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Abstract. We consider the Einstein deformations of the reducible rank two symmetric spaces of
noncompact type. If M is the product of any two real, complex, quaternionic or octonionic hyper-
bolic spaces, we prove that the family of nearby Einstein metrics is parametrized by certain new
geometric structures on the Furstenberg boundary of M .

1. Introduction

This paper is the first in a series to investigate the deformation theory of Einstein metrics
asymptotically modelled by Riemannian globally symmetric spaces of noncompact type
and of arbitrary rank. In the special case of real hyperbolic space, and the slightly more
general setting of conformally compact asymptotically hyperbolic manifolds, this has
been the focus of extensive study over the last fifteen years; this attention is due both
to the many deep connections with conformal geometry (cf. [10]), as well as the central
role that these ‘Poincaré–Einstein’ spaces play in the AdS/CFT correspondence in string
theory, for which the proceedings [4] provide a good introduction. More recently, some
of this analysis has been extended to other rank one noncompact symmetric spaces [2].
Some recent advances in linear analysis on symmetric spaces has now made it reasonable
to attack this problem in greater generality.

The rank one globally symmetric spaces of noncompact type are the real, complex,
and quaternionic hyperbolic spaces, denoted RHm, CHm, HHm, respectively, and the
octonionic hyperbolic plane OH 2. Each has curvature bounded between two negative
constants and is diffeomorphic to an open ball Bn+1. There is a family of ‘asymptoti-
cally K hyperbolic’ (K = R,C,H or O)—or briefly, AKH—metrics, with asymptotics
modelled on KHm, each of which induces a geometric structure on the sphere at infin-
ity, Sn. In the real case, this geometric structure is a conformal class; in the complex and
quaternionic case, it is a CR or quaternionic contact structure, as described in [2]. There
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is an octonionic contact structure on S15, but it is rigid. We call these boundary struc-
tures either the conformal infinity data of the AKH metrics, or alternatively,G-conformal
structures, where G is the semisimple Lie group associated to KHm. One main result
of [2] is that for eachG-conformal structure near the standard one on Sn there is a unique
AKH Einstein metric near to KHm, and with that conformal infinity data. This corre-
spondence between AKH Einstein metrics and G-conformal structures can be regarded
as an asymptotic boundary problem, and the assignment of the interior Einstein metric
to the conformal infinity data a sort of nonlinear Poisson transform. There are other very
interesting, and more subtle, problems of this type: we mention in particular LeBrun’s
positive frequency conjecture, concerning self-dual and anti-self-dual Einstein metrics in
four dimensions, which was solved by the first author in [3].

It is our goal in this paper to establish a similar local deformation theory in the first
higher rank case, namely for products of the various hyperbolic spaces listed above. There
are a number of new and interesting features not encountered in the rank one case, and
the details of the geometry and analysis are already sufficiently complicated that it has
seemed reasonable to keep this as a separate paper. In later papers we shall treat the cases
corresponding to more general noncompact higher rank symmetric spaces. This mirrors
the recent developments for the linear analysis (for the scalar Laplacian) [21–24].

At the roughest level, the proof proceeds exactly as in the AKH setting, by con-
structing a family of approximate Einstein metrics, parametrized by a family of boundary
structures generalizing the G-conformal structures, and then applying the inverse func-
tion theorem to an appropriately gauged version of the Einstein operator. The solution
of the resulting nonlinear elliptic equation yields the ‘near-product hyperbolic’ Einstein
metric with the prescribed conformal infinity data. There are three main new issues in
carrying this out for higher rank symmetric spaces. The first, purely geometric in nature,
involves defining the appropriate analogue of G-conformal structures. This relies in turn
on a choice of compactification for each of these product hyperbolic spaces as a man-
ifold with corners of codimension two; the new boundary structures are defined on the
corner. However, not every one of these new boundary structures can be extended to an
asymptotically product hyperbolic metric which is also asymptotically Einstein every-
where near infinity. Extra hypotheses on the boundary structure must be imposed, and
even then one must solve an extra Einstein-like equation to be able to extend this struc-
ture from the corner to the codimension one boundary faces. The final issue is to attain
some understanding of the mapping properties of the linearized gauged Einstein opera-
tor on these asymptotically product hyperbolic metrics so that we can apply an inverse
function theorem argument.

In slightly more detail, ifMj is a rank one hyperbolic space, j = 1, 2, then the correct
notion of conformal infinity data on M1 ×M2 is what we call a (G1 × G2)-conformal
structure on the Furstenberg boundary ∂M1 × ∂M2. This is defined carefully in §5. To
construct an approximate Einstein metric associated to one of these, the first step is to
extend this structure from the corner to the full boundary (M1 × ∂M2) ∪ (∂M1 ×M2);
this involves solving an auxiliary PDE on these hypersurface boundaries, which is a cou-
pled version of the Einstein equation on each factor Mj . Once this has been done, we
can extend the conformal infinity data to an approximate solution of the problem, i.e. a
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metric which induces this designated structure on the Furstenberg boundary, and which
is asymptotically Einstein uniformly near infinity. The next step is to determine the map-
ping properties of the linearized gauged Einstein operator on weighted Hölder spaces in
order to perturb this asymptotically Einstein metric to an exact one. This is done using
the geometric parametrix approach developed by the second author and Vasy, as refer-
enced above, which involves an adaptation of the techniques of N -body scattering theory
to study elliptic theory on symmetric spaces of rank greater than one. A subtle but im-
portant complication is that if either of the factors is quaternionic, then the approximate
Einstein metrics corresponding to different (G1×G2)-conformal structures are not mutu-
ally quasi-isometric, even up to diffeomorphism. Because of this, even the function spaces
vary in a nontrivial way as we vary the boundary (G1 × G2)-conformal structure. This
means that we must analyze the Green function for the linearized gauged Einstein oper-
ator not just at the exact product metric, but for all nearby approximate Einstein metrics.
This necessitates that we carry out a parametrix construction at ‘near-product hyperbolic
metrics’, which is more complicated than doing it just at the product hyperbolic space
only. (This difficulty is already present in the quaternionic hyperbolic case [2]; there is a
way to circumvent it then which unfortunately does not generalize to this product setting,
so the parametrix construction seems unavoidable here.)

General information about the geometric analysis behind the deformation theory for
Einstein metrics, particularly in the compact setting, can be found in [1]. We follow a
slightly different route developed in [2]. Suppose that g is Einstein, i.e. Ricg − λg = 0
for some real number λ. If h is a sufficiently small symmetric 2-tensor, then to make the
equation h 7→ Ricg+h − λ(g + h) elliptic we supplement it with the so-called Bianchi
gauge condition Bg(h) := δgh+ 1

2d Trg h = 0. Equivalently, we look for solutions of the
nonlinear elliptic system

Ng(h) := Ricg+h − λ(g + h)+ (δg+h)∗Bg(h) = 0.

It is not hard to show that if λ < 0 and Bg(h) → 0 at infinity, then solutions of this
equation correspond to Einstein metrics g + h in Bianchi gauge with respect to g. One
advantage of this gauge is that the linearization of Ng at h = 0 is the particularly simple
operator

Lg =
1
2
(∇∗∇ − 2R̊),

where the final term on the right is the usual action of the full curvature tensor for g on
symmetric 2-tensors. Throughout this paper, this operator will be called the linearized
gauged Einstein operator.

Our principal result is

Main Theorem. Let (Mj , gj ) be an AKjH Einstein space, j = 1, 2, and let c be the
product (G1 × G2)-conformal structure on ∂M1 × ∂M2. Assume that 0 is not an L2

eigenvalue for the linearized gauged Einstein operator on either (Mj , gj ), j = 1, 2, or
(M1×M2, g1+ g2). Let c′ be any other smooth (G1×G2)-conformal structure which is
sufficiently close to c in the C 2,α norm. Assume also that c′ satisfies the global integrability
hypothesis in Definition 26. Then there is a near-product hyperbolic Einstein metric g′
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with conformal infinity data c′, and moreover g′ is unique amongst such metrics in a
neighbourhood of the product metric g.

The hypothesis on the linearized gauged Einstein operator is satisfied in many situa-
tions, in particular for convex cocompact quotients of K hyperbolic spaces and negatively
curved AKH Einstein spaces.

We note also that the techniques and results of this paper apply somewhat more gen-
erally than when M is globally a product. It would not be too difficult to define a class
of manifolds and metrics with appropriate local product conditions near the corners and
boundary faces to which this deformation theory also applies. As a very simple example,
M might be obtained by a compact topological perturbation from the product M1 ×M2.
However, we do not currently know any manifolds of this type which are Einstein, and so
have not formulated our main result in this greater generality.

One final comment about notation. We shall be using various classes of Hölder spaces,
often weighted by powers of boundary defining functions. We typically write C k,α for
Hölder spaces on compact manifolds (or in any compact set), and3k,αg when these spaces
are defined relative to some complete metric g on a manifold. (In fact, the subscript g is re-
placed by some moniker for a general class of complete metrics with a type of prescribed
asymptotic geometry.)

The plan of this paper is as follows. In §2 we review the geometry of AKH hyper-
bolic spaces. §3 contains a lengthy review of the geometric parametrix theory used to
study elliptic theory on these spaces, which is called the K2 pseudodifferential calculus;
we also establish some results here about the resolvent family of Lg for such a metric.
§4 reviews the analysis needed to carry out the deformation theory of Einstein metrics in
the AKH setting. §5 develops the notion of (G1 × G2)-conformal structures and some
geometric properties and estimates for the corresponding asymptotically product hyper-
bolic metrics. The extension of these structures to the codimension one boundary faces is
the subject of §6. The parametrix construction in the near-product hyperbolic case is the
topic of §7, and finally, the brief §8 finishes the proof of the main theorem.

2. Asymptotically K hyperbolic spaces

This section reviews the geometry of rank one symmetric spaces of noncompact type, and
of the more general class of Riemannian manifolds which are asymptotically modelled
on these.

Hyperbolic spaces and their conformal infinities

The noncompact symmetric spaces of rank one are commonly called hyperbolic spaces
and written as KHm, where K = R, C, H (the quaternions) or O (the octonions). Note that
OHm exists only when m = 1, 2, and in fact OH 1

= RH 8, so the only new space in this
last family is the 16-dimensional octonionic hyperbolic plane OH 2. As a homogeneous
space, KHm

= G/K , whereG is a real semisimple Lie group andK a maximal compact
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subgroup; more specifically,

RHm
= SO1,m/SOm, CHm

= SU1,m/Um,

HHm
= Sp1,m/Sp1Spm, OH 2

= F−20
4 /Spin9.

These are the noncompact duals of the corresponding projective spaces KPm.
Throughout this paper we write

d = dimR K, (2.1)

so that
dimR KHm

= md := n+ 1,

where this last equality defines n in terms of m and d .
The polar coordinate expression for the metric on RHm is

g = dr2
+ sinh2(r) γ, (2.2)

where γ is the standard metric on Sn. For the analogous expression on the other hyper-
bolic spaces, denote by η ∈ �1(Sn)⊗ Im(K) the connection 1-form of the Hopf bundle

Sd−1
−→ Sn

↓

KPm−1

and let γ be the pullback of the standard metric on KPm−1, regarded as a metric on the
distribution D = ker η. The metric on KHm, normalized to have sectional curvatures in
[−4,−1], is given by

g = dr2
+ sinh2(r) γ + sinh2(2r) η2. (2.3)

The metric γ on the distribution D can be obtained as the limit as r →∞ of the family
of metrics γr = 4e−2rg|T Snr on Sn; note that this limit is finite only on D , and becomes
infinite on any complementary direction. There is no natural ‘origin’, so e−2r and γ are
defined only up to a multiplicative factor. Indeed, once we are in the fully geometric
setting below, it is most natural to take r as the distance from a large convex hypersurface,
and then we see that γ is only determined up to an arbitrary smooth positive factor; thus
only the conformal class [γ ] of this metric on D is well-defined. We call this asymptotic
data (D, [γ ]) the conformal infinity of g.

Associated to the distribution D on Sn is the bundle D ⊕ (T Sn/D) over Sn. The Lie
bracket on sections of D equals −dη, and thus induces the structure of a nilpotent Lie
algebra on each fibre of this extended bundle which is isomorphic to the K-Heisenberg
algebra KHeism−1 ∼= Km−1

⊕Im(K). The metric γ is compatible with dη ∈ �2
D⊗Im(K)

in the sense that the pair (dη, γ ) defines a K-structure on D , i.e. a collection of d − 1
almost complex structures which are orthogonal with respect to γ , and which satisfy the
algebraic relations of the basis elements in Im(K).



1428 Olivier Biquard, Rafe Mazzeo

G-conformal structures

The hyperbolic metrics (2.2) and (2.3) are the models for more general asymptotically
hyperbolic metrics (of type R, C, H or O). Before defining these, however, we first in-
troduce terminology for the conformal infinity structures, which will also be used later in
the product case.

Definition 1. Fix the K hyperbolic space KHm
= G/K . A G-conformal structure on

an arbitrary manifold Y n, n = md − 1, is a codimension d − 1 distribution D ⊂ T Y ,
with a conformal structure [γ ] on the fibres of D , such that the induced nilpotent Lie
algebra D ⊕ T Y/D is isomorphic at each point to the K-Heisenberg algebra, and any
metric γ ∈ [γ ] is compatible with the K structure on D . We say that the distribution D is
of K-contact type.

This definition unifies several cases:

• when K = R, D is the entire tangent space and [γ ] is a conformal structure in the usual
sense;
• when K = C, D is a contact distribution in the ordinary sense; if η is a contact 1-form

which defines D , then the compatibility of a metric γ on D with dη means that on D
one has dη(·, ·) = γ (J ·, ·) for some almost complex structure J which is orthogonal
with respect to any γ ∈ [γ ]; this is simply an almost CR structure on D ;
• when K = H, D is a ‘quaternionic contact structure’ as defined and studied in [2]; it

turns out that the conformal class [γ ] is completely determined by dη;
• finally, the octonionic case is rigid; D is automatically locally isomorphic to the stan-

dard distribution on the sphere S15, and [γ ] is determined completely by dη.

It is important to note here that in the quaternionic case, even though each of the tan-
gent nilpotent Lie algebras is isomorphic to the standard quaternion Heisenberg algebra,
the distribution D is not locally diffeomorphic to the model structure on the sphere (un-
less it is standard everywhere). In other words, there is no direct analogue of Darboux’s
theorem for quaternionic contact structures, and the infinitesimal equivalence of these
structures at each point does not imply their local equivalence.

AKH metrics

LetM be a manifold with boundary Y = ∂M admitting aG-contact structure (associated
to KHm

= G/K). We give two equivalent definitions of the class of complete metrics on
the interior of M which induce a G-conformal structure on Y .

The first mimics the polar coordinate definition of the model case.

Definition 2. A metric g on Mn+1 is called asymptotically K hyperbolic (or AKH for
short) if the following conditions are satisfied: there is a neighbourhood U of Y in M , a
diffeomorphism identifying U with (1,∞)r × Y , and a G-conformal structure (D, [γ ])
on Y , such that, fixing a representative (η, γ ) of the G-conformal structure and defining

g0(γ, η) = dr
2
+ sinh2(r) γ + sinh2(2r) η2
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in U , we have

g = g0(γ, η)+ k,

where k is in the weighted geometric Hölder space e−νr32,α
g0 for some ν > 0. (The

derivatives and norms are taken with respect to g0(γ, η).)

This definition does not depend on the choice of (η, γ ) in the conformal class since,
replacing (η, γ ) by (f η, f γ ) for some f ∈ C∞(M), f > 0, changes the model (up to
diffeomorphism) by an error which is O(e−r). The pair ([γ ], η) (or more properly, the
triple (D, [γ ], η)) is called the conformal infinity of g.

The alternative definition simply replaces the radial variable r by x = e−r , which is
a defining function for Y in M (recall that this means that x ≥ 0 in M , x = 0 only on Y
and dx 6= 0 there); thus

g0(γ, η) =
dx2
+ γ

x2 +
η2

x4 , g = g0(γ, η)+ k, (2.4)

where k ∈ xν32,α . (Again, norms and derivatives are with respect to g0(γ, η).) This will
be more useful from our point of view since the boundary Y appears explicitly as the
hypersurface {x = 0}. Near the boundary, the volume form of g has the form

dVg = x
−n−d dx dAY (x) (2.5)

where dAY (x) is a family of volume forms on Y depending smoothly on x.
A straightforward calculation (cf. [2]) shows that an AKH metric has curvature tensor

which is asymptotic to that of KHm to order O(e−νr) = O(xν).
The complex hyperbolic metric on the unit ball B in Cm has a slightly different form

in standard Euclidean coordinates, and it is worth explaining the difference. This metric
has Kähler form

−
∂∂ρ

ρ
+
∂ρ

ρ
∧
∂ρ

ρ
,

where ρ = 1
2 (1−|z|

2) is a defining function for ∂B. As a Hermitian metric, the first term
blows up only like 1/ρ; its leading coefficient is the Levi form, which is positive definite
on D . The second term, which blows up at the faster rate 1/ρ2, vanishes on (the radial
extension of) D , and is positive in the directions spanned by ∂ρ and ∂ρ, or equivalently,
on the span of ∂ρ and i∂ρ . There are analogous expressions for the Bergman and Kähler–
Einstein metrics on any strictly pseudoconvex domain.

The obvious discrepancy with (2.4) is resolved by setting x =
√
ρ. This accords with

the fact that the geodesic distance function r for the hyperbolic metric is comparable to
−

1
2 log ρ rather than − log ρ. More bluntly, the standard C∞ structure on the closure

of the Euclidean ball (or any strictly pseudoconvex domain) induced from its inclusion
in Cm is not quite the right one for our purposes.
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3. Linear elliptic theory on asymptotically hyperbolic spaces

We now describe the structure of the Green function and mapping properties for the lin-
earized gauged Einstein operator on an asymptotically K hyperbolic space.

