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Abstract. In 1938 Herman Auerbach published a paper where he showed a deep connection be-
tween the solutions of the Ulam problem of floating bodies and a class of sets studied by Zindler,
which are the planar sets whose bisecting chords all have the same length. In the same paper he
conjectured that among Zindler sets the one with minimal area, as well as with maximal perimeter,
is the so-called “Auerbach triangle”. We prove this conjecture.
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1. Introduction

1.1. History of the problem

In the 1930’s, the Polish mathematician S. Ulam proposed the following problem. Let us
consider a homogeneous right cylinder of density 1/2, whose sectionC is a bidimensional
convex set. Immerse the cylinder in water in any position such that
(a) the section C is perpendicular to the horizontal plane of water;
(b) the immersed part has half of the total volume.
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Fig. 1. An equilibrium position (left) and a non-equilibrium position (right).
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It is clear that the cylinder is in an equilibrium position if and only if the segment joining
the barycenter I of the immersed part and the barycenter E of the external part is vertical
(see Figure 1).

Ulam’s question was the following. Are there convex sets C, besides the disk, such
that any position of the cylinder satisfying (a) and (b) is an equilibrium position? We shall
say that such a set has the Ulam floating property. For instance, the ellipse of Figure 1
does not have this property, since the right position is not an equilibrium position.

Some years before, the German mathematician K. Zindler considered the following
problem: find a planar set, besides the disk, with the property that all the bisecting chords,
i.e. the chords dividing the set into two parts of equal area, have the same length. Such a
set is now called a Zindler set. A well known example found by Zindler himself is shown
in Figure 2.

Fig. 2. The “Zindler flower”: the three curves are arcs of circle with the same radius whose centers
are the vertices of an equilateral triangle.

In 1938 the Polish mathematician H. Auerbach showed the following remarkable con-
nection between the two problems.

Theorem 1 (Auerbach, [1]). A convex planar set has the Ulam floating property if and
only if it is a Zindler set. The Ulam floating property is also equivalent to the fact that the
locus of all barycenters I and E introduced above is a circle.

In his paper [1], Auerbach shows that the class of convex Zindler sets is large, and pro-
vides an explicit analytic description of this class. Moreover, he presents a geometric
construction of the set of Figure 3, which we shall refer to as the Auerbach triangle. This
set is uniquely characterized, in the class of Zindler sets, by the properties that

• PP ′ and QQ′ are bisecting chords of length 2;
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• the curve PQ is a segment;
• P̂OQ and P̂′OQ′ are 60◦ angles, and the set is invariant under 120◦ rotations aroundO.

It is important to mention here that the curve P ′Q′ is not an arc of a circle (we will give
an analytic definition of this set in Section 2).

Fig. 3. The “Auerbach triangle”.

P Q

Q′ P ′

O

In his paper, Auerbach raises the question of determining, among all Zindler sets with
bisecting chords of given constant length (say 2, so as to compare with the unit disk), those
minimizing the area, or maximizing the perimeter. He was not able to answer the question,
but he conjectured that at least one of the two extremal sets is his rounded triangle. In his
words ([1, p. 138]): Il serait intéressant de déterminer les courbes de périmètre maximé
et celles d’aire minimée. Probablement, la courbe triangulaire (Fig. 3) fournit la solution
d’au moins un de ces problèmes.

In this paper we prove that the conjecture of Auerbach is correct.

Theorem 2. The Auerbach triangle is the unique set of minimal area in the class of con-
vex Zindler sets with length of bisecting chords equal to 2, up to rotations and translations.

Theorem 3. The Auerbach triangle is the unique set of maximal perimeter in the class
of convex Zindler sets with length of bisecting chords equal to 2, up to rotations and
translations.

1.2. Connection with a problem by Santaló

Various properties of Zindler sets were studied in years past (see for instance [10], [4]
and [8]), while the relations between the minimal and maximal length of the bisecting
chords and other geometric quantities such as perimeter, diameter, inradius and circum-
radius have been investigated in more recent times (some results and references can be
found in [9], [3], [5] and [7]). For a detailed account on these and on the above mentioned
papers on Zindler sets we also refer to Chapters 3 and 4 of [6].

The result proved here is connected to an old question by L. A. Santaló ([2, Prob-
lem A26]), who asked whether for any convex set C, with area A(C), there always exists
a bisecting chord of length at most 2

√
A(C)/π or, equivalently, whether the convex set

with minimal bisecting chord of length 2 and smallest area is the unit disk. It is known
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that the answer to Santaló’s question is negative, since the area of the Auerbach triangle
is less than π , namely, as shown by Auerbach himself, it is

2
√

3
(

ln(9)−
(

ln(3)
2

)2

− 1
)
≈ 3.102.

Indeed, as a consequence of formula (1.2) below, every Zindler set other than the disk
gives a negative answer to the Santaló problem. However, the question of determining
which is the set of minimal area among those with minimal bisecting chord equal to 2 is
still open. In this regard, we suppose the following statement is true.

Conjecture. The set minimizing the area in the class of convex sets with bisecting chords
of fixed minimal length is a Zindler set. Hence, thanks to Theorem 2, the solution of the
Santaló problem would be the Auerbach triangle.

The reason why the above claim is quite reasonable is simple. Consider a convex set C
which is not a Zindler set, like in Figure 4, and a bisecting chord not of minimal length,
as the horizontal segment depicted in the figure. Then define another set Cε, simply by
cutting off an area ε very close to each end of the bisecting chord (the two shaded portions
in the figure). Since the area around both ends is the same, and since the chord was not
minimal, it is immediate to realize that the set Cε has the same minimal bisecting chords
as C, so that C cannot be a solution of the Santaló problem. Unfortunately, this simple
idea does not lead to a formal proof of the conjecture. Indeed, in general (unlike the set
in the figure), it may be impossible to cut off the two pieces without strictly decreasing
the minimal length of the bisecting chords. This is what may happen if the boundary of C
contains a segment, and an endpoint of a minimal chord lies on this segment.

Fig. 4. A convex non-Zindler set C (big set) and a variation Cε (without the shaded parts).

1.3. Plan of the paper

In Section 2 we present an analytic characterization of the convex Zindler sets, quite close
to the one given by Auerbach in [1], which shows in particular that those sets are of class
C1,1. More precisely, we will give a bijective correspondence between Zindler sets and
the class of functions c : S1

→ R satisfying, for all θ ∈ S1,
c(θ + π) = −c(θ);∫ θ+π

θ

c(σ )(cos σ, sin σ) dσ = (0, 0);

|c′(θ)| ≤ 1+ c(θ)2.

(1.1)
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Having this characterization at hand, it is possible to express the area of a Zindler set C
by means of the associated function c, getting

Area(C) = π −
2
π

∑
n odd
n≥3

A2
n + B

2
n

n2 − 1
=: π −

2
π

F(c), (1.2)

An and Bn being the Fourier coefficients of c. Hence, denoting by ĉ the function corre-
sponding to the Auerbach triangle, Theorem 2 is equivalent to the statement that ĉ max-
imizes F among all functions c satisfying (1.1). Since the function c ≡ 0 corresponds to
the disk, it is evident from (1.2) not only that the disk is not the solution of the Auerbach
problem (hence neither, a fortiori, of the Santaló problem), but on the contrary that it
maximizes the area among Zindler sets. On the other hand, also the perimeter of the set C
can be easily computed in terms of the corresponding function c as

Perimeter(C) =
∫ 2π

0

√
1+ c(θ)2 dθ. (1.3)

Hence, it is again clear that the disk, corresponding to c ≡ 0, minimizes the perimeter
among Zindler sets.

In Section 3 we give the proof of the conjecture about the area, namely Theorem 2.
The proof basically consists of two big steps. We start, in Section 3.1, by showing an L∞

estimate for functions c satisfying (1.1), namely that for each such c one has

‖c‖L∞ ≤ tan(π/6).

In Section 3.2 we will obtain Theorem 2 by showing that indeed ĉ maximizes F in the
larger class of functions c : S1

→ R such that
c(θ + π) = −c(θ);

|c(θ)| ≤ tan(π/6);
|c′(θ)| ≤ 1+ c(θ)2.

The reason why we pass to this new class of functions (which are not necessarily asso-
ciated to a set) is that this allows more flexibility in defining suitable competitors. We
underline that in the proof of the result, and in particular in Section 3.2, we will need to
perform extremely careful estimates. This is due to the fact that the difference between
the area of the biggest Zindler set (i.e., the area π of the ball) and the area of the smallest
Zindler set (i.e., the area ≈ 3.102 of the Auerbach triangle) is just around 1%.

In Section 4 we give the proof of the conjecture about the perimeter, Theorem 3. The
scheme of the proof is completely different from the one of Theorem 2. Indeed, while
the proof in the former case hinged on the Fourier coefficients An and Bn of c, in this
case they do not play any role, simply because there is no reasonable way to express the
perimeter in terms of An and Bn, as one can easily guess from (1.3). Instead, the proof is
based on a careful analysis of the intervals where an optimal function has a costant sign.
Roughly speaking, if a function changes sign too often it cannot become big, thus it has
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a small perimeter by (1.3); on the other hand, having the same sign in a too large interval
forces again the function to be small, due to the second condition in (1.1). Our argument
then consists in taking an optimal function c̄ and distinguishing the different cases: all the
intervals where c̄ has a constant sign are shorter than π/3; one of them is longer; two of
them are longer. While the first case will be trivial thanks to our estimates of Section 2,
the second one is harder, and the last one is the most involved.

2. Characterization of the Zindler sets

The purpose of this section is to show how to associate to any Zindler set a Lipschitz
function. Let us start with the relevant definitions.

Definition 2.1. Let C be a bounded, convex subset of R2. For any θ ∈ S1, we denote by
M(θ), R(θ) and L(θ) the center, the right extreme and the left extreme, respectively, of
the unique bisecting chord of C with direction θ . We say that the set C is a Zindler set if
all the bisecting chords have the same length.

Throughout the paper we will always consider, with no loss of generality, Zindler sets
with bisecting chords of length 2, so as to compare them with the unit disk.

Fix a Zindler set C and notice that, since the bisecting chords of directions θ and θ+π
are the same segment with opposite orientation, one has

M(θ) = M(θ + π), R(θ) = L(θ + π), L(θ) = R(θ + π).

First, we show that the curve θ 7→ M(θ) is differentiable almost everywhere.

Lemma 2.2. Let C be a Zindler set and let θ ∈ S1 be such that ∂C has a unique tangent
at both R(θ) and L(θ). Then the curve M is differentiable at θ and

M ′(θ) = c(θ)(cos θ, sin θ) (2.1)

for some c(θ) ∈ R.

Proof. Assuming θ = 0 and M(0) = (0, 0) just to get simpler notation and figure, we
take a small angle ε and define a = a(ε), b = b(ε), α = α(ε) and β = β(ε) as in
Figure 5, that is, in such a way that

R(ε) = (1+ a, b), L(ε) = (−1+ α,−β).

Notice that a, b, α and β tend to 0 as ε→ 0. Since C is a Zindler set, we know that

2 =
√
(2+ a − α)2 + (b + β)2,

from which we deduce

a = α + o(|a| + |b| + |α| + |β|). (2.2)
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Fig. 5. The situation considered in the proof of Lemma 2.2.

Moreover, from the assumption that ∂C admits a tangent at L(0) and R(0) we know that

a = b tan(ϕR)+ o(|b|), α = β tan(ϕL)+ o(|β|) (2.3)

where, as in Figure 5, ϕL and ϕR are the angles between the tangent to ∂C at L(0) and
R(0) and the direction π/2. By the convexity of C and the fact that L(0)R(0) bisects the
set C, we also have −π/2 < ϕL, ϕR < π/2. This allows us to rewrite (2.2) as

a = α + o(|b| + |β|). (2.4)

Define now, again as in the figure, δ = δ(ε) in such a way that (δ, 0) is the intersection
between the chords L(0)R(0) and L(ε)R(ε). Then by elementary geometry, we have

1− δ + a
b

=
1+ δ − α

β
,

which gives
β = b + δ(β + b)+ o(|b| + |β|). (2.5)

Finally, recall that the two chords at the angles 0 and ε are both bisecting chords. There-
fore, the area of the left and right part of C enclosed by the two chords (the light and
dark colored regions in the figure) is the same. Writing down this equality, and keeping
in mind that b and β have by construction the same sign, we obtain

1
2
(1+ δ)β + o(|β|) =

1
2
(1− δ)b + o(|b|),

from which we deduce

β = b − δ(β + b)+ o(|b| + |β|). (2.6)

Putting together (2.5) and (2.6) one immediately finds

b = β + o(|b| + |β|). (2.7)

From (2.4) and (2.7) we get
lim
ε→0

a

b
= lim
ε→0

α

β
,
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which in view of (2.3) tells us that ϕR = ϕL =: ϕ (by the way, this “geometrical” property
of Zindler sets is interesting in itself).

