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Abstract. We consider the homogenization of elliptic systems with ε-periodic coefficients. Classi-
cal two-scale approximation yields an O(ε) error inside the domain. We discuss here the existence
of higher order corrections, in the case of general polygonal domains. The corrector depends in a
non-trivial way on the boundary. Our analysis substantially extends previous results obtained for
polygonal domains with sides of rational slopes.

1. Introduction

This paper is devoted to elliptic systems in divergence form, with Dirichlet boundary
condition: {

−∇ · A(x/ε)∇uε = f, x ∈ �,

uε = 0, x ∈ ∂�,
(1.1)

set in a bounded domain � ⊂ Rd . For simplicity, we assume d = 2 or 3. Following
standard notation, ε > 0 is a small parameter, and A = Aαβ(y) ∈ Mn(R) is a family of
functions of y ∈ Rd with values in the set of n × n matrices, indexed by 1 ≤ α, β ≤ d.
The unknown and source term are uε = uε(x) ∈ Rn and f = f (x) ∈ Rn. We recall,
using Einstein’s summation convention, that for each 1 ≤ i ≤ n,

(∇ · A(x/ε)∇u)i := ∂xα [Aαβij (x/ε)∂xβuj ].

We assume that A and f are smooth. Finally, we make the following hypothesis:

(i) Ellipticity: For some λ > 0, for all families of vectors ξ = ξα ∈ Rn indexed by
1 ≤ α ≤ d,

λξα · ξα ≤ Aξ · ξ ≤ λ−1ξα · ξα

where
Aξ · ξ :=

∑
α,β,i,j

A
α,β
ij ξ

β
j ξ

α
i .
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(ii) Periodicity:
A(y + h) = A(y), ∀y ∈ Rd ,∀h ∈ Zd .

We are interested in the limit ε→ 0, i.e. the homogenization of system (1.1).

System (1.1) is a classical model from linear elasticity theory. It describes the de-
formation of a solid object, made of a composite material. The microstructure of the
composite material is modeled by the matrix A, with characteristic length ε. The field uε

describes the displacement of the solid when subjected to a body force f . The homoge-
nization of equation (1.1) aims at simplifying the microscopic description, by extracting
some macroscopic averaged properties. It has given birth to a rich mathematical theory
(see the articles [14, 19] and textbooks [11, 8], among many).

As a special case, periodic homogenization has a very long history, and we refer to
the classical book [6]. The starting point of most studies is a formal two-scale expansion
of the solution uε,

uε = u0(x)+ εu1(x, x/ε)+ ε2u2(x, x/ε)+ · · · . (1.2)

The leading term u0 satisfies the homogenized system{
−∇ · A0

∇u0
= f, x ∈ �,

u0
= 0, x ∈ ∂�.

(1.3)

The homogenized matrix A0 comes from the averaging of the microstructure. It involves
the periodic solution χ = χγ (y) ∈ Mn(R), 1 ≤ γ ≤ d, of the famous cell problem:

−∂yα [Aαβ(y)∂yβχ
γ (y)] = ∂yαA

αγ (y),

∫
[0,1]d

χγ (y) dy = 0. (1.4)

More precisely A0 is given by

A0,αβ
=

∫
[0,1]d

Aαβ +

∫
[0,1]d

Aαγ ∂yγ χ
γ .

The second term in the expansion (1.2) reads

u1(x, y) := ũ1(x, y)+ ū1(x) := −χα(y)∂xαu
0(x)+ ū1(x), (1.5)

where χ is again the solution of (1.4).
All profiles uk = uk(x, y) in (1.2) are periodic in y, and therefore do not satisfy the

homogeneous Dirichlet boundary condition. However, the first terms of the expansion are
relevant, and the following bound holds (see [6]):

‖uε − u0(x)− εu1(x, x/ε)‖H 1(�) = O(
√
ε). (1.6)

It is known that this estimate is optimal: as the approximation is not zero at the boundary,
there is a boundary layer phenomenon, responsible for an O(

√
ε) loss in (1.6). However,

if a relatively compact subset ω b � is considered, one may avoid this loss, as strong
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gradients near the boundary are filtered out. Precisely, Avellaneda and Lin prove in [5],
under some regularity assumptions on A and �, that

‖uε − u0(x)− εu1(x, x/ε)‖H 1(ω) = O(ε). (1.7)

Following these results, a natural attempt is to derive the next order approximation,
and an estimate like

‖uε − u0(x)− εu1(x, x/ε)− ε2u2(x, x/ε)‖H 1(ω) = O(ε
2). (1.8)

However, to obtain this refined approximation turns out to be difficult, and very much
dependent on the geometry of �. Before stating our results on this problem, let us describe
its main difficulties and former studies.

To establish the estimate (1.8), one must first identify the average part ū1(x) and the
oscillating term ũ2(x, y). Note that the choice of ū1(x) did not affect previous estimates
(1.6), (1.7). Following Allaire and Amar [1], one needs to introduce another family of
1-periodic matrices

ϒαβ = ϒαβ(y) ∈ Mn(R), α, β = 1, . . . , d,

satisfying

−∇y · A∇yϒ
αβ
= Bαβ −

∫
y

Bαβ ,

∫
y

ϒαβ = 0, (1.9)

where

Bαβ := Aαβ − Aαγ
∂χβ

∂yγ
−

∂

∂yγ
(Aγαχβ).

Formal considerations yield

u2(x, y) := ϒα,β
∂2u0

∂xα∂xβ
− χα∂αū

1. (1.10)

The average term ū1
= ū1(x) formally satisfies the equation

−∇ · A0
∇ū1
= cαβγ

∂3u0

∂xα∂xβ∂xγ
, cαβγ :=

∫
y

Aγ η
∂ϒαβ

∂yη
− Aαβχγ . (1.11)

We refer to [1] for all details. Note that u2 depends on ū1, and has zero average with
respect to y. In other words, we take ū2

= 0. This is enough for anO(ε2) approximation,
in the same way as taking ū1

= 0 was enough to obtain an O(ε) approximation.
Note also that these relations are not enough: to close system (1.11), boundary condi-

tions on ū1 are required. To derive the correct boundary conditions and obtain the interior
estimate (1.8), one needs to understand the behavior of uε near the boundary. This is
emphasized in [1, Theorem 3.7], where it is shown that

‖uε − u0(x)− εu1(x, x/ε)− εu
1,ε
bl (x)− ε

2u2(x, x/ε)‖H 1(�) = O(ε
3/2),
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with u1,ε
bl (x) the solution of the Dirichlet problem{

−∇ · A(x/ε)∇u
1,ε
bl = 0, x ∈ � ⊂ Rd ,

u
1,ε
bl = −u

1(x, x/ε), x ∈ ∂�.
(1.12)

In other words, the construction of high order approximation relies on the homogenization
of system (1.12). The main problem is that the homogenization of this auxiliary system is
much harder than the original one. Indeed, the boundary data in (1.12) forces oscillations
within a boundary layer. To understand the structure of these (not anymore periodic)
oscillations and their averaged effect is essentially an open question.

Most works on that topic have been limited to convex polygons

� :=
N⋂
k=1

{x : nk · x > ck},

bounded by N hyperplanes of Rd with inward unit normal vector nk:

Kk := {x : nk · x = ck}, nk ∈ Sd−1, ck ∈ R, 1 ≤ k ≤ N,

More precisely, all results have been obtained under the stringent assumption that the
normal vector nk can be taken in RQd , that is, proportional to a vector with rational
coordinates. When d = 2, this corresponds to polygons with sides of rational slopes,
and we will keep this terminology for general d . For instance, in [1], Allaire and Amar
consider the special case

� = [0, 1]d , εn = 1/n.

