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Abstract. We give a complete classification of right coideal subalgebras that contain all grouplike
elements for the quantum group U+q (so2n+1), provided that q is not a root of 1. If q has a finite
multiplicative order t > 4, this classification remains valid for homogeneous right coideal subalge-
bras of the Frobenius–Lusztig kernel u+q (so2n+1). In particular, the total number of right coideal
subalgebras that contain the coradical equals (2n)!!, the order of the Weyl group defined by the root
system of type Bn.
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1. Introduction

In the present paper, we continue the classification of right coideal subalgebras in quan-
tised enveloping algebras begun in [13]. We offer a complete classification of right coideal
subalgebras that contain all grouplike elements for the multiparameter version of the
quantum group U+q (so2n+1), provided that the main parameter q is not a root of 1. If
q has a finite multiplicative order t > 4, this classification remains valid for homoge-
neous right coideal subalgebras of the multiparameter version of the Frobenius–Lusztig
kernel u+q (so2n+1). The main result of the paper is the establishment of a bijection be-
tween all sequences (θ1, . . . , θn) such that 0 ≤ θk ≤ 2n − 2k + 1, 1 ≤ k ≤ n, and
the set of all (homogeneous if q t = 1, t > 4) right coideal subalgebras of U+q (so2n+1),

q t 6= 1 (respectively of u+q (so2n+1)) that contain the coradical. (Recall that in a pointed
Hopf algebra, the grouplike elements span the coradical.) In particular, there are (2n)!!
different right coideal subalgebras that contain the coradical. Interestingly, this number
coincides with the order of the Weyl group for the root system of type Bn. In [13], we
proved that the number of different right coideal subalgebras that contain the coradical of
U+q (sln+1) equals (n + 1)!, the order of the Weyl group for the root system of type An.
Recently, B. Pogorelsky [16] proved that the quantum Borel algebra U+q (g) for the simple
Lie algebra of type G2 has 12 different right coideal subalgebras over the coradical. This
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number also coincides with the order of the Weyl group of type G2. Although there is
no theoretical explanation for why the Weyl group appears in these results, we state the
following general hypothesis.

Conjecture. Let g be a simple Lie algebra defined by a finite root system R. The number
of different right coideal subalgebras that contain the coradical in a quantum Borel alge-
bra U+q (g) equals the order of the Weyl group defined by the root system R, provided that
q is not a root of 1.1

In Section 2, following [13], we introduce the main concepts of the paper and we formu-
late known results that are useful for classification. In the third section, we prove auxiliary
relations in a multiparameter version of U+q (so2n+1). In the fourth section, we note that
the Weyl basis

{u[k,m]
df
= [. . . [xk, xk+1], . . . , xm] | 1 ≤ k ≤ m ≤ 2n− k, xn+r

df
= xn−r+1}

of the Borel subalgebra so+2n+1 with skew bracket [u, v] = uv−χu(gv)vu in place of the
Lie operation is a set of PBW-generators for U+q (so2n+1) and u+q (so2n+1). By means of
the shuffle representation, in Theorem 4.3, we prove an explicit formula for the coproduct
of these PBW-generators, which is the key result for further considerations:

1(u[k,m]) = u[k,m]⊗ 1+ gkm ⊗ u[k,m]+
m−1∑
i=k

τi(1− q−2)gkiu[i + 1, m]⊗ u[k, i],

where τi = 1 with only one exception, τn = q, while gki are suitable grouplike elements.
Interestingly, this coproduct formula differs from that in U+

q2(sl2n+1) in just one term (see
formula (3.3) in [11]).

In Section 5, we show that each homogeneous right coideal subalgebra inU+q (so2n+1)

or in u+q (so2n+1) has PBW-generators of a special form, 8S(k,m), where S is a set of
integers from the interval [1, 2n]. The polynomial 8S(k,m) is defined by induction on
the number r of elements in S ∩ [k,m − 1] = {s1, . . . , sr}, k ≤ s1 < · · · < sr < m, as
follows:

8S(k,m) = u[k,m]− (1− q−2)

r∑
i=1

α
si
km8

S(1+ si, m)u[k, si],

where αskm are scalars, αskm = τsp(u(1+ s,m), u(k, s))
−1. The existence of those gener-

ators implies that the set of all (homogeneous) right coideal subalgebras that contain the
coradical is finite (Corollary 5.7).

In Sections 6 and 7, we single out special sets S, called (k,m)-regular sets. In Propo-
sition 7.10, we establish a kind of duality for elements 8S(k,m) with regular S, which
provides a powerful tool for investigating PBW-generators for right coideal subalgebras.

In Section 8, we define a root sequence r(U) = (θ1, . . . , θn) in the following way.
The number θi is the maximalm such that for some S the value of8S(i,m) belongs to U,

1 Note added in proof: Recently this conjecture was proved by I. Heckenberger and H.-J. Schnei-
der in “Right coideal subalgebras of Nichols algebras and the Duflo order on the Weyl groupoid”,
arXiv:0909.0293, 43 pp.
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while the degree xi + xi+1 + · · · + xm of 8S(i,m) is not a sum of other nonzero degrees
of elements from U. In Theorem 8.2, we show that the root sequence uniquely defines the
right coideal subalgebra U that contains the coradical.

In Section 9, we consider some important examples, including the right coideal sub-
algebra generated by8S(k,m) with regular S. We also analyze in detail the simplest (but
not trivial [2]) case, n = 2.

In Section 10, we associate a right coideal subalgebra Uθ to each sequence of integers
θ = (θ1, . . . , θn), 0 ≤ θi ≤ 2n−2i+1, so that r(Uθ ) = θ. First, by downward induction
on k, we define sets

Rk ⊆ [k, 2n− k], Tk ⊆ [k, 2n− k + 1], 1 ≤ k ≤ 2n,

as follows. For k > n, we put Rk = Tk = ∅. Suppose that Ri, Ti, k < i ≤ 2n, are already
defined. Denote by P the following binary predicate on the set of all ordered pairs i ≤ j :

P(i, j) 
 j ∈ Ti ∨ 2n− i + 1 ∈ T2n−j+1.

If θk = 0, then we set Rk = Tk = ∅. If θk 6= 0, then by definition, Rk contains θ̃k =
k + θk − 1 and all m satisfying the following three properties:

(a) k ≤ m < θ̃k;
(b) ¬P (m+ 1, θ̃k);
(c) ∀r (k ≤ r < m) P(r + 1, m)⇔ P(r + 1, θ̃k).

Further, we define an auxiliary set

T ′k = Rk ∪
⋃
s∈Rk

{a | s < a ≤ 2n− k, P(s + 1, a)},

and we put

Tk =

{
T ′k if (2n− Rk) ∩ T ′k = ∅;
T ′k ∪ {2n− k + 1} otherwise.

Next, the subalgebra Uθ is, by definition, generated over k[G] by values in U+q (so2n+1)

or in u+q (so2n+1) of the polynomials 8Tk (k,m), 1 ≤ k ≤ m, with m ∈ Rk.
Theorems 8.2 and 10.3 together show that all right coideal subalgebras over the corad-

ical have the form Uθ .
In Section 11, we restate the main result in a slightly more general form. We consider

homogeneous right coideal subalgebras U such that the intersection � = U ∩G with the
group G of all grouplike elements is a subgroup. In this case U = k[�]U1

θ , where U1
θ is

the subalgebra generated by g−1
a a when a = 8Tk (k,m) runs through the above described

generators of Uθ .
The present paper extends [13] by using similar methods in a parallel way. However,

it is much more complicated technically. The proof of the explicit formula for comultipli-
cation (Theorem 4.3) essentially depends on the shuffle representation given in Proposi-
tion 4.2, while the same formula for the case An was proved by a simple induction [11].
The elements 8S(k,m) that naturally appear as PBW-generators for right coideal subal-
gebras do not satisfy all necessary properties for further development. Therefore, in Sec-
tion 7, we introduce and investigate the elements 8S(k,m) with so called (k,m)-regular
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sets S. In Proposition 7.10, we establish a powerful duality for such elements. Interest-
ingly, as a consequence of the classification, we prove that every right coideal subalgebra
over the coradical is generated as an algebra by elements 8S(k,m) with (k,m)-regular
sets S (Corollary 10.4). The construction of Uθ is more complicated and it has an impor-
tant new element, a binary predicate defined on the ordered pairs of indices. In [13], we
find, relatively easily, a differential subspace generated by 9S(k,m), since this element
is linear in each variable that it depends on. However, the elements 8S(k,m) that appear
in the present work are not linear in some variables. Therefore, we fail to find their partial
derivatives in an appropriate form. Instead, in Theorem 9.8, using the root technique de-
veloped in Section 8, we find algebra generators of the right coideal subalgebra generated
by 8S(k,m) with a (k,m)-regular set S.

2. Preliminaries

PBW-generators

Let A be an algebra over a field k and B its subalgebra with a fixed basis {gj | j ∈ J }.
A linearly ordered subset V ⊆ A is said to be a set of PBW-generators of A over B if
there exists a function h : V → Z+ ∪∞, called the height function, such that the set of
all products

gjv
n1
1 · · · v

nk
k , (2.1)

where j ∈ J , v1 < · · · < vk ∈ V , ni < h(vi), 1 ≤ i ≤ k, is a basis of A. The value h(v)
is called the height of v in V.

Skew brackets

Recall that a Hopf algebra H is referred to as a character Hopf algebra if the group G of
all grouplike elements is commutative and H is generated over k[G] by skew primitive
semi-invariants ai, i ∈ I :

1(ai) = ai ⊗ 1+ gi ⊗ ai, g−1aig = χ
i(g)ai, g, gi ∈ G, (2.2)

where χ i , i ∈ I , are characters of the group G. By means of the Dedekind Lemma, it is
easy to see that every character Hopf algebra is graded by the monoid G∗ of characters
generated by χ i :

H =
∑
χ∈G∗

⊕Hχ , Hχ
= {a ∈ H | g−1ag = χ(g)a, g ∈ G}. (2.3)

Let us associate a “quantum” variable xi to ai . For each word u in X = {xi | i ∈ I }, we
denote by gu or gr(u) the element ofG that arises from u by replacing each xi with gi . In
the same way, χu denotes the character that arises from u by replacing each xi with χ i .
We define a bilinear skew commutator on homogeneous linear combinations of words in
ai or in xi, i ∈ I , by the formula

[u, v] = uv − χu(gv)vu, (2.4)
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where we use the notation χu(gv) = puv = p(u, v). Of course, p(u, v) is a bimultiplica-
tive map:

p(u, vt) = p(u, v)p(u, t), p(ut, v) = p(u, v)p(t, v). (2.5)

The brackets satisfy the following Jacobi identity:

[[u, v], w] = [u, [v,w]]+ p−1
wv [[u,w], v]+ (pvw − p−1

wv)[u,w] · v, (2.6)

or equivalently, in a less symmetric form,

[[u, v], w] = [u, [v,w]]+ pvw[u,w] · v − puvv · [u,w]. (2.7)

The Jacobi identity (2.6) implies the following conditional identity:

[[u, v], w] = [u, [v,w]] provided that [u,w] = 0. (2.8)

By the evident induction on length, this conditional identity admits the following gener-
alisation (see [13, Lemma 2.2]).

