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Abstract. In this paper we investigate the growth of finitely generated groups. We recall the defi-
nition of the algebraic entropy of a group and show that if the group is acting as a discrete subgroup
of the isometry group of a Cartan–Hadamard manifold with pinched negative curvature then a Tits
alternative is true. More precisely the group is either virtually nilpotent or has a uniform growth
bounded below by an explicit constant.

1. Introduction

In this paper we investigate the growth of finitely generated groups. Given a group 0
generated by a finite set S, the word length lS(γ ) of an element γ ∈ 0 is the smallest
integer m such that there exist elements σ1, . . . , σm in S ∪ S−1 with γ = σ1 . . . σm. The
entropy of 0 with respect to the generating set S is defined by

EntS(0) = lim
m→∞

1
m

log ]{γ ∈ 0 | lS(γ ) ≤ m}. (1)

If EntS(0) > 0 for some generating set S, it is true for all (finite) generating sets and the
group is said to have exponential growth. We now define the algebraic entropy of 0,

Ent0 = inf
S
{EntS(0) | S a finite generating set of 0}. (2)

We say that 0 has uniform exponential growth if Ent0 > 0. In [Gro81, remarque 5.12]
M. Gromov raised the question whether exponential growth always implies uniform ex-
ponential growth. The answer is negative; indeed, in [Wil04] J. S. Wilson gave examples
of finitely generated groups of exponential growth but non-uniform exponential growth.
Nevertheless, exponential growth implies uniform exponential growth for hyperbolic
groups [Kou98], geometrically finite groups of isometries of Cartan–Hadamard mani-
folds with pinched negative curvature [AN05], solvable groups [Osi03] and linear groups
[EMO05], [BrGe08], [Bre08]. For further references see the expository paper [Har02].

We suppose that (X, g) is an n-dimensional Cartan–Hadamard manifold of pinched
sectional curvature −a2

≤ Kg ≤ −1. Our main result is the following theorem.
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Theorem 1.1. There exists a positive constant C(n, a) such that for any finitely gener-
ated discrete group 0 of isometries of (X, g), either 0 is virtually nilpotent or Ent(0) ≥
C(n, a).

Remark 1.2. The difficulty is here to show that one can choose the constant C(n, a)
not depending on the group 0. In the linear setting, E. Breuillard obtained the same
kind of uniformity proving the existence of a positive constant C(n) such that for any
finitely generated subgroup 0 of GL(n,K), K any field, either 0 is virtually solvable or
Ent(0) ≥ C(n).

The classical technique is to prove that “not too far” from any finite generating system
one can exhibit a free group (on two generators). In this paper we prove this in one of the
cases under consideration, using the famous ping-pong lemma; however, in the second
case we use a different approach constructing natural Lipschitz maps from the Cayley
graph into X. This is the new idea which is described in the following.

In a private communication M. Kapovich mentioned to us a different proof in the case
when 0 acts without any elliptic element. One important issue in our proof is that we do
not have this restriction: elliptic elements are permitted.

In the forthcoming paper [BCG] we shall use this result to prove a Margulis lemma
without curvature; indeed, we shall replace the curvature assumptions by a hypothesis on
the growth of the fundamental group.

2. Preliminaries

Let (X, g) be an n-dimensional Cartan–Hadamard manifold with sectional curvature
−a2

≤ Kg ≤ −1. Let us recall a few well-known facts about isometries. If γ is an
isometry of (X, g), the displacement of γ is defined by l(γ ) = infx∈X ρ(x, γ x), where ρ
is the distance associated to the metric g on X. We then have (see [Ebe96, p. 31]):

1. The isometry γ is called hyperbolic (or axial) if l(γ ) > 0, in which case there exists a
geodesic aγ , called the axis of γ , such that ρ(x, γ x) = l(γ ) for any x ∈ aγ .

2. The isometry γ is called parabolic if l(γ ) = 0 and l(γ ) is not achieved on X, in
which case there exists a unique point θ on the geometric boundary ∂X of X such that
γ θ = θ .

3. The isometry γ is called elliptic if l(γ ) = 0 and l(γ ) is achieved on X, in which case
there exists a non-empty convex subset Fγ of X such that γ x = x for any x ∈ Fγ .

The following result, due to G. Margulis, describes the structure of discrete subgroups
of isometries generated by elements with small displacement.

Theorem 2.1 (G. Margulis, [Bur-Zal]). There exists a constant µ(n, a) > 0 such that if
0 is a discrete subgroup of the isometry group of (X, g) and x ∈ X, then the subgroup
0µ(x) of 0 generated by

Sµ(x) = {γ ∈ 0 | ρ(x, γ x) < µ(n, a)}

is virtually nilpotent.
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Given a set S = {σ1, . . . , σp} of isometries of (X, g), we define the minimal displacement
of S by

Definition 2.2. L(S) = infx∈X maxi=1,...,p ρ(x, σix).

When 0 is a finitely generated discrete subgroup of the isometry group of (X, g), the
above Theorem 2.1 has the following

Corollary 2.3. There exists a constant µ(n, a) > 0 such that if 0 is a finitely gen-
erated not virtually nilpotent discrete subgroup of the isometry group of (X, g) and
S = {σ1, . . . , σp} a finite generating set of 0, then

L(S) ≥ µ(n, a).

In the following lemma we describe the structure of virtually nilpotent discrete groups of
isometries of (X, g). Here by discrete we mean that the orbits are discrete sets in (X, g).

Lemma 2.4. Let 0 be a discrete virtually nilpotent group of isometries of (X, g).

(a) If 0 contains a hyperbolic element γ , then 0 preserves the axis of γ .
(b) If 0 contains a parabolic element γ with fixed point θ ∈ ∂X, then 0 fixes θ .
(c) If all elements of 0 are elliptic, then 0 is finite.

Proof. (a) Let γ ∈ 0 be a hyperbolic element and θ, ζ ∈ ∂X the endpoints of the axis aγ
of γ . We claim that γ ′({θ, ζ }) = {θ, ζ } for any γ ′ ∈ G. Indeed, assume for example that
θ ′ = γ ′(θ) is different from θ and ζ . The isometry γ ′γ γ ′−1 is hyperbolic and θ ′ is one
of its fixed points at infinity. By a standard ping-pong argument (see [Gro87, 8.1, p. 211])
we can show that 0 contains a free semigroup and hence has exponential growth. On the
other hand a virtually nilpotent group has polynomial growth (see [Wol68]), which gives
a contradiction.

(b) Let γ ∈ 0 be a parabolic element, and θ ∈ ∂X its fixed point. If there existed
γ ′ ∈ 0 such that γ ′θ 6= θ , then γ and γ ′γ γ ′−1 would be two parabolic elements in 0
with distinct fixed points θ and γ ′θ respectively. By a ping-pong argument, 0 would then
contain a free subgroup, which contradicts the fact that 0 is virtually nilpotent. Thus 0
fixes θ ∈ ∂X.

(c) Let us now assume that all elements in 0 are elliptic. Let N ⊂ 0 be a nilpotent
subgroup of 0 with finite index. If N = {e}, then 0 is finite. So assume that N 6= {e}; the
center Z(N) of N is then not trivial. For g1 ∈ Z(N) \ {e} denote by Fg1 ⊂ X the set of
fixed points of g1. Let x1 ∈ Fg1 ; as g1 and expx1

commute, we have Fg1 = expx1
(E1),

where E1 is the eigenspace of dx1g1 corresponding to the eigenvalue +1. This shows that
Fg1 is a totally geodesic submanifold of X, furthermore satisfying dim(Fg1) < dim(X),
since g1 6= e. As every γ ∈ N commutes with g1, it satisfies γ (Fg1) = Fg1 .

Let N1 be the subgroup of Isom(Fg1) obtained by restricting to Fg1 the elements
of N ; it is clearly nilpotent as the image of a nilpotent group under a morphism. For
γ ∈ N , the geodesic projection on Fg1 of any fixed point of γ is again a fixed point of γ ;
consequently, the elements of N1 are elliptic elements of Isom(Fg1).

If N1 = {e}, then Fg1 is pointwise fixed by N , therefore N is finite (the group is
discrete and all elements have a common fixed point).
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If N1 6= {e}, we may iterate the process. Indeed, suppose that we have constructed
the totally geodesic submanifold Fgi ; we then construct Ni as the set of restrictions of
elements ofN to Fgi , and eitherNi = {e} in which caseN is finite, orNi is not trivial, and
choosing gi+1 ∈ Z(Ni) \ {e} we construct the totally geodesic submanifold Fgi+1 ⊂ Fgi
such that dim(Fgi+1) < dim(Fgi ). This process stops for some i0 ≤ n and then Ni0 = {e}
and Fgi0 is pointwise fixed by N and not empty. Consequently, N is finite. ut

Lemma 2.5. Let 0 be a finitely generated discrete group of isometries of (X, g).

(i) If there exists a point θ ∈ ∂X fixed by 0, then 0 is virtually nilpotent.
(ii) If 0 preserves a geodesic in X, then 0 is virtually cyclic.

Proof. (i) There are two cases:

1) there is a hyperbolic element in 0,
2) there is no hyperbolic element, but there is a parabolic element in 0 or all elements

in 0 are elliptic.

1) Let γ be a hyperbolic element in 0, and aγ its axis. One of the endpoints of aγ is
θ . We claim that for any γ ′ ∈ 0, either γ ′({θ, ζ }) = {θ, ζ } or γ ′({θ, ζ }) ∩ {θ, ζ } = ∅,
where ζ is the other endpoint of aγ . Now we finish the proof assuming the claim. Since
γ ′(θ) = θ by assumption we have γ ′({θ, ζ }) = {θ, ζ } and γ ′(ζ ) = ζ . The group 0
preserves aγ . Note that 0 does not contain any parabolic element, since such an element
would fix θ and therefore also ζ , which is impossible. The elements in 0 are thus either
hyperbolic or elliptic.