Since, by definition, the chord connecting L(ε) and R(ε) has direction ε, we can
finally write the values of a, b, α and β as

a = ε tanϕ + o(ε), b = ε + o(ε), α = ε tanϕ + o(ε), β = ε + o(ε). (2.8)

As a consequence, the center M(ε) of the bisecting chord of direction ε has coordinates

M(ε) ≡ (ε tanϕ + o(ε), o(ε)).

This shows that the curve M is differentiable at 0, and that its velocity is M ′(0) =
(tanϕ, 0), hence has the direction of θ = 0. Since the choice of θ was arbitrary, set-
ting c(θ) := tanϕ concludes the proof. ut

Remark 2.3. The construction above, and in particular formula (2.8) for a, b, α and β,
shows another important property of Zindler sets C: all the bisecting chords divide C into
two parts not just with the same area, but also with the same perimeter.

Lemma 2.4. The function c : S1
→ R defined by (2.1) is Lipschitz, and for a.e. θ ∈ S1,

c(θ + π) = −c(θ);∫ θ+π

θ

c(σ )(cos σ, sin σ) dσ = (0, 0);

|c′(θ)| ≤ 1+ c(θ)2.

(2.9)

Proof. Consider the function ϕ introduced in the proof of Lemma 2.2, and recall the
relation between c and ϕ: c(θ) = tan(ϕ(θ)). We can start showing the first equality in
(2.9). Indeed, we immediately get even something more, namely

c(θ + π) = −c(θ), ϕ(θ + π) = −ϕ(θ). (2.10)

The left equality follows from (2.1) sinceM(θ +π) = M(θ) for all θ . As a consequence,
since by construction −π/2 < ϕ(θ) < π/2, we also obtain the right equality. Notice
that one can also get the latter equality by a direct geometric argument based on the
construction above and then deduce the former by definition.

Recall now that, by (2.1), for any θ, θ̃ ∈ S1 one has

M(θ̃) = M(θ)+

∫ θ̃

θ

c(σ )(cos σ, sin σ) dσ.

Applying this formula with θ̃ = θ + π and recalling that M(θ + π) = M(θ), we get the
second equality in (2.9). Notice that the equality just proven implies the first one.

Finally, we observe that the tangent line to ∂C at R(θ) has direction

τ(θ) = θ + π/2− ϕ(θ),



On a conjecture by Auerbach 1641

and by the convexity of C the function θ 7→ τ(θ) must be increasing. This implies that
θ − ϕ(θ) is an increasing function of θ , and then for any θ ∈ S1 and any ε > 0 one has

ϕ(θ + ε)− ϕ(θ) < ε.

Since this inequality also holds for θ + π , keeping in mind (2.10) we get

ϕ(θ + ε)− ϕ(θ) > −ε,

thus showing that ϕ is 1-Lipschitz. Since by definition c(θ) = tan(ϕ(θ)), we see that c is
Lipschitz and that the last estimate in (2.9) holds, thus concluding the proof. ut

Remark 2.5. It is interesting to underline a couple of geometric consequences of Lem-
mas 2.2 and 2.4. Any Zindler set has a C1,1 boundary and has the property that any
bisecting chord makes the same angle with the tangents at the two endpoints. This second
property was already observed in proving Lemma 2.2, while the first one follows from
the fact that ϕ is Lipschitz, as established in the proof of Lemma 2.4, and the fact that
each point of the boundary of C is the right endpoint of a unique bisecting chord. It is
worth observing that what really prevents the boundary of a Zindler set from having a
corner is the second of these two properties. Indeed, if there were a “convex” corner at
one endpoint of a bisecting chord, there should also be an opposite “concave” corner at
the other endpoint of the same chord, contrary to the convexity of C.

We can now show the remarkable fact that the three equations in (2.9) characterize
all the convex Zindler sets, that is, given any function c satisfying (2.9), there is a convex
Zindler set C corresponding to the function c.

Proposition 2.6. The map associating to any convex Zindler set C the function c for
which (2.1) holds is a one-to-one correspondence between the convex Zindler sets C (up
to translations) and the functions c : S1

→ R satisfying (2.9).

Proof. The fact that the functions c given by (2.1) satisfy (2.9) has been established in
Lemma 2.4, so we only need to show the opposite implication.

Let then c be any function for which (2.9) holds and define L,R : S1
→ R2 by

L(θ) =

∫ θ

0
c(σ )(cos σ, sin σ) dσ − (cos θ, sin θ),

R(θ) =

∫ θ

0
c(σ )(cos σ, sin σ) dσ + (cos θ, sin θ).

(2.11)

By the second property of (2.9) one has R(θ + π) = L(θ), and θ 7→ R(θ) is a C1 closed
curve in R2 with

R′(θ) = c(θ)(cos θ, sin θ)+ (− sin θ, cos θ).

The fact that this curve is the boundary of a convex set C will follow at once by proving
that

θ 7→
R′(θ)

|R′(θ)|
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is a one-to-one increasing map from S1 to itself, and this, in turn, can be derived, after
some straightforward calculations, from the third inequality in (2.9).

To show that C is a Zindler set, it is enough to check that for any θ the segment
L(θ)R(θ) is the bisecting chord of direction θ and length 2. The fact that L(θ)R(θ) has
length 2 and direction θ is obvious by (2.11). Moreover, the area of the portion of C above
L(θ)R(θ) is constant with respect to θ because its derivative is

1
2
(R′(θ)+ L′(θ)) · (− sin θ, cos θ) = 0,

as can be checked by geometrical considerations as in Lemma 2.2. Since by (2.9),L(θ+π)
= R(θ) and R(θ + π) = L(θ), we deduce that the segments L(θ)R(θ) are bisecting.

To conclude the proof we observe that c is exactly the function associated to C
by (2.1), and this is in turn true since the center M(θ) of the bisecting chord of direc-
tion θ is given by

M(θ) =
L(θ)+ R(θ)

2
=

∫ θ

0
c(σ )(cos σ, sin σ) dσ,

so that M ′(θ) = c(θ)(cos θ, sin θ), according to (2.1). ut

Having reduced the problem to the study of a suitable class of Lipschitz functions, it is
important to get a useful formula for the perimeter and the area of the set C in terms of
the corresponding function c. This will be done in the following lemma.

Lemma 2.7. If C is the Zindler set corresponding to the function c, its area is given by

Area(C) = π +
∫ π

0

(∫ θ

0
c(θ)c(σ ) sin(θ − σ) dσ

)
dθ, (2.12)

and its perimeter by

Perimeter(C) = 2
∫ π

0

√
1+ c2(θ) dθ. (2.13)

Proof. We start by recalling that the area of a convex set C in R2, with boundary 0, is
given by

Area(C) =
1
2

∫
0

(x dy − y dx). (2.14)

Since C is a Zindler set, its boundary is the set of the points R(θ) for 0 ≤ θ ≤ 2π , and
from (2.11) we know that

R(θ) =

∫ θ

0
c(σ )(cos σ, sin σ) dσ + (cos θ, sin θ),

so that on 0,

(dx, dy) ≡
(
c(θ)(cos θ, sin θ)+ (− sin θ, cos θ)

)
dθ.
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Thanks to (2.14), we then have

Area(C) =
1
2

∫ 2π

0

((∫ θ

0
c(σ ) cos σ dσ + cos θ

)
(c(θ) sin θ + cos θ)

−

(∫ θ

0
c(σ ) sin σ dσ + sin θ

)
(c(θ) cos θ − sin θ)

)
dθ

= π +
1
2

∫ 2π

0

(∫ θ

0
c(σ )c(θ) sin(θ − σ)+ c(σ ) cos(θ − σ) dσ

)
dθ. (2.15)

Using the properties of c listed in (2.9), we see that for any 0 ≤ θ ≤ π ,∫ π+θ

0
c(σ ) cos((π + θ)− σ) dσ =

∫ π+θ

π

c(σ ) cos((π + θ)− σ) dσ

= −

∫ θ

0
c(σ ) cos(θ − σ) dσ,

hence the last term in (2.15) is 0, that is,∫ 2π

0

(∫ θ

0
c(σ ) cos(θ − σ) dσ

)
dθ = 0. (2.16)

Arguing in the very same way, we have∫ π+θ

0
c(σ )c(π + θ) sin((π + θ)− σ) dσ =

∫ π+θ

π

c(σ )c(π + θ) sin((π + θ)− σ) dσ

=

∫ θ

0
c(σ )c(θ) sin(θ − σ) dσ,

which gives∫ 2π

0

(∫ θ

0
c(σ )c(θ) sin(θ − σ) dσ

)
dθ = 2

∫ π

0

(∫ θ

0
c(σ )c(θ) sin(θ − σ) dσ

)
dθ.

(2.17)
Inserting (2.17) and (2.16) in (2.15), one gets the formula (2.12).

Concerning (2.13), on the other hand, it is enough to notice that by (2.11) one has

R′(θ) = c(θ)(cos θ, sin θ)+ (− sin θ, cos θ), thus |R′(θ)| =
√

1+ c2(θ),

and to recall that c(θ + π) = −c(θ). ut

Formula (2.12) suggests considering the Fourier series of c to treat the area functional.
This makes sense because the functions satisfying (2.9) are Lipschitz functions.
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Definition 2.8. Let c : S1
→ R satisfy (2.9). For any n ∈ N, define the Fourier coeffi-

cients as

An :=
1
2

∫ 2π

0
c(θ) sin(nθ) dθ, Bn :=

1
2

∫ 2π

0
c(θ) cos(nθ) dθ.

Notice that (2.9) implies that An = Bn = 0 for all even n and for n = 1. Hence, the
Fourier expansion of c becomes

c(θ) =
2
π

∑
n odd
n≥3

(An sin(nθ)+ Bn cos(nθ)). (2.18)

Moreover, for all odd n ≥ 3,

An =

∫ π

0
c(θ) sin(nθ) dθ, Bn =

∫ π

0
c(θ) cos(nθ) dθ. (2.19)

The unusual definition of the Fourier coefficients given above, which explains the
constant 2/π in (2.18), has the advantage that the two integrals in (2.19) appear without
any multiplicative constant. This will simplify a lot the calculations in the next section.

Remark 2.9. From the well known properties of Fourier series, one sees immediately
that for any odd n ≥ 3 there exists an angle ϕ̄ such that√

A2
n + B

2
n = sup

ϕ∈S1

∫ π

0
c(θ) sin(nθ + ϕ) dθ =

∫ π

0
c(θ) sin(nθ + ϕ̄) dθ. (2.20)

Notice also that, by rotating c (that is, passing from c to c̃(θ) = c(θ + θ̄ ) for some θ̄ ),
An and Bn may change, but the quantity

√
A2
n + B

2
n does not change, since the supremum

in (2.20) is attained at ϕ̄ + nθ̄ instead of ϕ̄, but its value remains the same.

We can now give a more expressive formula for the area of C which makes use of the
above notation.

Lemma 2.10. Given a Zindler set C corresponding to the function c, one has

Area(C) = π −
2
π

∑
n odd
n≥3

A2
n + B

2
n

n2 − 1
. (2.21)

Proof. Fix 0 ≤ θ ≤ π , and calculate∫ θ

0
c(σ ) sin(θ − σ) dσ =

2
π

∫ θ

0

∑
n odd
n≥3

(An sin(nσ)+ Bn cos(nσ)) sin(θ − σ) dσ.
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Since ∫ θ

0
sin(θ − σ) sin(nσ) dσ =

n sin θ − sin(nθ)
n2 − 1

,∫ θ

0
sin(θ − σ) cos(nσ) dσ =

cos θ − cos(nθ)
n2 − 1

,

for any θ ∈ [0, π] we have∫ θ

0
c(σ ) sin(θ − σ) dσ =

2
π

∑
n odd
n≥3

(
An

n sin θ − sin(nθ)
n2 − 1

+ Bn
cos θ − cos(nθ)

n2 − 1

)
.

Inserting this equality in (2.12) we obtain

Area(C) = π +
2
π

∫ π

0
c(θ)

∑
n odd
n≥3

(
An

n sin θ − sin(nθ)
n2 − 1

+ Bn
cos θ − cos(nθ)

n2 − 1

)
dθ

= π +
4
π2

∫ π

0

∑
n,m odd
n,m≥3

(Am sin(mθ)+ Bm cos(mθ))

·

(
An(n sin θ − sin(nθ))+ Bn(cos θ − cos(nθ))

n2 − 1

)
dθ

= π −
2
π

∑
n odd
n≥3

A2
n + B

2
n

n2 − 1
. ut

We can then reformulate our problem: minimizing the area among all Zindler sets is now
reduced to the problem of maximizing the sum

F(c) :=
∑
n odd
n≥3

A2
n + B

2
n

n2 − 1
(2.22)

among all functions c : S1
→ R satisfying (2.9).