Lemma 2.1. If y1, . . . , ym are homogeneous linear combinations of words such that
[yi, yj ] = 0, 1 ≤ i < j − 1 < m, then the bracketed polynomial [y1 . . . ym] is inde-
pendent of the arrangement of brackets:

[y1 . . . ym] = [[y1 . . . ys], [ys+1 . . . ym]], 1 ≤ s < m. (2.9)

The brackets are related to the product by the following ad-identities:

[u · v,w] = pvw[u,w] · v + u · [v,w], (2.10)
[u, v · w] = [u, v] · w + puvv · [u,w]. (2.11)

In particular, if [u,w] = 0, we have

[u · v,w] = u · [v,w]. (2.12)

The antisymmetry identity transforms into the following two equalities:

[u, v] = −puv[v, u]+ (1− puvpvu)u · v, (2.13)

[u, v] = −p−1
vu [v, u]+ (p−1

vu − puv)v · u. (2.14)

In particular, if puvpvu = 1, the “colour” antisymmetry, [u, v] = −puv[v, u], holds.
The group G acts on the free algebra k〈X〉 by g−1ug = χu(g)u, where u is an

arbitrary monomial in X. The skew group algebra G〈X〉 has the natural Hopf algebra
structure:

1(xi) = xi ⊗ 1+ gi ⊗ xi, i ∈ I, 1(g) = g ⊗ g, g ∈ G.

We fix a Hopf algebra homomorphism

ξ : G〈X〉 → H, ξ(xi) = ai, ξ(g) = g, i ∈ I, g ∈ G. (2.15)
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PBW-basis of a character Hopf algebra

The constitution of a word u in G ∪ X is a family {mx | x ∈ X} of nonnegative integers
such that u has mx occurrences of x. Certainly, almost all mx in the constitution are zero.
We fix an arbitrary complete order, <, on the set X. Normally, if X = {x1, . . . , xn}, we
set x1 > · · · > xn.

Let 0+ be the free additive (commutative) monoid generated by X. The monoid 0+

is completely ordered by declaring

m1xi1 + · · · +mkxik > m′1xi1 + · · · +m
′

kxik (2.16)

if the leftmost nonzero number in (m1 − m
′

1, . . . , mk − m
′

k) is positive, where xi1 >
· · · > xik in X. We associate a formal degree D(u) =

∑
x∈X mxx ∈ 0

+ to a word u in
G ∪ X, where {mx | x ∈ X} is the constitution of u. Moreover, if f =

∑
αiui ∈ G〈X〉,

0 6= αi ∈ k, then
D(f ) = max

i
D(ui). (2.17)

On the set of all words inX, we fix the lexicographical order with priority from left to
right, where a proper initial segment of a word is considered to be greater than the word
itself.

A nonempty word u is called standard (or a Lyndon or Lyndon–Shirshov word) if
vw > wv for each decomposition u = vw with nonempty v,w. A nonassociative word
is a word in which brackets [ , ] are arranged to show how the multiplication applies. If
[u] denotes a nonassociative word, then u denotes the associative word obtained from [u]
by removing the brackets. The set of standard nonassociative words is the largest set SL
that contains all variables xi and has the following properties:

1) If [u] = [[v][w]] ∈ SL, then [v], [w] ∈ SL, and v > w are standard.
2) If [u] = [ [[v1][v2]] [w] ] ∈ SL, then v2 ≤ w.

Every standard word has only one arrangement of brackets such that the resulting nonas-
sociative word is standard (Shirshov theorem [19]). To find this arrangement, one may
use the following inductive procedure:

Algorithm

The factors v,w of the nonassociative decomposition [u] = [[v][w]] are the standard
words such that u = vw and v has minimal length ([20], see also [14]).

Definition 2.2. A super-letter is a polynomial that equals a nonassociative standard word,
where the brackets are as in (2.4). A super-word is a word in super-letters.

By Shirshov’s theorem, every standard word u defines only one super-letter: in what
follows, we shall denote it by [u]. The order on the super-letters is defined in the natural
way: [u] > [v]⇔ u > v.

In what follows, we reserve the notation H for a character Hopf algebra that is homo-
geneous in each ai (see (2.2) and (2.15)).
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Definition 2.3. A super-letter [u] is called hard in H provided its value in H is not a
linear combination of values of super-words of the same degree (2.17) in super-letters
smaller than [u].

Definition 2.4. We say that the height of a hard super-letter [u] in H equals h = h([u])
if h is the smallest number such that the following hold: first, puu is a primitive t-th root
of 1 and either h = t or h = t lr , where l = char(k); and the value of [u]h in H is a linear
combination of super-words of the same degree (2.17) in super-letters smaller than [u]. If
no such number exists, then the height equals infinity.

Theorem 2.5 ([7, Theorem 2]). The values of all hard super-letters inH with the above-
defined height function form a set of PBW-generators for H over k[G].

PBW-basis of a homogeneous right coideal subalgebra

A set T of PBW-generators for a homogeneous right coideal subalgebra U, k[G] ⊆
U ⊆ H, can be obtained from the PBW-basis given in Theorem 2.5 in the following
way (see [12, Theorem 1.1]).

Suppose that for a hard super-letter [u] there exists a homogeneous element c ∈ U
with leading term [u]s in the PBW-decomposition given in Theorem 2.5:

c = [u]s +
∑
i

αiWi ∈ U, (2.18)

where Wi are the basis super-words starting with super-letters smaller than [u]. We fix
one of the elements with the minimal s, and we denote it by cu. Thus, for every hard
super-letter [u] in H, we have at most one element cu. We define the height function by
means of the following lemma.

Lemma 2.6 ([12, Lemma 4.3]). In the representation (2.18) of cu either s = 1, or
p(u, u) is a primitive t-th root of 1 and s = t , or (in the case of positive characteristic)
s = t (char k)r .

If the height of [u] in H is infinite, then the height of cu in U is also defined to be infinite.
If the height of [u] in H equals t, then, according to the above lemma, s = 1 (recall that
in the PBW-decomposition (2.18) the exponent s must be less than the height of [u]). In
this case, the height of cu in U is defined to be t as well. If the characteristic l is positive
and the height of [u] in H equals t lr , then we define the height of cu in U to be equal
to t lr/s.

Proposition 2.7 ([12, Proposition 4.4]). The set of all cu with the above-defined height
function is a set of PBW-generators for U over k[G].

The reader is cautioned that the PBW-basis is not uniquely defined in the above process.
Nevertheless, the set of leading terms of the PBW-generators is indeed uniquely defined.

Definition 2.8. The degree sD(cu) ∈ 0+ of a PBW-generator cu is said to be a U-root.
A U-root γ ∈ 0+ is called simple if it is not the sum of two or more other U-roots.

The set of U-roots and the set of simple U-roots are invariants for any right coideal
subalgebra U.
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Shuffle representation

If the kernel of ξ defined in (2.15) is contained in the ideal G〈X〉(2) generated by xixj ,
i, j ∈ I, then there exists a Hopf algebra projection π : H → k[G], ai → 0, gi → gi .

Hence, by the Radford theorem [18], we have a decomposition into a biproduct, H =
A # k[G], where A is a subalgebra generated by ai, i ∈ I (see [1, §1.5, §1.7]).

Definition 2.9. In what follows, 3 denotes the largest Hopf ideal in G〈X〉(2). The ideal
3 is homogeneous in each xi ∈ X (see [11, Lemma 2.2]).

If Ker ξ = 3 or equivalently if A is a quantum symmetric algebra (a Nichols algebra
[1, §1.3, Section 2]), then A has a shuffle representation as follows.

The algebra A has the structure of a braided Hopf algebra [21] with a braiding
τ(u ⊗ v) = p(v, u)−1v ⊗ u. The braided coproduct 1b on A is connected with the
coproduct on H in the following way:

1b(u) =
∑
(u)

u(1)gr(u(2))−1
⊗ u(2). (2.19)

The tensor space T (V ), V =
∑
xik, also has the structure of a braided Hopf algebra,

which is the quantum shuffle algebra Shτ (V ) with the coproduct

1b(u) =

m∑
i=0

(z1 . . . zi)⊗ (zi+1 . . . zm), (2.20)

where zi ∈ X, and u = (z1 . . . zm) is the tensor z1 ⊗ · · · ⊗ zm considered as an element
of Shτ (V ). The shuffle product satisfies

(w)(xi) =
∑
uv=w

p(xi, v)
−1(uxiv), (xi)(w) =

∑
uv=w

p(u, xi)
−1(uxiv). (2.21)

The map ai → (xi) defines an embedding of the braided Hopf algebra A into the braided
Hopf algebra Shτ (V ). This embedding is extremely useful for calculating the coproduct
due to formulae (2.19) and (2.20).

Differential calculus

The free algebra k〈X〉 has a coordinate differential calculus

∂j (xi) = δ
j
i , ∂i(uv) = ∂i(u) · v + χ

u(gi)u · ∂i(v). (2.22)

The partial derivatives connect the calculus with the coproduct on k〈X〉 via

1(u) ≡ u⊗ 1+
∑
i

gi∂i(u)⊗ xi (mod G〈X〉 ⊗ k〈X〉(2)), (2.23)

where k〈X〉(2) is the ideal generated by xixj , 1 ≤ i, j ≤ n.
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Lemma 2.10. Let u ∈ k〈X〉 be an element homogeneous in each xi . If puu is a t-th
primitive root of 1, then

∂i(u
t ) = p(u, xi)

t−1 [u, [u, . . . [u︸ ︷︷ ︸
t−1

, ∂i(u)] . . .]]. (2.24)

Proof. First, we note that the sequence puu, p2
uu, . . . , p

t−1
uu contains all t-th roots of 1

except 1 itself. All members in this sequence are different. Hence, we may write the
polynomial equality

1− xt = (1− x)
t−1∏
s=1

(1− psuux). (2.25)

Let us calculate the right-hand side of (2.24). We denote by Lu and Ru the operators
of left and right multiplication by u, respectively. The right-hand side of (2.24) has the
following operator representation:

p(u, xi)
t−1
(
∂i(u) ·

t−1∏
s=1

(Lu −Qp
s−1
uu Ru)

)
,

where Q = p(u, ∂i(u)) = puup(u, xi)−1. Consider the polynomial

f (λ) =

t−1∏
s=1

(1−Qps−1
uu λ)

df
=

t−1∑
k=0

αkλ
k.

Because the operators Ru and Lu commute, we may develop the multiplication in the
operator product considering Ru and Lu as formal commutative variables:

t−1∏
s=1

(Lu −Qp
s−1
uu Ru) = L

t−1
u f

(
Ru

Lu

)
=

t−1∑
k=0

αkL
t−1−k
u Rku.

Thus the right-hand side of (2.24) equals

p(u, xi)
t−1

t−1∑
k=0

αku
t−1−k∂i(u)u

k.

