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Abstract. Given an orientation-preserving homeomorphism of the plane, a rotation number can be
associated with each locally attracting fixed point. Assuming that the homeomorphism is dissipative
and the rotation number vanishes we prove the existence of a second fixed point. The main tools
in the proof are Carathéodory prime ends and fixed point index. The result is applicable to some
concrete problems in the theory of periodic differential equations.

1. Introduction

Rotation numbers can be assigned to attractors in two dimensions. This is illustrated by
the figures below.

p1 p2

At an intuitive level we can say that the rotation number vanishes for p1 and must be a
non-zero number (linked to the period of the closed orbit) for p2. In this paper we analyze
some properties of attractors with zero rotation number.

The idea of associating a rotation number to an attractor has its origin in the work
of Birkhoff [5] and was fully developed by Cartwright and Littlewood in [10]. More
recently Alligood and Yorke [2] have used these ideas to explore fractal boundaries. Our
approach has many points in common with [2] but our goal is somewhat different. We
place the emphasis on results about global attraction and their applicability to differential
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equations. To be more precise, we consider an orientation-preserving homeomorphism of
the plane, denoted by h, and a fixed point p = h(p) that is asymptotically stable. The
region of attraction

U = {q ∈ R2 : lim
n→∞

hn(q) = p}

is an open and simply connected subset of R2. While this implies thatU is homeomorphic
to the open unit disc, the boundary of U can have a complicated structure. Assuming that
U 6= R2, Carathéodory’s theory of prime ends associates a copy of S1 to the boundary
of U , and the map h induces an orientation-preserving homeomorphism of S1. The cor-
responding rotation number will be denoted by ρ = ρ(h,U). Our main result says that if
ρ = 0, h is dissipative and U is unbounded then there exists a fixed point lying in R2

\U .
As a corollary one obtains a criterion for global attraction when p is the unique fixed
point. Dissipativity means that ∞ is a repeller for h. The assumption on the unbound-
edness of the region of attraction is satisfied as soon as h is area-contracting. These are
typical assumptions motivated by the theory of nonlinear oscillations.

For maps h coming from differential equations it is not easy to determine the rotation
number. This fact was pointed out by Cartwright and Littlewood when they were dealing
with the forced van der Pol equation (see in particular Section 7.1 of [10]). In order to
make our result applicable we obtain some criteria for the computation of the rotation
number. From these we derive consequences for orientation-reversing maps, extinction in
population dynamics or global attraction in nonlinear oscillators.

The paper is organized as follows. The main result is stated and proved in Section 4,
after two sections of preliminaries. Criteria for ρ = 0 are obtained in Section 5. The last
two sections, 6 and 7, are devoted to applications.

2. Asymptotic stability, prime ends and rotation numbers

We work on the plane R2 and sometimes on the Riemann sphere S2
= R2

∪ {∞}. The
topological operations of closure, boundary and interior will be denoted by cl(A), ∂A and
int(A) and understood relative to the plane. If these operations are taken with respect to
the sphere, it will be explicitly indicated in the notation. A set D contained in the plane
or the sphere is a (topological) disc if it is homeomorphic to

D = {z ∈ C : |z| ≤ 1}.

The class of homeomorphisms of the plane is denoted byH. The notationH+ will be em-
ployed for the subclass of orientation-preserving homeomorphisms. Similarly H− stands
for the orientation-reversing maps in H.

Assume now that p is a fixed point of a map h ∈ H. We say that p is stable if
there exists a basis of positively invariant neighborhoods. This means that there exists a
sequence {Un} of open sets satisfying

Un+1 ⊂ Un,
⋂
n≥0

Un = {p}, h(Un) ⊂ Un.
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The region of attraction of the fixed point p is defined as

U = {x ∈ R2 : lim
n→∞

hn(x) = p}

and it is an invariant set. The point p is called an attractor when it is contained in the
interior of U . A fixed point is asymptotically stable whenever it is a stable attractor.

Given an asymptotically stable fixed point, the region of attraction is an open and
simply connected subset of the plane (see [4]). A classical result due to Kerékjártó [16, 6]
says that the restriction of h to U is topologically conjugate to one of the two maps in C,

z 7→
1
2
z or z 7→

1
2
z.

Notice that this alternative depends on whether h belongs to H+ or to H−. Extensions of
this result to higher dimensions can be found in [13] and [14].

The above result shows that we must go to the boundary of the region of attraction,
∂U or ∂S2U , to establish topological differences among asymptotically stable fixed points.
The simplest instance occurs whenU = R2 and the point is called globally asymptotically
stable. When U 6= R2 and h is orientation-preserving, it is possible to assign a rotation
number to the fixed point. To this end we must appeal Carathéodory’s theory of prime
ends applied to ∂S2U . We follow [23] and discuss briefly this theory. A crosscut C of U
is a Jordan arc in S2 that lies on U except for the two endpoints. Notice that if U is
unbounded, one of the endpoints can be ∞. The complement U \ C is split into two
connected components. The next step is to define a null-chain (Cn) and for this purpose
we fix a point x0 in U and consider a sequence {Cn} of crosscuts with the properties

Cn ∩ Cm = ∅, diam Cn→ 0 as n→∞ and Vn+1 ⊂ Vn,

where Vn is the component of U \ Cn not containing x0. Here the diameter of Cn is
understood on the Riemann sphere.

Two null-chains (Cn) and (C′n) are equivalent if, given m,

Vn ⊂ V
′
m, V ′n ⊂ Vm

for n large enough.
The space of prime ends P = P(U) is the set of equivalence classes of null-chains.

The disjoint union U ? = U ∪ P(U) becomes a topological space in the natural way. The
open sets are the subsets of U ? determined by a crosscut and also the open subsets of U .
Indeed U ? is homeomorphic to D and its boundary is precisely P. In Carathéodory’s ap-
proach this homeomorphism was obtained as an extension of the conformal map between
int(D) andU given by Riemann’s theorem on conformal mappings. With these definitions
it is easy to extend h : U ∼= U to a homeomorphism of U ?. This homeomorphism will
preserve the boundary and the restriction to P will be denoted by h? : P → P. Since
P is homeomorphic to S1, h? is conjugate to a homeomorphism of the unit circle. This
homeomorphism is orientation-preserving if and only if h ∈ H+. This is a consequence
of well known results in the theory of manifolds with boundary. The rotation number is
defined for orientation-preserving homeomorphisms of S1. If it is interpreted as an angle
rather than a number it becomes an invariant under conjugacy. We will assume that rota-
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tion numbers are defined in T = R/Z and denote by ρ(h,U) the rotation number of h?.
To simplify the notation we will identify ρ(h,U) with a number in the interval [0, 1[.