They manage to build correctors such that a bound of type (1.8) holds when ε = εn. They
show that the appropriate boundary conditions on ū1 read

ū1
= 0k∂nu

0, x ∈ Kk
∩ ∂�, 1 ≤ k ≤ N, (1.13)

with the matrix coefficients 0k ∈ Mn(R) linked to some auxiliary boundary layer sys-
tems. Numerical schemes based on these correctors are studied in [20, 18]. Let us also
mention [15], where the case of layered media is considered.

We point out that this construction of accurate approximations originates in a series
of papers by Vogelius and co-authors [17, 16, 13], within the slightly different context of
eigenvalue problems {

−∇ · A(x/ε)∇uε = λεuε, x ∈ � ⊂ Rd ,
uε = 0, x ∈ ∂�.

The behavior of λε is investigated, notably the accumulation points of the ratio

λε − λ0

ε
as ε→ 0

when λ0 is a simple eigenvalue of the homogenized system (1.3). The analysis is per-
formed in the case of convex polygons with sides of rational slopes, and relies on the
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boundary layer systems later used in [1]. It is shown that the ratio does not in general
have one limit but rather a continuum of accumulation points. Recast in the framework
of the article [1], with � = [0, 1]d , this result indicates that the constant matrices 0k in
(1.13) depend on the subsequence εn, so that the corrector ū1 in the approximation (1.8)
also depends on the subsequence εn (which is εn = 1/n in [1]). Crudely, one can then
say that for convex polygons with sides of rational slopes, estimate (1.8) does not hold
uniformly in ε.

The aim of this paper is to consider general convex polygonal domains �, that is,
without the assumption of rational slopes. We will show that “generically”, there exists
an O(ε2) two-scale approximation of uε inside �.

Our main assumption will be a diophantine condition on the normals n := nk , k =
1, . . . , N :

(A) There are c, l > 0 such that for all ξ ∈ Zd \ {0}, |n× ξ | ≥ c|ξ |−l,

where n × ξ := n2ξ1 − n1ξ2 when d = 2, and n × ξ is the usual cross product when
d = 3. If d = 2, one can replace the cross product in assumption (A) by a scalar product,
namely |n · ξ | ≥ c|ξ |−l . If d = 3, then assumption (A) is equivalent to the fact that any
two components of n, say (n1, n2), satisfy: for all ξ ∈ Z2

\{0}, |n1ξ1+n2ξ2| ≥ c|ξ |
−l .We

emphasize that this condition is generic, in the sense that it is satisfied for almost every
n1, . . . , nN . This is a direct consequence of the following classical result (see [7]): For
almost every vector ν ∈ Rd , and all δ > 0, there exists c > 0 such that

|ν · ξ | ≥ c|ξ |−d−δ, ∀ξ ∈ Zd \ {0}.

Besides this small divisor assumption, we will need technical assumptions on u0, u1, due
to possible loss of regularity near the edges and vertices of �. Namely, we will assume
that

(A0) The solution u0 of (1.3) belongs to H 3(�) ∩ C2(�).
(A1) The solution ū1 of (1.11)–(1.13) with0k defined in (3.2) belongs toH 2(�)∩C1(�).

The relevance of hypothesis (A0), the well-posedness of (1.11)–(1.13), and the relevance
of hypothesis (A1) will be discussed extensively in Section 3.

We can state our main result:

Theorem 1. Let � =
⋂N
k=1{x : nk · x > ck} be a convex polygonal domain. Suppose

that for all k, the normal vector n = nk satisfies the diophantine condition (A), and that
the regularity conditions (A0) and (A1) hold. Then, for any open subset ω b �,

‖uε − u0(x)− εu1(x, x/ε)− ε2u2(x, x/ε)‖H 1(ω) = O(ε
2),

with u0, ū1 as in (A0) and (A1), and u1, u2 as in (1.5) and (1.10).

The technical constraints (A0)–(A1) being set aside, this shows that for generic polygonal
domains, there exists an ε2 two-scale approximation of uε. Note that the higher order
correction in (1.8) is independent of the subsequence in ε. In that respect, the case of
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rational slopes is peculiar. In this case, as can be deduced from [1, 13] in the periodic
case, the higher order correction may depend on the sequence.

The main part of the proof of Theorem 1 is the treatment of the boundary layer. In
previous studies, the rational slopes allowed to get periodicity in the tangential variable.
In the case of general irrational slopes, only a quasiperiodicity property is available, mak-
ing the construction of boundary layer correctors more intricate. The construction is per-
formed in Section 2. The derivation of u1, u2, and the proof of estimate (1.8) follows in
Section 3. As we will see from the proof, we have a more precise version of Theorem 1
(see Corollary 8).

2. Homogenization of the boundary layer

2.1. Formal expansion

As emphasized in the introduction, the search for high order approximations reduces to
the understanding of the Dirichlet problem (1.12). Formally, one expects u1,ε

bl to be local-
ized in the vicinity of the hyperplanes of �:

u
1,ε
bl (x) =

N∑
k=1

u
1,ε,k
bl (x),

where u1,ε,k
bl (x) describes a boundary layer near Kk . Note that by convexity, � lies on

one side of Kk , for all 1 ≤ k ≤ N . Hence,

� ⊂ {x : nk · x − ck > 0}.

We look for an approximation of the type

u
1,ε,k
bl ≈ vkbl(x, x/ε),

where vkbl = v
k
bl(x, y) ∈ Rn is defined for x ∈ �, and y is in the half-space

�ε,k = {y : nk · y − ck/ε > 0}.

Plugging this approximation in (1.12) yields{
−∇y · A(y)∇yv

k
bl = 0, y ∈ �ε,k,

vkbl = −u1(x, y), y ∈ ∂�ε,k.
(2.1)

Note that the variable x is only a parameter in this system. Let Mk be an orthogonal
matrix that maps the canonical vector ed = (0, . . . , 0, 1) to the normal vector nk . By the
change of variable y = Mkz, system (2.1) becomes{

−∇z · B
k(Mkz)∇zv

k
= 0, zd > ck/ε,

vk = −u1(x,M
kz), zd = c

k/ε,
(2.2)
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with unknown vk(x, z) = vkbl(x,M
kz). Denoting by Aαβij , resp. Bk,αβij , 1 ≤ i, j ≤ n, the

coefficients of Aαβ , resp. Bk,αβ , we recall the relation

∀i, j, Bkij = M
kAij (M

k)t ,

which is a product of matrices in Md(R). We also denote by z = (z′, zd) the tangential
and normal component of z. We stress that vkbl and vk still depend on ε, through the ck/ε
term. As will be clear from the developments below, this dependence is harmless, so that
we omit it in notation.

The proof of Theorem 1 relies mostly on the analysis of system (2.2). In the case of
polygons with sides of rational slopes, for which nk belongs to RQd , one can choose a
matrix Mk with columns that are also in RQd , so that system (2.2) has coefficients that
are still periodic in z′. Working in spaces of functions periodic in z′, one easily obtains
existence and uniqueness of a variational solution. Moreover, using a lemma of Tartar,
one can show the convergence of this solution towards a constant, as zd goes to infinity,
exponentially fast. We refer to [1] for all details. The basic ingredient used in the study of
this rational case is the Poincaré inequality∫

Td−1
|ϕ̃|2 dz′ ≤ C

∫
Td−1
|∇ϕ̃|2 dz′

for L-periodic functions ϕ̃ with zero average.
These properties fail to be true for general polygons: the coefficients are not anymore

periodic, but quasiperiodic. We refer to [11] for a description of quasiperiodic and almost
periodic functions. Quasiperiodicity does not allow one to restrict the tangential variable
to a bounded domain, and Poincaré’s inequality is not anymore valid. As detailed in the
next subsection, we will still be able to deal with system (2.2), under the generic diophan-
tine assumption (A).

2.2. Boundary layer system

Directly inspired by (2.2), we introduce the following system:{
−∇z · B(Mz)∇zv = 0, zd > a,

v(z) = v0(Mz), zd = a,
(2.3)

where B shares the same properties as the original matrix A, v0 is a smooth 1-periodic
function andM is a d × d orthogonal matrix. We wish to show the well-posedness of this
system. Moreover, as in the case of rational slopes, we expect the solution to converge
towards a constant vector as zd goes to infinity. Let N ∈ Md,d−1(R) be defined by

Nz′ = M(z′, 0).

The structure of (2.3) suggests looking for a solution of the type

v(z) = V (Nz′, zd), V (θ, t) 1-periodic in θ ∈ Rd . (2.4)
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Accordingly, we define

B
(
θ, t) = B(θ +M(0, t)), V0(θ, t) = v0(θ +M(0, t)).

This leads to the following system, for θ ∈ Td and t > a:−
(
N t
∇θ

∂t

)
· B(θ, t)

(
N t
∇θ

∂t

)
V = 0, t > a,

V (θ, t = a) = V0(θ, t = a), t = a.

(2.5)

As this new formulation reveals, the solvability of (2.5) is unclear. The problem is the
lack of coerciveness of the new operator with respect to θ . For instance, we do not have
in general ∫

Td
|N t
∇θφ|

2 dθ ≥ c

∫
Td
|∇θφ|

2 dθ. (2.6)

This can be understood easily in the two-dimensional case: if M is a rotation matrix

M =

(
cosα −sinα
sinα cosα

)
, then N =

(
cosα
sinα

)
,

and inequality (2.6) would give (using the Plancherel identity): for all ξ1, ξ2 ∈ Z2,

(ξ1 cosα + ξ2 sinα)2 ≥ c(|ξ1|
2
+ |ξ2|

2),

which is never satisfied uniformly for large ξ1, ξ2. The well-posedness issue is considered
in the next subsection.

Another issue to be considered after well-posedness is the asymptotic behavior of V
as t → +∞. Arguments in [1] for the periodic setting do not adapt to our quasiperi-
odic setting. To overcome this difficulty, we will make a crucial use of the small divisor
assumption (A). Note that a straightforward reformulation is

(A) There exist c, l > 0 such that for all ξ ∈ Zd \ {0}, |N tξ | ≥ c|ξ |−l .

It will be used in this form to show convergence to a constant field at infinity.

2.3. Well-posedness

We have the following well-posedness result for system (2.5):

Proposition 2. There exists a unique smooth solution V of (2.5) such that∫
Td

∫
+∞

a

(|N t
∇θ∂

γ
θ V |

2
+ |∂ lt ∂

γ
θ V |

2) dt dθ < +∞

for l ≥ 1 and γ ∈ Nd and where we denote ∂γθ = ∂
γ1
θ1
. . . ∂

γd
θd
. As a consequence, v(z) =

V (Nz′, zd) is a smooth solution of (2.3).

The proof of the proposition relies on the following simple estimate.
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Lemma 3. If Y (θ, t) is a smooth function solving−
(
N t
∇θ

∂t

)
· B(θ, t)

(
N t
∇θ

∂t

)
Y = H +

(
N t
∇θ

∂t

)
·G, t > 0,

Y = 0, t = 0,
(2.7)

where tH,G ∈ L2(Td × R+), then∫
Td

∫
+∞

0
(|N t
∇θY |

2
+ |∂tY |

2) dt dθ ≤ C

∫
Td

∫
+∞

0
(|tH |2 + |G|2) dt dθ. (2.8)

Proof of the lemma. Multiplying by Y and integrating over Td × R+, we obtain∫
Td

∫
+∞

0
(|N t
∇θY |

2
+ |∂tY |

2) dt dθ ≤

∫
Td

∫
+∞

0
(tH) ·

Y

t
dt dθ

+

∫
Td

∫
+∞

0
G ·

(
N t

∂θ

)
Y dt dθ.

By Hardy’s inequality,∥∥∥∥Yt
∥∥∥∥
L2(Td×R+)

≤ C‖∂tY‖L2(Td×R+) ≤ C

∥∥∥∥(N t
∇θ

∂t

)
Y

∥∥∥∥
L2(Td×R+)

.

Using this bound and the Cauchy–Schwarz inequality in the previous inequality yields
the result.

Proof of the proposition. Without loss of generality, one can assume a = 0. Let δ(t)
be a smooth truncation function satisfying δ = 1 on [0, 1/2] and δ = 0 outside [0, 1].
Introducing

Y = V − δ(t)V0,

the problem reduces to the well-posedness of−
(
N t
∇θ

∂t

)
· B(θ, t)

(
N t
∇θ

∂t

)
Y = F, t > 0,

Y = 0, t = 0,
(2.9)

where F is smooth, periodic in θ , and has support in t ≤ 1.

A priori estimates. Suppose Y is a smooth solution of system (2.9). Using (2.8) with
H = F and G = 0 yields the L2 estimate∫

Td

∫
+∞

0
(|N t
∇θY |

2
+ |∂tY |

2) dt dθ ≤ C

∫
Td

∫
+∞

0
|F |2 dt dθ. (2.10)

The same type of estimate extends easily to tangential derivatives. Namely, for |γ | ≥ 0,∫ ∫
(|N t
∇θ∂

γ
θ Y |

2
+ |∂t∂

γ
θ Y |

2) dt dθ ≤ C(γ )
∑
|β|≤|γ |

∫ ∫
|∂
β
θ F |

2 dt dθ. (2.11)
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Indeed, for |γ | = 1, we differentiate (2.9) with respect to ∂θα for some 1 ≤ α ≤ d and
then apply Lemma 3 with H = ∂θαF and G = ∂θαB(θ, t)

(
N t∇θ
∂t

)
Y . The general case is

obtained by induction on the number of derivatives.
Then standard elliptic arguments provide additional regularity with respect to t . We

first notice that equation (2.9) can be written

Bd,d∂2
t Y = G with G ∈ L2

t (H
s(Td)), ∀s ∈ N, (2.12)

where we used (2.11) to estimate G and where Bijd,d = MdαA
ij
αβ
tMβd satisfies the coer-

civity condition |Bd,dξ · ξ | ≥ λ|ξ | for ξ ∈ Rn.
Inverting Bd,d , we deduce the same regularity for ∂2

t Y , which implies that ∂tY |t=0
belongs to H s(Td) for all s. Hence, we may differentiate the equation in t , recover a
homogeneous Dirichlet condition by a change of unknown, and apply the previous argu-
ments. Reasoning recursively, we obtain easily: for all γ ∈ Nd , and all k ≥ 1,∫

R+
(‖N t
∇θ∂

γ
θ Y‖

2
H s (Td ) + ‖∂

k
t Y‖

2
H s (Td )) ≤ C(F, s, k) < +∞. (2.13)

We point out here that we lack an estimate for Y itself, that is, without any derivative.

Well-posedness. The existence of solutions that satisfy the previous energy estimate can
be obtained from standard elliptic regularization of the system. One can for instance con-
sider the approximate problems−δ1θV −

(
N t
∇θ

∂t

)
· B(θ, t)

(
N t
∇θ

∂t

)
V = 0, t > a,

V (θ, t = a) = V0(θ, t = a), t = a,

for a small parameter δ > 0. As the system is strongly elliptic for each δ, one can easily
show existence and uniqueness of a smooth solution Vδ that satisfies all previous estimates
uniformly with respect to δ. As δ → 0, one easily gets a smooth solution V of (2.5).
Uniqueness follows from the basic estimate (2.10).

2.4. Behavior at infinity

The next step in the study of the boundary layer is to understand the behavior of V as t
goes to infinity. In this subsection, we will use the assumption (A) to prove the existence
of a limit when t goes to infinity for V . First, assumption (A) ensures the following
inequality: ∫

Td
|N t
∇θ ϕ̃|

2
≥ c‖ϕ̃‖2

H−l(Td ) (2.14)

for smooth enough ϕ̃ = ϕ̃(θ)with zero average. Combining (2.14) with (2.11), we deduce
that for any s ∈ N,∫

+∞

a

(‖Ṽ ‖2
H s (Td ) + ‖∂

k
t V ‖

2
H s (Td )) ≤ C(F, s, k) < +∞, (2.15)
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where we decompose

V (θ, t) = Ṽ (θ, t)+ V̄ (t),

∫
Td
Ṽ dθ = 0.

This implies that for all γ ∈ Nd and k ∈ N, we have, uniformly in θ

∂
γ
θ ∂

k
t Ṽ → 0, ∂

γ
θ ∂

k+1
t V → 0, t →+∞.

However, the behavior of the average V̄ and the speed of convergence are not specified.
This is the purpose of the next proposition.

Proposition 4. There exists a constant vector va ∈ Rn such that

lim
t→+∞

V = va .

More precisely,
lim

t→+∞
|tm∂

γ
θ ∂

k
t (V − v

a)| = 0

for all m ∈ N, γ ∈ Nd , k ∈ N, uniformly in θ .

Note that the solution V of (2.5) depends on a (and also on B,M , V0), a fact that we have
omitted so far in our notation. Here, we only keep track of this dependence in the limit va ,
as it will be of interest to us later on.

Proof. To prove Proposition 4, we establish an integro-differential inequality for

f (T ) :=
∫

Td

∫
+∞

T

(|N t
∇θV |

2
+ |∂tV |

2) dt dθ.

Let T > a, and for t ≥ T , define

W := V −
∫

Td
V (θ, T ) dθ.

For t ≥ T , W satisfies

−

(
N t
∇θ

∂t

)
· B(θ, t)

(
N t
∇θ

∂t

)
W = 0.

Multiplying by W and integrating over θ ∈ Td , t ≥ T , we get∫
Td

∫
+∞

T

(|N t
∇θW |

2
+ |∂tW |

2) = −

∫
Td

[(
0d−1

1

)
· B
(
N t
∇θ

∂t

)
W

]
W(θ, T ) dθ

≤ C

(∫
Td
(|N t
∇θW |

2
+ |∂tW |

2)(θ, T ) dθ

)1/2(∫
Td
|W(θ, T )|2 dθ

)1/2

.
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As ∇θW = ∇θV, ∂tW = ∂tV, and W(θ, T ) = Ṽ (θ, T ), this last inequality reads

f (T ) ≤ C(−f ′(T ))1/2
(∫

Td
|Ṽ (θ, T )|2 dθ

)1/2

.

Now, by assumption (A), for all 1 < p < +∞, and all smooth enough ϕ̃ with zero
average, we have∫

Td
|ϕ̃|2 dθ ≤ C

(∫
Td
|N t
∇θ ϕ̃|

2
)1/p

(‖ϕ̃‖H l/(p−1)(Td ))
2−2/p,

where the index l is the same as in (A). This inequality is a straightforward consequence
of the Plancherel formula and the Hölder inequality (together with the small divisor as-
sumption). Applying this to Ṽ (θ, T ), we obtain∫

Td
|Ṽ (θ, T )|2 dθ ≤ (−f ′(T ))1/p(‖Ṽ (·, T )‖H l/(p−1)(Td ))

2−2/p
≤ C(−f ′(T ))1/p

bounding the last term thanks to (2.15). This yields the integro-differential inequality

f (T ) ≤ C(p)(−f ′(T ))
p+1
2p (2.16)

for any 1 < p < +∞. This leads in turn to

f (T ) ≤ C′(p)T
p+1
1−p .

It shows that f (T ) decays faster than any power of T as T goes to infinity.
By differentiation of (2.5)1 and similar estimates, one shows by induction on |α| + k

that

fγ,k(T ) :=
∫

Td

∫
+∞

T

(|N t
∇θ∂

γ
θ ∂

k
t V |

2
+ |∂t∂

γ
θ ∂

k
t V |

2) dt dθ

decays faster than any power of T , for any γ , k. More precisely, assuming that such decay
holds for all fβ,l with |β| + l < s, the energy estimate (2.16) is easily replaced by

fγ,k(T ) ≤ C(p, n)((−f
′

γ,k(T ))
p+1
2p + T −n), ∀n, p > 1, ∀γ, k with |γ | + k = s.

Hence, one gets

fγ,k(T )+ T
p+1
1−p ≤ C((−f ′γ,k(T ))

p+1
2p + T

p+1
1−p ) ≤ C′(−f ′γ,k(T )+ T

2p
1−p )

p+1
2p ,

that is,

gγ,k(T ) ≤ C
′′(−g′γ,k(T ))

p+1
2p , gγ,k(T ) := fγ,k(T )+ T

p+1
1−p ,

and one can conclude as above.
Using again (2.14) and Sobolev imbedding, we deduce that

lim
t→+∞

|tm∂
γ
θ ∂

k
t Ṽ | = 0, lim

t→+∞
|tm∂

γ
θ ∂

k+1
t V | = 0,

for all m ∈ N, γ ∈ Nd , k ∈ N, uniformly in θ .
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It remains to show the convergence of the average V̄ = V̄ (t). We write

|V̄ (t + h)− V̄ (t)| ≤

∫ t+h

t

∣∣∣∣ ddt V̄
∣∣∣∣ ≤ C(p) ∫ t+h

t

(1+ s)−p ds

for all p. This shows that V̄ (t) is a Cauchy function, hence convergent to a constant
vector va as t goes to infinity. Moreover, the rate of convergence is faster than any power
function of t .

Back to the original system (2.3), previous results provide a unique smooth solution
v = v(z) that converges to a constant va as zd → +∞. Looking closer at Proposition 4
and its proof, we have: for all m ∈ N, γ ∈ Nd−1, k ∈ N,

lim
zd−a→+∞

|(zd − a)
m∂

γ

z′
∂kzd (v − v

a)| = 0, (2.17)

locally uniformly in z′, and uniformly in a. We end this section with a crucial property of
the constant vector va .

Proposition 5. LetM be the matrix given in (2.3), and ed = (0, . . . , 0, 1) the d-th canon-
ical vector. If Med 6∈ RQd , then va is independent of a.

Note that in the case M = Mk (cf. (2.2)), Med = nk is a normal vector at ∂� ∩Kk .

Proof. We start from the following lemma:

Lemma 6. va depends continuously on a.

Proof of the lemma. Let a and a′ be two real values, and V , V ′ the corresponding solu-
tions of (2.5). We denote δ = a′ − a. We introduce

V ′δ(θ, t) = V
′(θ, t + δ), θ ∈ Td , t > a.

We have
|V ′δ(θ, t)− V

′(θ, t)| ≤ |δ| ‖∂tV
′
‖L∞ ≤ C|δ|. (2.18)

Now, V and V ′δ are defined on the same domain, and W = V − V ′δ satisfies−
(
N t
∇θ

∂t

)
· B(θ, t)

(
N t
∇θ

∂t

)
W = F, t > a,

W = W0, t = a,

(2.19)

where

F :=
(
N t
∇θ

∂t

)
· (B(θ, t)−B(θ, t + δ))

(
N t
∇θ

∂t

)
V ′δ , W0 := V0(θ, a)− V0(θ, a+ δ).