Further, because Q = puup(u, xi)−1, the polynomial f has a representation

f (λ) =

t−1∏
s=1

(1− psuuξ),

where ξ = λp(u, xi)−1. Taking into account (2.25), we obtain

f (λ) =
1− ξ t

1− ξ
=

1− λtp(u, xi)−t

1− λp(u, xi)−1

= 1+ λp(u, xi)−1
+ λ2p(u, xi)

−2
+ · · · + λt−1p(u, xi)

1−t
;
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that is, αk = p(u, xi)−k, while the right-hand side of (2.24) takes the form

t−1∑
k=0

p(u, xi)
t−1−kut−1−k∂i(u)u

k. (2.26)

At the same time the Leibniz formula (2.22) shows that ∂i(ut ) also equals (2.26). ut

MS-criterion

The quantum symmetric algebra has several convenient characterisations. One of these
characterisations says that the quantum symmetric algebra is the optimal algebra for the
calculus defined by (2.22). In other words, the above-defined algebra A is a quantum
symmetric algebra (or equivalently Ker ξ = 3) if and only if all constants in A are
scalars.

For braidings of the Cartan type, this characterisation was proved by A. Milinski and
H.-J. Schneider in [15] and then generalised to arbitrary (even not necessarily invertible)
braidings by the author in [10, Theorem 4.11]. Moreover, if X is finite, then 3 ∩ k〈X〉
(as well as any differential ideal in k〈X〉) is generated as a left ideal by constants from
k〈X〉(2) (see [10, Corollary 7.8]). Thus, we may formulate the following criterion, which
is useful for checking relations.

Lemma 2.11 (Milinski–Schneider criterion). Suppose that Ker ξ = 3. If a polynomial
f ∈ k〈X〉 is a constant in A (that is, ∂i(f ) ∈ 3, i ∈ I ), then there exists α ∈k such that
f − α = 0 in A.

Of course, one can easily prove this criterion by means of (2.19), (2.20) and (2.23) using
the above shuffle representation because (2.20) implies that all constants in the shuffle
coalgebra are scalars.

Quantum Borel algebra

Let C = ‖aij‖ be a generalised Cartan matrix, symmetrisable by D = diag(d1, . . . , dn):
diaij = djaji . We denote by g the Kac–Moody algebra defined by C (see [5]). Suppose
that parameters pij are related by

pii = q
di , pijpji = q

diaij , 1 ≤ i, j ≤ n. (2.27)

Denote by gj the linear transformation gj : xi → pijxi of the linear space spanned by
a set of variables X = {x1, . . . , xn}. Let χ i denote the character χ i : gj → pij of the
group G generated by gi, 1 ≤ i ≤ n. We consider each xi as a “quantum variable” with
parameters gi, χ i . As above, G〈X〉 denotes the skew group algebra with commutation
rules xigj = pijgjxi, 1 ≤ i, j ≤ n. This algebra has the structure of a character Hopf
algebra

1(xi) = xi ⊗ 1+ gi ⊗ xi, 1(gi) = gi ⊗ gi . (2.28)
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In this case the multiparameter quantisation U+q (g) of the Borel subalgebra g+ is a ho-
momorphic image of G〈X〉 defined by Serre relations with the skew bracket in place of
the Lie operation:

[. . . [[xi, xj ], xj ], . . . , xj ]︸ ︷︷ ︸
1−aji times

= 0, 1 ≤ i 6= j ≤ n. (2.29)

By [6, Theorem 6.1], the left-hand sides of these relations are skew-primitive elements in
G〈X〉. Therefore the ideal generated by these elements is a Hopf ideal, while U+q (g) has
the natural structure of a character Hopf algebra.

Lemma 2.12 ([13, Corollary 3.2]). If q is not a root of 1, and C is of finite type, then
every subalgebra U of U+q (g) containing G is homogeneous with respect to each of the
variables xi .

Definition 2.13. If the multiplicative order t of q is finite, then we define u+q (g) as
G〈X〉/3, where 3 is the largest Hopf ideal in G〈X〉(2) (see Definition 2.9).

Because a skew-primitive element generates a Hopf ideal, 3 contains all skew-primi-
tive elements of G〈X〉(2). Hence relations (2.29) are still valid in u+q (g).

3. Relations in the quantum Borel algebra U+q (so2n+1)

In what follows, we fix a parameter q such that q4
6= 1, q3

6= 1. If C is a Cartan matrix
of type Bn, relations (2.27) take the form

pnn = q, pii = q
2, pi i+1pi+1 i = q

−2, 1 ≤ i < n; (3.1)
pijpji = 1, j > i + 1. (3.2)

Starting with parameters pij satisfying these relations, we define the group G and the
character Hopf algebra G〈X〉 as in the above subsection. In this case the quantum Borel
algebra U+q (so2n+1) is a homomorphic image ofG〈X〉 subject to the following relations:

[xi, [xi, xi+1]] = 0, 1 ≤ i < n; [xi, xj ] = 0, j > i + 1; (3.3)
[[xi, xi+1], xi+1] = [[[xn−1, xn], xn], xn] = 0, 1 ≤ i < n− 1. (3.4)

Here, we slightly modify the Serre relations (2.29) so that the left-hand side of each
relation is a super-letter. This modification is possible due to the following general relation
in k〈X〉 (see [9, Corollary 4.10]):

[. . . [[xi, xj ], xj ], . . . xj ]︸ ︷︷ ︸
n

= α [xj , [xj , . . . [xj︸ ︷︷ ︸
n

, xi] . . .]], 0 6= α ∈ k, (3.5)

provided that pijpji = p1−n
jj .
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Definition 3.1. The elements u, v are said to be separated if there exists an index j,
1 ≤ j ≤ n, such that either u ∈ k〈xi | i < j〉, v ∈ k〈xi | i > j 〉 or vice versa:
u ∈ k〈xi | i > j〉, v ∈ k〈xi | i < j〉.

Lemma 3.2. In the algebraU+q (so2n+1), any two separated elements u, v, homogeneous
in each xi ∈ X, (skew) commute: [u, v] = [v, u] = 0.

Proof. Relations (3.2) and conditional antisymmetry (2.13) show that [xi, xj ] = [xj , xi]
= 0 provided that |i − j | > 1. Now relations (2.10) and (2.11) allow one to perform an
evident induction. ut

Certainly, the subalgebra of U+q (so2n+1) generated over k[g1, . . . , gn−1] by xi, 1 ≤ i

< n, is the Hopf algebra U+
q2(sln) defined by the Cartan matrix of type An−1. Let us

replace just one parameter, pnn ← q2. Then the quantum Borel algebra U+
q2(sln+1) is a

homomorphic image of G′〈X〉 subject to the relations

[[xi, xi+1], xi+1] = [xi, [xi, xi+1]] = [xi, xj ] = 0, j > i + 1. (3.6)

Here,G′ is the group generated by the transformations g1, . . . , gn−1, g
′
n, where g′n(xi) =

gn(xi) for i 6= n and g′n(xn) = q
2xn.

Lemma 3.3. A relation f = 0, f ∈ k〈X〉, linear in xn is valid in U+q (so2n+1) if and
only if it is valid in the above algebra U+

q2(sln+1).

Proof. The element f, an element of a free algebra, belongs to the ideal generated by the
defining relations that are independent of xn or linear in xn. All these relations are the
same for U+q (so2n+1) and for U+

q2(sln+1). ut

Lemma 3.4. If u is a standard word, then either u = xkxk+1 . . . xm, k ≤ m ≤ n, or
[u] = 0 in U+

q2(sln+1). Here [u] is a nonassociative word with the standard arrangement
of brackets: see the Algorithm on page 1682.

Proof. See the third statement of [9, Theorem An]. ut

As a corollary of the above two lemmas, we can prove some relations in U+q (so2n+1) :

[[xk+1xkxk−1], xk] = 0, [[xk−1xkxk+1], xk] = 0, k < n. (3.7)

Indeed, xk−1xkxk+1xk is a standard word, and the standard arrangement of brackets is
precisely [[xk−1, [xk, xk+1]], xk]. Hence, (2.8) together with Lemmas 3.3 and 3.4 implies
the latter relation.

The former relation reduces to the latter by means of the replacement xi ← xn−i+1,

1 ≤ i ≤ n, k ← n− k + 1. Note that the defining relations (3.6) are invariant under this
replacement (see (3.5)), and we again use Lemmas 3.3 and 3.4.

Definition 3.5. In what follows, xi, n < i ≤ 2n, denotes the generator x2n−i+1. More-
over, u(k,m), 1 ≤ k ≤ m ≤ 2n, is the word xkxk+1 . . . xm, while u(m, k) is the word
xmxm−1 . . . xk. If 1 ≤ i ≤ 2n, thenψ(i) denotes the number 2n−i+1, so that xi = xψ(i).
We shall frequently use the following properties of ψ : if i < j, then ψ(i) > ψ(j);

ψ(ψ(i)) = i; ψ(i + 1) = ψ(i)− 1.
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Definition 3.6. If k ≤ i < m ≤ 2n, then we set

σmk
df
= p(u(k,m), u(k,m)), (3.8)

µ
m,i
k

df
= p(u(k, i), u(i + 1, m)) · p(u(i + 1, m), u(k, i)). (3.9)

Of course, one can find µ’s and σ ’s by means of (3.1), (3.2). It turns out that these
coefficients depend only on q. More precisely,

σmk =


q if m = n or k = n+ 1;
q4 if m = ψ(k);
q2 otherwise.

(3.10)

Indeed, the bimultiplicativity of p(−,−) implies that σmk =
∏
k≤s,t≤m pst is the product

of all entries of the (m−k+1)×(m−k+1)-matrix ‖pst‖. By (3.1) all coefficients on the
main diagonal equal q2 with only two possible exceptions, pnn = q, pn+1 n+1 = q. In
particular, if m < n or k > n+ 1, then for nondiagonal coefficients, we have pstpts = 1
unless |s − t | = 1, while ps s+1ps+1 s = q

−2. Hence, σmk = q
2(m−k+1)

· q−2(k−m)
= q2.

Ifm = n or k = n+ 1, then, by the same reasoning, we have σmk = q
2(m−k)+1

· q−2(k−m)

= q. In the remaining case, k ≤ n < m, we split the matrix into four submatrices as
follows:

σmk = σ
n
k · σ

m
n+1 ·

∏
k≤s≤n, n+1≤t≤m

pst ·
∏

n+1≤s≤m, k≤t≤n

pst . (3.11)

According to Definition 3.5, we have pst = pψ(s) t = ps ψ(t) = pψ(s)ψ(t). Therefore, the
third and fourth factors in (3.11) equal, respectively,∏

k≤s≤n,ψ(m)≤t≤n

pst ,
∏

ψ(m)≤s≤n, k≤t≤n

pst .

In particular, if ψ(m) = k, then all four factors in (3.11) coincide with σ nk = q. Hence,
σmk = q4. If ψ(m) 6= k, say ψ(m) > k, then we split the rectangle A = [k, n] ×
[ψ(m), n] into the union of the square B = [ψ(m), n] × [ψ(m), n] and the rectangle
C = [k, ψ(m)− 1]× [ψ(m), n]. Similarly, the rectangle A∗ = [ψ(m), n]× [k, n] is the
union of the same square and the rectangle C∗ = [ψ(m), n]× [k, ψ(m)−1]. Certainly, if
(s, t) ∈ C, then t − s > 1 unless t = ψ(m)− 1, s = ψ(m). Hence, relations (3.2) imply∏

(s,t)∈C

pstpts = pψ(m)−1ψ(m)pψ(m)ψ(m)−1 = q
−2.

