSL2(p
e); S)) ≤ 2

√
p/(p + 1) < 19/20 for every p

and e, so by Proposition 2.1(ii), v is PSL2(p
e)-almost invariant and by Proposition 2.1(i),

the graphs Cay(PSL2(p
e); {A,B,C,C′}) are uniform expanders. This finishes the proof

of Theorem 3.7 (and hence also of Theorem 1.3). ut

Recall that by Proposition 2.3, Theorem 3.7 also says that the family {SL2(`) | ` a prime
power} is a family of expanders. Let us now quote:

Theorem 3.8 (Hadad [H1, Theorem 1.2]). Let R be a finitely generated ring with stable
range r and assume that the group ELd(R) for some d ≥ r has Kazhdan constant (k0, ε0).
Then there exist ε = ε(ε0) > 0 and k = k(k0) ∈ N such that for every n ≥ d,ELn(R)
has Kazhdan constant (k, ε).

We refer the reader to [H1] for the proof. We only mention here that if R is a field then
its stable range is 1, and ELn(R), the group of n × n matrices over R generated by the
elementary matrices, is SLn(R). Also recall that a finite group G has Kazhdan constant
(k, ε) if it has a set of generators S of size at most k such that for every non-trivial
irreducible representation (V , ρ) of G and for every 0 6= v ∈ V , there exists s ∈ S such
that ‖ρ(s)v−v‖ ≥ ε‖v‖. As is well known, this implies that Cay(G; S) is an ε′-expander
for some ε′ which depends only on ε. All these remarks combined with Theorems 3.7 and
3.8 give:
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Theorem 3.9. The groups {SLn(q) | 2 ≤ n ∈ N, q a prime power} form a family of
uniform expanders.

Remark 3.10. In the proof of Theorem 3.9, we used for d ≥ 3, Theorem 3.8 of Hadad
whose proof was heavily influenced by Kassabov’s proof [K1] that all SLn(q), n ≥ 3,
are expanders. So our proof cannot be considered as a really different proof for n ≥ 3. In
[KLN], a second very different proof for SLn, n ≥ 3, was announced, based on the theory
of Ramanujan complexes. But it turns out that the proof sketched there has a mistake,
for which the author of the current paper takes full responsibility. The idea there was
to handle SLd , d even, say d = 2m, by using the following argument: Corollary 3.4
above gives a spectral gap with respect to an unbounded subset S of (P)GLd(q) which
consists of conjugates of a single element by a non-split torus T . This T as a subgroup
of G = GLd(q) is inside a copy of H = GL2(q

m). Passing from G to PGLd(q), T is
then in the image H̄ of H . We argued there that by dividing by the center, T ⊂ H̄ and
H̄ is isomorphic to PGL2(q

m). (We then wanted to use Theorem 1.3 for H̄ to deduce that
H̄ is an expander and to continue to argue as in the proof of Theorem 3.7.) It is not true,
however, that H̄ is PGL2(q

m): we divided by the center of G which is of order at most
d and not by the center of H which is of order qm − 1 � d . So H̄ has a large abelian
quotient and it is far from being an expander.

4. Bounded generation by SL2

A finite group G is said to be a product of s copies of SL2 if there exist prime powers qi
and homomorphisms ϕi : SL2(qi) → G, i = 1, . . . , s, such that for every g ∈ G there
exist xi ∈ SL2(qi), i = 1, . . . , s, with g = ϕ1(x1) · . . . · ϕs(xs).

Theorem 3.7 shows that all the groups SL2(q) are uniform expanders (with four gen-
erators for each). It now follows from Corollary 2.2 that for a fixed s, all the groups which
are products of s copies of SL2 are uniform expanders with 4s generators. We will now
show that this is indeed the case for all finite simple groups of Lie type of bounded rank,
excluding the groups of Suzuki type.

Theorem 4.1. There exists a function f : N→ N such that if G is a finite simple group
of Lie type of rank r , but not of Suzuki type, then it is a products of f (r) copies of SL2.