Now, the projection on aγ being distance decreasing, any element γ ′ ∈ 0 achieves
its displacement l(γ ′) on the axis aγ , and γ ′ is elliptic (resp. hyperbolic) if and only
if l(γ ′) = 0 (resp. l(γ ′) 6= 0). Moreover, since γ ′(θ) = θ , any elliptic element fixes
pointwise the axis aγ . The restriction to the axis aγ is thus a morphism from 0 into the
group of translations of the axis, whose kernel is the set of elliptic elements, which fix all
points of aγ . This kernel is then finite and the group 0 is virtually cyclic.

Let us now prove the claim. Aiming at a contradiction assume that there exist γ ′ ∈ 0
such that γ ′({θ, ζ }) = {θ, ζ ′} with ζ ′ 6= ζ . Then α := γ ′γ (γ ′)−1 is a hyperbolic el-
ement of 0 with axis aα being the geodesic joining θ and ζ ′. Assume for example that
aα(−∞) = θ and fix some point x ∈ aα so that limk→∞ α

−k(x) = θ . The axes aα and
aγ are asymptotic at θ , thus limk→∞ ρ(α

−k(x), aγ ) = 0 and therefore there exists nk
such that γ nkα−kx is a sequence of points which has a subsequence converging to a point
y ∈ aγ . This contradicts the fact that 0 acts properly discontinuously onX and concludes
the proof of the claim.

2) In this case the elements of 0 are either elliptic or parabolic with fixed point θ . In
particular, every element of 0 preserves globally each horosphere centred at θ . Indeed,
this is clear for parabolic elements (see [Ball95, Prop. 3.4, p. 32]). Now, any elliptic
element γ ′ fixes some point x ∈ X, and hence the whole geodesic c joining x to θ ; let H
be any horosphere centred at θ and y be its intersection with c; then γ ′ maps H onto the
horosphere centred at γ ′(θ) = θ containing γ ′(y) = y. This shows that γ ′(H) = H .

Let S = {σ1, . . . , σp} be a generating set of 0. By the above discussion we
have infx∈X maxi∈{1,...,p} ρ(x, γ x) = 0. More precisely, for any geodesic c such that
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c(+∞) = θ , let Ht be the horosphere centred at θ and containing c(t). The orthogonal
projection from Ht to Ht+t ′ , for t ′ > 0, is distance contracting; thus ρ(c(t), γ ′(c(t)) de-
creases to zero as t → ∞, for any γ ′ ∈ 0. The group 0 is then virtually nilpotent by
Corollary 2.3.

Notice that when 0 contains only elliptic elements it is finite by Lemma 2.4(c).
(ii) A subgroup of index two of 0 fixes each endpoint of the globally preserved

geodesic and hence, as before, does not contain any parabolic elements. If it contains
a hyperbolic element it is virtually cyclic. If all elements are elliptic they pointwise pre-
serve the geodesic and the group is finite. ut

For any two isometries γ, γ ′ acting on (X, g) we define

L(γ, γ ′) = inf
x∈X

max{ρ(x, γ x), ρ(x, γ ′x)}.

We now prove the following proposition.

Proposition 2.6. Let 0 be a finitely generated discrete subgroup of Isom(X, g), where
(X, g) is a Cartan–Hadamard manifold of sectional curvature −a2

≤ Kg ≤ −1. Let
S = {σ1, . . . , σp} be a finite generating set of 0. If 0 is not virtually nilpotent, then
either

(i) there exist σi, σj ∈ S such that the subgroup 〈σi, σj 〉 generated by these two elements
is not virtually nilpotent and hence L(σi, σj ) ≥ µ(n, a); or

(ii) all σi in S are elliptic and for all σi 6= σj ∈ S, either 〈σi, σj 〉 fixes some point in X
and is finite, or it fixes a point θ ∈ ∂X and is virtually nilpotent; or

(iii) there exist σi, σj , σk ∈S such that L(σiσj , σk)≥µ(n, a) and the group 〈σiσj , σk〉 is
not virtually nilpotent.

Proof. There are again three cases: (a) there is a hyperbolic element in S, say σ1; (b) there
is no hyperbolic element and there is a parabolic element in S, say σ1; (c) all σi’s in S are
elliptic.

(a) Assume that σ1 is hyperbolic. Consider all pairs (σ1, σi) with i = 2, . . . , p, and
assume that L(σ1, σi) < µ(n, a) for i = 2, . . . , p. The groups 〈σ1, σi〉 are then virtually
nilpotent. By Lemma 2.4(a), every σi preserves the axis aσ1 of σ1, hence 0 preserves aσ1

and is virtually nilpotent by Lemma 2.5, contradicting the assumption. Thus there exists
σi ∈ S such that L(σ1, σi) ≥ µ(n, a) and 〈σ1, σi〉 is not virtually nilpotent.

(b) Assume that σ1 is parabolic with fixed point θ ∈ ∂X. Consider all pairs (σ1, σi),
i = 2, . . . , p, and assume that 〈σ1, σi〉 is virtually nilpotent (or L(σ1, σi) < µ(n, a) for
all i = 2, . . . , p). By Lemma 2.4(b), σi fixes the point θ ∈ ∂X, therefore 0 fixes θ and is
virtually nilpotent, by Lemma 2.5, a contradiction. Consequently, if σ1 is parabolic, there
exist σi 6= σ1 such that L(σ1, σi) ≥ µ(n, a).

(c) Assume that all σi’s are elliptic, for i = 2, . . . , p, and for all pairs (σi, σj ) the
groups 〈σi, σj 〉 are virtually nilpotent (or L(σi, σj ) < µ(n, a)); if one of them is not
virtually nilpotent we are in the first case of the alternative. Set G = 〈σi, σj 〉.

There are again three cases:
1) there is a hyperbolic element in G,
2) there is no hyperbolic element and there is a parabolic element in G,
3) all elements in G are elliptic.
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In case 1), let γ be a hyperbolic element in G with axis aγ . By Lemma 2.4(a), G pre-
serves aγ . Since σi, σj are elliptic, they fix points xi and xj (respectively) on aγ (recall
that the displacements of σi and σj are achieved on aγ by the distance decreasing prop-
erty of the projection onto aγ ). If xi = xj , then G fixes xi and it is thus finite. Now
suppose that σi and σj do not fix the same point on aγ , that is, xi 6= xj and neither of
the restrictions σ̃i and σ̃j of σi and σj to aγ is the identity. In that case, σ̃i and σ̃j are
both symmetries around points xi and xj of aγ , and σiσj is a hyperbolic element with
axis aγ . Then consider 〈σiσj , σl〉 for l = 1, . . . , p. Assume that for all l = 1, . . . , p,
L(σiσj , σl) < µ(n, a). The groups 〈σiσj , σl〉 are then virtually nilpotent, and by Lemma
2.4(a), all σl’s preserve aγ and hence 0 preserves aγ and is thus virtually nilpotent, which
is a contradiction. Therefore, there exist σk ∈ S such that L(σiσj , σk) ≥ µ(n, a) and
〈σiσj , σk〉 is not virtually nilpotent.

In case 2), let γ ∈ G be a parabolic element with fixed point θ ∈ ∂X. By Lemma
2.4(b), G fixes θ .

In case 3), all elements in G are elliptic and by Lemma 2.4(c), G is finite. This ends
the proof of the proposition. ut

3. Algebraic length and η-straight isometries

Let 0 be a finitely generated discrete group of isometries of (X, g), and S = {σ1, . . . , σp}

be a finite generating set of 0.
Let dS denote the distance on the Cayley graph associated to S and recall that lS is the

word length on 0. Let x0 be a point in X and define L = maxi∈{1,...,p} ρ(x0, σix0).
For any γ ∈ 0 it follows from the triangle inequality that

ρ(x0, γ x0) ≤ lS(γ )L. (3)

Let η be a positive number such that 0 < η < L.

Definition 3.1. An isometry γ of 0 is said to be (L, η)-straight if ρ(x0, γ x0) ≥

(L− η)lS(γ ).

Remark 3.2. Notice that the above definition depends on the choice of x0 and of a gen-
erating set S.

When 0 is a finitely generated discrete group, for any finite generating set S =
{σ1, . . . , σp} we recall that the minimal displacement of S is defined (Definition 2.2)
by

L(S) = inf
x∈X

max
i∈{1,...,p}

ρ(x, σix).

When 0 is not virtually nilpotent, by Theorem 2.1, for any finite generating set S, L =
L(S) ≥ µ(n, a) > 0, where µ(n, a) is the Margulis constant. We have
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Lemma 3.3. Let 0 be a finitely generated non-virtually nilpotent discrete group of isome-
tries of (X, g). For any finite generating set S = {σ1, . . . , σp} of 0, there exists x0 ∈ X

such that
L(S) = inf

x∈X
max

i∈{1,...,p}
ρ(x, σix) = max

i∈{1,...,p}
ρ(x0, σix0).

Proof. Assume that the infimum in the definition of L(S) is not achieved inX. Then there
exists a sequence of points xk ∈ X which satisfies

lim
k→∞

max
i∈{1,...,p}

ρ(xk, σixk) = L(S)

and xk converges to a point, say θ , in ∂X. For k large enough and i ∈ {1, . . . , p}, we then
have ρ(xk, σixk) ≤ L + 1 and hence σiθ = θ for all i. This shows that 0 fixes θ and is
thus virtually nilpotent by Lemma 2.5, which contradicts the hypothesis. ut

In the rest of this section, we shall show that if G is a finitely generated discrete group of
isometries of (X, g), for any finite generating set S = {σ1, . . . , σp} ofG such that each σi
has a displacement l(σi) small compared toL(S), there exist many non-(L(S), η)-straight
elements in G for a constant η to be defined.

We need the following geometric lemmas.