At the same time
∏
(s,t)∈B pst = σ

n
ψ(m) = q. Finally, (3.11) takes the form

σmk = q · q ·
( ∏
(s,t)∈B

pst

)2
·

∏
(s,t)∈C

pstpts = q
2,

which proves (3.10).
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To find µ’s we consider decomposition (3.11) with n ← i. Because p(−,−) is a
bimultiplicative map, the product of the last two factors is precisely µm,ik . In particular,

µ
m,i
k = σ

m
k (σ

i
kσ

m
i+1)

−1. (3.12)

This formula, with (3.10), allows one to find the µ’s easily. More precisely, if m < ψ(k),

then

µ
m,i
k =

q
−4 if m > n, i = ψ(m)− 1;

1 if i = n;
q−2 otherwise.

(3.13)

If m = ψ(k), that is, xm = xk, then

µ
m,i
k =

{
q2 if i = n;
1 otherwise.

(3.14)

If m > ψ(k), then the µ’s satisfy µm,ik = µ
ψ(k), ψ(i)−1
ψ(m) , hence one may use (3.13):

µ
m,i
k =

q
−4 if k ≤ n, i = ψ(k);

1 if i = n;
q−2 otherwise.

(3.15)

We define the bracketing of u(k,m), k ≤ m, as follows:

u[k,m] =

[[[. . . [xk, xk+1], . . .], xm−1], xm] if m < ψ(k);

[xk, [xk+1, [. . . , [xm−1, xm] . . .]]] if m > ψ(k);

β[u[n+ 1, m], u[k, n]] if m = ψ(k),
(3.16)

where β = −p(u(n+1, m), u(k, n))−1 normalizes the coefficient of u(k,m). The condi-
tional identity (2.9) shows that the value of u[k,m] in U+q (so2n+1) is independent of the
arrangement of brackets provided that m ≤ n or k > n.

In what follows, ∼ denotes projective equality: a ∼ b if and only if a = αb, where
0 6= α ∈ k.

Lemma 3.7. If t /∈ {k − 1, k}, t < n, then [u[k, n], xt ] = [xt , u[k, n]] = 0.

Proof. If t ≤ k−2, then the equality follows from the second group of defining relations
(3.3). Let k < t < n. By (2.8), we may write

[u[k, n], xt ] =
[
[u[k, t − 2], u[t − 1, n]], xt

]
=
[
u[k, t − 2], [u[t − 1, n], xt ]

]
.

By Lemma 3.4, the element [u[t − 1, n], xt ] equals zero in U+
q2(sln+1) because the word

u(t−1, n)xt is standard, and the standard bracketing is precisely [u[t−1, n], xt ]. This ele-
ment is linear in xn. Hence, [u[k, n], xt ] = 0 in U+q (so2n+1) due to Lemma 3.3. Because
p(u(k, n), xt )p(xt , u(k, n)) = pt t+1pt tpt t−1 · pt+1 tpt tpt−1 t = 1, the antisymmetry
identity (2.13) applies. ut
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Lemma 3.8. If t /∈ {ψ(m)− 1, ψ(m)}, t < n < m, then

[xt , u[n+ 1, m]] = [u[n+ 1, m], xt ] = 0.

Proof. If t ≤ ψ(m) − 2, then the required relation follows from the second group
of relations (3.3). Let ψ(m) < t < n. By Lemma 2.1, the value of u[n + 1, m] in
U+q (so2n+1) is independent of the arrangement of brackets. In particular, u[n + 1, m] =
[[w, [xt+1xtxt−1]], v], where w = u[n + 1, ψ(t) − 2], v = u[ψ(t) + 2, m]. Because
pt t+1pt tpt t−1 · pt+1 tpt tpt−1 t = 1, the antisymmetry identity (2.13) and the first equal-
ity of (3.7) imply [xt , [xt+1xtxt−1]] ∼ [[xt+1xtxt−1], xt ] = 0.Note that [xt , w] = [w, xt ]
= 0, [xt , v] = [v, xt ] = 0 according to the second group of defining relations (3.3). ut

Lemma 3.9. If k ≤ n < m < ψ(k), then the value in U+q (so2n+1) of the bracketed word
[ykxn+1xn+2 . . . xm], where yk = u[k, n], is independent of the arrangement of brackets.

Proof. To apply (2.9), it suffices to check [u[k, n], xt ] = 0, n+ 1 < t ≤ m. Because the
application of ψ changes the order, we have k < ψ(m) ≤ ψ(t) < n. Hence, taking into
account xt = xψ(t), one may use Lemma 3.7. ut

Lemma 3.10. If k ≤ n < ψ(k) < m, then the value in U+q (so2n+1) of the bracketed
word [xkxk+1 . . . xnym], where ym = u[n + 1, m], is independent of the arrangement of
brackets.

Proof. To apply (2.9), we need [xt , u[n + 1, m]] = 0, k ≤ t < n. To obtain these
equalities, one may use Lemma 3.8. ut

Lemma 3.11. If m 6= ψ(k), k ≤ i < n < m, then

[u[k, i], u[n+ 1, m]] = [u[n+ 1, m], u[k, i]] = 0

unless i = ψ(m)− 1.

Proof. We denote u=u[k, i], w=u[n+ 1, m]. Relations (3.1), (3.2) imply puwpwu=1.
Hence, by (2.13), we have [u,w] = −puw[w, v].

If ψ(m) < k, then by Lemma 3.8, we have [xt , u[n+ 1, m]] = 0, k ≤ t ≤ i. Hence,
[u[k, i], u[n+ 1, m]] = 0.

Suppose that ψ(m) > k. If i < ψ(m)− 1, then by the second group of defining rela-
tions (3.3), we have [xt , u[n+ 1, m]] = 0, k ≤ t ≤ i. Hence, [u[k, i], u[n+ 1, m]] = 0.

Let ψ(m) ≤ i < n. If we define u1 = u[k, ψ(m) − 2], u2 = u[ψ(m) − 1, i],
then certainly u = [u1, u2] unless k = ψ(m) − 1, u = u2. Because [u1, w] = 0,
the conditional Jacobi identity (2.8) implies that, in both cases, we only need to check
[u2, w] = 0.

Let us put u3 = [xψ(m)−1, xψ(m)], u4 = u[ψ(m) + 1, i]. Then u2 = [u3, u4] unless
i = ψ(m), u2 = u3. By Lemma 3.8, we have [xt , u[n + 1, m]] = 0 for all t, ψ(m) <
t < n. Hence, [u4, w] = 0. Now the Jacobi identity (2.6) with u ← u3, v ← u4 shows
that it suffices to prove the equality [u3, w] = 0.
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Let us put w1 = u[n + 1, m − 2], w2 = [xm−1, xm]. Then w = [w1, w2] unless
m− 2 = n, w = w2 (recall that we are considering the case ψ(m) ≤ i < n, in particular
ψ(m) ≤ n − 1, and hence m ≥ ψ(n − 1) = n + 2). We now have [u3, w1] = 0.
Therefore the Jacobi identity (2.6) with u ← u3, v ← w1, w ← w2 shows that it is
sufficient to obtain the equality [u3, w2] = 0, that is, [[xt−1, xt ], [xt+1, xt ]] = 0 with
t = ψ(m) < n. Since [[xt−1, xt ], xt ] = 0 is one of the defining relations, the conditional
identity (2.8) implies [[xt−1, xt ], [xt+1, xt ]] = [[xt−1xtxt+1], xt ]. It remains to apply the
second equality of (3.7). ut

Lemma 3.12. If m 6= ψ(k), k ≤ n < i < m, then

[u[k, n], u[i + 1, m]] = [u[i + 1, m], u[k, n]] = 0

unless i = ψ(k).

Proof. The proof is quite similar to the preceding one. It is based on Lemma 3.7 and
the first equality of (3.7) in the same way as the proof of the above lemma is based on
Lemma 3.8 and the second equality of (3.7). ut

Corollary 3.13. If m 6= ψ(k), k ≤ n < m, then in U+q (so2n+1) we have

u[k,m] = [u[k, n], u[n+ 1, m]] = β[u[n+ 1, m], u[k, n]], (3.17)

where β = −p(u(n+ 1, m), u(k, n))−1.

Proof. Let us denote u = u[k, n], v = u[n + 1, m]. Equalities (3.13) and (3.15) with
i = n show that puvpvu = µ

m,n
k = 1 provided that m 6= ψ(k). Hence, [u, v] = uv −

puvvu = −puv[v, u], which proves the second equality. To prove the first, we apply
Lemma 3.9 if m < ψ(k), and otherwise we apply Lemma 3.10. ut

Proposition 3.14. If m 6= ψ(k), then in U+q (so2n+1) for each i, k ≤ i < m, we have

[u[k, i], u[i + 1, m]] = u[k,m]

with only two possible exceptions, i = ψ(m)− 1 and i = ψ(k).

Proof. If m ≤ n or k ≥ n + 1, then the statement follows from (2.9). Thus, we may
suppose that m > n.

If i = n, then Corollary 3.13 implies the required formula.
If i > n, then Corollary 3.13 yields u[k, i] = [u[k, n], u[n + 1, i]], while by Lem-

ma 3.12 we have [u[k, n], u[i + 1, m]] = 0. Hence, (2.8) implies[
[u[k, n], u[n+ 1, i]], u[i + 1, m]

]
=
[
u[k, n], [u[n+ 1, i], u[i + 1, m]]

]
.

Now, (2.9) shows that [u[n + 1, i], u[i + 1, m]] = [u[n,m]], and again Corollary 3.13
implies the required formula.

If i < n, then Corollary 3.13 yields u[i + 1, m] = [u[i + 1, n], u[n + 1, m]], while
by Lemma 3.11 we have [u[k, i], u[n+ 1, m]] = 0. Hence, (2.8) implies[

[u[k, i], [u[i + 1, n], u[n+ 1, m]]
]
=
[
[u[k, i], [u[i + 1, n]], u[n+ 1, m]

]
.

Now, (2.9) shows that [u[k, i], u[i + 1, n] = u[k, n], and again Corollary 3.13 implies
the required formula. ut
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Proposition 3.15. If m 6= ψ(k), k ≤ i < j < m, m 6= ψ(i) − 1, j 6= ψ(k), then
[u[k, i], u[j + 1, m]] = 0. If, additionally, i 6= ψ(j)− 1, then [u[j + 1, m], u[k, i]] = 0.

Proof. If m ≤ n or k > n, then u[k, i] and u[j + 1, m] are separated by xj ; hence, the
statement follows from Lemma 3.2.

If k ≤ n < i, then by Corollary 3.13, we have u[k, i] = [a, b] with a = u[k, n],
b = u[n+ 1, i]. The second group of relations (3.3) implies [b, u[j + 1, m]] = 0, while
Lemma 3.12 implies [a, u[j+1, m]] = 0. Hence by (2.6) we obtain the required relation.