To illustrate the previous discussions we consider a flow in the plane as indicated in
the figure below.

U

−a a0

∞a

∞b

0
a−a

U∗

The origin is a local attractor while the equilibria a and −a are unstable. We assume that
this flow has been parameterized so that all solutions are defined on the whole real line
and consider the homeomorphism h1 determined by the time-1 map associated to this
flow. The region of attraction U is the shaded region and the space P can be identified
to ∂U together with two prime ends representing infinity from above and below, say
∞a and ∞b. To describe the dynamics of h?1 we observe that it has four fixed points,
the attractors a and −a and the repellers ∞a and ∞b. This implies that ρ(h1, U) = 0.
Consider now a homeomorphism inH− obtained as the composition h2 = Sy ◦h1, where
Sy is the symmetry with respect to the y-axis. The region of attraction U does not change
and so the space P remains the same. The dynamics of h?2 is as follows: the fixed points
∞a and∞b are repellers and {a,−a} is an attracting 2-cycle. For h3 = Sx ◦ h1 there is a
repelling 2-cycle {∞a,∞b} and two attracting fixed points a and −a.

In the previous discussions the fixed point p could be replaced by an invariant con-
tinuum K ⊂ R2 having trivial shape. We recall that a planar continuum has trivial shape
if and only if the complement does not decompose the plane (see [8]). Indeed this more
general situation can be reduced to the case of fixed points. To do this it is sufficient to
observe that the quotient space R2/K is homeomorphic to R2 (see page 313 in [8]) and
so the induced map h : R2/K ∼= R2/K has a fixed point |K|. Moreover this fixed point
is asymptotically stable whenever K is a stable attractor.

Finally we observe that the construction of h? does not require an asymptotically
stable fixed point. It is sufficient to start with an open and simply connected subset of the
plane which is proper and invariant under h. For this reason we have chosen the notation
ρ(h,U) instead of making reference to the fixed point p.

3. Dissipative and area-contracting homeomorphisms

A map h ∈ H is called dissipative if there exists a compact set W ⊂ R2 that is positively
invariant and attracts uniformly all compact sets. This means that h(W) ⊂ W and for
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each x ∈ R2,
dist(hn(x),W)→ 0 as n→∞

uniformly on balls ‖x‖ ≤ r , r > 0.
This notion can be presented in several equivalent formulations and we refer to [18,

21, 24] for more information on this class of mappings. Dissipativity can be interpreted
in terms of stability theory. To do this we first extend h to S2 with h(∞) = ∞. Then∞
becomes a fixed point under h and the notions introduced in the previous section can be
adapted. With some work it can be proven that the dissipativity of h is equivalent to the
asymptotic stability of ∞ with respect to h−1. From this observation we can deduce a
result that will be useful later.

Lemma 1. Assume that h ∈ H is dissipative. Then there exists a sequence {Ln} of topo-
logical discs in S2 satisfying

∞ ∈ intS2(Ln),
⋂
n

Ln = {∞}, Ln ⊂ intS2(Ln+1)

and
Ln ⊂ intS2(h(Ln)).

Proof. The region of attraction of ∞ with respect to h−1 will be denoted by R. This
is an open set in S2 that is invariant under h. Moreover on this set h−1 is topologically
conjugate to z 7→ 1

2z or z 7→ 1
2z. Consequently, the restriction of h to R is conjugate to

z 7→ 2z or z 7→ 2z. For these maps the discs |z| ≥ n satisfy the required conditions. ut

A map h ∈ H is called area-contracting if the Lebesgue measure µ is contracted under
the action of h. This means that

µ(h(B)) < µ(B) for each Borel subset B of R2.

These maps have an important property: the measure of any invariant Borel set is
either zero or infinity. If U is the region of attraction of an asymptotically stable fixed
point, the measure must be infinite since we are dealing with an open set. In particular the
region U is always unbounded.

4. A fixed point theorem

In this section we prove the existence of a fixed point outside an invariant region with
zero rotation number.

Proposition 2. Assume that h ∈ H+ is dissipative and U is a simply connected open
subset of the plane that is unbounded and proper, ∅ 6= U ( R2. In addition, suppose that

h(U) = U, ρ(h,U) = 0.

Then h has a fixed point in R2
\ U .
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The dissipativity of h is essential. This can be shown by considering the translation
h(x1, x2) = (x1 + 1, x2) and the set U = R × ]0, 1[. This map has no fixed points and
the rotation number on U vanishes. To justify that ρ(h,U) = 0 it is enough to describe
the dynamics of h? and observe that it has two fixed points.

∞l ∞rU∗U

The result by Barge and Gillette in [3] leads to a result similar to Proposition 2 but
for bounded domains. The typical strategy of complex analysis of extending results from
bounded to unbounded domains by working on the Riemann sphere is not applicable in
this case. Under the assumptions of Proposition 2 the point of infinity is always a fixed
point lying on ∂S2U .

It can happen that the fixed point found in Proposition 2 does not lie on the boundary
of U . As an example we can consider the time-1 map associated to the van der Pol flow.
The region U is determined by two orbits emanating from infinity and attracted by the
closed orbit. Assuming that 1 is not a period of the closed orbit it is easy to verify that all
the assumptions of Proposition 2 hold and the only fixed point is the unstable equilibrium.

U

Before the proof we need some additional information on prime ends and several
preliminary results. Given a prime end p in P, a point x ∈ S2 is a principal point of p if
the prime end can be represented by a null-chain (Cn) such that the sequence of sets Cn
converges to x. The set of principal points of p is denoted by 5(p). It is a non-empty
continuum. From the definitions it is clear that if h?(p) = p1 then h(5(p)) = 5(p1). In
particular 5(p) is an invariant continuum if p is fixed under h?. Assume now that γ is a
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crosscut of U with end points a, b lying in ∂S2U . We employ the notation γ̇ = γ \ {a, b}.
Also we denote by V one of the two components of U \ γ . The set of all prime ends that
can be represented by null-chains (Cn) with Ċn ⊂ V determines an arc in P. To justify
this assertion we employ Proposition 2.14 and Theorem 2.15 in [22]. The closure of this
arc will be denoted by αV = p̂q and the end points p, q are such that 5(p) = {a} and
5(q) = {b}. The simple structure of the principal sets in this case is a consequence of
Corollary 2.17 in [22]. This is also implied by Lemma 5.1 in [2].

The Riemann conformal map extends to a homeomorphism between D and U ?, and
the pre-image of γ̇ is an open arc in int(D) ending at two different points of the boundary.
Translating this observation from the disc toU ? we observe that γ̇ ∪{p, q} is an arc inU ?.

We also make some remarks on accessible points. A point b ∈ ∂S2U is accessible if
there exists an arc β such that b is an end point and β \ {b} is contained in U . In this case
there exists a prime end pβ ∈ P such that β? = (β \ {b}) ∪ {pβ} is an arc in U ? and
5(pβ) = {b}. This is again a consequence of the above mentioned results in [22]. Finally
we recall that accessible points are dense on the boundary of U .

Lemma 3. Assume that p ∈ P is fixed under h? and∞ 6∈ 5(p). Then h has a fixed point
lying in R2

\ U .

Proof. The set 5(p) is a non-empty continuum contained in R2. If this set has trivial
shape we can apply the Cartwright–Littlewood Fixed Point Theorem [10, 9] to deduce
the existence of a fixed point lying in 5(p). Since this set is contained in ∂U we have
found the desired point. When 5(p) has non-trivial shape one decomposes S2

\ 5(p)

into a family {�λ}λ∈3 of connected components,⋃
λ∈3

�λ = S2
\5(p).

Denote by�λ0 the component containing∞. Since U is a connected subset of S2
\5(p),

it must be contained in some component; as U is unbounded, this component is pre-
cisely �λ0 . The set

K = S2
\�λ0

is non-empty and compact. Moreover it is invariant under h. This is so because �λ0 is
invariant. To prove that K is connected we observe that it can be expressed as

K =
⋃
λ 6=λ0

�λ ∪5(p) =
⋃
λ 6=λ0

cl(�λ) ∪5(p).

ThusK is a union of continua contained in a common disc and all of them have non-empty
intersection with 5(p). This implies that K is a continuum. We know from its definition
that K has trivial shape and so the Cartwright–Littlewood Theorem is applicable. The
fixed point lying on K is not in U because K ∩ U = ∅.

Remark. The fixed point belongs to ∂U when h is area-contracting. Notice that 5(p)
must have trivial shape, for otherwise the components�λ with λ 6= λ0 would be invariant
open sets with positive (but finite) measure.



1576 Rafael Ortega, Francisco R. Ruiz del Portal

Lemma 4. Assume that γ is a crosscut of U satisfying

γ ∩ h(γ ) = ∅

and let V be a component of U \γ such that U \V contains at least one fixed point. Then
one of the following alternatives holds:

(i) h(V ) ⊂ V and h?(αV ) ⊂ α̇V ,

(ii) V ⊂ h(V ) and αV ⊂ h
?(α̇V ),

(iii) V ∩ h(V ) = ∅ and αV ∩ h
?(α̇V ) = ∅.

Proof. We first notice that the arcs αV and h?(αV ) cannot have common end points. That
is,

{p, q} ∩ {p1, q1} = ∅ (1)

where αV = p̂q and h?(αV ) = p̂1q1. Indeed, for a contradiction, assume that p = q1
(the other cases are analogous). Since q1 = h

?(q) we deduce that

{a} = 5(p) = 5(q1) = h(5(q)) = {h(b)}.

But a = h(b) would imply that γ ∩ h(γ ) 6= ∅. Once we know that (1) holds we observe
the following alternatives for the positions of V and h(V ):

h(V ) ⊂ V, V ⊂ h(V ), V ∩ h(V ) = ∅.

The proof of this trichotomy will require some work. Let W denote the other component
of U \ γ . We observe thatW ∩ h(W) is non-empty since it contains a fixed point. The set
h(γ̇ ) is connected and so it must lie in one of the components of U \ γ . We distinguish
two cases:

Case 1: h(γ̇ ) ⊂ V . This implies that h(γ ) ∩W = ∅. The components of U \ h(γ ) are
h(V ) and h(W) and so the connected set W must lie in one of them. Since we know that
W ∩ h(W) 6= ∅ we conclude that W ⊂ h(W). Taking complements with respect to U
yields

h(V ) ∪ h(γ̇ ) ⊂ V ∪ γ̇ .

Since h(V ) is open we deduce that h(V ) is contained in V and the first alternative holds.

Case 2: h(γ̇ ) ⊂ W . Now h(γ )∩V = ∅ and so either V ⊂ h(V ) or V ⊂ h(W). The first
inclusion is precisely the second alternative. From the inclusion V ⊂ h(W) we deduce
that

V ∩ h(V ) ⊂ h(W) ∩ h(V ) = ∅

and the third alternative holds.
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Now the rest of the proof follows from the definition of αV . Assuming for instance
that h(V ) ⊂ V we obtain h?(αV ) ⊂ αV , implying by (1) that h?(αV ) ⊂ α̇V . The other
two cases are treated similarly.

Remark. The previous proof also applies to a generalized crosscut with the same end
points. By this we mean a set γ that is homeomorphic to S1 and has a point a ∈ γ ∩ ∂S2U

with γ \ {a} ⊂ U . Notice that in this case αV can be a singleton, a proper arc or the whole
space P.

Proof of Proposition 2. The homeomorphism h is dissipative and so it has at least one
fixed point. From now on we assume that Fix(h) ⊂ U, for otherwise the result is already
proved. The dissipativity also implies that Fix(h) is compact and so it is possible to find
a topological disc D such that

Fix(h) ⊂ int(D) ⊂ D ⊂ U. (2)

We also fix an arc 0 with the following properties:

0 = ξ̂ η, ξ ∈ Fix(h), η ∈ ∂U, 0 \ {η} ⊂ U. (3)

Since ρ(h,U) = 0 we know that h? has at least one fixed point. We distinguish two cases:
(a)∞ is not a principal point of some fixed prime end, (b)∞ is a principal point of each
fixed prime end. In view of Lemma 3 it is clear that we can find a fixed point of h outside
U in case (a). The rest of the proof will be devoted to showing that case (b) cannot occur.
Towards a contradiction, assume that

∞ ∈ 5(p) for each p ∈ Fix(h?). (4)

After an application of Lemma 1 we find a disc L in S2 with

D ∩ L = ∅, 0 ∩ L = ∅, ∞ ∈ intS2(L), L ⊂ intS2(h(L)).

The set U intersects both components of S2
\ ∂L and so

U ∩ ∂L 6= ∅.

We can apply Proposition 2.13 in [22] and deduce the existence of a family {γλ}λ∈3 of
crosscuts, ∅ 6= 3 ⊂ N \ {0}, such that γλ ⊂ ∂L and U can be expressed as a disjoint
union

U = U0 ∪
⋃
λ∈3

Uλ ∪
⋃
λ∈3

γ̇λ,

where U0 is the component of U \ ∂L containing ξ , and Uλ is a domain with

γ̇λ = U ∩ ∂Uλ ⊂ U ∩ ∂U0.