Remark 2.11. Thanks to the new formulation of our problem, we see that the ball is
certainly not the area minimizer. On the contrary, since F(c) = 0 for the null function c
(which corresponds to the ball) and F(c) > 0 for any other function c, i.e., for any other
Zindler set, we can conclude that the ball is the Zindler set with the largest area.

We conclude this section by introducing ĉ, which in the next section we will prove to
be the optimal function. In the arc [0, π/6] the function is defined by setting

ĉ(θ) := tan θ ∀0 ≤ θ ≤ π/6,
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Fig. 6. The optimal function ĉ.

π
6

π
2 π 11

6 π

2π

then it is defined in all S1 by the symmetries shown in Figure 6. It is immediate to no-
tice that the function thus obtained satisfies (2.9), so it corresponds to a Zindler set. In
particular, let us observe that this set is exactly the Auerbach triangle drawn in Figure 7.
Indeed, recall that, by the proof of Lemma 2.4, the local convexity of the boundary of C
at the right extreme of the bisecting chord of direction θ corresponds to the inequality
c′(θ) ≤ 1+c2. For the function ĉ, one has exactly the equality ĉ′ = 1+ĉ2 in [−π/6, π/6],
so the part of the boundary made by the right extremes of the bisecting chords with di-
rection θ ∈ [−π/6, π/6] is a segment (the vertical segment on the right of the figure).
Moreover, the 120◦ symmetry of the set is immediately deduced from the corresponding
symmetry of ĉ. Notice that the set associated to ĉ is rotated by 90◦ with respect to the one
represented in Figure 3. This choice does not affect the minimization problem, but gives
a simpler analytic expression to ĉ.

Fig. 7. The optimal set, Auerbach triangle.

Finally, notice that the function ĉ is “extremal”, in the sense that the inequality |ĉ′| ≤
1+ ĉ2 is an equality almost everywhere. Moreover, ĉ is the “simplest” extremal function
satisfying (2.9). More precisely, it is easy to observe that, for any extremal function c sat-
isfying (2.9), the sign of c′ must change at least three times in the interval [0, π] (this can
be obtained as an easy consequence of Lemma 3.1 below), and in particular this happens
exactly three times if and only if c = ĉ up to a rotation. Thanks to this observation, it is
somehow not too surprising that ĉ has the least area and the maximal perimeter among
Zindler sets at once, even though the two extremality properties seem to require very
different analyses, as one can suspect from our proofs of Theorems 2 and 3.
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3. Proof of Theorem 2

In this section we present the proof of Theorem 2. The main steps of the proof are two.
First, we give an L∞ estimate for all functions c satisfying (2.9). Then, via comparison
with suitably constructed competitors, we find a general result on the structure of a func-
tion which maximizes (2.22). At that point, the proof of the theorem is almost immediate.

3.1. An L∞ estimate

In this section we will show a uniform bound for admissible functions c and we will
collect some other estimates to be used later on.

In what follows, if c : S1
→ R, by a rotation of c we mean any function c̃ : S1

→ R
such that c̃(θ) = c(θ + ϕ̄) for some convenient ϕ̄ ∈ S1. Similarly, by the reflection of c
we mean the function c̃ : S1

→ R such that c̃(θ) = c(π − θ) for all θ ∈ S1. Notice that
in both cases c satisfies (2.9) if and only if c̃ satisfies (2.9).

Proposition 3.1 (The main L∞ estimate). If c : S1
→ R satisfies (2.9), then c ∈

L∞(S1) and the estimate
‖c‖L∞ ≤ tan(π/6) (3.1)

holds. Moreover, the above inequality is strict, unless c = ĉ up to a rotation.

Remark 3.2. Keeping in mind that |c′| ≤ 1 + c2, the L∞ estimate (3.1) implies that all
the admissible functions c are uniformly Lipschitz. Correspondingly, all convex Zindler
sets, with assigned length of the bisecting chords, are uniformly C1,1.

From this observation, it is immediate to deduce the existence of optimal Zindler sets.

Corollary 3.3 (Existence of extremals). There exist an admissible function minimizing
(2.12) and an admissible function maximizing (2.13). Equivalently, there exist a convex
Zindler set of minimal area and a convex Zindler set of maximal perimeter.

Proof. As observed in Remark 3.2, the admissible functions are uniformly Lipschitz, so
their class is compact under uniform convergence. This implies the conclusion since both
area and perimeter are continuous. ut

The proof of Proposition 3.1 above will be easily obtained from the following technical
result.

Lemma 3.4. Let θ̄ ∈ (0, π/2) and τ ∈ [0, tan θ̄ ]. Let cτ,θ̄ : [0, π]→ R be defined as

cτ,θ̄ (θ) :=


− tan(θ + arctan τ) for 0 ≤ θ ≤ (θ̄ − arctan τ)/2,
tan(θ − θ̄ ) for (θ̄ − arctan τ)/2 ≤ θ ≤ π/2,
tan(π − θ̄ − θ) for π/2 ≤ θ ≤ π − (θ̄ + arctan τ)/2,
tan(θ − π + arctan τ) for π − (θ̄ + arctan τ)/2 ≤ θ ≤ π.

Then the function

[0, tan θ̄ ] 3 τ 7→
∫ π

0
cτ,θ̄ (θ) sin θ dθ

is strictly increasing.
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Proof. To obtain the assertion, it is enough to fix 0 < τ < tan θ̄ and show that the
difference

D :=
∫ π

0
(cτ+ε,θ̄ (θ)− cτ,θ̄ (θ)) sin θ dθ

is strictly positive for any sufficiently small ε > 0.

Fig. 8. The graph of cτ,θ̄ with θ̄ = π/3 and τ = 0.25.

−τ

θ̄

π
2

π − θ̄

π

A first order approximation of D gives

D =

∫ (θ̄−arctan τ)/2

0
(cτ+ε,θ̄−cτ,θ̄ )(θ) sin θ dθ+

∫ π−arctan τ

π−(θ̄+arctan τ)/2
(cτ+ε,θ̄−cτ,θ̄ )(θ) sin θ dθ

+

∫ π

π−arctan τ
(cτ+ε,θ̄ − cτ,θ̄ )(θ) sin θ dθ + o(ε),

where the first integral is strictly negative, while the second and third are strictly positive.
Thus, to prove that D is strictly positive, it is enough to show that the sum of the first two
integrals above is non-negative and since they are both evaluated on intervals of the same
length, this will follow if we show that

(cτ+ε,θ̄ − cτ,θ̄ )(θ) sin θ + (cτ+ε,θ̄ − cτ,θ̄ )(π − arctan τ − θ) sin(π − arctan τ − θ) > 0

for all 0 ≤ θ ≤ (θ̄−arctan τ)/2. An immediate calculation gives that the above inequality
can be rewritten, up to the first order, as

−
ε

1+ τ 2
1

cos2(θ + arctan τ)
sin θ +

ε

1+ τ 2
1

cos2 θ
sin(π − arctan τ − θ) > 0,

which is in turn equivalent to

cos2(θ + arctan τ)
cos2 θ

>
sin θ

sin(θ + arctan τ)
∀0 ≤ θ ≤ (θ̄ − arctan τ)/2.

Notice that when θ increases, the left ratio decreases while the right one increases, so to
prove this last inequality it is enough to check that it holds when θ = (θ̄ − arctan τ)/2 =:
θ̄/2− α. In conclusion, the statement is reduced to the inequality

cos2(θ̄/2+ α)
cos2(θ̄/2− α)

>
sin(θ̄/2− α)
sin(θ̄/2+ α)

.

We omit the elementary verification of the inequality above. ut
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Proof of Proposition 3.1. Let c be a function satisfying (2.9) and such that ‖c‖L∞ ≥
tan(π/6). Up to a rotation, we may assume that c(π/2) = tan(π/6). Moreover, up to a
reflection, we can also assume that τ := c(π) ≥ 0. Notice also that (2.9) implies that
τ ≤ tan(π/3). Let us observe now that c ≥ cτ,π/3 pointwise in [0, π]. In fact, from the
third condition in (2.9) we have |c′| ≤ 1+ c2, so that

c(π/2) = tan(π/6) ⇒ c(θ) ≥ tan(2π/3− θ) ∀θ ≥ π/2,
c(π) = τ ⇒ c(θ) ≥ tan(θ − π + arctan τ) ∀θ ≤ π.

This proves that c ≥ cτ,π/3 in [π/2, π], and the proof in [0, π/2] is similar. Since
sin θ ≥ 0 in [0, π], from the inequality c ≥ cτ,π/3 we get

0 =
∫ π

0
c(θ) sin θ dθ ≥

∫ π

0
cτ,π/3(θ) sin θ dθ ≥

∫ π

0
c0,π/3(θ) sin θ dθ = 0. (3.2)

Notice that the first equality is due to (2.9) and the second inequality is given by Lem-
ma 3.4. The last equality is easy to obtain by observing that c0,π/3 (which, by the way,
coincides with the function −ĉ) is anti-periodic with period π/3, and therefore∫ π

0
c0,π/3(θ) sin θ dθ =

∫ π/3

0
c0,π/3(θ)(sin θ − sin(θ + π/3)+ sin(θ + 2/3π)) dθ = 0.

Hence, the two inequalities in (3.2) are indeed equalities and, using again Lemma 3.4,
this implies that c = cτ,π/3 = c0,π/3 = −ĉ. This concludes the proof. ut

Remark 3.5. Notice that all the functions cτ,θ̄ defined in Lemma 3.4 coincide in
[θ̄ , π − θ̄ ]. Hence, arguing as in Proposition 3.1, by Lemma 3.4 we deduce that, for
any function c : [0, π]→ R with

|c′| ≤ 1+ c2, c(0) = −c(π), c(θ̄) = c(π − θ̄ ) = 0,

we have ∫
[0,θ̄ ]∪[π−θ̄ ,π ]

c(θ) sin θ dθ ≥
∫

[0,θ̄ ]∪[π−θ̄ ,π ]
cτ,θ̄ (θ) sin θ dθ

≥

∫
[0,θ̄ ]∪[π−θ̄ ,π ]

c0,θ̄ (θ) sin θ dθ,

where τ = |c(π)|.

We now show another consequence of Lemma 3.4, which will be used in Section 4.

Lemma 3.6 (An L∞ estimate in large intervals). Let 0≤ θ̄ <π/3, and let c : [0, π]→R
be a Lipschitz function such that

|c′| ≤ 1+ c2,

∫ π

0
c(θ) sin θ dθ ≤ 0, c(0) = −c(π),

c(θ̄) = c(π − θ̄ ) = 0, c ≥ 0 in I ,
(3.3)

where I = [θ̄ , π − θ̄ ]. Then
‖c‖L∞(I ) < tan(θ̄/2).
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Proof. For contradiction, assume the existence of θ̂ ∈ (θ̄ , π − θ̄ ) such that c(θ̂) =
tan(θ̄/2). Observe that θ̂ ∈ [3θ̄/2, π − 3θ̄/2], and that the pointwise inequality

c(θ) ≥ c̃(θ) := χJ (θ) tan(dist(θ, ∂J ))

holds, where J = (θ̂ − θ̄/2, θ̂ + θ̄/2). We now claim that∫ π

0
c(θ) sin θ dθ ≥

∫ π

0
c∗(θ) sin θ dθ, (3.4)

where c∗ : [0, π]→ R is defined by

c∗(θ) :=


− tan θ for 0 ≤ θ ≤ θ̄/2,
tan(θ − θ̄ ) for θ̄/2 ≤ θ ≤ 3θ̄/2,
0 for 3θ̄/2 ≤ θ ≤ π/2,

and by the relation c∗(θ) = c∗(π − θ). The functions c̃ and c∗ are shown in Figure 9. In

θ̂−θ̄2 θ̂+θ̄2
π

θ̄ 3
2 θ̄

π

Fig. 9. The functions c̃ (left) and c∗ (right).

fact, assuming for simplicity that θ̂ ≤ π/2—which is true up to a reflection—one has∫ π−θ̄

θ̄

c(θ) sin θ dθ ≥
∫ π−θ̄

θ̄

c̃(θ) sin θ dθ ≥ 2
∫ θ̂

θ̂−θ̄/2
c̃(θ) sin θ dθ

≥ 2
∫ 3θ̄/2

θ̄

c∗(θ) sin θ dθ =
∫ π−θ̄

θ̄

c∗(θ) sin θ dθ,

where the first inequality is due to the pointwise estimate c ≥ c̃. Hence, (3.4) follows
directly by Remark 3.5. The proof will thus be completed once we show that∫ π

0
c∗(θ) sin θ dθ > 0. (3.5)

To this end we first notice that, for any 0 < λ < 1, the function

ϕ 7→
sin(λϕ)

sinϕ

is strictly increasing in [0, π/2]. Therefore, as θ̄ < π/3, one has

sin
(

3θ̄
π
ϕ

)
< α sinϕ ∀ϕ ∈ (0, π/3), sin

(
3θ̄
π
ϕ

)
> α sinϕ ∀ϕ ∈ (π/3, π/2),
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where α = sin(θ̄)/sin(π/3). We now obtain (3.5), thus concluding the proof, since∫ π

0
c∗(θ) sin θ dθ = 2

∫ 3θ̄/2

0
c∗(θ) sin θ dθ =

6θ̄
π

∫ π/2

0
c∗
(

3θ̄
π
ϕ

)
sin
(

3θ̄
π
ϕ

)
dϕ

>
6θ̄
π
α

∫ π/2

0
c∗
(

3θ̄
π
ϕ

)
sinϕ dϕ =

3θ̄
π
α

∫ π

0
c∗
(

3θ̄
π

min(ϕ, π − ϕ)
)

sinϕ dϕ = 0,

where the last equality holds since

ϕ 7→ c∗
(

3θ̄
π

min(ϕ, π − ϕ)
)

is anti-periodic with period π/3. ut

Now, our task is to show that the optimal function for the area functional provided by
Corollary 3.3 coincides with our candidate ĉ. To this end, the standard strategy would be
to argue by contradiction, assuming that the maximum of F is attained at some function
c̄ 6= ĉ and finding a suitable competitor of c̄ for which F is strictly larger. However, in
our case this strategy presents a serious difficulty due to the fact that condition (2.9) is
not very flexible. Indeed, it is quite hard to build a competitor to an admissible function
by making a small variation in such a way as to keep the second constraint in (2.9). To
overcome this difficulty, we will show that ĉ maximizes (2.22) in a larger and less rigid
class of functions. This will be done by using the full strength of the L∞ estimate (3.1).