Lemma 3.4. Let (x1, x2, x3) be a geodesic triangle in (X, g), where (X, g) is a Cartan–
Hadamard manifold with Kg ≤ −1. Let x′2 be the point in the segment [x1, x3] dividing it
into two segments of lengths proportional to L1 := ρ(x1, x2) and L2 := ρ(x2, x3). Then

ρ(x′2, x2) ≤ Argcosh
[
exp

(
α(ρ(x1, x2)+ ρ(x2, x3)− ρ(x1, x3))

)]
,

where α = max(L1, L2)/(L1 + L2).

Proof. We consider a comparison geodesic triangle (y1, y2, y3) in the Poincaré disk
(H2, d) of constant curvature −1 such that d(yi, yj ) = ρ(xi, xj ) for all i, j ∈ {1, 2, 3}.
Let y′2 be the point of the segment [y1, y3] dividing it into two segments of lengths pro-
portional to L1 and L2. Since (X, g) is a CAT(−1) space we have

ρ(x2, x
′

2) ≤ d(y2, y
′

2). (4)

One of the two triangles (y1, y
′

2, y2), (y3, y
′

2, y2) has angle at y′2 greater than or equal
to π/2, therefore from the hyperbolic trigonometry formulae we get the existence of
i ∈ {1, 2} such that

coshLi ≥ cosh[d(y2, y
′

2)] cosh
[

Li

L1 + L2
d(y1, y3)

]
(5)

Set 1 = ρ(x1, x2)+ ρ(x2, x3)− ρ(x1, x3) = L1 + L2 − ρ(x1, x3). We have

Li

L1 + L2
d(y1, y3) ≥ Li − α1, (6)
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where α = max(L1, L2)/(L1 + L2). Therefore from (4) and (5) we get

cosh[ρ(x′2, x2)] ≤
coshLi

cosh(Li − α1)
, (7)

hence
cosh[ρ(x′2, x2)] ≤ eα1. (8)

ut

Lemma 3.5. Let (X, g) be a Cartan–Hadamard manifold with sectional curvature
Kg ≤ −1. Let δ, L be any positive numbers such that L > Argcosh eδ . Then, for any
isometry γ of (X, g) whose displacement satisfies l(γ ) ≤ δ, and for any x0 ∈ X such that
ρ(x0, γ x0) ≥ L, we have

ρ(x0, γ
2x0) ≤ 2ρ(x0, γ x0)−

(
1−

eδ

coshL

)2

.

Proof. Set1 = 2ρ(x0, γ x0)−ρ(x0, γ
2x0). We want to prove that1 ≥ (1−eδ/coshL)2.

By assumption there is a point y ∈ X such that ρ(y, γy) ≤ δ. Write L1 := ρ(x0, γy),
L2 := ρ(γ 2x0, γy) and L′ := ρ(x0, y). By the triangle inequality we have, for i = 1, 2,

L′ − δ ≤ Li ≤ L
′
+ δ. (9)

Let us associate to the triangle (x0, γy, γ
2x0) the comparison triangle (z1, z2, z3) in the

hyperbolic plane (H2, d) such that d(z1, z2) = L1, d(z2, z3) = L2 and d(z1, z3) =

ρ(x0, γ
2x0). Let x (resp. z) be the middle point of the segment (x0, γ

2x0) (resp. (z1, z3)).
One of the two triangles (z2, z, z1) or (z2, z, z3), say the former, has angle at z greater than
or equal to π/2. Then the hyperbolic trigonometric formulas give

coshL1 ≥ cosh[d(z2, z)] cosh
[

1
2
d(z1, z3)

]
,

therefore from (9) we get

cosh(L′ + δ) ≥ cosh[d(z2, z)] cosh
[

1
2
d(z1, z3)

]
,

and since (X, g) is a CAT(−1) space we also have ρ(x, γy) ≤ d(z, z2). We thus obtain

cosh(L′ + δ) ≥ cosh[ρ(x, γy)] cosh
[

1
2
ρ(x0, γ

2x0)

]
. (10)

Write L0 = ρ(x0, γ x0). By the triangle inequality

ρ(x, γy) ≥ |ρ(γy, γ x0)− ρ(γ x0, x)|,

therefore, since ρ(γy, γ x0) = ρ(y, x0) = L
′ and 1

2ρ(γ
2x0, x0) = L0 −1/2, from (10)

we get
cosh(L′ + δ) ≥ cosh(L′ − ρ(γ x0, x)) cosh(L0 −1/2). (11)
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From (11),

(cosh δ + sinh δ) coshL′

≥ (cosh[ρ(γ x0, x)]− sinh[ρ(γ x0, x)])(coshL′) cosh(L0 −1/2),

hence
eδ ≥ (cosh[ρ(γ x0, x)]− sinh[ρ(γ x0, x)]) cosh(L0 −1/2). (12)

Now applying the inequality (7) from the proof of Lemma 3.4 we have

cosh[ρ(γ x0, x)] ≤
coshL0

cosh(L0 −1/2)
,

and since cosh r − sinh r = e−r is a decreasing function of r , from (12) we get

eδ ≥ coshL0 − (cosh2 L0 − cosh2(L0 −1/2))1/2. (13)

But we can check that cosh2 L0 − cosh2(L0 −1/2) ≤ 1 cosh2 L0, so (13) yields

eδ ≥ cosh(L0)(1−11/2)

and therefore

1 ≥

(
1−

eδ

coshL0

)2

when eδ < coshL0, which follows from eδ < coshL and L0 ≥ L. ut

Lemma 3.6. Let (X, g) be a Cartan–Hadamard manifold with sectional curvature
Kg ≤ −1. Consider four points y0, y1, y2, y3 such that

ρ(y0, y1)+ ρ(y1, y2)− ρ(y0, y2) ≤ η1,

ρ(y1, y2)+ ρ(y2, y3)− ρ(y1, y3) ≤ η2.

Then

ρ(y0, y1)+ ρ(y1, y2)+ ρ(y2, y3)− ρ(y0, y3) ≤

(
1+

ρ(y2, y3)

ρ(y1, y2)

)
(η1 + Argcosh eη2).

Proof. For i = 1, 2, 3 write Li = ρ(yi−1, yi). Let y′2 be the point on the segment (y1, y3)

dividing it into two segments of lengths proportional to L2 and L3. By Lemma 3.4,

ρ(y2, y
′

2) ≤ Argcosh eη2 . (14)

Since ρ(y0, y1) + ρ(y1, y2) − ρ(y0, y2) ≤ η1 by assumption, from (14) and the triangle
inequality we get

ρ(y0, y
′

2) ≥ ρ(y0, y2)− ρ(y2, y
′

2) ≥ ρ(y0, y1)+ ρ(y1, y2)− (η1+Argcosh eη2). (15)

On the other hand by convexity of the distance function on (X, g) we get

ρ(y0, y
′

2) ≤
L3

L2 + L3
ρ(y0, y1)+

L2

L2 + L3
ρ(y0, y3). (16)
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The inequalities (15) and (16) give

ρ(y0, y3) ≥ ρ(y0, y1)+ L2 + L3 −
L2 + L3

L2
η1 + Argcosh eη2 ,

and the lemma follows. ut

Lemma 3.7. Let L and η be positive numbers such that

η < min
(
L/4, log

[
1
2

(
cosh(L/2)+

1
cosh(L/2)

)])
.

Let (X, g) be a Cartan–Hadamard manifold with sectional curvatureKg ≤ −1. Consider
two elliptic isometries γ1, γ2 of (X, g) with a common fixed point y ∈ X∪∂X. If L−η ≤
ρ(x0, γ1x0) ≤ L and L− η ≤ ρ(x0, γ2x0) ≤ L, then

ρ(x0, γ1γ2x0) < 2(L− η).

Proof. We first claim that in both cases, y ∈ X and y ∈ ∂X, there exists some sequence
(uk)k∈N of points in X converging to y such that ρ(uk, γ1γ2x0) = ρ(uk, x0) = lk , and
that the quantity εk = |ρ(uk, γ1x0)− lk| goes to zero as k→∞; in fact, when γ1 and γ2
fix some point y ∈ X we may choose uk = y for every k. If γ1 and γ2 fix y ∈ ∂X, they
also preserve each horosphere centred at y (see the proof of Lemma 2.5(ii)), and thus x0,
γ1x0 and γ1γ2x0 lie on the same horosphere centred at y. Approximating this horosphere
by a sequence (Sk)k∈N of spheres passing through x0 and γ1γ2x0 and denoting by uk the
centre of Sk , we see that ρ(uk, γ1x0)−ρ(O, uk) and ρ(uk, x0)−ρ(O, uk) simultaneously
go to B(γ1x0, y) = B(x0, y) (where O is some fixed origin in X, and B the Busemann
function normalised at O). This proves the claim.

Consider the triangle (uk, v, w) = (uk, x0, γ1γ2x0) and the point z of the geodesic
segment [v,w] which divides it into two segments of lengths proportional to L1 :=
ρ(v, γ1x0) and L2 := ρ(w, γ1x0). Recall that by assumption L− η ≤ Li ≤ L.

We consider the comparison triangle (ūk, v̄, w̄) on the two-dimensional hyperbolic
space H2 such that d(ūk, v̄) = ρ(uk, v) = lk = ρ(uk, w) = d(ūk, w̄) and d(v̄, w̄) =
ρ(v,w), where d is the hyperbolic distance on H2. Let z̄ be the point of the segment [v̄, w̄]
dividing it into two segments of lengths proportional to L1 and L2. Write L′1 = ρ(v, z)
and L′2 = ρ(w, z). We now consider the triangle (ūk, v̄, z̄) or (ūk, w̄, z̄) which has angle
at z̄ larger than or equal to π/2. The hyperbolic trigonometry formulas then show that

cosh lk ≥ coshL′1 cosh[d(ūk, z̄)].

Since (X, g) is a CAT(−1) space we get

ρ(uk, z) ≤ d(ūk, z̄),

and thus

cosh[ρ(uk, z)] ≤
cosh lk
coshL′1

. (17)
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On the other hand, the triangle inequality implies that ρ(uk, z) ≥ lk − εk − ρ(γ1x0, z)

and thus
cosh[ρ(uk, z)] ≥ e−(ρ(γ1x0,z)+εk) cosh lk.

Plugging this into (17) and letting εk → 0, we get

eρ(γ1x0,z) ≥ coshL′1. (18)

On the other hand, by Lemma 3.4, we have

cosh[ρ(γ1x0, z)] ≤ exp
(

max{ρ(v, γ1x0), ρ(w, γ1x0)}

(
1−

ρ(v,w)

ρ(v, γ1x0)+ ρ(w, γ1x0)

))
,

and hence
cosh[ρ(γ1x0, z)] ≤ eL−ρ(v,w)/2. (19)

Now assume, for contradiction, that

ρ(v,w) = ρ(x0, γ1γ2x0) > 2(L− η).

Plugging this in (18) and (19) we obtain, using the fact that x 7→ x+ 1/x is an increasing
function for x > 1,

coshL′1 +
1

coshL′1
≤ 2 cosh[ρ(γ1x0, z)] ≤ 2eη. (20)

Now since L′1/L
′

2 = L1/L2, we also obtain

L′1 = (L
′

1 + L
′

2)
L1

L1 + L2
≥

2(L− η)(L− η)
2L

≥ L− 2η,

which gives, by (20),

cosh(L− 2η)+
1

cosh(L− 2η)
≤ 2 cosh[ρ(γ1x0, z)] ≤ 2eη. (21)

We then get a contradiction when

η < min
(
L/4, log

[
1
2

(
cosh(L/2)+

1
cosh(L/2)

)])
. ut

Let 0 be a finitely generated discrete group of isometries of (X, g) and S = {σ1, . . . , σp}

be a finite generating set. Assume that 0 is not virtually nilpotent and recall that L(S) =
infx∈X maxi∈{1,...,p} ρ(x, σix). By Lemma 3.3 we have L(S) = maxi∈{1,...,p} ρ(x0, σix0)

for some x0 ∈ X, and by Corollary 2.3, L(S) ≥ µ(n, a) > 0. Recall that for 0 ≤ η ≤ L,
an element γ ∈ 0 is said to be (L, η)-straight if

ρ(x0, γ x0) > (L− η)lS(γ ).

In the following two propositions we give conditions under which there are many non-
(L, η)-straight elements in 0.
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Proposition 3.8. Let (X, g) be a Cartan–Hadamard manifold whose sectional curvature
satisfies −a2

≤ Kg ≤ −1, and 0 a discrete non-virtually nilpotent group of isometries
of (X, g) generated by S = {σ1, . . . , σp}. Assume that all σi’s are elliptic and that for
all σi 6= σj ∈ S, the group 〈σi, σj 〉 fixes a point y ∈ X or θ ∈ ∂X. Let η be a positive
number such that

η < min
(
L/4,

1
2

(
1−

1
coshL

)2

, log
[

1
2

(
cosh(L/2)+

1
cosh(L/2)

)])
,

where L = L(S) = maxi∈{1,...,p} ρ(x0, σix0). Then any γ ∈ 0 with lS(γ ) = 2, i.e
γ = σ±2

i or γ = σ±1
i σ±1

j , is not (L, η/2)-straight, that is, ρ(x0, γ x0) ≤ 2(L− η/2).

Proof. Consider the case where γ = σ 2
i . If σi is not (L, η)-straight, we have, by the

triangle inequality, ρ(x0, σ
2
i x0) ≤ 2(L − η). If σi is (L, η)-straight, by Lemma 3.5 we

have, with δ = 0,

ρ(x0, σ
2
i x0) ≤ 2L−

(
1−

1
coshL

)2

≤ 2(L− η).

Now consider the case where γ = σiσj for i 6= j . If σi or σj is not (L, η)-straight, we
have, by the triangle inequality,

ρ(x0, σiσjx0) ≤ ρ(x0, σix0)+ ρ(x0, σjx0) ≤ L+ (L− η),

therefore, ρ(x0, σiσjx0) ≤ 2(L− η/2).
If σi and σj are (L, η)-straight, Lemma 3.7 implies ρ(x0, σiσjx0) ≤ 2(L− η). ut

In the next proposition we will assume that all elements γ ∈ 0 whose algebraic length is
less than or equal to 4 have a displacement smaller than δ where

δ = log cosh(L/4), (22)

and we set

η = 10−3
(

1−
cosh(L/4)
cosh(L/2)

)4

. (23)

We will find in that case many non-(L, η)-straight elements.

Proposition 3.9. Let (X, g) be a Cartan–Hadamard manifold whose sectional curva-
ture satisfies −a2

≤ Kg ≤ −1, and G a discrete non-virtually nilpotent group of
isometries of (X, g) generated by a set 6 = {σ1, σ2} of two isometries. Let L =
infx∈X max{ρ(x, σ1x), ρ(x, σ2x)}. Let η and δ be the numbers defined in (23) and (22).
Assume that l(γ ′) < δ for all γ ′ ∈ G such that l6(γ ′) ≤ 4. Then no γ ∈ G such that
l6(γ ) = 6 is (L, η)-straight.

Recall that x0 satisfies L = max{ρ(x0, σ1x0), ρ(x0, σ2x0)}. We will need the following
lemmas.
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Lemma 3.10. Let γ = aγ ′b ∈ G be such that l6(γ ) = l6(a) + l6(γ ′) + l6(b). If γ is
(L, η)-straight, then γ ′ is (L,Cη)-straight where C = l6(γ )/ l6(γ ′).

Proof. Note that by the definition of L = L(6), for any γ ∈ G we have

ρ(x0, γ x0) ≤ Ll6(γ ).

By the triangle inequality

ρ(x0, γ x0) ≤ ρ(x0, ax0)+ ρ(x0, γ
′x0)+ ρ(x0, bx0),

hence by the assumption on γ we get

(L− η)l6(aγ
′b) ≤ L(l6(a)+ l6(b))+ ρ(x0, γ

′x0),

and therefore

ρ(x0, γ
′x0) ≥ Ll6(γ

′)− ηl6(γ ) ≥ (L− Cη)l6(γ
′). ut

Lemma 3.11. Let α, β be elements of G different from the identity and such that
l6(α) ≤ 2 and l6(β) ≤ 2. Under the assumptions of Proposition 3.9, if γ is (L, η)-
straight with l6(γ ) = 6, then no reduced word representing γ contains (i) α2 or (ii) αβα
(here αβα is supposed to be reduced).

Assuming Lemma 3.11, the proof of Proposition 3.9 can be finished as follows:

Proof of Proposition 3.9. Let γ ∈ G have length l6(γ ) = 6. Write γ as a reduced
word in the generators of 6, γ = σ

p1
i1
. . . σ

pk
ik

, where σij = σ1 or σij = σ2, pj ∈
Z∗, ij 6= ij+1 and ij = ij+2. For a contradiction assume that γ is η-straight. Then,
by Lemma 3.11(i), all pj are equal to +1 or −1 and in particular k = 6. Therefore
γ = σ

p1
i1
σ
p2
i2
σ
p3
i3
σ
p4
i4
σ
p5
i5
σ
p6
i6
. By Lemma 3.11(ii) we also have pj+2 6= pj , hence pj+2 =

−pj so γ = σ
p1
i1
σ
p2
i2
σ
−p1
i1

σ
−p2
i2

σ
p1
i1
σ
p2
i2
, which is impossible by Lemma 3.11(ii) with

α = σ
p1
i1
σ
p2
i2

and β = σ−p1
i1

σ
−p2
i2

. ut

Let us now prove Lemma 3.11:

Proof of Lemma 3.11. We first claim that if L, η and δ are as in Proposition 3.9 then

η ≤
L

4000
(24)

and

12η + Argcosh e12η
≤

1
4

(
1−

eδ

cosh(L/2)

)
. (25)

Indeed, by the definition of η (cf. (23)), we have

1000η =
(

1−
cosh(L/4)
cosh(L/2)

)4

,
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therefore
1000η <

cosh(L/2)− cosh(L/4)
cosh(L/2)

and
1000η <

sinh(L/2) · L/4
cosh(L/2)

<
L

4
,

which proves (24). On the other hand, if x ∈ ]0, 1[, then ex ≤ 1 + 2x ≤ cosh(2
√
x).

Choosing x = 12η we deduce, using (23) and η < 1/1000, that

12η + Argcosh e12η
≤ 12η + 2

√
12η <

1
4

√
1000η,

therefore we get

12η + Argcosh e12η
≤

1
4

(
1−

cosh(L/4)
cosh(L/2)

)2

≤
1
4

(
1−

eδ

cosh(L/2)

)
,

proving (25).
We now prove (i) of Lemma 3.11. Assume that γ = aα2b is (L, η)-straight and

l6(γ ) = 6. Then, by Lemma 3.10, α is (L, 6η)-straight and α2 is (L, 3η)-straight. Hence,
by (24),

ρ(x0, αx0) ≥ (L− 6η)l6(α) > L/2.

On the other hand since l(α) ≤ δ and Argcosh eδ = L/4 < L/2, we can apply Lemma
3.5 to α replacing L by L/2 and get

(L− 3η)l6(α2) ≤ ρ(x0, α
2x0) ≤ 2ρ(x0, αx0)−

(
1−

eδ

cosh(L/2)

)2

.

Hence

ρ(x0, α
2x0) ≤ 2Ll6(α)− ρ(x0, α

2x0) ≤ l6(α
2)

(
L−

1
4

(
1−

eδ

cosh(L/2)

)2)
,

where we used that α2 is reduced and l6(α2) ≤ 4. Then by the choice of η (cf. (23)),

ρ(x0, α
2x0) < (L− 3η) l6(α2),

which contradicts the fact that α2 is (L, 3η)-straight and concludes the proof of Lemma
3.11(i).