Each crosscut γλ splits U into two components and the proof of Proposition 2.13 in [22]
shows that Uλ is precisely the component of U \γλ not containing ξ . Then Uλ determines
an arc αUλ in P. From now on this arc will be simply denoted by αλ.
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The crosscuts in [22] are understood in a generalized sense and it can happen that the
two end points of γλ coincide. This is a rather exceptional situation and when it occurs
the set 3 of indices must be a singleton. As a hypothetical illustration of this situation
the reader can consider U = R2

\ ([0,∞[ × {0}), ∂L = S1. It is important to observe
that αλ is always a proper arc in P, that is, αλ = p̂q with p 6= q. This is clear for a
standard crosscut because p and q have different principal points. Next we prove that it
also holds for generalized crosscuts. In principle we know that αλ is a connected set in P
and so it is enough to prove that it contains more than one point but not the whole circle.
The point η is accessible through the arc 0 defined in (3) and so we can find p0 ∈ P with
5(p0) = {η} and such that 0? = (0 \{η})∪{p0} is an arc in U ?. We claim that p0 is not
in αλ. Indeed given any chain (Cn) of crosscuts defining p0 we observe that Cn → {η}.
Therefore Cn ∩ L = ∅ for n large enough. From this we deduce that Ċn is contained
either in U0 or in another component Uλ. The definition of p0 implies that 0̇ and Ċn must
intersect. Since 0 \ {η} is contained in U0 we deduce that Ċn ⊂ U0. Taking into account
the definition of αλ we observe that some open arc around p0 does not intersect αλ. Now
we know that αλ 6= P. To prove that αλ is non-empty we observe that accessible points
are dense on the boundary of U . Taking accessible points in ∂S2U ∩ intS2(L) one can
construct infinitely many points in αλ.

We point out two additional properties of these arcs:

(i) the end points of αλ are not fixed under h?,
(ii) α̇λ ∩ α̇µ = ∅ if λ 6= µ.

The first property is a consequence of (4) since the principal points associated to the end
points of αλ belong to ∂L. The second property holds because Uλ and Uµ are disjoint.

Next we observe that

h(γλ) ∩ γλ ⊂ h(∂L) ∩ ∂L = ∅

and so Lemma 4 and the remark after its proof are applicable. Thus one of the alternatives
h(Uλ) ⊂ Uλ, Uλ ⊂ h(Uλ) or Uλ ∩ h(Uλ) = ∅ holds. Also, h?(αλ) ⊂ α̇λ, αλ ⊂ h?(α̇λ) or
αλ ∩ h

?(αλ) = ∅.
The next step is to prove that {α̇λ}λ∈3 is an open covering of Fix(h?). To this end

we take p ∈ Fix(h?) and select a chain (Cn) of crosscuts determining p and such that
Cn→∞. Here we are using that∞ is a principal point thanks to (4). For n large enough,
Cn will be contained in intS2(L). The connected set Ċn must be contained in some com-
ponent of U \ ∂L. This component cannot be U0 ⊂ S2

\ L. Let λ ∈ 3 be the index such
that Ċn is contained in Uλ. As noticed in [22] after Proposition 2.13, this index is unique.
We conclude from the definition of αλ that p belongs to this arc. Moreover p cannot be
an end point of αλ. Indeed∞ ∈ 5(p) and the end points of αλ have as unique principal
points the end points of γλ.

Once we know that {α̇λ} is an open covering of the compact set Fix(h?), we can
extract a finite subcovering {α̇λ}λ∈F . This subcovering can be chosen so that every open
arc contains at least one fixed point. This excludes the possibility αλ ∩h?(αλ) = ∅ and so
for each λ ∈ F we must have either h?(αλ) ⊂ α̇λ or αλ ⊂ h?(α̇λ).



Attractors with vanishing rotation number 1579

The rest of the proof is based on the theory of fixed point index on polyhedra (see
[12] or [15]). First we construct the double DU ? of the disc U ?. This space is obtained
from two copies of U ? by identifying the boundaries. It is homeomorphic to S2 and can
be split as

DU ? = U+ ∪ U− ∪ P,

where P is the equator and the two hemispheres are composed by points (x,+) and (x,−)
with x ∈ U . Next we define a homeomorphism H : DU ?→ DU ? by

H(x,±) = (h(x),±) if x ∈ U, H(p) = h?(p) if p ∈ P.

Since h is orientation-preserving, so is H . Consequently, the Lefschetz number of H is
precisely 2, the Euler characteristic of the sphere. The set of fixed points of H can be
decomposed into three parts, those lying on D+ = D × {+}, on D− = D × {−} and
on the equator. We are going to compute the corresponding fixed point indices. First we
observe that, since h is dissipative, the index of h on large balls of the plane is 1. In view
of (2) also the index on D is 1. This implies that

i(H,D+) = i(H,D−) = 1. (5)

The fixed points on the equator are precisely the prime ends fixed under h? and they are
covered by the family {1λ}λ∈F of discs, where each1λ is the closure inDU ? ofU+λ ∪U

−

λ

with U±λ = Uλ × {±}. We observe that these discs contain the arc αλ and their boundary
is composed of γ±λ and the end points of αλ. Thus H does not have fixed points in the
boundary of 1λ and either H(1λ) ⊂ 1λ or 1λ ⊂ H(1λ). In any case one has

i(H,1λ) = 1. (6)

This is a consequence of Lemma 2.2.25 in [15] for the attracting case. For the repelling
case it is enough to observe that i(H,1λ) = i(H−1,1λ). As a consequence of the prop-
erties (i) and (ii) of the family of arcs we deduce that, for λ 6= µ, 1λ and 1µ can only
intersect at their boundaries. Since ξ ∈ D∩U0 andD is a connected subset of U \ ∂L we
conclude thatD ⊂ U0. Consequently,D± is disjoint from1λ. This allows us to combine
the excision property with the Hopf index theorem to conclude that

2 = χ(S2) = i(H,DU ?) = i(H,D+)+ i(H,D−)+
∑
λ∈F

i(H,1λ).

Since the set F of indices is non-empty we arrive at a contradiction with (5) and (6).

In view of the remark after the proof of Lemma 3 the previous proof can be modified
to obtain a refinement for area-contracting maps.

Corollary 5. Assume that all the conditions of Proposition 2 hold, and in addition h is
area-contracting and there exists a topological disc D ⊂ U such that

Fix(h) ∩ U ⊂ int(D) and i(h,D) = 1.

Then h has a fixed point lying on ∂U .
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5. Computing the rotation number

To make Proposition 2 useful for applications we need some conditions on h and U
implying that the rotation number vanishes. We list some of these conditions in the next
result.

Proposition 6. Assume that h ∈ H+ and U = h(U) is a simply connected open subset
of the plane that is unbounded and proper, ∅ 6= U ( R2. Then

ρ(h,U) = 0

if any of the conditions below holds:

(i) ∂U is connected and∞ is accessible from U .
(ii) h = r ◦ r with r ∈ H− and r(U) = U .

(iii) There exists an arc γ ⊂ S2 having∞ as one of the end points with γ \ {∞} ⊂ U
and h(γ ) ⊂ γ .

(iv) There exists a sector K = {ρeiθ : ρ ≥ 0, θ ∈ [2−,2+]}, 2− < 2+, and a disc
D = {|z| ≤ R} such that h(K \D) ⊂ K and K \D ⊂ U .

Condition (i) requires the accessibility of the point of infinity and this is essential. Later
we will construct an example where the boundary ∂U is connected but the rotation num-
ber is 1/2. We recall that∞ is accessible from U when there is an arc γ in S2 having∞
as one end point and such that γ \ {∞} is contained in U . Condition (ii) can be illustrated
with the linear case. If h(x) = Ax then h = r2 with r(x) = Bx, detB < 0, as soon
as the matrix A has two positive eigenvalues λ1 6= λ2. Condition (iii) is inspired by the
work of Alarcón, Guı́ñez and Gutiérrez [1]. They introduced a similar assumption to get
results on global asymptotic stability. Positively invariant cones appear often in the theory
of differential equations and for this reason we have also stated condition (iv).

Before going to the proof of the proposition we present an example linked to (i). We
start with the system of differential equations in the plane

ẋ = φ(x), ẏ = ψ(x, y)

where φ and ψ are C∞ bounded functions satisfying

φ(x) = 0 if x ∈ A := {1/n : n ∈ Z, n 6= 0} ∪ {0}, xφ(x) > 0 otherwise,
ψ(x, y) = 0 if (x, y) ∈ (R× {0}) ∪ (A× {1,−1}), yψ(x, y) > 0 otherwise.

The study of the phase portrait shows that K = (A × [−1, 1]) ∪ ([−1, 1] × {0}) is
invariant under the flow {φt }t∈R. Next we compose the time-1 map with the 180◦ rotation
R : (x, y) 7→ (−x,−y). The map h1 = R ◦ φ1 is orientation-preserving and can be
extended to S2. The region V = S2

\ K is invariant under h1 and simply connected and
so the rotation number ρ(h1, V ) is defined. We claim that ρ(h1, V ) = 1/2. To justify it
we observe that the points (1, 1) and (−1,−1) are a 2-cycle of h1 and there are unique
prime ends p± ∈ P(V ) with 5(p+) = {(1, 1)} and 5(p−) = {(−1,−1)}. Hence p± is
a 2-cycle for h?1. The domain V contains the point of infinity and so it is not in the class
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covered by Proposition 6. This is easily solved with the change of variables z 7→ 1/z,
performed in the Riemann sphere. Now the region U = {1/z : z ∈ V } is invariant under
h(z) = 1/h1(1/z) and we observe that ∂U is homeomorphic toK \ {0}. The origin is not
accessible from V and the same property holds for∞ and U .

We prepare the proof of Proposition 6 with some results on prime ends.

Lemma 7. Let U 6= R2 be open and simply connected. In addition, suppose that it satis-
fies the conditions:

(a) ∞ is accessible from U .
(b) R2

\ U is connected.

Then there exists a unique prime end p ∈ P with 5(p) = {∞}.

The simplest example of a domain satisfying the conditions of the lemma is U =
]0,∞[×]0, 1[. In this case 5(p) is a singleton for every p ∈ P and the correspondence
between prime ends and principal points is a bijection from P to ∂S2U . To construct a
more sophisticated example we consider the curve

C : y = e1/x sin(1/x), x > 0.

After inflating this curve without creating self-intersections we obtain a domainU . Notice
that U must become thinner as one approaches the line x = 0. The arc C ∩ {x ≥ 1}
connects U to ∞ and so (a) holds. Condition (b) is also valid although R2

\ U is not
arc-wise connected. Finally we observe that there are two prime ends p0 and p∞ having
∞ as a principal point, indeed 5(p0) = {x = 0} ∪ {∞} and 5(p∞) = {∞}.

Proof of Lemma 7. First of all we need some additional information on the behavior of the
Riemann conformal map from the open disc int(D) onto U . We fix such a map and denote
it by R. Given a continuous function γ : [0, 1[ → U with γ (t) → a ∈ ∂S2U as t ↑ 1,
we have R−1(γ (t)) → ξ for some ξ ∈ ∂D. This is a consequence of Proposition 2.14
in [22]. In the same chapter of [22] there is a characterization of the prime ends for which
5(p) is a singleton. Following Corollary 2.17 in [22] we assume that ξ ∈ ∂D, p = R̂(ξ)
and a ∈ ∂S2U . Here R̂ stands for the extension of the Riemann map to D ∼= U ?. The
following statements are equivalent:

• 5(p) = {a}.
• R(tξ)→ a as t ↑ 1.
• R(0(t)) → a as t ↑ 1 for some continuous function 0 : [0, 1[ → int(D) with
0(t)→ ξ as t ↑ 1.

With this background we are ready to prove the lemma. First we prove the existence of
such a prime end. From condition (a) we find a continuous function γ : [0, 1[→ U with
γ (t) → ∞ as t ↑ 1. The limit of R−1(γ (t)) is denoted by ξ ∈ ∂D and the prime end
p = R̂(ξ) satisfies 5(p) = {∞}.