Note that these source terms satisfy

|∂αθ ∂
k
t F | + |∂

α
θ ∂

k
t W0| ≤ Cα,k|δ|, ∀α, k.
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Moreover, by Proposition 4, F and its derivatives converge to zero uniformly in θ , faster
than any power of t . With this decay property, it is straightforward to adapt the energy
estimates performed in the proof of Propositions 2 and 4. As a consequence, using again
assumption (A), we deduce that W satisfies ‖W‖L∞ ≤ C|δ|, which reads

|V (θ, t)− V ′δ(θ, t)| ≤ C|δ| (2.20)

uniformly in θ , t . Combining (2.18), (2.20) we deduce that as t goes to infinity,

|va − va
′

| ≤ C|a − a′|,

which proves the lemma.

We can now end the proof of Proposition 5. Let ξ ∈ Zd . If v satisfies system (2.3),
then vξ (z) = v(z+ (M)tξ) satisfies{

−∇z · B(Mz)∇zvξ = 0, zd > a − ξ ·Med ,

vξ (z) = v0(Mz), zd = a − ξ ·Med .

This is deduced easily from the periodicity of B and v0 and the property (M)t = M−1.
Hence, the constant at infinity satisfies

va = va−ξ ·Med .

If Med 6∈ αQ, for any α ∈ R, then the set {ξ · Med : k ∈ Zd} is dense in R, and by
continuity of va with respect to a, the result follows.

3. High order approximation

Thanks to the boundary layer analysis of the previous section, we shall prove Theorem 1.
From now on, we consider a convex polygonal domain � =

⋂N
k=1{x : nk · x > ck} with

inward normal vector n = nk satisfying (A) for all k.

3.1. Choice of u1 and u2. Discussion of the assumptions (A0) and (A1)

The first step of the proof is to derive the fields u1 and u2 for which (1.8) should hold.
As described in the introduction, the starting point of this derivation is a formal two-scale
expansion of the solution

uε ≈ u0(x)+ εu1(x, x/ε)+ ε2u2(x, x/ε)+ · · ·

whose formal computation is detailed in [1]. The leading term u0 satisfies the homog-
enized problem (1.3). The next order term u1 satisfies (1.5)–(1.11). Finally, the second
order term u2 is given by (1.10).
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Of course, system (1.11) is not enough to determine ū1, as boundary conditions must
be prescribed at ∂�. These conditions should account for boundary layer phenomena.
More precisely, we expect an asymptotics of the type

uε ≈ u0(x)+ εu1(x, x/ε)+ εu
1,ε
bl (x)+ · · ·

where u1,ε
bl satisfies the Dirichlet problem (1.12). Following the formal considerations of

Section 2, we want to approximate this last term by

u
1,ε
bl (x) ≈

N∑
k=1

vkbl(x, x/ε)

where the boundary layer correctors vkbl satisfy systems (2.1).
Broadly, the results of the previous section show that there exists some vk,∞(x) such

that
vkbl(x, y)→ vk,∞(x) as y · nk − ck/ε→+∞,

uniformly with respect to x and ε. Moreover, the rate of convergence is faster than any
negative power of |y · nk − ck/ε|. See (2.17). The idea is to choose ū1 at ∂� so that
vk,∞ = 0 for all k. In this way, the boundary layer term should be negligible in each
compact subset of �, allowing for an estimate like (1.8). To be more specific, let v be the
solution of (2.3) provided by Proposition 2, under assumption (A). From Propositions 4
and 5,

v(z)→ v∞ = v∞[B,M, v0] as zd →+∞, uniformly in z′.

Back to systems (2.1)–(2.2), we introduce for all 1 ≤ α ≤ d, and all 1 ≤ k ≤ N , the
matrix Gk,α ∈ Mn(R) whose j -th column is defined by

(G
k,α
ij )1≤i≤n := −v∞[Bk,Mk, (χαij )1≤i≤n], ∀1 ≤ j ≤ n.

Finally, we set

ū1
= Gk,α

∂u0

∂xα
(x), x ∈ ∂� ∩Kk, 1 ≤ k ≤ N. (3.1)

As u0 is zero at the boundary ∂�, this boundary condition is the same as the Robin type
condition (1.13), setting

0kij :=
d∑
α=1

G
k,α
ij n

k
α, nk = (nkα)1≤α≤d , ∀i, j = 1, . . . , n. (3.2)

System (1.11)–(1.13) is well-posed if u0 is regular enough:

Proposition 7. If u0
∈ W 2,∞(�), there exists a unique solution ū1

∈ H 1(�) of (1.11)–
(1.13).
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Proof. The main point is to show that the boundary data belongs to H 1/2(∂�), i.e. there
exists a U1

∈ H 1(�) such that

U1
= 0k∂nu

0, x ∈ ∂� ∩Kk, 1 ≤ k ≤ N.

Afterwards, introducing v1
= u1

− U1, one obtains an elliptic problem with a homo-
geneous boundary condition and an H−1(�) source term. It has a unique variational
solution, which yields well-posedness for (1.11)–(1.13).

The difficulty is the lack of regularity near the edges and vertices of �. When d = 2,
the situation is easier. LetO be a vertex. We can assume, up to reindexing the hyperplanes,
thatO belongs toH 1 andH 2. Then one can even find a constant matrixG = (G1,G2) ∈

Mn(R)×Mn(R) such that in the vicinity of 0,

U1 := Gα∂αu0
= 0k∂nu

0, x ∈ ∂� ∩Kk, k = 1, 2. (3.3)

Indeed, condition (3.3) reads

Gαnkα = 0
k, k = 1, 2.

Thus, to prove the existence of G, it is enough to show that the linear mapping

Mn(R)×Mn(R)→ Mn(R)×Mn(R), G 7→ (Gαn1
α,G

αn2
α),

is surjective. This follows from its straightforward injectivity. Note that in this case, only
H 2 regularity of u0 is needed.

Note also that the previous reasoning extends directly to the case of an edge (that is,
the intersection of two hyperplanes) in dimension d = 3. Let finally O be a vertex of
� ⊂ R3, belonging to M sides supported by H 1, . . . , HM . Let us consider a plane H
near 0, transverse to the M sides. It intersects � along a two-dimensional polygon �̃.
Locally near 0, we can describe � by spherical type coordinates, that is,

� = {rs : 0 < r < δ, s ∈ �̃}.

Applying the results of the case d = 2, we can find a smooth function

G = (G1,G2) : �̃→ Mn(R)×Mn(R)

satisfying
2∑
α=1

Gα(x) · nkα = 0k, x ∈ Kk
∩ ∂�̃, 1 ≤ k ≤ d ′.

Note thatG is constant near each vertex of �̃. Back to the domain �, we define the lift of
the boundary data as

U1(x) = U1(ts) :=
2∑
α=1

Gα(s)∂xαu
0(ts).

Using the fact that u0
∈ W 2,∞ and ∇u0

|t=0 = 0, one can easily see that U1
∈ H 1(�).

This ends the proof of Proposition 7.
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With the corrections u1 and u2 at hand, we will be able to prove the energy estimate
(1.8), under the assumptions (A0) and (A1). Let us discuss a little these regularity require-
ments. Again, the main point is the irregularity of �, which limits the smoothing effect
of the elliptic operator ∇ · A0

∇. Elliptic theory for such polygonal domains has been the
subject of many papers. We refer to the textbooks [10, 9].

Broadly, for an arbitrary smooth f in (1.3), one cannot expect H s regularity for u0

when s > 2. For the assumption (A0) to hold, f must satisfy some compatibility condi-
tions. These compatibility conditions do not take a simple form, even for a scalar equation
(n = 1) in dimension 2. For instance, except in the case where the angles of the polygon
are of the type ω = π/n, n ∈ N, these conditions are not local near the vertices. We refer
to [10] for details. From this point of view, assumption (A0) is restrictive.