To prove (ii), assume that γ = aαβαb is (L, η)-straight, l6(γ ) = 6 and αβα is
reduced. Lemma 3.10 says that αβα is (L, 2η)-straight and αβ is (L,C′ η)-straight where
C′ = 2l6(αβα)/l6(αβ). Since αβα is (L, 2η)-straight, by the triangle inequality we have

(L− 2η)l6(αβα) ≤ 2ρ(x0, αx0)+ Ll6(β)

and therefore

2ρ(x0, αx0) ≥ (L− 2η)l6(αβα)− Ll6(β) = 2Ll6(α)− 2ηl6(αβα),
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hence
ρ(x0, αx0) ≥ Ll6(α)− ηl6(αβα),

and since l6(α) ≤ 2 and l6(β) ≤ 2, we deduce that

ρ(x0, αx0) ≥ (L− 4η)l6(α),

that is, α is (L, 4η)-straight. We set x1 = αβx0, x2 = αβαx0 and x3 = (αβ)2x0 =

αβαβx0. We get, since αβα is (L, 2η)-straight,

ρ(x0, x1)+ ρ(x1, x2)− ρ(x0, x2) = ρ(x0, αβx0)+ ρ(x0, αx0)− ρ(x0, αβαx0)

≤ L[l6(αβ)+ l6(α)]− (L− 2η)l6(αβα) ≤ 12η.

In the same way, since αβ is (L,C′η)-straight with C′ = 2l6(αβα)/l6(αβ), we have

ρ(x1, x2)+ ρ(x2, x3)− ρ(x1, x3) = ρ(x0, αx0)+ ρ(x0, βx0)− ρ(x0, αβx0)

≤ L[l6(α)+ l6(β)]− (L− C′η)l6(αβ)
≤ 2ηl6(αβα) ≤ 12η.

We can therefore apply Lemma 3.6 to get, using also the triangle inequality,

2ρ(x0, αβx0)− ρ(x0, (αβ)
2x0) ≤ ρ(x0, αβx0)+ ρ(x0, αx0)+ ρ(x0, βx0)− ρ(x0, (αβ)

2x0)

= ρ(x0, x1)+ ρ(x1, x2)+ ρ(x2, x3)− ρ(x0, x3)

≤

(
1+

ρ(x0, βx0)

ρ(x0, αx0)

)
(12η + Argcosh e12η)

≤

(
1+

Ll6(β)

(L− 4η)l6(α)

)
·

1
4

(
1−

eδ

cosh(L/2)

)2

,

the last inequality coming from (25) and the fact that α is (L, 4η)-straight. From (24), the
fact that l6(β) ≤ 2 and l6(α) ≥ 1 we get

ρ(x0, (αβ)
2x0) > 2ρ(x0, αβx0)−

(
1−

eδ

cosh(L/2)

)2

. (26)

On the other hand we have seen that αβ is (L,C′η)-straight withC′ = 2l6(αβα)/l6(αβ),
so that

ρ(x0, αβx0) ≥ (L− C
′η)l6(αβ) ≥ 2L− 2ηl6(αβα),

and since l6(αβα) ≤ 6 the above inequality gives, with (24),

ρ(x0, αβx0) ≥ L. (27)

By assumption, since l6(αβ) ≤ 4, the displacement of αβ satisfies l(αβ) ≤ δ, and by
(27) we can apply Lemma 3.5 to get

ρ(x0, (αβ)
2x0) ≤ 2ρ(x0, αβx0)−

(
1−

eδ

cosh(L/2)

)2

,

which contradicts (26). This concludes the proof of Lemma 3.11 and Proposition 3.9. ut



1358 G. Besson et al.

4. Mapping the Cayley graph of G into X

LetG be a finitely generated discrete group of isometries of a Cartan–Hadamard manifold
(X, g) of sectional curvature −a2

≤ Kg ≤ −1. We consider a finite generating set S
of G and the Cayley graph GS of G associated to S. We define a distance dS on GS in
the following way: each edge is isometric to the segment [0, 1] ⊂ R and the distance
dS(γ, γ

′) between two vertices γ , γ ′ of GS is the word distance dS(γ, γ ′) = lS(γ−1γ ′).
The group G acts by isometries on (GS, dS) and on (X, g). The goal of this section is to
construct for each number c large enough an equivariant map fc : GS → X such that fc
is Lipschitzian with Lipschitz constant at most c.

4.1. Poincaré series, measures and convexity

We first consider the Poincaré series

Pc(s, x, y) =
∑
γ∈G

e−cdS (s,γ ) cosh[ρ(x, γy)] (28)

where c ∈ R+, s ∈ GS and x, y ∈ X.

Lemma 4.1. For all s ∈ GS , x, y, x0, y0 ∈ X, c > 0 and γ0 ∈ G we have

(i) Pc(γ0s, γ0x, y) = Pc(s, x, y),
(ii) Pc(s, x, y) ≤ Pc(s, x0, y0)e

ρ(x0,x)+ρ(y0,y).

In particular the convergence of the series is independent of the choice of the points
x, y ∈ X.

Proof. The equivariance property of the Poincaré series is straightforward. On the other
hand by the triangle inequality we have

Pc(s, x, y) =
∑
γ∈G

e−cdS (s,γ ) cosh[ρ(x, γy)]

≤

∑
γ∈G

e−cdS (s,γ ) cosh[ρ(x0, γy0)+ ρ(x0, x)+ ρ(y0, y)],

hence
Pc(s, x, y) ≤ Pc(s, x0, y0)e

ρ(x0,x)+ρ(y0,y). ut

The critical exponent of this series is defined as

c0 := inf{c > 0 | Pc(s, x, y) <∞}.

Let x0 be the point of X such that L(S) = maxi ρ(x0, σix0). By the triangle inequality,
for all γ ∈ 0 we have ρ(x0, γ x0) ≤ L(S)lS(γ ), therefore

Pc(e, x0, x0) ≤
∑
γ∈0

e−(c−L(S))lS (γ ).
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On the other hand, by the definition of EntS(0), we have
∑
γ∈0 e

−t lS (γ ) < ∞ for all
t > EntS(0), hence we have proved that

c0 ≤ EntS(0)+ L(S). (29)

From now on we only consider c ∈ R+ such that Pc(s, x, y) <∞.
Let us choose a probability measure µ with smooth density and compact support

on X. For each s ∈ GS define a measure on X by

µcs =
∑
γ∈G

e−cdS (s,γ )γ∗µ (30)

and a function Bc : GS ×X→ R by

Bc(s, x) =
∫
X

cosh[ρ(x, z)] dµcs(z). (31)

In the following Lemmas 4.2, 4.3 and Corollary 4.4 we show that x 7→ Bc(s, x) is a
strictly convex C2 function such that

lim
x→∞

Bc(s, x) = +∞.

Lemma 4.2. Let c be such that Pc(s, x, y) < ∞. For all s ∈ GS and x ∈ X, we
have Bc(s, x) < ∞. Moreover, the function x 7→ Bc(s, x) is strictly convex and
limx→∞ Bc(s, x) = +∞.

Proof. By the definition of µcs ,

Bc(s, x) =
∫
X

∑
γ∈G

e−cdS (s,γ ) cosh[ρ(x, γ z)] dµ(z) =
∫
X

Pc(s, x, z) dµ(z),

so Bc(s, x) < ∞ by Lemma 4.1(ii) since the support of µ is compact. For any geodesic
c(t) and z in X, t 7→ d(c(t), z) is a convex function since (X, g) has negative sectional
curvature, therefore t 7→ cosh[ρ(c(t), z)] is strictly convex and so is x 7→ Bc(s, x) =∫
X

cosh[ρ(x, z)] dµcs(z). On the other hand we have

Bc(s, x) =
∫
X

cosh[ρ(x, z)] dµcs(z) ≥
1
2
eρ(x,x0)

∫
X

e−ρ(x0,z) dµcs(z),

so Bc(s, x)→+∞ whenever x tends to infinity in X. ut

In the above lemma we proved that x 7→ Bc(s, x) is a strictly convex function which
tends to +∞ when x tends to infinity. We shall now prove that x 7→ Bc(s, x) is C2. We
will also give estimates of its second derivative.
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Lemma 4.3. Let c be such that Pc(s, x, y) < ∞. The function x 7→ Bc(s, x) is C2 and
for any s ∈ GS , x ∈ X and any tangent vectors v,w ∈ TxX we have

dBc(s, x)(v) =
∫
X

dρ(x, z)(v) sinh[ρ(x, z)] dµcs(z)

and

DdBc(s, x)(v,w)

=

∫
X

(
sinh[ρ(x, z)]Ddρ(x, z)(v,w)+ cosh[ρ(x, z)]dρ(x, z)⊗ dρ(x, z)(v,w)

)
dµcs(z).

Proof. Let v ∈ TxX be a unit tangent vector at a point x ∈ X. For each z 6= x in X, we
have

d(cosh[ρ(x, z)])(v) = dρ(x, z)(v) sinh[ρ(x, z)],

hence

|d(cosh[ρ(x, z)])(v)| = |dρ(x, z)(v) sinh[ρ(x, z)]| ≤ cosh[ρ(x, z)], (32)

therefore cosh[ρ(x, z)] ≤ 2 cosh[ρ(x1, z)] for x in a sufficiently small neighbourhood of
an arbitrary point x1. Since z 7→ 2 cosh[ρ(x1, z)] is µcs -integrable, we can differentiate
x 7→ Bc(s, x) applying the Lebesgue differentiation theorem and get the first part of the
statement.