Definition 3.7. A function c : S1
→ R such that c(θ +π) = −c(θ) for all θ ∈ R will be

called weakly admissible if

|c′(θ)| ≤ 1+ c2(θ) and |c(θ)| ≤ tan(π/6) ∀0 ≤ θ ≤ 2π.

For any weakly admissible function c, the Fourier coefficients are defined as in (2.19).

Thanks to Proposition 3.1, it is obvious that any admissible function, that is, any
function satisfying (2.9), is weakly admissible, but it is also clear that the class of weakly
admissible functions is wider and more stable. Notice also that to a weakly admissible
function which is not admissible there corresponds no Zindler set. Moreover, since also
weakly admissible functions are uniformly Lipschitz by definition, as in Corollary 3.3
we have the existence of a weakly admissible function maximizing F. As anticipated in
the Introduction, Theorem 2 will be obtained as a particular case of the following more
general result.

Theorem 4. The problem of maximizing F among weakly admissible functions admits ĉ
as a unique solution, up to a rotation.

It is important to emphasize that if c is a weakly admissible function and An, Bn are its
Fourier coefficients, there is no reason why A1 and B1 should be 0 (while of course An
and Bn are 0 for all even n). Hence, the Fourier expansion (2.18) does not hold in general
for a weakly admissible function. Nevertheless, notice that in Theorem 4 we consider
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the problem of maximizing F as defined by the series (2.22), which adds up the terms
with odd n ≥ 3. In other words, a weakly admissible function may well have non-null
coefficients A1, B1, but these coefficients do not affect the value of F.

We conclude this section by collecting a couple of simple but useful estimates to be
used later.

Lemma 3.8 (Some estimates). For any weakly admissible function c, and for any odd
n ≥ 3, √

A2
n + B

2
n ≤

8
3n
. (3.6)

Moreover, if c realizes the maximum of (2.22), then also√
A2

3 + B
2
3 ≥ α > 0.598, (3.7)

where α is the constant defined in (3.8) below.

Proof. Let us start with (3.6). Keeping in mind that

|c′(θ)| ≤ 1+ c2(θ) ≤ 1+ tan2(π/6) = 4/3,

and denoting, as in (2.20), by ϕ̄ = ϕ̄(c, n) the angle such that√
A2
n + B

2
n =

∫ π

0
c(θ) sin(nθ + ϕ̄) dθ,

it is immediate to calculate√
A2
n + B

2
n =

∫ π

0
c(θ) sin(nθ + ϕ̄) dθ =

∫ π

0
c′(θ)

cos(nθ + ϕ̄)
n

dθ

≤
4

3n

∫ π

0
|cos(nθ + ϕ̄)| dθ =

8
3n
.

Hence (3.6) is proved. To get the lower estimate (3.7), it is enough to compare an optimal
function c with our function ĉ, whose Fourier coefficients we denote by Ân, B̂n. Indeed,
since c is optimal we have F(c) ≥ F(ĉ) and hence, recalling (3.6),

A2
3 + B

2
3

8
=

∑
n odd
n≥3

A2
n + B

2
n

n2 − 1
−

∑
n odd
n≥5

A2
n + B

2
n

n2 − 1
≥

∑
n odd
n≥3

Â2
n + B̂

2
n

n2 − 1
−

∑
n odd
n≥5

64
9n2(n2 − 1)

≥
Â2

3
8
−

∑
n odd
n≥5

64
9n2(n2 − 1)

.

Let us then define

α :=
(
Â2

3 −
∑
n odd
n≥5

512
9n2(n2 − 1)

)1/2

, (3.8)
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so that (3.7) will follow once one checks that α > 0.598, which is a very boring but
simple task. Indeed, first of all an elementary exercise yields

Â3 = 6
∫ π/6

0
tan(θ) sin(3θ) dθ = 4− 6 ln(

√
3) > 0.704.

Hence, to obtain the desired inequality, one has to write

∑
n odd
n≥5

512
9n2(n2 − 1)

=

15∑
n odd
n=5

512
9n2(n2 − 1)

+

∑
n odd
n≥17

512
9n2(n2 − 1)

and to estimate the last sum from above by

∑
n odd
n≥17

1
n2(n2 − 1)

≤
172

172 − 1

∑
n odd
n≥17

1
n4 ≤

172

2(172 − 1)

∫
+∞

15

1
x4 dx

=
172

6(172 − 1)153 . (3.9)

ut

3.2. The existence of three “special” angles

This section is entirely devoted to proving Lemma 3.9 below, which will immediately
imply Theorem 4 and then Theorem 2. Up to a rotation we may assume that A3 > 0 and
B3 = 0. We then have the following result.

Lemma 3.9 (Three “special” angles). Let c be a weakly admissible function maximizing
F, and assume that A3 > 0 and B3 = 0. Then there exist three angles θ1 ∈ [0, π/3],
θ2 ∈ [π/3, 2π/3] and θ3 ∈ [2π/3, π] such that

c′(θ) =


1+ c2(θ) in [0, θ1],
−(1+ c2(θ)) in [θ1, θ2],
1+ c2(θ) in [θ2, θ3],
−(1+ c2(θ)) in [θ3, π].

Proof. We will divide the proof into three steps.

Step I. Behavior of c near π/6.

Let us define 3θ̂ = arcsin(0.55) ≈ 33◦. In this first step we will show the existence of an
angle θ1 ∈ [θ̂ , π/3− θ̂ ] such that

c′(θ) =

{
1+ c2(θ) ∀θ̂ < θ < θ1,

−1− c2(θ) ∀θ1 < θ < π/3− θ̂ .
(3.10)
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Assume that this is not true. Then there exists θ̄ ∈ [θ̂ , π/3− θ̂ ] such that the right deriva-
tive of c at θ̄ is not −1 − c2(θ̄) (that is, the right derivative either does not exist or is
strictly larger than −1 − c2(θ̄)), and the left derivative of c at θ̄ is not 1 + c2(θ̄) (that is,
again, the left derivative either does not exist or is strictly smaller than 1 + c2(θ)). It is
then possible, for arbitrarily small ε > 0, to find a function c̃ ≥ c on [0, π] such that the
set {c̃ > c} is an arbitrarily small interval around θ̄ and∫ π

0
(c̃(θ)− c(θ)) dθ = ε, |c̃′| ≤ 1+ c̃2.

The function c̃ can be simply defined by fixing a very small positive δ = δ(ε) and then
setting, for θ ∈ [θ̂ , π/3− θ̂ ],

γ (θ) :=
{

tan
(
θ − θ̄ + arctan(c(θ̄)+ δ)

)
for θ ≤ θ̄ ,

tan
(
θ̄ − θ + arctan(c(θ̄)+ δ)

)
for θ ≥ θ̄ ,

c̃ := c ∨ γ.

We extend c̃ to [0, π]\ [θ̂ , π/3− θ̂ ] as c̃(θ) = c(θ), then to [π, 2π ] by setting c̃(θ+π) =
−c̃(θ) for θ ∈ [0, π]. The functions c and c̃ are shown in Figure 10 (the smaller function
is c, the larger c̃, and the area of the dark region is ε). Notice that, for δ small, c̃ is a weakly
admissible function. To see this, observe that the conditions c̃(θ + π) = −c̃(θ) and the
inequality |c̃′(θ)| ≤ 1+ c̃2(θ) are satisfied by construction, so we have only to verify the
L∞ estimate |c̃(θ)| ≤ tan(π/6). Since we may assume c(θ̄) < tan(π/6) (otherwise by
Proposition 3.1 we would have c = ĉ, thus concluding the proof), to get the L∞ estimate
for c̃ it is enough to take δ = ‖c̃ − c‖L∞ sufficiently small. We claim that

F(c̃) > F(c), (3.11)

thus getting a contradiction to the optimality of c.

θ̂
π
6 θ̄

π
3 − θ̂

Fig. 10. The functions c and c̃ in Step I: the area of the dark region is ε.

To show (3.11) we start by noticing that, denoting by Ãn, B̃n the Fourier coefficients
of c̃ defined as in (2.19), one has

Ã3 = A3 + ε sin(3θ̄ )+ o(ε), B̃3 = O(ε). (3.12)
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Since A3 > 0 and B3 = 0 by assumption, from (3.12) we deduce that the first term in
the sum (2.22) defining F(c̃) is greater than the first one in F(c). Let us now show that
the remaining terms are not much smaller than the corresponding ones in F(c). Indeed,
recalling (2.20) and choosing ϕn ∈ S1 such that√

A2
n + B

2
n =

∫ π

0
c(θ) sin(nθ + ϕn) dθ, (3.13)

we can estimate
√
Ã2
n + B̃

2
n from below as follows:√

Ã2
n + B̃

2
n = sup

ϕ∈S1

∫ π

0
c̃(θ) sin(nθ + ϕ) dθ ≥

∫ π

0
c̃(θ) sin(nθ + ϕn) dθ

=

∫ π

0
c(θ) sin(nθ + ϕn) dθ +

∫ π

0
(c̃(θ)− c(θ)) sin(nθ + ϕn) dθ

=

√
A2
n + B

2
n +

∫ π

0
(c̃(θ)− c(θ)) sin(nθ + ϕn) dθ

≥

√
A2
n + B

2
n −

∫ π

0
(c̃(θ)− c(θ)) dθ =

√
A2
n + B

2
n − ε. (3.14)

Thus, putting together (3.12) and (3.14), and recalling the estimates (3.6) and (3.7) proved
in Lemma 3.8, we get

F(c̃)− F(c) =
∑
n odd
n≥3

Ã2
n + B̃

2
n − A

2
n − B

2
n

n2 − 1

≥
A3 sin(3θ̄ )

4
ε +

∑
n odd
n≥5

Ã2
n + B̃

2
n − A

2
n − B

2
n

n2 − 1
+ o(ε)

≥
A3 sin(3θ̄ )

4
ε − 2ε

∑
n odd
n≥5

√
A2
n + B

2
n

n2 − 1
+ o(ε)

≥

(
α sin(3θ̄ )

4
−

16
3

∑
n odd
n≥5

1
n(n2 − 1)

)
ε + o(ε),

where α is the constant defined in (3.8). Recall that, to conclude this step, we need to
obtain (3.10), which will follow by contradiction once we reach (3.11). And in turn, since
we can choose an arbitrarily small ε > 0, we are reduced to checking that the quantity
in brackets in the last term of the estimate above is positive. In fact, estimating the sum
via a finite sum plus an integral exactly as in the proof of Lemma 3.8, and using the
estimate (3.7), it is again boring but elementary to reduce the desired inequality to the
inequality sin(3θ̄ ) > 0.542. Finally, this last inequality holds true since by construction
sin(3θ̄ ) ≥ sin(3θ̂ ) = 0.55.
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Step II. Behavior of c near 0.

Assume now that c′ = 1+ c2 on [θ̂ , π/6]. We claim that in this case one has

c′(θ) = 1+ c2(θ) ∀ −θ̂ ≤ θ ≤ θ̂ . (3.15)

Indeed, if this is not true, let θ− be the largest angle in [−θ̂ , θ̂ ] where the derivative is not
1+ c2, that is,

θ− = inf{η < θ̂ : c′(θ) = 1+ c2(θ) ∀η ≤ θ ≤ θ̂}.

We are again going to find a competitor, namely a weakly admissible function c̃ such that
F(c̃) > F(c). To this end, fix a small ε > 0 and define c̃ : [−π/2, π/2]→ R by

c̃(θ) =


c(θ) for −π/2 ≤ x ≤ −θ̂ ,

c(θ) ∨ tan
(
θ − θ− + arctan(c(θ−))+ ε

)
for −θ̂ ≤ x ≤ π/6− ε/2,

tan
(
−θ − θ− + arctan(c(θ−))+ π/3

)
for π/6− ε/2 ≤ x ≤ π/6,

c(θ) for π/6 ≤ x ≤ π/2.

−θ̂ θ∗θ− θ̂
π
6

Fig. 11. The functions c (solid) and c̃ (dashed) in Step II.

Notice that
c̃(θ) = c(θ + ε), ∀θ− ≤ θ ≤ π/6− ε. (3.16)

Thus, recalling that c′ = 1+ c2 and using the L∞ estimate (3.1), we immediately deduce

ε ≤ c̃(θ)− c(θ) ≤ 4ε/3 ∀θ− ≤ θ ≤ π/6− ε. (3.17)

By construction, c̃(θ) = c(θ) for θ ≥ π/6 and, by the definition of θ−, c̃(θ) = c(θ)

in [−π/2, θ∗] for some θ∗ < θ− such that θ− − θ∗ → 0 as ε → 0. Moreover, as
in (3.17) we have 0 ≤ c̃(θ) − c(θ) ≤ 4ε/3 for θ ∈ (θ∗, θ−). As in Step I, we extend c̃
to the whole S1 by defining c(θ + π) = −c(θ), and exactly as in Step I we find that c̃
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is a weakly admissible function if ε � 1. Figure 11 shows the functions c and c̃ in the
interval [−θ̂ , π/6].

In order to show that F(c̃) > F(c), thus proving (3.15) by contradiction, we need
again to estimate the difference between A2

n + B
2
n and Ã2

n + B̃
2
n .

Let us start with n = 3. From (3.17) we get

Ã3 − A3 =

∫ π/6

θ∗
sin(3θ)(c̃(θ)− c(θ)) dθ

≥ ε

∫ π/6

0∨θ−
sin(3θ) dθ +

4
3
ε

∫ 0

0∧θ−
sin(3θ) dθ + o(ε)

≥ ε

∫ π/6

0
sin(3θ) dθ +

4
3
ε

∫ 0

−θ̂

sin(3θ) dθ + o(ε) =
ε

9
(4 cos(3θ̂ )− 1)+ o(ε),

so that

Ã2
3 + B̃

2
3 ≥ Ã

2
3 ≥ A

2
3 +

2
9
A3(4 cos(3θ̂ )− 1) ε + o(ε)

= A2
3 + B

2
3 +

2
9
A3(4 cos(3θ̂ )− 1) ε + o(ε). (3.18)

Let us now consider the coefficients with n ≥ 5. Defining ϕn as in (3.13) and arguing as
before, we have√

Ã2
n + B̃

2
n ≥

∫ π/2

−π/2
c̃(θ) sin(nθ + ϕn) dθ

=

√
A2
n + B

2
n +

∫ π/6

θ−

(c̃(θ)− c(θ)) sin(nθ + ϕn) dθ + o(ε). (3.19)

Divide the interval [θ−, π/6] into subintervals where the sign of sin(nθ +ϕn) is constant.
Clearly, all these subintervals have length π/n except possibly the first and the last one.
Recall also that ∫ π/n

0
sin(nθ) dθ =

2
n
. (3.20)

Using (3.17), a rough estimate from below of
√
Ã2
n + B̃

2
n−

√
A2
n + B

2
n could be found by

estimating c̃(θ)− c(θ) with ε (resp. 4ε/3) where sin(nθ +ϕn) is positive (resp. negative).
Unfortunately, this estimate is not sharp enough to imply F(c̃) > F(c). Therefore, we
need to perform more careful estimates.

We start with n = 5, 7. In this case n(θ̂ + π/6) ≤ 2π , so that inside [θ−, π/6] the set
where sin(nθ + ϕn) is negative can be either a single interval of length up to π/n, or two
intervals with sum of lengths less than π/n. Thus, an estimate from below for Ã2

n + B̃
2
n

can be obtained by assuming that the worst possible case occurs, i.e., that inside [θ−, π/6]
there is an interval I of length π/n where sin(nθ+ϕn) is negative and that in this interval
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c̃−c attains the maximum possible value 4ε/3. Therefore, recalling (3.19) and (3.20), we
get the estimate√

Ã2
n + B̃

2
n −

√
A2
n + B

2
n ≥

∫
I

(c̃(θ)− c(θ)) sin(nθ + ϕn) dθ + o(ε2)

≥ −
8

3n
ε + o(ε2), (3.21)

where we have neglected the positive integral over [θ−, π/6] \ I .
Finally, let us consider the case n ≥ 9. The interval J = [θ−, π/6] is divided into N

subintervals Ji, 1 ≤ i ≤ N , and to get an estimate of
√
Ã2
n + B̃

2
n we consider again the

worst possible case that occurs when N is odd and the sign of sin(nθ + ϕn) is negative in
Ji for odd i. As we said before, it would be too rough to estimate c̃ − c from below by ε
in all Ji with even i and from above by 4ε/3 in all Ji with odd i, since this would not be
enough to establish inequality (3.11). To get a better estimate, recall that by (3.16) and by
the definition of θ− we have c̃(θ) = c(θ + ε) and c′(θ) = 1 + c2(θ) in J . Thus, for all
θ ∈ J ,

|c̃(θ)− c(θ)− ε(1+ c2(θ))| ≤
4
√

3
9

ε2. (3.22)

Let us now observe that c is increasing in J . Therefore, 1 + c2 cannot freely oscillate
between 1 and 4/3. Indeed, either 1 + c2 is monotone in the whole interval J (which
happens if c has constant sign in J ), or there exists η̄ ∈ J such that c(η̄) = 0, hence
1+ c2 is decreasing in J ∩ {θ ≤ η̄} and increasing in J ∩ {θ ≥ η̄}. As a consequence, if
i is an even number such that 1+ c2 is decreasing in Ji ∪ Ji+1, from (3.22) we have∫

Ji∪Ji+1

(c̃(θ)− c(θ)) sin(nθ + ϕn) dθ ≥ −
4
√

3
9

ε2
|Ji ∪ Ji+1|;

similarly, if i is even and 1+ c2 is increasing in Ji−1 ∪ Ji , we have again∫
Ji−1∪Ji

(c̃(θ)− c(θ)) sin(nθ + ϕn) dθ ≥ −
4
√

3
9

ε2
|Ji−1 ∪ Ji |.

Notice that the union of all the sets of the type Ji∪Ji+1 or of the type Ji−1∪Ji considered
above does not cover the whole interval J and so we still have to estimate the integral in
the complement of this union with respect to J . Denote this remaining set by H . Notice
that three possible cases may occur: either 1 + c2 is monotone in J , or 1 + c2 is not
monotone in J and sin(nη̄+ϕn) ≥ 0, or 1+c2 is not monotone in J and sin(nη̄+ϕn) ≤ 0.
Correspondingly, the worst possible situations are:

• H is a single interval Ji , containing one endpoint of J , with i odd;
• H is the union of two intervals Ji with i odd, each of them containing one endpoint

of J , and one interval Jj with j even, containing η̄;
• H is the union of two intervals Ji with i odd, each of them containing one endpoint

of J , a third interval Ji with i odd, containing η̄, and two intervals Jj adjacent to the
latter, with j even.
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Estimating c̃(θ)− c(θ) by ε in the intervals Ji with i even and by 4ε/3 in the intervals Jj
with j odd (which is of course admissible), we get, in all the three cases above,∫

J

(c̃(θ)− c(θ)) sin(nθ + ϕn) dθ ≥
∫
H

(c̃(θ)− c(θ)) sin(nθ + ϕn) dθ −
4
√

3
9

ε2
|J |

≥ −
4
n
ε −

4
√

3
9

ε2
|J |.

From this estimate and (3.19) we then obtain, for all n ≥ 9,

√
Ã2
n + B̃

2
n −

√
A2
n + B

2
n ≥ −

4
n
ε −

4
√

3
9

ε2
|J |. (3.23)

This estimate is worse than (3.21), valid for n = 5, 7, but still enough to get the inequality
F(c̃) > F(c) and thus to complete the proof of (3.15) by contradiction. Indeed, from (3.21)
and (3.23), recalling the estimate (3.6), we get

∑
n odd
n≥5

Ã2
n + B̃

2
n − A

2
n − B

2
n

n2 − 1
≥ −

∑
n=5,7

16ε
3n

√
A2
n + B

2
n

n2 − 1
−

∑
n odd
n≥9

8ε
n

√
A2
n + B

2
n

n2 − 1
+O(ε2)

≥ −
32ε
9

(∑
n=5,7

4
n2(n2 − 1)

+

∑
n odd
n≥9

6
n2(n2 − 1)

)
+O(ε2).

On the other hand, using (3.18) and the estimate (3.7),

Ã2
3 + B̃

2
3 − A

2
3 − B

2
3

8
≥
α

36
(4 cos(3θ̂ )− 1) ε +O(ε2),

where α is as in (3.8). Thus, we can conclude that F(c̃) > F(c), at least for ε small
enough, provided

α

36
(4 cos(3θ̂ )− 1) >

32
9

(∑
n=5,7

4
n2(n2 − 1)

+

∑
n odd
n≥9

6
n2(n2 − 1)

)
.

To check whether this inequality is true one has to estimate the left and the right hand
sides from below and from above respectively. Concerning the right hand side, one needs,
as in Step I and in the proof of Lemma 3.8, to estimate the sum by taking the terms up to
n = 15 and then arguing as in (3.9) for the remaining part. Concerning the left hand side,
instead, one has only to recall the definition of θ̂ and the estimate (3.7) for α. In this way,
the desired inequality follows from

38.8 · 10−3 > 36.8 · 10−3.
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Step III. Conclusion.

Arguing as in Step I we may conclude that there exist three angles θ1 ∈ [θ̂ , π/3 − θ̂ ],
θ2 ∈ [π/3+ θ̂ , 2π/3− θ̂ ] and θ3 ∈ [2π/3+ θ̂ , π − θ̂ ] such that

c′(θ) =


1+ c2(θ) in [θ̂ , θ1],

−(1+ c2(θ)) in [θ1, π/3− θ̂ ] ∪ [π/3+ θ̂ , θ2],

1+ c2(θ) in [θ2, 2π/3− θ̂ ] ∪ [2π/3+ θ̂ , θ3],

−(1+ c2(θ)) in [θ3, π − θ̂ ].

(3.24)

If we define c̃ to be the reflection of c with respect to π/6, i.e. c̃(θ) = c(π/3 − θ), it is
clear that c̃ is still a weakly admissible, optimal function, whose Fourier coefficients Ã3
and B̃3 satisfy Ã3 = A3 > 0, B̃3 = −B3 = 0. With this observation in mind, it is clear
that we may assume with no loss of generality that θ1 ≥ π/6. Hence, by Step II we have
c′(θ) = 1+ c2(θ) in [θ3 − π, θ1] (see (3.24) and recall that c(π + θ) = −c(θ)).

Consider now θ2. There are two possible cases.
If θ2 ≥ π/2, the obvious variant of Step II in the interval [π/3, 2π/3] yields c′(θ) =

−(1 + c2(θ)) in [θ1, θ2]. Since c(θ) in this interval coincides with a suitable translation
of tan θ , by the L∞ estimate (3.1) we have θ2 − θ1 ≤ π/3, and for the same reason
θ1 − (θ3 − π) ≤ π/3. Therefore, θ3 − θ2 ≥ π/3 and so, since θ2 ≥ π/2, we have
θ3 ≥ 5π/6. Then Step II again gives c′(θ) = 1+ c2(θ) in [θ2, θ3], concluding the proof.