There are several ways to approach linear elliptic problems of this type. Because the
underlying geometric structure is asymptotically rank one, certain features of the opera-
tors in question are dominated by their radial behaviour, which is one-dimensional. Using
this, the first author [2] carried out a detailed ODE analysis for the radial part of the rel-
evant operators on each K hyperbolic space to capture the decay of the corresponding
Green functions, from which the required mapping properties can be deduced. For higher
rank geometries, the radial parts of these operators are multi-dimensional and must be
studied using more powerful techniques. This will be done here via the machinery of
geometric microlocal analysis. We begin by reviewing these methods in the setting of
asymptotically K hyperbolic geometry, even though as we have just indicated, simpler
methods are available there, because this is a good warm-up for the construction in the
product case below, but also since we require in the product analysis of §7 a number of
subtle estimates on the resolvent family which do not seem to be easy to obtain in other
ways.

Before embarking on all of this, we owe the reader a few words about the general strat-
egy. Local elliptic theory (and hence global elliptic on compact manifolds) can be devel-
oped entirely via Schauder estimates. An understanding of the global mapping properties
for a Laplace-type operator L on a complete noncompact manifold, however, requires
both this local theory and also some information about ‘far-field’ effects. Roughly speak-
ing, one needs estimates at infinity for solutions of Lu = f , even when f ∈ C∞0 . If
L is invertible on L2, for example, and we represent its inverse by an integral operator
f 7→ u(z) =

∫
G(z, z′)f (z′) dz′, thenG(z, z′) is a distribution onM ×M usually called

the Green function for L. Its structure near the diagonal {z = z′} is exactly the same as in
the compact case, but the important point is to determine its asymptotics as (z, z′)→∞
in any direction inM×M . These determine the mapping properties of L: for example, for
nonlinear problems it is usually more convenient to use the invertibility of L on Hölder
spaces rather than Sobolev spaces. It is not straightforward to pass from an L2 to a Hölder
setting in general, but such things can be deduced from pointwise estimates for the off-
diagonal asymptotics of G. Thus it is a fundamental goal to determine these asymptotics
when possible.

One often deduces the existence of G via Hilbert space theory and a Bochner-type
argument, but this gives no information about its asymptotic structure. This is where
parametrix methods can be useful. To prove that L is Fredholm, it suffices to construct
an operator which inverts L up to compact errors. A parametrix is thus an explicitly
constructed approximation to a (generalized) inverse for L. Hopefully, the nature of its
construction yields good pointwise control on the Schwartz kernel. In special geometric
settings such as the ones considered here, a parametrix construction proceeds by patch-
ing together the inverses of a set of model problems to get an approximate inverse with
compact error; better approximations to the inverse are obtained by an iteration process.
To organize this procedure, it is useful to perform this construction on a certain com-
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pactification M̃2 of M × M . This compactification is a manifold with corners, and the
model problems appear as the induced operators on its different boundary hypersurfaces.
The off-diagonal behaviour of the parametrix (and later, the Green function) is encoded
by these various boundary hypersurfaces, since these correspond to various asymptotic
regimes. The fine pointwise structure of a parametrix reduces to the fact that it is a conor-
mal (or even better, polyhomogeneous conormal) distribution on M̃2. A posteriori one
deduces this same regularity structure for the Green function itself. The technicalities
of this construction involve defining a pseudodifferential calculus on M large enough to
allow for a parametrix construction for ‘fully elliptic’ operators. Elements of such a cal-
culus are characterized by the regularity properties of their Schwartz kernels on M̃2, and
the main work consists in verifying the usual properties, i.e., composition, boundedness,
etc. This has been carried out for a number of ‘asymptotically regular’ geometries. In this
section we explain how this looks for the asymptotically K hyperbolic geometries.

We assume in this section that L is a generalized Laplacian acting between sections
of bundles E and F over M associated to the bundle of orthonormal frames via a repre-
sentation of the orthogonal group; these are equipped with the Levi-Civita connection ∇.
A geometric differential operator is a linear combination of powers ∇k , with coefficients
determined by the metric and curvature tensor. In particular a generalized Laplacian is an
operator of the form

L = ∇∗∇ + R,

where R is a symmetric endomorphism on E constructed from the curvature tensor as-
sociated to ∇. (Everything here adapts easily to first order Dirac-type operators, and to
many other operators as well.) We shall describe the construction of a parametrix for L,
and explain how it gives information about the Green function and mapping properties
of L on various function spaces. At the end of this section we collect additional facts
about the resolvent family R(λ) = (L− λ)−1 needed later.

We conclude with some historical remarks. The analysis of elliptic uniformly degen-
erate operators (which is the case K = R) appeared in [17] and [18]. The complex case
was developed initially by Epstein, Melrose and Mendoza [9] (and further development
and ramifications of this theory are contained in the unpublished manuscript [8]). The
quaternionic and octonionic cases have not previously been written down explicitly be-
fore, though these are direct adaptations of [9]. These various pseudodifferential calculi
are quite similar to one another. (For K = H, one needs to make minor adjustments be-
cause of the lack of Darboux theorem then, but this is not serious since these constructions
depend on the infinitesimal, rather than the local, identifications between manifolds with
K2 structure and the K-Heisenberg models.)

K2 structures

We first describe the notion of a K2 structure on a manifold with boundary M , and its
ancillaries: the K2 tangent, cotangent and tensor bundles, and the classes of K2 metrics
and K2 differential operators, the last one containing all geometric elliptic operators for
any K2 metric as elliptic elements.
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Suppose that Y = ∂M carries a distribution D of type K; let ([γ ], η) be any associated
conformal infinity. Choosing an identification of a neighbourhood U of Y in M as a
product Y × [0, 1)x , we extend this data to U , and hence write down the model AKH
metric g0 = g0(γ, η) as in (2.4). Now define the space VK2 of all smooth vector fields V
on the (closed) manifold M such that g0(V , V ) is smooth (in U ) up to x = 0. This is
independent of γ and η, but depends on D (and the 1-jet of its extension to the interior).

It is helpful to write this out in a local frame. First choose a local frame Y1, . . . , Y`,
` = m(d − 1), for D and another set of independent vector fields Z1, . . . , Zr , r = d − 1,
which are complementary to D at each point and tangent to each Y × {x}; the vector
field ∂x completes this to a full basis of sections of TM . Then V ∈ VK2 if and only if

V = a x∂x +
∑̀
j=1

bj xYj +

r∑
k=1

ck x
2Zk, (3.1)

where a, bj , ck are all C∞ up to the boundary. Hence VK2 is locally the span over
C∞(M) of {x∂x, xY1, . . . , xY`, x

2Z1, . . . , x
2Zr}.

The term ‘2-structure’ comes from [9], where 2 denotes a nonvanishing section of
T ∗∂MM ⊗ Im(K), the pullback of which to T ∗∂M equals η. Hereafter, we let 2 denote
not only this form on ∂M , but also some choice of smooth extension to the interior. All of
the notions here can be defined in terms of this form, or equivalently, the corresponding
oriented (d − 1)-plane bundle S of 1-forms on M at ∂M . Thus, for example, elements
of VK2 are also characterized as vector fields which are smooth on M and which satisfy
2(V ) = O(x2).

Note that VK2 is closed under Lie bracket. Next, there is a vector bundle, K2TM , for
which VK2 is the entire space of smooth sections. The fibres are defined by

K2TpM = VK2/IpVK2,

where Ip denotes the space of smooth functions onM vanishing at p. (For a more prosaic
definition, we take the sections x∂x, xYi, x2Zj as a local basis of sections of K2TM .) This
bundle is naturally isomorphic to TM over the interior, but the natural bundle map

K2TM → TM,

defined via evaluation, V 7→ V (p), is the zero map when p ∈ Y . The subbundle over ∂M
spanned by {xYi, x2Zj } can also shown to have an invariant definition, and we denote it
(with a slight abuse of notation) by K2T ∂M . Third, when p ∈ Y , the subspace IpVK2
is an ideal in VK2 with respect to the bracket of vector fields; hence for such p, K2TpM
is a Lie algebra, where the Lie bracket of two elements given as the equivalence class of
the vector field bracket of representatives of the two individual classes, and as such is iso-
morphic to the solvable homogeneous extension KS m of KHeism−1, the K-Heisenberg
algebra. Note that K2Tp∂M is a nilpotent subalgebra, isomorphic to KHeism−1 itself.

In the simplest case, when K = R, this space of vector fields is usually called the space
of uniformly degenerate vector fields, denoted V0, and consists of all smooth vector fields
on M vanishing at Y . There is no form 2 now, so to avoid complicating the presentation



A nonlinear Poisson transform 1433

we shall mostly discuss only the other cases, save for a few passing comments about the
real case. The other familiar case is whenM is a strictly pseudoconvex domain in Cm; the
C2 structure is the CR structure on the boundary and the canonical Bergman or Kähler–
Einstein metrics are C2metrics (admittedly only polyhomogeneous rather than C∞). As
explained earlier, one needs to take x as the square root of the Euclidean distance to the
boundary in order to fit this into the present framework.

The dual of the K2 tangent bundle is denoted K2T ∗M . Note that smooth sections of
this K2 cotangent bundle are singular in the ordinary sense: in terms of the dual basis of
one-forms dx, Y ∗i and Z∗j ,

C∞(M;K2T ∗M) 3 ω = a
dx

x
+

∑
bi
Y ∗i

x
+

∑
cj
Z∗j

x2 ,

where a, bi, cj ∈ C∞(M). Similar remarks apply to all other tensor bundles too. Note
in particular that an AKH metric g is a section of S2(K2T ∗M) which is positive definite
on K2TM . If E is any bundle constructed functorially from TM , then applying the same
functorial operations to K2TM yields a bundle which we denote K2E.

Definition 3. Let M be a compact manifold with boundary and D a distribution of type
K on Y = ∂M . The space Diff∗K2(M) of K2 differential operators on M consists of all
operators which can be locally expressed as a finite sum of products of elements of VK2.
If E,F are any vector bundles over M , then a K2 operator acting between sections of E
and F is one which has this form with respect to any local trivialization.

It is important for VK2 to be closed under Lie bracket for this space of operators to
be well-defined.

In our applications, the bundles E and F are geometric bundles, and the operator is a
K2 differential operator between K2E and K2F .

Theorem 4. Let g be any AKH metric onM , andL a geometric elliptic operator of order
µ between sections of two geometric bundlesE and F . ThenL∈DiffµK2(M;

K2E,K2F).

This result is tautological once one checks that the Levi-Civita connection ∇ satisfies

∇ : C∞(M;E)→ C∞(M;E ⊗ K2T ∗M).

We leave the details to the reader.
There is a principal symbol mapping for VK2 operators, defined by formally replac-

ing x∂x , xYi and x2Zj , respectively, by linear coordinates ξ, ηi, ζj . Thus,

DiffµK2(M;E,F) 3 P =
∑

j+|α|+|β|≤µ

ajαβ(z)(x∂x)
j (xY )α(x2Z)β

7→
K2σµ(P )(z; ξ, η, ζ ) =

∑
j+|α|+|β|=µ

ajαβ(z)ξ
jηαζ β .

The usual calculation shows that this is a well-defined smooth function on K2T ∗M (with
values in Hom(E, F )), homogeneous of degree µ on the fibres.

Definition 5. The operator P ∈ DiffµK2(M;E,F) is called (K2) elliptic if
K2σµ(P )(z; ξ, η, ζ ) is an invertible endomorphism whenever (ξ, η, ζ ) 6= 0.
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Parabolic dilations and model operators

The key to the analysis of K2 operators is their approximate dilation invariance. More
precisely, for any p ∈ Y , one may define an equivalence class of dilations based at p.
When K = R, these are ordinary radial dilations, but in the other cases the dilations are
‘parabolic’. Using these we can define for any P ∈ Diff∗K2 the normal operator Np(P );
this is a finite-dimensional reduction in that it is a left-invariant operator on the solvable
group KS m, depending parametrically on p ∈ Y . Its invertibility (for all p) is the other
key hypothesis, besides symbol ellipticity, needed to prove that P is Fredholm.

We begin by defining these families of dilations. The situation is simplest when
K = R; in this case, choose a diffeomorphism of a neighbourhood of p in M with a
half-ball around the origin in the half-space Rn+ = {(s, u) : s ≥ 0, u ∈ Rn−1

}. Now use
this identification and the ordinary dilation operator Mδ : (s, u) 7→ (δs, δu) to define the
sequence of pushforwards of the vector field V ∈ V0:

lim
δ→0

(M−1
δ )∗V = Np(V ). (3.2)

From the local coordinate description of V , we see readily that Np(V ) is a left-invariant
operator defined on Rn+ ∼= RS n. More generally, for any uniformly degenerate differen-
tial operator P , define

lim
δ→0

(M−1
δ )∗P = Np(P ); (3.3)

this is in the universal enveloping algebra of RS n, and is well-defined up to the action of
an element A ∈ RS n.

In the other cases we begin by recalling the parabolic dilation structure on KS m.
To define this, recall that KS = R+ n KHeism−1 (this is just the A · N part of the
G = KAN decomposition). Choose a system of coordinates (s, σ, u) where s > 0,
σ ∈ Rd−1

= Im K and u ∈ Rd(m−1)
= Km−1 so that (in K coordinates)

20 = dσ +
1
2

Im(du · ū) (3.4)

defines the standard K contact structure on KHeism−1. Thus,

s∂s, s
(
∂ui −

1
2 Im(∂ui ū)

)
, s2∂σj (3.5)

is a basis of left-invariant vector fields, where in Im(∂ui ū) we identify the vector ∂ui
with a vector with K coordinates in Km−1, and the imaginary quaternions with vertical
vectors ∂σj . The dilation is then given by

Mδ(s, σ, u) = (δs, δ
2σ, δu).

(Note that these vector fields are homogeneous of degree 0 with respect to Mδ .) When
K = C or O, we can choose a diffeomorphism as before which identifies a neighbourhood
of p in M with a neighbourhood of 0 in KS , and carries the distribution D to the model
distribution on KHeism−1; the model 20 above is a suitable choice for 2 on M . In the
complex case this uses the Darboux theorem, while in the octonion case this follows
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from the local rigidity of octonion contact structures (so that (Y,D) is locally identified
with the model geometry). In terms of this identification, we define Np(P ) by the same
formula as above, arriving at an operator which is left-invariant on KS and well-defined
up to translation by an element of this group. In the last case, K = H, one has no longer
the Darboux theorem or rigidity, but the following lemma is proved in the Appendix.

Lemma 6. For any quaternionic contact structure on Y 4m−1, and any point p ∈ Y , there
exist local coordinates (σ, u) ∈ Im(H) × Hm−1 such that the quaternionic distribution
is given by the kernel of a 1-form 2 with values in Im(H), and the difference with the
standard form 20 of the Heisenberg group near the origin (σ = 0, u = 0) satisfies the
estimate |2−20| = O(|u|

2
+ |σ |). The two nilpotent algebra structures coincide at the

point p.

This result constructs a diffeomorphism from a neighbourhood of p to a neighbourhood of
0 in HS so that the distributions agree at the origin. Letting {Yi} and {Y 0

i } be local frames
for D and the model distribution (in HHeism−1, extended to HS m and then transferred
to this neighbourhood), then clearly Yi = Y 0

i +O(|u|
2
+ |σ |). It follows that the limit of

the parabolic dilations of P is still a left-invariant operator on HS .
To express this more concretely, fix a boundary defining function and smooth vector

fields Yi , i = 1, . . . , d(m− 1), Zj , j = 1, . . . , d − 1, such that the Yi span the extension
of D and the Zj span a subspace complementary to D at each point. Using the obvious
multi-index notation, write

P =
∑

j+|α|+|β|≤m

ajαβ(w)(x∂x)
j (xY )α(x2Z)β ,

where the coefficients are assumed to be C∞ (up to the boundary). The values of x∂x ,
xYi and x2Zj at p fix an isomorphism of K2T ∗pM and KS , and

Np(P ) =
∑

j+|α|+|β|≤m

ajαβ(p)(s∂s)
j (sY 0)α(s2Z0)β

where s ∈ R+, and {Y 0
1 , . . . , Y

0
d(m−1), Z

0
1, . . . , Z

0
d−1} is a fixed basis of left-invariant

vector fields on KHeism−1.
The following result is well-known in the real and complex cases. It is obvious in the

octonionic case, and a direct consequence of Lemma 6 in the quaternionic case.

Proposition 7. Let g be an AKH metric on M , and L be a generalized Laplace operator
onM . Then, at each point of ∂M , the normal operator ofL identifies to the corresponding
operator on the hyperbolic space KHm. In particular, up to isomorphism, it does not
depend on the point of ∂M .

For P as above, there is a simpler family of model ordinary differential operators on R+
called the indicial family, defined by the expression

Ip(P ) =
∑
j≤m

aj00(p)(s∂s)
j .
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The coefficients are endomorphisms of Ep. Since this is a constant coefficient Fuchsian
operator, it is equivalent by Mellin transform to multiplication by a (matrix-valued) poly-
nomial

Ip(P ; ζ ) =
∑
j≤m

aj00(p)(ζ )
j .

A number ζ ∈ C is called an indicial root if Ip(P ; ζ ) is singular. This is equivalent to the
requirement that

P(xζ v(y)) = O(xζ+1) ∀ v ∈ C∞(Y ).

These indicial roots are fundamental invariants of P .

Blowups and the K2 double space

There is a more sophisticated way to interpret the parabolic dilations, leading to a more
obviously invariant definition of normal operators. The idea is to introduce a resolution,
or blowup, of the product spaceM×M which reflects the scaling invariance properties of
K2 differential operators near the boundary. This provides the means to define the K2
pseudodifferential operators. We describe this now.

As usual, we start with the simplest case K = R. The distributional Schwartz kernels
of pseudodifferential operators are singular along the diagonal in M ×M . Unfortunately,
this diagonal intersects the corner ∂M × ∂M , making it difficult to describe the precise
structure of its singularity near this intersection. To remedy this we introduce a new space

M2
0 = [M ×M; diag∂M×∂M ],

where the notation on the right indicates that we blow up M ×M at the boundary of the
diagonal. This amounts to replacing this submanifold by the space of inward pointing unit
normal vectors; the space M2

0 is endowed with the smallest C∞ structure containing the
lifts of all smooth functions on M ×M and polar coordinates around diag∂M . Thus M2

0
has three hypersurface boundaries, B10 and B01, the left and right faces, which are the
ones lifted from the two hypersurface boundaries in M ×M , and the new front face B11
created in this blowup, which is often also denoted ff. The blowdown map β : M2

0 → M2

is a smooth mapping of manifolds with corners.
The front face B11 fibres over diag∂M , with fibre at p ∈ Y the set of unit inner nor-

mal vectors at that point; this is a quarter-sphere, the interior of which carries a natural
projective structure. Let (x, y) and (x′, y′) denote coordinates on the two copies of M
in M2; we are blowing up the submanifold x = x′ = 0, y = y′, and so it is legitimate to
introduce the new singular coordinate system s = x/x′, u = (y−y′)/x′, x′, y′. The coor-
dinates (s, u) are then projective coordinates on this quarter-sphere. The normal operator
of P is the restriction to the fibres of B11 of the lift of P from the left factor of M to M2

and then to M2
0 . Thus, as in the previous definition, each Np(P ) acts on a half-space

Rn+ = R+ n Rn−1. The underlying dilation structure is implicit here since we are taking
the normal blowup, which involves ordinary homothetic scaling in the tangent spaces.

There is a similar development for the other cases (see [9] in the complex case), but
the normal blowup of the boundary of the diagonal must be replaced by a blowup of this
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submanifold which respects the underlying parabolic dilation structure. Now, instead of
ordinary spherical normal vectors, we use equivalence classes of paths converging to p,
where the equivalence relationship is governed by the form K2.

First define IY to consist of the smooth functions on M vanishing on Y and, recalling
the bundle S ⊂ T ∗∂MM determined by 2, let IS denote the subset of those elements
f ∈ IY such that df |Y are sections of S. Next, fix p ∈ Y and define the set of S-parabolic
curves at p to consist of those smooth functions γ : [0, 1] → M with γ (0) = p and
f (γ (t)) = O(t2) for all f ∈ IS . We define an equivalence relation on such curves:

γ1 ∼ γ2 ⇔ f (γ1(t))− f (γ2(t)) = O(t2) ∀f ∈ IY ;

f (γ1(t))− f (γ2(t)) = O(t3) ∀f ∈ IS .

The space of equivalence classes is the set of inward-pointing S-parabolic normal vectors
to Y at p, which we denote Sp, and these fit together to form a bundle S over Y . Each Sp

has a natural R+ and additive structure, defined by δ [γ (t)] = [γ (δt)] and [γ ] = [γ1] +
[γ2] if f (γ (t))− (f (γ1(t))+ f (γ2(t)) = O(t2) for all f ∈ IY , and O(t3) for all f ∈ IS ,
respectively. These do not define a linear structure, however, since the scalar action does
not distribute over addition. However, directly from a local coordinate calculation one
finds that Sp

∼= KS , and scalar multiplication corresponds to parabolic dilation.

Conormal distributions

We make a small diversion from the main thread of this section to recall the definitions of
conormal and polyhomogeneous conormal distributions on manifolds with corners since
these are used in many places below. Good references for this material include [18] and
[25], to which we refer for more details.

LetX be a manifold with corners and {Hj }Nj=1 an enumeration of the boundary hyper-
surfaces of X. We assume that each Hj is a smooth embedded submanifold with corners
in X, so we can fix a global defining function ρj for that face, i.e. ρj ≥ 0, Hj = {ρj = 0}
and dρj 6= 0 there.

The space Vb(X) of b-vector fields on X consists of all smooth vector fields V which
are arbitrary in the interior ofX and which lie tangent to all boundary faces, and hence all
corners. Any point p ∈ ∂X lies in some corner of codimension k, Hj1 , . . . , Hjk . Choose
local coordinates (x1, . . . , xk, y) near p with xi = ρji , i = 1, . . . , k, and where y =
(y1, . . . , yn−k) lies in an open neighbourhood of 0 in Rn−k . Thus near p, any V ∈ Vb can
be written as

V =
∑

aij (x, y)xi∂xj +
∑

b`(x, y)∂y` , aij , b` ∈ C∞.

In other words, Vb(X) is spanned locally over C∞(X) by xi∂xj , ∂y` , i, j = 1, . . . , k,
` = 1, . . . , n− k.

Definition 8. For any multi-weight σ = (σ1, . . . , σN ) ∈ RN , define ρσ = ρσ1
1 . . . ρ

σN
N ;

then the space of conormal distributions of order σ is

A σ (X) = {u : V1 . . . Vru ∈ ρ
σL∞(X) for all r ≥ 0 and Vj ∈ Vb}.

We also write A (X) =
⋃
σ A σ (X).
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Elements of A (X) are tangentially regular, and have a certain normal regularity too,
but (for example) elements of A 0(X) do not necessarily have well-defined boundary
values. Typical conormal distributions include ργ and |log ρ|s , where γ and s are multi-
indices in C.

Polyhomogeneous functions constitute the most useful subclass of A (X). By def-
inition, u ∈ A (X) is polyhomogeneous if near any point p which lies in a corner of
codimension k in X, then using coordinates and multi-indices as above,

u ∼
∑

aγ,`(y)x
γ (log x)`, aγ,` ∈ C∞.

Here (γ, `) varies over a discrete set in Ck × Nk which has finite intersection with each
sector

⋃k
j=1{γ : Re(γj ) ≤ Cj } × Nk .

A p-submanifold Y ⊂ X is, by definition, one which can be expressed locally in terms
of adapted boundary coordinates as {xi1 = · · · = xij = 0, yr1 = · · · = yrs = 0} (the p
means ‘product’, i.e. Y is locally of product form in X). One can form the blowup of any
such Y in X to obtain a space [X;Y ]. A distribution is conormal or polyhomogeneous
to Y if its lift to [X;Y ] has either of these properties at the boundary face of [X;Y ] which
covers Y .

Although the Schwartz kernels we deal with below are polyhomogeneous, we typi-
cally only use a property only slightly stronger than conormality. Fix a boundary face H
and suppose that the weight σH corresponding to this face is 0. We say that u ∈ A σ

H (X)

if u ∈ A σ (X) as before, and that near H , u = u0 + v where both u0 and v are conormal,
but u0 is smooth up toH and v vanishes like ρεH there. In other words, u decomposes into
a ‘leading coefficient’ u0, which is a smooth function on H (conormal at all boundaries
of H ) and a conormal remainder term v which vanishes to some positive order. If H is a
subset of the set of all boundary faces, then A σ

H (X) consists of functions with this type of
decomposition at each faceH ∈H . If Y is an interior p-submanifold ofX, and H some
subset of the boundary faces of X, all elements of which intersect Y at ∂X, and σH = 0
for all H ∈ H , then we define A σ

H (X;Y ) to consist of all u which can be decomposed
as a sum u′+u′′ where u′ ∈ A σ

H (X) and u′′ is supported in a small neighbourhood of Y ,
and is polyhomogeneous along Y with polyhomogeneous singularity smoothly extendible
across all boundary faces of Y .

All of these definitions generalize immediately if u is a section of some smooth vector
bundle over X.

K2 pseudodifferential operators

The K2 double space provides the geometric setting for Schwartz kernels of K2 pseu-
dodifferential operators.

Definition 9. For any µ ∈ R and set of weights σ = (σ10, σ01, 0) corresponding to the
boundary faces B10, B01 and B11 of M2

K2, the space 9µ,σK2 (M) of conormal K2 pseu-
dodifferential operators on M consists of all those operators A on M with the following
properties:
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• the Schwartz kernelKA ofA is the pushforward (under the blowdown β : M2
K2→M2)

of a distribution κA on M2
K2;

• κA is a distribution on M2
K2 which is conormal with respect to all boundaries, par-

tially homogeneous with respect to the front face, and which has a polyhomogeneous
singularity of pseudodifferential order µ along the lifted diagonal diagK2, i.e.

κA ∈ A σ
B11
(M2

K2, diagK2).

Slightly more generally, we also define 9µ,σK2 (M) in an analogous way when σ =

(σ10, σ01, σ11) and σ11 > 0 (however, dropping the partial polyhomogeneity at B11 and
only requiring that κA is conormal and vanishes to order σ11 at that face).

The action of KA on a function f on M requires the choice of a density γ on M
against which to integrate, so that (KAf )(z) =

∫
M
KA(z, z

′)f (z′) γ (z′). It is purely a
matter of convention whether we fix γ to be a smooth measure on M , for example, or
some power of a defining function times a smooth measure; any two such choices yield
equivalent theories, but one does need to make an adjustment to the index set σ below
based on this choice. We shall follow the convention that γ is instead a volume form for
some fixed K2metric, and hence is of the form x−n−d times a smooth measure. This has
the advantage that most of the operators in our later applications are self-adjoint.

Basic facts about these spaces of pseudodifferential operators include the composition
law

9
µ,σ

K2 ◦9
µ′,σ ′

K2 ⊂ 9
µ+µ′,σ ′′

K2 , σ ′′ = (σ10, σ
′

01, 0), (3.6)

which holds provided σ01 + σ
′

10 > −1 (this condition is needed to ensure that the inte-
gration defining the composition makes sense), and the existence of a short exact symbol
sequence

0→ 9
µ−1,σ
K2 → 9

µ,σ

K2 → Sµ(K2T ∗M)→ 0. (3.7)

The properties of this sequence, and the existence of a quantization map from
Sµ(K2T ∗M) to 9µ,σK2 which is well-defined modulo operators of order µ − 1, follows
almost exactly as in the standard interior case. The composition law (3.6) is substantially
more subtle. Indeed, it could be regarded as the most technically difficult part of the K2
pseudodifferential calculus. The proof is fairly involved, but can be reduced to some sim-
ple geometric ideas involving the pullbacks and pushforwards of conormal distributions
with respect to special maps, called b-fibrations, between manifolds with corners. This
is described carefully when K = C in [9, Theorem 12.42], and when K = R in [18,
Theorem 3.15]. The proofs in the other two cases follow exactly the same lines.

The other key facts we need concern the mapping properties of these operators. To
state these we first describe the appropriate function spaces. Fix any smooth K2 met-
ric g on M . This determines the space L2(M; dVg), as well as the basic Hölder space
3

0,α
K2(M), which by definition is the closure of bounded C∞ functions with respect to the

norm
‖u‖0,α = sup

p∈M

|u(p)| + sup
p 6=q

distg(p,q)≤1

|u(p)− u(q)|

distg(p, q)α
.
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Next, for any s ∈ N, set

H s
K2(M) = {u : V1 . . . V`u ∈ L

2(M; dVg) for all Vj ∈ VK2, j ≤ `, and ` ≤ s},

3
s,α
K2(M) = {u : V1 . . . V`u ∈ 3

0,α
K2 for all Vj ∈ VK2, j ≤ `, and ` ≤ s},

and finally, for any defining function x for ∂M and δ ∈ R,

xδH s
K2(M) = {u = x

δv : v ∈ H s
K2(M)}, xν3

s,α
K2(M) = {u = x

νv : v ∈ 3s,αK2(M)}.

There is a somewhat loose relationship between certain of these weighted Sobolev and
Hölder spaces. This is based on the fact that xa ∈ xδH s

K2 (locally near x = 0) if and only
if a > δ+(n+d−1)/2; similarly, xa ∈ xν3s,αK2 near x = 0 if and only if a ≥ ν. Because
of this we say that xδH s

K2 and xν3s,αK2 are commensurable when ν = δ+ (n+ d − 1)/2.

Proposition 10. Fix µ ∈ N and σ10, σ01, δ ∈ R such that σ01 + δ > 0 and σ10 > δ. Let
A ∈ 9

−µ,σ

K2 (M). Then the maps

A : xδH k
K2(M)→ xδH

k+µ

K2 (M),

A : xδ+(n+d−1)/23
k,α
K2(M)→ xδ+(n+d−1)/23

k+µ,α

K2 (M)

are bounded.

We sketch a few points in the proof. First note that since these spaces are defined relative
to K2 derivatives, and since VK2 ◦ 9

j

K2 ⊂ 9
j+1
K2 , we may immediately reduce to the

case µ = 0. Furthermore, conjugating by x−δ in the first case and x−(δ+(n+d−1)/2) in the
second, and observing that x̃/x lifts to a conormal function on M2

K2 which is smooth
(and nonvanishing) up to B11, reduces us further to the unweighted case. Finally, the
boundedness of 90

K2(M) on L2(M; dVg) may be deduced via Hörmander’s method of
using the symbol calculus to find B ∈ 90

K2 satisfying A∗A+B∗B = C2 Id+R for some
C > 0 and R ∈ 9−∞K2 and then using Cauchy–Schwarz to prove L2 boundedness for
operators of order −∞. The boundedness of 90

K2 on 30,α
K2 is also deduced in two steps.

Decompose A into a sum A′ + A′′ where the Schwartz kernel of A′ vanishes to infinite
order at B10 and B01 and that of A′′ is smooth across the diagonal. The boundedness of
A′ on Hölder spaces is equivalent to the standard local boundedness of pseudodifferential
operators (of order 0) on a neighbourhood in Rn (cf. [27]). This argument is discussed in
detail in [18] for the case K = R.

Proposition 11. Suppose that A ∈ 9µ,σK2 (M), where σ = (σ10, σ01, σ11) indicates co-
normal order of vanishing at each of the three boundary faces B10, B01, B11. If µ < 0
and σ11 > 0, and if σ01 + δ > 0 and σ10 > δ, then A is compact on xδL2 and on
xδ+(n+d−1)/23

0,α
K2.

This follows directly from the Arzelà–Ascoli theorem.
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The parametrix construction for fully elliptic operators

We finally apply the theory of K2 operators outlined above to prove that under cer-
tain hypotheses, the linearized gauged Einstein operator Lg is an isomorphism on certain
weighted L2 and Hölder spaces. We state the result in slightly greater generality for an
arbitrary generalized Laplacian P = ∇∗∇ + R ∈ Diff2

K2(M;E), associated to a K2
metric g. The symmetry of this operator with respect to the volume form dVg simplifies
some of the numerology below, but all of these results have direct analogues for more
general fully elliptic K2 operators.

Definition 12. The generalized Laplacian P g is fully elliptic if its K2 symbol is in-
vertible as a section of C∞(K2T ∗M;Hom(E)), and if, in addition, its normal operator
N(P g), which is identified via Proposition 7 with the corresponding operator P g0 on the
model hyperbolic space KHm, is invertible as an unbounded operator on L2(KHm

;E0).

Before stating the main theorem of this subsection, let us explore the relationship
of this full ellipticity condition with the indicial root structure of P g . The indicial roots
of P g are the roots of the indicial polynomial for P g , and give the rates of vanishing of
formal solutions of this operator. If ζ is an indicial root, then there exists some φ(y) such
that P(xζφ(y)) = O(xζ+1). The indicial roots of P g and of its normal operator N(P g)
are the same. The indicial roots are arranged symmetrically around (n + d − 1)/2 in C.
The complement in R of the set of real parts of all indicial roots of P is a union of open
intervals and half-lines, again symmetric around (n+ d − 1)/2. The significance of these
intervals is as follows. First, if δ + (n + d − 1)/2 is the real part of some indicial root,
hence at the boundary of two contiguous intervals, then neither of the mappings

P : xδH 2
K2(M,E; dVg)→ xδL2(M,E; dVg), (3.8)

P : xδ+(n+d−1)/23
2,α
K2(M,E)→ xδ+(n+d−1)/23

0,α
K2(M,E) (3.9)

has closed range. This is straightforward to check from basic definitions. Significantly
deeper is

Theorem 13. Let P g ∈ Diff2
K2(M,E) be a fully elliptic generalized Laplacian. De-

fine δ0 by the condition that (n+d−1)/2± δ0 are the real parts of the indicial roots of P
closest to (n+ d − 1)/2. If δ0 > 0 and |δ| < δ0, then (3.8) and (3.9) are both Fredholm,
and are isomorphisms if and only if the nullspace of P g on L2(M; dVg) is trivial.

Proof. The fact that these mappings are Fredholm when |δ| < δ0 will follow immediately
if we can establish the existence of a parametrix G ∈ 9−2,σ,0

K2 (M;E) for P with the
property that PG − I = GP − I = Q ∈ 9

−∞,σ,∞
K2 (M;E). Here for convenience we

set τ = (n + d − 1)/2 + δ0 and σ = (σ10, σ01) = (τ, τ ). The final index (here 0 or∞)
corresponds to σ11.

This parametrix is constructed in stages. We first choose an element G0 in the small
calculus, i.e. G0 ∈ 9

−2
K2(M;E), so that PG0 = I − Q0, Q0 ∈ 9

−∞

K2 . This uses only
the symbol calculus and the symbol ellipticity of P , and proceeds exactly as in the usual
(local) elliptic parametrix construction.
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For the second step we seek a correction term G1 ∈ 9
−∞,σ,0
K2 chosen so that the

remainder term Q1 = I − P(G0 + G1) lies in 9−∞,σ,1K2 , and in particular is compact.
For this we must solve the normal problem N(P )N(G1) = N(Q0) ∈ C∞0 (KHm

;E). By
the second part of the full ellipticity hypothesis there is a unique solution to this equation
in L2(KHm, E) and (since the right hand side is C∞0 ) it is a simple matter to check
that the solution is conormal at the boundaries of the quarter-sphere fibres of the front
face. Indeed, using the analysis from [2, Proposition I.2.2] giving the decay of the Green
function of P on KHm, we see that N(G0) ∈ A σ (Sn−1

++ ), where σ = (τ, τ ) gives the
orders of conormal vanishing at the two boundaries of the quarter-sphere fibres.