If j < n ≤ m, then, again by Corollary 3.13, we have u[j + 1, m] = [a, b] with a =
u[j+1, n], b = u[n+1, m]. The second group of relations (3.3) implies [u[k, i], a] = 0,
while Lemma 3.11 implies [u[k, i], b] = 0. Hence, by (2.6), we obtain the required
relation.

Assume i ≤ n ≤ j. If i > ψ(j) − 1, then, by taking into account Lemma 3.3,
one may apply Lemma 3.12 with n ← i, i ← j. Similarly, if i < ψ(j) − 1, one may
apply Lemma 3.11 with n ← ψ(j) − 1. Let i = ψ(j) − 1. We may apply the case
“i > ψ(j) − 1”, which was already considered, to the sequence k ≤ i < j ′ < m with
j ′ = j + 1, unless j ′ = m or j ′ = ψ(k). Thus, [u[k, i], u[j + 2, m]] = 0 provided that
j + 1 6= m, j + 1 6= ψ(k). Lemma 2.1 implies

[u[k, i], xi] =
[
u[k, i − 2], [[xi−1, xi], xi]

]
= 0, (3.18)

because the inequality i < j − 1 and the equality i = ψ(j) − 1 imply i < n. Now, if
j + 1 6= m, j + 1 6= ψ(k), then using Lemma 2.1, we have

[u[k, i], u[j + 1, m]]=
[
u[k, i], [xi, u[j + 2, m]]

] (2.8)
=
[
[u[k, i], xi], u[j + 2, m]

] (3.18)
= 0,

for xj+1 = xi . The exceptional equality j + 1 = ψ(k) implies k = ψ(j)− 1 = i. In this
case, taking into account Lemma 2.1, we have

[xi, u[j + 1, m]] = [[xi, [xi, xi−1]], u[j + 3, m]] = 0.

The exceptional equality j + 1 = m implies u[1 + j,m] = xm = xi, for ψ(j + 1) = i.
Hence, relation (3.18) applies. The equality [u[k, i], u[j + 1, m]] = 0 is proven.

Assume i 6= ψ(j)− 1. Definition (3.9) shows that

p(u(k, i), u(j + 1, m)) · p(u(j + 1, m), u(k, i)) = µm,ik (µ
j,i
k )
−1.

Using (3.13) and (3.15), we shall prove that µm,ik = µ
j,i
k . If i = n, then µm,ik = µ

j,i
k = 1.

Let i 6= n. If m < ψ(k), then µm,ik = q−2 because i = ψ(m) − 1 is equivalent to
m = ψ(i)− 1. Similarly, µj,ik = q

−2 since j 6= ψ(i)− 1 and j ≤ m < ψ(k).

If m > ψ(k) and i 6= ψ(k), then by (3.15), we have µm,ik = q
−2, while µj,ik = q

−2

in both cases: if j < ψ(k) by (3.13), and if j > ψ(k) by (3.15). Finally, if i = ψ(k),

then j > i = ψ(k); hence, (3.15) implies µm,ik = µ
j,i
k = q

−4.

To obtain [u[j + 1, m], u[k, i]] = 0, apply (2.13). ut
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4. PBW-generators of the quantum Borel algebra

Proposition 4.1. If q3
6= 1, q4

6= 1, then the values of the elements u[k,m], k ≤ m

< ψ(k), form a set of PBW-generators for the algebraU+q (so2n+1) over k[G]. All heights
are infinite.

Proof. By [9, Theorem Bn, p. 211] the set of PBW-generators (the values of hard super-
letters; see Theorem 2.5) consists of [ukm], k ≤ m ≤ n, and [wks], 1 ≤ k < s ≤ n,

where [ukm], [wks] are precisely the words u(k,m), u(k, ψ(s)) with the standard ar-
rangement of brackets (see Algorithm p. 1682). By conditional identity (2.9) we have
[ukm] = u[k,m] in U+q (so2n+1). According to [9, Lemma 7.8], the brackets in [wks] are
set by the following recurrence formulae:

[wks] = [xk[wk+1 s]] if 1 ≤ k < s − 1;
[wk k+1] = [[wk k+2]xk+1] if 1 ≤ k < n,

(4.1)

where, by definition, wk n+1 = u(k, n). We shall check the equality [wks] = u[k, ψ(s)]
in U+q (so2n+1).

If k = n− 1 and s = n, then wks = [[xn−1, xn], xn] = u[n− 1, n+ 2].
If k < s − 1, then, by (2.8), we have[

xk, [u[k + 1, n], u[n+ 1, ψ(s)]]
]
=
[
u[k, n], u[n+ 1, ψ(s)]

]
,

for [xk, xt ] = 0, n+1 ≤ t ≤ ψ(s). Thus, the evident induction applies because of (3.17).
If s = k + 1 < n, then the second option of (4.1) is fulfilled. This allows us to apply

the already proven equality for [wk k+2]. ut

If q is not a root of 1, then the fourth statement of [9, Theorem Bn, p. 211] shows that
each skew-primitive element in U+q (so2n+1) is proportional to either xi, 1 ≤ i ≤ n, or
1 − g, g ∈ G. In particular, ξ(G〈X〉(2)) has no nonzero skew-primitive elements. At the
same time, due to the Heyneman–Radford theorem [4], [8, Corollary 5.3] every bi-ideal
of a character Hopf algebra has a nonzero skew-primitive element. Therefore, Ker ξ = 3,
while the subalgebra A generated by the values of xi, 1 ≤ i ≤ n, in U+q (so2n+1) has the
shuffle representation given in Section 2.

If the multiplicative order of q is finite, then by the definition of H = u+q (so2n+1),

we have Ker ξ = 3. Hence, the subalgebra A generated by the values of xi, 1 ≤ i ≤ n,
in u+q (so2n+1) also has the shuffle representation.

Recall that (u(m, k)) denotes the tensor xm⊗xm−1⊗· · ·⊗xk considered as an element
of Shτ (V ).

Proposition 4.2. Let k ≤ m ≤ 2n. In the shuffle representation, we have

u[k,m] = αmk · (u(m, k)), αmk
df
= εmk (q

2
− 1)m−k ·

∏
k≤i<j≤m

pij , (4.2)

where

εmk =


1 if m ≤ n or k > n;

q−1 if k ≤ n < m, m 6= ψ(k);

q−3 if m = ψ(k).
(4.3)
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Proof. We use induction on m− k. If m = k, the equality reduces to xk = (xk).
(a) Consider first the casem<ψ(k).By the inductive supposition, we have u[k,m−1]

= αm−1
k · (w), w = u(m− 1, k). Using (2.21), we may write

u[k,m] = αm−1
k {(w)(xm)− p(w, xm) · (xm)(w)}

= αm−1
k

∑
uv=w

{p(xm, v)
−1
− p(w, xm)p(u, xm)

−1
}(uxmv). (4.4)

Because w = uv, we have p(w, xm)p(u, xm)−1
= p(v, xm).

If m ≤ n, then relations (3.2) imply p(v, xm)p(xm, v) = 1 except when v = w.

Hence, the sum (4.4) has just one term. The coefficient of (xmw) = (u(m, k)) equals

αm−1
k p(w, xm)(p(w, xm)

−1p(xm, w)
−1
− 1) = αm−1

k p(w, xm)(q
2
− 1),

as required.
If m = n+ 1, then p(v, xm)p(xm, v) = 1 still holds, with two exceptions: for v = w

and v = u(n − 1, k). In both cases, (uxmv) equals (u(m, k)). Hence, the coefficient of
(u(m, k)) in the sum (4.4) equals

p(xn, u(k, n− 1))−1
− p(u(k, n− 1), xn)+ p(xn, u(k, n))−1

− p(u(k, n), xn)

= p(w, xn+1){p
−1
n n−1p

−1
n−1 np

−1
nn − p

−1
nn + p

−1
n n−1p

−1
nn p

−1
nn p

−1
n−1 n − 1}.

Due to (3.1), (3.2) we obtain αmk = α
m−1
k p(w, xn+1)(q

2
− 1)q−1, as required.

Suppose that m > n + 1. In this case, by definition, xm = xt , where t = ψ(m) <

ψ(n + 1) = n. Let v = u(s, k). If s < t − 1, then v depends only on xi, i < t − 1,
and relations (3.1), (3.2) imply p(v, xm)p(xm, v) = 1. If s > t, s 6= m − 1, then
p(v, xm)p(xm, v) = pt−1 tpt tpt+1 t · pt t−1pt tpt+1 t = 1. Hence, in (4.4), three terms
remain: with s = t − 1, s = t, and s = m − 1. If v = u(t − 1, k) or v = u(t, k), then
(uxmv) equals (u(k, t)x2

t u(t + 1, m− 1)), while the coefficient of this tensor in (4.4) is

p(xt , u(k, t − 1))−1
− p(u(k, t − 1), xt )+ p(xt , u(k, t))−1

− p(u(k, t), xt )

= p(u(k, t), xt ){p
−1
t t−1p

−1
t−1 tp

−1
t t − p

−1
t t + p

−1
t t p

−1
t t−1p

−1
t−1 tp

−1
t t − 1} = 0.

Thus, in (4.4) only one term remains, with v = u(m − 1, k). This term has the required
coefficient:

αmk = α
m−1
k (p(xm, w)

−1
− p(w, xm)) = α

m−1
k p(w, xm)(q

2
− 1).

(b) In perfect analogy, we consider the case m > ψ(k). By the inductive supposition,
we have u[k + 1, m] = αmk+1 · (w), w = u(m, k + 1). Using (2.21), we may write

u[k,m] = αmk+1{(xk)(w)− p(xk, w) · (w)(xk)}

= αmk+1

∑
uv=w

{p(u, xk)
−1
− p(xk, u)}(uxkv). (4.5)
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If k > n, then p(u, xk)p(xk, u) = 1 unless u = w. Hence, (4.5) has only one term,
and the coefficient equals

αmk+1p(xk, w)(p(w, xk)
−1p(xk, w)

−1
− 1) = αmk+1p(xk, w)(q

2
− 1),

as required.
If k = n, then p(u, xk)p(xk, u) = 1 with two exceptions, u = w and u = u(m, n+2).

In both cases, (uxkv) equals (u(m, k)), while the coefficient takes the form

p(w, xn)
−1
− p(xn, w)+ p(u(m, n+ 2), xn)−1

− p(xn, u(m, n+ 2))

= p(xn, w){p
−1
n n−1p

−1
n−1 np

−2
nn − 1+ p−1

n n−1p
−1
n−1 np

−1
nn − p

−1
nn }.

Due to relations (3.1), (3.2) we obtain αmn = α
m
n+1p(xn, w)(q

2
− 1)q−1, as required.

Suppose that k < n. In this case, xk = xt with m > t
df
= ψ(k) > ψ(n) = n + 1.