Let us now compute the second derivative. We shall prove the equality for the
quadratic form and get the general case by polarisation. Let v ∈ TxX be a unit tangent
vector at x ∈ X. Let α(t) be the geodesic such that α(0) = x and α′(0) = v. We write
ρ(z,α(t)) instead of ρ(z, α(t)). Set

h(t, z) =
1
t

(
dρ(z,α(t))(α

′(t)) sinh[ρ(z,α(t))]− dρ(z,α(0))(α′(0)) sinh[ρ(z,α(0))]
)
.

When z 6= x we have

h0(z) := lim
t→0

h(t, z) = sinh[ρ(x,z)]Ddρ(x,z)(v, v)+ cosh[ρ(x,z)]dρ(x,z) ⊗ dρ(x,z)(v, v).

(33)
The formula which gives DdBc(s, x)(v,w) in Lemma 4.3 is equivalent to

DdBc(s, x)(v, v) =
∫
X

h0(z) dµ
c
s(z) (34)

and will be a consequence of Lebesgue’s theorem. We need to show the existence of a
µcs -integrable functionH such that for any z 6= x and t small enough so that z /∈ α([0, t])
we have h(t, z) ≤ H(z). To do this, first notice that h(t, z) is non-negative since Ddρ is,
due to the negativity of the curvature. For each z /∈ α([0, t]) we have

0 ≤ h(t, z) ≤ sup
s∈[0,t]

[
sinh[ρ(z,α(s))]Ddρ(z,α(s)) + · · ·

· · · + cosh[ρ(z,α(s))]dρ(z,α(s)) ⊗ dρ(z,α(s))
]
(α′(s), α′(s)).
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Since the curvature of (X, g) satisfies −a2
≤ Kg ≤ −1, Rauch’s comparison theorem

shows that for each x, y ∈ X,

Ddρ(x,y) ≤ a
cosh[aρ(x,y)]
sinh[aρ(x,y)]

(g − dρ(x,y) ⊗ dρ(x,y)),

hence from the previous inequality we get

h(t, z) ≤ sup
s∈[0,t]

[
a sinh[ρ(z,α(s))]

cosh[aρ(z,α(s))]
sinh[aρ(z,α(s))]

(g − dρ(z,α(s)) ⊗ dρ(z,α(s)))+ · · ·

· · · + cosh[ρ(z,α(s))]dρ(z,α(s)) ⊗ dρ(z,α(t ′))

]
(α′(s), α′(s)).

But since a ≥ 1 the concavity of tanh on R+ gives

a

tanh aρ
≥

1
tanh ρ

,

therefore we get

0 ≤ h(t, z) ≤ a sup
s∈[0,t]

sinh[ρ(z,α(s))]
cosh[aρ(z,α(s))]
sinh[aρ(z,α(s))]

. (35)

Finally, since sinh ρ ≤ (1/a) sinh aρ, by convexity of sinh, we find that 0 ≤ h(t, z) ≤

H(z) from (35) for all |t | ≤ 1/a and all z /∈ α([0, t]) where

H(z) =

 a
cosh 1
sinh 1

sinh[ρ(z,α(0)) + 1], ρ(z,α(0)) ≥ 2/a,

cosh[aρ(z,α(0)) + 1], ρ(z,α(0)) < 2/a,

is µcs -integrable by Lemma 4.2. This concludes the proof of Lemma 4.3. ut

Lemma 4.3 has the following corollary.

Corollary 4.4. Under the assumptions of Lemma 4.3 we have

DdBc ≥ Bcg,

in particular, Bc is strictly convex.

Proof. Since the sectional curvature of (X, g) satisfiesKg ≤ −1 Rauch’s theorem shows
that

Ddρ ≥
1

tanh ρ
(g − dρ ⊗ dρ).

From this inequality and Lemma 4.3 we therefore get, for all x ∈ X and any unit tangent
vector v ∈ TxX,

DdBc(v, v) ≥
(∫

X

cosh[ρ(z,x)] dµcs(z)
)
g(v, v) = Bc(x)g(v, v). ut
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4.2. Construction of Lipschitzian maps fc : GS → X.

So far we have shown that for any s ∈ GS the function x 7→ Bc(s, x) is strictly convex and
tends to+∞ as x tends to infinity. We can then define a map fc : GS → X as follows. For
s ∈ GS we define fc(s) as the unique point x ∈ X which achieves the unique minimum
of the function x 7→ Bc(s, x). The rest of this section is devoted to proving

Proposition 4.5. Let c be such that Pc(s, x, y) < ∞. Let fc : (GS, dS) → (X, g) as-
sociate to s ∈ GS the unique point x ∈ X which achieves the minimum of the function
x 7→ Bc(s, x). Then fc is Lipschitzian with Lipschitz constant c.

The proof of Proposition 4.5 relies on the following two technical lemmas.

Lemma 4.6. Let c be such that Pc(s, x, y) < ∞. For all x ∈ X and all tangent vectors
v ∈ TxX the function α : s 7→ dBc(s, x)(v) is differentiable at each point s ∈ GS distinct
from a vertex or the middle point of an edge. Moreover, for such an s we have

α′(s) = −c

∫
X

dρ(x,z)(v) sinh[ρ(x, z)]
∑
γ∈G

d

ds
(dS(s, γ ))e

−cdS (s,γ ) d(γ∗µ)(z).

Proof of Lemma 4.6. Let [g, g′] be the edge containing s and parametrize it by [0, 1]. We
first observe that for all γ ∈ G,

dS(s, γ ) = min[dS(g, γ )+ t, dS(g′, γ )+ 1− t],

where t ∈ [0, 1] is the parameter corresponding to s. Therefore s 7→ dS(s, γ ) is differen-
tiable at each s ∈ ]g, g′[ distinct from the middle point of ]g, g′[. On the other hand, by
Lemma 4.3,

dBc(s, x)(v) =
∫
X

dρ(x, z)(v) sinh[ρ(x, z)] dµcs(z),

so that we can write

1
h
(α(s + h)− α(s))

=

∑
γ∈G

∫
X

dρ(x,γ z)(v) sinh[ρ(x, γ z)]
1
h

[e−cdS (s+h,γ ) − e−cdS (s,γ )] dµ(z),

where we have identified points in the edge [g, g′] with their parameters. Observe that for
|h| small enough, ∣∣∣∣1h [e−cdS (s+h,γ ) − e−cdS (s,γ )]

∣∣∣∣ ≤ 2ce−cdS (s,γ ),

and

2c
∑
γ∈G

∫
X

|dρ(x,γ z)(v)| sinh[ρ(x, γ z)]e−cdS (s,γ ) dµ(z) <∞,
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thanks to Lemma 4.2. Hence if s ∈ GS is distinct from a vertex or the middle point of an
edge we get

lim
h→0

1
h
(α(s + h)− α(s))

= −c

∫
X

dρ(x,z)(v) sinh[ρ(x, z)]
∑
γ∈G

d

ds
(dS(s, γ ))e

−cdS (s,γ ) d(γ∗µ)(z)

by Lebesgue’s theorem. ut

Lemma 4.7. Let c be such that Pc(s, x, y) < ∞. Let s0 ∈ GS be a point distinct from
a vertex or the middle point of an edge, and u a unit vector tangent at s0 to the edge
containing s0. Then ‖dfc(u)‖ ≤ c.

Proof. Fix a smooth moving frame {E1, . . . , En} of TX and define 8 : X × GS → Rn
by

8(x, s) = (dBc(s, x)(E1), . . . , dBc(s, x)(En)).
By definition, the point fc(s) is characterized by the implicit equation

8(fc(s), s) = 0,

or equivalently,
dBc(s, fc(s)) = 0.

For all x ∈ X and s ∈ GS in a neighbourhood of s0 the function 8 is differentiable
by Lemmas 4.3 and 4.6. Moreover since x = fc(s) is a critical point of the function
x 7→ Bc(s, x), we have, for j = 1, . . . , n,

∂8

∂x
(fc(s), s)(Ej ) =

(
DdBc(s, fc(s))(Ej , E1), . . . ,DdBc(s, fc(s))(Ej , En)

)
,

thus ∂8
∂x
(fc(s), s) is invertible by Corollary 4.4. By the implicit function theorem, fc is

differentiable in a neighbourhood of s0, and if u is a unit vector tangent at s0 to the edge
containing s0, and v a tangent vector in Tfc(s)X, from the implicit equation we get

DdBc(s0, fc(s0))(dfc(u), v) = −
d

ds

∣∣∣∣
s=s0

dBc(s, fc(s0))(v). (36)

From Corollary 4.4 and Lemma 4.6 we obtain, setting v = dfc(u)/‖dfc(u)‖,

|g(dfc(u), v)Bc(s0, fc(s0))|

≤ c

∫
X

|dρ(fc(s0),z)(v)| sinh[ρ(fc(s0), z)]
∑
γ∈G

∣∣∣∣ dds
∣∣∣∣
s=s0

(dS(s, γ ))

∣∣∣∣e−cdS (s0,γ ) d(γ∗µ)(z),
therefore

|g(dfc(u), v)Bc(s0, fc(s0))| ≤ c
∫
X

sinh[ρ(fc(s0), z)] dµcs0(z), (37)
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hence

‖dfc(u)‖ ≤ c

∫
X

sinh[ρ(fc(s0), z)] dµcs0(z)∫
X

cosh[ρ(fc(s0), z)] dµcs0(z)
≤ c. ut

Proposition 4.5 then follows from

Corollary 4.8. Let c be such that Pc(s, x, y) <∞. Then fc is Lipschitzian with Lipschitz
constant c.