Using |δ| < δ0, we see from Proposition 10 that G1 and Q1 are bounded between
these weighted spaces; from Proposition 11 we also find thatQ1 is compact. This already
shows that P g is Fredholm. However, it is useful to refine this parametrix further.

Using the composition formula for K2 pseudodifferential operators, we see that the
iterated compositions of this error term with itself vanish to increasingly high order at the
front face, specifically Qj

1 ∈ 9
−∞,σ,j

K2 . We can therefore take an asymptotic sum of the

series R ∼
∑
∞

j=1Q
j

1 as an element of 9−∞,σ,1K2 . Now multiply P(G0 + G1) = I −Q1

on the right by I +R. We see thatG′ = (G0+G1)(I +R) satisfies PG′ = I −Q′ where
Q′ ∈ 9

−∞,σ,∞
K2 .

This error term lies in the very residual space of smoothing operators with Schwartz
kernels which are conormal on M2. One consequence is that elements of the nullspace
of L in either of these function spaces are conormal and vanish like xτ . Furthermore,
since these very residual operators form a semi-ideal (on one of these weightedL2 spaces,
say), a standard argument (cf. [18, proof of Theorem 6.1]) shows that the true generalized
inverse G of any of the maps between weighted spaces, which a priori is only defined
as a bounded operator, is actually an element of 9−2,σ,0

K2 ; the error term PG − I =

GP − I = Q is the projector onto the nullspace and is still very residual. If the nullspace
is trivial, then Q = 0 and hence P is invertible. ut

We remark, but do not prove, that if δ lies in any of the other open intervals or half-lines
described above, then these maps have closed range but are not Fredholm since either the
kernel or cokernel is infinite-dimensional.

With not much more effort, we can prove that the Schwartz kernel of G has a poly-
homogeneous expansion at all boundary faces of M2

K2 (as well as a polyhomogeneous
expansion along the lifted diagonal of this space which is smoothly extendible across the
front face). This implies that G maps polyhomogeneous sections to polyhomogeneous
sections, and also shows that any section κ which satisfies Lκ = 0 (even just in a neigh-
bourhood of infinity) must have a complete polyhomogeneous expansion there.

The resolvent family

The invertibility of the linearized gauged Einstein operatorLg on weighted Hölder spaces,
which is a direct consequence of Theorem 13 and Proposition 10, is the key ingredient
in the deformation theory of AKH Einstein metrics. For the analogous result on products
of AKH spaces, we shall use a spectral synthesis formula for the inverse of this operator
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which expresses it in terms of the resolvent families of the corresponding operators on
each factor. In preparation for this, we now recall the basic theory of these resolvent
families in terms of the K2 calculus and prove some estimates on their Schwartz kernels
which are uniform in the spectral parameter.

First let us recall some results from [2, §I.4]. Define δ0 = δ
K
0 for the operator Lg as

in the statement of Theorem 13; then

δ0 = (n+ d − 1)/2 for K = R or C,
δ0 > (n+ d − 1)/2 for K = H or O.

(3.10)

This means that the interval of weights δ for whichLg is Fredholm is exactly (0, n+d−1)
in the real and complex cases, and is larger in the quaternionic and octonionic cases.

By definition, the resolvent of Lg is the family of L2 bounded operators (Lg − λ)−1,
which exists precisely when λ /∈ spec(Lg). We wish to recognize these operators as
elements of 9−2,∗

K2 (M), depending holomorphically on λ in an appropriate sense. This
will follow from Theorem 13, which in turn requires

Lemma 14. The operator Lg − λ is fully elliptic (as a K2 operator) if and only if λ /∈
[δ2

0,∞).

Proof. First note that

K2σ2(L
g
− λ) = K2σ2(∇

∗
∇) = |ζ |2 Id,

which is obviously invertible. In addition, N(Lg − λ) = Lg0 − λ, so we conclude that
Lg − λ is fully elliptic if and only if λ /∈ spec(Lg0).

The indicial operator of Lg0 is a second order matrix-valued ordinary differential
operator, and the indicial roots correspond to solutions of the form xζ κ0, where κ0
is a constant symmetric 2-tensor. By reducing to the various irreducible components
in Sym2, we obtain them as the roots of a finite number of quadratic polynomials
ζ 2
− (n + d − 1)ζ + α, where α is a constant depending on dimension and the irre-

ducible component of the decomposition. The roots from any one of these polynomials
are (n+d−1)/2± 1

2

√
(n+ d − 1)2 − 4α. For some α0 we obtain the roots with real part

closest to (n+d−1)/2, that is, (n+d−1)/2± δ0. So we see that each α ≤ α0. Now, the
indicial roots of Lg0−λ are the roots of the various polynomials ζ 2

−(n+d−1)ζ+α+λ,
hence are equal to

(n+ d − 1)/2±
1
2

√
(n+ d − 1)2 − 4α − 4λ.

Define
δ0(λ) = min

α

1
2

Re
√
(n+ d − 1)2 − 4α − 4λ = Re

√
δ2

0 − λ.

By Theorem 13, Lg0 − λ is at least Fredholm on L2 provided

δ0(λ) > 0,

or equivalently, if λ /∈ [δ2
0,∞).
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So far we have proved that if λ is outside this half-line, then Lg0 − λ is at least
Fredholm. This shows that spec(Lg0) is the union of [δ2

0,∞) and finite point spectrum
of multiplicity in the half-line (−∞, δ2

0). However, this point spectrum must be empty,
since otherwise, if Lg0φ = λ̂φ for some λ̂ < δ2

0 and φ ∈ L2, then the subspace spanned
by all translates of φ by isometries of KHm would be infinite-dimensional, contradicting
the fact that Lg0 − λ̂ is Fredholm. This finishes the proof. ut

The same reasoning leads to

Theorem 15. Let Lg be the linearized gauged Einstein operator on the manifoldM with
K2 metric g. Then Lg − λ is Fredholm if and only if λ /∈ [δ2

0,∞). More precisely,

spec(Lg) = [δ2
0,∞) ∪ {λi}

N
i=1,

where λi lies in (−∞, δ2
0) and is an L2 eigenvalue of finite multiplicity.

An AKH Einstein space (M, g) is nondegenerate if and only if 0 is not in this point
spectrum.

We shall need to know slightly more about the dependence of the inverse on λ.

Proposition 16. Fix ε > 0 and define �ε ⊂ C \ [δ2
0,∞) to consist of the set of all λ for

which δ0(λ) > ε. Let τε = (n+ d − 1)/2+ ε and σε = (τε, τε, 0). Then for each ε > 0,
the resolvent family

�ε 3 λ 7→ R(λ) = (Lg − λ)−1
∈ 9

−2,σε
K2 (M;Sym2(K2T ∗M))

is meromorphic in the sense that the Schwartz kernels of these operators, as elements
of a fixed space of distributions, depend meromorphically on λ. The poles occur only at
each λi and are all simple; the residues are the finite rank orthogonal projections onto
the corresponding eigenspaces.

The proof is based on the fact that the model resolvent (Lg0 − λ)−1 is itself holomorphic,
which can be checked by direct ODE analysis, and the analytic Fredholm theorem. This
is the direct generalization of [20] and [9] (cf. also [12]).

We conclude this section by proving uniform estimates for the off-diagonal Schwartz
kernel of this resolvent when λ = iµ lies on the imaginary axis.

Proposition 17. Let (M, g) andLg be as above. Whenµ ∈ R, the indicial root ofLg−iµ
which has the smallest strictly positive real part is equal to

ζ(µ) =
n+ d − 1

2
+

√
δ2

0 − iµ.

In particular γ (µ) := Re ζ(µ) ≥ n+ d − 1 with equality if and only if µ = 0. Further-
more,

ζ(µ) ∼
√
|µ|/2 (1± i) as µ→±∞.
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Let K(z, z′, iµ) be the Schwartz kernel of the resolvent of this operator. Then there exists
µ0 > 0 such that for any c > 0 and ε ∈ (0, 1), if z, z′ ∈ M satisfy d(z, z′) ≥ c > 0 and
|µ| ≥ µ0, we have

|K(z, z′, iµ)| ≤ Cµ−1x(1−ε)γ (µ)d(z,z
′)

where the constant C is independent of µ. A similar estimate holds for all b-derivatives
of K .

Proof. The calculation of the indicial root and the statements about its asymptotics are
straightforward, based on the remarks in the proof of Lemma 14. As for the main asser-
tion, first suppose that f ∈ C∞0 (M), |f | ≤ 1, and define u = uµ = R(iµ)f . We claim
that for any ε > 0, there exists a constant Cε > 0 such that for |µ| ≥ µ0,

|u| ≤ Cµ−1x(1−ε)γ (µ).

In particular, C is independent of µ (and in addition, sup |u| depends linearly on sup |f |).
To prove this, first recall that since R(iµ) ∈ 9−2,γ (µ),γ (µ)

K2 (M), it is immediate that
|u| ≤ Aµx

γ (µ); the issue is to prove the uniformity in µ of the constant A. Suppose this
fails, i.e. suppose there exists a sequence of µ tending to infinity so that

sup
z∈M

µ|u(z)|x−(1−ε)γ (µ) = Aµ→∞.

This supremum is attained at a point qµ ∈ M , so if we define

w(z) = (µx(qµ)
−(1−ε)γ (µ)/Aµ)u(z),

then
|w(z)| ≤ (x/x(qµ))

(1−ε)γ (µ), (3.11)

with equality at z = qµ and

(µ−1L− i)w(z) = (x(qµ)
−(1−ε)γ (µ)/Aµ)f (z). (3.12)

We shall consider various cases depending on whether or not qµ remains in a compact
subset of M .

Suppose first that x(qµ) ≥ c > 0. Then the right hand side of (3.12) tends to zero
uniformly. Let B be a geodesic ball of radius 1 centred at qµ, fix a trivialization of the
bundle over B and suppose that z are Riemann normal coordinates in this ball. Set ξ =
√
µz, so that ξ lies in a ball of radius

√
µ in Rn+1. In terms of these coordinates,

µ−1L = −

n+1∑
j=1

∂2

∂ξ2
j

+ O(µ−1/2).

The remainder term is a second order operator with coefficients which converge to 0
uniformly on compact sets in these expanding balls in Rn+1. Using standard local elliptic
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theory, we can take a limit in (3.12), and obtain a function w∞ defined on the entire
Euclidean space such that

(1ξ − i)w∞ = 0, |w∞| ≤ 1, |w∞(0)| = 1.

However, no such function exists. To see this, take Fourier transform (for w as an element
of S ′(Rn+1)) and use that the full symbol |ξ |2− i is nowhere vanishing. Hence this case
cannot occur.

Now suppose that x(qµ)→ 0. Pass to a subsequence so that qµ→ q̄ ∈ ∂M , and then
apply a sequence of parabolic dilations Dµ based at appropriate points converging to q̄
and with strength x(qµ)−1 so that Dµ(qµ) = (1, 0) in a fixed coordinate system z̃. We
now proceed much as before. Let B be a unit geodesic ball centred at (1, 0), and define
ξ =
√
µz̃. The sequence of operators µ−1D∗µL converges to 1ξ as before. The bound on

w̃ = D∗µw now takes the form

|w̃| ≤ e(1−ε)γ (µ)/
√
µ

with equality at the origin; here t = log(x/x(qµ)), and we can assume this is the first
coordinate ξ1 in the ξ system. We again pass to the limit. The limiting function w̃∞
satisfies |w̃∞(0)| = 1,

(1ξ − i)w̃∞ = 0, |w̃∞| ≤ e
(1−ε)t/

√
2.

To analyze whether this is possible, note that this exponential bound on w̃∞ implies that
its Fourier transform is well defined as an element of S ′ on the subspace {ξ ∈ Cn+1 :
Im ξ1 = (1− ε)/

√
2, ξj ∈ R, j > 1}. The symbol ξ · ξ − i is again invertible here, which

precludes the existence of this limit; hence this case is also impossible. This proves that
the function u = R(iµ)f satisfies the stated bound uniformly in µ.

An essentially identical argument proves that a similar bound holds regardless of
the location of the support of f . In other words, suppose that supp(f ) ⊂ B1(pµ)

and sup |f | ≤ 1. Then for the L2 solution to (L − iµ)u = f , we have |u(q)| ≤
Cµ−1 exp(−(1 − ε)γ (µ)d(q, pµ)). The only modification needed is that if there is a
sequence uµ for which the constant increases without bound, and if the centre qµ of the
support of fµ tends to infinity, then we parabolically rescale so as to obtain a sequence of
problems (Lµ − iµ)ũµ = f̃µ, where the rescaled operators Lµ converge to the limiting
model operator for the K2 structure. The validity of the bound in this case follows by
what we have done above.

We have now proved thatK(z, z′, iµ) decays like e−(1−ε)γ (µ)d(z,z
′)µ−1 for d(z, z′) ≥

c > 0 in a weak sense. More precisely, let U be any neighbourhood in M × M with
compact closure which does not intersect the diagonal; then if σ > 2n + 2, the H−σ

norm of the restriction of the Schwartz kernel to U satisfies this bound. Using that
(Lz − iµ)K = (Lz′ − iµ)K = 0 away from the diagonal, we can estimate any C k

norm of K in U at the cost of introducing an extra factor µk+σ into the estimate. This in
turn may be absorbed into the exponential by decreasing the factor ε slightly. This com-
pletes the proof of the C 0 bound, and indeed also of bounds with respect to any C k norm
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in the interior. In fact, it gives slightly more, namely that this bound holds even after ap-
plying any sequence of K2 vector fields to K on the left and right; this is because K2
derivatives are controlled by powers of L, which as above are equivalent to powers of µ.

To finish, we also need to check the conormal bounds, i.e. that the same estimates
remain true if we apply any sequence of b vector fields to K on the left and right. For
this we point out the following facts: first, since K(z′, z, iµ) = K(z, z′,−iµ)∗, we need
only the case where all b-derivatives are applied to the left (z) factor; next, K itself is
conormal, so these b-derivatives behave well locally uniformly in µ, i.e. it is only the
large µ behaviour that might be problematic; finally, we can repeat the same proof as
for K itself, using at the final step to convert the weak bounds to strong ones that if
V is any b-vector field, then [L,V ] is a K2 operator of order 2, hence is bounded by
multiplication by µ. ut

Remark 18. We have stated the results on the resolvent family for the linearized Einstein
operator, but the results remain true for any geometric Laplacian, provided we choose δ0
as in Theorem 13. For example, on an asymptotically quaternionic hyperbolic space, The-
orem 15 gives the spectrum of the Hodge Laplacian acting on differential forms (except
when the degree equals half the dimension, then there is a zero eigenvalue of infinite
multiplicity).

4. Einstein deformation theory

We now present some basic facts about the (Bianchi gauged) Einstein operator and its
linearization. Using results from the last section, we review how this yields the deforma-
tion theory for rank one hyperbolic spaces in the class of AKH Einstein spaces. This is
contained in [2] for all K (see also [11] and [15] for the result when K = R), so the only
novelty here is showing how this follows immediately through the use of the K2 cal-
culus. These same arguments are used again in §6 for a coupled generalization of these
same equations, and in the product case in §8.

4.1. The Einstein equation and the Bianchi gauge

The Einstein equation Ricg + λg = 0 is not elliptic because of its diffeomorphism in-
variance. Amongst many viable gauge choices, the Bianchi gauge introduced in [2] is
particularly convenient. Define the map from symmetric 2-tensors to 1-forms, relative to
the fixed background metric g,

k 7→ Bg(k) = δgk +
1
2
d Trg k. (4.1)

Note that Bg(g) = 0, so the subspace of metrics g̃ close to g which are in Bianchi gauge
(i.e. Bg(g̃) = 0) is identified with the set of tensors k near 0 such that Bg(k) = 0. The
system

Ricg̃ + λg̃ = 0, Bg(g̃) = 0, (4.2)
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which is elliptic in the sense of Agmon–Douglis–Nirenberg, can be rolled up into the
single elliptic equation

Ng(k) := Ricg+k + λ(g + k)+ (δg+k)∗Bg(k) = 0. (4.3)

As proved in [2, Chapter 1], we have

Proposition 19. Suppose that Ng(k) = 0, and in addition |Bg(k)| tends to 0 at the
boundary and the Ricci curvature of g+k is nonpositive and strictly negative somewhere.
Then g + k satisfies (4.2), i.e. is Einstein and in Bianchi gauge.

The proof follows from the Weitzenböck formula

Bg+kNg(k) = δg+k(δg+k)∗Bg(k) =
(
(∇g+k)∗∇g+k − Ricg+k

)
Bg(k)

and the Bochner technique.
From the same Weitzenböck formula, the converse follows almost immediately, that

is, any Einstein metric g̃ close to g can be put in the Bianchi gauge to satisfy the system
(4.2). More precisely, let Diff denote the set of all diffeomorphisms on the AKH space
M which are close to the identity and exponentials of vector fields X ∈ xν33,α

K2(M), M

the set of all metrics g̃ = g + k with k ∈ xν32,α
K2(M), and S ⊂M the set of metrics g̃

which satisfy Bg(g̃) = 0. Then one has the following slice statement [2, Chapter 1]:

Proposition 20. If Ricg < 0, then the natural map

Diff×S →M , (g̃, 8) 7→ 8∗(g̃),

is a local homeomorphism.

An advantage of this gauge is that the linearization takes the simple form

Lgκ := 2DNg
|0(κ) = ∇

∗
∇ κ − 2R̊κ + Ric ◦ κ + κ ◦ Ric+ 2λκ; (4.4)

here

(R̊κ)ij = Ripjq κ
pq , (Ric ◦ κ)ij = Ric pi κpj , (κ ◦ Ric)ij = κ

p
i Ricpj ,

and all curvatures and covariant derivatives are computed relative to g. Note in particular
that if Ricg = −λg, then

Lg = ∇∗∇ − 2R̊. (4.5)
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4.2. Deformation theory for AKH Einstein spaces

We now review the basic deformation theory for AKH Einstein spaces, proved originally
in [11] when K = R, and in [2] in the other two cases. We do not discuss the more subtle
aspects of this deformation theory, but restrict attention to the simpler case of perturba-
tions of nondegenerate AKH Einstein metrics.

Definition 21. An AKH Einstein metric g is said to be nondegenerate if the L2 nullspace
of the linearized Bianchi-gauged Einstein operator Lg is trivial.

Recall that g is nondegenerate if for any ν > −δK0 , the nullspace of Lg on
xν+(n+d−1)/23

2,α
K2(M,Sym2(T ∗M)) is trivial. This follows from the regularity theorem

stating that if Lgκ = 0 and |κ| ≤ Cxν
′

for some ν′ > (n + d − 1)/2 − δ0, then
κ ∈ A

(n+d−1)/2+δ0
phg , and in particular κ ∈ L2.

The significance of this nondegeneracy condition is contained in

Proposition 22 ([11], [2], [15]). Let g be a nondegenerate AKH Einstein metric
with C∞ conformal infinity c. Then every C∞ conformal infinity datum c′ sufficiently
close to c in the C 2,α topology is the conformal infinity of an AKH Einstein metric g′

such that g′ − gc′ ∈ x
ν3

2,α
K2 for some ν > 0. (Here gc′ is an AKH metric with conformal

infinity c′ constructed below in the proof.) This metric g′ is unique amongst AKH metrics
with the specified conformal infinity and such that ‖g′ − gc′‖2,α,ν is small.

Proof. First define an extension operator which associates to the conformal infinity c′ an
AKH metric gc′ . If c = ([γ ], η), then we choose a product decomposition (0, ε) × X
of a collar neighbourhood of ∂M and a radial coordinate x so that g has the form
(dx2
+ γ )/x2

+ η2/x4
+ k with k ∈ xν32,α

K2. (We can take the weight ν to equal 1
when c is smooth, but could also use any smaller positive value.) Fixing a cutoff function
χ(x) which equals 1 for x ≤ ε/3 and vanishes for x ≥ 2ε/3, for any conformal infinity
c′ = ([γ ′], η′), set

gc′ = (1− χ(x))g + χ(x)
(
dx2
+ γ ′/4
x2 +

(η′)2

4x4 + k

)
.

(In the quaternionic case, the function spaces xν32,α
K2 vary with c′ so one has also to

choose k varying continuously with c′.) Write fc′ = N
gc′ (0) = Ricgc′ + λgc′ ; then from

the form of the metric gc′ (it is asymptotically hyperbolic in the sense of Definition 2) it
is clear that it is an asymptotic solution of the Einstein equation: fc′ = O(x

ν), and more
precisely

‖fc′‖0,α,ν ≤ C(‖γ
′
− γ ‖2,α + ‖η

′
− η‖2,α).

The second step is then to deform gc′ into an exact solution gc′ + k of the Einstein
equation. Taylor expansion gives

Ngc′ (k) = fc′ + L
c′k +Q(c′, k),

where the second term on the right is the linearized Bianchi-gauged Einstein operator
at gc′ . The nondegeneracy of Lg implies that Lc′ is also invertible if c′ is close enough
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to c; we denote its inverse byGc′ . When c′ is C∞, this operator is a K2 pseudodifferential
operator of order −2, and for 0 < ν ≤ 1,

Gc′ : xν30,α
K2(M,Sym2(T ∗M))→ xν3

2,α
K2(M,Sym2(T ∗M))

is bounded. Furthermore, the norm of this operator is bounded independently of c′ in
a neighbourhood of c. When K = H, the function spaces vary with η′ (i.e. with the
distribution D ′).

Now write the equation to be solved as

k = −Gc′(fc′ +Q(c
′, k)).

This makes sense since for our initial approximated solution gc′ the error fc′ is in the
domain of Gc′ . Now the right side defines a contraction mapping when c′ is sufficiently
close to c, and from this we immediately obtain a unique solution k. The metric gc′ + k

is an AKH metric which solves the gauged Einstein equation. By Proposition 19, it is in
fact an AKH Einstein metric in Bianchi gauge. ut

Remark 23. A precise statement about the regularity of g and g′ near ∂X has been omit-
ted, and indeed this is a subtle issue. There is a substantial difference between understand-
ing the dependence of the asymptotic regularity for an arbitrary AKH Einstein metric on
that of its conformal infinity data, and the same question for such a metric obtained by
perturbation from one which is a priori known to be polyhomogeneous. The reason is
that in the former case one needs to deal explicitly with the gauge conditions, while in
the latter, the gauge choice is part of the setup and the perturbation term automatically
satisfies a K2 elliptic equation. Here is a summary of what is known.

For the nonperturbative case, when K = R and the conformal infinity data c of the
ARH Einstein metric g is C∞, then g is polyhomogeneous, and in fact, in even dimen-
sions has a smooth conformal compactification [5], [13]. The corresponding result has
not been proved in the other cases (except when K = C and g is Kähler–Einstein [16]),
but is surely true by essentially the same method as in [5].

As for the perturbative case, a simple adaptation of the argument in [19], which de-
pends only on the commutation properties of 9∗K2 with b-vector fields on X, proves that
if the perturbed conformal infinity data c′ is C∞, then the solution k, and hence the met-
ric g′, constructed above is polyhomogeneous.

These issues will not be emphasized here, and we shall tacitly assume the polyhomo-
geneous regularity of AKH metrics with C∞ conformal infinities. To ease the reader’s
conscience, however, since we will not supply the full proof of that fact, note that this
issue only arises in §7, and one can easily adapt the arguments to accommodate metrics
with lower regularity, as we discuss briefly there.

5. Asymptotically product hyperbolic metrics and their conformal infinities

Let Mni+1
i = Gi/Ki be an AKiH space, i = 1, 2. The boundary at infinity, Sni =

Ki/Hi , is equipped with the standard Ki-contact distribution Di , which has a conformal
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Hi structure inducing a compatible conformal class [γi]. The product hyperbolic space
M = M1 × M2 is a (reducible) rank two symmetric space with Furstenberg boundary
X = Sn1 × Sn2 . Let gi be the standard metric on each factor, so that Ricgi + λigi = 0.
Then

g = λ1g1 + λ2g2

is Einstein with
Ricg + g = 0.

We begin this section by describing a class of boundary structures on X, called
(G1 × G2)-conformal structures, which constitute the conformal infinity data for the
class of Einstein metrics we eventually construct. The problem of extending one of these
boundary structures to a metric onM which is asymptotically Einstein in an appropriately
strong sense is far from immediate. The ‘obvious’ extension has Einstein tensor vanish-
ing in some sector near X, but not uniformly near infinity. The main goal of this section
is to explore the geometry of asymptotically product hyperbolic metrics in order to find
the correct compatibility conditions for metrics which are asymptotically Einstein in this
stronger sense. Their construction is carried out in the next section.

5.1. (G1 ×G2)-conformal structures

Using the notation above, we make

Definition 24. A (G1×G2)-conformal structure on X consists of a pair of distributions,
each equipped with a conformal class of metrics, (Di, [γi]), i = 1, 2, such that

(1) the distributions Fi = Di + [Di,Di] are integrable;
(2) F1 ⊕F2 = TX;
(3) the pair (Di,Fi/Di) with induced bracket

[ , ] : Di ×Di → Fi/Di

is isomorphic to the graded Ki-Heisenberg algebra;
(4) Di is equipped with a conformal Hi structure, compatible with the bracket, and in-

ducing the conformal metric [γi];
(5) [D1,D2] ⊆ D1 +D2.

The basic example, of course, is a product structure on X = X1 × X2: here D1 ⊂

F1 = TX1⊕{0} and D2 ⊂ F2 = {0}⊕TX2, and each (Di, [γi]) is the pullback of aGi-
conformal structure from Xi . Our main focus in this paper is with perturbations of these
product structures. As we now indicate, there is substantial rigidity in the deformation
theory, and nearby structures retain many vestiges of the product case.

Lemma 25. For i = 1, 2, let Xi be a compact simply connected manifold with Gi-
conformal structure (Di, [γi]). Then any small deformation of the product (G1 × G2)-
conformal structure on X = X1 ×X2 has the following properties:

1. the pairs of distributions (D1,D2) and (F1,F2) remain of product type;
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2. if Ki = R or C, then for that i, Di remains fixed (up to a global diffeomorphism), but
the deformation of [γi] may depend on both factors in X1 ×X2;

3. if Ki = H, then the distribution Di varies amongst quaternionic contact structures,
but since the conformal class [γi] is determined by Di , any deformation of [γi] de-
pends only on the factor Xi;

4. if Ki = O, then both Di and [γi] remain fixed in the deformation (and in factXi = Sni
and the structure is standard).

In particular, the distribution Di can change (modulo diffeomorphisms) only in the
quaternionic case, and the conformal metric [γi] may depend on both factors X1 and X2
only if Xi is real or complex.

Proof. At the initial product structure, the leaves of the foliation corresponding to Fi are
just the parallel copies of Xi . After a small deformation, the leaves are covering spaces
for Xi , and since both X1 and X2 are simply connected, these leaves must remain diffeo-
morphic to Xi . In particular, the perturbed distributions Fi are still equal to the tangent
bundles of the respective factors.

Now observe that as an immediate consequence of conditions 3 and 5,

[F1,D2] = [D1 + [D1,D1],D2] ⊆ F1 +D2

(by the Jacobi identity), and hence D2 is invariant along the leaves of the foliation corre-
sponding to F1; similarly D1 is invariant along the leaves of the foliation for F2.

When Ki = R, Di remains equal to the tangent bundle TXi , while if Ki = C, then
by Darboux’s lemma, we may still assume that Di remains fixed in the deformation.

In other words, in this deformation theory, we may as well assume that the distribu-
tions Di and Fi remain of product type. The remaining assertions follow directly from
this. ut

When X1 or X2 are not simply connected, we shall impose this product structure as a
separate hypothesis:

Definition 26. A deformation of a product (G1 × G2)-conformal structure on X =
X1 × X2 is called globally integrable if (modulo diffeomorphism) the foliations F1
and F2 remain the tangent spaces of the two factors of X = X1 ×X2.

It is possible to define (G1 × G2)-conformal structures on any closed manifold X
of the appropriate dimension. Looking ahead to the main goals of this paper, one could
then try to extend this to an asymptotically Einstein metric on some manifold M with
two boundary hypersurfaces F1 and F2 and X as its corner of codimension 2. However,
we have already noted that this extension problem is not at all easy; in fact, the main
difficulty seems to be the extension from X to the boundary faces Fi . For this, it appears
to be almost necessary that X and M be products, and that the metrics and boundary
structures are globally rather similar to the ones considered here. Thus, in all that follows,
we shall assume for simplicity that X, M and the distributions Di and Fi are products.
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5.2. Asymptotically product hyperbolic metrics

It is always possible to construct a complete metric on the interior ofM which is ‘weakly’
product hyperbolic and with any given (G1 × G2)-conformal structure on X as its pre-
scribed conformal infinity. In fact, we can just write down a formula which directly gen-
eralizes (2.4): let xi be defining functions for the boundary hypersurfaces Xi ⊂ Mi , and
choose Im Ki-valued 1-forms ηi defining Di and compatible metrics γi representing the
given conformal classes. In a neighbourhood of X of the form (0, ε)x1 × (0, ε)x2 ×X, set

gγ1,η1,γ2,η2 = λ1

(
dx2

1

x2
1
+
γ1

4x2
1
+
η2

1

4x4
1

)
+ λ2

(
dx2

2

x2
2
+
γ2

4x2
2
+
η2

2

4x4
2

)
. (5.1)

Slightly more generally:

Definition 27. A metric g on M is weakly asymptotically product hyperbolic if

g = gγ1,η1,γ2,η2 + k, k ∈ (x1 + x2)
ν32,α (5.2)

for some ν > 0. (The norms and covariant derivatives are with respect to the metric (5.1).)
Then we say that (D1,D2, [γ1], [γ2]) is the conformal infinity of g.

Just as in the rank one setting, g determines its conformal infinity. Conversely, replac-
ing γi and ηi in (5.2) by any other conformal representatives

γ̃i = fiγi, η̃i = fiηi,

where the fi are strictly positive smooth functions on X, yields a new metric

g̃ = λ1

(
dx2

1

x2
1
+
f1γ1

4x2
1
+
f 2

1 η
2
1

4x4
1

)
+ λ2

(
dx2

2

x2
2
+
f2γ2

4x2
2
+
f 2

2 η
2
2

4x4
2

)
.

We claim that up to a diffeomorphism 8, g̃ is asymptotically equivalent to g. Indeed, if
8∗x̃i = xi/

√
fi and 8|X = id, then

dx̃i

x̃i
=
dxi

xi
−
dfi

2fi
and

∣∣∣∣dx̃ix̃i − dxixi
∣∣∣∣
g

= O(x1 + x2),

and hence
|8∗g̃ − g|g = O(x1 + x2).

A weakly asymptotically product hyperbolic metric g is sometimes also called weakly
asymptotically Einstein, because of

Lemma 28. The metric (5.1) satisfies the estimate

|Ricg + g|g = O(x1 + x2).
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The proof is deferred to the next subsection, where the formalism for the necessary cal-
culations is developed.

Definition 27 fixes the behaviour of the metric g in regular asymptotic directions
(when both x1 and x2 tend to 0). As indicated earlier, we shall also define a narrower
class of strongly asymptotically Einstein metrics, for which the Einstein tensor decays
uniformly near the entire boundary of M , i.e. where x1 or x2 but not necessarily both
tend to 0. The goal in the next few subsections is to find the equations which the limiting
values of the metric g must satisfy at x1 = 0 and at x2 = 0, in order that g lie in this
smaller class.

Later in the paper, in §7.3, we shall also define a class of ‘near-product hyperbolic’
metrics; these will be defined by slightly different conditions, but we show there that any
strongly asymptotically Einstein metric is of near-product type.

This profusion of similar names is indicative of the fact that for metrics which are
modelled by symmetric spaces of rank greater than one, it is by no means clear what the
precise conditions are under which a metric should really be considered ‘asymptotically
symmetric’; each of the classes of metrics above has some claim to this moniker in the
product hyperbolic setting.

5.3. Asymptotic curvature calculations

We now calculate the asymptotics of the Ricci curvature for a weakly asymptotically
product hyperbolic metric (5.2) onM1×M2. In the course of this the proof of Lemma 28
will emerge, as well as motivation for the extra conditions imposed on g to warrant the
name strongly asymptotically Einstein.

As before, assume that M , X and the distributions Di ⊂ Fi are all of product type.
The main calculations are local near the boundary faces; to be definite we work in the
region where x2 → 0, and write g in the form

g = g1 + λ2

(
dx2

2

x2
2
+
γ2

4x2
2
+
η2

2

4x4
2

)
, (5.3)

where the two terms are metrics along horizontal and vertical slices, M1 × {p2} and
{p1} ×M2, respectively. We assume that

• the x2 dependence is only what is written explicitly; in other words, g1, η2 and γ2 are
defined and smooth on M1 ×X2 and are independent of x2;
• η2 is the pullback of a contact form from X2, hence is independent of M1;
• γ2 is a family of metrics on D2 compatible with η2 (and hence gives a G2-conformal

structure on each slice {p1} ×X2).

The precise form of g1 is not so important for the moment, but in order to maintain
consistency with (5.2), we also impose that in analogous coordinates near the boundary
of M1, g1 ∼ λ1(dx

2
1/x

2
1 + γ1/4x2

1 + η
2
1/4x

4
1) as x1 → 0, and that γ2 converges to

a representative of the specified conformal class [γ2] as x1 → 0. However, these last
conditions do not enter into the immediate considerations.
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Well-known formulæ due to O’Neill (cf. Proposition 9.36 in [1]) express the Ricci
curvature of a Riemannian submersion in terms of the Ricci curvatures of the base and
fibres and two additional tensors: the second fundamental form T of the fibres and another
tensor which measures the deviation of the horizontal subspaces from being integrable.
To adapt this to our setting, we regard M as a fibration M1 ×M2 → M1. The two factors
are orthogonal, and the horizontal subspaces are integrable (with leaves the M1 slices,
i.e. the submanifolds M1 × {q2}), but this is still not quite a Riemannian submersion
because g1 depends also onM2. In the curvature computations below, however, it behaves
asymptotically as x2 → 0 like a Riemannian submersion: the negative powers of x2 in all
terms in g2 add an extra x2 factor to all derivatives in the M2 directions.

We continue by defining the various quantities which appear in the O’Neill formulæ,
and developing some of their properties. The first is the second fundamental form for γ2.
This is the section T of T ∗M1 ⊗ Sym2(D∗2 ) defined by

〈T (ξ2, ζ2), ξ1〉 = −
1
2 (Lξ1γ2)(ξ2, ζ2) ⇔ T = − 1

2d
M1γ2. (5.4)

(Here and later, a subscript 1 or 2 of a vector indicates the factor to which it is tangent.)
For either of these expressions we regard γ2 as a section of Sym2(D∗2 ), which in turn is a
trivial bundle over each M1 slice. For each ξ2 ∈ D2 we also set

Tξ2 ∈ End(D2, TM1), T ∗ξ2
∈ End(TM1,D2), (5.5)

where the metrics g1 and γ2 are used to dualize.
There is still freedom in the choice of the representative γ2 ∈ [γ2], but we now fix the

normalization that the volume form dV γ2 is constant in the M1 directions. Consequently,
the mean curvature vector vanishes:

Trγ2 T = 0.