Before giving the proof we remark that Theorem 4.1 combined with Theorem 3.9 and the
result of Nikolov [N] implies Theorem 1.1. Indeed, by [N], a classical group of Lie type
is a bounded products of groups of type SLn(q) (n and q varies) and so by Theorem 3.9
they are uniform expanders. The other finite simple groups of Lie type have bounded rank
and so are bounded product of SL2 by Theorem 4.1, and hence also uniform expanders.
This excludes, of course, the Suzuki groups to which every homomorphism from SL2(q)

has trivial image, since their order is not divisible by 3. Thus the validity of Theorem 1.2
for the Suzuki groups is left open.1

1 Added in proof : as mentioned at the end of the introduction, this is not open any more.
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Back to Theorem 4.1: this result has been announced in [KLN] and a model-theoretic
proof based on the work of Hrushovski and Pillay [HP] was sketched there. Recently,
Liebeck, Nikolov and Shalev [LNS] proved the theorem by standard group-theoretic ar-
guments. This is somewhat more technical and requires some case by case analysis but
has the advantage of yielding an explicit function f (r)which is valid for every groupG of
rank r . This is of importance for our application to expanders as it enables one to deduce
explicit k and ε in Theorem 1.1.

Anyway, we will bring here the model-theoretic proof. For a nice introduction to the
model theory of finite simple groups, see [W]. As there are only finitely many group types
of bounded rank, we can take G to be a fixed (twisted or untwisted) Chevalley group
and we need to prove the result for the groups G(F) when F is a finite field. We will
show below that each such G(F) contains a copy of (P)SL2(F ) as a uniformly definable
subgroup. By a definable subgroup, we mean a subgroup that can be defined using a first
order sentence in the language of rings with a distinguished endomorphism—the language
in which G is defined. By uniformly definable we mean that the subgroup (P)SL2(F ) is
defined by a single sentence—independent of F .

Assuming this fact, we can argue as follows: Let Fi be an infinite family of finite
fields and K = (

∏
Fi)/U an ultraproduct of them, i.e., U is a non-principal ultrafilter.

Thus K is a pseudo-algebraically closed field (PAC, for short—see [FJ] and [HP]). Let
G̃ =

∏
G(Fi)/U be the corresponding ultraproduct of the groups G(Fi). By a basic

result (Point [P, Propositions 1 and 2 and Corollary 1]), G̃ is a simple group isomorphic
to G(K) and similarly the ultraproduct of the (P)SL2(Fi)’s gives a subgroup (P)SL2(K)

of G̃ = G(K).
Now, as G̃ = G(K) is simple, it is generated by the conjugates of (P)SL2(K). By

[HP, Proposition 2.1], G(K) is a product of m < ∞ conjugates of (P)SL2(K). This is
an elementary statement about G(K) and hence it is also true for G(Fi) for almost all i.
This proves what we need modulo the promised fact.

Remark 4.2. The model-theoretic proof gives (when one follows the arguments in [HP])
that m ≤ 4 dimG. Moreover, in principle one can give an explicit bound M such that the
above claim is true for every F with |F | > M . The proof in [LNS] gives explicit bounds
on m which are usually (but not always) slightly better and are valid for all F .

We are left with proving our claim that G(F) contains a copy of (P)SL2(F ) as a
uniformly definable subgroup.

IfG splits (i.e. untwisted type), e.g.G = E6, it contains SL2 as a subgroup generated
by a root subgroup and its opposite. Note that a root subgroup is definable and as SL2 is
a bounded product of the root subgroup and its opposite, it is also definable. Of course,
in this case it is even an algebraic subgroup, and a copy of (P)SL2(F ) in G(F) can be
defined by polynomials independent of F .

If G is twisted, but not a group of Ree type (i.e. all the simple roots of G are of
the same length, so the type is An,Dn or E6), e.g., look at G(q) = 2E6(q). Then G
is the group of points of E6(q

2) of the form {g ∈ E6(q
2) | gFr = gτ } where τ is

the graph automorphism of E6, and Fr the Frobenius automorphism. By restriction of
scalars, this is an algebraic group defined over Fq . If the automorphism τ has a fixed



1340 Alexander Lubotzky

vertex, e.g. for our example 2E6, then 2E6(q) contains a copy of SL2(q) (⊆ SL2(q
2) ⊆

E6(q
2)) corresponding to this vertex, and as an Fq -group, this is an algebraic subgroup.