To prove the uniqueness, assume that p1, p2 ∈ P, p1 6= p2 are such that 5(p1) =

5(p2) = {∞}. The pre-images ξ1 = R̂−1(p1) and ξ2 = R̂−1(p2) are well defined and
R(tξi) → ∞ as t ↑ 1. Let r1 and r2 be the arcs in S2 parameterized by ri(t) = R(tξi).
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They share the end points,R(0) and∞, and ṙ1∩ ṙ2 = ∅. Consequently, J = r1∪r2∪{∞}
is a Jordan curve. Let V and W be the connected components of S2

\ J . Since J \ {∞}
is contained in U , the set R2

\ U is disjoint from J . Hence it must lie in one of the
components, say R2

\ U ⊂ V . It is at this point that we have applied condition (b).
Our interest will be in the other component W that must be contained in U . The Jordan–
Schoenflies Theorem implies thatW ∪J is a topological disc and so we can draw an arc σ
in W ∪ J having end points at R(0) and∞ and touching r1 and r2 infinitely many times.
More precisely, we assume that σ(t) is a parameterization, σ(0) = R(0), σ(1) = ∞ and
σ(tn) ∈ r1, σ(sn) ∈ r2 for sequences tn and sn converging to 1−. Let ξ3 ∈ ∂D be the
limit of R−1

◦ σ . It exists since σ(t)→ ∞ as t ↑ 1 and σ(t) ∈ W ∪ (J \ {∞}) ⊂ U if
t ∈ [0, 1[. The prime end p3 = R̂(ξ3) is such that σ(t)→ p3 in U ?. At the same time the
sequence σ(tn) is contained in r1 and converges to p1. This implies that p1 = p3. The
same reasoning applied to the sequence sn leads to p2 = p1, the desired contradiction.

Remark. Condition (b) in the previous lemma can be replaced by

(b?) ∂U is connected.

Indeed, first we fix a point ξ in U and, given any x in R2
\ U , we denote by x? the first

point in the segment [x, ξ ] lying in ∂U . To prove the connectedness of R2
\ U we show

that any two points x1 and x2 in R2
\ U can be joined by a connected subset of R2

\ U :
one can take C = [x1, x

?
1] ∪ [x2, x

?
2] ∪ ∂U .

Proof of Proposition 6. As is well known, the class of orientation-preserving homeomor-
phisms of S1 with zero rotation number coincides with those having at least one fixed
point. Next we prove that under each of the assumptions (i) to (iv) there exists a fixed
point of h?.

(i) In view of the above Remark and Lemma 7, there is a unique prime end with
5(p) = {∞}. The prime end h?(p) has the same principal set and so by uniqueness we
conclude that p is a fixed point.

(ii) Since U is invariant under h and r , these maps induce homeomorphisms of P and
they satisfy h? = r? ◦ r?. The extension to U ? must be orientation-reversing for r and
orientation-preserving for h. The same properties are valid for r? and h? as maps of P. It
is well known that an orientation-reversing homeomorphism of the unit circle has exactly
two fixed points. This result applies to r? and so h? will have at least two fixed points.

(iii) The arc γ is such thatR−1
◦γ is a path in D with limt↑1R−1

◦γ (t) = ξ for some
ξ ∈ D. Since h(γ ) is a subarc of γ ending at∞we deduce that limt↑1R−1(h(γ (t))) = ξ .
The prime end p = R̂(ξ) is fixed under h?.

(iv) First we recall some additional facts from the theory of prime ends. They are
extracted from the book [19]. Given a ∈ ∂S2U we consider the class A(a, U) of arcs γ
having a as one end point and such that γ \{a} ⊂ U . Every arc inA(a, U) defines a prime
end p in P. Indeed, if γ (t) is a parameterization with γ (1) = a, then limt↑1 γ (t) = p

in U ?. Two arcs γ1 and γ2 in A(a, U) define the same prime end if there exists a third
arc γ3 in A(a, U) and sequences {xn} and {yn} of points in U satisfying

xn→ a, yn→ a, xn ∈ γ1 ∩ γ3, yn ∈ γ2 ∩ γ3.
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These results can be proved along the lines of the proof of Lemma 7. We are ready to
apply these remarks to prove (iv). First we fix an angle 2 ∈ ]2−,2+[. The continuity of
h at∞ = h(∞) implies the existence of R1 > R with h(ρei2) 6∈ D if ρ ≥ R1. The ray
γ (t) =

R1
1−t e

i2 is in the class A(∞, U) and, from the assumption, we deduce that also
h ◦ γ is in this class. Indeed, both arcs lie inside K \D ⊂ U . This allows us to construct
an arc γ3 in A(∞, U) to show the equivalence of γ and h ◦ γ . For example we can take
an arc in K \D bouncing infinitely many times between θ = 2− and θ = 2+, Assume
that p is the prime end defined by γ (and also by h ◦ γ ). Since γ (t) → p in U ?, the
continuity of the extension of h to U ? implies that h(γ (t)) → h?(p) in U ?. Since both
arcs define the same prime end we conclude that p is fixed.

6. Orientation-reversing homeomorphisms

The rest of the paper will be devoted to applications of Propositions 2 and 6 in different
situations. This will lead to some novel results in stability theory. We start with condition
(ii) of Proposition 6 that is very suitable for the orientation-reversing case. Throughout
this section, h is a map inH−. The first result is a characterization of asymptotic stability
in the global sense.

Theorem 8. Assume that h ∈ H− is area-contracting and dissipative. In addition, sup-
pose p = h(p) is an asymptotically stable fixed point with region of attraction U ⊂ R2.
The following conditions are equivalent:

(i) U = R2.
(ii) Fix(h2) = {p}.

Proof. We notice that when (i) holds all points are attracted by the point p and so there
are no other fixed points or two-cycles. This shows the implication (i)⇒(ii). To prove
(ii)⇒(i) assume that U 6= R2. Since U is simply connected and unbounded it is possible
to apply Proposition 6 in case (ii) to the map h2

∈ H+. At this point it must be observed
that the regions of attraction of p for h and h2 coincide. The conclusion is that ρ(h2, U)

vanishes. A classical result due to Browder and Krasnosel’skiı̆ [17] says that the index
around an asymptotically stable fixed point is 1. In particular, i(h2,D) = 1 for any small
disc centered at p. The region of attraction does not contain any recurrent point different
from p, in particular Fix(h2)∩U = {p} and so Corollary 5 is applicable. We deduce that
h2 must have a fixed point on ∂U , contrary to (ii).

Remark. The previous proof leads to a stronger conclusion: under the conditions of the
previous theorem and U 6= R2,

Fix(h2) ∩ ∂U 6= ∅.

The study of orientation-reversing homeomorphisms of the plane has interest in it-
self and has recently received a lot of attention (see [7]). Sometimes the question arises
as to whether this theory can be useful in the study of differential equations. Some ob-
servations in this direction for autonomous systems can be found in [25]. For periodic
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equations the Poincaré map plays a crucial role in the understanding of the dynamics,
but this map is always orientation-preserving (see [20] for more details). Next we show
how orientation-reversing maps do appear in the context of periodic differential equa-
tions with symmetries. Let S denote the symmetry with respect to the horizontal axis
S(x1, x2) = (x1,−x2) and consider the differential system

ẋ = X(t, x), x ∈ R2, (7)

where X : R× R2
→ R2 satisfies

X(t + π, Sx) = SX(t, x) for each (t, x) ∈ R× R2.

We also assume that the vector fieldX is continuous and such that there is global existence
and uniqueness for the initial value problem. The solution satisfying the initial condition
x(t0) = ξ will be denoted by x(t; t0, ξ) and it is well defined for all t ∈ R. We define the
maps

P1(ξ) = x(π; 0, ξ) and P2(ξ) = x(2π;π, ξ).

They satisfy
S ◦ P1 = P2 ◦ S.

Indeed, we notice that if x(t) is a solution then Sx(t + π) is also a solution. Hence

x(t; 0, Sξ) = Sx(t + π;π, ξ).

This implies that S◦P2 = P1◦S and from this it is easy to arrive at the above identity. The
symmetry of the vector field implies that system (7) is 2π -periodic with respect to time
and so the Poincaré map P(ξ) = x(2π; 0, ξ) is the key to understanding the dynamics of
the equation. It satisfies

P = P2 ◦ P1 = P2 ◦ S ◦ S ◦ P1 = (S ◦ P1)
2.

It is well known that the maps P1, P2 and P belong toH+. The previous discussion shows
that P can be expressed as P = r ◦ r with r = S ◦ P1 ∈ H−.

We present a consequence of Theorem 8. It employs the notion of dissipativity for
periodic differential equations. This notion is analyzed in [21] and also in [27] with a
different terminology. In particular it implies the dissipativity of the Poincaré map.

Corollary 9. Consider system (7) under the above conditions and assume in addition
that X is C1, X(t, 0) = 0 for all t , and the three conditions below hold:

• System (7) is dissipative.
• divxX(t, x) := ∂X1

∂x1
(t, x)+

∂X2
∂x2
(t, x) < 0 everywhere.

• The linearized system

ẏ =
∂X

∂x
(t, 0)y

is asymptotically stable.

Then the trivial solution x = 0 is globally asymptotically stable if and only if there are
no other 2π -periodic solutions.
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Proof. We apply the previous theorem to r = S◦P1. In view of the first condition the map
P is dissipative and so the same property must hold for r . The Jacobi–Liouville formula
together with the second condition imply that P1 is area-contracting. Hence the same
property is enjoyed by r . The linearization principle and the third condition imply that
the solution x = 0 is asymptotically stable for (7). This is equivalent to saying that p = 0
is asymptotically stable as a fixed point of P . Consequently, it has the same property with
respect to r and we can invoke the theorem.

To illustrate the previous result consider the system

ẋ1 = −x1 + ψ(x2), ẋ2 = −x2 + λ(sin t)x1,

where ψ ∈ C1(R) is even and bounded, ψ(0) = ψ ′(0) = 0 and λ ∈ R is a parameter.
The general conditions imposed on system (7), including the symmetry, are satisfied in
this case. To check the dissipativity one can employ the Lyapunov function

V (x1, x2) = αx
2
1 + βx

2
2

with α and β positive numbers satisfying α > (λ2/4)β. It satisfies

V̇ (x) ≤ −γV (x) whenever ‖x‖ ≥ R.

Here γ and R are positive numbers that can be determined. This is sufficient to guarantee
dissipativity. The divergence of the system is constant and equal to −2 so that the second
condition holds. It remains to study the stability of the 2π -periodic linear system

ẏ1 = −y1, ẏ2 = −y2 + λ(sin t)y1.

It has the Floquet solution y(t) = col(0, e−t ) and so the corresponding multiplier is
µ1 = e−2π . The Jacobi–Liouville formula implies that the product of the multipliers
is µ1µ2 = e−4π and so also µ2 = e−2π . This proves the asymptotic stability of the
linearized system.

The previous example has been devised in order to fulfill the required conditions but
at least it shows that concrete results can be achieved with this methodology.

7. Miscellaneous results in stability theory

In this section we present applications of Proposition 6 in cases (i), (iii) and (iv).

7.1. Existence of periodic points

The next result deals with the region of attraction U of an asymptotically stable fixed
point. The conclusion is that we must expect periodic points outside U if the boundary
∂U is not complicated. An interesting feature of the proof is the use of Proposition 2 in a
situation where the invariant set is not a region of attraction.
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Theorem 10. Let h be a dissipative map inH having an asymptotically stable fixed point
p with unbounded region of attraction U 6= R2. In addition assume that∞ is accessible
from U and ∂U has a finite number of connected components. Then h has a periodic orbit
lying in R2

\ U .

Proof. Let C1, . . . , Cp be the components of ∂U . Since ∂S2U is connected, each Ci
must be unbounded. The homeomorphism h induces a permutation on the finite set
{C1, . . . , Cp} and so there exists some integer 1 ≤ N ≤ p! with hN (Ci) = Ci for
each i. It is not restrictive to assume that N is even. The set R2

\ C1 is open and we
denote by V the connected component containing U . We observe that V is simply con-
nected. Otherwise there would exist a Jordan curve γ ⊂ V not contractible to a point
and this would imply that C1 is contained in the bounded component of R2

\ γ . This is
absurd since C1 is unbounded. The sets C1 and U are invariant under hN , and so is V .
We intend to apply Proposition 6 in case (i) to the map hN ∈ H+ and the set V . To check
the remaining assumptions we notice that ∂V = C1 is connected. Moreover, since ∞
is accessible from U , it is also accessible from the larger set V . We can now conclude
that ρ(hN , V ) = 0. Finally we apply Proposition 2 in the same setting and conclude that
hN has a fixed point outside V . This is the desired periodic point and it is interesting to
observe that we have some control on the size of the period N in terms of the number of
connected components.

7.2. Invariant rays and population dynamics

An interesting characterization of global asymptotic stability was recently obtained in [1].

Theorem 11 (Alarcón, Guı́ñez, Gutiérrez). Assume that h ∈ H+ is dissipative and p is
an asymptotically stable fixed point of h. The following conditions are equivalent:

(a) p is globally asymptotically stable.
(b) Fix(h) = {p} and there exists an arc γ ⊂ S2 with end points at p and∞ such that

h(γ ) = γ .

The proof in [1] is based on Brouwer’s theory of fixed point free homeomorphisms of the
plane. Next we present an alternative proof based on the theory of prime ends.

Proof. (a)⇒(b). We observe that h is conjugate to a linear contraction. This is a conse-
quence of the results by Kerékjártó mentioned in Section 2. For a linear contraction we
can take the ray γ = ([0,∞[×{0}) ∪ {∞}.