Otherwise, if θ2 < π/2, arguing exactly as before we have c′(θ) = 1 + c2(θ) in
[θ2, θ3]. Then the L∞ estimate gives θ1− (θ3−π) ≤ π/3 and θ3− θ2 ≤ π/3. Therefore,
θ2 − θ1 ≥ π/3, which contradicts the assumption θ1 ≥ π/6 and θ2 < π/2. ut

Proof of Theorem 4. Let c be a weakly admissible, optimal function. Up to a rotation, we
may assume that A3 > 0 and B3 = 0. Let θ1, θ2 and θ3 be as in Lemma 3.9. Using the
L∞ estimate (3.1) as in Step III of the lemma above we have

θ2 − θ1 ≤ π/3, θ3 − θ2 ≤ π/3, (π + θ1)− θ3 ≤ π/3,

so that the three inequalities must necessarily be equalities. This concludes the proof. ut

4. Proof of Theorem 3

To prove Theorem 3, we will take an optimal function c̄, which is now a function maxi-
mizing the perimeter (such a function exists by Corollary 3.3), and we consider the differ-
ent intervals in which it has constant sign. In particular, the essential point is to show that
there are exactly three such intervals, each of length π/3. In fact, it is quite reasonable
that short intervals are not convenient to maximize the perimeter, which is the integral
of
√

1+ c2, due to the constraint |c′| ≤ 1 + c2. The argument to exclude large inter-
vals is much more delicate, and ultimately relies on the L∞ estimate of Lemma 3.6. In
Section 4.1 below we collect some preliminary results and tools, then in Sections 4.2, 4.3
and 4.4 we consider the cases where there are no intervals strictly larger than π/3, just one
interval, or two intervals, respectively. The proof of the result will then be an immediate
consequence.
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4.1. Preliminary results

Let us start with some notation. Given any function c : [0, π]→ R and any Borel subset
I ⊆ [0, π], we define

P(c) :=
∫ π

0

√
1+ c2(θ) dθ, P (c; I ) =

∫
I

√
1+ c2(θ) dθ. (4.1)

In particular notice that, if c : S1
→ R is an admissible function, and C is the correspond-

ing Zindler set, then by formula (2.13) we have

Perimeter(C) = 2P(c),

so that the problem of maximizing the perimeter in the class of convex Zindler sets with
bisecting chords of length 2 is equivalent to maximizing P(c) among all admissible func-
tions c, i.e., satisfying (2.9).

We now give a useful definition: let M : [0, π/3]→ R be defined by

M(x) := 2 ln
(

1+ sin(x/2)
cos(x/2)

)
. (4.2)

First of all, one may easily observe that M is convex and

M′(x) =
1

cos(x/2)
. (4.3)

The interest of this function is due to the observation that M(x) is the maximum possible
perimeter that an admissible function may have in an interval of length x as shown below.

Lemma 4.1 (Characterization of M). Let c : [0, π]→ R be a function such that |c′| ≤
1 + c2, and let I = (a, b) ⊆ [0, π] be an interval of length at most π/3 for which
c(a) = c(b) = 0. Then

P(c; I ) ≤M(|I |), (4.4)

and equality holds if and only if

c(θ) = ± tan(dist(θ, ∂I )) ∀θ ∈ I. (4.5)

Proof. Keeping in mind formula (4.1) and the constraint |c′| ≤ 1 + c2, it is clear that
P(c; I ) is maximal if and only if c coincides with (4.5) inside I . The fact that the perime-
ter in that case is exactly M(|I |) is then an elementary calculation. ut

We now present a technical result whose statement may appear obscure, but which in fact
gives a very strong information on the possible structure of maximizing functions, as will
be clear in the proof of Lemma 4.3 below (see Step II).
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Lemma 4.2. Let π/6 ≤ a < b < π , and let c : [0, π]→ R be a function with ‖c‖L∞ ≤
tan(π/6), c > 0 in [a, b], c′ = −(1+ c2) in (a, b) and c′ = 1+ c2 in a left neighborhood
of a and in a right neighborhood of b. Then, for any ε such that |ε| is small enough, there
exist a continuous function cε : [0, π] → R and an interval (aε, bε) such that aε → a

and bε → b as ε → 0, and the following holds. The function cε coincides with c in
[0, π] \ ((aε, bε) ∪ (a, b)), and

c′ε = −(1+ c
2
ε) in (aε, bε), c′ε = 1+ c2

ε in (a, b) \ (aε, bε);∫ π

0
cε(θ) sin θ dθ =

∫ π

0
c(θ) sin θ dθ + ε; (4.6)

moreover, the Taylor expansion

P(cε) = P(c)+ Aε + Bε
2
+ o(ε2) (4.7)

holds with two constants A and B not depending on ε, and with B > 0.

Proof. Given a small ε, we take a constant δ = δ(ε), to be specified later, and we define
the function cε as the “translation” by δ of the function c, as in Figure 12. To be more
precise, if ε > 0 as in the figure, then δ > 0 and cε equals c outside (a, b + δ/2) and has
c′ε = 1+ c2

ε in (a, a+ δ/2) and c′ε = −(1+ c
2
ε) in (a+ δ/2, b+ δ/2). On the other hand,

if ε < 0 then the situation is completely symmetric, namely δ < 0, cε equals c outside
(a+δ/2, b) and has c′ε = −(1+c

2
ε) in (a+δ/2, b+δ/2) and c′ε = 1+c2

ε in (b+δ/2, b).

a a+δ b

Fig. 12. The functions c (solid) and cε (dashed) in Lemma 4.2.

Notice that
cε(θ) = c(θ − δ) ∀θ ∈ (a + δ, b + δ/2) (4.8)

if ε > 0, while

cε(θ) = c(θ − δ) ∀θ ∈ (a + δ/2, b + δ)

if ε < 0. To get the conclusion, we thus have to select δ in such a way that (4.6) holds,
and then check that (4.7) is true with a strictly positive constant B.
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Step I. The relation between δ and ε.

By the definition of cε, it is clear that∫ π

0
cε(θ) sin θ dθ −

∫ π

0
c(θ) sin θ dθ

is positive if and only if so is δ, and moreover it is a strictly increasing function of δ.
Provided |ε| � 1, there is a unique δ = δ(ε) which makes (4.6) true. We now give the
expression of δ in terms of ε up to the second order. Let us start by considering the case
ε > 0, depicted in Figure 12: we start by rewriting (4.6) as

ε =

∫ b+δ/2

a

(cε(θ)− c(θ)) sin θ dθ

=

∫ a+δ

a

cε(θ) sin θ dθ +
∫ b−δ/2

a

c(θ)(sin(θ + δ)− sin θ) dθ −
∫ b+δ/2

b−δ/2
c(θ) sin θ dθ

=

∫ a+δ

a

cε(θ) sin θ dθ −
∫ b+δ/2

b−δ/2
c(θ) sin θ dθ

+

∫ b−δ/2

a

c(θ)

(
δ cos θ −

1
2
δ2 sin θ

)
dθ + o(δ2). (4.9)

Let us now calculate more precisely the terms of the last line in (4.9). With regard to the
first one, notice that for all 0 ≤ t ≤ δ/2 one has

cε(a + t) = cε(a + δ − t) = c(a)+ t (1+ c(a)2)+ o(δ),

so that∫ a+δ

a

cε(θ) sin θ dθ

=

∫ δ/2

t=0

(
c(a)+ t (1+ c2(a))+ o(δ)

)(
sin(a + t)+ sin(a + δ − t)

)
dt

= δc(a) sin a +
δ2

4
(1+ c2(a)) sin a +

δ2

2
c(a) cos a + o(δ2). (4.10)

The second integral of the last line in (4.9) can be estimated, as before and minding that
c(b + t) = c(b − t) for 0 ≤ t ≤ δ/2, as∫ b+δ/2

b−δ/2
c(θ) sin θ dθ =

∫ δ/2

t=0

(
c(b)+ t (1+ c2(b))+ o(δ)

)(
sin(b + t)+ sin(b − t)

)
dt

= δc(b) sin b +
δ2

4
(1+ c2(b)) sin b + o(δ2). (4.11)
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Finally, the last integral in (4.9) is∫ b−δ/2

a

c(θ)

(
δ cos θ −

1
2
δ2 sin θ

)
dθ

= δ

∫ b

a

c(θ) cos θ dθ −
δ2

2
c(b) cos b −

δ2

2

∫ b

a

c(θ) sin θ dθ + o(δ2). (4.12)

Putting (4.10)–(4.12) into (4.9), and recalling that c′ = −(1+ c2) in (a, b), one finds

ε = δ

(
c(a) sin a − c(b) sin b +

∫ b

a

c(θ) cos θ dθ
)
+
δ2

4

(
(1+ c(a)2) sin a

− (1+ c2(b)) sin b + 2c(a) cos a − 2c(b) cos b − 2
∫ b

a

c(θ) sin θ dθ
)
+ o(δ2)

= δ

∫ b

a

(1+ c2(θ)) sin θ dθ +
δ2

4

∫ b

a

(1+ c2(θ))(cos θ + 2c(θ) sin θ) dθ + o(δ2).

(4.13)
We have then a second-order relation between ε and δ as desired. If ε < 0, one has to
perform almost identical calculations, eventually leading again to the expression (4.13).
Notice that the first coefficient is strictly positive since so is the integrand. Hence, δ and
ε are of the same order.

Step II. Taylor expansion of P(cε)− P(c).

To finish the proof, we should find the Taylor expansion of P(cε)−P(c) up to the second
order in ε, and check that the coefficient of the second term is strictly positive. However,
cε is defined in a very simple way in terms of δ, not of ε; therefore, we will now find
the expansion of P(cε) − P(c) up to the second order in δ, and then we will recover the
expansion in terms of ε by (4.13). Also in this case we show here the calculations when
ε > 0. The case ε < 0 is similar and leads to the same formula.

Since the integral defining the perimeter is non-local, by (4.8) we have

P(cε; (a + δ, b + δ/2)) = P(c; (a, b − δ/2)).

Therefore, by (4.1) and the properties of c and cε we can evaluate

P(cε)− P(c) = P(cε; (a, a + δ))− P(c; (b − δ/2, b + δ/2))

= 2
∫ δ/2

0

√
1+ c2

ε(a+ t) dt − 2
∫ δ/2

0

√
1+ c2(b+ t) dt

= 2
∫ δ/2

0
(
√

1+ c2(a)−
√

1+ c2(b)+ tc(a)
√

1+ c2(a)− tc(b)
√

1+ c2(b)) dt + o(δ2)

= δ
(√

1+ c2(a)−
√

1+ c2(b)
)
+
δ2

4

(
c(a)

√
1+ c2(a)− c(b)

√
1+ c2(b)

)
+ o(δ2)

= δ

∫ b

a

c(θ)
√

1+ c2(θ) dθ +
δ2

4

∫ b

a

√
1+ c2(θ)(1+ 2c2(θ)) dθ + o(δ2). (4.14)
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Step III. Conclusion.

Putting together (4.13) and (4.14), we can now find the expansion of D = P(cε)− P(c)
in terms of ε. Indeed, keep in mind that, when

ε = αδ + α̃δ2
+ o(δ2), D = βδ + β̃δ2

+ o(δ2)

and α > 0, then

D =
β

α
ε +

1
α3 (αβ̃ − α̃β)ε

2
+ o(ε2).

In our case, then, we have the validity of the Taylor expansion (4.7) with

A =

∫
c(θ)

√
1+ c2(θ)∫

(1+ c2(θ)) sin θ
,

B =

∫
(1+ c2) sin θ

∫ √
1+ c2(1+ 2c2)−

∫
(1+ c2)(cos θ + 2c sin θ)

∫
c
√

1+ c2

4(
∫
(1+ c2) sin θ)3

,

where all the integrals are over (a, b). Thus, we shall have concluded once we show that∫ b

a

(1+ c2) sin θ
∫ b

a

√
1+ c2(1+ 2c2) >

∫ b

a

(1+ c2)(cos θ + 2c sin θ)
∫ b

a

c
√

1+ c2.

Recall now that, given four functions f, g, f̃ , g̃ on the same interval, to ensure the va-
lidity of

∫
f
∫
g >

∫
f̃
∫
g̃ it is not enough to check that for all x one has f (x)g(x) >

f̃ (x)g̃(x), but of course it is enough to check that for all x and y one has f (x)g(y) >
f̃ (x)g̃(y). We aim then to prove that for all θ, ϕ ∈ (a, b) one has

(1+ c2(θ)) sin θ ·
√

1+ c2(ϕ)(1+ 2c2(ϕ))

> (1+ c2(θ))(cos θ + 2c(θ) sin θ)c(ϕ)
√

1+ c2(ϕ),

which is equivalent to

sin θ ·
(
1+ 2c(ϕ)(c(ϕ)− c(θ))

)
> c(ϕ) cos θ. (4.15)

Since ‖c‖L∞ ≤ tan(π/6) =
√

3/3 and c is positive in (a, b) ⊆ (π/6, π), the left term is
always positive, so the inequality (4.15) is trivially true if θ ≥ π/2. Hence, we have to
show that

tan θ >
c(ϕ)

1+ 2c(ϕ)(c(ϕ)− c(θ))

for all ϕ, θ ∈ (a, b) with θ < π/2. As θ > a ≥ π/6, to get the full validity of (4.15) and
then to conclude it is enough to verify that for all θ, ϕ ∈ (a, b),

√
3

3
>

c(ϕ)

1+ 2c(ϕ)(c(ϕ)− c(θ))
,
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which in turn follows from the fact that

max
x,y∈[0,

√
3/3]

y

1+ 2y(y − x)
=

√
3

3

and the sup is not reached in the interior of the square [0,
√

3/3]2. ut

In Lemma 4.1 we have given the estimate (4.4), which gives a bound on the perimeter
inside an interval of length at most π/3. The next lemma, instead, gives the bound (4.16)
for larger intervals.

