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Abstract. We consider the gradient flow of the Yang–Mills–Higgs functional of Higgs pairs on a
Hermitian vector bundle (E,H0) over a Kähler surface (M,ω), and study the asymptotic behavior
of the heat flow for Higgs pairs at infinity. The main result is that the gradient flow with initial condi-
tion (A0, φ0) converges, in an appropriate sense which takes into account bubbling phenomena, to
a critical point (A∞, φ∞) of this functional. We also prove that the limiting Higgs pair (A∞, φ∞)
can be extended smoothly to a vector bundle E∞ over (M,ω), and the isomorphism class of the
limiting Higgs bundle (E∞, A∞, φ∞) is given by the double dual of the graded Higgs sheaves
associated to the Harder–Narasimhan–Seshadri filtration of the initial Higgs bundle (E,A0, φ0).
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1. Introduction

Given a complex vector bundle E over a compact Kähler manifold (M,ω), suppose that
there is a Hermitian structure H0 on E. Let AH0 denote the space of connections on E
compatible with the metric H0, and let A1,1

H0
denote the space of unitary integrable con-

nections on E. Given a Hermitian metric H0 on a holomorphic bundle (E, ∂E), there is
a unique H0-unitary connection A on E satisfying D(0,1)A = ∂E , where D(0,1)A denotes
the (0, 1) part ofDA; this connection is also called the Chern connection on (E, ∂E, H0).
We will sometimes denote it by A = (∂E, H0). Conversely, given a unitary integrable
connection A on (E,H0) (i.e. one whose curvature FA is of type (1, 1)), D(0,1)A = ∂E

defines a holomorphic structure on E, and A = (∂E, H0).
The Yang–Mills functional is defined on AH0 by

YM(A) =
∫
M

|FA|
2 dVω,
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where dVω is the volume form of ω. We call A a Yang–Mills connection of E if A is a
critical point of the Yang–Mills functional, i.e. it satisfies the Yang–Mills equation

D∗AFA = 0,

where D∗A is the adjoint operator of covariant differentiation associated with the connec-
tion DA.

In this paper, we are interested in a more general case. A pair (A, φ) ∈ A1,1
H0
×

�1,0(End(E)) is called a Higgs pair if ∂Aφ = 0 and φ ∧ φ = 0. Let B(E,H0) denote
the space of all Higgs pairs on the Hermitian vector bundle (E,H0). We consider the
Yang–Mills–Higgs functional defined on B(E,H0) by

YMH(A, φ) =
∫
M

(|FA + [φ, φ∗]|2 + 2|∂Aφ|2) dVg. (1.1)

A Yang–Mills–Higgs pair (A, φ) is a critical point of the Yang–Mills–Higgs functional.
Equivalently, (A, φ) satisfies the Yang–Mills–Higgs equations{

D∗AFA +
√
−1(∂A3ω − ∂A3ω)[φ, φ∗] = 0,

[
√
−13ω(FA + [φ, φ∗]), φ] = 0,

(1.2)

where the operator 3ω is contraction with ω, and φ∗ denotes the dual of φ with respect
to the given metric H0.

By Chern–Weil theory, we have

YMH(A, φ) =
∫
M

(|FA + [φ, φ∗]|2 + 2|∂Aφ|2)
ωn

n!

=

∫
M

|
√
−13ω(FA + [φ, φ∗])|2

ωn

n!
+ 4π2

∫
M

(2c2(E)− c1(E) ∧ c1(E)) ∧
ωn−2

(n− 2)!

=

∫
M

|
√
−13ω(FA + [φ, φ∗])− λ IdE |2

ωn

n!
+ λ2 rank(E)

∫
M

ωn

n!

+ 4π2
∫
M

(2c2(E)− c1(E) ∧ c1(E)) ∧
ωn−2

(n− 2)!
,

where

λ =
2π
∫
M
c1(E) ∧

ωn−1

(n−1)!

rank(E)
∫
M

ωn

n!

.

From the above identity, we see that if (A, φ) satisfies the Hermitian-Einstein equation
√
−13ω(FA + [φ, φ∗]) = λ IdE,

then it must satisfy the above Euler–Lagrange equation (1.2), in fact it is the absolute
minimum of the above Yang–Mills–Higgs functional. Equivalently, if (A, φ) satisfies the
above Hermitian-Einstein equation, then H0 must be the Hermitian-Einstein metric on
the Higgs bundle (E, ∂A, φ), studied by Hitchin [Hi] and Simpson [Si1]. In [Hi] and
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[Si1], it is proved that a Higgs bundle admits the Hermitian-Einstein metric iff it is Higgs
poly-stable.

The Yang–Mills flow was first suggested by Atiyah–Bott in [AB]. Donaldson [Do]
used it to establish the connection between Hermitian-Yang–Mills connections and holo-
morphic stable bundles. He proved the global existence of the Yang–Mills flow in a holo-
morphic bundle over a Kähler surface, and proved the convergence of the flow at infinity
in the case where the holomorphic bundle is stable. For the Higgs bundle, Simpson [Si1]
proved the long time existence of the Hermitian Yang–Mills–Higgs flow and showed the
convergence under the condition that the Higgs bundle is stable. Without the assumption
of the stability of the bundles, the above flows may not converge at infinity. Daskalopou-
los [Da] and Daskalopoulos and Wentworth [DW1] studied the asymptotic behavior of
the Yang–Mills flow over Riemannian surfaces and Kähler surfaces, and showed that
there is a relation between the Yang–Mills flow and the Harder–Narasimhan filtration of
holomorphic bundles.

In [St1], Struwe studied the global existence and uniqueness of the Yang–Mills flow
in vector bundles over compact Riemannian four-manifolds for a given initial connection
with finite energy. For general vector bundles, the Yang–Mills heat flow may develop
singularities in finite time.

In this paper, we study the evolution equations of the above Euler–Lagrange equations
(1.4), i.e. the gradient flow of the Yang–Mills–Higgs functional of Higgs pairs. A regular
solution is given by a family of (A(x, t), φ(x, t)) ∈ B(E,H0) such that

∂A

∂t
= −D∗AFA −

√
−1(∂A3ω − ∂A3ω)[φ, φ∗],

∂φ

∂t
= −[
√
−13ω(FA + [φ, φ∗]), φ].

(1.3)

The above flow can be seen as a Higgs pairs version of the Yang–Mills flow. In this paper,
we first show some basic properties of the above flow, including the energy inequality,
Bochner-type inequality, monotonicity of certain quantities and a small action regular-
ity theorem. We prove the global existence and uniqueness of the solution for the above
gradient flow. Then we study the asymptotic behavior of a regular solution at infinity.
To a Higgs bundle (E,A0, φ0), one can associate a filtration by φ0-invariant holomor-
phic subsheaves, which will be called the Harder–Narasimhan filtration, whose succes-
sive quotients are Higgs semistable. The topological type of the pieces in the associated
graded object is encoded into an R-tuple Eµ = (µ1, . . . , µR) of rational numbers called
the Harder–Narasimhan type of the Higgs bundle (E,A, φ). Let (A(t), φ(t)) be a smooth
solution of the gradient flow (1.3) with initial data (A0, φ0) over a compact Kähler sur-
face. We prove that there exists a sequence tj →∞ such that (Atj , φtj ) converges, mod-
ulo gauge transformations, to a Yang–Mills Higgs pair (A∞, φ∞) outside finite points,
and (A∞, φ∞) can be extended smoothly to a vector bundle E∞ over a Kähler surface.
This limiting Higgs pair can also be called an Uhlenbeck limit. We also consider the
Harder–Narasimhan type and the isomorphism class of the Uhlenbeck limits. To state
the result precisely, let Grhns

ω (E,A0, φ0) denote the Harder–Narasimhan–Seshadri filtra-
tion of the initial Higgs bundle (E,A0, φ0) with respect to the Kähler form ω, and let
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Grhns
ω (E,A0, φ0)

∗∗ be its double dual. Our result is that the Harder–Narasimhan type and
the isomorphism class of the Uhlenbeck limits are independent of the subsequence and
are determined solely by the initial data (A0, φ0). More precisely:

Main Theorem. Let (E,H0) be a Hermitian vector bundle on a compact Kähler sur-
face (M,ω), and (A(t), φ(t)) be a global smooth solution of the gradient flow (1.3)
with smooth initial Higgs pair (A0, φ0). Then there exists a sequence ti → ∞ such
that (A, φ)(x, ti) converges, modulo gauge transformations, to a Yang–Mills–Higgs pair
(A∞, φ∞) in the smooth topology outside a closed set 6an

⊂ M , where 6an is a fi-
nite collection of points. The limiting Yang–Mills–Higgs pair (A∞, φ∞) can be extended
smoothly by a continuous gauge transformation to a smooth Yang–Mills–Higgs pair on
a Hermitian bundle (E∞, H∞) over M , and the extension (E∞, H∞, A∞, φ∞) has a
holomorphic orthogonal splitting as a direct sum:

(E∞, H∞, A∞, φ∞) =

l⊕
i=1

(Ei∞, H
i
∞, A

i
∞, φ

i
∞),

whereH i
∞ is a Hermitian-Einstein metric on the Higgs bundle (Ei∞, A

i
∞, φ

i
∞). Moreover,

the Harder–Narasimhan type of the Higgs bundle (E∞, A∞, φ∞) is the same as that of
(E,A0, φ0), and (E∞, A∞, φ∞) ' Grhns

ω (E, ∂A0 , φ0)
∗∗.

Our result can be seen as a Higgs bundle version of Theorem 1 in [DW1] (for Yang–Mills
case). In discussing the HN type and the isomorphism class of the Uhlenbeck limits, we
follow some ideas in [DW1]. Recently, Wilkin [Wi] studied the gradient flow of Higgs
pairs over compact Riemann surfaces. In [DW2], Daskalopoulos and Wentworth also
consider the blow-up locus of Yang–Mills flow on Kähler surfaces; they show that the
blow-up locus is determined by the Harder–Narasimhan–Seshadri filtration of the initial
holomorphic bundle. Their result should be true in the Higgs bundle case; we will further
discuss this problem in the future.

This paper is organized as follows. In Section 2, we prove global existence and
uniqueness of the solution for the gradient flow (1.3), and derive basic estimates and
analytic preliminaries over general Kähler manifolds. In Section 3, we consider the con-
vergence properties of a global solution of the gradient flow over a Kähler surface. In
Section 4, we discuss the Harder–Narasimhan–Seshadri filtration of Higgs bundles. In
Section 5, we focus on the HN type of Uhlenbeck limits. In the last section, we prove that
the Uhlenbeck limits are holomorphically isomorphic to the double dual of the graded ob-
ject of the Harder–Narasimhan–Seshadri filtration of the initial Higgs bundle. The main
theorem follows from Theorems 3.11, 5.14 and 6.1.

2. Analytic preliminaries and basic estimates

2.1. Existence of the gradient flow

In this section, we prove the long-time existence of the gradient flow for Higgs pairs on a
Hermitian bundle (E,H0) over a Kähler manifold (M,ω). Here the idea is similar to that
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in [Do] and [H]. Let (A0, φ0) be an initial Higgs pair on (E,H0). Then we consider the
following heat flow for Hermitian metrics on the Higgs bundle (E,A0, φ0) with initial
metric H0:

H−1 ∂H

∂t
= −2(

√
−13ω(FH + [φ0, φ

∗H
0 ])− λ IdE), (2.1)

where FH is the curvature form of the Chern connection AH on E with respect to H , the
operator 3ω is contraction with ω, and φ∗H is the adjoint of φ with respect to the Her-
mitian metric H , i.e 〈φ(X), Y 〉H = 〈X,φ∗H (Y )〉H for any X, Y ∈ E. In [Si1], Simpson
proved that solutions to the above nonlinear heat equation exist for all time and depend
continuously on the initial condition H0.

SupposeH(t) is a solution of the above heat equation, and let h(t) = H−1
0 H(t). Then

∂h

∂t
= −2

√
−1h3ω(FA0 + ∂A0(h

−1∂A0h)+ [φ0, h
−1φ
∗H0
0 h])+ 2λh. (2.2)

Denote the complex gauge group (resp. unitary gauge group) of the Hermitian vector
bundle (E,H0) by GC (resp. G, where G = {σ ∈ GC

| σ ∗H0σ = Id}). The group GC acts
on the space A1,1

H0
×�1,0(End(E)) as follows: for σ ∈ GC,

∂σ(A) = σ ◦ ∂A ◦ σ
−1, ∂σ(A) = (σ

∗H0)−1
◦ ∂A ◦ σ

∗H0 ,

σ (φ) = σ ◦ φ ◦ σ−1.

In the following, we denote φ∗H0 just by φ∗, and σ ∗H0 by σ ∗ for simplicity.
The derivative of the GC action at (A, φ) is

θ 7→ (−∂Aθ + ∂Aθ
∗, [θ, φ]).

On the other hand, one can check that

(
√
−13ω(FA + [φ, φ∗]))∗ =

√
−13ω(FA + [φ, φ∗]).

From the gradient flow equations (1.3), we know that the gradient vector at (A, φ) lies in
the tangent space to the orbit of the complex group GC at (A, φ).

Let σ(t) ∈ GC satisfy σ ∗(t)σ (t) = h(t). By direct calculation, we have

(σ ∗)−1 ∂σ
∗

∂t
+
∂σ

∂t
σ−1
= −2

√
−13ω(Fσ(A0) + [σ(φ0), (σ (φ0))

∗])+ 2λ IdE .

Let Ã(t) = σ(t)(A0) and φ̃(t) = σ(t)(φ0). We get

∂Ã

∂t
= −∂

Ã

(
∂σ

∂t
σ−1

)
+ ∂

Ã

(
(σ ∗)−1 ∂σ

∗

∂t

)
=

1
2
(∂
Ã
− ∂

Ã
)

(
∂σ

∂t
σ−1
+ (σ ∗)−1 ∂σ

∗

∂t

)
−

1
2
(∂
Ã
+ ∂

Ã
)

(
∂σ

∂t
σ−1
− (σ ∗)−1 ∂σ

∗

∂t

)
= −
√
−1(∂

Ã
− ∂

Ã
)3ω(FÃ + [φ̃, φ̃∗])−

1
2
(∂
Ã
+ ∂

Ã
)

(
∂σ

∂t
σ−1
− (σ ∗)−1 ∂σ

∗

∂t

)
,
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∂φ̃

∂t
= −

[
φ,
∂σ

∂t
σ−1

]
= [φ̃,

√
−13ω(FÃ + [φ̃, φ̃∗])]−

1
2

[
φ̃,
∂σ

∂t
σ−1
− (σ ∗)−1 ∂σ

∗

∂t

]
.

Set

α = −
1
2

(
∂σ

∂t
σ−1
− (σ ∗)−1 ∂σ

∗

∂t

)
.

It is obvious that α(t) ∈ Lie(G). Now let S(t) ∈ G be the unique solution to the linear
ODE

dS

dt
= Sα, S(0) = I.

Then, let A = S(Ã) and φ = S(φ̃). It is easy to check that

∂A

∂t
= S ◦

(
∂Ã

∂t
−D

Ã

(
S−1 ∂S

∂t

))
◦ S−1

= S ◦

(
∂Ã

∂t
−D

Ã
α

)
◦ S−1

= −D∗AFA −
√
−1(∂A3ω − ∂A3ω)[φ, φ∗],

where we have used the Kähler identity

∂∗A =
√
−1[3ω, ∂A], ∂

∗

A = −
√
−1[3ω, ∂A].

It is clear that

∂φ

∂t
= S ◦

(
∂φ̃

∂t
−

[
φ̃, S−1 ∂S

∂t

])
◦ S−1

= S ◦

(
∂φ̃

∂t
− [φ̃, α]

)
◦ S−1

= −[
√
−13ω(FA + [φ, φ∗]), φ].

So, we have 
∂A

∂t
= −D∗AFA −

√
−1(∂A3ω − ∂A3ω)[φ, φ∗],

∂φ

∂t
= −[
√
−13ω(FA + [φ, φ∗]), φ],

i.e. (A(t), φ(t)) is a smooth solution of the gradient flow with initial Higgs pair (A0, φ0).
On the other hand, it is obvious that φ(t) ∧ φ(t) = 0, and ∂A(t)φ(t) = 0.

To prove the uniqueness, we suppose that (A(t), φ(t)) = S(t)σ (t)(A0, φ0) is the
smooth solution constructed above, and (Ã(t), φ̃(t)) is another smooth solution of the
gradient flow (1.3) with initial Higgs pair (A0, φ0). Let g(t) ∈ GC satisfy

∂g

∂t
g−1
= (−

√
−1(F

Ã
+ [φ̃, φ̃∗])+ λ IdE), g(0) = IdE .

It is easy to check that ∂
∂t
(g−1(Ã, φ̃)) = 0, so (Ã(t), φ̃(t)) = g(t)(A0, φ0). Noting that

solutions to Simpson’s heat flow are unique ([Si1]), we have g∗g = h. Let S̃ = g ◦ σ−1.
Then

S̃∗S̃ = IdE, S̃(0) = IdE,
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and

∂S̃

∂t
=

1
2

(
∂S̃

∂t
− S̃

∂S̃∗

∂t
S̃

)
=

1
2

(
∂g

∂t
σ−1
− gσ−1 ∂σ

∂t
σ−1
+ S̃(σ ∗)−1 ∂σ

∗

∂t
(σ ∗)−1g∗S̃ − S̃(σ ∗)−1 ∂g

∗

∂t
S̃

)
=

1
2

(
∂g

∂t
g−1S̃ − S̃

∂σ

∂t
σ−1
+ S̃(σ ∗)−1 ∂σ

∗

∂t
− (g∗)−1 ∂g

∗

∂t
S̃

)
=

1
2
S̃

(
−
∂σ

∂t
σ−1
+ (σ ∗)−1 ∂σ

∗

∂t

)
.

By linear ODE theory, we have S̃ = S. Then

(Ã(t), φ̃(t)) = g(t)(A0, φ0) = S(t)σ (t)(A0, φ0) = (A(t), φ(t)).

So we have proved the following theorem:

Theorem 2.1. Let (E,H0) be a Hermitian vector bundle over a closed Kähler manifold
(M,ω). Given any Higgs pair (A0, φ0), the gradient flow (1.3) has a unique solution in
the complex gauge orbit of (A0, φ0) with initial value (A0, φ0).

Let H1 and H2 be two metrics on the bundle E. The distance σ(H1, H2) is defined by

σ(H1, H2) = Tr(H−1
1 H2 +H

−1
2 H1 − 2IdE).

Proposition 2.1′. Let H(t) be a smooth solution of the heat flow (2.1). Then for any
T > 0, 3ω(FAH + [φ0, φ

∗H
0 ]) at time T depends continuously on the initial conditions

in L2 norm.

Proof. Let H1(t) and H2(t) be two smooth solutions of the heat flow (2.1), and let
h1(t) = H

−1
1 (0)H1(t), h2(t) = H

−1
1 (0)H2(t), h2(t)− h1(t) = h(t), S(t) = h−1

1 (t)h2(t)

= H−1
1 (t)H2(t). The proof of Prop. 6.3 in [Si1] shows that sup σ(H1(t),H2(t)) is de-

creasing with time. Thus we have

|S(t)− IdE |2 + |S−1(t)− IdE |2 ≤ C(
√

5σ/4+ σ/2)2,

|h(t)|2 ≤ C|h1(t)|
2(
√

5σ/4+ σ/2)2,

|h2(t)|
2
≤ C|h1(t)|

2[(
√

5σ/4+ σ/2)2 + 1],

|h−1
2 (t)|2 ≤ C|h−1

1 (t)|2[(
√

5σ/4+ σ/2)2 + 1],

where C is a constant depending only on rank(E), σ = sup σ(H1(0),H2(0)) and we may
assume σ < 1. From equation (2.2), we have

∂h

∂t
= −2

√
−13ω{∂A0∂A0h+ hFA0 + φ

∗H0
0 ◦ h ◦ φ0 + h ◦ φ0h

−1
2 ◦ φ

∗H0
0 ◦ h2

− h1 ◦ φ0 ◦ h
−1
1 ◦ h ◦ h

−1
2 ◦ φ

∗H0
0 ◦ h2 + h1 ◦ φ0 ◦ h

−1
1 ◦ φ

∗H0
0 ◦ h} + 2λh,
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and (
∂

∂t
−1

)
|h(t)|2 ≤ C(t)|h(t)|2,

where A0 is the Chern connection determined by H1(0), and C(t) depends only on h1(t),
A0 and φ0. Using the Kähler identity, we have
√
−1 ∂A03ω(∂A0∂A0h) = ∂

∗

A0
(∂A0∂A0h)+

√
−13ω(∂A0∂A0∂A0h)

= ∂
∗

A0
(∂A0∂A0h)+

√
−13ω(FA0 ∧ ∂A0h− ∂A0h ∧ FA0),

and
−
√
−1 ∂A03ω(∂A0∂A0h) = ∂

∗

A0
(∂A0∂A0h).

From the above inequalities, we conclude that

d

dt
‖DA0h(t)‖

2
L2 ≤ C(t)(‖h‖

2
L2 + ‖DA0h‖

2
L2 + ‖∂A0∂A0h‖

2
L2),

where C(t) depends only on h1(t), A0 and φ0. By direct calculation, we have

(−2
√
−1 ∂A0∂A03ω(∂A0∂A0h), ∂A0∂A0h)L2

= (−2
√
−1 ∂A03ω(∂A0∂A0∂A0h)− 2∂A0∂

∗

A0
(∂A0∂A0h), ∂A0∂A0h)L2

= −2‖∂
∗

A0
(∂A0∂A0h)‖

2
L2 + (2∂∗A0

(∂A0∂A0∂A0h), ∂A0∂A0h)L2

− 2(
√
−13ω(∂A0∂A0∂A0∂A0h), ∂A0∂A0h)L2

= −2‖∂
∗

A0
(∂A0∂A0h)‖

2
L2 + 2‖FA0 ∧ ∂A0h− ∂A0h ∧ FA0‖

2
L2

− 2(
√
−13ω(FA0 ∧ ∂A0∂A0h− ∂A0∂A0h ∧ FA0), ∂A0∂A0h)L2 .

From the above formula, we conclude that

d

dt
‖∂A0∂A0h‖

2
L2 ≤ C(t)((‖h‖

2
L2 + ‖DA0h‖

2
L2 + ‖∂A0∂A0h‖

2
L2)).

So, we obtain

d

dt
(‖h‖2

L2 + ‖DA0h‖
2
L2 + ‖∂A0∂A0h‖

2
L2)

≤ C(t)(‖h‖2
L2 + ‖DA0h‖

2
L2 + ‖∂A0∂A0h‖

2
L2),

where C(t) depends only on h1(t), A0 and φ0. Then

‖3ω(FAH1
+ [φ0, φ

∗H1
0 ])−3ω(FAH2

+ [φ0, φ
∗H2
0 ])‖2

L2(T )

≤ B(T )(‖h‖2
L2 + ‖DA0h‖

2
L2 + ‖∂A0∂A0h‖

2
L2)(T )

≤ B(T ) exp
{∫ T

0
C(t) dt

}
(‖h‖2

L2 + ‖DA0h‖
2
L2 + ‖∂A0∂A0h‖

2
L2)(0),

where B(T ) depends only on h1(T ), A0 and φ0. This completes the proof. ut
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2.2. Basic estimates

Let (A(t), φ(t)) be a regular solution of the gradient flow (1.3) in the space B of Higgs
pairs, and let f be a real smooth function on M . Then we have

d

dt

∫
M

f 2(|FA + [φ, φ∗]|2 + 2|∂Aφ|2) dVg

=

∫
M

f 2
(
d

dt
|FA + [φ, φ∗]|2 +

d

dt
|∂Aφ|

2
+
d

dt
|∂Aφ

∗
|
2
)
dVg

= 2 Re
∫
M

f 2
{〈
FA + [φ, φ∗],DA

dA

dt
+

[
dφ

dt
, φ∗

]
+

[
φ,

(
dφ

dt

)∗]〉
+

〈
∂Aφ, ∂A

dφ

dt
+
dA

dt
∧ φ + φ ∧

dA

dt

〉
+

〈
∂Aφ

∗, ∂A
dφ∗

dt
+
dA

dt
∧ φ∗ + φ∗ ∧

dA

dt

〉}
dVg.

On the other hand, one can check that∫
M

f 2
〈
∂Aφ, ∂A

dφ

dt

〉
dVg =

∫
M

〈
∂∗A(f

2∂Aφ),
dφ

dt

〉
dVg

=

∫
M

〈
f 2√
−13ω(∂A∂Aφ)+

√
−13ω(∂(f 2) ∧ ∂Aφ),

dφ

dt

〉
dVg

=

∫
M

〈
f 2√
−13ω(FA ∧ φ − φ ∧ FA)+

√
−13ω(∂(f 2) ∧ ∂Aφ),

dφ

dt

〉
dVg;

Re
∫
M

〈
f 2∂Aφ

∗, ∂A
dφ∗

dt

〉
dVg

= Re
∫
M

〈
f 2√
−13ω(FA ∧ φ − φ ∧ FA)+

√
−13ω(∂(f 2) ∧ ∂Aφ),

dφ

dt

〉
dVg;∫

M

f 2
〈
∂Aφ,

dA

dt
∧ φ + φ ∧

dA

dt

〉
dVg =

∫
M

f 2
〈
√
−13ω(∂A[φ, φ∗]),

dA

dt

〉
dVg;∫

M

f 2
〈
∂Aφ

∗,
dA

dt
∧ φ∗ + φ∗ ∧

dA

dt

〉
dVg = −

∫
M

f 2
〈
√
−13ω(∂A[φ, φ∗]),

dA

dt

〉
dVg;

and

Re
∫
M

f 2
〈
FA + [φ, φ∗],

[
dφ

dt
, φ∗

]
+

[
φ,

(
dφ

dt

)∗]〉
dVg

= 2 Re
∫
M

f 2
〈
FA + [φ, φ∗],

[
dφ

dt
, φ∗

]〉
dVg

= Re
∫
M

f 2
〈
√
−13ω{φ ∧ (FA + [φ, φ∗])} − φ ◦

√
−13ω(FA + [φ, φ∗]),

dφ

dt

〉
dVg

− 2 Re
∫
M

f 2
〈
√
−13ω{(FA + [φ, φ∗]) ∧ φ} −

√
−13ω(FA + [φ, φ∗]) ◦ φ,

dφ

dt

〉
dVg
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= 2 Re
∫
M

f 2
〈
√
−13ω{φ ∧ FA} − φ ◦

√
−13ω(FA + [φ, φ∗]),

dφ

dt

〉
dVg

− 2 Re
∫
M

f 2
〈
√
−13ω{FA ∧ φ} −

√
−13ω(FA + [φ, φ∗]) ◦ φ,

dφ

dt

〉
dVg;

where we have used 〈FA + [φ, φ∗], [φ, (dφ/dt)∗]〉 = 〈FA + [φ, φ∗], [dφ/dt, φ∗]〉 and
φ ∧ φ = 0. Combining the above identities, we have

d

dt

∫
M

f 2(|FA + [φ, φ∗]|2 + 2|∂Aφ|2) dVg

= 2 Re
∫
M

f 2
〈
D∗AFA +

√
−1 (∂A3ω − ∂A3ω)[φ, φ∗],

dA

dt

〉
dVg

+ 4 Re
∫
M

f 2
〈
[
√
−13ω(FA + [φ, φ∗]), φ],

dφ

dt

〉
dVg

+ 2 Re
∫
M

〈
√
−13ω((∂ − ∂)(f 2) ∧ (FA + [φ, φ∗])),

dA

dt

〉
dVg

− 2 Re
∫
M

〈
(
√
−13ω(FA + [φ, φ∗]))(∂ − ∂)(f 2),

dA

dt

〉
dVg

+ 4 Re
∫
M

〈
√
−13ω(∂(f 2) ∧ ∂Aφ,

dφ

dt

〉
dVg

= −2
∫
M

f 2
(∣∣∣∣∂A∂t

∣∣∣∣2 + 2
∣∣∣∣∂φ∂t

∣∣∣∣2) dVg + 4 Re
∫
M

〈
√
−13ω(∂(f 2) ∧ ∂Aφ),

dφ

dt

〉
dVg

+ 2 Re
∫
M

〈
√
−13ω((∂ − ∂)(f 2) ∧ (FA + [φ, φ∗])),

dA

dt

〉
dVg

− 2 Re
∫
M

〈
(
√
−13ω(FA + [φ, φ∗]))(∂ − ∂)(f 2),

dA

dt

〉
dVg. (2.3)

Setting f ≡ 1 on M , and integrating the above identity on [0, t], we obtain the following
lemma:

Lemma 2.2. Let (A, φ) be a solution of the heat flow (1.3) with initial Higgs pair
(A0, φ0). Then

YMH(t)+ 2
∫ t

0

∫
M

(∣∣∣∣∂A∂t
∣∣∣∣2 + 2

∣∣∣∣∂φ∂t
∣∣∣∣2) = YMH(0). (2.4)

Let f be a cut-off function with support inside B2R(x0) and f ≡ 1 on BR(x0) such that
0 ≤ f ≤ 1 and |df | ≤ 2R−1. Set

e(A, φ) = |FA + [φ, φ∗]|2 + 2|∂Aφ|2.

From the identity (2.3), we have
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∣∣∣∣ ddt
∫
M

f 2e(A, φ) dVg + 2
∫
M

f 2
(∣∣∣∣∂A∂t

∣∣∣∣2 + 2
∣∣∣∣∂φ∂t

∣∣∣∣2) dVg∣∣∣∣
≤
C(n)

R

(∫
M

f 2e(A, φ) dVg

)1/2(∫
M

(∣∣∣∣∂A∂t
∣∣∣∣2 + 2

∣∣∣∣∂φ∂t
∣∣∣∣2) dVg)1/2

,

where C(n) is a positive number depending only on the dimension of M . Integrating the
above inequality and using Lemma 2.2, we obtain the following local energy estimate.

Lemma 2.2′ (local energy estimates). Let (A, φ) be a solution of the heat flow (1.3)
with initial Higgs pair (A0, φ0). For any x0 with B2R(x0) ⊂ M and for any two finite
numbers s, τ , we have∫
BR(x0)

e(A, φ)(·, s) dVg

≤

∫
B2R(x0)

e(A1, A2, φ)(·, τ ) dVg + 2
∫ max{s,τ }

min{s,τ }

∫
M

(∣∣∣∣∂A∂t
∣∣∣∣2 + 2

∣∣∣∣∂φ∂t
∣∣∣∣2) dVg dt

+ C

(
|s − τ |

R2 YMH(A0, , φ0)

∫ max{s,τ }

min{s,τ }

∫
M

(∣∣∣∣∂A∂t
∣∣∣∣2 + 2

∣∣∣∣∂φ∂t
∣∣∣∣2) dVg dt)1/2

.

By choosing normal coordinates at the point under consideration, we have(
1−

∂

∂t

)
|φ|2 = 2|∇Aφ|2 + 2 Re

〈
∇∂α
∇∂αφ −

∂

∂t
φ, φ

〉
= 2|∇Aφ|2 + 2 Re

〈
(∇∂α∇∂αφβ)dz

β
+ φβ(∇∂α∇∂αdz

β)−
∂

∂t
φ, φ

〉
= 2 Re

〈
−[
√
−13ωFA, φ]−

∂

∂t
φ, φ

〉
− 2 Re 〈φ ] R, φ〉 + 2|∇Aφ|2

= 2 Re 〈[
√
−13ω[φ, φ∗], φ], φ〉 − 2 Re 〈φ ] R, φ〉 + 2|∇Aφ|2

= 2|3ω[φ, φ∗]|2 − 2 Re 〈φ ] R, φ〉 + 2|∇Aφ|2. (2.5)

Since φ ∧ φ = φαdzα ∧ φβdzβ = 0, we have φαφβ = φβφα . Then

|[φ, φ∗]|2 =
∑
α,β

|[φα, φ∗β ]|α = Tr (φαφ∗β − φ
∗
βφα)(φβφ

∗
α − φ

∗
αφβ)

= Tr{φαφ∗βφβφ
∗
α + φ

∗
βφαφ

∗
αφβ − φαφ

∗
βφ
∗
αφβ − φ

∗
βφαφβφ

∗
α}

= Tr (φαφ∗α − φ
∗
αφα)(φβφ

∗
β − φ

∗
βφβ) = |

√
−13ω[φ, φ∗]|2.

Since φ is in the complex group orbit of φ0, we have a uniform bound for the eigenvalues
of φα . Based on Lemma 2.7 in [Si2], we obtain

|[φα, φ∗α]|2 ≥ C1(|φα|
2
+ 1)2 − C2(|φα|

2
+ 1),
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where C1 and C2 are positive constants depending only on φ0. Then

|
√
−13ω[φ, φ∗]|2 ≥

∑
α

|[φα, φ∗α]|2 ≥
C1

n
(|φ|2 + 1)2 − C2(|φ|

2
+ 1),

and (
1−

∂

∂t

)
|φ|2 ≥ 2|∇Aφ|2 + C3(|φ|

2
+ 1)2 − C4(|φ|

2
+ 1),

whereC3 andC4 are positive constants depending only on φ0 and the geometry of (M,ω).
From the above inequality and using the maximum principle in parabolic theory, we can
deduce the uniform C0 bound of φ.

Lemma 2.3. Let (A, φ) be a solution of the heat flow (1.3) with initial Higgs pair
(A0, φ0). Then

|φ(x, t)|2 ≤ max{sup
M

|φ0|
2, C4/C3} ∀(x, t) ∈ M × [0,∞).

For simplicity, we set
θ = 3ω(FA + [φ, φ∗]).

Direct calculation shows that

∂

∂t
θ = 3ω

(
DA

(
∂A

∂t

)
+

[
∂φ

∂t
, φ∗

]
+

[
φ,

(
∂φ

∂t

)∗])
= 1Aθ +

√
−13ω([φ, [θ, φ∗]]− [[θ, φ], φ∗]). (2.6)

Here we have used the fact that θ∗ = −θ , and we set 1A = −D∗ADA.
Let u(r) denote the Lie algebra of the unitary group U(r). Given a smooth convex ad-

invariant function ϕ, we can define a gauge-invariant functional 8 on the space of Higgs
pairs as in [AB]:

8(A, φ) =

∫
M

ϕ(3ω(FA + [φ, φ∗])).

Using the equality (2.6), we have

∂

∂t
ϕ(θ) = ϕ′θ (1Aθ +

√
−13ω([φ, [θ, φ∗]]− [[θ, φ], φ∗]))

= 〈ϕ′(θ),1Aθ +
√
−13ω([φ, [θ, φ∗]]− [[θ, φ], φ∗])〉,

where ϕ′ : u→ u is the derivative of ϕ, and ϕ′ is an equivariant map relative to the adjoint
action of U(r). It is easy to check that

〈ϕ′(θ),
√
−13ω([φ, [θ, φ∗]]− [[θ, φ], φ∗])〉 = −〈[φ − φ∗, ϕ′(θ)], [φ − φ∗, θ]〉

= −ϕ′′(θ)([φ − φ∗, θ], [φ − φ∗, θ]).

So, we have(
∂

∂t
−1

)
ϕ(θ) = −ϕ′′(θ)([φ−φ∗, θ], [φ−φ∗, θ])− ϕ′′(θ)(∇Aθ,∇Aθ) ≤ 0. (2.7)
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As a special case, we have (
1−

∂

∂t

)
|θ |2 ≥ 0. (2.8)

From the above inequality, one can derive a uniform bound of |θ |.
By direct calculation, we have

∂

∂t
(|DAθ |

2
+ 2|[θ, φ]|2) = 2 Re

〈
∂

∂t
(DAθ),DAθ

〉
+ 4 Re

〈
∂

∂t
[θ, φ], [θ, φ]

〉
= 2 Re

〈[
∂A

∂t
, θ

]
+DA

(
∂

∂t
θ

)
,DAθ

〉
+ 4 Re

〈[
∂

∂t
θ, φ

]
+

[
θ,
∂

∂t
φ

]
, [θ, φ]

〉
,

and〈[
∂

∂t
θ, φ

]
, [θ, φ]

〉
= 〈[−D∗ADAθ, φ], [θ, φ]〉

+ 〈[3ω[φ, ([−
√
−1 θ, φ])∗], φ], [θ, φ]〉 + 〈[3ω[[−

√
−1 θ, φ], φ∗], φ], [θ, φ]〉.

Setting l = [θ, φ], we have

〈[3ω[−
√
−1 l, φ∗], φ], l〉 = −〈[lαφ∗α − φ

∗
αlα, φ], l〉

= −Tr{((lαφ∗α − φ
∗
αlα)φβ − φβ(lαφ

∗
α − φ

∗
αlα))l

∗
β}

= −Tr (lαφ∗α − φ
∗
αlα)(lβφ

∗
β − φ

∗
β lβ)

∗
= −|
√
−13ω[l, φ∗]|2,

and

|[θ, φ]|2 = 〈l, θφ − φθ〉 = Tr(lα(θφα)∗ − lα(φαθ)∗)

= Tr((lαφ∗α − φ
∗
αlα)θ

∗) = 〈
√
−13ω[l, φ∗], θ〉 ≤ |θ | |

√
−13ω[l, φ∗]|.

Combining the above inequalities, and setting

I (t) =

∫
M

{|DAθ |
2
+ 2|[θ, φ]|2},

we have

d

dt
I =

∫
M

∂

∂t
(|DAθ |

2
+ 2|[θ, φ]|2)

≤ 16
∫
M

{|θ | |DAθ |
2
+ (|θ | + |φ|2)|[θ, φ]|2 + |φ| |[θ, φ]| |D∗ADAθ |}

− 2
∫
M

|D∗ADAθ |
2
− 4

∫
M

|
√
−13ω[l, φ∗]|2

≤ C5I − C6I
2,
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whereC5 andC6 are positive constants. From the formula (2.4), we have
∫
∞

0 I (t) dt <∞.
Using the above inequality and arguing as in [DK, Prop. 6.2.14], we can prove that

I (t)→ 0 (t →∞). (2.9)

Noting that the End(E)-valued (1, 0)-form φ can also be seen as a section of
the bundle End(E) ⊗

∧1,0
(M), and denoting the induced connection on the bundle

End(E)⊗
∧1,0

(M) also by ∇A for simplicity, we have∫
M

〈∇Aφ,∇Aφ〉 =

∫
M

〈∇
∗

A∇Aφ, φ〉

=

∫
M

〈
√
−13ωFA ◦φ−φ ◦ (

√
−1 λωFA⊗ IdT 1,0M + IdE ⊗RicM), φ〉,

where RicM denotes the Ricci transformation of the Kähler manifold (M,ω). On the other
hand, one can check that∫

M

{〈FA, [φ, φ∗]〉 + 〈[φ, φ∗], FA〉 + 2|∂Aφ|2} = 2 Re
∫
M

{〈FA, [φ, φ∗]〉 + |∂Aφ|2}

= 2 Re
∫
M

〈[
√
−13ωFA, φ], φ〉.

Then

YMH(t) = 2
∫
M

|∇Aφ|
2
+ 2

∫
M

〈φ ] RicM , φ〉 +
∫
M

{|FA|
2
+ |[φ, φ∗]|2}. (2.10)

Remark. From the above identity and Lemmas 2.2 and 2.3, we see that
∫
M
|∇Aφ|

2 is
also bounded uniformly along the heat flow (1.3).

Lemma 2.4. Let (A, φ) be a smooth solution of the heat flow (1.3). Then(
1−

∂

∂t

)
|∇Aφ|

2
− 2|∇A∇Aφ|2

≥ −C7(|FA| + |Rm| + |RicM | + |φ|2)|∇Aφ|2 − C7|φ| |∇ Ric| |∇Aφ|, (2.11)

where C7 is a constant depending only on the dimension m and Rm is the Riemannian
curvature of M .

Proof. Choosing normal complex coordinates at the point considered, we have

1|∇Aφ|
2
= 2∂α∂α|∇Aφ|2

= 2|∇A∇Aφ|2 + 2 Re 〈(∇A,α∇A,α +∇A,α∇A,α)∇Aφ,∇Aφ〉

= 2|∇A∇Aφ|2 + 2 Re 〈(∇A,α∇A,α∇A,γφ)dzγ ,∇Aφ〉
+ 2 Re 〈(∇A,α∇A,α∇A,γφ)dzγ + (∇A,γ )φ∇A,α∇A,αdzγ ,∇Aφ〉.

Using the Bianchi identity, we obtain

∇A,α∇A,α∇A,γφ = ∇A,α∇A,α((∇A,γφβ)dz
β
+ φβ∇γ dz

β)
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= (∇A,α∇A,α∇A,γφβ)dz
β
+ (∇A,αφβ)∇A,α∇A,γ dz

β
+ φβ∇A,α∇A,α∇A,γ dz

β

= ([∇A,γFA,αα, φβ ]− [FA,γα,∇A,αφβ ])dzβ

+ (∇A,αφβ)∇A,α∇A,γ dz
β
+ φβ∇A,α∇A,α∇A,γ dz

β

= −[∂A(
√
−13ωFA), φ]− ([FA,γα,∇A,αφβ ])dzβ

+ (∇A,αφβ)∇A,α∇A,γ dz
β
+ φβ∇A,α∇A,α∇A,γ dz

β

and

∇A,α∇A,α∇A,γφ

= −[∂A(
√
−13ωFA), φ]− ([FA,γα,∇A,αφβ ])dzβ − [

√
−13ωFA,∇A,γφ]

+ (∇A,γφβ)∇A,α∇A,αdz
β
+ (∇A,αφβ)∇A,α∇A,γ dz

β
+ φβ∇A,α∇A,α∇A,γ dz

β .

On the other hand, using the equations (1.3), we have

∂

∂t
|∇Aφ|

2
= 2 Re

〈
∇A

(
∂φ

∂t

)
+

[
∂A

∂t
, φ

]
,∇Aφ

〉
= −2 Re 〈2[∂A(

√
−13ω(FA + [φ, φ∗])), φ]+ [

√
−13ω(FA + [φ, φ∗]),∇Aφ],∇Aφ〉.

Then (2.11) follows from the above identities. This proves the lemma. ut

Let (A, φ) be a smooth solution of the heat flow (1.3). We have

∂

∂t
(|FA + [φ, φ∗]|2 + 2|∂Aφ|2)

= 2 Re
〈
DA

∂A

∂t
+

[
φ

∂t
, φ∗

]
+

[
φ,

(
φ

∂t

)∗]
, FA + [φ, φ∗]

〉
+ 4 Re

〈
∂A
φ

∂t
+
A

∂t
∧ φ + φ ∧

A

∂t
, ∂Aφ

〉
= 2 Re 〈−

√
−1 (∂A∂A − ∂A∂A)(3ω(FA + [φ, φ∗])), FA + [φ, φ∗]〉

− 4 Re 〈[[
√
−13ω(FA + [φ, φ∗]), φ], φ∗], FA + [φ, φ∗]〉

− 4 Re〈2[∂A(
√
−13ω(FA + [φ, φ∗])), φ]+ [

√
−13ω(FA + [φ, φ∗]), ∂Aφ], ∂Aφ〉.

Choosing normal complex coordinates centered at the point under consideration, we have

1(2|∂Aφ|2) = 4∂α∂α|∂Aφ|2 = 4|∇A(∂Aφ)|2 + 4 Re 〈(∇A,α∇A,α +∇A,α∇A,α), ∂Aφ〉

= 4|∇A(∂Aφ)|2 + 4 Re 〈(∇A,α∇A,α∇A,γφβ +∇A,α∇A,α∇A,γφβ)dzγ ∧ dzβ , ∂Aφ〉

+ 4 Re 〈(∇A,γφβ −∇A,βφγ )(∇α∇αdzγ ) ∧ dzβ , ∂Aφ〉

= 4|∇A(∂Aφ)|2 + 4 Re 〈(∇A,γφβ −∇A,βφγ )(∇α∇αdzγ ) ∧ dzβ , ∂Aφ〉

− 8 Re 〈[FA;γα,∇A,αφβ ]dzγ ∧ dzβ + [∂A(
√
−13ωFA), φ], ∂Aφ〉

− 4 Re 〈[
√
−13ωFA, ∂Aφ], ∂Aφ〉.
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Using the condition φ ∧ φ = 0, we have

1(2|∂Aφ|2)

= 4|∇A(∂Aφ)|2+4 Re 〈(∇A,γφβ−∇A,βφγ )(∇α∇αdzγ )∧dzβ , ∂Aφ〉

−8 Re 〈[FA;γα+ [φγ , φ∗α],∇A,αφβ ]dzγ ∧dzβ+ [∂A(
√
−13ω(FA+ [φ, φ∗])), φ], ∂Aφ〉

−4 Re 〈[
√
−13ωFA, ∂Aφ], ∂Aφ〉−8 Re 〈[φ∗α, [∂Aφ, φα]], ∂Aφ〉

+8 Re 〈[[φγ , φ∗α],∇A,αφβ−∇A,βφα]dzγ ∧dzβ , ∂Aφ〉.

By direct calculation, we have

1|FA + [φ, φ∗]|2

= 2∂α∂α|FA+ [φ, φ∗]|2

= 2 Re 〈(∇A,α∇A,α+∇A,α∇A,α)(FA+ [φ, φ∗]), FA+ [φ, φ∗]〉+2|∇A(FA+ [φ, φ∗])|2

= 2|∇A(FA+ [φ, φ∗])|2+2 Re 〈(∇A,α∇A,α(FA+ [φ, φ∗])βγ )dzβ ∧dzγ , FA+ [φ, φ∗]〉

+2 Re 〈(∇A,α∇A,α(FA+ [φ, φ∗])βγ )dzβ ∧dzγ , FA+ [φ, φ∗]〉

+2 Re 〈(FA+ [φ, φ∗])βγ (dzβ ∧∇α∇αdzγ +∇α∇αdzβ ∧dzγ ), FA+ [φ, φ∗]〉.

Using the Bianchi identity, we obtain

∇A,α∇A,α(FA + [φ, φ∗])βγ
= ∇A,α(∇A,γ (FA,βα + [φβ , φ∗α])+ [φβ ,∇A,αφ∗γ −∇A,γφ

∗

α])

= ∇A,γ∇A,α(FA,βα + [φβ , φ∗α])+ [FA,αγ , FA,βα + [φβ , φ∗α]]
+∇α([φβ ,∇A,αφ∗γ −∇A,γφ

∗

α])

= ∇A,γ∇A,β(FA,αα + [φα, φ∗α])+ [FA,αγ , FA,βα + [φβ , φ∗α]]
+∇γ ([∇A,αφβ −∇A,βφα, φ∗α])+∇A,α([φβ ,∇A,αφ∗γ −∇A,γφ

∗

α])

= ∇A,γ∇A,β(FA,αα + [φα, φ∗α])+ [FA,αγ , FA,βα + [φβ , φ∗α]]
+ [∇A,αφβ −∇A,βφα,∇γφ∗α]+ [∇A,αφβ ,∇A,αφ∗γ −∇A,γφ

∗

α]

+ [φβ , [FA,αα + [φα, φ∗α], φ∗γ ]]− [φβ , [FA,αγ + [φα, φ∗γ ], φ∗α]]

− [[FA,αγ + [φα, φ∗γ ], φβ ], φ∗α]+ [[FA,βγ + [φβ , φ∗γ ], φα], φ∗α],

and similarly,

∇A,α∇A,α(FA + [φ, φ∗])βγ
= ∇A,β∇A,γ (FA,αα + [φα, φ∗α])− [FA,βα, FA,αγ + [φα, φ∗γ ]]

+ [∇A,αφβ −∇A,βφα,∇αφ∗γ ]+ [∇A,βφα,∇A,αφ∗γ −∇A,γφ
∗

α]

+ [φα, [FA,βα + [φβ , φ∗α], φ∗γ ]]− [φα, [FA,βγ + [φβ , φ∗γ ], φ∗α]]

− [[FA,αα + [φα, φ∗α], φβ ], φ∗γ ]+ [[FA,βα + [φβ , φ∗α], φα], φ∗γ ].
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Combining the above identities, we have the following lemma.

Lemma 2.5. Let (A, φ) be a smooth solution of the heat flow (1.3). Then(
1−

∂

∂t

)
(|FA + [φ, φ∗]|2 + 2|∂Aφ|2)− 2|∇A(FA + [φ, φ∗])|2 − 4|∇A(∂Aφ)|2

≥ −C8(|FA + [φ, φ∗]| + |∇Aφ| + |φ|2 + |Rm|)(|FA + [φ, φ∗]|2 + 2|∂Aφ|2), (2.12)

and(
1−

∂

∂t

)
(|FA + [φ, φ∗]|2)− 2|∇A(FA + [φ, φ∗])|2

≥ −C8(|FA+ [φ, φ∗]|+|∇Aφ|+|φ|2+|Rm|)(|FA+ [φ, φ∗]|2+2|∂Aφ|2), (2.13)

where C8 is a constant depending only on the complex dimension m.

2.3. Monotonicity inequality

In this subsection, we derive a monotonicity inequality for the heat flow (1.3), which is an
analogue to harmonic map heat flow [St2]. Similar arguments have been used in studying
the Yang–Mills flow ([CS1], [CS2]) and the Yang–Mills–Higgs flow ([HT]).

Let (M,ω) be a Kähler manifold with complex dimension m. For any x0 ∈ M , there
exist complex normal coordinates {z1, . . . , zm} in the geodesic ball Br(x0) with center x0
and radius r ≤ i(M) such that x0 = (0, . . . , 0) and for some constant C(x0),

|gij (z)− δij | ≤ C|z|
2,

∣∣∣∣∂gij∂zk

∣∣∣∣ ≤ C|z|, ∀z ∈ Br .

Here i(M) is the infimum of the injectivity radius over x ∈ M , and (gij ) is the Kähler
metric of M given by 〈∂/∂zi, ∂/∂zj 〉 = gij .

Let u = (x, t) be a point in M × R. For a fixed point u0 = (x0, t0) ∈ M × R+, we
write

Sr(u0) = M × {t = t0 − r
2
},

Tr(u0) = {u = (x, t) : t0 − 4r2 < t < t0 − r
2, x ∈ M},

Pr(u0) = Br(x0)× [t0 − r2, t0 + r
2].

For simplicity, we denote Sr(0, 0), Tr(0, 0) and Pr(0, 0) by Sr , Tr and Pr respectively.
The fundamental solution of the (backward) heat equation with singularity at (z0, t0)

is

G(z0,t0)(z, t) =
1

(4π(t0 − t))m
exp

(
−
|z− z0|

2

4(t0 − t)

)
, t < t0.

For simplicity, we denote G(0,0)(x, t) by G(x, t).
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Assume that (A(t), φ(t)) is a solution of the heat flow (1.3) in M × R+. Let f be
a smooth cut-off function, i.e. |f | ≤ 1, f ≡ 1 on Bi(M)/2, f ≡ 0 outside Bi(M) and
|∇f | ≤ 2/i(M). For any (x, t) ∈ M × (0,∞), we set

e(A, φ)(x, t) = |FA + [φ, φ∗]|2 + 2|∂Aφ|2.

For any u0 = (x0, t0) ∈ M × [0, T ], we set

8(r;A, φ) = r2
∫
Tr (u0)

e(A, φ)f 2Gu0 dVg dt,

9(r;A, φ) = r4
∫
Sr (u0)

e(A, φ)f 2Gu0 dVg.

Then we have

Theorem 2.6 (Monotonicity inequality). Let (A, φ) be a regular solution of the heat flow
equation (1.3) with initial value (A0, φ0). Then for u0 = (x0, t0) ∈ M × [0, T ], and for
r1 and r2 with 0 < r1 ≤ r2 ≤ min{i(M),

√
t0/2}, we have

8(r1;A, φ) ≤ C9 exp(C9(r2 − r1))8(r2;A, φ)+ C9(r
2
2 − r

2
1 )YMH(A0, φ0),

9(r1;A, φ) ≤ C10 exp(C10(r2 − r1))9(r2;A, φ)+ C10(r
2
2 − r

2
1 ) YMH(A0, φ0)

where C9, C10 are positive constants depending only on the geometry of M .

Proof. Choosing complex normal coordinates {z1, . . . , zm} in the geodesic ball Br(x0)

with r ≤ i(M), and setting z = Rz̃, t = R2 t̃ + t0, we have

8(R;A, φ) = R2
∫
TR(u0)

e(A, φ)f 2Gu0 dVg dt

= R2
∫ t0−R

2

t0−4R2

∫
Cm
e(A, φ)(z, t)f 2(z)Gu0(z, t) det(gij ) dz dt

= R4
∫
−1

−4

∫
Cm
e(A, φ)(Rz̃, R2 t̃ + t0)f

2(Rz̃)G(z̃, t̃) det(gij )(Rz̃) dz̃ dt̃,

and

d

dR
8(R;A, φ)=4R3

∫
−1

−4

∫
Cm
e(A, φ)(Rz̃, R2 t̃+ t0)f

2(Rz̃)G(z̃, t̃) det(gij )(Rz̃) dz̃ dt̃

+R3
∫
−1

−4

∫
Cm

2 Re
[(
zi
∂

∂zi

)
e(A, φ)

]
(Rz̃, R2 t̃+ t0)f

2(Rz̃)G(z̃, t̃) det(gij )(Rz̃) dz̃ dt̃

+R4
∫
−1

−4

∫
Cm

2Rt̃
[
∂

∂t
e(A, φ)

]
(Rz̃, R2 t̃+ t0)f

2(Rz̃)G(z̃, t̃) det(gij )(Rz̃) dz̃ dt̃

+R3
∫
−1

−4

∫
Cm

2e(A, φ)(Rz̃, R2 t̃+ t0)Re
[(
zi
∂

∂zi

)
f 2 det(gij )

]
(Rz̃)G(z̃, t̃) dz̃ dt̃

=: I1+I2+I3+I4.
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Defining the connection A′ = A+ φ + φ∗, we have

FA′ = FA + [φ, φ∗]+ ∂Aφ + ∂Aφ∗.

The Bianchi identity is

DA′FA′ = DAFA′ + [φ + φ∗, FA′ ] = 0.

It follows that

I2 =

R3
∫
−1

−4

∫
Cm

2 Re
[(
zi
∂

∂zi

)
e(A, φ)

]
(Rz̃, R2 t̃ + t0)f

2(Rz̃)G(z̃, t̃) det(gij )(Rz̃) dz̃ dt̃

= R

∫
TR(u0)

2 Re
[(
zi
∂

∂zi

)
e(A, φ)

]
f 2Gu0 dVgdt

= R2 Re
∫
TR(u0)

〈zi∇A,∂/∂ziFA′ + z
i
∇A,∂/∂ziFA′ , FA′〉f

2Gu0 dVg dt

and

R2 Re
∫
TR(u0)

〈zi∇A,∂/∂ziFA′ , FA′〉f
2Gu0 dVg dt

= R2 Re
∫
TR(u0)

〈
zi(∇A,∂/∂ziFA′)

(
∂

∂zj
,
∂

∂zk

)
dzj ∧ dzk, FA + [φ, φ∗]

〉
f 2Gu0 dVg dt

+ R Re
∫
TR(u0)

〈
zi(∇A,∂/∂ziFA′)

(
∂

∂zj
,
∂

∂zk

)
dzj ∧ dzk, ∂Aφ

∗

〉
f 2Gu0 dVg dt

+ R Re
∫
TR(u0)

〈
zi(∇A,∂/∂ziFA′)

(
∂

∂zj
,
∂

∂zk

)
dzj ∧ dzk, ∂Aφ

〉
f 2Gu0 dVg dt

=: a + b + c.

By the Bianchi identity, we have

(∇A,∂/∂ziFA′)

(
∂

∂zj
,
∂

∂zk

)
= (∇A,∂/∂zjFA′)

(
∂

∂zi
,
∂

∂zk

)
+ (∇A,∂/∂zkFA′)

(
∂

∂zj
,
∂

∂zi

)
− [φ∗

i
, (FA + [φ, φ∗])jk]+ [φ∗

k
, (FA + [φ, φ∗])ji]+ [φj , (∂A,iφ

∗

k
− ∂A,kφ

∗

i
)],〈

zi(∇A,∂/∂zjFA′)

(
∂

∂zi
,
∂

∂zk

)
dzj ∧ dzk, FA + [φ, φ∗]

〉
= 〈zi∂A,∂/∂zj (∂A,iφ

∗

k
− ∂A,kφ

∗

i
)dzj ∧ dzk, FA + [φ, φ∗]〉

= 〈zi([FA,ji, φ
∗

k
]− [FA,jk, φ

∗

i
])dzj ∧ dzk, FA + [φ, φ∗]〉,

and
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zi(∇A,∂/∂zkFA′)

(
∂

∂zj
,
∂

∂zi

)
dzj ∧ dzk, FA + [φ, φ∗]

〉
= 〈−zi∂A((FA + [φ, φ∗])jidz

j )− zi0n
ik
(FA + [φ, φ∗])jndzj ∧ dzk, FA + [φ, φ∗]〉

= 〈−∂A(z
i(FA + [φ, φ∗])jidz

j )− zi0n
ik
(FA + [φ, φ∗])jndzj ∧ dzk, FA + [φ, φ∗]〉

− |FA + [φ, φ∗]|2.

Using φ∗ ∧ φ∗ = 0, we have

〈zi(−[φ∗
i
, (FA + [φ, φ∗])jk]+ [φ∗

k
, (FA + [φ, φ∗])ji])dz

j
∧ dzk, FA + [φ, φ∗]〉

= 〈zi(−[φ∗
i
, FA,jk]+ [φ∗

k
, FA,ji])dz

j
∧ dzk, FA + [φ, φ∗]〉,

and

〈zi[φj , (∂A,iφ
∗

k
− ∂A,kφ

∗

i
)]dzj ∧ dzk, FA + [φ, φ∗]〉

= 〈−[φ∗, zi(∂A,iφk−∂A,kφi)dzk]∗,−(FA+[φ, φ∗])∗〉

= 〈FA+[φ, φ∗], [φ∗, zi(∂A,iφk−∂A,kφi)dzk]〉

= 〈−
√
−13ω[FA+[φ, φ∗], φ]+[

√
−13ω(FA+[φ, φ∗]), φ], zi(∂A,iφk−∂A,kφi)dzk〉.

The above identities yield

a = R2 Re
∫
TR(u0)

{〈∂(f 2Gu0)∧(z
i(FA+[φ, φ∗])jidz

j ), FA+[φ, φ∗]〉

−〈f 2Gu0z
i(FA+[φ, φ∗])jidz

j ,
√
−1 ∂A3ω(FA+[φ, φ∗])−

√
−13ω∂A[φ, φ∗]〉

−f 2Gu0〈z
i0n
ik
(FA+[φ, φ∗])jndzj∧dzk, FA+[φ, φ∗]〉

−f 2Gu0 |FA+[φ, φ∗]|2−f 2Gu0〈z
i(∂A,iφk−∂A,kφi)dz

k,
√
−13ω[FA+[φ, φ∗], φ]〉

+f 2Gu0〈z
i(∂A,iφk−∂A,kφi)dz

k, [
√
−13ω(FA+[φ, φ∗]), φ]〉} dVg dt.

Using the Bianchi identity and φ∗ ∧ φ∗ = 0 again, we have

b = R Re
∫
TR(u0)

〈
zi(∇A,∂/∂ziFA′)

(
∂

∂zj
,
∂

∂zk

)
dzj ∧ dzk, ∂Aφ

∗

〉
f 2Gu0 dVg dt

= R2 Re
∫
TR(u0)

〈
zi(∇A,∂/∂zjFA′)

(
∂

∂zi
,
∂

∂zk

)
dzj ∧ dzk, ∂Aφ

∗

〉
f 2Gu0 dVg dt

= R2 Re
∫
TR(u0)

{〈zi∂A,j (∂A,iφ
∗

k
− ∂A,kφ

∗

i
)dzj ∧ dzk, ∂Aφ

∗
〉f 2Gu0

− 〈zi0n
ij
(∂A,nφ

∗

k
− ∂A,kφ

∗

n)dz
j
∧ dzk, ∂Aφ

∗
〉f 2Gu0} dVg dt

= R2 Re
∫
TR(u0)

{〈∂A(f
2Gu0z

i(∂A,iφ
∗

k
− ∂A,kφ

∗

i
)dzk), ∂Aφ

∗
〉

− 〈∂(f 2Gu0) ∧ (z
i(∂A,iφ

∗

k
− ∂A,kφ

∗

i
)dzk), ∂Aφ

∗
〉

− 2|∂Aφ∗|f 2Gu0 − 〈z
i0n
ij
(∂A,nφ

∗

k
− ∂A,kφ

∗

n)dz
j
∧ dzk, ∂Aφ

∗
〉f 2Gu0} dVg dt
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= R2 Re
∫
TR(u0)

{f 2Gu0〈z
i(∂A,iφk − ∂A,kφi)dz

k,
√
−13ω[FA, φ]〉

− 〈∂(f 2Gu0) ∧ (z
i(∂A,iφ

∗

k
− ∂A,kφ

∗

i
)dzk), ∂Aφ

∗
〉

− 2|∂Aφ∗|f 2Gu0 − 〈z
i0n
ij
(∂A,nφ

∗

k
− ∂A,kφ

∗

n)dz
j
∧ dzk, ∂Aφ

∗
〉f 2Gu0} dVg dt

and

c = R Re
∫
TR(u0)

〈
zi(∇A,∂/∂ziFA′)

(
∂

∂zj
,
∂

∂zk

)
dzj ∧ dzk, ∂Aφ

〉
f 2Gu0 dVg dt

= R Re
∫
TR(u0)

〈zi∂A,i(∂A,jφk − ∂A,kφj )dz
j
∧ dzk, ∂Aφ〉f

2Gu0 dVg dt

= −R2 Re
∫
TR(u0)

〈zi[FA,jidz
j , φ], ∂Aφ〉f 2Gu0 dVg dt

= −R2 Re
∫
TR(u0)

〈zi[(FA + [φ, φ∗])jidz
j , φ], ∂Aφ〉f 2Gu0 dVg dt

= −R2 Re
∫
TR(u0)

〈zi(FA + [φ, φ∗])jidz
j ,
√
−13ω∂A[φ, φ∗]〉f 2Gu0 dVg dt.

Then

R2 Re
∫
TR(u0)

〈zi∇A,∂/∂ziFA′ , FA′〉f
2Gu0 dVg dt = a + b + c

= R2 Re
∫
TR(u0)

{〈∂(f 2Gu0) ∧ (z
i(FA + [φ, φ∗])jidz

j ), FA + [φ, φ∗]〉

− 〈f 2Gu0z
i(FA + [φ, φ∗])jidz

j ,
√
−1 ∂A3ω(FA + [φ, φ∗])〉

− f 2Gu0〈z
i0n
ik
(FA + [φ, φ∗])jndzj ∧ dzk, FA + [φ, φ∗]〉 − f 2Gu0 |FA + [φ, φ∗]|2

+ f 2Gu0〈z
i(∂A,iφk − ∂A,kφi)dz

k, [
√
−13ω(FA + [φ, φ∗]), φ]〉

− 〈∂(f 2Gu0) ∧ (z
i(∂A,iφ

∗

k
− ∂A,kφ

∗

i
)dzk), ∂Aφ

∗
〉

− 2|∂Aφ∗|f 2Gu0 − 〈z
i0n
ij
(∂A,nφ

∗

k
− ∂A,kφ

∗

n)dz
j
∧ dzk, ∂Aφ

∗
〉f 2Gu0} dVgdt.

By a similar calculation, we have

R2 Re
∫
TR(u0)

〈zi∇A,∂/∂ziFA′ , FA′〉f
2Gu0 dVg dt

= R2 Re
∫
TR(u0)

{−〈∂(f 2Gu0) ∧ (z
i(FA + [φ, φ∗])ijdz

j ), FA + [φ, φ∗]〉

− 〈f 2Gu0z
i(FA + [φ, φ∗])ijdz

j ,
√
−1 ∂A3ω(FA + [φ, φ∗])〉

− f 2Gu0〈z
i0nij (FA + [φ, φ∗])nkdz

j
∧ dzk, FA + [φ, φ∗]〉 − f 2Gu0 |FA + [φ, φ∗]|2

+ f 2Gu0〈z
i(∂A,iφk − ∂A,kφi)dz

k, [
√
−13ω(FA + [φ, φ∗]), φ]〉

− 〈∂(f 2Gu0) ∧ (z
i(∂A,iφk − ∂A,kφi)dz

k), ∂Aφ〉

− 2|∂Aφ|f 2Gu0 − 〈z
i0nij (∂A,nφk − ∂A,kφn)dz

j
∧ dzk, ∂Aφ〉f

2Gu0} dVg dt.
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Note that

|0kij | ≤ C|Z|,

∣∣∣∣Zi ∂∂zi det(gij )
∣∣∣∣ ≤ C|z|2 det(gij ),

and
∂

∂zi
=

G

2(t − t0)
zi,

∂

∂zi
=

G

2(t − t0)
zi .

By direct calculation, we have

I1 = 4R
∫
TR(u0)

e(A, φ)f 2Gu0 dVg dt,

I4 ≥ −CR

∫
TR(u0)

e(A, φ)(|z|2f 2
+ |z| |∇f | |f |)Gu0 dVg dt,

and

I1+I2 ≥ 2R Re
∫
TR(u0)

{
−C|FA+[φ, φ∗]|2(|∇f | |f | |z|Gu0+f

2Gu0 |z|
2)

−C|∂Aφ|
2(|∇f | |f | |z|Gu0+f

2Gu0 |z|
2)

+f 2Gu0

〈
zi(FA+[φ, φ∗])jidz

j
−zi(FA+[φ, φ∗])ijdz

j ,
∂A

∂t

〉
−2f 2Gu0

〈
zi(∂A,iφk−∂A,kφi)dz

k,
∂φ

∂t

〉
+〈f 2∂Gu0∧z

i(FA+[φ, φ∗])jidz
j , FA+[φ, φ∗]〉

−〈f 2∂Gu0∧z
i(FA+[φ, φ∗])ijdz

j , FA+[φ, φ∗]〉

−〈f 2∂Gu0∧(z
i(∂A,iφ

∗

k
−∂A,kφ

∗

i
)dzk), ∂Aφ

∗
〉

−〈f 2∂Gu0∧(z
i(∂A,iφk−∂A,kφi)dz

k), ∂Aφ
∗
〉

}
dVg dt

= 2R Re
∫
TR(u0)

{
−Ce(A, φ)(|∇f | |f | |z|Gu0+f

2Gu0 |z|
2)

+f 2Gu0

〈
zi(FA+[φ, φ∗])jidz

j
−zi(FA+[φ, φ∗])ijdz

j ,
∂A

∂t

〉
−2f 2Gu0

〈
zi(∂A,iφk−∂A,kφi)dz

k,
∂φ

∂t

〉
−f 2 Gu0

2(t−t0)
〈zi(FA+[φ, φ∗])jidz

j , zkgkn(FA+[φ, φ∗])mndzm〉

−f 2 Gu0

2(t−t0)
〈zi(FA+[φ, φ∗])ijdz

j , zkgmk(FA+[φ, φ∗])mndzm〉

−f 2 Gu0

2(t−t0)
〈zi(∂A,iφ

∗

k
−∂A,kφ

∗

i
)dzk, zjgjm(∂A,mφ

∗

n−∂A,nφ
∗

m)dz
n)〉

−f 2 Gu0

2(t−t0)
〈zi(∂A,iφk−∂A,kφi)dz

k, zjgmj (∂A,mφn−∂A,nφm)dz
n)〉

}
dVg dt.
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Using the heat equation (1.3) and the Stokes formula, we have

I3 = R
4
∫
−1

−4

∫
Cm

2Rt̃
[
∂

∂t
e(A, φ)

]
(Rz̃, R2 t̃ + t0)f

2(Rz̃)G(z̃, t̃) det(gij )(Rz̃) dz̃ dt̃

= 2R
∫
TR(u0)

(t − t0)

[
∂

∂t
e(A, φ)

]
f 2Gu0 dVg dt

= −4R
∫
TR(u0)

(t − t0)

[∣∣∣∣∂A∂t
∣∣∣∣2 + 2

∣∣∣∣∂φ∂t
∣∣∣∣2]f 2Gu0 dVg dt

+ 16R Re
∫
TR(u0)

(t − t0)

〈
∂j (f

2Gu0)g
ij (∂Aφ)kidz

k,
∂φ

∂t

〉
dVg dt

+ 4R Re
∫
TR(u0)

(t − t0)

〈
∂j (f

2Gu0)g
ji(FA + [φ, φ∗])kidz

k,
∂A

∂t

〉
dVg dt

− 4R Re
∫
TR(u0)

(t − t0)

〈
∂j (f

2Gu0)g
ij (FA + [φ, φ∗])ikdz

k,
∂A

∂t

〉
dVg dt.

On the other hand, we know (e.g. [CSt]) that

R−1
|z|2Gu0 ≤ C(1+Gu0), R−1

|t − t0|
−1
|z|4Gu0 ≤ C(1+Gu0),

on TR(u0). Moreover, we have |∇f |Gu0 ≤ C due to the fact that ∇f = 0 for Bi(M)/2.
Combining these facts and the above inequalities, we have

d

dR
8(R;A, φ) = I1 + I2 + I3 + I4

≥ R

∫
TR(u0)

{
2|t−t0|

∣∣∣∣∂φ∂t − zk

|t−t0|
zjgik(∂A,iφj−∂A,jφi)dz

j )

∣∣∣∣2f 2Gu0

+|t−t0|

∣∣∣∣∂A∂t + 1
|t−t0|

(zjgji(FA+[φ, φ∗])kidz
k
−zigji(FA+[φ, φ∗])jkdz

k)

∣∣∣∣2f 2Gu0

−Ce(A, φ)

(
|∇f | |f | |z|Gu0+f

2Gu0 |z|
2
+f 2Gu0

|z|4

|t−t0|

)
−C|t−t0| |∇f |

2Gu0 |FA+[φ, φ∗]|2
}
dVg dt

≥ −C8(R;A, φ)−CRYMH(A0, φ0).

By integrating the above inequality over R, we prove the claim for 8. The claim for 9
can be proved by a similar argument. ut

3. Convergence properties of the heat flow

In the following part of this paper, we will always suppose that (M,ω) is a Kähler surface,
i.e. the complex dimension m of (M,ω) is 2, and we will assume the volume of M with
respect to ω is normalized to be 2π .
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Theorem 3.1 (ε-regularity theorem). Let (A, φ) be a solution of the gradient flow (1.3)
over the Kähler surface (M,ω) with initial value (A0, φ0). There exist positive constants
ε0 and δ0 such that if, for some R with 0 < R < min{i(M),

√
t0/2}, the inequality

R2−2m
∫
PR(x0,t0)

e(A, φ) dx dt ≤ ε0

holds, where m = 2, then for any δ ∈ (0,min{1/4, δ0}) we have

sup
PδR(x0,t0)

(|FA + [φ, φ∗]|2 + 2|∂Aφ|2) ≤ 16(δR)−4,

sup
PδR(x0,t0)

|∇Aφ|
2
≤ C11,

where C11 is a positive constant depending only on δ, R, the initial data (A0, φ0) and the
geometry of (M,ω).

Proof. For any δ ∈ (0, 1/4], we define the function

f (r) = (2δR − r)4 sup
Pr (x0,t0)

(|FA + [φ, φ∗]|2 + 2|∂Aφ|2).

Since f (r) is continuous and f (2δR) = 0, f (r) attains its maximum at a certain r0 ∈
[0, 2δR). We can find (x1, t1) ∈ Pr0(x0, t0) such that

(|FA + [φ, φ∗]|2 + 2|∂Aφ|2)(x1, t1) = sup
Pr0 (z0)

(|FA + [φ, φ∗]|2 + 2|∂Aφ|2).

We claim that
f (r0) ≤ 16. (3.1)

Otherwise, we have

ρ0 := (2δR − r0)f (r0)−1/4 <
2δR − r0

2
.

Rescaling the Riemannian metric g̃ = ρ−2
0 g and t = t1 + ρ2

0 t̃ , we have

|FA + [φ, φ∗]|2g̃ = ρ
4
0 |FA + [φ, φ∗]|2g, |∂Aφ|

2
g̃ = ρ

4
0 |∂Aφ|

2
g.

Set
eρ0(x, t̃) := |FA + [φ, φ∗]|2g̃ + 2|∂Aφ|2g̃ = ρ

4
0e(A, φ)(x, t1 + ρ

2
0 t̃ ),

bρ0(x, t̃) := |∇Aφ|2g̃(x, t1 + ρ
2
0 t̃ ) = ρ

4
0 |∇Aφ|

2
g(x, t1 + ρ

2
0 t̃ ).

We have eρ0(x1, 0) = 1 and

sup
P̃1(x1,0)

eρ0 = ρ
4
0 sup
Pρ0 (x1,t1)

(|FA + [φ, φ∗]|2g + 2|∂Aφ|2g)

≤ ρ4
0 sup
P2δR+r0/2(x0,t0)

(|FA+[φ, φ∗]|2g+2|∂Aφ|2g)≤ρ
4
0

(
2δR−r0

2

)−4

f (r0) = 16.



The gradient flow of Higgs pairs 1397

From the Bochner type inequality (2.11), we have(
∂

∂t̃
−1g̃

)
(bρ0 + ρ

4
0) = ρ

6
0

(
∂

∂t
−1g

)
(|∇Aφ|

2
g + 1)

≤ C7ρ
6
0(|FA|g + |Rm|g + |Ric|g + |φ|2g)|∇Aφ|

2
g

+ C7ρ
6
0 |φ|g|∇ Ric|g|∇Aφ|g

≤ C(bρ0 + ρ
4
0) in P̃1(x1, 0),

where C is a positive constant depending only on the initial data (A0, φ0) and the geom-
etry of (M,ω). Then Moser’s iteration yields the parabolic mean-value inequality

sup
P̃1/2(x1,0)

(bρ0 + ρ
4
0) ≤ C

′

∫
P̃1(x1,0)

(bρ0 + ρ
4
0) dVg̃ dt̃

≤ C′ρ2−2m
0

∫
Pρ0 (x1,t1)

(|∇Aφ|
2
g + 1) dVg dt

≤ C13ρ
4−2m
0 = C13, (3.2)

where C13 is a positive constant depending only on the initial data (A0, φ0) and the ge-
ometry of (M,ω), and we have used the fact thatm = 2. Using the Bochner type estimate
(2.12), we have(

∂

∂t̃
−1g̃

)
eρ0 = ρ

6
0

(
∂

∂t
−1g

)
(|FA + [φ, φ∗]|2g + 2|∂Aφ|2g)

≤ Cρ6
0(|FA + [φ, φ∗]|g + |Rm|g

+ |φ|2g + |∇Aφ|g)(|FA + [φ, φ∗]|2g + 2|∂Aφ|2g)

≤ C14eρ0 in P̃1/2(x1, 0),

where the positive constant C14 depends only on i(M), the initial data (A0, φ0) and the
geometry of (M,ω). Then Moser’s iteration yields the parabolic mean-value inequality

1 = eρ0(x1, 0) ≤ C′
∫
P̃1/2(x1,0)

eρ0 dVg̃ dt̃

≤ C′ρ2−2m
0

∫
Pρ0 (x1,t1)

(|FA + [φ, φ∗]|2g + 2|∂Aφ|2g) dVg dt, (3.3)

where C′ is a positive constant depending only the initial data (A0, φ0) and the geometry
of (M, g).

We choose normal complex coordinates centered at x1, and let ϕ ∈ C∞0 (B3R/4(x1))

be a cut-off function such that ϕ ≡ 1 on BR/2(x1), |ϕ| ≤ 1 and |∇ϕ| ≤ 8/R. Taking
r1 = ρ0 and r2 = min{1/4, δ0}R in Theorem 2.3, we have



1398 Jiayu Li, Xi Zhang

ρ2−2m
0

∫
Pρ0 (x1,t1)

(|FA + [φ, φ∗]|2g + 2|∂Aφ|2g) dVg dt

≤ C∗ρ2
0

∫
Pρ0 (x1,t1)

(|FA + [φ, φ∗]|2g + 2|∂Aφ|2g)G(x1,t1+2ρ2
0 )
ϕ2 dVg dt

≤ C∗ρ2
0

∫
Tρ0 (x1,t1+2ρ2

0 )
e(A, φ)G(x1,t1+2ρ2

0 )
ϕ2 dVg dt

≤ C̄R2
∫
Tmin{1/4,δ0}R(x1,t1+2ρ2

0 )
e(A, φ)G(x1,t1+2ρ2

0 )
ϕ2 dVg dt

+ C̄δ2
0R

2 YMH(A0
1, A

0
2, φ

0)

≤ C̄R2−2m
∫
PR(x0,t0)

e(A, φ) dVg dt + C̄δ
2
0R

2 YMH(A0
1, A

0
2, φ

0)

≤ C̃(ε0 + δ0), (3.4)

where the above constants depend only the geometry of (M, g) and the initial data (A0, φ0).
Choosing ε0 and δ0 sufficiently small, we see that (3.3) contradicts (3.2). Thus, we

have proved the claim (3.1). It implies

sup
PδR(x0,t0)

(|FA + [φ, φ∗]|2 + 2|∂Aφ|2) ≤ f (r0)(δR)−4
≤ 16(δR)−4.

On the other hand, using the Bochner type inequality (2.11), inequality (3.4), and Moser’s
iteration again, we have

sup
PδR(x0,t0)

(|∇Aφ|
2
+ 1) ≤ C15

∫
Pmin{1/4,δ0}R(x0,t0)

(|∇Aφ|
2
+ 1) dVg dt ≤ C12

for any δ ∈ (0,min{1/4, δ0}), where C15 and C12 are positive constants depending only
on δ, R, the initial data (A0, φ0) and the geometry of (M,ω). This proves Theorem 3.1.

ut

Using the above ε-regularity theorem, we can analyze the asymptotic behavior of the
gradient heat flow (1.3) on a Kähler surface. In fact, we obtain the following theorem.

Theorem 3.2. Let (A, φ)(x, t) be a global smooth solution of the gradient heat flow
(1.3) on a Kähler surface (M,ω) with smooth initial data. Then there exists a sequence
ti → ∞ such that (A, φ)(x, ti) converges, modulo gauge transformations, to a solution
(A, φ)(·,∞) of the Yang–Mills–Higgs equation (1.2) in the smooth topology outside a
closed set 6an

⊂ M , where 6an is a finite collection of points.

Proof. Let (A(t), φ(t)) be a regular solution of the gradient flow (1.3) in the space B of
Higgs pairs. By Lemma 2.2, we know that

∫
∞

0

∫
M
(|∂A/∂t |2+2|∂φ/∂t |2) dVg dt is finite,

so we can choose a sequence tk →∞ such that∫ tk+a

tk−a

∫
M

(∣∣∣∣∂A∂t
∣∣∣∣2 + 2

∣∣∣∣∂φ∂t
∣∣∣∣2) dVg dt → 0 (3.5)
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for any a > 0, and ∂A
∂t
(·, tk) and ∂φ

∂t
(·, tk)→ 0 strongly in L2. Denote

6 :=
⋂

0<r<i(M)

{
x ∈ M : lim inf

k→∞

∫
Br (x)

e(A, φ)(·, tk) dVg ≥ ε1

}
,

where ε1 is determined later.
Suppose x1 ∈ M \ 6. Then there exists an r1 > 0 such that, for some subsequence

of tk , still denoted by tk , we have∫
Br1 (x1)

e(A, φ)(·, tk) dVg < ε1.

For sufficiently large k, using the local energy estimate lemma 2.2′, we have

r−2
1

∫
Pr1/2(x1,tk)

e(A, φ)(·, tk) dVg dt

≤
1
2

∫
Br1 (x1)

e(A, φ)(·, tk) dVg + C

∫ tk+r
2
1

tk−r
2
1

∫
M

(∣∣∣∣∂A∂t
∣∣∣∣2 + 2

∣∣∣∣∂φ∂t
∣∣∣∣2) dVg dt

+ C

(
YMH(A0, φ0)

∫ tk+r
2
1

tk−r
2
1

∫
M

(∣∣∣∣∂A∂t
∣∣∣∣2 + 2

∣∣∣∣∂φ∂t
∣∣∣∣2) dVg dt)1/2

≤ ε1,

where we choose ε1 = ε0 and ε0 is the constant of Theorem 3.1. Noting |φ| is bounded
by a constant, by the ε-estimate in Theorem 3.1, we have

sup
Pδr1 (x1,tk)

(|FA|
2
+ |∇Aφ|

2) ≤ C16, (3.6)

where C16 is a positive constant depending only on δ, r1, the initial data, and the geometry
of (M,ω). Then, for any x1 ∈ M \6, there exists a sufficiently small number δ such that
Bδr1(x1) ⊂ M \6. This implies that the singular set 6 is closed.

Next we prove that 6 is a finite collection of points. For a given δ > 0, due to the fact
that 6 is closed, we may find a finite collection of geodesic balls {Bri (xi)}i∈0 , ri ≤ δ,
such that {Bri (xi)}i∈0 is a cover of6, xi ∈ 6 for all i ∈ 0, and Bri/2(xi)∩Brj /2(xj ) = ∅
for i 6= j . For k sufficiently large, we have∫

Bri /2

e(A, φ)(·, tk) dVg ≥ ε1

for all i ∈ 0. Summing over i ∈ 0 we then get∑
i∈0

1 ≤
1
ε1

YMH(A, φ)(tk) ≤
1
ε1

YMH(A0, φ0),

i.e. 6 is a finite collection of points, and the number of points is less than
(1/ε1)YMH(A0, φ0).
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By using Uhlenbeck’s Theorem ([U2, Theorem 3.6]) and the above estimates (3.6),
there exists a subsequence {k′} of {k} and gauge transformations σ(k′) on E such that
(σ (k′)(A(tk′)), σ (k

′)(φ(tk′))) converges to a pair (A, φ)(·,∞) weakly in the H 1,2 topol-
ogy on any compact subset outside 6 and (A, φ)(·,∞) is a solution of the Yang–Mills–
Higgs equation (1.2) outside 6. Using standard parabolic regularity techniques (similar
to that in [HT, Proposition 6]), we can also prove that (σ (k′)(A(tk′)), σ (k′)(φ(tk′))) con-
verges to (A, φ)(·,∞) in the C∞ topology outside 6. In fact, for x1 ∈ M \ 6, from the
above, we see that there exists a small R0 such that

sup
PR0 (x1,tk)

(|FA|
2
+ |∇Aφ|

2) ≤ C

for sufficiently large k. We assume that

sup
PRj (x1,tk)

(|∇
j
AFA|

2
+ |∇

j+1
A φ|2) ≤ C

for j = 0, . . . , l − 1. By an argument similar to the one used in the proof of Lemmas 2.4
and 2.5, we have(
1−

∂

∂t

)
(|∇

j
AFA|

2
+|∇

j+1
A φ|2) ≥ 2(|∇j+1

A FA|
2
+|∇

j+2
A φ|2)−C(|∇

j
AFA|

2
+|∇

j+1
A φ|2)

in PRj (x1, tk) with small Rj and j = 0, . . . , l. Then Moser’s parabolic estimate yields

sup
PδRl (x1,tk)

(|∇ lAFA|
2
+ |∇

l+1
A φ|2) ≤ C.

We can now use a standard diagonal process of gluing gauges ([DK, Th. 4.4.8]) and
again passing to a subsequence to obtain smooth gauge transformations σi such that
(σi(A(ti)), σi(φ(ti))) converge to a field (A∞, φ∞) in the smooth topology on compact
subsets of M \6. This proves the theorem. ut

Remark. From the above theorem, we know that the limiting Higgs pair (A∞, φ∞) sat-
isfies the Yang–Mills–Higgs equation (1.2) outside a finite collection of points 6an. On
the other hand, from Lemma 2.3 and (2.10), we know that |φ∞| and

∫
M
|∇A∞φ∞|

2 are
bounded. In the following, we will give a removable singularities theorem for the solu-
tion of the Yang–Mills–Higgs equation (1.2), from which we can deduce that the limiting
Higgs pair extends smoothly to M by a continuous gauge transformation. For conve-
nience, we concentrate on bundles over flat manifolds. For the regularity theory, the cur-
vature of the base manifold itself is not particularly important. The restriction to a flat
base manifold does not crucially affect our results.

Before discussing the removable singularities theorem, we state some standard a priori
estimates in PDE which will be used repeatedly.

Theorem 3.3 ([HL]). Assume that n ≥ 3 and B1 is the unit ball in Rn. Suppose that
aij ∈ L∞(B1) satisfies λ1|ξ |

2
≤ aij ξiξj ≤ λ2|ξ |

2 for any x ∈ B1, ξ ∈ Rn, for some
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positive constants λ1 and λ2. Assume that f1 ∈ L
n/2(B1) and f2 ∈ L

q(B1) for some
q ∈ [2n/(n+ 2), n/2). Suppose that u ∈ H 1(B1) is a subsolution in the following sense:∫

B1

{aij∂iu∂jϕ + f1uϕ} ≤

∫
B1

f2ϕ

for any ϕ ∈ H 1
0 (B1) and ϕ ≥ 0 in B1. Then u+ ∈ Lploc(B1) for 1/p + 2/n = 1/q.

Moreover, there exists a small positive constant ε2 such that if ‖f1‖Ln/2(B1)
< ε2 then

‖u+‖Lp(B1/2) ≤ C(‖u
+
‖L2(B1)

+ ‖f2‖Lq (B1)),

where C is a positive constant depending only on n, λ1, λ2, q, ε2.

Theorem 3.4 ([M]). Assume that b ∈ Lq(U), q > n/2, uλ ∈ W 1,2
loc (U) with 1/2 < λ ≤

1, and u ≥ 0 satisfies the following subelliptic inequality in a weak sense:

1u+ bu ≥ 0.

Then u is bounded on compact subdomains of U . Moreover, if B(x, r) ⊂ B(x0, r0) ⊂ U ,
then

|uλ(x)|2 ≤ Cr−n
∫
B(x0,r0)

|uλ|2,

where the constant C depends on n, q, λ and r2/n−1/q
0 ‖b‖Lq (B(x0,r0)).

In the following, we prove regularity of small energy solutions of the Yang–Mills–Higgs
equation (1.2).

Theorem 3.5. There exists a positive constant ε3 such that if (A, φ) is a smooth solution
of the Yang–Mills–Higgs equations (1.2) on B2 ⊂ R4, satisfying

∫
B2
{|FA|

2
+ |∇Aφ|

2

+ |φ|4} < ε3, then

‖FA + [φ, φ∗]‖C0(B1)
+ ‖∇Aφ‖C0(B1)

≤ C(‖FA + [φ, φ∗]‖L2(B2)
+ ‖∇Aφ‖L2(B2)

),

where C is a positive constant depending only on ε3.

Proof. From (2.5), (2.11), (2.12) and (2.13), we have

1|φ|2 ≥ −C4|φ|
2, (3.7)

1|∇Aφ|
2
− 2|∇A∇Aφ|2 ≥ −C7(|FA| + |φ|

2)|∇Aφ|
2, (3.8)

1(|FA + [φ, φ∗]|2 + 2|∂Aφ|2)− 2|∇A(FA + [φ, φ∗])|2 − 4|∇A(∂Aφ)|2

≥ −C8(|FA| + |∇Aφ| + |φ|
2)(|FA + [φ, φ∗]|2 + 2|∂Aφ|2), (3.9)

and

1(|FA + [φ, φ∗]|2)− 2|∇A(FA + [φ, φ∗])|2

≥ −C8(|FA| + |∇Aφ| + |φ|
2)(|FA + [φ, φ∗]|2 + 2|∂Aφ|2). (3.10)
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It follows from (3.8) and (3.10) that

1(|FA + [φ, φ∗]|2 + |∇Aφ|2)− 2|∇A(FA + [φ, φ∗])|2 − 2|∇A∇Aφ|2

≥ −C17(|FA| + |∇Aφ| + |φ|
2)(|FA + [φ, φ∗]|2 + |∇Aφ|2).

Using the Kato inequality, we have

1|∇Aφ| ≥ −C18(|FA| + |φ|
2)|∇Aφ|,

1
√
|FA+[φ, φ∗]|2+2|∂Aφ|2 ≥ −C19(|FA|+|∇Aφ|+|φ|

2)
√
|FA+[φ, φ∗]|2+2|∂Aφ|2,

and

1

√
|FA + [φ, φ∗]|2 + |∇Aφ|2

≥ −C20(|FA| + |∇Aφ| + |φ|
2)

√
|FA + [φ, φ∗]|2 + |∇Aφ|2 (3.11)

whereC18,C19 andC20 are positive constants depending only on the rank of the bundleE.
From (3.7) and the Sobolev inequality, we have∥∥|φ|2∥∥

L4(B1/2)
≤ C21

∥∥|φ|2∥∥
L2(B1)

(3.12)

Applying (3.11) and Theorem 3.3 with u =
√
|FA + [φ, φ∗]|2 + |∇Aφ|2, f1 =

−C20(|FA| + |∇Aφ| + |φ|
2), f2 = 0, p = 4, we see that if∫

B1

{|FA|
2
+ |∇Aφ|

2
+ |φ|4} ≤

1
3

(
ε2

C20

)2

,

i.e. ‖f1‖L2(B1)
< ε2, then

∥∥∥√|FA + [φ, φ∗]|2 + |∇Aφ|2
∥∥∥
L4(B1/2)

≤ Cε2

∥∥∥√|FA + [φ, φ∗]|2 + |∇Aφ|2
∥∥∥
L2(B1)

. (3.13)

Choose ε3 =
1
3 (ε2/C20)

2. If
∫
B2
{|FA|

2
+ |∇Aφ|

2
+ |φ|4} ≤ ε3 we can combine (3.12)

and (3.13) to get the following inequality:

‖FA‖L4(B1/2)
+ ‖∇Aφ‖L4(B1/2)

+ ‖ |φ|2‖L4(B1/2)

≤ 8
(∥∥∥√|FA + [φ, φ∗]|2 + |∇Aφ|2

∥∥∥
L4(B1/2)

+
∥∥|φ|2∥∥

L4(B1/2)

)
≤ C22

(∥∥|φ|2∥∥
L2(B1)

+ ‖FA‖L2(B1)
+ ‖∇Aφ‖L2(B1)

)
,

where the constant C22 depends on ε3.
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Now, applying (3.11) and Theorem 3.4 with u =
√
|FA + [φ, φ∗]|2 + |∇Aφ|2, b =

C20(|FA| + |∇Aφ| + |φ|
2), λ = 1, q = 4, we have, for any x ∈ B1,

(|FA + [φ, φ∗]|2 + |∇Aφ|2)(x) ≤ C23

∫
B(x,1/2)

{|FA + [φ, φ∗]|2 + |∇Aφ|2}

≤ C23

∫
B2

{|FA + [φ, φ∗]|2 + |∇Aφ|2}.

Hence

‖FA + [φ, φ∗]‖C0(B1)
+ ‖∇Aφ‖C0(B1)

≤ C24(‖FA + [φ, φ∗]‖L2(B2)
+ ‖∇Aφ‖L2(B2)

).

Since
∥∥|φ|2∥∥

L2(B1)
, ‖FA‖L2(B1)

, ‖∇Aφ‖L2(B1)
are all invariant under dilation, the size

of the ball does not affect the constant C of Theorem 3.4, so C24 is a positive constant
depending only on ε3. ut

Proposition 3.6. There exists a positive constant ε3 such that if (A, φ) is a smooth solu-
tion of the Yang–Mills–Higgs equations (1.2) on B2 \ {0}, satisfying

∫
B2
{|FA|

2
+ |∇Aφ|

2

+ |φ|4} < ε3, then for any x ∈ B1 \ {0},

|x|2(|FA + [φ, φ∗]| + |∇Aφ|) ≤ C(‖FA + [φ, φ∗]‖L2(B(0,2|x|)) + ‖∇Aφ‖L2(B(0,2|x|))),

(3.14)
where C is a positive constant depending only on ε3.

Proof. Choose ε3 as in Theorem 3.5. For any x0 ∈ B1 \ {0} we define

Ã(x) :=
|x0|

2
A

(
x0 +

|x0|

2
x

)
, φ̃(x) :=

|x0|

2
φ

(
x0 +

|x0|

2
x

)
.

It is clear that (Ã, φ̃) is a smooth solution of the Yang–Mills–Higgs equations (1.2) on B2,
and

∫
B2
{|F

Ã
|
2
+ |∇

Ã
φ̃|2 + |φ̃|4} < ε3 by conformal invariance. From Theorem 3.5, we

have

‖F
Ã
+ [φ̃, φ̃∗]‖C0(B1)

+ ‖∇
Ã
φ̃‖C0(B1)

≤ C24(‖FÃ + [φ̃, φ̃∗]‖L2(B2)
+ ‖∇

Ã
φ̃‖L2(B2)

).

Scaling back, we deduce the proposition. ut

For further discussion, we first recall Uhlenbeck’s result about the existence of a specific
gauge, called broken Hodge gauge. In such a gauge the powerful regularity argument of
elliptic theory can be applied to the Yang–Mills–Higgs equations (1.2).

Theorem 3.7 ([U1]). Let A be a smooth connection form on B2 \ {0} with curvature F .
Then there is a positive constant ε4 such that if |F(x)| |x|2 ≤ ε5 < ε4 on B1 \ {0} then
there exists a broken Hodge gauge on B1 \ {0} which satisfies the following properties.
Set Ui = {x : 2−i ≤ |x| ≤ 2−i+1

}, Si = {x : |x| = 2−i}, i = 1, 2, . . . . Then the broken
Hodge gauge is smooth on each Ui and agrees on Si . Write

Ai = A|Ui , F i = F |Ui .

Then {Ai} and {F i} satisfy:
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(1) d∗Ai = 0 ;
(2) Aiθ |Si = A

i+1
θ |Si , where Aθ |Si are tangential components of A;

(3) d∗Aiθ |Si = d
∗Aiθ |Si−1 = 0;

(4)
∫
Si
Air =

∫
Si−1

Air = 0, where Ar is the radial component of A;

(5)
∫
S0
|A1
|
2
≤ b1

∫
S0
|F 1
|
2,
∫
Ui
|Ai |4 ≤ b2ε

2
5
∫
Ui
|F i |2,

∫
B1
|A|4 ≤ b2ε

2
5
∫
B1
|F |2 ≤

b2ε
4
5 for some positive constants b1 and b2 whenever ε5 is sufficiently small.

Theorem 3.8 (removable singularity). Let (A, φ) be a smooth solution of the Yang–
Mills–Higgs equations (1.2) on B2 \ {0} with ‖φ‖L∞(B2) and

∫
B2
{|FA|

2
+ |∇Aφ|

2
} finite.

Then (A, φ) is gauge equivalent by a continuous gauge transformation to a smooth solu-
tion on B2.

Proof. By rescaling, we can assume that ‖φ‖L∞(B2) < ε6 and
∫
B2
{|FA|

2
+ |∇Aφ|

2 < ε6}

with ε6 sufficiently small. By Proposition 3.6, for any x ∈ B1 \ {0},

|x|2|F |(x) ≤ |x|2|F + [φ, φ∗]|(x)+ 2|x|2|φ|2(x) ≤ Cε6.

By Theorem 3.7, the above inequality guarantees the existence of a broken Hodge gauge.
In what follows, the broken Hodge gauge is used as a reference frame.

Integrating by parts on Ui gives∫
Ui

|F i |2 =

∫
Ui

{〈D∗AF
i, Ai〉 − 〈F i, Ai ∧ Ai〉} +

(∫
Si−1

−

∫
Si

)
tr(Aiθ ∧ (∗F

i)θ ).

Using equation (1.2) and the properties of the broken Hodge gauge, we get∫
Ui

〈D∗AF
i, Ai〉 ≤ C

∫
Ui

|Ai | |∇Aφ| |φ|

≤ C

∫
Ui

{ε−1
5 |A

i
|
4
+ ε

1/4
5 |φ|

4
+ (ε

1/2
5 + ε

1/4
5 )|∇Aφ|

2
}

≤ C

∫
Ui

{b2ε5|F
i
|
2
+ ε

1/4
5 |φ|

4
+ ε

1/4
5 |∇Aφ|

2
},

and

−

∫
Ui

〈F i, Ai∧Ai〉 ≤

∫
Ui

|F i | |Ai |2 ≤

(∫
Ui

|F i |2
)1/2(∫

Ui

|Ai |4
)1/2

≤

√
b2ε5

∫
Ui

|F i |2.

Summing over i and using Hölder’s inequality gives∫
B1

|F |2 ≤ Cε5

∫
B1

|F |2+Cε
1/4
5

∫
B1

(|φ|4+|∇Aφ|
2)+

(∫
∂B1

|F 1
|
2
)1/2(∫

∂B1

|A1
|
2
)1/2

.

Since the bound ε5 could be sufficiently small, and noting the properties of the broken
Hodge gauge, we get∫

B1

|F |2 ≤ Cε
1/4
5

∫
B1

(|φ|4 + |∇Aφ|
2)+ C

∫
∂B1

|F 1
|
2.
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By a rescaling argument, we have, for 0 < r ≤ 1,∫
Br

|F |2 ≤ Cε
1/4
5

∫
Br

(|φ|4 + |∇Aφ|
2)+ Cr

∫
∂Br

|F 1
|
2. (3.15)

From (2.5), we have

1|φ|2 = 2|3ω[φ, φ∗]|2 + 2|∇Aφ|2.

Integrating the above equality on Ui , we have∫
Ui

|∇Aφ|
2
=

1
2

∫
Ui

{
1

1
2
|φ|2 + |3ω[φ, φ∗]|2

}
≤

1
2

(∫
Si−1

−

∫
Si

)
∂

∂r
|φ|2 + C

∫
Ui

|φ|4.

From (3.14) and the bound of |φ|, it is easy to check that∫
Si

|∇Aφ| |φ| → 0 (3.16)

as i →∞. Summing over i, we get∫
B1

|∇Aφ|
2
≤ C

∫
B1

|φ|4 + C

∫
∂B1

|∇Aφ|
2
+ C

∫
∂B1

|∇Aφ|
2.

By a scaling argument again, we have, for any 0 < r ≤ 1,∫
Br

|∇Aφ|
2
≤ C

∫
Br

|φ|4 + Cr

∫
∂Br

|∇Aφ|
2
+ Cr−1

∫
∂Br

|∇Aφ|
2. (3.17)

Putting (3.15), (3.17) together, and using the bound of |φ|, one checks that for any 0 <
r ≤ 1, ∫

Br

(|F |2 + |∇Aφ|
2) ≤ Cr

∫
∂Br

(|F |2 + |∇Aφ|
2)+ Cr2,

where C > 0 is a constant. Denote f (r) :=
∫
Br
(|F |2+|∇Aφ|

2). Then the above inequal-
ity implies that

f (r) ≤ Crf ′(r)+ Cr2.

Since f ′(r) ≥ 0, and we may choose C > 1, it follows that

d

dr

(
f (r)

rα
+

1
2− α

r2−α
)
≥ 0,

where α := 1/C. From the above inequality, we have

f (r) ≤ Crα.

From the last inequality, it is easy to conclude that there exists β > 2 such that∫
B1

(|F |β + |∇Aφ|
β) ≤ C,
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and hence
A ∈ W 1,β(B1), φ ∈ W 1,β(B1).

Since ∂Aφ = 0, we have 1Aφ = [
√
−13ωFA, φ] − FA ] φ. In the broken Hodge

gauge, the Yang–Mills–Higgs equations (1.2) are uniformly elliptic systems. Above we
have proved thatA ∈ W 1,β(B1) and φ ∈ W 1,β(B1) for some β > 2; we can then conclude
that (A, φ) is smooth on B1 by standard elliptic theory. This completes the proof of the
theorem. ut

Corollary 3.9. The limiting Higgs pair (A∞, φ∞) of the gradient flow (1.3) can be ex-
tended smoothly by a continuous gauge transformation to a smooth solution of the Yang–
Mills–Higgs equations (1.2) on M .

Proof. From Theorem 3.2 and the remark, we know that |φ∞|,
∫
M
|FA∞ + [φ∞, φ∗∞]|2

and
∫
M
|∇A∞φ∞|

2 are bounded. So the statement follows by the removable singularities
Theorem 3.8. ut

Proposition 3.10. Let (A, φ) be a Higgs pair on a Hermitian vector bundle (E,H) over
a Kähler manifold M , and suppose that it is a critical point of the Yang–Mills–Higgs
functional (1.3) (i.e. (A, φ) is a solution of the Yang–Mills–Higgs equations (1.2)). Then
the Higgs bundle (E,H,A, φ) has a holomorphic orthogonal splitting

(E,H,A, φ) =

l⊕
i=1

(Ei, H i, Ai, φi),

where Ei are φ-invariant and H i are Hermitian-Einstein metrics on the Higgs bundle
(Ei, Ai, φi).

Proof. From the equation (1.2), we have

DAθ = 0, [θ, φ] = 0,

where θ = 3ω(FA + [φ, φ∗]). Since θ is parallel and (
√
−1 θ)∗ =

√
−1 θ , we can de-

compose E according to the eigenvalues of
√
−1 θ . We obtain a holomorphic orthogonal

decomposition

E =

l⊕
i=1

Ei,

and
φ : Ei → Ei .

Let H i be the restrictions of H to Ei , φi be the restriction of φ to Ei , and Ai = A|Ei .
Then (Ai, φi) is a Higgs pair on (Ei, Hi) and satisfies

√
−13ω(FAi + [φi, (φi)∗]) = λi IdEi .

So (Ai, φi) is a Hermitian-Einstein Higgs pair on (Ei, H i), i.e. (Ei, H i, Ai, φi) is a
Hermitian-Einstein Higgs bundle. ut
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Combining Theorem 3.2, Corollary 3.9 and Proposition 3.10, we have the following the-
orem.

Theorem 3.11. Let (A, φ)(x, t) be a global smooth solution of the gradient heat flow
(1.3) on the Kähler surface (M,ω) with smooth initial data. Then there exists a sequence
ti → ∞ such that (A, φ)(x, ti) converges, modulo gauge transformations, to a solu-
tion (A∞, φ∞) of the Yang–Mills–Higgs equation (1.2) in the smooth topology outside a
closed set 6an

⊂ M , where 6an is a finite collection of points. We will call (A∞, φ∞)
an Uhlenbeck limit of the gradient flow. Moreover, the limiting Higgs pair (A∞, φ∞) can
be extended smoothly by a continuous gauge transformation to a smooth solution of the
Yang–Mills–Higgs equations (1.2) on a Hermitian bundle (E∞, H∞) over M , and the
extension (E∞, H∞, A∞, φ∞) has a holomorphic orthogonal splitting

(E∞, H∞, A∞, φ∞) =

l⊕
i=1

(Ei∞, H
i
∞, A

i
∞, φ

i
∞),

where H i
∞ is a Hermitian-Einstein metric on the Higgs bundle (Ei∞, A

i
∞, φ

i
∞).

Corollary 3.12. Let (Ai, φi) be a sequence of Higgs pairs along the gradient heat flow
(1.3) with Uhlenbeck limit (A∞, φ∞). Then:

(1) θ(Ai, φi)→ θ(A∞, φ∞) in Lp for all 1 ≤ p < ∞, and limt→∞

∫
M
|θ(At , φt )|

2
=∫

M
|θ(A∞, φ∞)|

2;
(2) ‖θ(A∞, φ∞)‖L∞ ≤ ‖θ(Aj , φj )‖L∞ ≤ ‖θ(At0 , φt0)‖L∞ for 0 ≤ t0 ≤ tj .

Here θ(A, φ) = 3ω(FA + [φ, φ∗]).

Proof. (1) From Theorem 3.11, we know that (Aj , φj ) converges to the Uhlenbeck limit
in the smooth topology outside a finite collection of points; on the other hand, from
(2.8), we know that ‖θ(At , φt )‖L∞ is decreasing in t , so it follows that θ(Ai, φi) →
θ(A∞, φ∞) in Lp for all 1 ≤ p <∞. The second part is a consequence of Lemma 2.2.

(2) Fix t ≥ 0. We have

‖θ(Aj , φj )‖Lp ≤ (Vol(M))1/p‖θ(Aj , φj )‖L∞ ≤ (Vol(M))1/p‖θ(At , φt )‖L∞

for any 1 ≤ p < ∞ and j sufficiently large. Using the result in (1), we get
‖θ(A∞, φ∞)‖Lp ≤ (Vol(M))1/p‖θ(At , φt )‖L∞ . Letting p → ∞, we conclude that
‖θ(A∞, φ∞)‖L∞ ≤ ‖θ(At , φt )‖L∞ . ut

4. Harder–Narasimhan–Seshadri filtration of Higgs bundles

Given a Higgs bundle (E,A, φ) on a Kähler surface (M,ω), a Higgs subsheaf of
(E,A, φ) is a coherent analytic subsheaf V ⊂ (E,A) such that φ : V → V ⊗ �1

M

(i.e. a φ-invariant coherent analytic subsheaf). The ω-slope µ(V ) of a torsion-free sheaf
V → M is defined by

µω(V ) =
degω(V )
rank(V )

=
1

rank(V )

∫
M

C1(V ) ∧
ωn−1

(n− 1)!
.



1408 Jiayu Li, Xi Zhang

If V is a saturated subsheaf then outside a codimension 2 subset it is a subbundle.
Since dimCM = 2, the singular set of a saturated subsheaf is a locally finite collection of
points.

A torsion-free Higgs sheaf (V ,A, φ) is called ω-stable (resp. ω-semistable) if for all
proper φ-invariant saturated subsheaves F ⊂ V , µω(F ) < µω(V ) (µω(F ) ≤ µω(V )).
When the Kähler form is understood we shall sometimes refer to (V ,A, φ) as simply
stable or semistable, and we will also omit subscripts and write µ(V ).

In the following, we will give a description of the appropriate Higgs bundle versions
of the Harder–Narasimhan filtration and the Harder–Narasimhan–Seshadri filtration; the
proof is almost the same as in the holomorphic bundles case ([Ko, 7.15, 7.17, 7.18]), the
only difference being that we always consider φ-invariant subsheaves instead of usual
subsheaves. We omit the details here.

Proposition 4.1 Let (E,A, φ) → (M,ω) be a Higgs bundle. There is a unique Higgs
subsheaf V with torsion-free quotient E/V such that for every Higgs subsheaf W ⊂ E,
we have:

(1) µ(W) ≤ µ(V );
(2) rank(W) ≤ rank(V ) if µ(W) = µ(V ).

Proposition 4.2 Let (E,A, φ)→ (M,ω) be a Higgs bundle. Then there is a filtration of
E by φ-invariant coherent subsheaves

0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E,

called the Harder–Narasimhan filtration of the Higgs bundle (E,A, φ) (abbr. HN fil-
tration), such that Qi = Ei/Ei−1 is torsion-free and Higgs semistable. Moreover, µ(Qi)

> µ(Qi+1), and the associated graded object Grhn(E,A, φ) =
⊕l

i=1Qi is uniquely
determined by the isomorphism class of (E,A, φ).

Proposition 4.3 Let (V , φ) be a semistable Higgs sheaf over a Kähler surface (M,ω).
Then there is a filtration of V by φ-invariant subsheaves

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vl = V,

called the Seshadri filtration of (V , φ), such that Vi/Vi−1 is torsion-free and Higgs stable.
Moreover, µ(Vi/Vi−1) = µ(V ) for each i, and the associated graded object Grs(V , φ) =⊕l

i=1 Vi/Vi−1 is uniquely determined by the isomorphism class of (V , φ).
Let (E,A, φ) be a Higgs bundle over a Kähler surface (M,ω). Then there is a

double filtration, called the Harder–Narasimhan–Seshadri filtration of the Higgs bundle
(E,A, φ) (abbr. HNS filtration), with the following properties: if {Ei}li=1 is the HN fil-
tration of (E,A, φ), then

Ei−1 = Ei,0 ⊂ Ei,1 ⊂ · · · ⊂ Ei,li = Ei

and the successive quotients Qi,j = Ei,j/Ei,j−1 are Higgs stable torsion-free sheaves.
Moreover, µ(Qi,j ) = µ(Qi,j+1) and µ(Qi,j ) > µ(Qi+1,j ), and the associated graded
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object

Grhns(E,A, φ) =

l⊕
i=1

li⊕
j=1

Qi,j

is uniquely determined by the isomorphism class of (E,A, φ).

It will be convenient to denote the φ-invariant subsheaf Ei in the HN filtration by
Fhn
i (E,A, φ), or by Fhn

i,ω(E,A, φ), when we wish to emphasize the role of the Kähler
structure.

Definition 4.4. For a Higgs bundle (E,A, φ) of rank R, construct a nonincreasing R-
tuple of numbers

Eµ(E,A, φ) = (µ1, . . . , µR)

from the HN filtration by setting µi = µ(Qj ) for rank(Ej−1) + 1 ≤ i ≤ rank(Ej ). We
call Eµ(E,A, φ) the Harder–Narasimhan type of (E,A, φ).

Remark. For a pair Eµ, Eλ of R-tuples satisfying
∑R
i=1 µi =

∑R
i=1 λi , we define

Eµ ≤ Eλ ⇔
∑
i≤k

µi ≤
∑
i≤k

λi for all k = 1, . . . , R.

We next turn to the HN type of the Uhlenbeck limit. We can obtain the following:

Lemma 4.5. Let (Aj , φj ) = gj (A0, φ0) be a sequence of complex gauge equivalent
Higgs pairs on a complex vector bundle E of rank R with Hermitian metric H0. Let S be
a coherent φ0-invariant subsheaf of (E,A0). Suppose that

√
−13ω(FAj +[φj , φ∗j ])→ a

in L1 as j →∞, where a ∈ L1(
√
−1 u(E)), and that the eigenvalues λ1 ≥ · · · ≥ λR of

a are constant almost everywhere. Then deg(S) ≤
∑
i≤rank(S) λi .

Proof. Since deg(S) ≤ deg(SatE(S)), we may assume that S is saturated. Let πj denote
the orthogonal projection onto gj (S) with respect to the Hermitian metric H0. It is well
known that πj is an L2

1 section of the smooth endomorphism bundle of E, and satisfies
π2
j = πj = π

∗

j , (Id−πj )∂Ajπj = 0 and (Id−πj )φiπj = 0 (since gj (S) is φj -invariant).
The usual degree formula applies (see [Si1, Lemma 3.2]), and one has

deg(S) =
1

2π

∫
M

(
Tr(
√
−1 (FAj + [φj , φ∗j ])πj )− |(∂Aj + φ)πj |

2).
Then one can show the result by an argument similar to the one used in the proof of
Proposition 2.21 in [DW1] for the Yang–Mills case. ut

Using Corollary 3.12 and Lemma 4.5, and arguing as in [DW1, Proposition 2.21], we
have:

Proposition 4.6. Let (Ai, φi) be a sequence of Higgs pairs along the gradient heat flow
(1.3) with Uhlenbeck limit (A∞, φ∞). Let Eµ0 = (µ1, · · · , µR) be the HN type of the
Higgs bundle (E,A0, φ0), and let Eλ∞ = (λ1, . . . , λR) be the type of the Higgs bundle
(E∞, A∞, φ∞). Then Eµ0 ≤ Eλ∞.
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5. The HN type of the Uhlenbeck limit

Let (At , φt ) be a smooth solution of the gradient heat flow (1.3) over a Kähler sur-
face with initial data (A0, φ0), and let (A∞, φ∞) be an Uhlenbeck limit. From The-
orem 3.11, we know that (A∞, φ∞) is a smooth Yang–Mills–Higgs pair on a Hermi-
tian bundle (E∞, H∞), so θ(A∞, φ∞) is parallel, and the constant eigenvalues vector
Eλ∞ = (λ1, . . . , λR) of

√
−1 θ(A∞, φ∞) is just the HN type of the Uhlenbeck limit Higgs

bundle (E∞, A∞, φ∞). Let Eµ be the HN type of the initial Higgs bundle (E,A0, φ0). We
will prove that Eλ∞ = Eµ.

Let u(R) denote the Lie algebra of the unitary group U(R). Fix a real number α ≥ 1,
and for any a ∈ u(R), let ϕα(a) =

∑R
j=1 |λj |

α , where
√
−1 λj are the eigenvalues of a.

It is easy to see that we can find a family ϕα,ρ , 0 < ρ ≤ 1, of smooth convex ad-invariant
functions such that ϕα,ρ → ϕα uniformly on compact subsets of u(R) as ρ → 0. Hence,
from [AB, Prop. 12.16] it follows that ϕα is a convex function on u(R). For a given real
number N , define

HYMα,N (A, φ) =

∫
M

ϕα(−θ(A, φ)+
√
−1N IdE) dvol. (5.1)

Also, we will set HYMα,N ( Eµ) = HYMα( Eµ+N) = 2πϕα(
√
−1 ( Eµ+N)), where Eµ+N =

diag(µ1 + N, . . . , µR + N). We will need the following two lemmas, whose proofs can
be found in [DW1, Lemma 2.23 and Prop. 2.24].

Lemma 5.1. The functional a 7→ (
∫
M
ϕα(a) dvol)1/α defines a norm on Lα(u(E)) which

is equivalent to the Lα norm.

Lemma 5.2. (1) If Eµ ≤ Eλ, then ϕα(
√
−1 Eµ) ≤ ϕα(

√
−1 Eλ) for all α ≥ 1.

(2) Assume µR ≥ 0 and λR ≥ 0. If ϕα(
√
−1 Eµ) = ϕα(

√
−1 Eλ) for all α in some set

S ⊂ [1,∞) possessing a limit point, then Eµ = Eλ.

Proposition 5.3. Let (At , φt ) be a solution of the gradient flow (1.3) and (A∞, φ∞)
be a subsequential Uhlenbeck limit of (At , φt ). Then for any α ≥ 1 and any N , t 7→
HYMα,N (At , φt ) is nonincreasing, and limt→∞ HYMα,N (At , φt )=HYMα,N (A∞, φ∞).

Proof. From the above we can approximate ϕα by smooth convex ad-invariant func-
tions ϕα,ρ . On the other hand, from inequality (2.7), we know that the functional
t 7→

∫
M
ϕα,ρ(θ(At , φt ) −

√
−1N IdE) dvol is nonincreasing along the flow, so t 7→

HYMα,N (At , φt ) is also nonincreasing.
By Th. 3.11 and Cor. 3.12, we can choose a sequence tj →∞ such that

HYMα,N (Atj , φtj )→ HYMα,N (A∞, φ∞).

Then the convergence follows because HYMα,N (At , φt ) is nonincreasing in t . ut

By Proposition 4.3, a Higgs bundle (E,A, φ) admits a filtration (i.e. HNS filtration) by
saturated φ-invariant subsheaves Ei so that the successive quotients Qi = Ei/Ei−1 are
Higgs stable and torsion-free. For each i, we have an exact sequence of sheaves

0→ Qi → Q∗∗i → Ti → 0,



The gradient flow of Higgs pairs 1411

where Q∗∗i is locally free and Ti is a torsion sheaf supported at finitely many points.
Define the set 6i to be the support of Ti , and let 6alg

=
⋃
6i . We will refer to 6alg as

the singular set of the filtration {Ei}. Arguing as in [DW1, Section 3, Lemma 3.3], we can
consider M as a sequence of blow-ups at points, and construct a family of Kähler forms
on M .

Lemma 5.4. Let π : M → M be a sequence of monoidal transformations with excep-
tional set e, where π(e) = 6alg, and choose a Kähler form ω on M . Then there is a
smooth, closed (1, 1)-form η on M and a number ε0 with the following properties:

(1) ωε = π∗ω + εη is a Kähler form on M for all 0 < ε ≤ ε0;
(2) for any closed 2-form α on M ,

∫
M
π∗α ∧ η = 0.

In the following, we assume that the slope µ(E) of a sheaf E on X will be taken with
respect to ω. For a sheaf E on M , we denote by µε(E) the slope of E with respect to the
metric ωε . Similarly, a subscript ε will indicate that the quantity in question is taken with
respect to the metric ωε . We define µmax(E) to be the maximal slope of a φ-invariant
subsheaf of E, and µmin(E) to be the minimal slope of a φ-invariant torsion-free quotient
subsheaf of E.

Proposition 5.5. Given a Higgs bundle (E, φ) over M and a Higgs sheaf (E, φ) over M
with π∗E = E, φ(π∗X) = π∗φ(X) for any X ∈ E, and given δ > 0, there is %2 > 0, de-
pending upon (E,A, φ), such that for all 0 < ε ≤ %2 we have the following inequalities:

(1) µ(E)− δ ≤ µε(E) ≤ µ(E)+ δ;
(2) µmax(E)− δ ≤ µmax,ε(E) ≤ µmax(E)+ δ;
(3) µmin(E)− δ ≤ µmin,ε(E) ≤ µmin(E)+ δ.

Proof. Parts (1) and (2) are essentially contained in [Bu1, Lemma 5], the only difference
is that we always consider φ-invariant subsheaves instead of usual subsheaves. For (3), it
is sufficient to prove µmin(E) = −µmax(E

∗). For any ε, consider an exact sequence

0→ E1 → E→ E2 → 0

such that E1 is a φ-invariant subsheaf, E2 is torsion-free, and µmin(E) ≥ µ(E2) − ε.
Dualizing, we have an exact sequence

0→ E∗2 → E∗→ E∗1 .

We know that E∗2 is a φ∗-invariant subsheaf of E∗ because E1 is φ-invariant, where
[φ∗(θ)](X) = θ(φ(X)) for any θ ∈ E∗ and X ∈ E. Then we have

µmin(E) ≥ µ(E2)− ε = −µ(E
∗

2 )− ε ≥ −µmax(E
∗)− ε.

We also consider an exact sequence

0→ ϕ1 → E∗→ ϕ2 → 0
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such that ϕ1 is φ∗-invariant, ϕ2 is torsion-free and µmax(E
∗) ≤ µ(φ1)+ ε. Dualizing, we

have an exact sequence
0→ ϕ∗2 → E∗∗→ ϕ∗1 .

Considering E as a subsheaf of E∗∗ under the natural injection, we define F1 = E ∩ ϕ
∗

2 ,
F2 = E/F1. Now F1 is a φ-invariant subsheaf of E, since ϕ2 is φ∗-invariant. On the other
hand, it is easy to check that det(ϕ∗2/F1) is a trivial line bundle, i.e. det(ϕ∗2 ) = det(F1). In
particular, µ(F1) = µ(ϕ

∗

2 ). Then

µmax(E
∗) ≤ µ(φ1)+ ε = (rank(E)µ(E∗)− rank(φ2)µ(φ2))+ ε

= −(rank(E)µ(E∗∗)− rank(φ∗2 )µ(φ
∗

2 ))+ ε

= −(rank(E)µ(E)− rank(F1)µ(F1))+ ε

≤ −µmin(E)+ ε.

Since ε is arbitrary, we have µmax(E) = −µmin(E
∗). ut

An inductive argument repeatedly using Prop. 5.5 implies convergence of the HN type.

Corollary 5.6. Let (E, φ) be a Higgs bundle over M and (E, φ) be a Higgs sheaf over
M with π∗E = E, φ(π∗X) = π∗φ(X) for any X ∈ E. Let Eµε denote the HN type of
(E, φ) with respect to ωε and Eµ the HN type of (E, φ) with respect to ω. Then Eµε → Eµ
as ε → 0.

As a consequence, we have ([Bu2, Prop. 3.4(d)]):

Corollary 5.7. Let (E, φ) be a Higgs bundle overM and (E, φ) be a Higgs sheaf overM
with π∗E = E, φ(π∗X) = π∗φ(X) for any X ∈ E. If the Higgs sheaf (E, φ) is ω-stable,
then there is a number %2 > 0, depending upon (E,A, φ), such that the Higgs bundle
(E, φ) is ωε-stable for all 0 < ε ≤ %2.

The following proposition was proved in [DW1, Proposition 3.7].

Proposition 5.8. Let 0 = E0 ⊂ E1 ⊂ · · · ⊂ El−1 ⊂ El = E be a filtration of a
holomorphic vector bundle E→ M by saturated subsheaves Ei , and set Qi = Ei/Ei−1.
Then there is a monoidal transformation π : M → M with exceptional set e and a
filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ El−1 ⊂ El = E = π∗E such that each Ei =
SatE(π

∗Ei) is a subbundle of E. If we set Qi = Ei/Ei−1, we also have exact sequences
0 → Qi → π∗Qi → Ti → 0, where Ti is a torsion sheaf supported at the singular set
of Qi . Moreover π(e) = 6alg is the union of the singular sets of Qi; π∗Ei = Ei; and
Q∗∗i = (π∗Qi)

∗∗.

Let H be a smooth Hermitian metric on the holomorphic bundle E, and let F = {Fi}li=1
be a filtration of E by saturated subsheaves: 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fl−1 ⊂ Fl = E.
Associated to each Fi and the metric H we have the unitary projection πHi onto Fi . It
is well known that πHi are bounded L2

1 Hermitian endomorphisms. For convenience, we
set πH0 = 0. Given real numbers µ1, . . . , µl and a filtration F, we define a bounded
L2

1 Hermitian endomorphism of E by 9(F , (µ1, . . . , µl),H) =
∑l
i=1 µi(π

H
i − π

H
i−1).
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Given a Hermitian metric on a Higgs bundle (E, φ), the Harder–Narasimhan–Seshadri
projection9ω(E, φ,H) is the bounded L2

1 Hermitian endomorphism defined above in the
particular case where F is the HNS filtration Fi = Fhns

i (E) and µi = µ(Fi/Fi−1).

Definition 5.9. Fix δ > 0 and 1 ≤ p ≤ ∞. An Lp-δ-approximate critical Hermitian
metric on a Higgs bundle (E, φ) is a smooth metric H such that

‖
√
−13ω(FAH + [φ, φ∗])−9ω(E, φ,H)‖Lp(ω) ≤ δ,

where AH is the Chern connection determined by (∂E, H).

For further considerations, we need the following lemma.

Lemma 5.10 ([DW1, Lemma 3.14]). Let π : M → M be a sequence of monoidal
transformations with exceptional set e, and let ωε = π∗ω + εη be the family of Kähler
metrics defined in Lemma 5.4. Then there is a positive integer m̃ associated toM with the
following property: given any p with 1 ≤ p < 1+ 1/m̃, any ε1 > 0, and any p̃ satisfying
p(1 − m̃(p − 1))−1 < p̃ ≤ ∞ there is a constant C(p̃, ε1) depending only on p̃ and ε1
such that ‖3ωεf ‖Lp(ωε) ≤ C(p̃, ε1)‖3ωε1f ‖Lp̃(ωε1 )

for all smooth (1, 1)-forms f on M
and all 0 < ε ≤ ε1.

Proposition 5.11. Let (E, φ) be a Higgs bundle on a smooth Kähler surface (M,ω), and
µi = µω(Fhns

i (E, φ)/Fhns
i−1(E, φ)). Then there is a sequence of monoidal transformations

determining a Kähler surface π : M → M , a number p0 > 1, and a family of Kähler
metrics ωε converging to π∗ω as ε → 0, such that the following holds: Let F be the
filtration of E = π∗E given by {SatE(π

∗Fhns
i (E, φ))}. Then for any δ > 0 and any

1 ≤ p < p0 there are ε1 > 0 and a smooth Hermitian metric H on E such that for all
0 < ε ≤ ε1,

‖
√
−13ωε (FAH + [φ, φ∗])−9(F, (µ1, . . . , µl),H)‖Lp(ωε) ≤ δ,

where AH = (∂E, H).

Proof. The case of rank 1 is trivial, since line bundles admit Hermitian-Einstein metrics.
Suppose that rank(E) > 1, and consider the HNS filtration {Fhns

i (E, φ)}. For convenience,
setEi = Fhns

i (E, φ),Qi = Ei/Ei−1, and µi = µω(Qi). By Prop. 5.8 there is a resolution
π : M → M where the filtration Ei = SatE(π

∗Ei) is a filtration of E = π∗E by bundles.
Let φ = π∗φ. Then (E, φ) is a Higgs bundle over M and Ei is a φ-invariant subbundle
for all i. It follows from Prop. 5.5 and Corollary 5.7 that for a given δ1 we may assume
ε1 small enough so that |µε(Qi)− µi | ≤ δ1 and Higgs bundles (Qi, φ|Qi ) are ωε-stable
for all 0 < ε ≤ ε1. By [Si1, Theorem 1], we have a Hermitian-Einstein metric H

ε

i on the
Higgs bundle (Qi, φ|Qi ) with respect to ωε . In particular,

√
−13ωε (FAHεi

+ [φ, φ∗])− µε(Qi) IdQi = 0. (5.2)

We can also choose ε1 small enough such that |3ωε (ωε1 − ωε)| < δ for all 0 < ε ≤ ε1.
Associated to M there is an integer m̃ as in Lemma 5.10. We choose p0 sufficiently close
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to 1 so that p0 < 1 + 1/(2m̃). Then the conclusion of Lemma 5.10, along with (5.2),
guarantees that for each 1 ≤ p < p0, each i, and each 0 < ε ≤ ε1, we have

‖
√
−13ωε (FA

H
ε1
i

+ [φ, φ∗1])− µi IdQi‖Lp(ωε)

≤ ‖
√
−13ωε {FA

H
ε1
i

+ [φ, φ∗1]+ (
√
−1 /2)ωε1µε1(Qi) IdQi }‖Lp(ωε)

+
∥∥ 1

23ωε (ωε − ωε1)µε1(Qi) IdQi
∥∥
Lp(ωε)

+ ‖(µε1(Qi)− µi) IdQi‖Lp(ωε)

≤ Cδ1,

for a constant C independent of ε and δ1. Let H =
⊕l

i=1H
ε1
i ; this is a smooth metric

on E, because the filtration {Ei} is by subbundles. Then H is the desired metric if we
choose δ1 sufficiently small compared to δ. ut

Lemma 5.12. Let (E,A0, φ0) be a Higgs bundle of HN type Eµ0. There is α0 > 1 such
that the following holds: given any δ > 0, and anyN , there is a Hermitian metricH on E
such that

HYMα,N (A, φ0) ≤ HYMα,N ( Eµ0)+ δ

for all 1 ≤ α ≤ α0, where the connection A is (∂A0 , H).

Proof. Let π : M → M be a resolution of the HNS filtration guaranteed by Prop. 5.8, ωε
the family of Kähler metrics on M from Lemma 5.4, and E = π∗(E, ∂A0), φ = π

∗(φ).
As a direct consequence of Prop. 5.11, there is α0 = p0 > 1 such that the following
holds: given any δ > 0 there exists a smooth Hermitian metric H on E and ε1 > 0 such
that

HYMωε
α,N (AH , φ) ≤ HYMα,N ( Eµ0)+ δ/2 (5.3)

for all 1 ≤ α ≤ α0, and all 0 < ε ≤ ε1. In order to obtain the desired metric on M ,
we follow the proof of [DW1, Lemma 4.2.], and use a cut-off argument. Let x0 ∈ 6

alg,
and choose a coordinate neighborhood U of x0. We choose a holomorphic trivialization
of (E, ∂A0) → U ; this also gives a trivialization of E on U = π−1(U). Given R > 0
sufficiently small, we may choose a smooth function fR on U with 0 ≤ fR ≤ 1, fR ≡ 0
on a ball of radius R/2 centered at x0, and fR ≡ 1 outside a ball of radius R, and such
that |f ′R| ≤ CR

−1 and |f ′′R | ≤ CR
−2, where C is a positive constant independent of R.

Define a metric HR as follows: If H(ei, ej ) = λiδij with respect to a holomorphic frame
{ei}, then HR(ei, ej ) = (fRλi + 1− fR)δij . With this definition, HR extends to a smooth
metric on E → U . Continuing this way for all points in 6alg, we obtain a smooth metric
on E → M , still denoted by HR . Let HR denote the pull-back metric on E → M . We
know thatHR = H outside the union UR of the balls BR , volε(UR) = O(R4), andHR is
standard with respect to the trivialization insideUR/2. We define a gauge transformation σ
such that

σ(ei) =

(
fRλi + 1− fR

λi

)1/2

ei

on π−1(U), and σ ≡ Id outside UR . Then we have:
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|HYMωε
α,N (AHR

, φ)− HYMωε
α,N (AH , φ)|

≤ C

∫
M

|σ ◦ θ(AHR
, φ) ◦ σ−1

− θ(AH , φ)|
α

H
dvωε

≤ ‖3ωε (FAHR
− FAH )‖Lαωε (π

−1(UR\UR/2))
+ ‖3ωεFAH ‖Lαωε (π

−1(UR/2))

+ ‖3ωε ([σ ◦ φ ◦ σ
−1, (σ ◦ φ ◦ σ−1)∗H ]− [φ, φ∗H ])‖Lαωε (π−1(UR))

.

By the construction ofH and σ , the second term and the third term on the right hand side
tend to zero as R → 0, uniformly in ε. Then we can choose R sufficiently small so that
the last two terms are less than δ/8. On the other hand, from Lemma 4.2 in [DW1], we
have the following bound of the first term on the right hand side:

‖3ωε (FAHR
− FAH )‖Lαωε (π

−1(UR\UR/2))
≤ C(1+ R−2α)R4,

where C is independent of R and ε. Now by (5.3), provided 1 < α0 < min{α0, 2}, we
may take R so small that, for all α ≤ α0,

HYMω
α,N (AHR , φ) = lim

ε→0
HYMωε

α,N (AHR
, φ) ≤ HYMα,N ( Eµ0)+ δ. ut

Theorem 5.13. Let α0 be as in Lemma 5.12, and Eµ0 be the Harder–Narasimhan type of
the Higgs bundle (E,A0, φ0). Let (At , φt ) be a smooth solution of the gradient flow (1.3)
on the Hermitian vector bundle (E,H0) with initial condition (A0, φ0) ∈ B(E,H0). Then

lim
t→∞

HYMα,N (At , φt ) = HYMα,N ( Eµ0)

for all 1 ≤ α ≤ α0, and all N .

Proof. For fixed α, 1 ≤ α ≤ α0, and fixed N , we define δ0 > 0 by

2δ0 + HYMα,N ( Eµ0) = min{HYMα,N ( Eµ) : HYMα,N ( Eµ) > HYMα,N ( Eµ0)},

where Eµ runs over all possible HN types of Higgs bundles on M with the rank of E.
Assume that the initial pair (A0, φ0) satisfies

HYMα,N (A0, φ0) ≤ HYMα,N ( Eµ0)+ δ0. (5.4)

Let (A∞, φ∞) be the Uhlenbeck limit along the flow with initial pair (A0, φ0). By Prop.
4.6 and Prop. 5.3, we obtain

HYMα,N ( Eµ0) ≤ HYMα,N (A∞, φ∞) ≤ HYMα,N (A0, φ0) ≤ HYMα,N ( Eµ0)+ δ0.

Hence, we must have HYMα,N (A∞, φ∞) = HYMα,N ( Eµ0). This shows that the result
holds for the initial condition satisfying (5.4).

LetH be a Hermitian metric on the complex bundle E, and (AHt , φ
H
t ) be the solution

to the gradient heat flow (1.3) on the Hermitian vector bundle (E,H) with initial pair
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(AH0 , φ0) ∈ B(E,H0), where AH0 = (∂A0 , H). As in [DW1, Lemma 4.3], we are going to
prove that for any metric H and any initial data (∂A0 , φ0), there is T ≥ 0 such that

HYMα,N (A
H
t , φ

H
t ) < HYMα,N ( Eµ0)+ δ

for all t ≥ T . Without loss of generality, we can assume 0 < δ ≤ δ0/2.
Let us denote by Hδ the set of smooth Hermitian metrics on E with the property that

the above inequality holds for some T . From Lemma 5.12 and the discussion above, Hδ is
nonempty. Let H j be a sequence of smooth Hermitian metrics on E with each H j in Hδ .
Suppose H j

→ K in the C∞ topology, for some metric K . Since H j
∈ Hδ , we have a

sequence Tj ≥ 0 such that

HYMα,N (A
H j

t , φH
j

t ) < HYMα,N ( Eµ0)+ δ

for all t ≥ Tj . Let ξ j be gauge transformations satisfying (ξ j )∗Kξ j = K−1H j . We
can suppose that ξ j are uniformly bounded, because of the C∞ convergence of H j .
Set D

A
j
t

= ξ j ◦ D
AH

j
t

◦ (ξ j )−1 and φjt = ξ j ◦ φH
j

t ◦ (ξ
j )−1. We see that (A

j

t , φ
j

t )

are Higgs pairs on the Hermitian vector bundle (E,K), in particular A
j

t are integrable
K-unitary connections. From Lemma 2.3, formula (2.8), formula (2.10), and the C∞

convergence of H j , we know that |φjt |K , ‖λF
A
j
t

‖L∞(K), ‖∇Ajt
φ
j
‖L2(K) are uniformly

bounded for all j and t . It follows from (2.9) that ‖D
A
j θ(A

j
, φ)‖L2(K) → 0 as t →∞.

Hence, it follows from the Uhlenbeck compactness ([DW1, Prop. 2.9, Corollary 2.12]),
Theorem 3.11 and Corollary 3.12 that there exists a sequence tj ≥ Tj , Yang–Mills–
Higgs pairs (A(1)∞ , φ

(1)
∞ ) and (A

(2)
∞ , φ

(2)
∞ ), and bubbling sets Zan

(1) and Zan
(2), such that

A
j

tj
→ A

(1)
∞ weakly in Lp1,loc(M \ Z

an
(1)), φ

j

tj
→ φ

(1)
∞ weakly in L2

1,loc(M \ Z
an
(1)), and

(AKtj , φ
K
tj
)→ (A

(2)
∞ , φ

(2)
∞ ) smoothly outside Zan

(2). Moreover, θ(A
j

tj
, φ

j

tj
)→ θ(A

(1)
∞ , φ

(1)
∞ )

and θ(AKtj , φ
K
tj
)→ θ(A

(2)
∞ , φ

(2)
∞ ) strongly in Lp, for all 1 ≤ p <∞. Now, we will show

that
(A(1)∞ , φ

(1)
∞ ) = (A

(2)
∞ , φ

(2)
∞ ).

Let H j (t) and K(t) be solutions of the heat flow (2.1) with initial data H j and K
respectively. Write hj (t) = K−1(t)H j (t). It follows from [Si1, Prop. 6.3] that

sup
M

σ(K(t),H j (t))→ 0

as j → ∞, uniformly in t , where σ is the usual C0 distance on the space of Hermitian
metrics on E. In particular, sup |hj (t)− IdE | → 0 as j →∞. From Section 2, we know
that

D
AH

j
t

= gj (t) ◦DA
Hj (t)
◦ (gj (t))−1, φH

j

t = g
j (t) ◦ φ0 ◦ (g

j (t))−1,

DAKt
= η(t) ◦DAK(t) ◦ (η(t))

−1, φKt = η(t) ◦ φ0 ◦ (η(t))
−1,
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where (gj (t))∗H
j
gj (t) = (H j )−1H j (t) and (η(t))∗Kη(t) = K−1K(t). Pick

gauge transformations βj (t) satisfying (βj (t))∗Kβj (t) = η(t)hj (t)η−1(t), and
‖βj (tj ) − IdE‖Lp → 0 as j → 0. It is easy to check that there exists a K-unitary
gauge transformation Sj (t) (i.e. (Sj (t))∗KSj (t) = IdE) such that Sj ◦ ξ j ◦ gj = βj ◦ η.
So, modulo a unitary gauge transformation, we can suppose that

D
A
j
t

= βj (t) ◦ η(t) ◦DA
Hj (t)
◦ (βj (t)η(t))−1, φ

j

t = β
j (t)η(t) ◦ φ0 ◦ (β

j (t)η(t))−1.

So we have

∂
A
j
t

= ∂A0 + β
j
◦ (∂A0(β

j )−1)+ βj ◦ η(∂A0(η)
−1) ◦ (βj )−1,

∂AKt
= ∂A0 + η(∂A0(η)

−1),

∂
A
j
t

= βj (t) ◦ η(t) ◦ (∂AK(t) + (h
j (t))−1∂AK(t)h

j (t)) ◦ (βj (t)η(t))−1

= ∂AKt
+ [βj (t) ◦ η(t) ◦ (hj (t))−1η−1(t)] ◦ ∂AKt [βj (t) ◦ η(t) ◦ (hj (t))−1η−1(t)]−1

= ∂AKt
+ [(βj (t))∗K ]−1

◦ ∂AKt
[(βj (t))∗K ],

and
∂AKt

[(βj (t))∗K ] = (βj (t))∗K ◦ (∂
A
j
t

− ∂AKt
).

Let Zan
= Zan

1 ∪ Z
an
2 , and choose a smooth test form f ∈ �1(End(E)), compactly

supported on M \ Zan. From the convergence of A
j

tj
and AKtj , it is easy to deduce that

(∂A0(β
j (tj ))

−1) ∂AKtj
[(βj (tj ))∗K ] are uniformly bounded in Lp. Then we have

(∂
A
j
tj

−∂AKtj
, f )L2 = (β

j
◦(∂A0(β

j )−1)+βj ◦η(∂A0(η)
−1)◦(βj )−1

−η(∂A0(η)
−1), f )L2

= ((βj − IdE) ◦ η(∂A0(η)
−1) ◦ (βj )−1

+ η(∂A0(η)
−1) ◦ [(βj )−1

− IdE], f )L2

+ ((βj − IdE) ◦ (∂A0(β
j )−1), f )L2 + ((β

j )−1
− IdE, (∂A0)

∗f )L2

→ 0,

and

(∂
A
j
tj

− ∂AKtj
, f )L2 = ([(βj (tj ))∗K ]−1

◦ ∂AKtj
[(βj (t))∗K ], f )L2

= (([(βj (tj ))∗K ]−1
− IdE) ◦ ∂AKtj

[(βj (tj ))∗K ], f )L2 + ([(βj (tj ))∗K , (∂AKtj
)∗f )L2

= (([(βj (tj ))∗K ]−1
− IdE) ◦ ∂AKtj

[(βj (tj ))∗K ], f )L2

+ ([(βj (tj ))∗K , (∂AKtj
− ∂

A
(2)
∞

)∗f )L2 + ([(βj (tj ))∗K − IdE, (∂A(2)∞ )
∗f )L2

→ 0,
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because sup |βj (tj ) − IdE | → 0 and AK(tj )→ A
(2)
∞ in C∞(M \ Zan). From the above,

we have A
j

tj
− AKtj → 0 weakly in L2

loc(M \ Z
an). On the other hand it is easy to check

that φjtj − φ
K
tj
→ 0 weakly in L2

loc(M \ Z
an). So, we have proved that (A(1)∞ , φ

(1)
∞ ) =

(A
(2)
∞ , φ

(2)
∞ ).

Set (A(1)∞ , φ
(1)
∞ ) = (A

(2)
∞ , φ

(2)
∞ ) = (A∞, φ∞). Noting that θ(A

j

tj
, φ

j

tj
) → θ(A∞, φ∞)

and θ(AKtj , φ
K
tj
)→ θ(A∞, φ∞) strongly in Lp, for all p, we have for j sufficiently large,

HYMα,N (A
K
tj
, φKtj ) ≤ HYMα,N (A∞, φ∞)+ δ ≤ lim

j→∞
HYMα,N (A

j

tj
, φ

j

tj
)+ δ

≤ HYMα,N ( Eµ0)+ 2δ ≤ HYMα,N ( Eµ0)+ δ0.

It follows from the discussion above that limt→∞ HYMα,N (A
K
t , φ

K
t ) = HYMα,N ( Eµ0).

Therefore K ∈ Hδ . By the continuous dependence of the flow on initial conditions
(Prop. 2.1′), Hδ is also open. Since the space of smooth metrics is connected, we conclude
that every metric is in Hδ . Thus, we have limt→∞ HYMα,N (A

H
t , φ

H
t ) = HYMα,N ( Eµ0)

for any metric H . ut

Theorem 5.14. Let (At , φt ) be a smooth solution of the gradient flow (1.3) on the Her-
mitian vector bundle (E,H0) with initial condition (A0, φ0) ∈ B(E,H0), and (A∞, φ∞)
be an Uhlenbeck limit. Let E∞ denote the vector bundle obtained from (A∞, φ∞) as in
Theorem 3.11. Then the Harder–Narasimhan type of (E∞, A∞, φ∞) is the same as that
of (E0, A0, φ0).
Proof. Let Eµ0=(µ1, . . . , µR) (resp. Eλ∞=(λ1, . . . , λR)) be the HN type of (E0, A0, φ0)

(resp. (E∞, A∞, φ∞)). By Prop. 5.3 and Theorem 5.13, ϕα( Eµ0 +N) = ϕα(Eλ∞ +N) for
all 1 ≤ α ≤ α0 and all N . We may choose N sufficiently large so that µR + N > 0 and
λR +N > 0. From Lemma 5.2, we conclude that Eλ∞ +N = Eµ0 +N , and so Eλ∞ = Eµ0.

ut

6. Convergence to the graded object of the filtration

Let (A0, φ0) be a Higgs structure on a complex vector bundle E. Then there is a φ0-
invariant Harder–Narasimhan–Seshadri filtration {Ei}li=1 of (E, ∂A0), where Ei are sat-
urated φ-invariant subsheaves and Qi = Ei/Ei−1 are Higgs stable and torsion-free. The
associated graded object Grhns(E,A0, φ0) =

⊕l
i=1Qi is uniquely determined by the iso-

morphism class of (A0, φ0). The quotientsQi are not necessarily locally free. For each i,
we have an exact sequence of sheaves

0→ Qi → Q∗∗i → Ti → 0,

where Q∗∗i is locally free and Ti is a torsion sheaf supported at finitely many points.
Define 6i to be the support of Ti , and let 6alg

=
⋃
6i . We will refer to 6alg as the

singular set of the filtration {Ei}. We denote the associated graded object by

Grhns(E,A0, φ0)
∗∗
=

l⊕
i=1

Q∗∗i .
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Let (A(t), φ(t)) be a smooth solution of the gradient heat flow (1.3) with initial data
(A0, φ0), and let (A∞, φ∞) be an Uhlenbeck limit, i.e. there is a subsequence tj → ∞
such that (A(tj ), φ(tj )) converges, modulo gauge transformation, to (A∞, φ∞) in the
smooth topology outside6an, where6an is a finite collection of points. In Theorem 3.11,
we have proved that the Uhlenbeck limit can be extended smoothly to a smooth solution
of the Yang–Mills–Higgs equation (1.2) on the Hermitian vector bundle (E∞, H∞), and
the Higgs bundle (E∞, A∞, φ∞) has a holomorphic splitting as a direct sum of Higgs
stable subbundles. The purpose of this section is to provide an algebraic description of
the isomorphism class of the limiting Higgs bundle (E∞, A∞, φ∞). We will give a Higgs
bundle version of Theorem 1 of [DW1] (for Yang–Mills case). The main theorem of this
section is the following

Theorem 6.1. (E∞, A∞, φ∞) is holomorphically isomorphic to Grhns(E,A0, φ0)
∗∗ in

the Higgs bundle sense.

The proof follows from the argument in the proof of Theorem 5.1 in [DW1]. Denote
(Atj , φ(tj )) by (Aj , φj ), and let gj be the complex gauge transformation such that (Aj , φj )
= gj (A0, φ0). Set 6 = 6an

∪ 6alg and � = M \ 6. Let S be the maximal Higgs stable
subsheaf of (E,A0, φ0). Now S|� is a subbundle, and let f0 : S|� → E be the φ0-
invariant holomorphic inclusion. Define the map fj : S|�→ E by fj = gj ◦f0. It is easy
to check that

∂A0,Aj fj = 0, fj ◦ φ0 = φj ◦ fj ,

i.e. fj is a φ-invariant holomorphic map. For simplicity, we will denote ∂A0,Aj by ∂0,j .

Lemma 6.2. Up to a subsequence, fj converges in C∞(�0) to some nonzero φ-invariant
holomorphic map f∞ for any compact set �0 ⊂ �.

Proof. Let �0 ⊂ � be the complement of a union of balls around the points of 6. By
Theorem 3.11, we can assume that (Aj , φj ) converges to (A∞, φ∞) in C∞(�0). Replace
fj by fj/‖fj‖L2 and let βj = Aj − A∞. Since fj is holomorphic, we have

10,jfj =
√
−13ω(∂0,j∂0,j − ∂0,j∂0,j )fj = −

√
−13ω(∂0,j∂0,j + ∂0,j∂0,j )fj

= −
√
−13ω(FAj fj − fjFA0),

and
∂0,∞fj = ∂A∞ ◦ fj − fj ◦ ∂A0 = −β

0,1
j ◦ fj . (6.1)

By elliptic theory, we can obtain uniform bounds on |∇k0,jfj | for any k. Since (Aj , φj )→
(A∞, φ∞) in C∞(�0), we can also obtain uniform bounds on |∇k0,∞fj | for any k. Then
we can choose a subsequence, which we also denote by {fj }, such that fj converges to a
smooth map f∞ in C∞(�0). Using formula (6.1), it is easy to check that

∂A0,A∞f∞ = 0, f∞ ◦ φ0 = φ∞ ◦ f∞,

i.e. f∞ is a φ-invariant holomorphic map. Since ‖fj‖L2 = 1 for all j we have f∞ 6= 0.
ut
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The proof of the following lemma is completely similar to the proof of [Ko, 7.11, 7.12]
for holomorphic bundles and so we omit it.

Lemma 6.3. Let (E1, φ1) and (E2, φ2) be semistable Higgs sheaves with rank(E1) =

rank(E2) and deg(E1) = deg(E2). If (E1, φ1) is stable, let f : E1 → E2 be a sheaf
homomorphism satisfying f ◦ φ1 = φ2 ◦ f . Then either f = 0 or f is an isomorphism.

Proof of Theorem 6.1. We will prove the result by induction on the length of the HNS
filtration. The inductive hypotheses on the bundle Q→ � are the following:

Inductive hypotheses. (1) (DQj , φ
Q
j )→ (D

Q
∞, φ

Q
∞) in C∞(�);

(2) ∂
Q

j = hj ◦ ∂
Q

0 ◦ h
−1
j and φQj = hj ◦ φ

Q
0 ◦ h

−1
j for some hj ∈ GC(Q);

(3) (Q, ∂
Q

0 , φ
Q
0 ) and (Q∞, ∂

Q

∞, φ
Q
∞) extend to M as reflexive Higgs sheaves with the

same HN type.

We obtained a nonzero smooth φ-invariant holomorphic map f∞ : S|� → E|�.
By Hartogs’ theorem, f∞ extends to f∞ : S∗∗ → E∞ on M . If πj denotes the pro-
jection to fj (S), then we can prove that πj → π∞ in C∞(�) because fj → f∞
in C∞(�). So (f∞(S), A∞, φ∞) is a φ∞-invariant subbundle of E∞ with the same
rank and degree as S. By Theorem 5.14, we know that (E,A0, φ0) and (E∞, A∞, φ∞)
have the same HN type, so (f∞(S), A∞, φ∞) is Higgs semistable. By Lemma 6.3, the
nonzero holomorphic map f∞ must be an isomorphism, i.e. S∗∗ ' f∞(S). Denote
S∞ = f∞(S). Then (S∞, A∞, φ∞) is a φ∞-invariant Higgs stable subbundle. Write
Grhns(E∞, A∞, φ∞) = S∞⊕Q∞. Using Lemma 5.12 in [Da], we can choose a sequence
of unitary gauge transformations uj such that πj = uj π̃ju−1

j where π̃j (E) = π∞(E) and
uj → IdE in C∞(�). Let Q = E/S, and consider the induced connections on Q,

D
Q
j = u0 ◦ u

−1
j ◦ π

⊥

j ◦Dj ◦ π
⊥

j ◦ uj ◦ u
−1
0 ,

φ
Q
j = u0 ◦ u

−1
j ◦ π

⊥

j ◦ φj ◦ π
⊥

j ◦ uj ◦ u
−1
0 ∈ �

1,0(End(Q)),

hj = u0 ◦ u
−1
j ◦ π

⊥

j ◦ gj ∈ G
C(Q).

Then

∂
Q

j = u0 ◦ u
−1
j ◦ π

⊥

j ◦ ∂j ◦ π
⊥

j ◦ uj ◦ u
−1
0

= u0 ◦ u
−1
j ◦ π

⊥

j ◦ gj ◦ π
⊥

0 ◦ ∂0 ◦ π
⊥

0 ◦ g
−1
j ◦ uj ◦ u

−1
0

= hj ◦ ∂
Q

0 ◦ h
−1
j ,

φ
Q
j = u0 ◦ u

−1
j ◦ π

⊥

j ◦ gj ◦ φ0 ◦ g
−1
j ◦ π

⊥

j ◦ uj ◦ u
−1
0

= u0 ◦ u
−1
j ◦ π

⊥

j ◦ gj ◦ π
⊥

0 ◦ φ0 ◦ π
⊥

0 ◦ g
−1
j ◦ uj ◦ u

−1
0

= hj ◦ φ
Q
0 ◦ h

−1
j ,

and
∂
Q

j φ
Q
j = π

⊥

0 ◦ (∂0 ◦ φ0 + φ0 ◦ ∂0)π
⊥

0 = 0,
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where we have used h−1
j = π⊥0 ◦ g

−1
j ◦ uj ◦ u

−1
0 . On the other hand, by the definition,

it is easy to check that DQj → D
Q
∞ and φQj → φ

Q
∞ in C∞(�). The third statement

again follows from Theorem 5.14. So, (Q,DQj , φ
Q
j ) satisfy the inductive hypotheses.

By induction Q∞ ' Grhns(Q, ∂
Q

0 , φ
Q
0 )
∗∗
'
⊕l

i=2Q
∗∗

i , which completes the proof of
Theorem 6.1. ut
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