The trivial connection dM1 on D2 is not compatible with the metric, but to find one
which is, it suffices to add the second map in (5.5); thus

∇ = dM1 + T (i.e. ∇ξ1ξ2 = d
M1
ξ1
ξ2 + T

∗
ξ2
ξ1) (5.6)

defines a unitary connection on D2 over M1. The divergence of T with respect to this
connection is the bilinear form on D2,

(δM1T )(ξ2, ζ2) = −
∑
〈(∇eαT )(ξ2, ζ2), eα〉,

where {eα} is an orthonormal frame for TM1. The final ingredient we need is the bilinear
form Q on TM1 defined by contracting the product of T with itself in the Sym2(D∗2 )
component with respect to γ2,

Q(ξ1, η1) := 〈Tξ1 , Tη1〉γ2 . (5.7)

Before proceeding, we derive the crucial first order properties of T .
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Lemma 29. Let dM1
∇

denote the exterior derivative on M1 coupled to the connection ∇
on D2. Then

d
M1
∇
T = 0.

Proof. By (5.6), dM1
∇
T = dM1T + T ∧ T , where in the last term we regard the two

factors as elements of T ∗M1⊗End(D2) and T ∗M1⊗Sym2(D2), respectively. The second
expression for T in (5.4) gives dM1T = 0, hence it suffices to prove

T ∧ T = 0.

This identity in turn is a direct consequence of the symmetry of the action

(u · q)(x, y) = q(ux, y)+ q(x, uy) = γ2((uv + vu)x, y)

of a symmetric endomorphism u on a quadratic form q(x, y) = γ2(vx, y) in the pair
(u, v). ut

Lemma 30. On each slice M1 × {z2} there is a Bianchi identity of the form(
δM1Q+

1
2
d TrQ

)
ξ

= 〈δM1T , T ∗ξ〉, ξ ∈ TM1.

Proof. Choose an orthonormal frame {eα} for TM1 and extend ξ to a vector field on M1
which is parallel with respect to ∇ at some point z1. Then, calculating at z1,

(δM1Q)(ξ) = −
∑
α

∇eαQ(eα, ξ) = −
∑
α

〈(∇eαT
∗)eα, T

∗ξ〉 + 〈T ∗eα, (∇eαT
∗)ξ〉

= 〈δM1T , T ∗ξ〉 −
∑
α

〈T ∗eα, (∇ξT
∗)(eα)〉 = 〈δ

M1T , T ∗ξ〉 −
1
2
d TrQ(ξ).

The second equality uses that dM1
∇
T = 0. ut

There is also a second fundamental form Ii and corresponding mean curvature vector
Ni = Trgi Ii for each Mi slice, i = 1, 2. Note that N2 is different from Trγ2 T (which we
are assuming is equal to 0), since in the latter one only takes the trace in the D2 directions.

We can now state an exact formula for the Ricci curvature.

Lemma 31. Let (M = M1 × M2, g = g1 + g2) be a metric on M keeping the fac-
tors M1 and M2 orthogonal. Let Ii be the second fundamental form of Mi and Ni the
mean curvature vectors. Then the Ricci tensor of g is given by

Ricg(ξ1, ζ1) = Ricg1(ξ1, ζ1)− (δ
M2 I1)(ξ1, ζ1)− 〈I1(ξ1, ζ1), N1〉

+ (δM1)∗N2(ξ1, ζ1)− 〈I∗2 ξ1, I∗2 ζ1〉, (5.8)

with an analogous expression for the restriction of Ricg to TM2, where δ∗ is the sym-
metrization of the covariant derivative; and

Ricg(ξ1, ξ2) = 〈δ
M1I1(ξ1), ξ2〉 + 〈∇ξ1N1, ξ2〉

+ 〈δM2I2(ξ2), ξ1〉 + 〈∇ξ2N2, ξ1〉, (5.9)

where δMi Ii is the divergence of Ii regarded as a symmetric 2-tensor along Mi .

The derivations of these two formulæ are left to the reader.
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As a first application, we have

Proof of Lemma 28. We will be applying (5.8) and (5.9) with Mi = (0, 1)xi × Xi . The
second fundamental form of the slices M1 × {p2} is

〈I1, ξ2〉 = −
1
2
Lξ2g1 = −

λ1

2

(
1

4x2
1
Lξ2γ1 +

1
4x4

1
Lξ2η

2
1

)
.

If ξ2 is a unit vector in TX2, then

1
4x2

1
Lξ2γ1 +

1
4x4

1
Lξ2η

2
1 = O(x2),

since D1 does not depend on M2. Hence on each slice M1 × {x2}, I1 = O(x2), and the
same is true for all its derivatives. On these same slices one also has

Ricg1 = −λ1g1 + O(x1).

Analogously, on the slices {p1} ×M2, we have

I2 = O(x1) and Ricg2 = −λ2g2 + O(x2).

Inserting these in (5.8) and (5.9) gives Ricg = −g + O(x1 + x2), as desired. ut

The main result of this subsection is

Lemma 32. Let g be defined by (5.3), and suppose that{
δM1T = 0,
Ricg1(ξ1, ζ1)+ λ1〈ξ1, ζ1〉g1 = 〈T

∗ξ1, T
∗ζ1〉γ2 ,

(5.10)

for all vectors ξ1, ζ1 ∈ TM1. Then Ricg = −g + O(x2).

The point in this lemma is that the error term O(x2) does not depend on x1, so the metric
g is asymptotically Einstein not only in regular directions, but also when one goes to the
face x2 = 0. Doing the same along the other face will lead to the notion of ‘strongly
asymptotically Einstein’.

Remark 33. Note that the right hand side of the Bianchi identity in Lemma 30 vanishes
when the first equation in (5.10) is satisfied.

Proof. We apply (5.8) and (5.9) as follows. First, just as before, I1 = O(x2), and hence
N1 = O(x2) too. On the other hand, the normalization on the volume form implies that
N2 = 0, thus

Ricg(ξ1, ζ1) = Ricg1(ξ1, ζ1)− 〈I∗2ξ1, I∗2ζ1〉 + O(x2),

Ricg(ξ1, ξ2) = O(x2),

Ricg(ξ2, ζ2) = Ricg2(ξ2, ζ2)− (δ
M1I2)(ξ2, ζ2)+ O(x2).
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From the formula (5.3) and the fact that η2 is constant along M1 slices, we get

I2 = T/x
2
2 ,

and since the connection (5.6) on D2 along M1 is exactly the one induced by the Levi-
Civita connection of g, the result follows. ut

To conclude the section, observe that the formulæ in the lemma correspond exactly to the
standard formulæ obtained for a Riemannian submersion with integrable horizontal dis-
tribution [1, Proposition 9.36], as expected from our claim that the asymptotic behaviour
when x2 → 0 is that of a Riemannian submersion.

6. Extending the approximate solution to the codimension one boundary faces

Let (M = M1×M2, g = g
0
1+g

0
2) be a product of AKH Einstein metrics, with conformal

infinity c0
= (D0

1 ,D
0
2 , [γ 0

1 ], [γ 0
2 ]) on X = X1 × X2. As in the last section, we consider

deformations c of c0 (assumed to be globally integrable in case either X1 or X2 is not
simply connected). According to Lemma 25, the pair of distributions D1,D2 remains of
product type on X, and we then extend these by pullback to a pair of transverse distribu-
tions of product type on all of M . Choose metrics γi representing each of the conformal
classes [γi]. In the real or complex case, these may depend on both factors of X, but we
maintain the normalization so that, still just over X, dV γ1 is independent of X2, and sim-
ilarly dV γ2 is independent of X1. Based on the calculations of §5.3, we now address the
problem of how to extend (γ1, γ2) over the facesM1×X2 andX1×M2 to obtain a metric
which is strongly asymptotically Einstein.

6.1. Extension along boundary faces

We focus on the extension of γ1 over M1 ×X2, since the other case is treated exactly the
same.

Let us restate the problem more carefully. On the face M1 × X2, we seek metrics g1
on TM1 and γ̃2 on D2 which solve the system (5.10). The solutions are constrained by
the requirements that dV γ̃2 is independent of M1, and that (g1, γ̃2) is asymptotic at X =
∂M1 ×X2 to the given (G1 ×G2)-conformal structure in the sense that

g1 ∼ λ1

(
dx2

1

x2
1
+
γ1

4x2
1
+
η2

1

4x4
1

)
, γ̃2 ∼ γ2,

as x1 → 0 (with an error term O(xν1 ) for some ν > 0).

Lemma 34. Suppose that K2 = H or O. Then (5.10) reduces to a single uncoupled
equation on M1 which is simply the usual Einstein equation.
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Proof. Under this hypothesis, γ2 is independent of the X1 factor. Hence T ≡ 0 and the
first equation in (5.10) is satisfied. The second equation reduces to the uncoupled Einstein
equation on M1. By Proposition 22 we can extend the conformal class [γ1] on X1 to an
AK1H Einstein metric g1 onM1; note that this is actually done parametrically, depending
on q2 ∈ X2. ut

When M2 is real or complex, (5.10) cannot be reduced in this way, but fortunately, solu-
tions can still be obtained near to the standard one by perturbation methods.

We can now state and prove the main result of this section.

Theorem 35. Suppose M = M1 × M2 is a product of AKH Einstein spaces such that
the L2 nullspace for the linearized gauged Einstein operator on M1 vanishes. Then, for
any small globally integrable perturbation of the product (G1×G2)-conformal structure
on X, the system (5.10) has a global solution (g1, γ̃2) on the face M1 × X2 with the
prescribed asymptotic behaviour at X, more precisely on each slice M1 × {q2},

g1 − λ1

(
dx2

1

x2
1
+
γ1

4x2
1
+
η2

1

4x4
1

)
∈ xν13

2,α, γ̃2 − γ2 ∈ x
ν
13

2,α,

with smooth dependence with respect to q2.

Proof. This proof is similar to that for Proposition 22. Consider the slice M1 × {q2}, and
begin with the conformal structures γ1, γ2 onX1×X2, with dV γ2 independent ofX1. Fix
a smooth extension map assigning to γ1 a metric g1 on M1 with

g1 = λ1

(
dx2

1

x2
1
+
γ1

4x2
1
+
η2

1

4x4
1

)
+ k, k ∈ xν13

2,α,

as x1 → 0. Here 32,α is the geometric Hölder space on M1 × {q2}. The weight ν is
positive; we can fix ν = 1, but any smaller value is possible. Recall that we already have

Ricg1 + g1 = O(x1).

As before, extend γ2 by pullback on M1, so that the corresponding second fundamental
form T = − 1

2d
M1 γ̃2 satisfies also

T = O(x1).

When K = R, we consider perturbations φ of γ2 which fix dV γ2 , so the tangent space
consists of trace-free symmetric 2-tensors, i.e. sections of

S = Sym2
0(T X2).

When K = C, γ̃2(·, ·) = dη2(·, J ·), where J is an almost complex structure; the pertur-
bation φ must also remain compatible with dη2 on D2, or equivalently is a deformation
of J , so the tangent space consists of trace-free J -skew-Hermitian symmetric 2-tensors,
i.e. sections of

S = Sym−0 (D2).
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Consider elements

h ∈ 32,α
ν (M1 × {q2},Sym2(TM1)), φ ∈ 32,α

ν (M1 × {q2},S ),

and assume that both h and φ have sufficiently small norm. Suppose that (g1+h, γ̃2+φ)

is a solution of the system (5.10) along M1.
Denote by T φ and Qφ the second fundamental form and corresponding quadratic

form defined by γ2 + φ. To break the diffeomorphism invariance of the equation, we add
the Bianchi gauge condition

Bg1(h) =

(
δg1 +

1
2
d Trg1

)
h = 0.

Thus we consider the system

8g1,γ̃2(h, φ) := (Ricg1+h − λ(g1 + h)−Q
φ
+ (δg1+h)∗Bg1(h), δg1+h,φT φ) = 0.

By Lemma 30, any solution of this equation must also satisfy

Bg1+h(δg1+h)∗Bg1(h) = 0.

By the same argument as in the uncoupled case (cf. Proposition 19), we conclude that
Bg1h = 0. Hence a solution of 8g1,γ̃2(h, φ) = 0 is also a solution of the original system
(5.10).

As in the proof of Proposition 22, it suffices to check that

8g1,γ̃2 : 32,α
ν (M1 × {q2},Sym2(TM1)⊕S )→ 30,α

ν (M1 × {q2},Sym2(TM1)⊕S )

is a C 1 mapping of Banach spaces, for (h, φ) of sufficiently small norm, and furthermore,
that its linearization

D8g1,γ̃2 |(0,0) : 32,α
ν (M1 × {q2},Sym2(TM1)⊕S )

→ 30,α
ν (M1 × {q2},Sym2(TM1)⊕S )

is an isomorphism at the product metric. Since the linearization of the Bianchi-gauged
Einstein equation is ∇∗∇ − 2R̊, and T = 0 at the product metric, this linearization
decouples as

D8|(0,0)(ḣ, φ̇) = ((∇
∗
∇ − 2R̊)ḣ,∇∗∇φ̇)

for the metric g0
1 . By the hypothesis on the vanishing of the L2 nullspace for (M1, g1), the

first component is an isomorphism. The second component ∇∗∇ is the rough Laplacian,
and this is an isomorphism for weights ν ∈ (0, n+ d − 1).

The last statement comes from the smooth dependence of the solution constructed by
the inverse function theorem with respect to the parameter q2. ut
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Corollary 36. With the same hypotheses as in Theorem 35, let (g1, γ̃2) be the solution of
the system (5.10) on the face M1 ×X2. Then the metric

h = g1 + λ2

(
dx2

2

x2
2
+
γ̃2

4x2
2
+
η2

2

4x4
2

)
,

defined in some neighbourhood of the faceM1×X2 where x2 � 1 onM1×M2, satisfies:

1. Rich + h = O(x2) uniformly on the closure of this face, and more precisely Rich + h
∈ x23

α;
2. when x1 → 0, then h− h0 ∈ x13

2,α , where h0 is the model metric (5.1) given by the
formula

h0 = λ1

(
dx2

1

x2
1
+
γ1

4x2
1
+
η2

1

4x4
1

)
+ λ2

(
dx2

2

x2
2
+
γ2

4x2
2
+
η2

2

4x4
2

)
.

Proof. This is a direct consequence of the formulæ (5.8) and (5.9) for Ricg , since the
solution (g1, γ2) depends smoothly on the parameter q2 ∈ X2. ut

We conclude this section with a comment about regularity. Exactly as in Remark 23 at the
very end of §4, the solutions obtained in Theorem 35 are polyhomogeneous at the bound-
aries of the codimension one faces provided the (G1 ×G2)-conformal infinity data on X
is smooth. The proof is identical to the one for the uncoupled AKH Einstein equations.

6.2. Strongly asymptotically Einstein metrics

We are now ready to define, given any small deformation c of the given (G1 × G2)-
conformal structure c0 on X, a global, approximately Einstein metric g on M . By Theo-
rem 35 and Corollary 36, we extend the data (γ1, γ2) on the two faces F1 = M1×X2 and
F2 = X1 ×M2 to get pairs (g1, γ̃2) and (γ̃1, g2) solving the system (5.10) on each face.
Therefore, the two metrics on M ,

h1 = g1 + λ2

(
dx2

2

x2
2
+

γ̃2

4x2
2
+
η2

2

4x4
2

)
, h2 = λ1

(
dx2

1

x2
1
+
γ̃1

4x2
1
+
η2

1

4x4
1

)
+ g2

defined in the neighbourhoods x2 � 1 and x1 � 1 of F1 and F2, respectively, satisfy

h1 − h0 ∈ x13
2,α, h2 − h0 ∈ x23

2,α,

where

h0 = λ1

(
dx2

1

x2
1
+
γ1

4x2
1
+
η2

1

4x4
1

)
+ λ2

(
dx2

2

x2
2
+
γ2

4x2
2
+
η2

2

4x4
2

)
is the initial model metric (5.1). It remains to glue h1 and h2 in the region {x1�1, x2�1}
where they both exist. Choose some cutoff function χ such that χ(x) = 1 for x < 1/2
and χ(x) = 0 for x > 2, and consider the metric

h = χ

(
x2

x1

)
h1 +

(
1− χ

(
x2

x1

))
h2,
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now defined in a neighbourhood of the whole boundary F1 ∪ F2. In the region 1/2 <
x2/x1 < 2, all the derivatives of χ(x2/x1) remain bounded for the metric dx2

1/x
2
1 +

dx2
2/x

2
2 , hence in that region h − h0 ∈ x13

2,α (or equivalently x23
2,α), and therefore

Rich + h = O(x1), or more precisely Rich + h ∈ x13
2,α . Globally, in a neighbourhood

of F1 ∪ F2,
Rich + h ∈ xν1x

ν
23

α, ν = 1/2. (6.1)

We now generalize this model. Fix 0 < ν ≤ 1/2.

Definition 37. A metric g on M is strongly asymptotically Einstein if it differs from the
metric h defined above by a term in xν1x

ν
23

2,α .

In particular, the Ricci curvature of any such metric satisfies (6.1). Note too that any
other reasonably method of patching h1 and h2 together near the corner yields a metric h′

which is strongly asymptotically Einstein in this same sense.

7. Generalized Laplacians on near-product hyperbolic spaces

We now discuss the construction of a parametrix for Lg when g is a strongly asymp-
totically Einstein perturbation of a product hyperbolic metric. Our goal is to show that
Lg is invertible between two weighted Hölder spaces. We do this in the following steps.
First, we analyze the Schwartz kernel of the inverse of Lg when (M, g) is exactly product
hyperbolic using a contour integral representation; we go on to obtain conormal bounds
for this Schwartz kernel on the ‘product hyperbolic double space’ M2

ph. This serves as
an ansatz for the parametrix of Lg when the metric g is weakly asymptotically product
hyperbolic. We introduce a stronger condition on g of being near-product hyperbolic,
and show that under this hypothesis we can construct a parametrix with Schwartz kernel
conormal on M2

ph which is an inverse of Lg up to a compact error term. The final step is
to show that each of these operators is bounded between weighted Hölder spaces, which
implies that Lg is Fredholm on these spaces. The fact that when g is a product we have an
exact inverse for Lg on L2 which is bounded between these Hölder spaces shows that Lg

is then invertible between these spaces. The parametrix construction varies continuously
with g, so we conclude that Lg remains invertible when g is near-product hyperbolic and
sufficiently close to a product metric.

7.1. The inverse of L when g is a product

We begin with an examination of the structure of the inverse of Lg on L2(M) when
(M, g) is a product of AKH spaces. This is mostly a review of the analysis in [21]. We
first present a contour integral representation for the L2 inverse G of Lg involving the
resolvent families of the operators Lgj on each factor; from this we deduce estimates for
the pointwise off-diagonal behaviour of the Schwartz kernel of G using the analogous
estimates for the Schwartz kernels of the two constituent resolvents. We do not make an
effort to obtain the most precise pointwise estimates on G here, but see [21] and [14] for
more on this.
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A representation formula for the Green function

Let (M, g) be a product of two AKH Einstein spaces, with linearized gauged Einstein
operator Lg = ∇∗∇ − 2R̊, acting on sections of

Sym2(T ∗M) = Sym2(T ∗M1)⊕ (T
∗M1 ⊗ T

∗M2)⊕ Sym2(T ∗M2).

The operator Lg preserves the three summands and acts by

Lg1 + (∇M2)∗∇M2 , (∇M1)∗∇M1 + (∇M2)∗∇M2 , (∇M1)∗∇M1 + Lg2 ,

respectively. In each of these three cases, it has the form

Lg = L1 ⊗ IB2 + IB1 ⊗ L2,

where Li acts on a Banach space Bi of sections of a bundle Ei on Mi , and Lg acts on the
completed tensor product B1 ⊗̂ B2 of sections of E = E1 ⊗ E2 on M .

For the moment, let Bi = L2(Mi, Ei; dVgi ). Denote by Ri(µ) the resolvent family
(Li−µ)

−1. This is a holomorphic family of bounded operators onBi forµ in the resolvent
set C \ spec(Li); according to Theorem 15,

spec(Li) = {λij }
Ni
j=1 ∪ [αi,∞)

for some αi > 0, with λij ∈ R, λij < αi . Nondegeneracy of (Mi, gi) for the Einstein
problem is the assumption that 0 /∈ {λij }.

The resolvent family of the product operator, R(λ) = (L− λ)−1, can be expressed as
a sort of convolution of the resolvents on the two factors. More precisely, it is proved in
[21] that

R(λ) = −
1

2πi

∫
0λ

R1(µ)R2(λ− µ) dµ, (7.1)

where 0λ is a contour lying in the common region of holomorphy of the two factors in
the integrand with ends converging linearly to ±i∞ and such that the spectrum of L1
lies entirely on one side and the spectrum of L2 lies entirely on the other side. For us
it suffices to take λ = 0. In the simplest situation, neither L1 nor L2 has any negative
eigenvalues, and in this case we take 00 = iR. The general case, where one or the other
does have such eigenvalues, requires a slight modification to this formula.

Setting R(0) = L−1, and G its Schwartz kernel, if f ∈ C∞0 (M), then u = Gf is the
unique L2 solution to the equation Lu = f .

Estimates on G

Fix local coordinates zj = (xj , yj ) near a boundary point of Mj , and denote by
Kj (zj , z

′

j , µ) the Schwartz kernel of Rj (µ). Also, replace µ by iµ. Then (assuming nei-
ther Lj has negative eigenvalues), the Schwartz kernel of G equals

G(z1, z2, z
′

1, z
′

2) =
1

2π

∫
∞

−∞

K1(z1, z
′

1, iµ)K2(z2, z
′

2,−iµ) dµ. (7.2)
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We now obtain pointwise estimates for G using the bounds on Kj (zj , z′j , iµ) in Proposi-
tion 17. Our goal is to prove that G lifts to a conormal distribution on a certain blowup
of M2 which is conormal at all boundaries, polyhomogeneous along the lifted diagonal,
and has a leading polyhomogeneous term at the front faces with conormal remainder.

First observe that the integral (7.2) converges in the Banach space of bounded opera-
tors on L2(M; dVg). This follows from the elementary estimate

‖Rj (iµ)‖B(L2(Mj ))
≤ 1/|µ|,

which is a direct consequence of the spectral theorem for the selfadjoint operator Lj . This
already uniquely specifies G as an element of D ′(M2).

Next, introduce the product hyperbolic double space

M2
ph = (M1)

2
K12
× (M2)

2
K22
;

this manifold with corners is simply the product of the Kj2 double spaces of the two
factors. It has six codimension one boundary faces: the two front faces, which are the
boundary hypersurfaces intersecting the lifted diagonal diagph:

ff1 = ff((M1)
2
K12

)× (M2)
2
K22

and ff2 = (M1)
2
K12
× ff((M2)

2
K22

),

and the four side faces, which are the products of the side faces of one factor with the
interior of the other factor. We denote the side faces by B10,j and B01,j , j = 1, 2, and
for uniformity also write ffj = B11,j ; the j signifies that the face in question comes from
a boundary face in the Mj factor. Defining functions for any one of these faces will be
written ρpq,j , j = 1, 2 and pq = 10, 01, 11.

Continuing on with this notation, an index set σ on M2
ph is a tuple of real numbers

(σpq,j ), where σpq,j indicates a rate of conormal decay at the boundary face Bpq,j .
We shall prove that G is conormal at all boundary faces of M2

ph and along the lifted
diagonal. The conormal estimates here are not quite sharp; there is a subtle cancellation
in (7.2), explored more carefully in [21], which leads to vanishing rates which are slightly
better (by a logarithmic factor), but this is not needed here.

Proposition 38. The lift of the Schwartz kernel G to the space M2
ph is an element of

A σ
ff (M

2
ph, diagph), where σ = (σpq,j ) is the index set with σ10,j = σ01,j = nj + dj − 1,

σ11,j = 0, and where ff = ff1 ∪ ff2.

Proof. To separate out the contributions from the near-diagonal parts of each factor, we
use standard results concerning the symbol calculus with spectral parameter (cf. [26]).
Write Kj = Aj + Bj where Aj contains the full diagonal singularity, is supported near
the lifted diagonal in (Mj )2Kj2, and is smooth across the front face of this double space,
while Bj ∈ A

σj
ff ((Mj )

2
Kj2), σj = ((nj + dj − 1)/2+ δ

Kj
0 , (nj + dj − 1)/2+ δ

Kj
0 ).

We first analyze the integral of A1(iµ)A2(−iµ). Recall from [26] that the norm of Aj
as a map on any fixed weighted Sobolev or weighted Hölder space decays like 1/|µ|. In
that source, this result is only stated in the compact case, but applies here equally well be-
cause of the support properties of Aj . In any case, this shows that this integral converges
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in the operator norm on any one of these spaces. It is also clear that its Schwartz kernel is
supported in a neighbourhood of diagph which intersects the front faces ofM2

ph but not the
side faces. This distribution may be estimated directly (just as for the analogous computa-
tion on a product of two compact manifolds) using the oscillatory integral representations
in the conormal bundle of diagph, and from this we see that it is smooth up to the front
faces and has a pseudodifferential singularity of order−2 along the diagonal, as required.

Using similar arguments, we deduce that the integrals of A1(iµ)B2(−iµ) and
A2(iµ)B1(−iµ) are smooth on the interior of M2

ph. By taking any number of deriva-
tives with respect to b-vector fields on the B factor, we obtain the appropriate conormal
estimates too.

As for the integral of B1(iµ)B2(−iµ), divide the contour 00 into a compact portion,
where |µ| ≤ µ0, and its remaining noncompact ends |µ| ≥ µ0. The conormal estimates
on Bj hold locally uniformly in µ, so in particular∫

|µ|≤µ0

B1(z1, z
′

1, iµ)B2(z2, z
′

2,−iµ) dµ ∈ A σ
B11
(M2

ph).

On the other hand, using the exponential bounds on Kj from Proposition 17 we immedi-
ately deduce that the integral over |µ| > µ0 satisfies the same C 0 bound. The estimates
for higher tangential derivatives required to check conormality are obtained in exactly the
same way, using the corresponding pointwise bounds for the higher tangential derivatives
on each of the two factors.

This completes the estimation of the Schwartz kernel G. ut

Modifications when either factor has negative point spectrum

If inf spec(L1) or inf spec(L2) is negative, then (7.2) needs to be altered slightly. To un-
derstand this, begin by noting that (7.1) remains valid when λ = iε and the contour
separates the sets iε − spec(L1) and spec(L2) in two different half-planes. In fact, we
take the contour to be the union of the vertical rays [2iε, i∞), (−i∞,−iε] and two long
thin half-ellipses, one in the first quadrant with minor axis connecting 1

2 iε and 2iε, and
the other in the third quadrant, with minor axis connecting− 1

2 iε and 1
2 iε. Now let ε ↘ 0;

we arrive at the formula that (L1 + L2)
−1 is equal to the sum

−
1

2πi

∫ i∞

−i∞

R1(−µ)R2(µ) dµ+
∑
µ
(1)
j <0

P1(−µ
(1)
j )R2(µ

(1)
j )+

∑
µ
(2)
j <0

R1(−µ
(2)
j )P2(µ

(2)
j ).

Here µ(i)j are the (negative) eigenvalues of Li , and Pi(µ
(i)
j ) is the orthogonal projection

onto the corresponding eigenspace in the ith factor.
The main result in the last subsection, that the Schwartz kernel of (Lg)−1 is conormal

on M2
ph, clearly remains valid. The analysis of the main term, which is the first summand

in this expression, is exactly the same as before. The remaining terms are much simpler
to analyze since each is a simple tensor product of one term which is polyhomogeneous
on one factor and a finite rank polyhomogeneous term on the other factor.
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7.2. Function spaces and mapping properties

We now introduce the natural geometric Hölder spaces on the product space M with re-
spect to a weakly product hyperbolic metric and describe the mapping properties for the
types of pseudodifferential operators encountered in the last subsection. These mapping
properties are needed to conclude that Lg is actually invertible when g is an approximate
Einstein metric sufficiently close to a product. Indeed, the arguments in the rest of this
paper are complicated by the fact that if K1 = H, then the Hölder spaces corresponding
to two different weakly product hyperbolic metrics g and g′ are not quasi-isometric to
one another, unless the corresponding distributions D1 and D ′1 on ∂M1 ×M2 are diffeo-
morphically equivalent. This failure of the Darboux lemma is the reason we must study
the inverse of Lg for g near to but not exactly equal to a product metric.

Closely following §3, the class of geometric Hölder spaces xν1
1 x

ν2
2 3

k,α
ph (M) is defined

relative to differentiations by locally finite combinations of smooth multiples of elements
of VK12(M1) + VK22(M2), and by Hölder difference quotients adapted to the distance
relative to the weakly product hyperbolic metric g.

Proposition 39. Let H have Schwartz kernel in A σ
ff (M

2
ph, diagph), where σ is the usual

weight family with σ11,j = 0 and all other σpq,j = (nj +dj −1)/2+ δ
Kj
0 , and with pseu-

dodifferential order−r < 0 along diagph. Then, provided 0 < νj < (nj+dj−1)/2+δ
Kj
0 ,

j = 1, 2, the map
H : xν1

1 x
ν2
2 3

k,α
ph (M)→ x

ν1
1 x

ν2
2 3

k+r,α
ph (M)

is bounded. IfQ has Schwartz kernel in A σ̃ (M2
ph) (hence no interior singularities), where

σ̃11,j > 0 but all other weights are the same as for σ , then Q is a compact mapping
between these same spaces.

Proof. As in Proposition 10, decompose H = H ′+H ′′. The boundedness of H ′ follows
from the classical interior boundedness of pseudodifferential operators on Hölder spaces
and the fact that the Schwartz kernel of H ′ is supported in a tube of finite radius around
the diagonal of M1 ×M2.

The proof of the weighted C 0 bound for H ′′f when f is in the weighted ph-Hölder
space proceeds by a direct and elementary estimation of this integral. Any higher deriva-
tive of H ′′u with respect to a K12 vector field on the first factor or a K22 vector field on
the second factor, or an iterated combination of such vector fields, is handled by noting
that any of these vector fields applied to H ′′ gives a Schwartz kernel of exactly the same
form, with the same orders of vanishing at all the side faces.

Finally, to prove thatQ is a compact operator, by Proposition 10 again, the fact that it
has order −∞ and vanishes to some positive order at the front faces gives

Q : xν1
1 x

ν2
2 3

s1,α
ph (M)→ x

ν1+ε
1 x

ν2+ε
2 3

s2,α
ph (M)

for any s1, s2 ∈ N. This range space on the right includes compactly into the domain
space on the left (provided s2 > s1), using the Arzelà–Ascoli theorem. ut

In the course of the parametrix construction, we shall need a slightly refined version of this
result which allows us to conclude that a solution u to Lgu = f has as much tangential
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regularity as f does, and in particular that u is conormal if the same is true of f . In order
to measure tangential regularity, we introduce a class of hybrid spaces which allow some
of the VK12(M1)+VK22(M2) derivatives to be replaced by Vb(M1×M2) derivatives. For
want of a better name, we denote such a space by xν1

1 x
ν2
2 3

k,`,α
ph−b(M) for any 0 ≤ ` ≤ k;

it consists of functions u ∈ xν1
1 x

ν2
2 3

k,α
ph (M) such that V1 . . . Vju ∈ x

ν1
1 x

ν2
2 3

k−j,α

ph (M) for
any b-vector fields V1, . . . , Vj ∈ Vb(M) and any j ≤ `. The index ` denotes the degree
of full tangential regularity and⋂

k≥`≥0

x
ν1
1 x

ν2
2 3

k,`,α
ph−b(M) = A ν1,ν2(M),

the space of conormal functions on M vanishing like xν1
1 at ∂M1 × M2 and xν2

2 at
M1 × ∂M2.

Corollary 40. Let H and ν1, ν2 be exactly the same as in Proposition 39. Then for any
k ≥ 0 and 0 ≤ ` ≤ k,

H : xν1
1 x

ν2
2 3

k,`,α
ph−b(M)→ x

ν1
1 x

ν2
2 3

k+r,`,α
ph−b (M)

is bounded.

Proof. The key idea is a commutation relation: if V is any b-vector field onM and VL and
VR denote its lifts to M2 from the left and right factors, respectively, then the Schwartz
kernel of the composition (VL + VR)H has exactly the same regularity properties and
index sets on M2

ph as H itself. This is established by straightforward calculation. The
subtlety concerns its behaviour near the two front faces since VLH and VRH individu-
ally blow up to first order there, but these leading singular terms cancel and the sum is
again bounded here. This follows from the cancellation for the analogous computation on
(Mj )

2
Kj2, which can be found in [18, Proposition 3.30] when Kj = R, and can be proved

in exactly the same way in the other cases. ut

7.3. Near-product hyperbolic metrics and the parametrix construction

If g = g1 + g2 is a nondegenerate product hyperbolic metric, then we proved in §7.1 that
the Schwartz kernel of the L2 inverse of Lg is conormal on the product hyperbolic double
space. Consequently, by the results of §7.2, this inverse is bounded on certain weighted
Hölder spaces, hence Lg is also invertible on those spaces. Our goal is to establish that
Lg is invertible on these weighted Hölder spaces when g is strongly asymptotically Ein-
stein and sufficiently close to a product metric. For this it suffices to establish a similar
structure theorem for a parametrix H for (Lg)−1; more precisely, we construct H and
show that it has Schwartz kernel in 9−2

ph (M) + A σ
ff (M

2
ph), where σ is the index family

from Proposition 39, which implies that it is bounded and the error terms LgH − I and
HLg − I have small norm, and hence finally that Lg is invertible on these same spaces.

The parametrix construction is much the same as in the AKH case. The Schwartz
kernels of general ph pseudodifferential operators are by definition distributions on M2

ph
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which are conormal at the boundaries and polyhomogeneous at the diagonal. There is a
small calculus of operators with Schwartz kernels supported near the lifted diagonal, and
a large calculus which also includes operators with Schwartz kernels conormal up to all
faces, and with positive vanishing order at the front faces. The corresponding decompo-
sition of the parametrix H is written H ′ +H ′′.

Let g be a weakly asymptotically product hyperbolic metric on M . The initial ap-
proximation H ′ to (Lg)−1 is obtained via the standard elliptic parametrix construction
using the symbol calculus on the conormal bundle of diagph ⊂ M2

ph. This is done ex-
actly as in the AKH setting, and simply uses the uniform invertibility of the ph-symbol
of Lg on M2

ph up to the two front faces (this is valid for any weakly asymptotically
product hyperbolic metric). If g is only polyhomogeneous at the boundaries of M , then
H ′ ∈ A τ

ff (M
2
ph, diagph), where τ10,j = τ01,j = ∞ and τ11,j = 0, j = 1, 2.

Set I − LgH ′ = Q0; this is an element of A τ
ff (M

2
ph). The correction term H ′′ is

chosen so that Lg(H ′ + H ′′) = I − Q1, or equivalently, LgH ′′ = Q0 − Q1, where
H ′′ ∈ A σ

ff (M
2
ph, diagph) and Q1 ∈ A σ̃ (M2

ph); here σ11,j = 0, σ̃11,j > 0, and all other
σpq,j = σ̃pq,j = nj + dj − 1 for pq 6= 11. The Schwartz kernel of Q1 vanishes to some
positive order at the front faces so it is compact on weighted Hölder spaces.

To determine H ′′, restrict the equation LgH ′′ = Q0 − Q1 to each of the two front
faces. Set

Nj (L
g) = Lg|ffj , Nj (Q0) = Q0|ffj , j = 1, 2.