Proof. Let [s1, s2] ⊂ GS be a segment which contains no vertices or middle points. It
directly follows from Lemma 4.7 that

ρ(fc(s1), fc(s2)) ≤ cdS(s1, s2). (38)

We now want to extend the inequality (38) to all points s1, s2 ∈ GS . For that purpose we
first consider a segment [s1, s2] ⊂ GS where s1 is the midpoint of an edge, and s2 a vertex
of the same edge; the inequality (38) for these points s1, s2 follows from the continuity
of fc at s1 and s2 proved below. Corollary 4.8 will then follow from the fact that any
segment [s1, s2] ⊂ GS can be decomposed into a finite sequence of adjacent intervals
[yk1 , y

k
2 ] where yk1 is the midpoint and yk2 a vertex of the same edge or the other way

around, except for the first and last intervals.
Let us now prove the continuity of fc at a vertex or the midpoint s of an edge. Given

such a point s, let {sk}k∈N be a sequence converging to s and staying in a single mid-edge
containing s. The sequence xk := fc(sk) is a Cauchy sequence in X by (38) whose limit
is a point x = limk xk . We want to prove that fc(s) = x. For all z ∈ X and k ∈ N we
have

Bc(sk, z) ≥ Bc(sk, xk) (39)

by the definition of xk = fc(sk). We claim that limk Bc(sk, xk) = Bc(s, x) and
limk Bc(sk, z) = Bc(s, z). Assuming the claim and taking the limit in (39) as k → ∞
gives, for all z ∈ X,

Bc(s, z) ≥ Bc(s, x), (40)

therefore x = fc(s).
We now prove the claim. By (30) and (31), we have

Bc(sk, xk) =
∫
X

cosh[ρ(xk, z)] dµcsk (z) =
∫
X

∑
γ∈G

e−cdS (sk,γ ) cosh[ρ(xk, γ z)] dµ(z).

Since e−cdS (sk,γ ) cosh[ρ(xk, γ z)] ≤ ece−cdS (s,γ ) cosh[ρ(x, γ z) + 1] for k large enough,
we get limk Bc(sk, xk) = Bc(s, x) by Lebesgue’s theorem. Similarly limk Bc(sk, z) =
Bc(s, z), which concludes the proof of the claim, Corollary 4.8 and Proposition 4.5. ut
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5. Algebraic entropy and η-straight isometries

Let G be a finitely generated discrete group of isometries of (X, g) whose sectional cur-
vature satisfies −a2

≤ Kg ≤ −1, and S = {σ1, . . . , σp} be a finite generating set.
We assume that the minimal displacement L(S) = infx∈X maxi=1,...,p ρ(x, σix) of S

(cf. Definition 2.2) satisfies L(S) > 0. By Lemma 3.3 there exists a point x0 ∈ X such
that

L(S) = inf
x∈X

max
i∈{1,...,p}

ρ(x, σix) = max
i∈{1,...,p}

ρ(x0, σix0).

The goal of this section is to prove that if all elements ofG are “almost non-η-straight” for
some η such that L(S) > η > 0, then the entropy ofGwith respect to S is bounded below
by η. By an “almost non-η-straight” isometry γ we mean that ρ(x0, γ x0) ≤ (L(S) −

η)lS(γ )+D for some positive D.

Theorem 5.1. Let G be a finitely generated discrete group of isometries of (X, g) whose
sectional curvature satisfies −a2

≤ Kg ≤ −1, and S = {σ1, . . . , σp} be a finite generat-
ing set of G with L(S) > 0. Assume that there exist D ≥ 0 and η, 0 < η < L(S), such
that for all γ ∈ G,

ρ(x0, γ x0) ≤ (L(S)− η)lS(γ )+D. (41)
Then EntS(G) ≥ η.
Proof. The proof relies on the construction made in Section 4 of an equivariant Lip-
schitzian map with Lipschitz constant c > EntS(G)+ L(S)− η.

Let us prove that under the assumption (41) for any c > EntS(G)+L(S)−η we have
Pc(s, x, y) <∞. By the triangle inequality,

e−cdS (s,γ ) ≤ ecdS (s,e)e−cdS (γ,e),

and for any x0 ∈ X,

cosh[ρ(x, γy)] ≤ eρ(x,γy) ≤ eρ(x,x0)+ρ(x0,γ x0)+ρ(x0,y).

Therefore, for x0, D and η such that (41) holds, we get

Pc(s, x, y) ≤ e
D+cdS (e,s)+ρ(x,x0)+ρ(x0,y)

∑
γ∈G

e[L(S)−η−c]dS (e,γ ),

and so Pc(s, x, y) <∞ for each c > EntS(G)+ L(S)− η.
Hence by Proposition 4.5 there exists an equivariant Lipschitzian map fc : (GS, dS)

→ (X, g) with Lipschitz constant c, for any c > EntS(G) + L(S) − η. We consider the
point fc(e), where e is the neutral element of G. By the definition of L(S), there is a
σi ∈ S such that ρ(fc(e), σi(fc(e))) ≥ L(S). Therefore, by equivariance,

ρ(fc(e), σi(fc(e))) = ρ(fc(e), fc(σi(e))) ≥ L(S).

On the other hand, since fc is c-Lipschitzian we have

ρ(fc(e), fc(σi(e))) ≤ cdS(e, σi(e)) = c.

The above two inequalities give
c ≥ L(S)

and since c is any number such that c > EntS(G)+ L(S)− η, we get EntS(G) ≥ η. ut
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6. Proof of the main theorem

In this section we shall first prove that the entropy of a group with respect to a set of two
generators with displacement L > 0 is bounded below. Then we shall prove the main
theorem.

Proposition 6.1. Let (X, g) be a Cartan–Hadamard manifold whose sectional curvature
satisfies −a2

≤ Kg ≤ −1, and G a non-virtually nilpotent discrete group of isometries
of (X, g) generated by two isometries {σ1, σ2}. Assume that

L = inf
x∈X

max{ρ(x, σ1x), ρ(x, σ2x)} > 0.

Then the entropy of G relative to the set of generators 6 = {σ1, σ2} satisfies

Ent6(G) ≥ min
[

log cosh(L/4)
5+ log cosh(L/4)

log 2
6
,

1
1000

(
1−

cosh(L/4)
cosh(L/2)

)4]
.

Proof. Let δ = log cosh(L/4). The proof is divided into two cases. In the first case we
can find two elements in G of bounded length l6 which are hyperbolic with distinct axes
and displacement larger than δ. In that case, a classical ping-pong argument shows that the
semigroup generated by these two elements (or their inverses) is free with corresponding
entropy bounded below by a constant depending on δ. In the second case, when we cannot
find such a free semigroup, we can show that all elements of G are almost non-η-straight
for some η = η(δ, L) and we conclude using Theorem 5.1. More precisely the two cases
are:

Case 1. There exists an element γ ∈ G of algebraic length l6(γ ) ≤ 4 whose displace-
ment l(γ ) in X satisfies l(γ ) > δ.

Case 2. The displacement of all elements γ ∈ G of algebraic length l6(γ ) ≤ 4 satisfies
l(γ ) ≤ δ.

In Case 1, let γ ∈ G be of algebraic length l6(γ ) ≤ 4 and with l(γ ) > δ. We note
that γ is then a hyperbolic isometry of X. Since G is not virtually nilpotent, one of the
generators σ1 or σ2, say σ1, does not preserve the axis of γ . Indeed if both σ1 and σ2
preserved the axis of γ , then so would G, and hence it would be virtually abelian by
Lemma 2.5(ii), a contradiction. Thus, if (θ, η) are the endpoints of the axis of γ , then
σ1({θ, η}) ∩ {θ, η} = ∅ by the proof of Lemma 2.5(i). We can now apply the effective
ping-pong lemma proved in the appendix to the two hyperbolic elements γ and σ1γ σ

−1
1

which have disjoint fixed-point sets. This shows that the algebraic entropy of the subgroup
generated by γ and σ1γ σ

−1
1 is bounded below by δ

5+δ log 2. We then deduce that

Ent6(0) ≥
δ

5+ δ
log 2

6
.

In Case 2, Proposition 3.9 tells us that all elements γ ∈ G of length l6(γ ) = 6
are non-(L, η)-straight where η is given by (23), η = 10−3(1 − cosh(L/4)

cosh(L/2)

)4
. Thus, every

element g ∈ 0 of algebraic length 6 satisfies

ρ(x0, gx0) ≤ (L− η)l6(g).
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Hence, every element γ ∈ 0 satisfies

ρ(x0, γ x0) ≤ (L− η)(l6(γ )− 5)+ 5L.

Therefore Theorem 5.1 yields Ent6(G) ≥ η = 10−3(1− cosh(L/4)
cosh(L/2)

)4
. ut

We can now prove the main theorem which we recall below.

Theorem 6.2 (Main theorem). Let (X, g) be a Cartan–Hadamard manifold whose sec-
tional curvature satisfies −a2

≤ Kg ≤ −1. Let 0 be a discrete and finitely generated
subgroup of the isometry group of (X, g). Then either 0 is virtually nilpotent or its alge-
braic entropy is bounded below by an explicit constant C(n, a).

Remark 6.3. The constant is

C(n, a) = min
[

log cosh(µ(n, a)/4)
5+ log cosh(µ(n, a)/4)

log 2
12

,
1

2000

(
1−

cosh(µ(n, a)/4)
cosh(µ(n, a)/2)

)4

,

µ(n, a)/4,
1
4

(
1−

1
coshµ(n, a)

)2

,
1
2

log
(

1
2

(
cosh(µ(n, a)/2)+

1
cosh(µ(n, a)/2)

))]
.

Proof. If S = {σ1, . . . , σp} is a finite generating set of 0, Proposition 2.6 allows us to
reduce the proof to the following three cases:

(i) There exist σi, σj ∈ S such that L(〈σi, σj 〉) ≥ µ(n, a) and 〈σi, σj 〉 is not virtually
nilpotent.

(ii) There exist σi, σj , σk ∈ S such that L(〈σiσj , σk〉) ≥ µ(n, a) and 〈σiσj , σk〉 is not
virtually nilpotent.

(iii) All σi’s are elliptic and, for all i 6= j , the subgroup 〈σi, σj 〉 fixes a point y ∈ X or a
point θ ∈ ∂X.