Lemma 4.3. Let I = [θ̄ , π − θ̄ ] with π/6 < θ̄ < π/3, and let c̃ : [0, π] → R be a
function satisfying the assumptions (3.3) of Lemma 3.6. Then

P(c̃; I ) < 2M(π/3)−M(2π/3− |I |). (4.16)

Proof. The proof is divided into several steps.

Step I. The auxiliary problems.

We will argue by approximation with a sequence of auxiliary problems. To this end, we
say that a function c satisfying (3.3) is an n-step function if I ∩ {c > 0} is the union of at
most n subintervals where c′ = 1+ c2 and at most n subintervals where c′ = −(1+ c2).
For instance, the function in Figure 13 is a 6-step function, but also an n-step function for
all n ≥ 6.

θ̄ π − θ̄

Fig. 13. Example of a 6-step function.

The auxiliary problems are then defined as follows: for any n ∈ N, find

max
{
P(c; I ) : c : [0, π]→ R, c satisfies (3.3), c is an n-step function,

c = c̃ in [0, π] \ I ,
∫
I

c(θ) sin θ dθ ≤
∫
I

c̃(θ) sin θ dθ
}
. (4.17)

By trivial compactness, each of the problems (4.17) admits a solution cn. Moreover, since
the function c̃ itself can be approximated with a sequence of n-step functions admissible
for the problems (4.17), we have P(c̃; I ) ≤ lim infP(cn; I ). Therefore, the conclusion
will be achieved if we prove that for a generic n ∈ N one has

P(cn; I ) ≤ 2M(π/3)−M(2π/3− |I |)− ω(|I | − π/3), (4.18)

where ω : (0, π/3]→ R is a strictly positive function, not depending on n.
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Let us then fix a number n and prove the estimate. First of all, we denote by Ij , with
j ≥ 1, all the maximal subintervals of I where cn is strictly positive: for instance, the
function in Figure 13 has three such intervals. Moreover, we set I0 = I \

⋃
j≥1 Ij : in the

following, we will refer to all the Ij ’s as “subintervals” of I , though of course I0 may not
be an interval. The restriction of cn to each subinterval Ij with j ≥ 1 is clearly still an
n-step function, but we see now that much more is true.

Step II. On each Ij with j ≥ 1, the function cn is either a 1-step function or a 2-step
function.

Suppose for contradiction that for some Ij there exist three (or more) disjoint, maximal
subintervals of Ij where cn is decreasing with maximal slope. We can thus select ε with
|ε| � 1 and apply Lemma 4.2 to the first and to the second subinterval with ε and −ε
respectively (notice that the L∞ bound required by Lemma 4.2 is fulfilled as a conse-
quence of Lemma 3.6). We thus have now a function cn,ε, which equals cn off a small
neighborhood of the two subintervals, and which is still admissible for problem (4.17).
Indeed, by construction cn,ε is still an n-step function, and moreover∫

I

cn,ε(θ) sin θ dθ =
∫
I

cn(θ) sin θ dθ

as a consequence of (4.6), since the integral increases in ε in the first subinterval and
decreases in ε in the second one. Since cn is optimal for problem (4.17), we deduce that

P(cn; I ) ≥ P(cn,ε; I ). (4.19)

Let us now use the Taylor expansion (4.7): there are constants A1, A2, B1 and B2 such
that

P(cn,ε; I ) = P(cn; I )+ (A1 − A2)ε + (B1 + B2)ε
2
+ o(ε2).

But this is easily seen to contradict (4.19): indeed, if A1 > A2 it is enough to take 0 <
ε � 1, and if A1 < A2 to take −1 � ε < 0, to find a first-order contradiction to (4.19).
IfA1 = A2, instead, regardless of the sign of ε we find a second-order contradiction since
B1 and B2 are both strictly positive. The contradiction concludes this step.

Step III. A bound on the perimeter in the subintervals Ij , j ≥ 0.

We can now give a bound on P(cn; Ij ) for each of the subintervals Ij , j ≥ 0, namely

P(cn; Ij ) ≤

{
M(|Ij |) if |Ij | ≤ π/3,
2M(π/3)−M(2π/3− |Ij |)− ω(|I | − π/3) if |Ij | > π/3.

(4.20)

Let us start by assuming j ≥ 1. The first case is already proved by Lemma 4.1. Con-
cerning the second case, notice that by Step II we already know that cn in Ij is a 1-step
function or a 2-step function. We can exclude the first possibility, because in that case one
would have

‖cn‖L∞(Ij ) = tan(|Ij |/2) > tan(π/6) ≥ tan(θ̄/2),
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contrary to the L∞ bound given by Lemma 3.6. We know then that in Ij the function cn
is made up of four parts with maximal slope, the first and third increasing, and the second
and fourth decreasing. Again keeping in mind Lemma 3.6, we know that all these four
parts are shorter than θ̄/2 (by the way, this ensures that necessarily |Ij | ≤ 2θ̄ ), and then
inside Ij =: (a, b) the function cn is pointwise smaller (hence, it has a smaller perimeter)
than 

tan(θ − a) for a ≤ θ ≤ a + θ̄/2,
tan(a − θ + θ̄ ) for a + θ̄/2 ≤ θ ≤ (a + b)/2,
tan(θ − b + θ̄ ) for (a + b)/2 ≤ θ ≤ b − θ̄/2,
tan(b − θ) for b − θ̄/2 ≤ θ ≤ b.

Finally, the perimeter inside Ij = (a, b) of this last function is exactly

P(cn; Ij ) = 2M(θ̄)−M(2θ̄ − |Ij |),

as one can check with the same elementary calculation as in Lemma 4.1 or directly by an
immediate geometric argument. Now, since θ̄ > 2θ̄ − |Ij |, by the strict convexity of M
(which also ensures the strict subadditivity, as M(0) = 0), one finds

2M(θ̄)−M(2θ̄ − |Ij |) ≤ 2M(π/3)−M(2π/3− |Ij |)− ω̃(π/3− θ̄ )
= 2M(π/3)−M(2π/3− |Ij |)− ω(|I | − π/3),

so that we have proved both cases of (4.20) for j ≥ 1.
Consider now I0. If |I0| ≤ π/3, then

P(cn; I0) = |I0| ≤M(|I0|).

Conversely, if |I0| > π/3, then

P(cn; I0) = |I0| = π/3+ (|I0| − π/3) =M(π/3)− κ + (|I0| − π/3)
≤M(π/3)− κ +M(|I0| − π/3) ≤ 2M(π/3)− κ −M(2π/3− |I0|),

where κ =M(π/3)− π/3 is a strictly positive constant. Hence, (4.20) is proved also in
the case j = 0, so this step is concluded.

Step IV. The case when all subintervals Ij , j ≥ 0, are shorter than π/3.

Suppose that all the intervals Ij have length at most π/3: then we immediately get (4.18)
using the first bound of (4.20) and keeping in mind the strict convexity of M, since

P(cn; I ) =
∑
j

P(cn; Ij ) ≤
∑
j

M(|Ij |) ≤M(π/3)+M(|I | − π/3)

≤ 2M(π/3)−M(2π/3− |I |)− ω(|I | − π/3).

Step V. The case when a subinterval is strictly longer than π/3.

Since the length of I is between π/3 and 2π/3, there can be at most one subinterval
strictly longer than π/3, say Il . We then use the second and the first bound of (4.20)
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respectively for Il and for all the other subintervals, and again the strict convexity and
strict subadditivity of M, to find

P(cn; I ) =
∑
j

P(cn; Ij ) = P(cn; Il)+
∑
j 6=l

P(cn; Ij )

≤ 2M(π/3)−M(2π/3− |Il |)+
∑
j 6=l

M(|Ij |)− ω(|I | − π/3)

≤ 2M(π/3)−M(2π/3− |Il |)+M
(∑
j 6=l

|Ij |
)
− ω(|I | − π/3)

≤ 2M(π/3)−M
(

2π/3−
∑
j

|Ij |
)
− ω(|I | − π/3)

= 2M(π/3)−M(2π/3− |I |)− ω(|I | − π/3).

Therefore, we have proved (4.18) also in this last case and the proof is complete. ut

4.2. Step 0 of the proof: no “large” intervals

In this section we prove a bound on the perimeter of a function c̄which has all the intervals
of constant sign shorter than π/3.

Proposition 4.4. Let c̄ : S1
→ R be an admissible function, i.e., satisfying (2.9) and

such that all the intervals where c̄ has a constant sign have length at most π/3. Then
P(c̄) ≤ P(ĉ) and equality holds if and only if c̄ = ĉ up to a rotation.

Proof. Up to a rotation, we may assume that c̄(0) = c̄(π) = 0. Let then Ij be the maximal
subinterval of (0, π) where c̄ has a constant sign. By additivity of the perimeter, one has

P(c̄) =
∑

P(c̄; Ij )+ P
(
c̄; [0, π] \

⋃
Ij

)
.

By Lemma 4.1, by the fact that M(x) ≥ x, and by the convexity and subadditivity of the
functional M, we directly get

P(c̄) ≤
∑

M(|Ij |)+
(
π −

∑
|Ij |
)
≤ 3M(π/3) = P(ĉ).

Moreover, by the strict convexity of M (and the fact that M(x) > x when x > 0) the
second inequality holds as an equality if and only if there are exactly three intervals Ij ,
all of length π/3. If this is the case, Lemma 4.1 again implies that the first inequality is
an equality if and only if c̄ = ĉ up to a rotation. ut

4.3. Step 1 of the proof: one “large” interval

In this section we prove a bound on the perimeter of a function c̄ for which there exists
exactly one interval strictly longer than π/3 where c̄ > 0 (then also exactly one large
interval where c̄ < 0).
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Proposition 4.5. Let c̄ : S1
→ R be an admissible function such that there exists only

one maximal interval I where c̄ > 0 such that |I | > π/3. Then P(c̄) < P (ĉ).

Proof. As before, we start by assuming that c̄(0) = c̄(π) = 0. We distinguish two cases.

Case I. π/3 < |I | < 2π/3.

Let us denote by Ij the maximal subintervals of (0, π) where c̄ has a constant sign and
which are different from I . Arguing exactly as in the proof of Proposition 4.4, we have

P(c̄) = P(c̄; I )+
∑
j

P(c̄; Ij )+
(
π − |I | −

∑
j

|Ij |
)

≤ P(c̄; I )+M(π/3)+M(2π/3− |I |). (4.21)

We now need to estimate P(c̄; I ). Define c̃ : S1
→ R by c̃(θ) = c̄(θ − ϕ) where ϕ is

chosen in such a way that I + ϕ = (θ̄ , π − θ̄ ) where

θ̄ =
π − |I |

2
∈ (π/6, π/3).

We are then in a position to use Lemma 4.3, hence (4.16) gives

P(c̄; I ) = P(c̃; (θ̄ , π − θ̄ )) < 2M(π/3)−M(2π/3− |I |). (4.22)

Inserting this inequality in (4.21), we directly get

P(c̄) < 3M(π/3) = P(ĉ).

Case II. |I | ≥ 2π/3.

In this case, applying Lemma 3.6 to a suitable rotation c̃ of c̄ as in Case I, we get

‖c̄‖L∞(I ) ≤ tan
(
π − |I |

4

)
.

Thus, denoting again by Ij the other intervals of constant sign of c̄ in (0, π) and arguing
as before, we find

P(c̄) ≤M(π − |I |)+ P(c̄; I ) ≤M(π − |I |)+ |I |

√
1+ tan2

(
π − |I |

4

)
≤M(π/3)+ 2π/3

√
1+ tan2(π/12),

where the last inequality follows from the fact that the function

(2π/3, π) 3 x 7→M(π − x)+ x

√
1+ tan2((π − x)/4)

is strictly decreasing—which is elementary to check starting from the definition of M. To
conclude, it is enough to check that

1
3π

√
1+ tan2(π/12) < M(π/3),

which is again an elementary calculation. ut
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4.4. Step 2 of the proof: two “large” intervals

In this last section we prove the bound on the perimeter for a function c̄ which has two
intervals strictly longer than π/3 where c̄ > 0 (then also two large intervals where c̄ < 0).

Proposition 4.6. Let c̄ : S1
→ R be an admissible function such that there are two

maximal intervals strictly longer than π/3 where c̄ > 0. Then P(c̄) < P (ĉ).

Proof. The proof is divided into four parts.

Part I. Preliminary observations and setting the auxiliary problem.

We start by assuming that the two large intervals, say I1 and I2, are both contained in
(0, π) and that I1 = (0, |I1|), which is admissible up to a rotation. Recall that, as seen
in the proof of Case II of Proposition 4.5 above, if an admissible function c contains an
interval of constant sign larger than 2π/3 then P(c) ≤ P(ĉ) − δ0 for a strictly positive
constant δ0. Hence, by continuity, there exists a strictly positive constant ε0 � 1 such that,
if the distance between the intervals I1 and I2 of c̄ is smaller than ε0, then P(c̄) < P (ĉ).
Thus we may assume without loss of generality that dist(I1, I2) ≥ ε0.

We now introduce the auxiliary problem that we will use throughout the proof. We
denote by Z the set of functions c : [0, π]→ R that will be considered for the auxiliary
problem, such that:

• c(0) = c(π) = 0, |c′| ≤ 1+ c2,
∫ π

0 c(θ) sin θ dθ ≤ 0;
• there exist two open intervals I1 = (0, |I1|) and I2 such that c ≥ 0 on both Ij , c = 0

on ∂Ij , and |Ij | = π/3+ j̀ with `1, `2 ≥ 0;
• dist(I1, I2) ≥ ε0, and c ≤ tan(π/6− j̀/4) in Ij .

Notice that, due to the last condition, the closed intervals I 1 and I 2 might not be maximal
intervals where c ≥ 0. Moreover, c̄ clearly belongs to Z , due to the L∞ estimate given
by Lemma 3.6. It is straightforward to notice that Z is compact with respect to uniform
convergence, hence the problem

max{P(c) : c ∈ Z} (4.23)

has a solution. We state the following

Claim. Problem (4.23) admits ĉ as the unique solution.

The proposition will immediately follow once this Claim is established.
Let us now take a solution c̃ of problem (4.23) and divide the proof of the claim into

three distinct cases, depending on whether the intervals Ĩ1 and Ĩ2 are both of length π/3,
just one is longer, or both are longer.

Part II. If |Ĩ1| = |Ĩ2| = π/3, then c̃ = ĉ.

In this case, the intervals of constant sign of c̃ have length at most π/3, so arguing ex-
actly as in Proposition 4.4 (where we did not really use the assumption (2.9)) we get
P(c̃) ≤ P(ĉ). On the other hand, since ĉ ∈ Z the reverse inequality is trivial, and thus
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Proposition 4.4 tells us also that c̃ = ĉ up to a rotation. Since c̃(0) = 0 and c̃ is positive
in (0, π/3), we conclude that c̃ = ĉ.

Part III. It is not possible that |Ĩ1| > |Ĩ2| = π/3 or |Ĩ2| > |Ĩ1| = π/3.

Assume that |Ĩ1| > |Ĩ2| = π/3 (the other case being identical), and denote by J̃1 the
interval between Ĩ1 and by Ĩ2, and J̃2 the interval between Ĩ2 and π . Notice that J̃1 has
length at least ε0, while J̃2 is possibly empty. We will prove this part by showing that
P(c̃) < P (ĉ), a contradiction with the optimality of c̃. To do so, we split

P(c̃) = P(c̃; Ĩ1)+ P(c̃; J̃1)+ P(c̃; Ĩ2)+ P(c̃; J̃2)

≤ P(c̃; Ĩ1)+M(|J̃1|)+M(|Ĩ2|)+M(|J̃2|)

≤ P(c̃; Ĩ1)+M(π/3)+M(|J̃1| + |J̃2|)

= P(c̃; Ĩ1)+M(π/3)+M(π/3− ˜̀1),

so that the desired contradiction will follow once we show that

P(c̃; Ĩ1)+M(π/3− ˜̀1) < 2M(π/3). (4.24)

Recalling that c̃ ≤ tan(π/6− ˜̀1/4) on Ĩ1 and c̃ = 0 on ∂Ĩ1, we find that, inside Ĩ1,

c̃(θ) ≤


tan θ for 0 ≤ θ ≤ π/6− ˜̀1/4,
tan(π/6− ˜̀1/4) for π/6− ˜̀1/4 ≤ θ ≤ π/6+ 5 ˜̀1/4,
tan(π/3+ ˜̀1 − θ) for π/6+ 5 ˜̀1/4 ≤ θ ≤ π/3+ ˜̀1,

and thus

P(c̃; Ĩ1) ≤M(π/3− ˜̀1/2)+
3
2
˜̀1

1

cos(π/6− ˜̀1/4)
.

Keeping in mind formula (4.2) for M, the proof of (4.24) can be reduced to checking that

2 ln
(

1+ sin(π/6− ˜̀1/4)

cos(π/6− ˜̀1/4)

)
+

3
2
˜̀1

1

cos(π/6− ˜̀1/4)
+ 2 ln

(
1+ sin(π/6− ˜̀1/2)

cos(π/6− ˜̀1/2)

)
< 4 ln

(
1+ sin(π/6)

cos(π/6)

)
,

and since 0 < ˜̀1 ≤ π/3− ε0 < π/3, we will be done if we show that

φ(x) < 0 in (0, π/12), (4.25)

where

φ(x) := 2 ln
(

1+ sin(π/6− x)
cos(π/6− x)

)
+

6x
cos(π/6− x)

+ 2 ln
(

1+ sin(π/6− 2x)
cos(π/6− 2x)

)
− 4 ln

(
1+ sin(π/6)

cos(π/6)

)
.
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Since φ(0) = 0, it is enough to check that φ′(x) < 0 in (0, π/12), that is, recalling
also (4.3),

4− 6x tan(π/6− x)
cos(π/6− x)

−
4

cos(π/6− 2x)
< 0 in (0, π/12).

Since tan(π/6− x) > π/6− x, the previous inequality is certainly true if we show that

4− 6x(π/6− x)
cos(π/6− x)

−
4

cos(π/6− 2x)
< 0 in (0, π/12),

which is in turn equivalent to

6x2
− πx + 4 <

4 cos(π/6− x)
cos(π/6− 2x)

in (0, π/12). (4.26)

Summarizing, to deduce this part we have reduced (4.25) to (4.26). Notice that the func-
tions on the two sides of this inequality coincide at x = 0, therefore to prove (4.26) it is
enough to show the corresponding inequality for the derivatives, i.e.,

12x − π < 4
sin x − cos(π/6− x) sin(π/6− 2x)

cos2(π/6− 2x)
in (0, π/12).

Since sin x > 0 and cos(π/6− x) < cos(π/6− 2x), we further reduce to

4 tan(π/6− 2x) < π − 12x in (0, π/12).

We finally conclude by observing that the function on the left is strictly convex and the
function on the right is affine, and noticing that the inequality holds for x = 0 while
equality holds for x = π/12.

Part IV. It is not possible that |Ĩ1|, |Ĩ2| > π/3.

Let J̃1 and J̃2 be the intervals as in Part III. This last part will be the most involved one,
so we further subdivide it.

Part IV.1. c̃ is “minimal” in J̃1 and J̃2.

Since c̃ = 0 on ∂J̃j , by the constraint on c̃′ one has the pointwise inequality

|c̃(θ)| ≤ tan(dist(θ, ∂J̃j )) in J̃j .

On replacing c̃ with − tan(dist(θ, ∂J̃j )) the perimeter would increase and the resulting
function would still belong to Z . So, we may assume without loss of generality that

c̃(θ) = − tan(dist(θ, ∂J̃j )) in J̃j .

Part IV.2. Shape of c̃ in Ĩ1 and Ĩ2.

We aim to prove that c̃ decreases with the maximal possible slope in a left neighborhood
of the right endpoint of Ĩ1, more precisely

c̃(θ) = tan(|Ĩ1| − θ) in [|Ĩ1| − |J̃1|/2, |Ĩ1|]. (4.27)
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Indeed, let us define

θ− := min{θ ≥ 0 : c̃(ϕ) = tan(|Ĩ1| − ϕ) in [θ, |Ĩ1|]},

so that (4.27) amounts to θ− ≤ |Ĩ1| − |J̃1|/2. To prove this inequality, fix 0 < ε � 1 and
set

θ̂ := max{θ ∈ Ĩ1 : c̃(θ) = tan(|Ĩ1| − ε − θ)}.

Clearly, θ̂ < θ− and θ̂ = θ− + o(1) as ε → 0. We now define the function c∗, shown in

0

Fig. 14. The functions c̃ (solid) and c∗ (dashed) in Part IV.2.

0

y

|Ĩ1|

θ−

θ̂

|Ĩ1|−ε

|Ĩ1|+|J̃1|

Figure 14, as follows:

c∗(θ) :=


c̃(θ) if 0 ≤ θ ≤ θ̂ ,

tan(|Ĩ1| − ε − θ) if θ̂ ≤ θ ≤ |Ĩ1| + |J̃1|/2− ε/2,
tan(θ − |Ĩ1| − |J̃1|) if |Ĩ1| + |J̃1|/2− ε/2 ≤ θ ≤ |Ĩ1| + |J̃1|/2,
c̃(θ) if |Ĩ1| + |J̃1|/2 ≤ θ ≤ π.

We claim that c∗ belongs to Z if ε is small enough. Indeed, c∗ ≥ 0 in I ∗1 = [0, |Ĩ1| − ε]
and |I ∗1 | ≥ π/3 as soon as ε ≤ |Ĩ1| −π/3, and moreover the L∞ bound in I ∗1 holds since∥∥c∗∥∥

L∞(I∗1 )
≤ ‖c̃‖L∞(Ĩ1) ≤ tan(π/6− ˜̀1/4) < tan(π/6− `∗1/4).

It is easily checked that

P(c∗)− P(c̃) = ε

(
1

cos(|J̃1|/2)
−

1
cos(|Ĩ1| − θ−)

)
+ o(ε),

hence by the maximality of c̃ the equality (4.27) follows.
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In a perfectly analogous way, one can prove the same property in a right neighborhood
of the left endpoint and in a (possibly empty, in case J̃2 = ∅) left neighborhood of the
right endpoint of Ĩ2, that is,

c̃(θ) = tan(θ − (|Ĩ1| + |J̃1|)) in [|Ĩ1| + |J̃1|, |Ĩ1| + 3|J̃1|/2], (4.28)

c̃(θ) = tan(|Ĩ1| + |J̃1| + |Ĩ2| − θ) in [|Ĩ1| + |J̃1| + |Ĩ2| − |J̃2|/2, |Ĩ1| + |J̃1| + |Ĩ2|].
(4.29)

Part IV.3. Conclusion.

Let us consider the function c∗ drawn in Figure 15, where (c∗)′ = ±(1 + (c∗)2) in
{c∗ 6= 0}, so that c∗ is built by suitable translations of± tan θ , and the constants a, . . . , f
are given by

a = |Ĩ1| − |J̃1|, b = |Ĩ1|, c = |Ĩ1| + |J̃1|, d = |Ĩ1| + 2|J̃1|,

e = π − 2|J̃2|, f = π − |J̃2|.

Fig. 15. The function c∗ in Part IV.3.

0 a b c d e f π

Notice that, as in the figure, e > d: indeed,

e = π − 2|J̃2| = |Ĩ1| + |J̃1| + |Ĩ2| − |J̃2| = d + |Ĩ2| − (|J̃1| + |J̃2|) > d.

Putting together Parts IV.1 and IV.2, we know that c∗ ≤ c̃ pointwise in [0, π], so that∫ π

0
c∗(θ) sin θ dθ ≤

∫ π

0
c̃(θ) sin θ dθ ≤ 0. (4.30)

However, it is clear that ∫ π

e

c∗(θ) sin θ dθ ≥ 0, (4.31)

while∫ d

a

c∗(θ) sin θ dθ =
∫ b

a

c∗(θ)
(
sin θ − sin(θ + |J̃1|)+ sin(θ + 2|J̃1|)

)
dθ

=

∫ b

a

c∗(θ) sin(θ + |J̃1|)(2 cos(|J̃1|)− 1) dθ > 0 (4.32)

since |J̃1| < π/3. Putting together (4.31) and (4.32), we get a contradiction to (4.30), thus
finally concluding Part IV. ut

We can now proceed to the proof of Theorem 3.
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Proof of Theorem 3. Let c̄ be a function maximizing the perimeter, and consider the max-
imal open intervals in S1 where c̄ has a constant sign. Since P(c̄) ≥ P(ĉ) by optimality,
Propositions 4.5 and 4.6 ensure that all these intervals are shorter than π/3. Then the re-
sult follows from Proposition 4.4. ut
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