We must first solve the two equations Nj (Lg)H ′′j = Nj (Q0) and then choose some H ′′

which has normal operators at ffj equal to these H ′′j . Note that Nj (Q0) is smooth on
the interior of ffj , vanishes to infinite order at the intersection with the side faces, and is
smooth up to the other front face, or at least, the dependence in this direction is exactly as
regular as the metric g near the corner.

We begin by analyzing the structure of Nj (Lg) when g is weakly product hyperbolic.
Fixing j = 2 to be definite, the front face ff2 is a product (M1)

2
K12
× ff(M2). The second

factor, which is the front face of (M2)
2
K22

, is a fibration with base space the diagonal of
(∂M2)

2 and each fibre identified with the hyperbolic space K2H
m2 . As we explain below,

the identification is not completely natural, however, when K2 = R or C, but is natural in
the remaining two cases K2 = H or O. The lift Lg from the left factor of M to M2

ph acts
on the ‘left factor’ of Mj in each Kj2 double space. It acts tangentially to all boundary
faces on M2

ph, and in particular, its restriction to ff2 is a sum of products of derivatives
of two types: some which act on the left factor of M1 in (M1)

2
K12

and others which act
on the K2H

m2 fibres of ff(M2). A priori, there could be ‘mixed’ terms of second order,
which differentiate once in each of these directions. On the other hand, the dependence
on all other variables—namely, in the right factor of M1 and in the diagonal of (∂M2)

2

(i.e. the base of the fibration of ff(M2))—is purely parametric.

Definition 41. We say that a weakly asymptotically product hyperbolic metric g on
M1 ×M2 is near-product hyperbolic if the normal operators N1(L

g), N2(L
g) have the
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following special form:

N1(L
g) = L1,1 + L1,2 and N2(L

g) = L2,1 + L2,2,

where, for example, in the second decomposition L2,1 is an operator acting on the left
factor ofM1 (with coefficients depending parametrically on the right factor ofM1 and the
diagonal of (∂M2)

2) and L2,2 is an operator acting on the front face ff(M2).

Let us investigate when this condition holds. Focussing again on N2(L
g), use in-

terior coordinates z1 on M1 and z2 = (x2, y2) near the boundary of M2. Then, near
x2 = 0, Lg is a sum of products of various of the ∂z1 , and of x2∂x2 , x2Y and x2

2Z, where
(Y1, . . . , Yd2(m2−1)) and (Z1, . . . , Zd2−1) are bases of sections of D2 and its complement,
respectively, in TX2. Now lift to M2

ph and near ff2 replace (z2, z̃2) with projective co-
ordinates; thus y2 = ỹ2 + O(x̃2) and at x̃2 = 0, the derivatives with respect to x2, Yi
and Zj take the form s∂s , sY 0

i , s2Z0
j , where s = x2/x̃2 and the Y 0

i and Z0
j are a basis

of left-invariant forms on K2Heism2−1, all as explained in §3. In particular, these vector
fields are tangent to the fibres of ff(M2). This restriction to x̃2 defines N2(L), so we see
that g is near-product hyperbolic provided that there are no cross-terms, i.e.

N2(L
g) =

∑
a(1)α (z1, ỹ2)∂

α
z1
+

∑
a
(2)
j,β,γ (z1, ỹ2)(s∂s)

j (sY 0)β(s2Z0)γ ,

and in addition, as noted before, the endomorphism coefficients have no off-diagonal
components with respect to the splitting into the two factors. Note that the coefficients
a
(1)
α depend on (z1, ỹ2), but not on the ‘active’ variables in the second factor. On the other

hand, the coefficients a(2)j,β,γ potentially depend on all active variables on ff2. (To be clear,
the nonactive variables are z̃1 and ỹ2; these parametrize the base of the fibration of ff2.)

The fibres of ff(M2) are identified with K2H
m2 , and it is clear that the second sum-

mand above, which in our previous notation is L2,2, is left-invariant on this hyperbolic
space. By the naturality of the geometric operators we are considering, we expect that
L2,2 is simply the linearized gauged Einstein operator or the rough Laplacian on K2H

m2 .
This is indeed true, but only after a choice of basis of left-invariant vector fields (adapted
to the boundary contact structure) on this space, and it is an important but not immediately
obvious fact that this choice may depend smoothly on z1. More clearly, the identification
of ff(M2) with K2H

m2 is determined only up to a linear isomorphism which preserves
the model contact structure on K2Heism2−1. When K2 = H or O, this determines the
isomorphism completely since in these cases the contact structure determines the metric
fully. However, when K2 = R or C, there are different linear identifications which are
isometric, but not identical. For example, in the real case, this corresponds to the fact that
any metric of the form

dx2
+
∑n−1
i,j=1 aijdy

idyj

x2 ,

where (aij ) is a constant positive definite symmetric matrix, is isometric to real hyper-
bolic space, but the isometry is defined in terms of the coefficients aij . In our setting,
when K2 = R, these coefficients will depend smoothly on z1, and for metrics which are
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very close to being a product globally, they will be very close to constant. Thus alto-
gether, when K2 = R or C, L2,2 must be thought of as a family of generalized Laplacians
on K2H

m2 which depend smoothly on the variable z1. Hence N2(L
g) is not a product

operator as studied in §7.1. The fact which saves us in the setting of this paper is that
since g is a small perturbation of a product metric, the deviation of L2,2 from an operator
which does not depend on z1 is very small.

Lemma 42. Let g be a strongly asymptotically Einstein metric, as in Definition 37. Then
g is near-product hyperbolic.

Proof. By the global rigidity assumption for the conformal infinity data, we are fixing the
product structure on each boundary hypersurface of M1 ×M2. Consider the construction
of g atM1× ∂M2. The preliminary extensions of the conformal infinity data (γ1, η1) and
γ2/x

2
2 + η2/x

4
2 , regarded as metrics on the bundle TM1 ⊕

K22T∂M2M2 over this face,
make these subbundles orthogonal to one another. The correction terms h and φ preserve
this orthogonality. The lemma follows directly from this. ut

Having established this, we now proceed with the parametrix construction by solving the
two normal equations, say the one on ff2 again to be definite. The equationN2(L

g)N2(H
′′)

= N2(Q0) depends parametrically on the right factor ofM1 in (M1)
2
K12

and on ∂M2; thus
there is a separate equation to solve for each (x̃1, ỹ1, ỹ2). When x̃1 > 0, this is an equation
on M1 × ff(M2), and N2(Q0) is smooth and compactly supported. When x̃1 = 0, there
are two cases: one is for the induced equation on the product of the right face of (M1)

2
K12

(which is a copy of M1 blown up at the boundary point ỹ1) with ff(M2), and the other is
for the induced equation on ff(M1)× ff(M2). Noting that N2(Q0) vanishes identically on
the space appearing in the middle case here, we set N2(H

′′) = 0 there, so we are left to
understand this equation on M1 × ff(M2) and on ff(M1) × ff(M2), with N2(Q0) ∈ C∞0
in either case.

The latter case, on the product of the front faces, is the more elementary one since
at this face, N2(L

g) is always an exact product operator, hence can be analyzed directly
using the results of §7.1. More specifically, the restriction of N2(L

g) to this corner is
the sum of model generalized Laplacians on K1H

m1 × K2H
m2 ; since it is of product

type, the results of §7.1 show that N2(H
′′) = N2(L

g)−1N2(Q0) is conormal on ff(M1)×

ff(M2). Of course,N2(Q0) depends smoothly on the parameters (ỹ1, ỹ2), and the solution
depends smoothly on these parameters.

The same analysis can be applied directly for the other case, i.e. for the equation on
M1 × ff(M2), when K2 = H or O, since in these cases N2(L

g) is still of product type for
each (z̃1, ỹ2). Taking into account the smooth dependence on these parameters and the
conormal structure of N2(L

g)−1, we see that N2(H
′′) is conormal on ff2, at least away

from the corner ff1 ∩ ff2. We discuss the behaviour at this corner momentarily.
It remains to understand this family of problems on M1 × ff(M2) when K2 = R

or C. As we have described, N2(L
g) is no longer necessarily of product type; instead,

when the near-product hyperbolic metric g is sufficiently close to a product (which is
certainly the case for the strongly asymptotically Einstein metrics we have constructed),
it can be decomposed as a sum A+B where A is of product type and B is a second order
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operator with small coefficients. The product analysis of §7.1 shows that A−1 exists and
that its Schwartz kernel has conormal structure. Now write (A + B)A−1

= I + BA−1.
We now invoke the mapping properties from Corollary 40 to see that BA−1 is bounded
and has very small norm on any one of the spaces xν1

1 s
ν2
2 3

k,`,α
ph−b(M1 × ff(M2)), hence

I + BA−1 is invertible here. This implies that if f ∈ C∞0 , then the solution u to the
equation (A+ B)u = f lies in the intersection over all k and ` of these hybrid weighted
Hölder spaces (for fixed weights ν1, ν2), hence is conormal up to the boundaries, at least
away from ff1 ∩ ff2. In a similar way, we can find the solution N1(H

′′) on the interior
of ff1 which is conormal up to the boundaries, at least away from ff1 ∩ ff2.

The final step is to analyze how these solutions fit together at the corner ff1 ∩ ff2. For
this, first note that there is an obvious compatibility between the two normal operators at
this corner:

N1(L
g)|ff1∩ff2 = N2(L

g)|ff1∩ff2 .

By uniqueness of the inverse, we see that

N1(H
′′)|ff1∩ff2 := N1(L

g)|−1
ff1∩ff2

N1(Q0)|ff1∩ff2

= N2(L
g)|−1

ff1∩ff2
N2(Q0)|ff1∩ff2 := N2(H

′′)|ff1∩ff2 .

The fact that Nj (H ′′) is conormal up to this corner is a consequence of the fact that the
parametric dependence of Nj (Q0) is conormal, and the inverses preserve conormality in
these parameters.

Now extend the two functions Nj (H ′′) on ff1 ∪ ff2 to a Schwartz kernel H ′′ ∈
A σ

ff (M
2
ph) which restricts to Nj (H2) at ffj .

We have now constructed H = H ′ + H ′′ which satisfies LgH = I − Q1, Q1 ∈

A σ̃ (M2
ph). By Proposition 39, Q1 is a compact operator on the weighted ph Hölder

spaces. A left parametrix is obtained by taking adjoints. This completes the parametrix
construction when g is near-product hyperbolic and polyhomogeneous, and proves that
Lg is Fredholm.

As explained earlier, we can certainly restrict to studying polyhomogeneous metrics
with smooth conformal infinity data but we comment briefly on how to extend this proof
to the case where g is the sum of a polyhomogeneous AKH metric and a perturbation
term k ∈ x

ν1
1 x

ν2
2 3

2,α
K2, where 0 < νj < nj + dj − 1. (Note that this is the regularity for

the strongly asymptotically Einstein metrics.)
The symbol calculus step goes through immediately for symbols with this regularity.

Indeed, the perturbation term k appears only in the parametric dependence along the di-
agonal and does not occur in the leading terms near the front faces, so H ′ decomposes as
a principal polyhomogeneous term and another, vanishing to some positive order at these
faces but which is only bounded in Hölder norm. The restriction to the front faces of the
error term Q = I − LH ′ does not depend on these lower order terms, and the normal
operators Nj (L) are independent of them too, except as above in their dependence on
parameters, which means that the second step carries through exactly as before.
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We have proved

Proposition 43. Let g be a strongly asymptotically Einstein metric as constructed in
§6.2. Then there is a parametrix H = H ′ + H ′′ for Lg , with H ′ ∈ A σ

ff (M
2
ph, diagph)

and H ′′ ∈ A σ
ff (M

2
ph). The error term Q1 = I − L(H

′
+H ′′) is in A σ̃

ff (M
2
ph).

Theorem 44. Let g be a near-product hyperbolic metric which is sufficiently close to a
nondegenerate product hyperbolic metric g0 on M1 ×M2. Then

Lg : xν1
1 x

ν2
2 3

2,α
ph (M,Sym2(T ∗M))→ x

ν1
1 x

ν2
2 3

0,α
ph (M,Sym2(T ∗M))

is an isomorphism.

Proof. If g is any near-product hyperbolic metric, then we have constructed a para-
metrix H g for Lg so that LgH g

= H gLg = I − Qg . We have also proved that H g

is a bounded operator between the space on the right and the space on the left above, and
thatQg is compact between these same spaces. This proves that the map Lg is Fredholm.

The construction of H g depends continuously on the metric (with respect to some
sufficiently strong topology). SinceQg

= 0 when g = g0, we can make the norm ofQg as
small as desired when g is sufficiently close to g0, which implies thatLg is then invertible.

ut

8. Solving for the Einstein metric

The remainder of the proof of the Main Theorem proceeds very much as in the analogous
arguments in §4 and §6.

Let (M = M1×M2, g = g1+g2) be a product of AKH Einstein metrics. Let Lg and
Lgi be the linearized gauged Einstein operators for g and the two component metrics gi .
We assume that

0 /∈ spec(Lg) ∪ spec(Lg1) ∪ spec(Lg2),

and that at least one of K1 or K2 is not equal to H or O. Denote by c the (G1 × G2)-
conformal infinity data on X = X1 ×X2 = ∂M1 × ∂M2.

Theorem 45. Under all these conditions, let c′ be any globally integrable (G1 × G2)-
conformal infinity data onX which is C∞ and sufficiently close (in C 2,α norm) to c. Then
there is a unique strongly asymptotically Einstein metric g′ which is close to the strongly
asymptotically Einstein metric g̃′ with conformal infinity data c′ constructed in §6.2.

Proof. Let g̃′ be the strongly asymptotically Einstein metric constructed in §6.2 with
conformal infinity data c′. Write g′ = g̃′ + k, where

k ∈ xν1x
ν
23

2,α
ph (M,Sym2(T ∗M)).

Write the gauged Einstein equation as

N g̃′(k) = Ricg̃
′
+k
+ (g̃′ + k)+ (δg̃

′
+k)∗B g̃

′

(k) = 0.

The linearization at k = 0 is the generalized Laplacian Lg̃
′

.
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We see that

N g̃′ : xν1
1 x

ν2
2 3

2,α
ph (M,Sym2(T ∗M))→ x

ν1
1 x

ν2
2 3

0,α
ph (M,Sym2(T ∗M))

is a C 1 map from a neighbourhood of 0 in the domain space, and that Lg̃
′

is a bounded
linear map between these same two spaces. Moreover, from our construction of the metric
g̃′, one has

N g̃′(0) ∈ xν1
1 x

ν2
2 3

0,α
ph (M,Sym2(T ∗M)).

According to Theorem 44, if c′ is sufficiently close to c, the linearization Lg̃
′

is an
isomorphism. Furthermore, the norm of its inverse is bounded away from zero, uniformly
as c′ → c, and the norm of N g̃′(0) tends to 0. The inverse function theorem implies that
there is a unique solution k to N g̃′(k) = 0 with k near 0. ut

Appendix. Osculating quaternionic coordinates

In this brief appendix we prove Lemma 6. This uses an idea close to that used to find
normal coordinates in Riemannian geometry, and should be a general fact for all the so
called ‘parabolic geometries’.

Fix a quaternionic contact structure on Y 4m−1 and any metric in this conformal class
on the distribution D . We use the Tanaka–Webster type connection ∇ from [2, Chapter 2]
(see also [6, 7] for the special case of dimension 7). The contact distribution D is the ker-
nel of three 1-forms (η1, η2, η3), and has a privileged supplementary subspace generated
by three ‘Reeb vectors fields’ R1, R2, R3 which are uniquely specified by the conditions
ηi(Rj ) = δij and (iRidηj + iRj dηi)|D = 0 (in dimension 7 a weaker condition is placed
on these). This connection satisfies:

• ∇ preserves the distribution D and the quaternionic structure on D ;
• the torsion T ∇ of two horizontal vectors X1, X2 ∈ D is given by

T ∇X1,X2
=

3∑
k=1

dηk(X1, X2)Rk.

However, since these conditions only place restrictions on the derivatives in horizontal
directions, the connection is not unique and different extensions are possible.

Now fix a point p ∈ Y . We may assume that the Ri , and hence also the ηi , are parallel
at p, i.e.

∇Ri(p) = 0, i = 1, 2, 3.

The connection determines the exponential map in horizontal directions,

expp : Dp → Y,
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by solving the differential equation ∇ċċ = 0, c(0) = p, ċ(0) = X, and setting expp(X)
= c(1). Linear coordinates (y1, . . . , y4m−4) on Dp give a coordinate system on the image
S of a small ball by expp. Then, at p one has

∇∂yi
∂yj +∇∂yj ∂yi =

1
2
(∇∂yi+∂yj (∂yi + ∂yj )−∇∂yi−∂yj (∂yi − ∂yj )) = 0,

and hence

∇∂yi
∂yj =

1
2
(∇∂yi ∂yj −∇∂yj ∂yi ) =

1
2
T ∇∂yi ,∂yj

=
1
2

3∑
k=1

dηk(∂yi , ∂yj )Rk.

In particular, still at p,

∂yiηk(∂yj ) = ηk(∇∂yi ∂yj ) =
1
2
dηk(∂yi , ∂yj ),

from which we deduce that for y ∈ S, the projection Xi of ∂yi on D parallel to the Reeb
vector fields R1, R2 and R3 satisfies

Xi = ∂yj −
1
2

3∑
k=1

yidηk(∂yi , ∂yj )Rk +O(|y|
2).

This can be interpreted as saying that if we write the standard quaternionic contact struc-
ture 20 in coordinates (σj , yi) on the Heisenberg group, and denote by X0

i the standard
horizontal vector fields as in (3.4) and (3.5), then along S one has

η = 20 +O(|y|
2), Xi = X

0
i +O(|y|

2).

Choosing transverse coordinates (σ1, σ2, σ3) so that ∂σi = Ri along S, we get the same
result in a neighborhood of p with an error term O(|y|2 + |σ |).
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