The argument we illustrated here with 2E6(q) works equally well with the other twisted
groups with fixed vertex (of course, for 3D4 we should take D4(q

3)—but the rest is the
same). By the well known classification of the simple algebraic groups over finite fields,
we have covered all cases except for the twisted forms of An, n even. But 2An is anyway
SU(n + 1) which contains SU(2) (as a uniformly definable algebraic subgroup) and it is
well known that SU(2, q2) is isomorphic to SL2(q).

We are left with the twisted groups of Ree type: 2F4(22n+1) and 2G2(32n+1) (the other
type 2B2(22n+1) give the Suzuki groups and these were excluded from the theorem). Now,
2F4(22n+1) is known (cf. [GLS, Table 2.4 VI, Table 2.4.7, Theorems 2.4.5 and 2.48]) to
have a subgroup generated by a root subgroup and its opposite which is isomorphic to
SL2(22n+1). (This is not the case for all roots; for some we get the Suzuki groups, but
we need only one root which gives SL2.) For 2G2(32n+1) one can argue in purely group-
theoretical terms: it is known (cf. [E]) to have a unique conjugacy class of involutions
and if τ is such an involution, then CG(τ )—the centralizer of τ—is isomorphic to H =
〈τ 〉 × PSL2(32n+1). Within H , PSL2(32n+1) is the set of all commutators of H (since
every element of PSL2(q) is a commutator). Thus PSL2(32n+1) is a uniformly definable
subgroup of 2G2(32n+1). The proof of Theorem 4.1 (and hence of 1.1) is now complete.
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type Ãd . Eur. J. Combin. 26, 965–993 (2005) Zbl 1135.05038 MR 2143204

[Mo] Morgenstern, M.: Existence and explicit constructions of q + 1 regular Ramanujan graphs
for every prime power q. J. Combin. Theory Ser. B 62, 44–62 (1994) Zbl 0814.68098
MR 1290630

[N] Nikolov, N.: A product decomposition for the classical quasisimple groups. J. Group The-
ory 10, 43–53 (2007) Zbl 1119.20025 MR 2288458

[P] Point, F.: Ultraproducts and Chevalley groups. Arch. Math. Logic 38, 355–372 (1999)
Zbl 0921.03008 MR 1711404

[Se] Selberg, A.: On the estimation of Fourier coefficients of modular forms. In: Proc. Sym-
pos. Pure Math. 8, Amer. Math. Soc., Providence, RI, 1–15 (1965) Zbl 0142.33903
MR 0182610

[W] Wilson, J.: First-order group theory. In: Infinite Groups 1994 (Ravelle), de Gruyter, Berlin,
301–314 (1996) Zbl 0866.20001 MR 1477188

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0823.12005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1329903
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1140.20039&format=complete
http://www.ams.org/mathscinet-getitem?mr=2342638
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1191.20002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2342639
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1161.20010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2221038
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1139.19003&format=complete
http://www.ams.org/mathscinet-getitem?mr=2221141
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1038.11075&format=complete
http://www.ams.org/mathscinet-getitem?mr=1875184
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05878765&format=complete
http://www.ams.org/mathscinet-getitem?mr=2746060
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0826.22012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1308046
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1087.05036&format=complete
http://www.ams.org/mathscinet-getitem?mr=2191217
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1135.05038&format=complete
http://www.ams.org/mathscinet-getitem?mr=2143204
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0814.68098&format=complete
http://www.ams.org/mathscinet-getitem?mr=1290630
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1119.20025&format=complete
http://www.ams.org/mathscinet-getitem?mr=2288458
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0921.03008&format=complete
http://www.ams.org/mathscinet-getitem?mr=1711404
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0142.33903&format=complete
http://www.ams.org/mathscinet-getitem?mr=0182610
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0866.20001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1477188

	Introduction
	Representation-theoretic reformulation
	SL_2: Proof of Theorem 1.3
	Bounded generation by SL_2