In the first (resp. second) case Proposition 6.1 gives a lower bound for the algebraic
entropy of 〈σi, σj 〉 (resp. 〈σiσj , σk〉) with respect to the generating set {σi, σj } (resp.
{σiσj , σk}) by the number

min
[

log cosh(µ(n, a)/4)
5+ log cosh(µ(n, a)/4)

log 2
6
,

1
1000

(
1−

cosh(µ(n, a)/4)
cosh(µ(n, a)/2)

)4]
,

using the fact that L(σi, σj ) ≥ µ(n, a) (resp. L(σiσj , σk) ≥ µ(n, a)). We conclude
in cases (i) and (ii) by noticing that the entropy of 0 with respect to S is bounded be-
low by Ent{σi ,σj }(〈σi, σj 〉) (resp. by 1

2 Ent{σiσj ,σk}(〈σiσj , σk〉)), since d{σi ,σj } ≥ dS (resp.
d{σiσj ,σk} ≥

1
2dS).

In the third case, Proposition 3.8 implies that

ρ(x0, γ x0) ≤ (L(S)− η/2)(lS(γ )− 1)+ L(S),

where η is given in Proposition 3.8. We conclude by applying Theorem 5.1, which gives
EntS(0) ≥ η, and then bounding below η using L(S) ≥ µ(n, a). ut



1368 G. Besson et al.

7. Appendix

In this section (X, g) is a Cartan–Hadamard manifold of sectional curvature Kg ≤ −1.
It is well known that if α, β are two hyperbolic isometries of (X, g) with disjoint axes,
then forN sufficiently large, αN and βN generate a non-abelian free subgroup of IsomX.
In [Gro81], [Del96], it was shown that if 0 is a hyperbolic group then N can be chosen
independent of α and β in 0 and under the same assumptions the numberN was shown to
depend only on the number of generators and the constant of hyperbolicity of 0 [Ch-G00].
In what follows we show that N = N(δ) can be chosen depending only on δ > 0 which
bounds from below the displacement of two hyperbolic isometries of (X, g), α and β,
with disjoint fixed-point sets.

Proposition 7.1. Let (X, g) be a Cartan–Hadamard manifold of sectional curvature
Kg ≤ −1, and 0 a discrete subgroup of Isom(X, g). Assume that α and β have dis-
joint fixed-point sets and their displacements satisfy l(α) ≥ δ and l(β) ≥ δ, where δ is a
positive number. Then (αN , βN ) or (αN , β−N ) generates a non-abelian free semigroup,
where N = E(5/δ)+ 1 and E(x) stands for the integer part of x.

Before proceeding to the proof of Proposition 7.1 let us set some notation. Denote by x =
x(t) and y = y(t), t ∈ R, the axes of α and β. The points θ± = limt→±∞ x(t) and ζ± =
limt→±∞ y(t) are the fixed points of α and β on the ideal boundary ∂X of X. Denote by
x+ and x− the projections of ζ+ and ζ− on the axis of α. We can assume that x+ is closer
to θ+ than x− (if not, we replace β by β−1). Also denote by y0 the projection of x+ on
the axis of β. We now parametrize x and y in such a way that x(0) = x+ and y(0) = y0.
We set t1 = Nl(α) = l(αN ) and t2 = Nl(β) = l(βN ), where N = E(5/δ) + 1. We
define U± as the set of points p ∈ X such that ρ(p, x(±t1)) ≤ ρ(p, x(0)). In the same
way we define V ± as the set of points p ∈ X such that ρ(p, y(±t2)) ≤ ρ(p, y(0)). For
a unit tangent vector u ∈ TxX at a point x ∈ X and α ∈ [0, π[ we define C(u, α) =
{expx v : v ∈ TxX, ∠(u, v) ∈ [0, α[}, the cone of angle α around u at x, where expx is
the exponential map at x.

We further need the following geometric lemmas. For a triangle ABC in (X, g), we
will write Â for the angle at A, and a, b, c for the lengths of the sides opposite to A, B, C.

Lemma 7.2. Let ABC be a triangle in (X, g).

(i) If π/6 ≤ Â ≤ π , then ρ(B,C) > ρ(A,B)+ ρ(A,C)− 4.
(ii) If Â ≥ π/2 ≤ π , then ρ(B,C) > ρ(A,B)+ ρ(A,C)− 1.

Proof. Since Kg ≤ −1, we have

cosh a ≥ cosh b cosh c − cos Â sinh b sinh c. (42)

The first inequality of Lemma 7.2 will therefore be a consequence of the fact that if
b + c > 4 then

cosh(b + c − 4)− cosh b cosh c + cos Â sinh b sinh c < 0. (43)
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Setting X = e−(b+c) we have

cosh(b + c − 4)− cosh b cosh c + cos Â sinh b sinh c

=
1
4
e(b+c)[(2e4

− 1+ cos Â)X2
− (e−2b

+ e−2c)(1+ cos Â)− (1− cos Â− 2e−4)].

Since e−2b
+ e−2c

≥ 2e−(b+c), we then get

cosh(b + c − 4)− cosh b cosh c + cos Â sinh b sinh c ≤ e(b+c)P(X)

where

P(X) = (2e4
− 1+ cos Â)X2

− 2(1+ cos Â)X − (1− cos Â− 2e−4)

and P(X) is negative when P(0) < 0 and P(e−4) < 0, which is the case if cos Â <

1 − 2e−4 and so when Â ≥ π/6. This proves the first inequality of the lemma. The
second inequality is proved similarly when cos Â < 1− 2e−1. ut

Lemma 7.3. The sets U+ and U− are contained in C(ẋ(0), π/6) and C(−ẋ(0), π/6)
respectively.

Proof. We recall that x(0) = x+. Let c(t) be a geodesic ray starting at x+ such that
∠(ẋ(0), ċ(0)) ≥ π/6. Since t1 ≥ 5, Lemma 7.2 implies

ρ(c(t), x(t1)) > ρ(x+, c(t))+ ρ(x+, x(t1))− 4 ≥ ρ(c(t), x+),

therefore c(t) /∈ U+. The same argument holds for U−. ut

Let zt be the geodesic joining x+ and y(t), and z±∞ the geodesic joining x+ and y(±∞)
= ζ±.

Lemma 7.4. The set V ± is contained in C(ż±∞(0), π/3).

Proof. Recall that the angle at y(0) = y0 between z0 and y is equal to π/2, so that
Lemma 7.2 says that

length(zt ) > length(z0)+ t − 1, (44)

and in particular,
length(zt2) > length(z0)+ t2 − 1. (45)

Let us now show that ∠(żt2(0), ż+∞(0)) ≤ π/6. Assume for contradiction that
∠(żt2(0), ż+∞(0)) > π/6. Then by Lemma 7.2 we have, as t →∞,

t − t2 > length(zt2)+ length(zt )− 4; (46)

but summing up (44) and (45) leads to a contradiction with (46) since t2 ≥ 5. There-
fore ∠(żt2(0), ż+∞(0)) ≤ π/6. Now consider a geodesic ray c starting at x+ such that
∠(ċ(0), ż+∞(0)) ≥ π/3. Thus, ∠(ċ(0), żt2(0)) ≥ π/6 and by Lemma 7.2 we get

ρ(c(t), y(t2)) > ρ(c(t), x+)+ length(zt2)− 4,
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and applying again (45),

ρ(c(t), y(t2)) > ρ(c(t), x+)+ length(z0)+ t2 − 5.

The last inequality becomes, by the triangle inequality,

ρ(c(t), y(t2)) > ρ(c(t), y0)+ t2 − 5,

therefore ρ(c(t), y(t2)) > ρ(c(t), y0) since t2 ≥ 5.
We have proved that a geodesic ray c starting at x+ such that ∠(ċ(0), ż+∞(0)) ≥ π/3

does not intersect V +. This proves that V + ⊂ C(ż+∞(0), π/3). By the same argument
we also have V − ⊂ C(ż−∞(0), π/3), which ends the proof of the lemma. ut

Lemma 7.5. We have U+∩U− = U+∩V + = U+∩V − = U−∩V + = V +∩V − = ∅.

Proof. Since ∠(ẋ(0), ż+∞(0)) = π/2, ∠(ẋ(0), ż−∞(0)) ≥ π/2, ∠(ẋ(0),−ẋ(0)) = π ,
and from the relative position of x+, x− and θ+, it follows that C(ẋ(0), π/6) does not
intersect C(ż+∞(0), π/3), C(−ẋ(0), π/6) or C(ż−∞(0), π/3). Therefore by Lemmas 7.3,
7.4 we conclude thatU+ does not intersectU−, V + or V −. Now since ∠(−ẋ(0), ż+∞(0))
= π/2, we have C(ż+∞(0), π/3) ∩ C(−ẋ(0), π/6) = ∅, hence V + ∩ U− = ∅. If p ∈
V + ∩ V −, we have ρ(p, y(0)) ≥ ρ(p, y(−t2)) and ρ(p, y(0)) ≥ ρ(p, y(t2)), which
contradicts the convexity of the function t 7→ ρ(y(t), p). Therefore V + ∩ V − = ∅. ut

Lemma 7.6. We have αN (V +) ⊂ U+ and βN (U+) ⊂ V +.

Proof. Since x and y are the axes of αN and βN respectively we have αN (x(−t1)) =
x(0), βN (y(−t1)) = y(0), αN (x(0)) = x(t1) and βN (y(0)) = y(t2). Therefore for any
p ∈ X − U− we have αN (p) ∈ U+, and similarly for any p ∈ X − V − we have
βN (p) ∈ V +, by the definition of N . On the other hand, by Lemma 7.5, V + ⊂ X − U−

and U+ ⊂ X − V −, which concludes the proof. ut

The proof of Proposition 7.1 is a direct application of Lemma 7.6 by a standard ping-pong
argument.
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