We stress, however, that if u0 is regular enough, assumption (A1) is quite natural. For
instance, if n = 1, d = 2, and u0

∈ H 4(�), then U1
∈ H 3(�) ∩ C1(�) where U1 is

the lift of the boundary data built in the previous proposition. As a result, v1
= u1

− U1

satisfies an elliptic equation with constant coefficients, homogeneous boundary condition
and source term in H 1. The H 2

∩ C1 regularity of v1 then follows from standard theory
for the Laplace equation in polygonal domains.

Let us stress again that by the same theory, we do not expect u1 to be in H s(�) with
s > 2. In other words, we do not know if the compatibility conditions imposed on f
should be satisfied by the source term in the equation for v1. We pay attention to this in
the next section, where we try to use as little regularity of u0 and u1 as possible. From
now on, we assume (A0) and (A1).

3.2. Outline of the proof

For i = 1, 2, let ui = ui(x, y) be as in the previous subsection, and let ui,εbl be the
solutions of {

−∇ · A(x/ε)∇u
i,ε
bl = 0, x ∈ �,

u
i,ε
bl = −u

i(x, x/ε), x ∈ ∂�.
(3.4)

In the next subsections we shall prove the following error estimates:

1. “Global error estimate”:

‖eε‖H 1(�) = O(ε
2),

eε := uε − u0(x)− εu1(x, x/ε)− ε2u2(x, x/ε)− εu
1,ε
bl (x)− ε

2u
2,ε
bl (x).

2. “Boundary error estimate”:

‖eεbl‖L2(�) = O(ε), eεbl := u1,ε
bl −

N∑
k=1

vkbl(x, x/ε)+ εu
2,ε
bl ,

where vkbl(x, y) is the solution of (2.1) built in the previous section.
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Before we establish these bounds, let us show how they imply Theorem 1. Let ω b �. By
the “global error estimate”, we get

‖uε − u0(x)− εu1(x, x/ε)− ε2u2(x, x/ε)‖H 1(ω)

≤ Cε2
+

∥∥∥ N∑
k=1

vkbl(x, x/ε)

∥∥∥
H 1(ω)

+ ε‖eεbl‖H 1(ω).

By our choice of ū1, the boundary layer terms vkbl(x, y) are fast decreasing to zero as the
normal coordinate y · nk − ck/ε goes to +∞, uniformly in x and ε. The same holds for
their derivatives (cf. Proposition 5). Precisely,∥∥∥ N∑

k=1

vkbl(x, x/ε)

∥∥∥
H s (ω′)

= O(εm), ∀s ≤ 2, ∀m, ∀ω′ b �. (3.5)

Then eεbl satisfies

∇ · A(x/ε)∇eεbl = r
ε
bl, rεbl := −∇ · A(x/ε)∇

N∑
k=1

vkbl(x, x/ε), x ∈ �.

Let 0 ≤ ϕ(x) ≤ 1 be compactly supported in �, with ϕ = 1 in ω. A standard energy
estimate yields∫

�

ϕ2A(x/ε)∇eεbl · ∇e
ε
bl dx = −2

∫
�

ϕeεbl · (A(x/ε)∇e
ε
bl · ∇ϕ) dx +

∫
�

rεbl · ϕ
2eεbl .

Using the decay properties (3.5), the remainder term satisfies ‖rεbl‖L2(ω′) = O(ε
m) for all

s,m, and for any ω′ b � containing the support of ϕ. Thus, the above inequality implies

‖eεbl‖H 1(ω) ≤ C‖e
ε
bl‖L2(�) + Cmε

m, ∀m.

Thus, we get

‖uε − u0(x)− εu1(x, x/ε)− ε2u2(x, x/ε)‖H 1(ω) ≤ C(ε
2
+ ε‖eεbl‖L2(�)).

Combining this bound with the “boundary error estimate”, we obtain (1.8), which ends the
proof of Theorem 1. Actually, we have the following improved estimate which accounts
for the homogenized boundary layer:

Corollary 8. Under the assumptions of Theorem 1, we also have the following global
estimate: ∥∥∥uε − u0(x)− εu1(x, x/ε)− ε

N∑
k=1

vkbl(x, x/ε)

∥∥∥
L2(�)

≤ Cε2. (3.6)

We point out that the difference between Theorem 1 and Corollary 8 is that Theorem 1
justifies the term u2(x, y) in the expansion since it gives an H 1 estimate whereas Corol-
lary 8 justifies the boundary layer behavior since it holds up to the boundary. Of course,
it only holds in L2.
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3.3. Global energy estimate

This subsection is devoted to the proof of an O(ε2) estimate for eε in H 1(�). We have

−∇ · A(·/ε)∇eε = rε, x ∈ �, eε|∂� = 0, (3.7)

where the remainder term rε is given by

rε(x) := ε∇x · ( ˜A∇xu1 + A∇yu2)(x, x/ε)+ ε∇y · (A∇xu
2)(x, x/ε)

+ ε2
∇x · (A∇xu

2)(x, x/ε), (3.8)

with the tilde denoting the oscillating part (with zero average with respect to y). As the
source term is a priori of order ε, one cannot obtain an O(ε2) bound straightforwardly.
To gain extra powers of ε, a standard trick is then to introduce a field W = W(x, y) such
that

∇y ·W = ∇x · (
˜A∇xu1 + A∇yu2). (3.9)

Note that if W satisfies this relation, setting

V (x, y) = W(x, y)+ A(y)∇xu
2(x, y),

we can write

rε(x) = ε∇y ·W(x, x/ε)++ε∇y · (A∇xu
2)(x, x/ε)+ ε2

∇x · (A∇xu
2)(x, x/ε)

= ε∇y · V (x, x/ε)+ ε
2
∇x · (A∇xu

2)(x, x/ε)

= ε2
∇ · [V (·, ·/ε)](x)− ε2

∇x ·W(x, x/ε). (3.10)

This last expression is formally enough to derive anO(ε2) bound. But there is a regularity
issue. The r.h.s. in (3.9) involves a priori three derivatives of u0 and two derivatives of ū1.
By (A0)–(A1), if we do not choose the solution W of (3.9) carefully, it will only be L2

with respect to x. That will not be enough to control the last term in the above expression
for F ε.

Inspired by ideas of Bensoussan, Lions and Papanicolaou [6], we notice that, as

∇y · (A∇xu
0
+ A∇yu

1) = 0,

we can write
˜A∇xu0 + A∇yu1 = curly ψ,

for some ψ = ψ(x, y) with zero average with respect to y. By the assumptions on u0, u1,
the field ψ is smooth with respect to y and has H 2 regularity with respect to x. Then, by
construction of u2,

∇y · (A∇xu
1
+ A∇yu

2) = −∇x · (
˜A∇xu0 + A∇yu1) = −∇x · curly ψ = ∇y · curlx ψ.

Again, this implies that there exists φ = φ(x, y) with zero average in y such that

˜A∇xu1 + A∇yu2 − curlx ψ = curly φ.
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The field φ is smooth with respect to y and has H 1 regularity with respect to x. Finally,
we get

∇x · (
˜A∇xu1 + A∇yu2) = ∇x · (curlx ψ + curly φ) = ∇x · curly φ = −∇y · curlx φ.

Thus, we can set
W(x, y) = − curlx φ(x, y)

which is smooth with respect to y and has L2 regularity with respect to x. The key point
is that ∇x ·W = 0, so that there is no lack of regularity.

From these considerations, it follows easily that

‖rε‖H−1 ≤ αε
2

with a constant α depending only on the H 2 norm of u1, and the H 3 norm of u0. Back to
(3.7), a simple energy estimate gives the O(ε2) bound.

3.4. Boundary layer estimate

This subsection is devoted to the homogenization of the system{
−∇ · A(·/ε)∇uεbl = 0, x ∈ ∂�,

uεbl = −u
1(x, x/ε)− εu2(x, x/ε), x ∈ ∂�.

which is satisfied by uεbl := u1,ε
bl + εu

2,ε
bl . We expect uεbl to have an expansion of the type

uεbl ≈

N∑
k=1

(vkbl(x, x/ε)+ εw
k
bl(x, x/ε))

where vkbl = v
k
bl(x, y), w

k
bl = w

k
bl(x, y) are defined on the half-space�ε,k (cf. Section 2).

Plugging the expansion in the system satisfied by uεbl , one finds that vkbl satisfies the
system (2.1). The well-posedness and qualitative properties of this system have already
been discussed. By our choice of ū1, the solution vkbl converges to 0 as y · nk − ck/ε →
+∞, with a decay rate better than any power of |y · nk − ck/ε|.

The next order term wkbl satisfies formally:{
−∇y · A∇yw

k
bl = f

k, y ∈ �ε,k,

wkbl = −u2(x, y), y ∈ ∂�ε,k,
(3.11)

f k := ∇x · A∇yvkbl +∇y · A∇xv
k
bl .

Remark that, by decay properties of vkbl , f
k goes rapidly to zero as y · nk − ck/ε→+∞.

System (3.11) is of course very similar to (2.1), and can be solved in a similar manner,
taking advantage of a quasiperiodic setting. Proceeding exactly as in Section 2, it amounts
to solving a problem of the form (2.7), with an H which is not anymore of compact
support, but satisfies tm∂αθ ∂

k
t H ∈ L

2 for all m,α, k. The arguments for well-posedness
and convergence far from the boundary extend easily to this setting. In particular, the
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conclusions of Propositions 4 and 5 are still valid. Hence, one can find wkbl = w
k
bl(x, y)

solving (3.11), that converges fast to some wk,∞(x) as y · nk − ck/ε → +∞. Note that
wkbl involves linearly second order derivatives of u0, and first order derivatives of ū1, so
that it has H 1

∩ C0 regularity with respect to x.
Our goal is to derive an O(ε) bound in L2(�) for ẽεbl := eεbl − ε

∑
wkbl(x, x/ε). As

‖wkbl(x, x/ε)‖L2(�) = O(1)

the “boundary error estimate” will follow, concluding the proof of Theorem 1. The field
ẽεbl satisfies

−∇ · A(·/ε)∇ ẽεbl = r
ε
bl, x ∈ �, ẽεbl |∂� = ϕ

ε
bl,

where

rεbl :=
∑
∇x · (A∇xv

k
bl + A∇yw

k
bl)(x, x/ε)+ ε

∑
∇ · (A∇xw

k
bl(·, ·/ε))(x), (3.12)

ϕεbl := −u1(x, x/ε)− εu2(x, x/ε)−
∑

(vkbl(x, x/ε)+ εw
k
bl(x, x/ε))|∂�. (3.13)

Control of the source term. The source term rεbl is made of two terms. The second term
on the r.h.s. of (3.12) is of the type ε∇ · Rε where ‖Rε‖L2(�) ≤ C.

The first term on the r.h.s. of (3.12) reads
∑
rk(x, x/ε) for some rk = rk(x, y) built

from ∇xvkbl and ∇ywkbl . By properties of these boundary layer profiles, the field rk has L2

regularity in x, is smooth in y, and goes to zero as y · nk − ck/ε→ +∞, faster than any
power of y · nk − ck/ε uniformly in x and ε. For any e ∈ H 1

0 (�), we have∣∣∣∣∫
�

rk(x, x/ε) · e(x) dx

∣∣∣∣ ≤ ∫
�

|rk|(x, x/ε)d(x, ∂�)
|e|

d(x, ∂�)
dx

≤

∫
�

|rk|(x, x/ε)d(x,K
k)

|e|

d(x, ∂�)
dx

≤

∫
�

|rk|(x, x/ε)|x · n
k
− ck|

|e|

d(x, ∂�)
dx

≤ ε

∫
sup
y
|rk(x, y)| |y · nk − ck/ε|

|e|

d(x, ∂�)
dx

≤ Cε‖∇e‖L2(�)

where the last inequality stems from Cauchy–Schwarz’ and Hardy’s inequalities.
Gathering these bounds gives

‖rεbl‖H−1(�) ≤ Cε. (3.14)

Control of the boundary term. We will prove that

‖ϕεbl‖W 1−1/p,p(∂�) ≤ C(p)ε, ∀p < 2. (3.15)

Before that, let us show how this implies the bound we want on ẽεbl . First, it allows us to
introduce a field φε satisfying, for all p < 2,

φε ∈ W 1,p(�), φε|∂� = ϕ
ε
bl, ‖φε‖W 1,p(�) = O(ε).
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The remaining term eε = ẽεbl − φ
ε satisfies

∇·(A(x/ε)∇eε) = F ε in �, eε|∂� = 0, F ε = rεbl−∇·(A(x/ε)∇φ
ε) ∈ W−1,p(�).

We can now apply general results of Meyers [12] on elliptic equations in divergence form
with bounded coefficients. These results extend straightforwardly to elliptic systems (i.e.
when n > 1). As a result, there exists pm < 2 such that for all pm < p < 2, eε satisfies

‖eε‖W 1,p(�) ≤ C(p)‖F
ε
‖W−1,p(�) ≤ C(p)ε,

combining (3.14) and the estimate on φε. The L2 estimate on eε, and then on ẽεbl , follows
from Sobolev imbedding.

Hence, the last step is to obtain (3.15). We first focus on one part of ϕεbl , namely

ϕv : x 7→ −u1(x, x/ε)−
∑
k

vkbl(x, x/ε).

We shall prove that
‖ϕv‖W 1−1/p,p(∂�) = O(ε), ∀p < 2.

By construction of the vkbl’s, one can decompose

ϕv(x) = V (x, x/ε)∇u
0(x) :=

(
−χ(x/ε)+

∑
k

V k(x/ε)
)
∇u0(x),

where

V = V α(y), χ = χα(y), V k = V k,α(y) ∈ Mn(R), α = 1, . . . , d, k = 1, . . . , N,

denote as usual families of matrix fields. Note that χ is the solution of the cell problem
(1.4). By construction of the boundary layer profiles, vkbl and its derivatives go to zero
uniformly as y · nk − ck/ε → +∞, faster than any negative power of y · nk − ck/ε.
Moreover, for any k,

ϕv|∂�∩Kk = −
∑
j 6=k

V j (x/ε)∇u0(x).

Let ψ be a smooth function on ∂�, compactly supported outside a neighborhood of the
edges and vertices of �. The above remarks lead to: for all p < 2,

‖ψϕv‖W 1−1/p,p(∂�) ≤ ‖ψϕv‖H 1/2(∂�) = Cs,mε
m
‖∇u0

‖H 1/2(∂�) ≤ C
′
s,mε

m, ∀m, s.

Hence, the main problem in establishing the O(ε) bound comes from the edges and ver-
tices of the polygon. In particular, we will need to use cancellation properties of ∇u0

there.
Let us first consider the case n = 2. Let O be a vertex of �. We introduce polar

coordinates r = r(x), θ = θ(x), centered atO. Letψ be a smooth function supported this



Homogenization in polygonal domains 1499

time in the vicinity ofO in ∂�. We recall the standard estimate: for all f, g ∈ L∞(∂�)∩
W 1−1/p,p(∂�),

‖fg‖W 1−1/p,p(∂�) ≤ C(‖f ‖L∞(∂�)‖g‖W 1−1/p,p(∂�) + ‖g‖L∞(∂�)‖f ‖W 1−1/p,p(∂�)).

(3.16)
Hence, we deduce

‖ψ2ϕv‖W 1−1/p,p(∂�) ≤

∥∥∥∥ψ∇u0

r

∥∥∥∥
W 1−1/p,p(∂�)

‖ψrV (·/ε)‖L∞(∂�)

+

∥∥∥∥ψ∇u0

r

∥∥∥∥
L∞(∂�)

‖ψrV (·/ε)‖W 1−1/p,p(∂�).

We emphasize that

ψ
∇u0

r
∈ L∞(∂�) ∩W 1−1/p,p(∂�), ∀p < 2.

Indeed, as u0 satisfies a Dirichlet condition at ∂�, ∇u0 cancels at the vertex O, and
Taylor’s formula gives

∇u0(x)

r
=

x

|x|
·

∫ 1

0
∇∇u0(tx) dt.

By assumption (A0), it clearly belongs to L∞(∂�) and to W 1,p(�), hence to
W 1−1/p,p(∂�). Note however that it does not belong a priori to H 1/2(∂�). That is why
we consider Lp spaces for p < 2 and use the Meyers theorem.

It remains to control the function rV (·/ε) in the vicinity of O in ∂�. This vertex
belongs to two sides, say K1

∩ ∂� and K2
∩ ∂�. We can always assume that θ = 0

corresponds to K1 and θ = ω corresponds to K2. Note that by convexity, 0 < ω < π .
For j 6= 1, by properties of the boundary layer profiles,

‖ψrV j (·/ε)‖H s (∂�∩K2) = O(ε
m), ∀m, s.

We can therefore neglect such terms. Then

‖ψrV (·/ε)‖L∞(∂�∩K2) ≤ C sup
r>0

r|V 1(r cosω/ε, r sinω/ε)|

≤ c
ε

sinω
sup
y
|y2| |V

1(y1, y2)| ≤ Cε.

Similarly,

‖ψrV (·/ε)‖Lp(∂�∩K2) ≤ C
ε1+1/p

(sinω)1/p
sup
y1

(∫
+∞

0
|V 1(y1, y2)|

p dy2

)1/p

≤ C′ε1+1/p.

Applying the same reasoning to the tangential derivatives, we get

‖ψrV (·/ε)‖H 1(∂�∩K2) ≤ C
′ε1/p.
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We can of course proceed in a similar way with the other hyperplane K1, and we end up
with

‖ψrV (·/ε)‖L∞(∂�) = O(ε),

‖ψrV (·/ε)‖L1(∂�) = O(ε
1+1/p), ‖ψrV (·/ε)‖W 1,p(∂�) = O(ε

1/p).

By interpolation of the last two inequalities, we get

‖ψrV (·/ε)‖W 1−1/p,p(∂�) = O(ε
2/p),

which gives the bound we want for the case d = 2.
When d = 3, the computations are almost the same. We have to distinguish between

the case of an edge and the case of a vertex.

• In the neighborhood of an edge, but far from a vertex, one can use locally cylindrical
coordinates (r, θ, z), where r = 0 corresponds to the edge, z is the variable along the
edge, and θ is the angular variable. Again, the edge is the intersection of two hyper-
planes K1 and K2, with θ = 0 corresponding to K1, whereas θ = ω corresponds
to K2. The computation is exactly the same as for d = 2, and we leave the details to
the reader.
• In the neighborhood of a vertex O, one can use spherical type coordinates. Precisely,

we consider a plane H near O, transverse to the sides that contain O. Its intersection
with � is a two-dimensional polygon �̃. We describe ∂� near O by the coordinates
x = rs, r > 0, s ∈ ∂�̃. We use this time the decomposition

ψ2ϕv = (ψ |rs|V (x/ε))

(
ψ
∇u0(x)

|rs|

)
forψ = ψ(x) a function compactly supported nearO. Thanks to (3.16), we must again
evaluate (ψ |rs|V )(x/ε). For instance,

‖ψ |rs|V (x/ε)‖L∞(∂�) ≤ ε sup
σ∈(r/ε)∂�̃

|σ |V (σ) ≤ Cε.

The treatments of the Lp norm and W 1,p norm are similar. We end up with

‖ψ |rs|V (x/ε)‖W 1−1/p,p(∂�) ≤ Cε
2/p,

which concludes the study of ϕv .

To establish inequality (3.15), it remains to handle the other part of ϕεbl . Namely,

ϕw := −u2(x, x/ε)−
∑
k

wkbl(x, x/ε)

should satisfy
‖ϕw‖W 1−1/p,p(∂�) = O(1), ∀p < 2.
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Again, by the properties of the wkbl’s, we can write

ϕw =W(x/ε)∇2u0(x)+W(x/ε)∇ū1(x)

:=
(
−ϒ(x/ε)+

∑
k

Wk(x/ε)
)
∇

2u0(x)+
(
−χ(x/ε)+

∑
k

W k(x/ε)
)
∇ū1(x),

where

W =Wαβ(y), ϒ = ϒαβ(y), Wk
=Wk,αβ(y) ∈ Mn(R),

α, β = 1, . . . , d, k = 1, . . . , N,

and

W = Wα(y), χ = χα(y), W k
= W k,α(y) ∈ Mn(R),

α = 1, . . . , d, k = 1, . . . , N.

Note that ϒ and χ are the same families as in (1.9) and (1.4).
Unlike the previous fields V k , the fields Wk , resp. W k converge to non-zero constant

fieldsWk,∞, resp. W k,∞. To overcome this difficulty, we introduce the field ϕ∞w , defined
by

ϕ∞w :=
∑
j 6=k

Wj,∞
∇

2u0(x)+
∑
j 6=k

W j,∞
∇ū1(x), x ∈ ∂� ∩Kk.

Note that ϕ∞w can be decomposed into products of the type fg, where:

• f involves either second derivatives of u0 or first derivatives of u1. By (A0) and (A1),
it belongs to H 1(�) ∩ C0(�).
• g = gk is constant on each hyperplane Kk . Direct verifications show that

g ∈ W 1−1/p,p(∂�), ∀p < 2.

For instance, when d = 2, the only regularity problem lies at the vertices of�. LetO be
such a vertex, belonging for instance toK1

∩K2. It is then enough to findG ∈ W 1,p(�)

such that G|∂� = g in the vicinity of O. As before, we consider polar coordinates r, θ
centered at 0. The angle θ = 0 corresponds to K1, and θ = ω corresponds to H l . We
take

G =

(
1− sin

(
πθ

2ω

))
g1 + g2 sin

(
πθ

2ω

)
∈ W 1,p(�), ∀p < 2.

We stress that such a field G is not in H 1(�), so that considering p < 2 is again
needed. When d = 3, the treatment is similar and left to the reader.

We deduce that ‖ϕ∞w ‖W 1−1/p,p(∂�) < +∞. Now, for any k = 1, . . . , N , and all x ∈
∂� ∩Kk , one has

ϕw(x) = ϕ
∞
w (x)+

∑
j 6=k

(Wj (x/ε)−Wj,∞)∇2u0(x)+ (W j (x/ε)−W j,∞)∇ū1(x).



1502 David Gérard-Varet, Nader Masmoudi

Hence, up to replacing ϕw by ϕw − ϕ∞w , we can always assume that Wk,∞
= 0,

W k,∞
= 0.

At this point, the estimate on ϕw can be obtained along the same lines as the estimate
on ϕv . As we only need an O(1) bound, the situation is simpler: we do not need extra
terms like r (for d = 2) or rs (for d = 3) in front of the boundary layer terms W(x, x/ε)

and W(x/ε). In other words, we do not need any cancelation property for ∇2u0 or ∇ū1.
This concludes the proof of Theorem 1.
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