(b)⇒(a). For a contradiction, assume that the region of attraction U of p is not the
whole plane. The restriction of h to γ is a homeomorphism of the arc fixing the end points.
Since there are no fixed points in the interior of the arc, every orbit must be attracted by
an end point. As the map is dissipative we conclude that p attracts all orbits in γ̇ . In other
words, γ \ {∞} ⊂ U . In particular U is unbounded and all the conditions required by
case (iii) of Proposition 6 are satisfied. Once we know the rotation number vanishes, we
apply Proposition 2 to conclude that there exists another fixed point, contrary to (b).
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The previous result is applicable to systems with two populations. In these systems
the coordinate axes are invariant and they produce the invariant ray. More precisely we
consider the system

u̇ = uF(t, u, v), v̇ = vG(t, u, v), u, v ≥ 0, (8)

where F,G : R × R2
→ R are of class C1 and 1-periodic in time. The periodicity in

time reflects the seasonal effects. For more ecological insight we refer to [11]. We also
assume that F andG are such that there is global existence for the associated initial value
problem on the first quadrant. We think of u(t) and v(t) as the sizes of two species and
say that there is extinction for (8) if

u(t)→ 0, v(t)→ 0 as t →+∞

for each solution (u(t), v(t)).
We shall assume that the system is dissipative; this is a very natural assumption in

population dynamics, particularly when logistic effects are involved. We also employ the
condition ∫ 1

0
F(t, 0, 0) dt < 0,

∫ 1

0
G(t, 0, 0) dt < 0. (9)

This condition says that the averaged growth rate is negative when the populations are
very small.

Theorem 12. Assume that the system (8) is dissipative and the condition (9) holds. Then
there is extinction if and only if u = v = 0 is the unique 1-periodic solution.

Remark. The condition (9) is necessary to exclude cases where the origin is an unstable
attractor. We illustrate this situation in the phase portrait below.

0

Proof of Theorem 12. System (8) has period T = 1 and the associated Poincaré map P
is an orientation-preserving homeomorphism of the first quadrant

R2
+ = {(u, v) ∈ R2 : u ≥ 0, v ≥ 0}.
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The coordinate axes u = 0 and v = 0 are invariant under (8) and also under P . This allows
us to extend P to a homeomorphism h ∈ H+ by successive reflections. The map h leaves
invariant each quadrant and the dynamics of P is reproduced. The global asymptotic
stability for p = 0 implies the extinction for (8). To apply Theorem 11, we must verify
that p = 0 is asymptotically stable. Going back to the differential equations we observe
that the linearized system at u = v = 0 is

ξ̇ = F(t, 0, 0)ξ, η̇ = G(t, 0, 0)η.

This system is uncoupled and can be easily integrated. The condition (9) yields asymptotic
stability. Consequently, u = v = 0 is asymptotically stable with respect to the nonlinear
system and so the fixed point p = 0 is asymptotically stable for h. To check condition (b)
of Theorem 11 it is enough to find an invariant ray. We can take the half-line γ : u ≥ 0,
v = 0.

7.3. Sectorial attraction in forced oscillators

Consider the equation
ẍ + cẋ + g(x) = p(t) (10)

where c > 0, g : R → R is locally Lipschitz-continuous and p is continuous and 2π -
periodic. In the terminology of Pliss [21] this equation is convergent if it has a 2π -periodic
solution that is globally asymptotically stable. We say that the equation has the property
of 6-uniqueness if it has a unique 2π -periodic solution and this solution is asymptoti-
cally stable. This property is weaker than convergence but we want to show that they are
equivalent as soon as the solutions starting at some angular sector are attracted.

Let us assume that g has finite limits at ±∞ and

g(−∞) < p < g(+∞), (11)

where p = (2π)−1 ∫ 2π
0 p(t) dt is the mean value of p. This condition has a mechanical

meaning: it says that the averaged force −g(x) + p points towards the origin, at least
in a neighborhood of infinity. In agreement with this intuition it is known that (11) is
sufficient to guarantee the dissipativity of the first order system associated to (10). See
[27] for more details, in particular pages 70 and 71. From now on, ϕ(t) will denote the
unique 2π -periodic solution of (10). Given another solution x(t)we say that it is attracted
by ϕ if

|x(t)− ϕ(t)| + |ẋ(t)− ϕ̇(t)| → 0 as t →+∞.

Proposition 13. Assume that (11) holds and there is 6-uniqueness for (10). In addition,
suppose there are positive numbers ρ and ε such that all the solutions satisfying

x(0) ≥ ρ, |ẋ(0)| ≤ εx(0)

are attracted by ϕ. Then (10) is convergent.

Before proving this result we state a lemma on linear equations.
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Lemma 14. Assume that h ∈ C[0, 2π ] and x(t) is a solution of

ẍ + cẋ = h(t).

Given r > 0 there exists R > 0 such that

|x(0)| + |ẋ(0)| ≥ R ⇒ |x(t)| + |ẋ(t)| ≥ r, t ∈ [0, 2π ].

The number R only depends upon r , c and ‖h‖∞.

The proof can be obtained using the variation of constants formula.

Proof of Proposition 13. Since g is bounded all the solutions of (10) are globally defined.
Consider the planar set

K = {(x1, x2) ∈ R2 : |x2| ≤ εx1}.

We observe that if x(t) is a solution then

d

dt
(ẋ(t)± εx(t)) = −(c ∓ ε)ẋ(t)− g(x(t))+ p(t).

Assuming ε < c we can find r > ρ such that if |x(t)| + |ẋ(t)| ≥ r and (x(t), ẋ(t)) ∈ ∂K
then (x(s), ẋ(s)) enters into K when s > t is close enough to t . Next we apply the above
lemma with h = p − g ◦ x and find the corresponding number R associated to r and ε.
Notice that h depends on the chosen solution x(t) but R only depends on ‖g‖∞+‖p‖∞.
Now it is standard to prove that the set K has the following invariance property: if x(t) is
a solution of (10) with |x(0)| + |ẋ(0)| ≥ R and (x(0), ẋ(0)) ∈ K then (x(t), ẋ(t)) ∈ K
for each t ∈ [0, 2π ]. With this information we consider the system

ẋ1 = x2, ẋ2 = −g(x1)− cx2 + p(t)

and the associated Poincaré map for T = 2π , which will be denoted by P . This map
belongs to H+, and since the divergence of the vector field is −c, it is area-contracting.
At this point it is convenient to observe that the vector field is not necessarily smooth but
the divergence is always well defined. More details on this point can be found in [26].
Also we observe that the condition (11) implies that P is dissipative. Now we can apply
Proposition 6 in case (iv) and Proposition 2 to complete the proof.

Acknowledgments. R. O. was supported by MEC, MTM 2008-02502, and F. R. was supported by
MEC, MTM2009-07030.

References
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