Let u = u(m, s). If s > t, then u depends only on xi, i < k − 1, and relations (3.1),
(3.2) imply p(xk, u)p(u, xk) = 1. If s < t − 1, s 6= k + 1, then p(xk, u)p(u, xk) =
pk−1 kpkkpk+1 k · pk k−1pkkpk+1 k = 1. Hence, three terms remain in (4.5), with s =
t, s = t + 1, and s = k + 1. If u = u(m, t) or u = u(m, t + 1), then uxkv =
u(m, t + 1)x2

ku(t − 1, k), while the coefficient of the corresponding tensor is

p(u(m, t + 1), xk)−1
− p(xk, u(m, t + 1))+ p(u(m, t), xk)−1

− p(xk, u(m, t))

= p(xk, u(m, t + 1)){p−1
k−1 kp

−1
k k−1 − 1+ p−1

kk p
−1
k−1 kp

−1
k k−1 − pkk} = 0.

Thus, only one term remains in (4.4), and

αmk = α
m
k+1(p(w, xk)

−1
− p(xk, w)) = α

m
k+1p(xk, w)(q

2
− 1).

(c) Let us consider the remaining case, m = ψ(k). In this case, xm = xk. If k = n,
m = n+ 1, then u[n, n+ 1] = −p−1

nn [xn, xn] = (1− q−1)x2
n, while in the shuffle repre-

sentation we have (xn)(xn) = (1+q−1)(xnxn). Hence, u[n, n+1] = (1−q−2)(xn+1xn),

which is as required: (1− q−2) = q−3
· (q2
− 1) · pnn.

If k < n, we put u = u[n + 1, m], v = xk, w = u[k + 1, n]. By definition (3.16),
we have u[k,m] = β[u, [v,w]], where β = −p(u(n + 1, m), u(k, n))−1

; that is, β =
−p−1

u,vw. Because u[n + 1, m] = [u[n + 1, m − 2], [xk+1, xk]], the conditional identity
(2.8) implies [u, v] = [u[n+ 1, m− 2], [[xk+1, xk], xk]] = 0. Thus, [[u, v], w] = 0, and
formula (2.7) yields

β−1u[k,m] = puvxk · [u,w]− pvu[u,w] · xk. (4.6)

Formula (3.17) implies β1[u,w] = u[k + 1, m] with β1 = −p
−1
uw. Hence case (b) allows

us to find the shuffle representation [u,w] = α · (z) with z = u(m, k + 1) and α =
−puwα

m
k+1. By (2.21), the shuffle representation of the right-hand side of (4.6) is

α
∑

sy=u(m,k+1)

(puvp(s, xk)
−1
− pvwp(xk, y)

−1) · (sxky)
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We have βα = −βpuwαmk+1 = p
−1
uv α

m
k+1, and

puvpvu = pk+1 kpkkpk k+1pkk = q
2

because k < n. Therefore, we obtain

u[k,m] = αmk+1

∑
sy=u(m,k+1)

(p(s, xk)
−1
− q−2p(xk, s)) · (sxky). (4.7)

If s /∈ {∅, xm, z = u(m, k + 1)}, then p(s, xk)p(xk, s) = pk+1 kpkkpk k+1pkk = q
2
; that

is, only three terms remain in (4.7). If s = ∅ or s = xm, then (sxky) = (xkz) because
xm = xk. Hence, the coefficient of (xkz) in (4.7) equals 1 − q−2

+ p−1
kk − q

−2pkk = 0.
Thus, in (4.7) only one term remains, with the coefficient

αmk+1(p(z, xk)
−1
− q−2p(xk, z)) = α

m
k+1p(xk, z)q

−2(q2
− 1) = αmk

because p(z, xk) · p(xk, z) = pkkpk+1 kpk+1 k · pkkpk k+1pk k+1 = 1. ut

Theorem 4.3. In U+q (so2n+1) the coproduct on the elements u[k,m], k ≤ m ≤ 2n, has
the following explicit form:

1(u[k,m]) = u[k,m]⊗ 1+ gkgk+1 · · · gm ⊗ u[k,m]

+

m−1∑
i=k

τi(1− q−2)gkgk+1 . . . gi u[i + 1, m]⊗ u[k, i], (4.8)

where τi = 1 for i 6= n and τn = q.

Proof. Formulae (4.2), (2.20), and (2.19) show that the coproduct has the form (4.8),
where τi(1− q−2) = αmk (α

i
kα
m
i+1)

−1χu(i+1,m)(gkgk+1 . . . gi). We now have( ∏
k≤a<b≤i

pab
∏

i+1≤a<b≤m

pab

)−1 ∏
k≤a<b≤m

pab = p(u(k, i), u(i + 1),m).

Therefore the definition of µmk given in (3.9) and the definition of αmk given in (4.2) imply
τi(1− q−2) = εmk (ε

i
kε
m
i+1)

−1(q2
− 1)µm,ik ; that is, τi = εmk (ε

i
kε
m
i+1)

−1q2µ
m,i
k . By (3.12),

we have µm,ik = σ
m
k (σ

i
kσ

m
i+1)

−1. Using (3.10) and (4.3), we see that

εmk σ
m
k =

{
q2 if m < n or k > n+ 1;
q otherwise.

(4.9)

Now, it is easy to check that the τ ’s have the following elegant form:

τi = ε
m
k σ

m
k (ε

i
kσ

i
k)
−1(εmi+1σ

m
i+1)

−1q2
=

{
q if i = n;
1 otherwise. (4.10)

Interestingly, the coproduct formula differs from that in U+
q2(sl2n+1) in just one term: see

formula (3.3) in [11]. ut

Now we are going to find PBW-generators for u+q (so2n+1). To do this, we need more
relations in U+q (so2n+1).
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Lemma 4.4. If k ≤ m < ψ(k), then in the algebra U+q (so2n+1) we have[
u[k,m], [u[k,m], u[k + 1, m]]

]
= 0. (4.11)

Proof. Suppose first m < ψ(k)− 1. In this case, both words u(k,m) and u(k+ 1, m) are
standard. The standard arrangement of brackets for these words is defined by (4.1). How-
ever, in Proposition 4.1, we have seen that [u(k,m)] = u[k,m], and hence [u(k+1, m)] =
u[k + 1, m] in the algebra U+q (so2n+1).

The word w = u(k,m)u(k,m)u(k + 1, m) is standard. The Algorithm on p. 1682
shows that the standard arrangement of brackets is precisely[

[u(k,m)], [[u(k,m)], [u(k + 1, m)]]
]
.

Hence, the value of the super-word [w] in U+q (so2n+1) equals the left-hand side of (4.11).
By Proposition 4.1, all hard super-letters in U+q (so2n+1) are [u(k,m)], k≤m<ψ(k).

Hence, [w] is not hard. The multiple use of Definition 2.3 shows that the value of [w] is
a linear combination of the values of super-words in hard super-letters smaller than [w].
Because U+q (so2n+1) is homogeneous, each of the super-words in that decomposition
has two hard super-letters smaller than [w] and of degree 1 in xk (if a hard super-letter
[u(r, s)] is of degree 2 in xk, then r < k and u(r, s) > w). At the same time, all such
hard super-letters are [u(k,m+ 1)], [u(k,m+ 2)], . . . , [u(k, 2n− k)]. Each has degree 2
in xm+1 if m ≥ n, and each has degree at least 1 if m < n. Hence, the super-word has
degree at least 4 in xm+1 if m ≥ n, and at least 1 if m < n. However, w is of degree 3 in
xm+1 if m ≥ n, and it is independent of xm+1 if m < n. Therefore, the decomposition is
empty, and [w] = 0.

Let, then,m = ψ(k)−1. In this case, u(k+1, m) is not standard, and we cannot apply
the above arguments. Nevertheless, we shall prove similarly that [u[k, 2n − k], xt ] = 0,
k < t ≤ n, which will imply both [u[k, 2n− k], u[k + 1, 2n− k]] = 0 and (4.11).

If k + 1 < t < n, then Lemmas 3.7 and 3.8 imply

[u[k, n], xt ] = [u[n+ 1, 2n− k], xt ] = 0.

Due to Corollary 3.13 we have [u[k, 2n− k], xt ] = 0.
If t = k + 1, we consider the word v = u(k, 2n − k)xk+1. It is standard, and the

standard arrangement of brackets is [v] = [[u(k, 2n − k)]xk+1]. Therefore, the value of
the super-letter [v] equals [u[k, 2n − k], xk+1]. At the same time, [v] does not belong
to the set of PBW-generators; that is, it is not hard. The multiple use of Definition 2.3
shows that the value of [v] is a linear combination of the values of super-words in hard
super-letters smaller than [v]. Each of the super-words in that decomposition has a hard
super-letter smaller than [v] and of degree 1 in xk. However, there are no such super-
letters. Thus, the decomposition is empty, and [v] = 0.

Let t = n. If k = n− 1, then [u[k, 2n− k], xn] = [[[xn−1, xn], xn], xn] = 0 because
of (3.4). If k = n−2, we consider the word u = u(k, 2n−k)xn = xn−2xn−1xnxnxn−1xn.

It is standard, while the super-letter [u] is not hard. Again, there is no hard super-letter
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smaller than [u] and of degree 1 in xn−2. Hence, [u] = 0 in U+q (so2n+1). The standard
arrangement of brackets is [[xn−2xn−1xnxn][xn−1xn]]. Hence, we obtain[

[xn−2, [[xn−1, xn], xn]], [xn−1, xn]
]
= 0.

At the same time, [xn−2, xn] = 0 and [[[xn−1, xn], xn], xn] = 0 imply[
[xn−2, [[xn−1, xn], xn]], xn

]
= 0.

The conditional identity (2.8) yields[
[xn−2, [[xn−1, xn], xn]], [xn−1, xn]

]
=
[
[[xn−2, [[xn−1, xn], xn]], xn−1], xn

]
,

which is as required because [u[n−2, n+2], xn] = [[[xn−2, [[xn−1, xn], xn]], xn−1], xn].
Finally, suppose that k < n−2.Denote u1 = u[k, n−3], v1 = u[n+3, 2n−k], w1 =

u[n− 2, n+ 2].We have already proved that [w1, xn] = 0. The second group of relations
(3.3) implies [u1, xn] = 0, [v1, xn] = 0. At the same time, due to Proposition 3.14, we
have u[k, 2n− k] = [u[k, n+ 2], v1] and u[k, n+ 2] = [u1, w1]; that is, u[k, 2n− k] =
[[u1, w1], v1], which certainly implies the required relation [u[k, 2n− k], xn] = 0. ut

Proposition 4.5. If the multiplicative order t of q is finite, t > 4, then the values of
u[k,m], k ≤ m < ψ(k), form a set of PBW-generators for u+q (so2n+1) over k[G]. The
height h of u[k,m] equals t if m = n or t is odd. If m 6= n and t is even, then h = t/2. In
all cases, u[k,m]h = 0 in u+q (so2n+1).

Proof. First, we note that Definition 2.3 implies that a nonhard super-letter in
U+q (so2n+1) is still nonhard in u+q (so2n+1). Hence, all hard super-letters in u+q (so2n+1)

are in the list u[k,m], k ≤ m < ψ(k). Next, if u[k,m] is not hard in u+q (so2n+1),

then by the multiple use of Definition 2.3, the value of u[k,m] is a linear combination
of super-words in hard super-letters smaller than the given u[k,m]. Because u+q (so2n+1)

is homogeneous, each of the super-words in that decomposition has a hard super-letter
smaller than u[k,m] and of degree 1 in xk. At the same time, all such hard super-letters
are in the list [u(k,m+1)], [u(k,m+2)], . . . , [u(k, 2n− k)]. Each of these super-letters
has degree 2 in xm+1 if m ≥ n, and at least 1 if m < n. Hence, the super-word has a
degree of at least 2 if m ≥ n, and at least 1 if m < n. However u[k,m] is of degree
1 in xm+1 if m ≥ n, and is independent of xm+1 if m < n. Therefore the decomposi-
tion is empty, and u[k,m] = 0. We obtain a contradiction with Proposition 4.2 because
(u(m, k)) 6= 0 in the shuffle algebra.

For short we denote u = u[k,m]. Equation (3.10) implies puu = q if m = n and
puu = q

2 otherwise (recall that now m < ψ(k)). By Definition 2.4 the minimal possible
value for the height is precisely the h given in the proposition. It remains to show that
uh = 0 in u+q (so2n+1). By Lemma 2.11, it suffices to prove that ∂i(uh) = 0, 1 ≤ i ≤ n.
Lemma 2.10 yields

∂i(u
h) = p(u, xi)

h−1 [u, [u, . . . [u︸ ︷︷ ︸
h−1

, ∂i(u)] . . .]].
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The coproduct formula (4.8) with (2.23) implies

∂i(u) =

(1− q
−2)τku[k + 1, m] if i ∈ {k, ψ(k)}, k < m;

0 if i /∈ {k, ψ(k)};
1 if i ∈ {k, ψ(k)}, k = m.

(4.12)

At the same time, Lemma 4.4 provides the relation [u, [u, u[k + 1, m]]] = 0 in
U+q (so2n+1), and hence in u+q (so2n+1) as well. Because always h > 2, we obtain the
required equalities ∂i(uh) = 0, 1 ≤ i ≤ n. ut

Remark. To prove (4.8), we have used the shuffle representation. Therefore, if q has a
finite multiplicative order, then (4.8) is proved only for u+q (so2n+1). However, we have
seen that the kernel of the natural homomorphism U+q (so2n+1)→ u+q (so2n+1) is gener-
ated by the elements u[k,m]h, k ≤ m < ψ(k). The degree of u[k,m]h in a given xi is
either zero or greater than 2. At the same time, all tensors in (4.8) have degree at most 2 in
each variable. Therefore, (4.8), and hence (4.12), are also valid in U+q (so2n+1) provided
that q has a finite multiplicative order t > 4.

5. PBW-generators for right coideal subalgebras

In what follows Ak+1, k < n, denotes the subalgebra of U+q (so2n+1) or u+q (so2n+1)

generated by xi, k < i ≤ n, and correspondingly A is the subalgebra generated by all xi,
1 ≤ i ≤ n. Of course, k[gk+1, . . . , gn]Ak+1 may be identified with U+q (so2(n−k)+1) or
u+q (so2(n−k)+1).

Suppose that a homogeneous element f ∈ k〈X〉 is linear in the maximal letter xk,
1 ≤ k ≤ n, that it depends on: degk(f ) = 1, degi(f ) = 0, i < k. Then, in the de-
composition of a = ξ(f ) in the PBW-basis defined in Proposition 4.1 or Proposition 4.5,
each summand has only one PBW-generator that depends on xk because U+q (so2n+1)

and u+q (so2n+1) are homogeneous in each xi . Moreover, this PBW-generator, considered
as a super-letter, starts with xk. Hence, it is the maximal super-letter of the summand.
In particular, this super-letter is located at the end of the basis super-word; that is, the
PBW-decomposition takes the form

a =

2n−k∑
i=k

Fiu[k, i], Fi ∈ Ak+1. (5.1)

Definition 5.1. The set Sp(a) of all i such that Fi 6= 0 in (5.1) is called the spectrum
of a.

Let S be a set of integers from the interval [1, 2n].We define a polynomial8S(k,m),
1 ≤ k ≤ m ≤ 2n, by induction on the number r of elements in S ∩ [k,m − 1] =
{s1, . . . , sr}, k ≤ s1 < · · · < sr < m, as follows:

8S(k,m) = u[k,m]− (1− q−2)

r∑
i=1

α
si
km8

S(1+ si, m)u[k, si] (5.2)

where αskm = τsp(u(1+ s,m), u(k, s))
−1, while the τ ’s were defined in (4.10).
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We represent the element 8S(k,m) schematically as a sequence of black and white
points labelled by the numbers k − 1, k, k + 1, . . . , m − 1, m, where the first point is
always white, and the last one is always black. An intermediate point labelled by i is black
if and only if i ∈ S:

k−1
◦

k
◦
k+1
◦

k+2
•

k+3
◦ · · ·

m−2
•

m−1
◦

m
• (5.3)

Sometimes, if k ≤ n < m, it is more convenient to represent the element 8S(k,m)
in two lines, putting the points labelled by indices i, ψ(i) that define the same variable
xi = xψ(i) in one column:

m
• · · · •

ψ(i)
◦ · · ·

n+1
•

k−1
◦ ◦ · · ·

ψ(m)
◦ · · · •

i
• · · ·

n
◦

(5.4)

To illustrate the notion of a regular set, we need a shifted representation that arises from
(5.4) by shifting the upper line to the left one step and copying the coloured point labelled
by n, if any, to the vacant position (so that this point appears twice in the shifted scheme):

m
• · · · ◦

n+i
◦ · · ·

n+1
•

n
◦ ⇐

k−1
◦ ◦ · · ·

ψ(m)−1
• · · · •

n−i
• · · ·

n−1
◦

n
◦

(5.5)

If k ≤ m < ψ(k), then definition (5.2) shows that the spectrum of 8S(k,m) is con-
tained in S∪{m},while its leading term is u[k,m].However, ifm ≥ ψ(k), then (5.2) does
not provide sufficient information even for the immediate conclusion that 8S(k,m) 6= 0.
In particular some of the factors8S(1+si, m) in (5.2) may be zero even if k ≤ m < ψ(k).

Hence, a priori the spectrum of 8S(k,m), k ≤ m < ψ(k), may be a proper subset of
S ∪ {m}.

Let πkl, 1 ≤ k ≤ l < ψ(k), denote a natural projection of U+q (so2n+1) or u+q (so2n+1)

onto ku[k, l] with respect to the PBW-basis defined in Proposition 4.1 or 4.5 respectively.

Lemma 5.2. If a ∈ Ak+1, then πkl(au[k, i]) = 0, k ≤ i < ψ(k), unless a ∈ k, i = l.
Proof. The PBW-decomposition ã of a in the basis defined in Proposition 4.1 or 4.5
involves only PBW-generators that belong to Ak+1. They are all smaller than u[k, i].
Hence, the PBW-decomposition of au[k, i] is ãu[k, i]. We have πkl(ãu[k, i]) 6= 0 only
if ã ∈ k, i = l. ut

Lemma 5.3. If a ∈ Ak+1, k ≤ l < ψ(k), then

1(au[k, i]) · (id⊗ πkl) =


0 if i < l;

agkl ⊗ u[k, l] if i = l;
τl(1− q−2)a gklu[l + 1, i]⊗ u[k, l] if i > l,

(5.6)

where, by definition, gkl = g(u[k, l]) = gkgk+1 . . . gl .

Proof. By (4.8), we have 1(au[k, i]) =
∑
(a), j a

(1)αjgkju[j + 1, i] ⊗ a(2)u[k, j ] for
suitable αj ∈ k. By the above lemma, we obtain πkl(a(2)u[k, j ]) = 0 unless a(2) ∈ k,
i = l. It remains to apply the explicit formula (4.8). ut



1702 V. K. Kharchenko

Lemma 5.4. If k ≤ l < m < ψ(k), then

1(8S(k,m)) · (id⊗ πkl) =
{

0 if l ∈ S;
τl(1− q−2)gkl8

S(1+ l, m)⊗ u[k, l] if l /∈ S.

Proof. Let us apply 1(id⊗ πkl) to (5.2). Because ai
df
= 8S(1+ si, m) ∈ Ak+1, we may

use Lemma 5.3. We now have aigkl=χai (gkl)gklai, χai (gkl)=p(u(1+ si, m), u(k, l)).
Thus, if si > l, then αsikmχ

ai (gkl) = α
si
1+l m, while if si = l, then αlkmχ

al (gkl) = τl . Now,
(5.6) implies the required relation. ut

Lemma 5.5. Let k ≤ l < m < ψ(k) and a ∈ Ak+1 be a nonzero homogeneous el-
ement with D(a) = D(u(1 + l, m)). Denote by νa any homogeneous projection νa :
U+q (so2n+1)→ ak. If D(b) = D(u(1+ i, m)), then

1(bu[k, i]) · (id⊗ νa) =

0 if l < i < m;

gau[k, l]⊗ a if i = l, b = a;
gab
′u[k, i]⊗ a if i < l.

Proof. All right-hand components of the tensors in (4.8) depend on xk except the first
summand. Because νa kills all elements with a positive degree in xk, we have

1(bu[k, i]) · (id⊗ νa) =
∑
(b)

b(1)u[k, i]⊗ νa(b(2)). (5.7)

If l < i < m, then D(b(2)) ≤ D(b) < D(a). Hence, νa(b(2)) = 0.
If b = a, i = s, then D(b(2)) = D(a) only if b(1) = ga, b(2) = a.
If i < l, then (5.7) provides the third option given in the lemma. ut

Proposition 5.6. If a right coideal subalgebra U⊇ k[G] of U+q (so2n+1) or u+q (so2n+1)

contains a homogeneous element c ∈ A with the leading term u[k,m], k ≤ m < ψ(k),

then 8S(k,m) ∈ U for a suitable subset S of the spectrum of c.

Proof. Every summand of the decomposition of c in the PBW-basis defined in Proposi-
tion 4.1 or 4.5 has only one PBW-generator that depends on xk because U+q (so2n+1) and
u+q (so2n+1) are homogeneous in each xi . Moreover, this PBW-generator, considered as
a super-letter, starts with xk, and hence it is the maximal super-letter of the summand.
The maximal super-letter is located at the end of the basis super-word; that is, the PBW-
decomposition takes the form

c = u[k,m]+
m−1∑
i=k

Fiu[k, i], Fi ∈ Ak+1, k ≤ i < m. (5.8)

By definition, i belongs to the spectrum Sp(a) of a if and only if Fi 6= 0.We may rewrite
this representation in the following way:

8St (k,m)+
∑

i∈Sp(a), i<t

Fiu[k, i] ∈ U, (5.9)
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where t = m, and, by definition, Sm = ∅. We shall prove that relation (5.9) with a given
t, k < t ≤ m, St ⊆ Sp(a), and t ≤ inf St implies a relation of the same type with t ← l,

Sl = St ∪ {l}, where l, as above, is the maximal i in (5.9) such that Fi 6= 0. Because
certainly l < t, by downward induction this will imply (5.9) with t = k, S = Sk ⊆ Sp(a):

8S(k,m) ∈ U. (5.10)

Let us apply 1 · (id ⊗ πkl) to (5.9), where πkl is the projection onto ku[k, l], and l
is the maximal i in (5.9) with Fi 6= 0. By Lemma 5.3, we have 1(Fiu[k, i]) · (id⊗ πkl)
= 0 if i < l, while 1(Flu[k, l]) · (id ⊗ πkl) = Flgkl ⊗ [k, l]. Lemma 5.4 implies
1(8St (k,m)) · (id⊗ πkl) = τl(1− q−2)gkl8

St (1+ l, m)⊗ u[k, l]. Because U is a right
coideal subalgebra that contains all grouplike elements, we get

Fl + χ
Fl (gkl)

−1τl(1− q−2)8St (1+ l, m) = v ∈ U. (5.11)

We further consider any homogeneous projection νa with a = Fl . Let us apply
1 · (id⊗ νa) to (5.9). As l < inf St , Lemma 5.5 and definition (5.2) imply1(8St (k,m)) ·
(id⊗ νa) = 0. Lemma 5.5 also shows that1(Flu[k, l]) · (id⊗ νa) = gau[k, l]⊗ a, while
1(Fiu[k, i]) · (id⊗ νa) = gaA′iu[k, i]⊗ a, i < l. Hence, we arrive at the relation

u[k, l]+
∑

i∈Sp(a), i<l

F ′iu[k, i] = w ∈ U. (5.12)

Relations (5.11), (5.12) imply

Flu[k, l] = vw −
∑

i∈Sp(a), i<l

vF ′iu[k, i]− χFl (gkl)−1τl(1− q−2)8St (1+ l, m) · u[k, l].

This equality allows one to replace Flu[k, l] in (5.9). According to definition (5.2) we
have8St (k,m)−χFl (gkl)−1τl(1−q−2)8St (1+ l, m) ·u[k, l]= 8St∪{l}(k,m); therefore
we obtain the required relation

8Sl (k,m)+
∑

i∈Sp(a), i<l

(Fi − vF
′

i )u[k, i] ∈ U. ut

Corollary 5.7. If the main parameter q is not a root of 1, then every right coideal sub-
algebra of U+q (so2n+1) that contains the coradical has a set of PBW-generators of the
form8S(k,m). In particular, there exist only a finite number of right coideal subalgebras
of U+q (so2n+1) that contain the coradical. If q has a finite multiplicative order t > 4,
then this is the case for the right coideal subalgebras of u+q (so2n+1) homogeneous in each
xi ∈ X.

Proof. If U is a right coideal subalgebra of U+q (so2n+1) that contains k [G], then, by
Lemma 2.12, it is homogeneous in each xi . By Propositions 4.1 and 2.7, U has PBW-
generators of the form (2.18):

cu = u
s
+

∑
αiWi ∈ U, u = u[k,m], k ≤ m ≤ ψ(k). (5.13)
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By (3.10), we have puu = σmk = q
2 if m 6= n, and puu = q otherwise. Thus, if q is not

a root of 1, Lemma 2.6 shows that in (5.13) the exponent s equals 1, while all heights of
the cu’s in U are infinite.

If q has a finite multiplicative order t > 4, then u[k,m]h = 0 in u+q (so2n+1), where h
is the multiplicative order of puu (see Proposition 4.5). By Lemma 2.6, in (5.13), we have
s ∈ {1, h, hlr}. Because u[k,m]h = u[k,m]hl

r
= 0, the exponent s in (5.13) equals 1,

while the height of cu in U equals h.
Because U is homogeneous with respect to each xi ∈ X, the PBW-generators of U in

both cases have the form

cu = u[k,m]+
∑

αiWi, k ≤ m ≤ ψ(k), (5.14)

where Wi are the basis super-words starting with super-letters smaller than u[k,m],
D(Wi) = D(u[k,m]) = xk+xk+1+· · ·+xm.By Proposition 5.6, we have8S(k,m) ∈ U.
The leading term of 8S(k,m) equals u[k,m]; see definition (5.2). Hence, we may re-
place cu with 8S(k,m) in the set of PBW-generators. The number of possible elements
8S(k,m) is finite. Hence, the total number of possible sets of PBW-generators of the
form 8S(k,m) is also finite. ut

6. Elements 8[k,m−1](k,m)

In this section, we are going to prove the following relation in U+q (so2n+1) :

8[k,m−1](k,m) = (−1)m−k
( ∏
m≥i>j≥k

p−1
ij

)
· u[ψ(m),ψ(k)], (6.1)

where, as above, ψ(i) = 2n − i + 1. The main idea of the proof is to use the Milinski–
Schneider criterion (Lemma 2.11). To do this, we need to find the partial derivatives of
both sides. In what follows, ∂i, 1 ≤ i ≤ 2n, denotes the partial derivation with respect
to xi; see (2.22). In particular ∂i = ∂ψ(i). The coproduct formula (4.8) with (2.23) implies

∂i(u[k,m]) =

(1− q
−2)τku[k + 1, m] if xi = xk, k < m;

0 if xi 6= xk;
1 if xi = xk, k = m.

(6.2)

This equality allows us to easily find the derivatives of the right-hand side. By induction
on m− k we shall prove a similar formula

∂i(8
[k,m−1](k,m)) =

β
m
k 8

[k,m−2](k,m− 1) if xi = xm, k < m;

0 if xi 6= xm;
1 if xi = xm, k = m,

(6.3)

where βmk = −(1−q
−2)αm−1

km = −(1−q−2)τm−1p(xm, u(k,m−1))−1. To simplify the
notation, we remark that8[k,m−1](k,m) = 8S(k,m) for each S that contains the interval
[k,m− 1]. In particular, in the above formula,8[k,m−2](k,m− 1) = 8[k,m−1](k,m− 1).
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If xi 6= xm, xi 6= xk, then (6.2) and the inductive supposition applied to definition
(5.2) imply ∂i(8[k,m−1](k,m)) = 0.

If xi = xk 6= xm, then ∂i = ∂k. Taking into account definition (5.2) we have

∂k(8
[k,m−1](k,m)) = ∂k

(
u[k,m]− (1− q−2)

m−1∑
i=k

αikm8
[k,m−1](1+ i, m)u[k, i]

)
,

where αikm = τip(u(1 + i, m), u(k, i))−1, while the τ ’s have been defined in (4.10).
By the inductive supposition, the skew differential Leibniz formula (2.22), and (6.2), the
above displayed expression equals

(1− q−2)τk(u[k + 1, m]− τ−1
k αkkmp(u(1+ k,m), xk)8

[k,m−1](1+ k,m)

− (1− q−2)

m−1∑
i=k+1

αikm p(u(1+ i, m), xk)8
[k,m−1](1+ i, m)u[k + 1, i]). (6.4)

Because obviously, αkkmp(u(1 + k,m), xk) = τk, α
i
km p(u(1 + i, m), xk) = αik+1m,

definition (5.2) shows that the above expression is zero.
If xi = xm 6= xk, then ∂i = ∂m. Again, by definition (5.2), the inductive supposition,

the skew differential Leibniz formula (2.22), and (6.2), we have

∂m(8
[k,m−1](k,m)) = −(1− q−2)

m−2∑
i=k

αikm β
m
1+i8

[k,m−2](1+ i, m− 1)u[k, i]

− (1− q−2)αm−1
km u[k,m− 1]. (6.5)

By definition, −(1− q−2)αm−1
km = βmk . At the same time

αikmβ
m
1+i = τip(u(1+ i, m), u(k, i))

−1
· {−(1− q−2)τm−1p(xm, u(1+ i, m− 1))−1

}

= −(1−q−2)τm−1p(xm, u(k,m−1))−1
· τip(u(1+ i, m−1), u(k, i))−1

= βmk ·α
i
k m−1.

Thus, according to (5.2), the right-hand side of (6.5) equals βmk 8
[k,m−2](k,m − 1), as

required.
Finally, if xi = xm = xk, k 6= m, that is, m = ψ(k), then due to the skew differential

Leibniz formula (2.22), the derivative ∂i(8[k,m−1](k,m)) equals the sum of the expression
(6.4) with the right-hand side of (6.5). Note that (6.4) is still zero, while the right-hand
side of (6.5) still equals βmk 8

[k,m−2](k,m− 1). Formula (6.3) is completely proved.
We are now ready to prove (6.1) by induction onm−k. Ifm = k, both sides equal xk.

If k < m, then the derivatives ∂i of both sides are zero for all i except i = m and
i = ψ(m). Due to (6.2), the derivative ∂m applied to the right-hand side of (6.1) equals

(−1)m−k
( ∏
m≥i>j≥k

p−1
ij

)
(1− q−2)τψ(m) · u[ψ(m)+ 1, ψ(k)]. (6.6)
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Because ψ(m) = n if and only if m− 1 = n, formula (4.10) yields τψ(m) = τm−1. At the
same time, (6.3) and the inductive supposition imply

∂m(8
[k,m−1](k,m)) = βmk (−1)m−1−k

( ∏
m>i>j≥k

p−1
ij

)
u[ψ(m)+ 1, ψ(k)]. (6.7)

By definition, we have

βmk = −(1− q
−2)τm−1p(xm, u(k,m− 1))−1

= −(1− q−2)τm−1
∏

m>j≥k

p−1
mj .

Thus, (6.6) coincides with (6.7), and, due to the MS-criterion, (6.1) is proved.

Remark. To prove (6.1), we used the MS-criterion. Therefore, if q has a finite multi-
plicative order t, relation (6.1) is proved only for u+q (so2n+1). However, we have seen in
Proposition 4.5 that if t > 4, then the kernel of the natural homomorphism U+q (so2n+1)

→ u+q (so2n+1) is generated by the elements u[k,m]h, h ≥ 3. At the same time, all
polynomials in (6.1) have degree at most 2 in each variable. Therefore, (6.1) is valid in
U+q (so2n+1) provided that t > 4.

7. (k,m)-regular sets

Definition 7.1. Let 1 ≤ k ≤ n < m ≤ 2n. A set S is said to be white (k,m)-regular if
for every i, k − 1 ≤ i < m, such that k ≤ ψ(i) ≤ m + 1, either i or ψ(i) − 1 does not
belong to S ∪ {k − 1, m}.

A set S is said to be black (k,m)-regular if for every i, k ≤ i ≤ m, such that
k ≤ ψ(i) ≤ m+ 1, either i or ψ(i)− 1 belongs to S \ {k − 1, m}.

If m ≤ n or k > n (or equivalently if u[k,m] is of degree ≤ 1 in xn), then, by
definition, each set S is both white and black (k,m)-regular.

A set S is said to be (k,m)-regular if it is either black or white (k,m)-regular.

If k ≤ n < m and S is white (k,m)-regular, then n /∈ S, for ψ(n) − 1 = n. If
additionally m < ψ(k), then taking i = ψ(m)− 1, we obtain ψ(i)− 1 = m. Hence, the
definition implies ψ(m)− 1 /∈ S. We see that if m < ψ(k), k ≤ n < m, then S is white
(k,m)-regular if and only if the shifted scheme of 8S(k,m) given in (5.5) has no black
columns:

m
• · · · •

n+i
◦ ◦ · · ·

n
◦ ