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Abstract. We consider the gradient flow of the Yang—Mills—Higgs functional of Higgs pairs on a
Hermitian vector bundle (£, Hg) over a Kéhler surface (M, w), and study the asymptotic behavior
of the heat flow for Higgs pairs at infinity. The main result is that the gradient flow with initial condi-
tion (A, ¢g) converges, in an appropriate sense which takes into account bubbling phenomena, to
a critical point (Aco, $oo) Of this functional. We also prove that the limiting Higgs pair (Ao, Poo)
can be extended smoothly to a vector bundle Exy over (M, w), and the isomorphism class of the
limiting Higgs bundle (Eso, Aco, Poo) i given by the double dual of the graded Higgs sheaves
associated to the Harder—Narasimhan—Seshadri filtration of the initial Higgs bundle (E, Ag, ¢q)-

Keywords. Higgs bundles, Kéhler surface, Harder—-Narasimhan—Seshadri filtration

1. Introduction

Given a complex vector bundle E over a compact Kéhler manifold (M, w), suppose that
there is a Hermitian structure Hy on E. Let Ap, denote the space of connections on E
compatible with the metric Hyp, and let .A}{; denote the space of unitary integrable con-
nections on E. Given a Hermitian metric Hy on a holomorphic bundle (E, 9E), there is
a unique Ho-unitary connection A on E satisfying Dgo’l) = g, where Dgo’l) denotes
the (0, 1) part of D4; this connection is also called the Chern connection on (E, g, Hp).
We will sometimes denote it by A = (dg, Hp). Conversely, given a unitary integrable
connection A on (E, Hp) (i.e. one whose curvature F4 is of type (1, 1)), Dﬁ?’l) = 0g
defines a holomorphic structure on E, and A = (3, Hy).
The Yang—Mills functional is defined on Ay, by

YM(A) = f |Fal?dV,,
M
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where dV,, is the volume form of w. We call A a Yang—Mills connection of E if A is a
critical point of the Yang—Mills functional, i.e. it satisfies the Yang—Mills equation

l)jf} =0,

where D7 is the adjoint operator of covariant differentiation associated with the connec-
tion Dy4.
In this paper, we are interested in a more general case. A pair (A, ¢) € A},’; X

Q'O(End(E)) is called a Higgs pair if 34¢ = 0 and ¢ A ¢ = 0. Let B(g ) denote
the space of all Higgs pairs on the Hermitian vector bundle (E, Hp). We consider the
Yang—Mills—-Higgs functional defined on B g, by

YMH(A, ¢) =/ (IFa + [, ¢¥11* +2]0491>) d V. (1.1)
M

A Yang-Mills—Higgs pair (A, ¢) is a critical point of the Yang—Mills—Higgs functional.
Equivalently, (A, ¢) satisfies the Yang—Mills—Higgs equations
[ D} Fa+v=10aA0 — 94 A4, $*1 =0,

1.2
[V=TAuw(Fa +19,¢*]), 91 =0, (2

where the operator A, is contraction with w, and ¢* denotes the dual of ¢ with respect
to the given metric Hp.
By Chern—Weil theory, we have

YMH(A, ¢) = fMuFA + ¢, d*11> + 2194017 %
n n—2
=f w—lAw(FA+[¢,¢*1>|2“’—,+4n2/ 2c2(E) = c1(E) Al (E)) A ———=
M n! M (n—2)!
=/ V=1 Au(Fa + [¢, $*1) — A1dE |2w—n —i—)»zrank(E)/ G

n—2

(n—2)0

+4x? / (2er(E) — 1(E) A c1(E)) A
M

where 1

27 [y 1(E) A
~ rank(E) Iy ol

n?

From the above identity, we see that if (A, ¢) satisfies the Hermitian-Einstein equation
V=1 Au(Fa+[¢.¢*]) = A1dg,

then it must satisfy the above Euler-Lagrange equation (1.2), in fact it is the absolute
minimum of the above Yang—Mills—Higgs functional. Equivalently, if (A, ¢) satisfies the
above Hermitian-Einstein equation, then Hy must be the Hermitian-Einstein metric on
the Higgs bundle (E, Ee ¢), studied by Hitchin [Hi] and Simpson [Sil]. In [Hi] and
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[Sil], it is proved that a Higgs bundle admits the Hermitian-Einstein metric iff it is Higgs
poly-stable.

The Yang—Mills flow was first suggested by Atiyah—Bott in [AB]. Donaldson [Do]
used it to establish the connection between Hermitian-Yang—Mills connections and holo-
morphic stable bundles. He proved the global existence of the Yang—Mills flow in a holo-
morphic bundle over a Kihler surface, and proved the convergence of the flow at infinity
in the case where the holomorphic bundle is stable. For the Higgs bundle, Simpson [Sil]
proved the long time existence of the Hermitian Yang—Mills—Higgs flow and showed the
convergence under the condition that the Higgs bundle is stable. Without the assumption
of the stability of the bundles, the above flows may not converge at infinity. Daskalopou-
los [Da] and Daskalopoulos and Wentworth [DW1] studied the asymptotic behavior of
the Yang—Mills flow over Riemannian surfaces and Kéhler surfaces, and showed that
there is a relation between the Yang—Mills flow and the Harder—Narasimhan filtration of
holomorphic bundles.

In [St1], Struwe studied the global existence and uniqueness of the Yang—Mills flow
in vector bundles over compact Riemannian four-manifolds for a given initial connection
with finite energy. For general vector bundles, the Yang—Mills heat flow may develop
singularities in finite time.

In this paper, we study the evolution equations of the above Euler—Lagrange equations
(1.4), i.e. the gradient flow of the Yang—Mills—Higgs functional of Higgs pairs. A regular
solution is given by a family of (A(x, 1), ¢ (x, 1)) € B(g,Hy) such that

dA — Y
5 = —D:‘;FA - _l(aAAa) - 8AAw)[¢a ¢*]7

(1.3)
a —

The above flow can be seen as a Higgs pairs version of the Yang—Mills flow. In this paper,
we first show some basic properties of the above flow, including the energy inequality,
Bochner-type inequality, monotonicity of certain quantities and a small action regular-
ity theorem. We prove the global existence and uniqueness of the solution for the above
gradient flow. Then we study the asymptotic behavior of a regular solution at infinity.
To a Higgs bundle (E, Ag, ¢o), one can associate a filtration by ¢p-invariant holomor-
phic subsheaves, which will be called the Harder—Narasimhan filtration, whose succes-
sive quotients are Higgs semistable. The topological type of the pieces in the associated
graded object is encoded into an R-tuple i = (i1, ..., ug) of rational numbers called
the Harder—Narasimhan type of the Higgs bundle (E, A, ¢). Let (A(¢), ¢ (¢)) be a smooth
solution of the gradient flow (1.3) with initial data (Ag, ¢) over a compact Kéhler sur-
face. We prove that there exists a sequence 7; — 00 such that (A;;, ¢;) converges, mod-
ulo gauge transformations, to a Yang—Mills Higgs pair (A, ¢o) oOutside finite points,
and (A, Pso) can be extended smoothly to a vector bundle E, over a Kihler surface.
This limiting Higgs pair can also be called an Uhlenbeck limit. We also consider the
Harder—Narasimhan type and the isomorphism class of the Uhlenbeck limits. To state
the result precisely, let GrB)“S(E , Ag, ¢o) denote the Harder—Narasimhan—Seshadri filtra-
tion of the initial Higgs bundle (E, Ag, ¢9) with respect to the Kdhler form w, and let
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Gr?U“S(E , Ao, ¢0)™* be its double dual. Our result is that the Harder—Narasimhan type and
the isomorphism class of the Uhlenbeck limits are independent of the subsequence and
are determined solely by the initial data (Ag, ¢9). More precisely:

Main Theorem. Let (E, Hy) be a Hermitian vector bundle on a compact Kiihler sur-
face (M, w), and (A(t), ¢(t)) be a global smooth solution of the gradient flow (1.3)
with smooth initial Higgs pair (Ao, ¢o). Then there exists a sequence t; — 00O such
that (A, ¢)(x, t;) converges, modulo gauge transformations, to a Yang—Mills—Higgs pair
(Ao, o) in the smooth topology outside a closed set ¥ C M, where ¥*" is a fi-
nite collection of points. The limiting Yang—Mills—Higgs pair (A, o) can be extended
smoothly by a continuous gauge transformation to a smooth Yang—Mills—Higgs pair on
a Hermitian bundle (Eoo, Hxo) over M, and the extension (Eo, Hxo, Aoo, Poo) has a
holomorphic orthogonal splitting as a direct sum:

1
(Eco, Hoo, Aco, $o0) = ED(EL,, Hi,, ALy, 65),
i=1

where Héo is a Hermitian-Einstein metric on the Higgs bundle (Eéo, Ago, ¢éo). Moreover,
the Harder-Narasimhan type of the Higgs bundle (Exo, Aco, $oo) is the same as that of
(E, Ao, $0), and (Ese, Acc, $o) = Gryg“(E, 3, $0)*™.

Our result can be seen as a Higgs bundle version of Theorem 1 in [DW1] (for Yang—Mills
case). In discussing the HN type and the isomorphism class of the Uhlenbeck limits, we
follow some ideas in [DW1]. Recently, Wilkin [Wi] studied the gradient flow of Higgs
pairs over compact Riemann surfaces. In [DW2], Daskalopoulos and Wentworth also
consider the blow-up locus of Yang—Mills flow on Kihler surfaces; they show that the
blow-up locus is determined by the Harder—Narasimhan—Seshadri filtration of the initial
holomorphic bundle. Their result should be true in the Higgs bundle case; we will further
discuss this problem in the future.

This paper is organized as follows. In Section 2, we prove global existence and
uniqueness of the solution for the gradient flow (1.3), and derive basic estimates and
analytic preliminaries over general Kihler manifolds. In Section 3, we consider the con-
vergence properties of a global solution of the gradient flow over a Kéhler surface. In
Section 4, we discuss the Harder—Narasimhan—Seshadri filtration of Higgs bundles. In
Section 5, we focus on the HN type of Uhlenbeck limits. In the last section, we prove that
the Uhlenbeck limits are holomorphically isomorphic to the double dual of the graded ob-
ject of the Harder—Narasimhan—Seshadri filtration of the initial Higgs bundle. The main
theorem follows from Theorems 3.11, 5.14 and 6.1.

2. Analytic preliminaries and basic estimates

2.1. Existence of the gradient flow

In this section, we prove the long-time existence of the gradient flow for Higgs pairs on a
Hermitian bundle (E, Hp) over a Kdhler manifold (M, w). Here the idea is similar to that
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in [Do] and [H]. Let (Ag, ¢o) be an initial Higgs pair on (E, Hp). Then we consider the

following heat flow for Hermitian metrics on the Higgs bundle (E, Ao, ¢p) with initial
metric Hy:

-1 oH

ot

where Fp is the curvature form of the Chern connection Ay on E with respect to H, the
operator A, is contraction with w, and ¢*¥ is the adjoint of ¢ with respect to the Her-
mitian metric H, i.e (¢(X), Yy = (X, ¢>*H(Y))H for any X, Y € E. In [Sil], Simpson
proved that solutions to the above nonlinear heat equation exist for all time and depend
continuously on the initial condition Hy.

Suppose H (t) is a solution of the above heat equation, and let 2 (t) = H; 'H (¢). Then

= —2(V=1 Au(Fu + [$0, 5"1) — 1 1dE), 2.1

oh —

p = "2V LRAG(Fag + 34y (™ 9agh) + g0 ™' 65 ™ hD +22h. (22)
Denote the complex gauge group (resp. unitary gauge group) of the Hermitian vector

bundle (E, Hy) by g‘c (resp. G, where G = {0 € gC | o*Hog = 1d}). The group (](C acts

on the space AIHS x Q1O(End(E)) as follows: for o € GC,

50(,4) ZO’OgAOU_l, 05(A) Z(U*HO)_IOE)AO(T*HO,

o(p)=o0 o¢oa_1.

In the following, we denote ¢*/0 just by ¢*, and o*0 by o* for simplicity.
The derivative of the GC action at (A, @)is

0 > (=40 + 0460%, 16, ¢]).
On the other hand, one can check that
(V=1Au(FA+ (9, 0" D))" = V=1 Au(Fa + (¢, ™].

From the gradient flow equations (1.3), we know that the gradient vector at (A, ¢) lies in
the tangent space to the orbit of the complex group GCat (A, ¢).
Leto(z) € g€ satisfy o *(t)o (t) = h(¢). By direct calculation, we have

do* 0
(o*)”% + a—fa—l = 2V =T Ao(Fo(ag) + [0($0). (0(0)*]) + 24 1d.

Let A(r) = o (t)(Ag) and ¢(1) = o (1)(¢o). We get

dA 5 (%) 4 s (*)_180*
— =—0;| —0o il (o
ot A\ 9t A at

1 — do _00* 1 — do _100
=§(3g—3/§)<50 +(0%) ?)—5(3/34-3,4)(50 — (")

(o3

~
*
SN——

_ I 1 _ d do*
= —V—10; — ) AL(F; + 10, 0" — 50z +ag)(8—‘jo‘1 O )
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3(]3_ 8_(7—1_~ — 5 T Tk _1~8_O——1_ *—186*
5—-[& 51 :|_[¢7\/_1Aa)(FA+[¢’¢])] 2[¢, a1 (") a7 }

Set

2\ ot ot

It is obvious that a(#) € Lie(G). Now let S(t) € G be the unique solution to the linear
ODE

o= —l<a—ao_1 - (o*)_lai*)

s
dr
Then, let A = S(A) and ¢ = S(¢). It is easy to check that

dA dA N -, dA .
—=8o|——-D;|S — oS =S8o|——Dza]oS
at at ot at

= —DjFa — vV—=1(04A0 — 04Aw)¢, $],

Sa, S(0)=1.

where we have used the Kihler identity
04 = V=180, 0al, 34 = —vV=1[Aw, dal.

It is clear that
8_¢_08_<i;_~_1§ 0_1_08_q3_~ oS!
o =S (ar [d”s 8r]> 53 <8t [d”a]) ’
= —[V=1Ayn(Fa + [0, 9™, #].

So, we have
A =
5 = —D/’:FA — 4/ _1(3AAw - 8AAw)[¢, ¢*]7
0
a_f’ = (V=T Au(Fa + (6. 6*D. 81,

i.e. (A(?), ¢(¢)) is a smooth solution of the gradient flow with initial Higgs pair (Ao, ¢o).
On the other hand, it is obvious that ¢ () A ¢ (t) = 0, and 5A(,)¢(t) =0.

To prove the uniqueness, we suppose that (A(t), ¢(t)) = S(t)o(t)(Ao, ¢o) is the
smooth solution constructed above, and (A(t), (f)(t)) is another smooth solution of the
gradient flow (1.3) with initial Higgs pair (Ao, ¢o). Let g(¢) € g€ satisfy

g

5 8 = CVIF +16, 0D +41dp), g(0) =1dg.

It is easy to check that (g~ ! (A, $)) = 0, s0 (A(1), (1)) = g(t)(Ao, ¢). Noting that
solutions to Simpson’s heat flow are unique ([Sil]), we have g*g = h. Let S=goo .
Then

$*S =1dg, S(0) = 1dg,
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and
05 _1(3S 88"
at 2\ ot dt
e E) - do* . dg* -
- §<a—fo lo o1 61 4 S(a*)*l%(a*)*lg*s = S(a*)lis)
108 _1= =00 _; =« _,00% _,08
=_(2¢ 1§ -85—= S(e*) ' — —(¢g* S
2(atg tU +50@7) ot &) ot
1. do*
=—S _ —1 *y—1
2 ( 0 ® T a;)

By linear ODE theory, we have S = S. Then

(A1), (1)) = g(1)(Ao, ¢o) = S(1)o (1)(Ao, po) = (A1), $(1)).
So we have proved the following theorem:

Theorem 2.1. Let (E, Hy) be a Hermitian vector bundle over a closed Kdihler manifold
(M, w). Given any Higgs pair (Ao, ¢o), the gradient flow (1.3) has a unique solution in
the complex gauge orbit of (Ao, ¢o) with initial value (Ao, o).

Let H; and H; be two metrics on the bundle E. The distance o (H, H>) is defined by
o(Hy, Hy) = Tr(H; 'Hy + Hy ' Hy — 21dg).

Proposition 2.1’. Let H(t) be a smooth solution of the heat flow (2.1). Then for any
T >0, Ap(Fay + [¢0, ¢6"H 1) at time T depends continuously on the initial conditions
in L* norm.

Proof. Let Hi(t) and H,(¢t) be two smooth solutions of the heat flow (2.1), and let
hi(t) = Hy 'O Hy (1), ho(t) = H{ ' (0) Ha(t), ho(t) — by (6) = h(t), S(t) = hy ' (1) (1)
= Hl_l(t)Hz(t). The proof of Prop. 6.3 in [Sil] shows that sup o (H; (), H>(t)) is de-
creasing with time. Thus we have

1S(t) —Xdg* +1S71 (1) — 1 * < C(/50/4 + 0/2)%,
h®))* < Clhi (D)1 (/50/4 + 0/2)%,

lha()* < Clh()1P1(V/50/4 + 0/2)* + 1],

Iy @)1 < ClhT' O1PL(/50/4 4+ 0/2)* + 11,

where C is a constant depending only on rank(E), o = sup o (H1(0), H>(0)) and we may
assume o < 1. From equation (2.2), we have

oh — - - — —
t = _2 _lAa){aAoaAOh +hFAO +¢SHO O]’l O¢0 +h O(poh;l O¢SHO oh2

—hiogoohi ohohy 0@ ohy+ hyogyoh! o™ o)+ 247,
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and

(i _ A) BOP < Co)lR()?
ot - ’

where Ay is the Chern connection determined by H;(0), and C(¢) depends only on A1(¢),
Ap and ¢g. Using the Kéhler identity, we have

V=104 Ao (@40 0a07) = D5, (9 490407) + V=1 Aey(3400 4y Do h)
= 03, @490400) + V=1 Ao(Fag A dagh — dagh A Fay),

and
—V =104 A0 (@ay040h) = 5 (B a,0a0h).

From the above inequalities, we conclude that

%nmﬁmniz < COURIZ, + 1Daghlly > + 1134940k 117 ),
where C () depends only on /1 (¢), Ag and ¢g. By direct calculation, we have
(=2 =19 44040 A0 (@ g D0 ), D 4904y 1) 12
= (=2V/ =T34y A0 (9490 AgDagh) — 20400 2, (B 49005, DAy Dagh) 2
= —21|3, (D040 172 + (2075, (340 40 0a0h). D agdagh) 12
—2(W =1 Ay (D4y04y0 4y 0a0 1), DagDayh) 12
= —2/[34, @400, 1122 + 20| Fag A dagh — dagh A Fagll?s
—2(V =1 Ay(Fag A dagdagh — dagdagh A Fay), da,0a00) 12-
From the above formula, we conclude that

d — — — _ _ _
EnaAoathn’iz < CORN7, + 1D aghl2 + 1940040 1172)).
So, we obtain
d —» 2 T 2
T (IIZ2 + 1D agRIZ: + 104940711 72)

< CORNZ, + 1 Daghlly > + 119 4940k 117 ).

where C(¢) depends only on /1(¢), Ag and ¢p. Then

1Aw(Fay, + (b0 d5 ") = Aw(Fag, + [$0. ¢5 > DI22(T)
< B35 + 1D aghll35 + 8400407 1132)(T)

T
< B(T) exp{ /0 C(t) dt}(ﬂhuiz + 1D aghl72 + 119.40040221172)(0),

where B(T') depends only on /1(T), Ag and ¢g. This completes the proof. ]
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2.2. Basic estimates

Let (A(t), ¢(¢)) be a regular solution of the gradient flow (1.3) in the space B of Higgs
pairs, and let f be a real smooth function on M. Then we have

/ FPUFa+18, 0" 11 + 200491 dV,

_ - *112 i 2 i_ *)2
—fo <dt|FA+[¢,¢]| + 10401”21940 |>dVg

_2Re/Mf{<FA+[¢,¢], AE—F[ ¢i| [¢’<Z> i|>

A A
+{oao. aA‘;—¢+d— ¢+¢Ad—>
_ — do* dA
+<8A¢*,8AZ NGt +¢* A >} dv,.

On the other hand, one can check that

2 d¢ _ * 2 d_(b
/Mf <8A¢,8A5>dvg—/M<aA<f oA, dt>dvg
=f <f2«/—lAw(5A8A¢) + V=T Au(B(f?) A 0a¢), i—f>dvg
M

= / <f2¢—_1Aw(FA Ap—d AFa)+~—TA,0(f) Adad), d—¢>dvg;
M

dt
e f 040 ,3,4 dv,
M dt

— Re/ <f2¢—_1Aw(FA Ap—dAFp)+~V—=1A,(0(f?) Adag), d—¢>dvg;
M

dt

/ f2<aA¢,d—AA¢+¢Ad—A>dvg=/ f2<¢—_1Aw<aA[¢,¢*]>,d—A>dvg;
M dt M dt

dA — dA
/ f <3 ¢*, /\¢ +¢* Ad—>dVg——/ f2<\/_1Aw(8A[¢»¢*])ad_>dvg;
M M t

and

do N do *
ke [ Peasioon [ Go| [0 () ] v
= ZRC/ f2<FA + [¢7 ¢*]v I:d_¢7 ¢*i|>dvg
" t
=Re/M <¢_Aw{¢A<FA+[¢¢D}—¢ =T A(Fa + (9, 6", d—"’> Ve
o,

- 2Re/M f2<J—_1Aw{(FA + (0. 0" D AP} — V=1 Ap(Fa + [¢, $*]) o d—¢
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_ zRef f2<~/—_1Aw{¢ A Fa) = ¢ o V=T Ap(Fa +16.°D. %‘%
M

- 2Re/ f2<\/—_1Aw{FA AP} — V=1 Ay(Fs + [, ¢*]) 0 ¢, ‘;—‘f>dvg;
M

where we have used (Fa + [¢, ¢*], [¢, (d@/dD)*]) = (Fa + [p, ¢*], [dp/dt, ¢p*]) and
¢ A ¢ = 0. Combining the above identities, we have

d
d—/ FEUFa + [0, ¢*11* +2(0491H) dV,
L Jm
_ A
= 2Re/ f2<D;§FA + V=1 (04Ap — IaAL)[P, d*], ‘fi—t>dvg
M

+ 4Re/ f2<[\/—_1Aw(FA + (¢, 0*), b1, d—¢>dvg
M

.y
e
I

V=T Au(@ = (D A (Fa+ 19, 6*D), —>dvg
(J_Aw(FA + 10, 9" D)@ — ) (f?), E>dvg

+4Re V=1A,@(f?) A dag, ¢>

ol 3

dA
+ 2Re \/_ Au(@ = )(f) A (Fa + 19, ¢*1), E>dvg

M

0A
ot

>dV +4Ref <J—_1Aw(§(f2)AaA¢),‘2—‘f>dvg

dA
—2Re <(¢_ Aw(Fa+ (¢, ¢*1D)(@ — a)<f2>,z>dvg. (2.3)

Setting f = 1 on M, and integrating the above identity on [0, 7], we obtain the following
lemma:

Lemma 2.2. Let (A, ¢) be a solution of the heat flow (1.3) with initial Higgs pair

(Ao, ¢0). Then
YMH(t)—I—Z/t/ 8A2+28¢
0o JMm ot ot

Let f be a cut-off function with support inside Bar(xp) and f = 1 on Bg(xp) such that
0< f<1land|df| <2R™'. Set

2
) = YMH(0). (2.4)

e(A, ) = |Fa + (6, ™11 + 2040

From the identity (2.3), we have
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4 o (|24
‘dthf e(A,¢)dVg+2/ f <’ o7 ™ )dVg

C 1/2 9A 1/2
=L, renwan) ([5G A5l )m)

where C(n) is a positive number depending only on the dimension of M. Integrating the
above inequality and using Lemma 2.2, we obtain the following local energy estimate.

N

+2‘

ot

Lemma 2.2/ (local energy estimates). Let (A, ¢) be a solution of the heat flow (1.3)
with initial Higgs pair (Ao, ¢o). For any xo with Bog(xg) C M and for any two finite
numbers s, T, we have

/ e(A,9)(-,5)dV,
Br(x0)

max{s,T}
5/ e(Al,A2,¢)(~,T)dVg+2/ / (
Bag(x0) min{s, 7} M

|S _ 'L’| max{s,7}
+C( ) YMH(Ao, , ¢0) / (

min{s, 7}

d0A

9
o1 o1

+2‘

2 1/2
)dVg dt> .

By choosing normal coordinates at the point under consideration, we have

)dngt

‘ ¢

(A—3)| > =2|Vag|* + 2R <vv _2 >
o }1° =2|Vad e( Vs, Vo, & 8t¢’¢
=2|Vag|* + 2Re<(v9aVaa¢5)dzﬂ + ¢p(V5, Va,dzP) — %qﬁ, ¢>

a

= 2Re (V=1 Aylp, ¢*1, ¢, ¢) — 2Re (p £ R, $) + 2|Vag|?
=2|Aulp, ¢*1I> —2Re (¢ £ R, ¢) + 2|Vas|*. 2.5)

Since ¢ A ¢ = ¢odz® A qb,gdzﬂ = 0, we have ¢ pg = pgdo. Then
l$, $*11> = Z [P, P511% = Tr (Padp — Psba) (Ppde — Putp)
o, p

= Tr{pad}dpds + ¢ baBuds — Pudjduds — Dsbadpdy}
= Tr (¢ub — bade) (Bpdl — D5dp) = V=1 Al $*11%.

Since ¢ is in the complex group orbit of ¢, we have a uniform bound for the eigenvalues
of ¢,. Based on Lemma 2.7 in [Si2], we obtain

[pa, 911> = Ci(lgel* + D? — Callgel* + 1),
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where C| and C» are positive constants depending only on ¢g. Then
Ci
V=T Auld, 617 = 3 l1ge 93112 = — (912 + 17 = Co9 + 1),
o

and
0
(A - 5)"”'2 > 2|Vagl* + C3(1¢1> + 1)? — Ca(I9p]* + 1),

where C3 and Cy are positive constants depending only on ¢ and the geometry of (M, w).
From the above inequality and using the maximum principle in parabolic theory, we can
deduce the uniform C° bound of ¢.

Lemma 2.3. Let (A, ¢) be a solution of the heat flow (1.3) with initial Higgs pair
(Ao, ¢o). Then

¢ (x, )] < max{sup go|*, C4/C3}  ¥(x,1) € M x [0, 00).
M
For simplicity, we set

0 = Aw(Fa + 1. 9"D.

Direct calculation shows that

9, _ 94 9% . 99\"
e =no(2a(50) + 500+ o (37) )
= A0+ V=1 A8, [0, 9*11 — ([0, ¢1, o*). (2.6)

Here we have used the fact that 0* = —6, and we set Ay = —D7 Da.

Let u(r) denote the Lie algebra of the unitary group U (r). Given a smooth convex ad-
invariant function ¢, we can define a gauge-invariant functional ® on the space of Higgs
pairs as in [AB]:

4 = [ o (Fa+10. 67D
Using the equality (2.6), we have

0
Efﬂ(é’) = p(Aa0 + V=1 Ay ([0, 160, $*11 — [0, $1, $*1)
= (¢'(0). A0 + V=1 Ay ([9. [0, 611 — [[6. 1. $*])).

where ¢’ : u — uis the derivative of ¢, and ¢’ is an equivariant map relative to the adjoint
action of U (r). It is easy to check that

(@'(0), V=1 Au((9, 16, 9*11 = [16, ¢1, 9" D)) = —([p — ¢*, ¢'(O)], [$ — ¢*, 6])
=—¢" )¢ — ¢, 01, [¢ — 9", 0)).

So, we have

d
(5 - A)w(é’) =—¢"(O) (¢ — 9", 01, [6 — 9", 0]) —¢"(0)(Vah,Va0) <0. (2.7
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As a special case, we have

(A—E>WF>O (2.8)
ot - '

From the above inequality, one can derive a uniform bound of |6].
By direct calculation, we have

1ol 2y _2re( 2 9
E(|DA9| +2[[6, 91| )—2Re<8t(DA9),DA9>+4Re<at[9,¢],[9,¢>]>

=2R 8A9 D 89 Dj6 4 R 89 0 9 6
_ e<[5, ]+ A(E ) A>+ e<|:&,¢]+|:75¢j|»[,¢]>,

0
<[59, 4, [0, ¢>]> = ([-D}Dab, ¢, [0, $1)
+ ([Aplg, [—v—=16,D)*1, ¢1, [0, ¢1) + ([Aull—v—16, $1, ¢*1, 41, 6, H]).

and

Setting [ = [0, ¢], we have

([Aol—~—11,¢*1. ¢1.1) = —(lla®) — dila- ¢1.1)
= — Tr{((luty — d3l)bp — Dpady — $ila))l})
= —Tr(lap) — Pala) Upd) — jlp)* = — IV =1 Aull. $*11%,

and

16, ¢11> = (1, 06 — ¢8) = Tr(lo (0da)* — Lo (da0)*)
= Tr((lop} — ¢11)0%) = (V=1 Aull, ¢*1,0) < |0] |V =1 Anll, ¢*1.

Combining the above inequalities, and setting

1) = fM{|DA9|2+2|[9,¢1|2},

we have

d

d ki 2 2
dtl_./M = (DA + 2110, 91P)

< 16/M{|9| D46 + (161 + 1819116, $11° + 91 116, 11 1D} D6}

— 2/ |DX DO — 4/ V=1 Aull, $*11
M M

< CsI — Cgl?,
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where C5 and Cg are positive constants. From the formula (2.4), we have fooo 1(t)dt <oo.
Using the above inequality and arguing as in [DK, Prop. 6.2.14], we can prove that

1(t) >0 (t — oo). 2.9)

Noting that the End(FE)-valued (1, 0)-form ¢ can also be seen as a section of
the bundle End(E) ® /\I’O(M ), and denoting the induced connection on the bundle
End(E) ® /\I’O(M ) also by V4 for simplicity, we have

/(VAﬁbvaﬁb):/ (VaVad, ¢)
M M

= f (W=1ApFaop—dpo(v—=1A,Fa®Idyi0y +Idg ® Ricy), ¢),
M

where Ricys denotes the Ricci transformation of the Kidhler manifold (M, w). On the other
hand, one can check that

/M{<FA, [, d*1) + ([$, ™1, Fa) +210a01%} = 2Re/M{<FA, (6, ¢*1) + 10401%)

M
Then
YMH<r>=2/ |VA¢|2+2/<¢>uRicM,¢>+/{|FA|2+|[¢,¢*1|2}. (2.10)
M M M

Remark. From the above identity and Lemmas 2.2 and 2.3, we see that f ulV AP|? is
also bounded uniformly along the heat flow (1.3).

Lemma 2.4. Let (A, ¢) be a smooth solution of the heat flow (1.3). Then

0 2 2
A 5 [Vad|” —2|VaVag|

> —C7(|Fal + IRm| + [Ricy| + 1¢°)|Vag|* — C11¢| |V Ric| [Vag|,  (2.11)

where C7 is a constant depending only on the dimension m and Rm is the Riemannian
curvature of M.

Proof. Choosing normal complex coordinates at the point considered, we have
AIVad? = 2069a|Vagl?
=2|VaVad’ +2Re ((VauVag + VaaVaa)Vad, Vag)
=2|VAVad* + 2Re ((Va.aVaaVa.,,$)dz’ . Vag)
+2Re((Va,gVa,aVay9)dz’ + (Va)dVaaVaedi', Vag).

Using the Bianchi identity, we obtain

VaeVagVa, ¢ = VaueVaa((Va,¢p)dz? + ¢pV,dzP)
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= (VaaVagVa,y08)dz? + (Va.adp)VaaVaydz? + ¢V a.aVaaVa,, dz?
= ([Va,y Faga. #p] — [Faya. Vaadpldz’

+ (VA,afﬁﬁ)VA,aVA,ydzﬂ + ¢,3VA,aVA,aVA,de‘3
= —[0A(V—=1AwFa). ¢] — (Fa.ya. Va.adp)dz’

+ (Vaa®p)VagVaydz’ + ¢pVaaVagVa,ydz’

and

VA,EVA,otVA,yd’
= —[04a(V=1AuFr), ] — ((Faya Vaadpldz? — [V =1 ApFa, Va o]
+ (Va,08)VaaVawd?? + (Vaupp)VaaVaydz? + ¢gVagVaeVa, dzP.

On the other hand, using the equations (1.3), we have

—|v o> = 2Re<v <a¢)+[ ¢} v ¢>
o AYT T A\ % a4
= —2Re 2[04(V—1 Ap(Fa + [¢, $* 1)), #1 + [V =1 Ap(Fa + [¢, $*1), Vad], Vad).

Then (2.11) follows from the above identities. This proves the lemma. ]

Let (A, ¢) be a smooth solution of the heat flow (1.3). We have

2 0F + ¢, d*11> + 2194017
o UFa , AP
_ 2A ¢ ) ¢\ )
+4Re<8A§ + o /\¢+¢/\ 8A¢>>
=2Re (—v/—1 (0434 — 3404) (Ap(Fa + ¢, 6 1), Fa + [, ¢*])
—4Re ([[V—1Aw(Fa + [, $*1), @1, ™1, Fa + [¢, $*1)
— 4ReQ2[A(V—1 Ap(Fa + [, 9*1)), o1 + [V—1 Ao (Fa + [, $*1), 3401, da0).

Choosing normal complex coordinates centered at the point under consideration, we have

AQRI04¢I?) = 4000a|340)> = 4|VA(34d)|* + 4Re (VaaVag + VagVaa). d40)
= 4|V4(049)* +4Re (Va.aVaaVaydp + VaaVaaVa,y¢p)dz’ AndzP 0a¢)
+4Re ((Va,,¢p — Va.p0y) (VaVadz?) A dzP, 94¢)
= 4|V4(940)1> + 4Re ((Va,y 08 — Va pdy) (VaVadz’) AdzP, d40)
— 8Re ([Fa.yz, Vaadpldz? AdzP 4+ [04(V =1 AuFa), ¢1, 34)
—4Re (V=1 ApFa, 4], 0a).
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Using the condition ¢ A ¢ = 0, we have

AQlda91%)
= 4|V4(949) 1> +4Re (Va,ybp — Va,pby) (VaVadz? ) AdzP  04¢)
—8Re ([Fa.yg+1¢y, 621, Vaadpldz? AdzP +[04(V =1 Au(Fa+19, $*1), 1, 9ad)
—4Re([WV—1AyFa, 3401, 3ad) —8Re ([¢%, [04¢. Pull, da)
+8Re ([[$y, 2, Va.adp — Va,pdaldz? AdZP, dad).

By direct calculation, we have

AlF4+ (9. 6%
= 28, 34| Fa+[¢. ¢*11*
=2Re((VaaVag+VaaVaa)(Fa+p, 0%, Fa+[¢, ¢* ) +2Va(Fa+[, ¢* DI
=2|Va(Fa+[¢. 9*DI* +2Re (VAo Vag(Fa+[d, 9" Dpy)dz? AdZ, Fa+[o, ¢*])
+2Re ((VagVao(Fa+lo. 0" pyp)dz? AdZY, Fa+19, ¢*1)
+2Re (Fa+[¢, d*Dpy(dz? AVeVadZ’ +VgVedz? AdZY), Fa+1¢, $*]).

Using the Bianchi identity, we obtain

VaaVag(Fa+ ¢, ¢ Dy
= Vao(Vay(Fapa + [9p, 03] + (¢, Vaad; — Vaydz])
=Va7Vaa(Faga+ [0, 03D + [Faay. Fapa + [dp, d51]
+ Valpp, Vagdy — Vaydz)
=Va7Vas(Faaa + [ba 051 + [Faay, Fapa + (08, 0311
+ Vy([Va,a9p — Va pdas 851 + Vau((9p, Vagdy — Vazdz])
= Vay7Vap(Faoa + (9o, 05D + [Faey, Fa gz + [¢p, ¢51]
+[Va,ap — Va pda: Vidgl + [Vaadp, Vaady — Vaydzl
+ [Bp, [Faaw + [Bas 051, #5711 — [dp. [Fa a7 + [@as 51, ¢7]]
— [[Fa,a7 + [¢a: 851, 06, ¢51 + [[Fa g7 + (9, ¢7], e, d5],

and similarly,

VaaVau(Fa+ 19,0 Dy
= VapVay(Faua + (9o, 951 — [Fa pa, Fauy + [$a. ¢51]
+[Vaadp — Va pdas Vad;] + [Va,pda, Vaady — Vayods]
+ [Bas [Fa pz + [#p. 03], 9511 — [Ba. [Fa g7 + (95, $71, 511
— [[Fao@ + [$a, 51, $p1. 051 + [[Fa gz + [$p, 5], dal. d51.
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Combining the above identities, we have the following lemma.

Lemma 2.5. Let (A, ¢) be a smooth solution of the heat flow (1.3). Then

d
(A ~ 5)<|FA + [, ¢*11* + 2194013 — 2|Va(Fa + [, ¢*DI*> — 4Va(3ad)I?
> —C3(|Fa + (¢, 011 + |Vad| + 91> + IRm)(|Fa + [, 911> +204017),  (2.12)

and

0
(A - E)GFA + ¢, *11%) = 2|Va(Fa + [, ")
> —Cs(|Fa+1¢, d* 11 +|Vagl +101* + Rm)(|Fa + [, ¢*11> +20401%),  (2.13)

where Cg is a constant depending only on the complex dimension m.

2.3. Monotonicity inequality

In this subsection, we derive a monotonicity inequality for the heat flow (1.3), which is an
analogue to harmonic map heat flow [St2]. Similar arguments have been used in studying
the Yang—Mills flow ([CS1], [CS2]) and the Yang—Mills—Higgs flow ([HT]).

Let (M, w) be a Kéhler manifold with complex dimension m. For any xo € M, there

exist complex normal coordinates {z1, ..., z;;} in the geodesic ball B, (xg) with center xo
and radius r < i (M) such that xo = (0, ..., 0) and for some constant C(xq),
8&7

lg:7(2) — 8ij1 < ClzP?, <Clzl, VzeB,.

’ 0zk

Here i (M) is the infimum of the injectivity radius over x € M, and (gl.j) is the Kdhler
metric of M given by (9/9z;, 3/9Z;) = &7
Let u = (x,t) be a point in M x R. For a fixed point ug = (xo, f9) € M x R, we
write
Sr(uo) = M x {t =19 — 17},
T(up) = {u = (x,1) 1t —4r> <t <ty —r*, x € M},
Py (uo) = By(x0) x [t — r*, tg + 7).

For simplicity, we denote S, (0, 0), 7,(0, 0) and P, (0, 0) by S,, T, and P, respectively.
The fundamental solution of the (backward) heat equation with singularity at (zg, o)

! exp(—'z_m'z) t <t
(47 (tg — t))™ 4(tg—1))’ '

For simplicity, we denote G (o,0)(x, ) by G(x, t).

is

G(Zo,to) (Z’ t) =
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Assume that (A(t), ¢(¢)) is a solution of the heat flow (1.3) in M x R;. Let f be
a smooth cut-off function, i.e. |f| < 1, f = 1 on B2, f = 0 outside B,y and
IVfl <2/i(M).Forany (x,t) € M x (0, 00), we set

e(A, §)(x,1) = |[Fa + (¢, ¢*11* + 20401

For any ug = (xg, t9) € M x [0, T], we set

D(r; A, ¢) = r2/ e(A, 9) f2GyydV, dt,

Ty (uo)

U(r; A, ¢) = r4/ e(A, $) Gy dV,.

Sy (uo)

Then we have

Theorem 2.6 (Monotonicity inequality). Let (A, ¢) be a regular solution of the heat flow
equation (1.3) with initial value (A, ¢o). Then for ug = (xo,t9) € M x [0, T, and for
ryand ry with 0 < r; < rp < minf{i(M), \/1o/2}, we have

O(ri; A, §) < Coexp(Co(ry — r1))®(r2; A, ¢) 4+ Co(r? — r}) YMH(Ao, ¢o),
W(r; A, ¢) < Croexp(Cro(ra — r))W(ra; A, ¢) + Cro(rs — r) YMH(Ag, ¢o)

where Cy, C1g are positive constants depending only on the geometry of M.

Proof. Choosing complex normal coordinates {z1, ..., z;;} in the geodesic ball B, (x¢)
with r < i(M), and setting z = RZ, t = R*7 + to, we have

®(R; A, ¢) = R2/ e(A, ) f2Gyy dV, dt
TR(MO)
fo—
= / / e(A, $)(z, 1) f2(2) Gy (2, 1) det(g;7) dz dt
to— 4R2 m

— R4f / e(A, d)(Rz, R + tO)fZ(RZ)G(Z, f) det(glj)(RZ) dz df,
4 m

and

%@(R A, )= 4R3/ / e(A, ¢)(RZ, R2t+t0)f (R?2)G(z, t)det(gl N (RZ) dzZ df

+R3/ / 2Re[<z a—)e(A ¢)j|(Rz R*T+10) f*(RZ)G (2, 1) det(g;7) (RZ) dZ di
+R4/ / 2Rt[—e(A qb)}(Rz R%*7+19) f2(RZ)G(Z, 7) det(g,7)(R?) dZ di

+R? / f 2e(A, )(RZ, R2t~+to)Re|:<zi%> fzdet(gij):|(RZ)G(Z,f)didf
—4 Jcm <

= h+h+L+14.
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Defining the connection A’ = A + ¢ + ¢*, we have
Fa=Fa+19,0"1+0a¢ + 40",
The Bianchi identity is
Dy Fpa = DaFa + (¢ +¢*, Fal=0.
It follows that

I, =

-1
R3 2Re zii e(A, ) |(RZ, R*T + 10) f2(RZ)G(Z, ) det(g.~) (RZ) dZ di
aZl 1]
—4 m

.9
= Rf 2Re [(z’—)e(A, ¢)]f2Gu0dngt
Tr(uo) 9z
= RZRC/ (ZiVA,a/aziFA’ +ZivA,3/82i FA/, FA/>f2Gu0 dVg dt
TR (uo)

and

R2 Re/ <z"vA73/8z,- Far, Far) f2Gy dV, dt
Tg (uo)

/ 3 0\,
- RZRe/ <Zl (Va7 FA’)<—~» Tk)dzf NdZ Fy+ 19, <z>*]>f2Gu0 Vg dt
T (uo) T 0z 97
i 9 0N\ . -
PR fTR<uo><Zl Vaapoz F’”(E’ a_zk)dZ] ndzt, 8A¢*>f2Guo dVydt
: 3 0\,
+RRe/ (v ,'F/<_.’_>dzj/\dzk’a > 2 vt
TR(uo)< (Vi Fa) 977" 9zk AP )Gy dV,

=ta+b+c.
By the Bianchi identity, we have

0 d d 0 0 d
(Va0 Far) gﬁ = (V9702 Far) 3_21’8_21‘ + (V5024 Far) ga—zl

— (8, (Fa+ 16, "D j) + 167, (Fa+ 19, 9071 + 185, (34 705 — 0, 7))
—i 9 9 ] Va *
<Z (Va.a/02i FA,)(B—Zi, ﬁ>dzl ANdZE Fa +1¢, ¢ ]>
= (00,0700 B4 705 — 04 £87)dz! AdZ Fa+ 19, ¢*])
= (@' (Fy ji- 97) = [Fy i 7Dz’ A a2 Fa+16, 47D,

and
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<z"(VA’3/3zk FA/)(%, i_i)dzj ANdZ* Fa+ (9, ¢*]>
z/ 07
= (~Z'0A((Fa + ¢, ™D j7d)) — T TH(Fa +[$, $*Djadz! A dZ*, Fa + (9, 6*1)
= (—94@ (Fa +1¢, 6™ ;7dz)) =T TH(Fa +[$, $*Djadz! A dZ*, Fa + 19, 6*1)
—|Fa +1¢, 911
Using ¢* A ¢* = 0, we have
(@ (—[47, (Fa + [, ¢"D gl + [6F, (Fa + [, "D ;;Dd2 A dZ*, Fa+ 16, ")
= (Z(—[¢¥, Fy ] + 9%, Fy 7Ddz) AdZ", Fa+19, 6™,
and
(@ 1. (04707 — 0, x¢D)dz) AdZF, Fa+ (9. ¢*])
= (—[¢*, ' (0a.i9x — 04 k$1)dZ T, —(Fa+1$, 6*D*)
= (Fa+[0, "1, [¢%, 2 (9,1 —9a xb)dZ"1)
= (—V=TAu[Fa+g, $*1, $1+[V =1 Ay (Fa+[d, ¢*1), ¢, 2 (0a.ix —0a ki) d2").

The above identities yield
a = R2Re / (B(F2Gu) AT (Fa+1. ") j7d27). Fa+le. ¢*))
Tg(uo)

—~(*GuyT (Fa+1$, 9*1)j7dz), V=104 A0 (Fa+1, $* D)=V =1 Ay dald, ¢*])
—[?Guy (F T (Fa+$, 9" jud2! AdZE, Fa+1$, ¢*1)
—£2Guy | Fa+le. ¢ 17— f2Gug(z' (9a,ipk—0a kb)) dz" . V=1 Au[Fa+16. ¢*1, ¢])
+ 2 Guy (2 Oaipr—0a x)d2", [V =1 Ay (Fa+g. ¢*1). 1)} dV, dt.
Using the Bianchi identity and ¢* A ¢* = 0 again, we have
: 39 . _
b= RRe/ <z’ (Vg a9 FA,)<T, Tk)dzf A dZF, 8A¢*>f2Gu0dVg dt
T (uo) ’ 97/ 0z
; 3 0 . _

= R2Re/ <zl (Vg FA,)(T, Tk)dZ/ A dZF, aA¢*>f2GMOdvg dt

Tr (1) R 7' 0z
- R2Re/ (20,4704 707 — 0,4 z00)dZ A dZ", Da¢*) G

Tr(up) " ' '

— @TE@ a0 — 0 199 AT 9497) [ Gy} dVy di

= R2Re f {OA(S2GugZ (4 70 — 04 1)dZY), 49"

TR (uo)

— (0(f?Gup) A T (@ 4 0% — 94 705)dZ"), 940™)
= 2084¢"1f>Guo — @TE@amdy — 8,4 190z’ A dZ' 8a¢*) > Gug) dVy di
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_ RORe / (3G (2 On.ihk — daxbi)des V=1 AwlFa. $1)
Tr (uo)
— (0(f*Gug) A T (05 ;0% — 34 767", 9a0™)
—2004¢"1f>Guy — @TE@andy — 8, 199z A dZ* 849" > Gug) dVy dt
and

. 0 0 .
_ =i . Y j k 2
c= RRe/TR(u0)<z (vAi’/f’Z’FA)<azj’ 8Zk)dz Adz ,8A¢>f Gy dVy dt

= RRe/ (20, 70a,jbk — 0ax)dz! A dZ", 9ag) f7GuydV, dt
Tr(up)
= —R2Re / (Z'[Fy ;7d2’, 91, 0a9) f> Gy d Vg di
TR (uo) '
— _R2Re / @ [(Fa + 9. ¢"Djid2) . B, 9a0) > Guy dVy i
Tg(up)

- —R2Re/ (T (Fyq + [¢,¢*])j;-dzj, V=1 Audale, d*1) 2 Gy dVy dt.
Tg(up)

Then
R2Re/ <ziVA a/aziFA/,FA/>f2Gqungt=a+b+c
Tr(uo) '

_ R2Re /T NP Gu) A @ (Fa 16,9 D)), Fa+19.9°)
R (g

—(f*GuZ (Fa + 1, 9™ 7d2! , V=194 80 (Fa + (¢, $*1)
— [2Guy (@ TE(Fa + (9. " Djadz! A dZF, Fp + 19, 0"1) — [*Guol Fa + (9. 0*11
+ 7 Gug(2 (0a,idk — 94 kd)dZ", V=1 Au(Fa + [, $*D), 6])
—(0(f*Gup) AT (@65 — 9 4 7)), 9a9")
~2004¢*1>Guy — @ TE@am¢7 — 5 78)d A dZ' Tad") f2Gug) dVedr.
By a similar calculation, we have

R2 Re/ (@'Voyas9: Far Far) f*Gug dVy dt
TR (uo)

- R2Re/T o O Gu) A G (Fa+ 18, 6°D 57, Fa+ 16, 6°)
RUQ

— (f2Gup?' (Fa +[¢. ¢*1);5d7 . =104 A0(Fa + [6. D)

— 3Gy (&' T (Fa + (6. 6*]),zde! AdZ*, Fa + (9. 6"1) = f2Guol Fa + [0, ¢11
+ f2Guy (2 @aidk — dax)d2", [V =1 Au(Fa + (4. 6*]). ¢])

—(3(f2Gup) A (2 Oa.itk — Dakbi)dZ"). Ia)

— 200481 /> Gug — (' T Bandr — daxdn)dz’ A dZ", 0a¢) f2Gug}d Vg dt.
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Note that

i 9 det(on
7' — det(g;7)

k
ré| < c|z|, -

< Clz* det(g;7),

and
0 G 0 G ;

82 20 —r10)° " a7 2-10)

By direct calculation, we have

I = 4Rf e(A, ) f2GyydV, dt,
Tg(up)

I > —CR/ e(A, 0) 1z 2 + 1zl IV I DGy d Vg dt,
TR (uo)
and

LI+ > 2RRe/
Tg (o)
—Cl1aaP PV FIF11zIGug+ F2Guplzl?)

. . . 0A
+f2Gu0<Z’ (Fa+[¢. "D j7dz! =2 (Fa+[$. ¢*D;5d7’ 5>

{—C|FA+[¢, O IV I N2|Gug+ 2G|z

. 0
—2f2Guo<z’(aA,im—aA,k@)dz", B—‘f>

H(f20Gu AT (Fa+g, °D)j;7dz!, Fa+lg, ¢°1)
—(f28GuAZ (Fa+¢, *D);5d7, Fa+19, ¢*])
—(f20Guy A@ (@4 7058 4 707)dZY), Dadp*)
—(f20Guy A& (34,19 — 04, kb)) dZ"), D49™) } dVydi

=2R Re/ {—Ce(A, DUV FI1f112lGuy+ f2Gupl21)
Tg (uo)

2 =i * i i * —j 0A
+ 12 Guo\T (Fa+1, " 1) 72’ —2' (Fa+19, ¢")7d2/, ——
: d
—2szuo<z'(aA,iqsk—aA,kqsi)dz", 8—‘f>

Gy —i * j —k ki * m
_ fzz(t__%)(zlwﬁm ¢*Dj7dz! g (Fa+1¢, 6* D ")
-7 22(t——uoto) (e (Fa+1$. " D)7dZ . g™ (Fa+1. 6" DndZ")

2 Gy
7.

G [ . s
—fz—z(t _uoto) (' (9a,i¢k—0a kbi)dZ", 2/ ¢ (04 mn— 04 npm)dZ")) } dVydt.

(204 7050 5 2¢9)dZ" 7/ ¢/ (04 s — 0 A nb)dZ"))
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Using the heat equation (1.3) and the Stokes formula, we have
-1
o - - -
I; = R* / / 2Ri [Ee(A, ¢)} (RZ, R*7 + 19) f2(R?)G (%, 1) det(g;7)(RZ) dz di
—4 m

:ZR/ (t—to)[ie(A,¢):|f2Guodngt
Tk (o) dt

JA
=—4R/ (t—to)H—
T () ot

_ = 0
 16RRe / (t - 10) <a,-<f2Gu0>g’f<aA¢>k,-dz’<, —¢’>dvg dr
Tr (o) a1

¢

2
= ]szuodVg dt

2
+

2 ji * K 0A
+4RRe (t = 10){8;(f*Gu)g” (Fa + [¢. ¢*Ded<*, == )dV, dt
TR (uo) ot

T2 ij * —« 0A
—4RRe (t — 10) (3, (f2Gu)g™ (Fa + [, ¢*DizdZ", 5= )dVy dt.
Tr(uo) at
On the other hand, we know (e.g. [CSt]) that

R7NzPGuy < CA + Gyy), RVt —10]721* Gy < C(1+ Gy,

on Tr(ug). Moreover, we have |V f|G,, < C due to the fact that V f = 0 for B;)/2.
Combining these facts and the above inequalities, we have

d
— SR A, p)=L1+ L+ L+ 14

dR
a & oz E
zR/ {2|r—ro| a—d’——zfg*(aA,i«bj—aA,j¢>,-)dzf) f*Guy
Tr (uo) o |t—r1l
dA —j Jji * k__iji * —k g 2
+ |t —1o] ¥+|t—t0|(z g (Fa+lg, o™ Dyidz" —2' g (Fa+[¢. ¢™D jzdz")| f*Gu,

4
—Ce(A, ¢)<|Vf| £l |z|Guo+f2Gu0|z|2+f2Guoﬂ)

[t —10]
~Clt—=1o] IV fI*Gug| Fa+[, ¢>*1|2} dV, dt
> —C®(R; A, ¢)—CR YMH(Ay, ).

By integrating the above inequality over R, we prove the claim for ®. The claim for ¥
can be proved by a similar argument. O

3. Convergence properties of the heat flow
In the following part of this paper, we will always suppose that (M, w) is a Kédhler surface,

i.e. the complex dimension m of (M, w) is 2, and we will assume the volume of M with
respect to w is normalized to be 2.
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Theorem 3.1 (e-regularity theorem). Let (A, ¢) be a solution of the gradient flow (1.3)
over the Kahler surface (M, w) with initial value (Ao, ¢o). There exist positive constants
€0 and 8o such that if, for some R with 0 < R < min{i (M), \/f/2}, the inequality

R>™m / e(A, p)dx dt < e
PR (x0,%0)

holds, where m = 2, then for any § € (0, min{1/4, §o}) we have

sup  (IFa + (¢, ¢*11* +2[340|*) < 16(6R) ™%,

Psr(x0,70)

sup  |Vagl* < Ci,

Psr(x0,10)

where C11 is a positive constant depending only on 8, R, the initial data (Ao, ¢o) and the
geometry of (M, w).

Proof. For any § € (0, 1/4], we define the function

fr)=@Q8R—r)* sup (IFa+1[o,9*1* +2(340l%).

Pr(x0,10)

Since f(r) is continuous and f(2§R) = 0, f(r) attains its maximum at a certain ry €
[0, 26 R). We can find (x1, #1) € Py, (xo, tp) such that

(IFa + [, ™17 + 218401 (x1,11) = sup)(|FA + [, ¢*11> +218491%).
PrO(ZO

‘We claim that
fro) < 16. 3.1

Otherwise, we have

26R —
po = (28R — ro) f(ro) "4 < T”’

Rescaling the Riemannian metric g = o, 2 gandt =1 + pgf, we have

|Fa+1¢, "1 = p§|Fa + ¢, ™13, 10403 = pgl0adl3.
Set
epy (X, 1) 1= |Fa + [, ¢*11% + 2104917 = pge(A, §)(x, 11 + pg1),
boo(x, 1) := [VaBl3(x, 11 + pgT) = pgIVadls (x, 11 + ).

We have e, (x1,0) = 1 and
Sup ey =pg  sup  (1Fa+[¢. ¢*1I; + 2104913
Py (x1,0) Pog (¥1.11)
256R—ryg
2

—4
<p;  sup <|FA+[¢>,¢*1|§+2|8A¢|§>5p5‘< )f(r0)=16_

Pas Rt /2(X0,10)
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From the Bochner type inequality (2.11), we have

0 d
(a_; - Ag,)(bpo + ) = p8<5 — Ag><|VA¢|§ +1)
< C7p§(|Falg + [Rmlg + [Riclg + [413)Vag]

+ C7p8191¢|V Riclg|Vadl,
< C(bp, +pg) in P(x1,0),

where C is a positive constant depending only on the initial data (A, ¢o) and the geom-
etry of (M, w). Then Moser’s iteration yields the parabolic mean-value inequality

sup (by + o) < C' / (b + ) dVy di

P12 (x1,0) Pi(x1,0)

< c/pg—z”’/ (IVagl} + 1)dV,dt
Ppo (x1,11)
< Cpipy " = Cis, (3.2)

where C13 is a positive constant depending only on the initial data (Ag, ¢o) and the ge-
ometry of (M, w), and we have used the fact that m = 2. Using the Bochner type estimate
(2.12), we have

9 _ A, TN YT 112 + 2|04
E— g epo—,oo &_ g (| A+[¢v¢]|g+ |A¢|g)

< Cp§(IFa + [¢. ¢:]lg + Rml
+ 1913 + Vadl) 1 Fa + 6. 0*117 + 2104913)
< Cuep, in Pip(xy,0),

where the positive constant C4 depends only on i (M), the initial data (A, ¢p) and the
geometry of (M, w). Then Moser’s iteration yields the parabolic mean-value inequality

€po dVg dlT

Py/2(x1,0)

1=epo(x1,0)sC’/

<C'py " / (IFa +19. 91l + 2104015 dVy dt, (3.3)
Ppo (x1,11)

where C’ is a positive constant depending only the initial data (Ag, ¢¢) and the geometry
of (M, g).

We choose normal complex coordinates centered at x1, and let ¢ € C5°(B3g/4(x1))
be a cut-off function such that ¢ = 1 on Br,2(x1), |¢| < 1 and |[Vp| < 8/R. Taking
r1 = po and rp = min{1/4, §p} R in Theorem 2.3, we have
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pg " / (IFa + ¢, 6*11; +2004¢13) d Vg dt
Ppo (x1,11)

< C*p; /P (Fa+19. "1l +21040[)G y, 1420297 dVe dt

po(xl,t])

2 2
< C*pO/ (A DG e dVedr
Tpy (x1,11+205)

< C_‘RZ/ e(A, $)G 5,292 dV,dt
Tmin(l/4.zSO]R(X1Jl+2pg) (x1.014205)
+ C82R> YMH(AY, A9, ¢°)
< CRH’"/ e(A, ¢)dV,dt + C5SR* YMH(AY, AY, ¢°)
PR (x0,70)

< C'(Eo + o), 3.4

where the above constants depend only the geometry of (M, g) and the initial data (Ao, ¢o).
Choosing €y and &g sufficiently small, we see that (3.3) contradicts (3.2). Thus, we
have proved the claim (3.1). It implies

sup  (IFa + (¢, 9*117 +219401%) < f(ro) BR)™ < 16(3R) ™.

Psr(x0,70)

On the other hand, using the Bochner type inequality (2.11), inequality (3.4), and Moser’s
iteration again, we have

sup  (|[Vagl> +1) < Cis

/ (IVagl* + 1)dVgdi < Cia
Psg (x0,t0) Prin{1/4,8) & (X0,10)

for any § € (0, min{1/4, 8o}), where Ci5 and Cj, are positive constants depending only
on 8, R, the initial data (Ao, ¢o) and the geometry of (M, w). This proves Theorem 3.1.
O

Using the above e-regularity theorem, we can analyze the asymptotic behavior of the
gradient heat flow (1.3) on a Kéhler surface. In fact, we obtain the following theorem.

Theorem 3.2. Let (A, ¢)(x,t) be a global smooth solution of the gradient heat flow
(1.3) on a Kdhler surface (M, w) with smooth initial data. Then there exists a sequence
t; — oo such that (A, ¢)(x, t;) converges, modulo gauge transformations, to a solution
(A, ¢)(-, 00) of the Yang—Mills—Higgs equation (1.2) in the smooth topology outside a
closed set ¥* C M, where ¥®" is a finite collection of points.

Proof. Let (A(t), ¢(t)) be a regular solution of the gradient flow (1.3) in the space 55 of
Higgs pairs. By Lemma 2.2, we know that [;° [}, (1A/3t|>+2|3¢/dt|?) dV, dt is finite,
so we can choose a sequence #; — 00 such that
tkt+a A 2 a¢ 2
/ /(— +2‘— )dngt—>0 3.5
th—a JM at dt
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for any a > 0, and %(., tr) and %(-, ) — 0 strongly in L?. Denote

Y=

k— 00

{x eM: liminf/ e(A, ), 1) dVy > el},
0<r<i(M) By (x)

where € is determined later.
Suppose x; € M \ X. Then there exists an r; > 0 such that, for some subsequence
of 1z, still denoted by #, we have

/ e(A, P)(, 1) dVy < €.
By, (x1)

For sufficiently large k, using the local energy estimate lemma 2.2’, we have

2

r1_2/ e(A, §)(-, 1) dVy dt
Pry 2 (e, 1)
3
+ 2‘—¢

<1/ (A, ), 1) dV, +C/IWI2 (M
= 3 e i 5k N,
2 )8, o) ¢ w—ry Jm\| 9t ot

tk+r12 9A 8¢) 2 1/2
+ C| YMH(Ay, ¢o) o dVgdt
M

2

+ 2‘ s
tkfrl2 ot

where we choose €] = ¢ and ¢ is the constant of Theorem 3.1. Noting |¢| is bounded

by a constant, by the e-estimate in Theorem 3.1, we have

sup  (|Fal* +[Vagl®) < Cie, (3.6)

Psry (x1,1k)

2
>dngt

< €1,

where Cyg is a positive constant depending only on é, 1, the initial data, and the geometry
of (M, w). Then, for any x; € M \ X, there exists a sufficiently small number § such that
Bsr (x1) C M \ X. This implies that the singular set X is closed.

Next we prove that X is a finite collection of points. For a given § > 0, due to the fact
that X is closed, we may find a finite collection of geodesic balls {B;, (x;)}ier, ri < 6,
such that { B, (x;)}ier isacoverof X, x; €  foralli € I', and By, j2(x;) N Brj/g(xj) =0
fori # j. For k sufficiently large, we have

| ecapcmavizea
By 2
foralli € I'. Summing overi € I we then get

S0 - YMH(A, 6)(0) = - YMH(Ao, 90),
1 1

iell
ie. ¥ is a finite collection of points, and the number of points is less than
(1/€1) YMH(Ao, ¢o).
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By using Uhlenbeck’s Theorem ([U2, Theorem 3.6]) and the above estimates (3.6),
there exists a subsequence {k’} of {k} and gauge transformations o (k') on E such that
(o (K" (A(tp)), o (k") (¢ (1)) converges to a pair (A, ¢)(-, o0) weakly in the H!'?2 topol-
ogy on any compact subset outside ¥ and (A, ¢)(-, c0) is a solution of the Yang—Mills—
Higgs equation (1.2) outside X. Using standard parabolic regularity techniques (similar
to that in [HT, Proposition 6]), we can also prove that (o (k")(A(t)), o (k") (¢ (t))) con-
verges to (A, ¢) (-, 00) in the C* topology outside X. In fact, for x; € M \ X, from the
above, we see that there exists a small Ry such that

sup  (|Fal* +|Vagl) < C

PRy (x1,1)
for sufficiently large k. We assume that

j i+1
sup (IVEFEal? + Vi 9 <C

PR (X1.1k)

for j =0,...,] — 1. By an argument similar to the one used in the proof of Lemmas 2.4
and 2.5, we have

9 . it i1 o . 11
(A—§>(IV2FA|2+IVA+ ¢1%) = 2(V4 T FaP 1V oD - CAVI FAP+1V4 T 1)
in PR/. (x1, tx) with small R; and j =0, ..., [. Then Moser’s parabolic estimate yields

sup (V4 Fa? + |V 91h) < C.

Psgy (x1,1k)

We can now use a standard diagonal process of gluing gauges ([DK, Th. 4.4.8]) and
again passing to a subsequence to obtain smooth gauge transformations o; such that
(0i (A(t)), 0i (¢ (t;))) converge to a field (Aco, o) in the smooth topology on compact
subsets of M \ X. This proves the theorem. O

Remark. From the above theorem, we know that the limiting Higgs pair (Aco, $o) Sat-
isfies the Yang-Mills—Higgs equation (1.2) outside a finite collection of points £?". On
the other hand, from Lemma 2.3 and (2.10), we know that |¢~.| and f Iy |VAOO¢00|2 are
bounded. In the following, we will give a removable singularities theorem for the solu-
tion of the Yang—Mills—Higgs equation (1.2), from which we can deduce that the limiting
Higgs pair extends smoothly to M by a continuous gauge transformation. For conve-
nience, we concentrate on bundles over flat manifolds. For the regularity theory, the cur-
vature of the base manifold itself is not particularly important. The restriction to a flat
base manifold does not crucially affect our results.

Before discussing the removable singularities theorem, we state some standard a priori
estimates in PDE which will be used repeatedly.

Theorem 3.3 ([HL)). Assume that n = 3 and By is the unit ball in R". Suppose that
a'l e L*®(By) satisfies 11|E]* < a’§ig < A2|E)? for any x € By, & € R, for some
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positive constants A1 and Ay. Assume that f| € L"/Z(Bl) and fy € L1(By) for some
q € [2n/(n + 2),n/2). Suppose that u € H'(By) is a subsolution in the following sense:

/{a"famajwflmp}sf fa
B B

for any ¢ € HOI(Bl) and ¢ > 0 in By. Then u™ € Lf;C(Bl)for 1/p+2/n =1/q.
Moreover, there exists a small positive constant €) such that if || fi|| Ln2(By) < €2 then

lu e s, < CUutll2ep,) + 1 f2llLas)-
where C is a positive constant depending only on n, A1, A2, q, €.

Theorem 3.4 ([M]). Assume that b € LA(U), ¢ > n/2, u* € W22 (U) with 1/2 < & <
1, and u > 0 satisfies the following subelliptic inequality in a weak sense:

Au + bu > 0.
Then u is bounded on compact subdomains of U. Moreover, if B(x,r) C B(xg,r9) C U,
then
WP o [ e,
B(x0,r0)
where the constant C depends onn, q, ) and rg/n_l/q 151 La (B(xg,ro))-

In the following, we prove regularity of small energy solutions of the Yang—Mills—Higgs
equation (1.2).

Theorem 3.5. There exists a positive constant €3 such that if (A, @) is a smooth solution
of the Yang—Mills—Higgs equations (1.2) on By C R*, satisfying f32{|FA|2 + |Vad)?

+ [¢|*} < €3, then
|Fa+ [, ¢*]||c0(31) + ||VA¢||C0(BI) < C(IFa+I9, ¢*]||L2(32) + ||VA¢”L2(BZ))’
where C is a positive constant depending only on e€3.
Proof. From (2.5), (2.11), (2.12) and (2.13), we have
Alpl* = —Calgl?, 3.7)
AlVA@I* = 2VaAVadI> = —C7(IFal + 9P| Vad |, (3.8)

v

\Y

A(Fa + (¢, d*11* 4+ 210401%) — 2IVA(Fa + [¢, 9" DI> — 4[Va(040)
> —Cs(|Fal 4 |Va®| + 191D (|Fa + [¢, 011> +21040%),  (3.9)

and

A(Fs + 19, $*11%) = 2IVa(Fa + [, ¢*DI?
> —Cs(|Fal + |Va®| + 101 (|Fa + [¢, 011> +210401%).  (3.10)
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It follows from (3.8) and (3.10) that
A(Fs + ¢, * 11> 4+ IVABI®) = 2IVA(Fa + [¢, 9" DI> = 2|VaVad|?
> —C17(1Fal + IVadl + 191D (I Fa + [, 611> + [Vad ).

Using the Kato inequality, we have

AlVag| > —Cis(|Fal + |91*)|Vagl,
AVIFa+1¢, 91242194017 = —Ciro(|Fal+|Vad| + 161V | Fa+1, ¢*112+2(84¢ [,

and

A IFa+16. ¢*17 + [VagP?

= —Co([Fal + |Vadl + |¢|2)\/|FA +1¢.¢* 17+ Vagl?  (3.1D)

where C1g, C19 and Cyg are positive constants depending only on the rank of the bundle E.
From (3.7) and the Sobolev inequality, we have

[16P ] a8, = C21 11817 123, (3.12)

Applying (3.11) and Theorem 3.3 with u = +/|Fa +[¢, ¢*112 + Va2, fi =
—C0(|Fal + |1Va0| + 1617), f> =0, p = 4, we see that if

1/ € 2
/ (IFal> + Vag? + 1) < —(—2> ,
B, 3\ Cy

ie. I fillL2(s,) < €2, then

[VIFa+16.0112 + 19401

L*(B1y2)

JIFs + 16, %12 + Vg (3.13)

=Cq

2By’

Choose €3 = %(62/C20)2. If IBQHFA'Z + |Vad|* + |¢|*} < €3 we can combine (3.12)
and (3.13) to get the following inequality:

2
I FallLss, p) + IVASI LB, 5y + DI LacB, )

<8(| /174 + 16, 9417 + Vgl

2
sy T 197 s,)

< Co([l19P] 2, + IFall2my) + IVadll2s,))

where the constant C»; depends on €3.
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Now, applying (3.11) and Theorem 3.4 with u = /|Fa + [¢, ¢*112 + |[Va¢|2, b =
Co0(|Fal + |Vad| + |¢|?), A = 1, g = 4, we have, for any x € By,

(IFa + 19, "1 + Va1 (x) < C23/

B(x,1/

2){|FA + ¢, $*11* + |Vad|*}

< 023/3 {IFa +1¢,0*1” + |Vao|*).
2

Hence
Fa+ 19, 9"l copyy + IVadllcop,y < Coa(llFa + [h, d*1ll12(5,) + IVadll125,))-

Since H|¢|2||L2(Bl), I Fallz2cg,y » IVa@ll 2,y are all invariant under dilation, the size
of the ball does not affect the constant C of Theorem 3.4, so C»4 is a positive constant
depending only on €3. O

Proposition 3.6. There exists a positive constant €3 such that if (A, ¢) is a smooth solu-
tion of the Yang—Mills—Higgs equations (1.2) on By \ {0}, satisfying fBZ{|FA|2 + |Vad)?
+ |p|*} < €3, then for any x € By \ {0},

Ix[*(|1Fa + [¢. ¢¥1| + |Vag)) < C(I Fa + (4, " W 20.21x)) + VARl L2(B0.21x1))>
(3.14)
where C is a positive constant depending only on €3.
Proof. Choose €3 as in Theorem 3.5. For any x¢ € Bj \ {0} we define

Ax) = %AGO + lx—20|x), P(x) = %qﬁ(xo + @x).

It is clear that (A, ¢) is a smooth solution of the Yang-Mills—Higgs equations (1.2) on By,
and fBz{|FA|2 + |Vg¢|2 + |$|*} < €3 by conformal invariance. From Theorem 3.5, we
have

1F; + [, 6"l cos,) + 1V 50l cos,) < CoslIF5 + (6. 6* 1 128y + IV501l2(5,))-
Scaling back, we deduce the proposition. O

For further discussion, we first recall Uhlenbeck’s result about the existence of a specific
gauge, called broken Hodge gauge. In such a gauge the powerful regularity argument of
elliptic theory can be applied to the Yang—Mills—Higgs equations (1.2).

Theorem 3.7 ([U1]). Let A be a smooth connection form on By \ {0} with curvature F.
Then there is a positive constant €4 such that if |[F(x)| |x|?> < €5 < €4 on By \ {0} then
there exists a broken Hodge gauge on B1 \ {0} which satisfies the following properties.
SetUp = {x : 270 < |x| <2711}, 8§ = {x : |x| =271}, i = 1,2, .... Then the broken
Hodge gauge is smooth on each U; and agrees on S;. Write

A= Aly,, F' =Fly,
Then {A'} and {F'} satisfy:
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(1) d*A"=0;

2) Al@|S,~ = A’e'H |s;» where Ag|s, are tangential components of A;

(3) d*Ajls; = d*Agls,_, = 0;

4) fS,- Al = fSi_] Al =0, where A, is the radial component of A;

(5) [, |A' < by fg IF'12 [y, AT < baed [y IFTP [5 |AI* < baed [ |FI* <
bzég for some positive constants by and by whenever €5 is sufficiently small.

Theorem 3.8 (removable singularity). Let (A, ¢) be a smooth solution of the Yang—
Mills—Higgs equations (1.2) on By \ {0} with ||¢| Lo (By) and [, {|Fa 1> + |Vao|?} finite.
Then (A, ¢) is gauge equivalent by a continuous gauge transformation to a smooth solu-
tion on B».

Proof. By rescaling, we can assume that [|¢|| 0 (p,) < €6 and fB2{|FA|2 + Va0 < €6}
with €g sufficiently small. By Proposition 3.6, for any x € Bj \ {0},

X2 F|(x) < [xIP|F + [¢, $*11(x) + 2[x[*|¢]*(x) < Cee.

By Theorem 3.7, the above inequality guarantees the existence of a broken Hodge gauge.
In what follows, the broken Hodge gauge is used as a reference frame.
Integrating by parts on U; gives

/ |Fl'|2=/ {(D;F“,Al')—(Ff,A"AAf>}+</ —/)tr(Ag/\(*F")g).
U; Ui Si—1 Si

Using equation (1.2) and the properties of the broken Hodge gauge, we get

[ wsrtay<c [ anvasnol
U; Ui

— i 4 1/2 1/4
§C/ (€ AT + e + €+ Va0l
Ui
< C/ (baes F/ 12 + €101 + €41V a0 2),
Ui

and

o o N2 12 _
—/ <F1,A'AA’>5/ |F'||Al|2s(f |F'|2) (/ |A’|4> stZes/ |Fi2.
U; U1 Ui Ui U,'

Summing over i and using Holder’s inequality gives

1/2 12
|F|2§C65/ |F|2+Ces”4/<|¢|4+|VA¢|2>+(/ |F1|2) (/ |A1|2) .
By By By 9B 9B

Since the bound €5 could be sufficiently small, and noting the properties of the broken
Hodge gauge, we get
1/4
#P=ce [ o+ 1vasy 4 [ IFIP,
B 3B

By
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By a rescaling argument, we have, for 0 < r <1,

fB|F|25cE;/“/B<|¢|4+|VA¢|2)+cr/ |12, (3.15)

B,

From (2.5), we have
Alp1? = 2|1Aul¢, 911> +2IVas*.

Integrating the above equality on U;, we have

2_1 l 2 %712 l _ i 2 4
fUi|vA¢>| _2/@{%'4" + Aol 671 }SZUS ./s,-)a’”|¢| +C/U,. N

From (3.14) and the bound of |@], it is easy to check that

/ IVadllol — 0 (3.16)
Si
as i — 0o. Summing over i, we get
VadP =C [ ortvC [ wasPac [ vagP,
Bl Bl 331 381
By a scaling argument again, we have, forany 0 < r < 1,

/|VA¢|2sc/ |¢|4+cff |vA¢|2+crl/ VAol (3.17)
B, B, 3B, 9B,

Putting (3.15), (3.17) together, and using the bound of |¢|, one checks that for any 0 <
r=1,

(FP + VagP) < Crf (FP + Vagl?) + Cr2,
B, 3B,

where C > 0 is a constant. Denote f(r) := [ B, (IF|*> 4|V a®|?). Then the above inequal-
ity implies that
oy scrf'+cr,

Since f’(r) > 0, and we may choose C > 1, it follows that

i(f(}’) + 1 r2a> >0

dr \ r® 2—«

where « := 1/C. From the above inequality, we have
fr)y<cCre.

From the last inequality, it is easy to conclude that there exists 8 > 2 such that

(IFIP +ValP) < C,
By
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and hence
AeWYB(B)), ¢ewW'P(B).

Since d4¢ = 0, we have A = [v/—1 Ay Fa, @] — Fa t ¢. In the broken Hodge
gauge, the Yang—Mills—Higgs equations (1.2) are uniformly elliptic systems. Above we
have proved that A € wLB(B)) and ¢ € WwL-B(B)) for some B > 2; we can then conclude
that (A, ¢) is smooth on B by standard elliptic theory. This completes the proof of the
theorem. o

Corollary 3.9. The limiting Higgs pair (Ao, Poo) Of the gradient flow (1.3) can be ex-
tended smoothly by a continuous gauge transformation to a smooth solution of the Yang—
Mills—Higgs equations (1.2) on M.

Proof. From Theorem 3.2 and the remark, we know that |¢so|, f u | Fag + [P0, ¢>§o]|2

and f [ Vag @oo |2 are bounded. So the statement follows by the removable singularities
Theorem 3.8. o

Proposition 3.10. Ler (A, ¢) be a Higgs pair on a Hermitian vector bundle (E, H) over
a Kdahler manifold M, and suppose that it is a critical point of the Yang—Mills—Higgs
functional (1.3) (i.e. (A, ¢) is a solution of the Yang—Mills—Higgs equations (1.2)). Then
the Higgs bundle (E, H, A, ¢) has a holomorphic orthogonal splitting

]
(E.H, A, ¢)=EPE H' AT, ¢),
i=1
where E; are ¢-invariant and H i are Hermitian-Einstein metrics on the Higgs bundle
(E', A", ¢").
Proof. From the equation (1.2), we have
D6 =0, [0,¢]=0,

where 0 = Ay, (Fa + [¢, ¢*]). Since 0 is parallel and (v/—16)* = /—16, we can de-
compose E according to the eigenvalues of /—1 6. We obtain a holomorphic orthogonal

decomposition
!
F=Qr
i=1
and ‘ _
¢ E'" — E'.

Let H' be tl_le restrictions of H to _Ei, qbi be the restriction of ¢ to E', and A" = Algi.
Then (A', ¢') is a Higgs pair on (E*, H;) and satisfies

V=T Au(Fpi + 19", (9)*]) = A ldgi .

So (A%, ¢i) is a Hermitian-Einstein Higgs pair on (E', H), ie. (E', H, A, d:i) is a
Hermitian-Einstein Higgs bundle. O
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Combining Theorem 3.2, Corollary 3.9 and Proposition 3.10, we have the following the-
orem.

Theorem 3.11. Let (A, ¢)(x,t) be a global smooth solution of the gradient heat flow
(1.3) on the Kdihler surface (M, w) with smooth initial data. Then there exists a sequence
t; — o0 such that (A, ¢)(x,t;) converges, modulo gauge transformations, to a solu-
tion (Aso, Poo) Of the Yang—Mills—Higgs equation (1.2) in the smooth topology outside a
closed set T C M, where £*" is a finite collection of points. We will call (Aso, Poo)
an Uhlenbeck limit of the gradient flow. Moreover, the limiting Higgs pair (Aco, o) can
be extended smoothly by a continuous gauge transformation to a smooth solution of the
Yang—Mills—Higgs equations (1.2) on a Hermitian bundle (E~, Hx) over M, and the
extension (Eoo, Hxo, Aco, $oo) has a holomorphic orthogonal splitting

1
(Ecor Hoo, Aco, $o0) = ED(EL,, Hi,, AL, 61),
i=1

where H._ is a Hermitian-Einstein metric on the Higgs bundle (E._, AL, $..)-

Corollary 3.12. Let (A;, ¢;) be a sequence of Higgs pairs along the gradient heat flow
(1.3) with Uhlenbeck limit (Ao, ¢oo). Then:

(1) O(Ai, ¢i) = 0(Aoo, doo) in LP forall 1 < p < 00, and lim; o0 f3; 10(A;, ¢)[* =
fM 160 (Aco, ¢oo)|2;

(2) 10(Aco, Poc)llLee < N0(Aj, @) liLee < 10(Asy, 1)l for 0 <19 < 1;.

Here 0(A, ¢) = Ao (Fa + (¢, ¢*]).

Proof. (1) From Theorem 3.11, we know that (A}, ¢;) converges to the Uhlenbeck limit

in the smooth topology outside a finite collection of points; on the other hand, from

(2.8), we know that ||0(A;, ¢;)|| L~ is decreasing in ¢, so it follows that 0(A;, ¢;) —

0 (Ao, Poo) in LP for all 1 < p < oo. The second part is a consequence of Lemma 2.2.
(2) Fix t > 0. We have

16(A;, p)liLe < (VOL(M)PIIO(A;, )l Lo < (VOL(M)PIIO(A,, 1)l Lo

for any 1 < p < oo and j sufficiently large. Using the result in (1), we get
10(Asos do)llr < (VOl(MN)YPIO(A;, ¢)l L. Letting p — o0, we conclude that
10(Acc, Poo)llLoe < I6(Ar, @)l Loe. o

4. Harder-Narasimhan-Seshadri filtration of Higgs bundles

Given a Higgs bundle (E, A, ¢) on a Kihler surface (M, w), a Higgs subsheaf of
(E, A, @) is a coherent analytic subsheaf V C (E, A) suchthat¢ : V — V ® Q}V[
(i.e. a ¢-invariant coherent analytic subsheaf). The w-slope (V) of a torsion-free sheaf
V — M is defined by

n—1

V) = deg, (V) 1 / CLVY A w
toV) = Ty — ranky Sy VN o r
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If V is a saturated subsheaf then outside a codimension 2 subset it is a subbundle.
Since dim¢c M = 2, the singular set of a saturated subsheaf is a locally finite collection of
points.

A torsion-free Higgs sheaf (V, A, ¢) is called w-stable (resp. w-semistable) if for all
proper ¢-invariant saturated subsheaves FF C V, uo(F) < pe(V) (Lo(F) < pey(V)).
When the Kihler form is understood we shall sometimes refer to (V, A, ¢) as simply
stable or semistable, and we will also omit subscripts and write @ (V).

In the following, we will give a description of the appropriate Higgs bundle versions
of the Harder—Narasimhan filtration and the Harder—Narasimhan—Seshadri filtration; the
proof is almost the same as in the holomorphic bundles case ([Ko, 7.15, 7.17, 7.18]), the
only difference being that we always consider ¢-invariant subsheaves instead of usual
subsheaves. We omit the details here.

Proposition 4.1 Let (E, A, ¢) — (M, w) be a Higgs bundle. There is a unique Higgs
subsheaf' V with torsion-free quotient E |V such that for every Higgs subsheaf W C E,
we have:

1) (W) < n(v);

(2) rank(W) < rank(V) if w(W) = (V).

Proposition 4.2 Let (E, A, ¢) — (M, w) be a Higgs bundle. Then there is a filtration of
E by ¢-invariant coherent subsheaves

O0=FEyCE C---CE =E,

called the Harder—Narasimhan filtration of the Higgs bundle (E, A, ¢) (abbr. HN fil-
tration), such that Q; = E;/E;_ is torsion-free and Higgs semistable. Moreover, i1(Q;)
> u(Qit1), and the associated graded object G"™(E, A, ¢) = @ﬁ:l Q; is uniquely
determined by the isomorphism class of (E, A, ¢).

Proposition 4.3 Let (V, ¢) be a semistable Higgs sheaf over a Kdhler surface (M, ).
Then there is a filtration of V by ¢-invariant subsheaves

0O=VWcVvic---cVi=V,

called the Seshadri filtration of (V, ¢), such that V; / Vi_1 is torsion-free and Higgs stable.
Moreover, (Vi) Vi—_1) = u(V) for each i, and the associated graded object Gr*(V, ¢) =
@521 Vi/ Vi1 is uniquely determined by the isomorphism class of (V, ¢).

Let (E, A, ¢) be a Higgs bundle over a Kdhler surface (M, w). Then there is a
double filtration, called the Harder—Narasimhan—Seshadri filtration of the Higgs bundle
(E, A, ¢) (abbr. HNS filtration), with the following properties: if {E; }ﬁzl is the HN fil-
tration of (E, A, ¢), then

Ei_1=EijgCE1C---CEj; =E

and the successive quotients Q; j = E; j/E; j_1 are Higgs stable torsion-free sheaves.
Moreover, u(Q; j) = u(Q; j+1) and u(Q; j) > n(Qi+1,;), and the associated graded



The gradient flow of Higgs pairs 1409

object
l;
G™(E, A, ¢) = Qi

i=1 j=1
is uniquely determined by the isomorphism class of (E, A, ¢).

It will be convenient to denote the ¢-invariant subsheaf E; in the HN filtration by
Fl.“(E, A, ¢), or by Fi"C‘U(E, A, ¢), when we wish to emphasize the role of the Kéhler
structure.

Definition 4.4. For a Higgs bundle (E, A, ¢) of rank R, construct a nonincreasing R-
tuple of numbers

A(E, A, ¢) = (L1, ..., [4R)

from the HN filtration by setting u; = ©(Q;) for rank(E;_1) + 1 < i < rank(E;). We
call A(E, A, ¢) the Harder—Narasimhan type of (E, A, ¢).

Remark. For a pair ji, A of R-tuples satisfying ZiR:l Wi = ZiR:l Ai, we define
ﬁfx & Zui EZA,- forallk=1,..., R.

We next turn to the HN type of the Uhlenbeck limit. We can obtain the following:

Lemma 4.5. Let (A}, ¢;) = gj(Ao, ¢o) be a sequence of complex gauge equivalent
Higgs pairs on a complex vector bundle E of rank R with Hermitian metric Hy. Let S be
a coherent ¢o-invariant subsheaf of (E, Ao). Suppose that /—1 Ay (Fa; + [}, ¢j’.“]) —>a

in L' as Jj — 00, where a € LY(V=Tu(E)), and that the eigenvalues .1 > --- > Ag of
a are constant almost everywhere. Then deg(S) < ), <rank(S) A

Proof. Since deg(S) < deg(Satg(S)), we may assume that S is saturated. Let 7z; denote
the orthogonal projection onto g;(S) with respect to the Hermitian metric Hyp. It is well

known that 7; is an L% section of the smooth endomorphism bundle of E, and satisfies

7%= = nj?", (Id —nj)5Aj71j = 0 and (Id —7;)¢;m; = 0 (since g;(S) is ¢;-invariant).

The usual degree formula applies (see [Sil, Lemma 3.2]), and one has

1 _
deg($) = 5 fM (Tr(V/ =1 (Fa, + [¢}, $: D)) — 1@a; + $);12).
Then one can show the result by an argument similar to the one used in the proof of
Proposition 2.21 in [DW1] for the Yang—Mills case. O

Using Corollary 3.12 and Lemma 4.5, and arguing as in [DW1, Proposition 2.21], we
have:

Proposition 4.6. Let (A;, ¢;) be a sequence of Higgs pairs along the gradient heat flow
(1.3) with Uhlenbeck limit (Axo, d)QO). Let jig = (w1, -+, uRr) be the HN type of the
Higgs bundle (E, Ao, ¢o), and let hoc = (A1, ..., AR) be the type of the Higgs bundle
(Exos Acos Poo)- Then ﬁO < Aoo-
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5. The HN type of the Uhlenbeck limit

Let (A;, ¢;) be a smooth solution of the gradient heat flow (1.3) over a Kihler sur-
face with initial data (Ag, ¢g), and let (Ao, $o) be an Uhlenbeck limit. From The-
orem 3.11, we know that (A, Poo) is @ smooth Yang—Mills—Higgs pair on a Hermi-
tian bundle (E, Hx), S0 0(Ax, o) is parallel, and the constant eigenvalues vector
XOO =1, ..., g) of /=1 6(Ao, dco) 1s just the HN type of the Uhlenbeck limit Higgs
bundle (Exo, Aco, Poo). Let ji be the HN type of the initial Higgs bundle (E, Ag, ¢o). We
will prove that Aso = /i.

Let u(R) denote the Lie algebra of the unitary group U (R). Fix a real number « > 1,
and for any a € u(R), let gy (a) = Zf;l |A;|%, where «/—_1)\.1' are the eigenvalues of a.
It is easy to see that we can find a family ¢, ,, 0 < p < 1, of smooth convex ad-invariant
functions such that ¢y , — ¢ uniformly on compact subsets of u(R) as p — 0. Hence,
from [AB, Prop. 12.16] it follows that ¢, is a convex function on u(R). For a given real
number N, define

HYM, v (A, ¢) = / 0o (—0(A. 8) + ~—T N1dg) dvol. 5.
M

Also, we will set HYMy n (1) = HYMg (+N) = 279 (v/—1 (i+N)), where ji+N =
diag(u1 + N, ..., ur + N). We will need the following two lemmas, whose proofs can
be found in [DW1, Lemma 2.23 and Prop. 2.24].

Lemma 5.1. The functional a — (fM ©o (a) dvol)/® defines a norm on L% (w(E)) which
is equivalent to the L* norm.

Lemma 5.2. (1) Ifji < X, then ¢o(v—1 1) < @u(v/—1 1) forall o > 1.
(2) Assume g > 0 and Ag > 0. If o (/—1 1) = Ou(v/—1 X) for all o in some set
S C [1, 00) possessing a limit point, then L=A

Proposition 5.3. Let (A;, ¢;) be a solution of the gradient flow (1.3) and (Aso, o)
be a subsequential Uhlenbeck limit of (A;, ¢:). Then for any « > 1 and any N, t +—
HYMy, v (As, ¢1) is nonincreasing, and lim;_—, oo HYMy, v (As, ¢:) =HYMy, v (Ao, P0)-

Proof. From the above we can approximate ¢, by smooth convex ad-invariant func-
tions @, . On the other hand, from inequality (2.7), we know that the functional
t > [1 @a.0@(Ar, ¢) — /=1 N1dg)dvol is nonincreasing along the flow, so 1 —
HYM,, n(A;, ¢;) is also nonincreasing.

By Th. 3.11 and Cor. 3.12, we can choose a sequence #; — oo such that

HYMa,N(Atj , ¢tj) — HYMg, v (Aso, o).

Then the convergence follows because HYM,, n (A, ¢;) is nonincreasing in ¢. O

By Proposition 4.3, a Higgs bundle (E, A, ¢) admits a filtration (i.e. HNS filtration) by
saturated ¢-invariant subsheaves E; so that the successive quotients Q; = E;/E;_; are
Higgs stable and torsion-free. For each i, we have an exact sequence of sheaves

0— Qi —> 0" —> T, -0,
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where QF* is locally free and T; is a torsion sheaf supported at finitely many points.
Define the set 3; to be the support of 7;, and let salg — J Z;. We will refer to salg g¢
the singular set of the filtration { E;}. Arguing as in [DW1, Section 3, Lemma 3.3], we can
consider M as a sequence of blow-ups at points, and construct a family of Kihler forms
on M.

Lemma 54. Let w1 : M — M be a sequence of monoidal transformations with excep-
tional set e, where m(e) = Eali and choose a Kdhler form w on M. Then there is a
smooth, closed (1, 1)-form n on M and a number €y with the following properties:

(1) we = m*w + €n is a Kihler form on M for all 0 < € < €p;
(2) for any closed 2-form o« on M, fﬁn*a An=0.

In the following, we assume that the slope w(E) of a sheaf E on X will be taken with
respect to w. For a sheaf E on M, we denote by ¢ (E) the slope of E with respect to the
metric w,. Similarly, a subscript € will indicate that the quantity in question is taken with
respect to the metric we. We define ppmax(E) to be the maximal slope of a ¢-invariant
subsheaf of E, and pmin (E) to be the minimal slope of a ¢-invariant torsion-free quotient
subsheaf of E.

Proposition 5.5. Given a Higgs bundle (E, ¢) over M and a Higgs sheaf (E, ¢) over M
with m,E = E, ¢ (7. X) = m.¢(X) for any X € E, and given § > 0, there is 02 > 0, de-

pending upon (E, A, ¢), such that for all 0 < € < gy we have the following inequalities:

(1) u(E) =68 < pe(E) < u(E) +6;
(2) umax(E) =6 < ,U«max,e(_E) < Umax(E) + 8,
(3) Umin(E) =8 < /J/min,e(E) < Umin(E) + 6.

Proof. Parts (1) and (2) are essentially contained in [Bul, Lemma 5], the only difference

is that we always consider ¢-invariant subsheaves instead of usual subsheaves. For (3), it

is sufficient to prove pmin(E) = —pmax (E™). For any €, consider an exact sequence
0—>E —-FE—E,—>0

such that E| is a ¢-invariant subsheaf, E, is torsion-free, and pumin(E) > w(Ez) — €.
Dualizing, we have an exact sequence

0— E; - E* — EY.

We know that EJ is a ¢*-invariant subsheaf of E* because E; is ¢-invariant, where
[0*(0)](X) = 0(¢(X)) forany 6 € E* and X € E. Then we have

tmin(E) = w(E2) — € = —pu(E3) — € = —umax(E™) — €.
We also consider an exact sequence

0= ¢ —>E"—>¢p—0
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such that ¢ is ¢*-invariant, ¢, is torsion-free and pmax (E*) < u(¢1) + €. Dualizing, we
have an exact sequence
0— ¢; > E™ — ¢f.

Considering E as a subsheaf of E** under the natural injection, we define F| = E N @3,
F, = E/F).Now F| is a ¢-invariant subsheaf of E, since ¢; is ¢*-invariant. On the other
hand, it is easy to check that det(¢3/F1) is a trivial line bundle, i.e. det(¢3) = det(F1). In
particular, 11 (F1) = u(p3). Then

Pmax (E™) < p(¢1) + € = (rank(E)u(E™) — rank(¢2) u(¢2)) + €
—(rank(E)(E™) — rank(¢3) u(#3)) + €
—(rank(E)pu(E) — rank(F1)pu(Fp)) + €
< —umin(E) + €.

A

Since ¢ is arbitrary, we have pmax (E) = —Umin(E™). ]
An inductive argument repeatedly using Prop. 5.5 implies convergence of the HN type.

Corollary 5.6. Let (E, ¢) be a Higgs bundle over M and (E, qb) be a Higgs sheaf over
M with m,E = E, ¢(m.X) = 7.0 (X) for any X € E. Let ji. denote the HN type of
(E, @) with respect to we and [i the HN type of (E, ¢) with respect to w. Then jic — i
as € — Q.

As a consequence, we have ([Bu2, Prop. 3.4(d)]):

Corollary 5.7. Let (E, §) be a Higgs bundle over | M and (E, ¢) be a Higgs sheaf over M
with m,E = E, ¢ (1. X) = m,.¢(X) forany X € E._Iftﬁeiiiggs sheaf (E, ¢) is w-stable,

then there is a number ¢ > 0, depending upon (E, A, ¢), such that the Higgs bundle
(E, ¢) is we-stable for all 0 < € < 0».

The following proposition was proved in [DW 1, Proposition 3.7].

Proposition 58. Letr 0 = Eg C Ey C --- C Ej—1 C E; = E be a filtration of a
holomorphic vector bundle E — M by saturated subsheaves E;, and set Q; = E;/E;_1.

Then there is a monoidal transformation 7 : M — M with exceptional set e and a
filtration 0 = Eyg C Ey C --- C Ej_ 1 C El E = n*E such that each E; =
Satz(7* E;) is a subbundle off If we set Q, =E; /El 1, we also have exact sequences
0 — Q; —» m1.Q; — T; — 0, where T; is a torsion sheaf supported at the singular set
of Qi. Moreover m(e) = $*¢ is the union of the singular sets of Qi; n+E; = Ej; and

0F* = (m Q)™

Let H be a smooth Hermitian metric on the holomorphic bundle E, and let F = {F,»}f:1
be a filtration of E by saturated subsheaves: 0 = Fp C F1 C --- C Fj— 1 Cc F; = E.
Associated to each F, and the metric H we have the unitary pI‘OjeCthIl 7r onto F;. It
is well known that rrl are bounded L2 Hermitian endomorphisms. For convenience, we
set nOH = 0. Given real numbers i, ..., u; and a filtration F, we define a bounded

L% Hermitian endomorphism of E by W (F, (u1, ..., u), H) = Zf’:l Wi (niH — nilil).
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Given a Hermitian metric on a Higgs bundle (E, ¢), the Harder—Narasimhan—Seshadri
projection V,,(E, ¢, H) is the bounded L% Hermitian endomorphism defined above in the
particular case where F is the HNS filtration F; = F?“S(E )and u; = w(F;/Fi—1).

Definition 5.9. Fix § > Oand 1 < p < oco. An L?-§-approximate critical Hermitian
metric on a Higgs bundle (E, ¢) is a smooth metric H such that

IV=1Au(Fay + (¢, ™) — Vo (E, ¢, H)|1r@w) <38,
where Ay is the Chern connection determined by (9, H).
For further considerations, we need the following lemma.

Lemma 5.10 ((DW1, Lemma 3.14]). Letx : M — M be a sequence of monoidal
transformations with exceptional set e, and let w. = m*w + €n be the family of Kiihler
metrics defined in Lemma 5.4. Then there is a positive integer i associated to M with the
following property: given any p with 1 < p < 1+ 1/m, any €1 > 0, and any p satisfying
p(1 —m(p — 1)~ < p < oo there is a constant C(p, €1) depending only on p and €
such that | Ay, fllLrw) < C(p, €D Ao, f||L,,-(wEl)f0r all smooth (1, 1)-forms f on M
and all 0 < € < €.

Proposition 5.11. Let (E, ¢) be a Higgs bundle on a smooth Kdhler surface (M, w), and
Wi = o (F?“S(E, ¢)/F?Esl (E, @)). Then there is a sequence of monoidal transformations

determining a Kihler surface m : M — M, a number py > 1, and a family of Kihler
metrics we converging to m*w as € — 0, such that the following holds: Let F be the
filtration of E = w*E given by {Satf(n*F?ns(E, ¢)}. Then fﬁr an18 > 0 and any
1 < p < pg there are €1 > 0 and a smooth Hermitian metric H on E such that for all
0<e<eg,

INV=1Aw (Fay +16.0"D) = ¥ F. (1. ... 1) H)l|Lrw) <8,
where A7 = (55, H).
Proof. The case of rank 1 is trivial, since line bundles admit Hermitian-Einstein metrics.
Suppose that rank(E) > 1, and consider the HNS filtration {F?“S(E, ¢)}. For convenience,
set E; = F?“S(E, ¢), Qi = E;/E;_1,and u; = u,(Q;). By Prop. 5.8 there is a resolution

7 M — M where the filtration E; = Satg (7 * E;) is a filtration of E = 7*E by bundles.

Let ¢ = m*¢. Then (E, ¢) is a Higgs bundle over M and E; is a ¢-invariant subbundle
for all i. It follows from Prop. 5.5 and Corollary 5.7 that for a given §; we may assume
€1 small enough so that |u(Q;) — ;| < 61 and Higgs bundles (Q;, ¢|@) are wc-stable

forall0 < e < €] _By [Sil, Theorem 1], we have a Hermitian-Einstein metric ﬁf on the
Higgs bundle (Q;, ¢15,) with respect to we. In particular,

V1 Ao (Fage +16.6°) = ne(0) 1dg, = 0. (5.2)

We can also ckﬁose €1 small enough such that |A,, (we;, — we)| < 6 forall 0 < € < €.
Associated to M there is an integer m as in Lemma 5.10. We choose py sufficiently close
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to 1 so that pgp < 1 4+ 1/(2m). Then the conclusion of Lemma 5.10, along with (5.2),
guarantees that for each 1 < p < py, each i, and each 0 < € < €1, we have

— —xl
V=180 (Fa_o +16.6" D = nildg lLr)

— —xl

< IW=TAoAFa_q +16, ¢ 1+ (V=1/Dwe e, (C) 1dg M v wo)

+ |3 80 (@ = 0e)e (O 1dg, || (e, + (e (@) = 1) 1dg o o)
< Céy,

for a constant C independent of € and §;. Let H = EBL] ﬁfl; this is a smooth metric
on E, because the filtration {E;} is by subbundles. Then H is the desired metric if we
choose §1 sufficiently small compared to §. O

Lemma 5.12. Let (E, Ay, ¢o) be a Higgs bundle of HN type [ig. There is oy > 1 such
that the following holds: given any § > 0, and any N, there is a Hermitian metric H on E
such that

HYMqy v (A, ¢o) < HYMy n(f0) + 8

forall 1 <o < g, where the connection A is (5A0, H).

Proof. Letm : M — Mbea resolution of the HNS filtration guaranteed by Prop. 5.8, we
the family of Kéhler metrics on M from Lemma 5.4, and E = 7*(E, 04,), ¢ = 7*(¢).
As a direct consequence of Prop. 5.11, there is @y = po > 1 such that the following
holds: given any § > O there exists a smooth Hermitian metric H on E and €; > 0 such
that

HYMY (A7 @) < HYM,, v (fio) + 8/2 (5.3)

forall 1 < @ < @p, and all 0 < € < €. In order to obtain the desired metric on M,
we follow the proof of [DW1, Lemma 4.2.], and use a cut-off argument. Let xo € yalg,
and choose a coordinate neighborhood U of xo. We choose a holomorphic trivialization
of (E, 5,40) — U, this also gives a trivialization of EonU = 7 (U). Given R > 0
sufficiently small, we may choose a smooth function fg on U with0 < fp <1, fr =0
on a ball of radius R/2 centered at xo, and fr = 1 outside a ball of radius R, and such
that | fz| < CR~!and |frl < CR™2, where C is a positive constant independent of R.
Define a metric Hg as follows: If ﬁ(ei, ej) = A;d;; with respect to a holomorphic frame
{ei}, then Hg(e;, ej) = (frAi +1— fr)d;j. With this definition, Hg extends to a smooth
metric on E — U. Continuing this way for all points in £%¢, we obtain a smooth metric
on E — M, still denoted by Hg. Let H g denote the pull-back metric on E — M. We
know that H g = H outside the union Uy of the balls Bg, vol(Ug) = O(R*), and Hg is
standard with respect to the trivialization inside Ug /. We define a gauge transformation o

such that
frAi+1— fr\'?
o(e) = — ) =
1

onx~! (U), and o0 = Id outside Ug. Then we have:
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| HYMst(AﬁR L) — HYMszN (Ag. )l
<cC /Ja 00(Ag,, $) oo~ —0(Ag, §)|% dv,,
M
< ”Aa)e (FAﬁR — FAﬁ) ||L%6 (ﬁfl(UR\UR/Z)) + ”Awe FAﬁ”Lff)e (n*l(UR/z))

+lAw (o o0doc (copoo ] —[g, $*H])I|Lg,€ (=1 (Ug))*

By the construction of H and o, the second term and the third term on the right hand side
tend to zero as R — 0, uniformly in €. Then we can choose R sufficiently small so that
the last two terms are less than §/8. On the other hand, from Lemma 4.2 in [DW1], we
have the following bound of the first term on the right hand side:

A0 (Fag, = Fag)llLe 1 wg\ugy < C1+ RT2RY,

where C is independent of R and €. Now by (5.3), provided 1 < oy < min{ayp, 2}, we
may take R so small that, for all @ < «p,

HYM{ y (Apg, @) = lim HYMGy (Agr, . $) < HYMa,n (o) + 8. u!

Theorem 5.13. Let o be as in Lemma 5.12, and iy be the Harder—Narasimhan type of
the Higgs bundle (E, Ao, ¢o). Let (A, ¢r) be a smooth solution of the gradient flow (1.3)
on the Hermitian vector bundle (E, Hy) with initial condition (Ao, ¢o) € Bk, Hy). Then

lim HYMq v (A, ¢) = HYMq, n (H0)
—>0o0

foralll <o <oap, andall N.
Proof. For fixed @, | <o < ag, and fixed N, we define 69 > 0 by
280 + HYMq, n (jio) = min{HYMg, v (1) : HYMq, v (i) > HYMg, n (f20)},

where [t runs over all possible HN types of Higgs bundles on M with the rank of E.
Assume that the initial pair (Ao, ¢o) satisfies

HYMy, v (Ao, ¢0) < HYMq, v (fio) + 8o. (5.4

Let (Axo, $o) be the Uhlenbeck limit along the flow with initial pair (Ag, ¢o). By Prop.
4.6 and Prop. 5.3, we obtain

HYMg, v (ii0) < HYMy N (Ao, Poo) < HYMy N (Ao, p0) < HYM n(fio) + So.

Hence, we must have HYMy y (Acos Poo) = HYMy, n (o). This shows that the result
holds for the initial condition satisfying (5.4).

Let H be a Hermitian metric on the complex bundle E, and (AX ¢,H ) be the solution
to the gradient heat flow (1.3) on the Hermitian vector bundle (£, H) with initial pair
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(A(I)", o) € B, Hy), Where Aéi = (5,40, H). As in [DW1, Lemma 4.3], we are going to
prove that for any metric H and any initial data (5 Ag» @0), there is T > 0 such that

HYM, v (A, p/1) < HYM, v (jio) + 8

for all + > T. Without loss of generality, we can assume 0 < § < §g/2.

Let us denote by Hj the set of smooth Hermitian metrics on E with the property that
the above inequality holds for some 7. From Lemma 5.12 and the discussion above, Hj is
nonempty. Let H/ be a sequence of smooth Hermitian metrics on E with each H/ in Hs.
Suppose H/ — K in the C™ topology, for some metric K. Since H/ € Hs, we have a
sequence 7; > 0 such that

HYM, v (AP, ¢H") < HYMy v (fi0) + 8

for all + > T;. Let &/ be gauge transformations satisfying (§/)*K&/ = K~1H/. We
can suppose that £/ are uniformly bounded, because of the C % convergence of H/.

Set Dy = g/ oD Al © E) and ¢! = £/ 0 ¢! o (67)7. We see that (A7, )

are Higgs pairs on the Hermitian vector bundle (E, K), in particular A, are integrable
K -unitary connections. From Lemma.2.3, formula (2.8), formulgl (2.10), and the C*®

convergence of H/, we know that |¢! |, 1A Foill o k), ”VXJEJ Il 12 (k) are uniformly
t t

bounded for all j and ¢. It follows from (2.9) that ||DZ,~9(Kj, q_b)IILz(K) — Qast — oo.
Hence, it follows from the Uhlenbeck compactness ([DW1, Prop. 2.9, Corollary 2.12]),
Theorem 3.11 and Corollary 3.12 that there exists a sequence #; > T;, Yang—Mills—

Higgs pairs (AL, ¢y and (AD), ¢2)), and bubbling sets Z{}) and Z{), such that

Z[]j — Ago) weakly in L1 toe (M \ Z(l)) at/ — q&( weakly in L1 toe M\ Z(l)) and
(A ¢t ) —> (A(z) ¢>(2)) smoothly outside Z(z) Moreover, Q(AZ,EI ) — H(Am qb(l))

and G(AK, ¢>t ) — 9(A(2) qb(z)) strongly in L?, forall 1 < p < co. Now, we will show
that
(AL 98 = (AR ¢2).

Let H/(t) and K (1) be solutions of the heat flow (2.1) with initial data H/ and K
respectively. Write h/ (t) = K1 (t)H (¢). It follows from [Sil, Prop. 6.3] that

supo (K (1), H' (t)) — 0
M
as j — oo, uniformly in 7, where o is the usual C? distance on the space of Hermitian

metrics on E. In particular, sup |hf (t) —Idg| — 0 as j — oo. From Section 2, we know
that

j -1 HI _ j Jj -1

D,y =8/ WoDa, 0@ ¢ =g/®opo ),

D4k =n(t) 0 Dag,y o (@)~ K =n(t) o oo (n(e) ™",
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where (g/ (1) g/(t) = (H)) 'H/(t) and (n(0))* n(t) = K~ 'K(). Pick
gauge transformations B/(r) satisfying (B/(t))*Kp/(t) = n@)h/@)n~'(t), and
||,Bj(tj) —Idgllzr — 0as j — 0. It is easy to check that there exists a K-unitary
gauge transformation S/ () (i.e. (S/(¢))*K S/ (t) = Idg) such that S/ 0 £/ 0 g/ = B/ o .
So, modulo a unitary gauge transformation, we can suppose that

Dy =B 0 onoDa,, o@B On)™ 3 =p 0w oo B 0.

HI (1)
So we have
s =0y + 80 @ay(BH™H + B on@a ™o (BH7,
345 =04y + 0@, (M7,
dgs = B/ (1) o n() 0 gy, + (W (1) Day, b (1) 0 (B (1)~
=3,k + 18/ W) on@ o (W @)™ 7 ] 08,k B (1) o n(t) o (W (@)~ ]!
= 0,45 + (B )17 0 8,k [(B 1)1,

and
9ax 1B/ @)™ 1= (B )™ 0 (3 — 8 40).

Let Z*" = Z{" U Zi", and choose a smooth test form f € Q! (End(E)), compactly
supported on M \ Z*". From the convergence of ij and Al’j( , it is easy to deduce that
@4, (B7(1;)™") 8,x [(B/ (/))*X] are uniformly bounded in L”. Then we have

j

Oy =055, N2 = (BT 0@ay (B +B 0n@aym ™o BT =n@ag (™, f12
/i J

= (B —Mdg) o n@ay ()™ o BT+ n@ay(m™H o [(BH ™" —Tdg], £)12
+ (B —1dg) 0 @a,(BH™), H2 +(BH™ = 1dE, 3a))* )2

— 0,

and

@) = Oaf> Nz = (B @)™ 1" e B,k (BT )™ 2
= (A7 ™17 = 1dp) 0 D4 1B @)™ 1, Hrz + LB G, @046)" 12
= (A7 )™ 1 = 1dp) 0 D4k [(B/ @)™, )2
+ LB ™ g = 0,00 2+ AB ) — g, 3,00 )2

— 0,
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because sup |ﬂj(tj) —Idg| — 0 and AK(tj) — Ag%) in C*(M \ Z*"). From the above,
we have X[J,, — Ath( — 0 weakly in L2 _(M \ Z*™). On the other hand it is easy to check

loc
that 5;} — ¢tf — 0 weakly in leoc(M \ Z™). So, we have proved that (A&), (()(1})) =
(AZ . 62, o
Set (AL, ¢5) = (AL, 6% = (Aco, hoc). Noting that 6(A;, §,) — 6(Aco, o)
and Q(A[’j( , ¢l§( ) = 0(Awo, Poo) strongly in LP, for all p, we have for j sufficiently large,

HYM. v (Ay ¢) < HYMay (Ace. o) +8 = lim HYMa v (47 ¢7) +8

< HYMg, n (jio) +28 < HYMy, v (jio) + 0.

It follows from the discussion above that lim,—.c HYMy n (AKX, $K) = HYM, v (120).
Therefore K € H;. By the continuous dependence of the flow on initial conditions
(Prop. 2.1), H; is also open. Since the space of smooth metrics is connected, we conclude
that every metric is in Hs. Thus, we have lim,_, o HYMa,N(AH, ¢,H) = HYM,, n (ii0)
for any metric H. O

Theorem 5.14. Let (A;, ¢;) be a smooth solution of the gradient flow (1.3) on the Her-
mitian vector bundle (E, Hy) with initial condition (Ao, ¢o) € Bk, Hy), and (Aso, doo)
be an Uhlenbeck limit. Let E~, denote the vector bundle obtained from (A, $oo) as in
Theorem 3.11. Then the Harder—Narasimhan type of (Eco, Ao, o) IS the same as that
of (Eo, Ao, $0)-
Proof. Let jig= (i1, ..., LR) (resp. Xooz(kl, ..., AR)) be the HN type ofSEo, Ao, o)
(resp. (Exo, Ao, Poo))- By Prop. 5.3 and Theorem 5.13, ¢y (fig + N) = @ (Ao + N) for
all 1 < a < ap and all N. We may choose N sufficiently large so that ug + N > 0 and
Ar + N > 0. From Lemma 5.2, we conclude that Xoo + N = jig + N, and so Xoo = 0.
O

6. Convergence to the graded object of the filtration

Let (Ao, ¢o) be a Higgs structure on a complex vector bundle E. Then there is a ¢g-
invariant Harder-Narasimhan—Seshadri filtration {E; }ﬁ: | of (E, 5A0), where E; are sat-
urated ¢-invariant subsheaves and Q; = E;/E;_; are Higgs stable and torsion-free. The
associated graded object Gr™ (E, A, ¢o) = @ﬁ:l Q; is uniquely determined by the iso-
morphism class of (Ag, ¢o). The quotients Q; are not necessarily locally free. For each i,
we have an exact sequence of sheaves

0— Qi = Q0" —> T, -0,

where Q" is locally free and 7; is a torsion sheaf supported at finitely many points.
Define X; to be the support of 7;, and let 2 = [ J %;. We will refer to X2 as the
singular set of the filtration {E;}. We denote the associated graded object by

l
Gi"™(E. Ao. ¢0)™ = €D 0}*.
i=1
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Let (A(?), ¢(¢)) be a smooth solution of the gradient heat flow (1.3) with initial data
(Ao, ¢0), and let (Ao, Poo) be an Uhlenbeck limit, i.e. there is a subsequence #; — 00
such that (A(¢;), ¢(¢;)) converges, modulo gauge transformation, t0 (Aeo, oo) in the
smooth topology outside X", where X2" is a finite collection of points. In Theorem 3.11,
we have proved that the Uhlenbeck limit can be extended smoothly to a smooth solution
of the Yang—Mills—Higgs equation (1.2) on the Hermitian vector bundle (E, Hx), and
the Higgs bundle (Ex, Aso, $oo) has a holomorphic splitting as a direct sum of Higgs
stable subbundles. The purpose of this section is to provide an algebraic description of
the isomorphism class of the limiting Higgs bundle (E, Axo, $oo)- We will give a Higgs
bundle version of Theorem 1 of [DW1] (for Yang—Mills case). The main theorem of this
section is the following

Theorem 6.1. (Eso, Aso, Poo) is holomorphically isomorphic to Gr™ (E, Ag, ¢o)** in
the Higgs bundle sense.

The proof follows from the argument in the proof of Theorem 5.1 in [DW1]. Denote
(A,j, ¢(1;)) by (A;, ¢;), and let g; be the complex gauge transformation such that (A;, ¢;)
= gj(Ag, ¢p). Set ¥ = ¥ U Y2 and @ = M \ =. Let S be the maximal Higgs stable
subsheaf of (E, Ag, ¢o). Now S| is a subbundle, and let fy : S|q — E be the ¢p-
invariant holomorphic inclusion. Define the map f; : S|q — E by f; = gj o fo. Itis easy
to check that

0404, fi =0, fiodo=ajo fj
i.e. fj is a ¢-invariant holomorphic map. For simplicity, we will denote 5,40, A; by o, j

Lemma 6.2. Up to a subsequence, f; converges in C*°(S2) to some nonzero ¢-invariant
holomorphic map f for any compact set 2y C 2.

Proof. Let Q¢ C 2 be the complement of a union of balls around the points of X. By
Theorem 3.11, we can assume that (A;, ¢;) converges to (Axo, Poo) in C*(£2p). Replace
fiby fi/llfill;2 and let B; = Aj — Awo. Since f; is holomorphic, we have

Ao,jfj=~—1 Aw(f’o,jgo,j - 50,,/30,j)fj =—+-1 Aw(ao,jgo,j +§0,j80,j)fj
= —V=1Au(Fa, fj — [iFay):
and B B B 1
B0.00fj = 04s 0 fj — fj 004y =B 0 fi. (6.1)

By elliptic theory, we can obtain uniform bounds on |V§ j fjl for any k. Since (A;, ¢p;) —

(Aso, Poo) in C*°(L20), we can also obtain uniform bounds on |V(])C oo fjl for any k. Then
we can choose a subsequence, which we also denote by { f;}, such that f; converges to a
smooth map f in C*°(£2p). Using formula (6.1), it is easy to check that

5A(),Aoofoo:()a Sfoo 00 = ¢oo © foo,

i.e. fwo is a ¢-invariant holomorphic map. Since || fj||;2 = 1 for all j we have fo, # 0.
O
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The proof of the following lemma is completely similar to the proof of [Ko, 7.11, 7.12]
for holomorphic bundles and so we omit it.

Lemma 6.3. Let (E;, ¢1) and (Ep, ¢o) be semistable Higgs sheaves with rank(E;) =
rank(E;) and deg(E1) = deg(E>). If (E1, ¢1) is stable, let f : E; — E, be a sheaf
homomorphism satisfying f o ¢1 = ¢y o f. Then either f = 0 or f is an isomorphism.

Proof of Theorem 6.1. We will prove the result by induction on the length of the HNS
filtration. The inductive hypotheses on the bundle O — €2 are the following:

Inductive hypotheses. (1) (DQ, ¢jQ) — (Dgo, ¢O%) in C*(Q);
(@) 32 =hj 035 oy and ¢¢ = hj 0 ¢€ o ! for some h; € GE(Q):

3) (0, 50Q, ¢0Q) and (Qwo, 530, ¢o%) extend to M as reflexive Higgs sheaves with the
same HN type.

We obtained a nonzero smooth ¢-invariant holomorphic map f : Slo — Elq-
By Hartogs’ theorem, fo, extends to foo : S™ — Eo on M. If r; denotes the pro-
jection to f;(S), then we can prove that m; — 7 in C*(RQ) because f; — fwo
in C*®(2). So (foo(S), Aco, o) 1S @ @o-invariant subbundle of E,, with the same
rank and degree as S. By Theorem 5.14, we know that (E, Ag, ¢o) and (Exo, Aco, Poo)
have the same HN type, so (fxo(S), Aco, Poo) is Higgs semistable. By Lemma 6.3, the
nonzero holomorphic map f» must be an isomorphism, i.e. $** =~ f5(S). Denote
Seo = foo(S). Then (Soo, Acos Poo) 1S @ ¢oo-invariant Higgs stable subbundle. Write
Grh“s(Eoo, Ao, Poo) = Soo® Qoo- Using Lemma 5.12 in [Dla], we can choose a sequence

of unitary gauge transformations u; such that 77; = u;7;u; " where 77; (E) = o (E) and

uj — Idg in C*°(Q2). Let Q = E/S, and consider the induced connections on Q,
0 _ -1 1 . 1 ) —1
Dj =upou; or; oD,onj oujouy ,

¢2 =ugou;'omit ogjomtoujouy’ € Q" (End(Q)),

hj =ugpo uj_l orer‘ o gj € G5(0).

Then
70 —1 1 = 1 -1
9; =ugou; or; oajorrj oujou,
_ e I YU RS IR |
=ugou; o ogjomn, 0 dg o 7 og; oujouy
o =0 -1
=hjod, ohj ,
o _ -1 1 ) -1 1 ) -1
(]5]. =upou; orw; og]o¢oogj o oujou,
-1 1 1 1 -1 -1
=upou; o 0gjon, o ¢ o T, ©gj oujouy
Y
= hj o ohj ,
and

§JQ¢]Q = 71&‘ 0 (dp 0 ¢ + o o 50)778_ =0,
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where we have used h;l = JTd‘ o gj’1 oujouy ! On the other hand, by the definition,
it is easy to check that DjQ — DOQo and ¢jQ — ¢OQO in C*®(R2). The third statement
again follows from Theorem 5.14. So, (O, D.Q, ¢].Q) satisfy the inductive hypotheses.

By induction Qs =~ Gr'™(Q, 5(()‘) , quQ)** ~ @Lz #*, which completes the proof of
Theorem 6.1. O
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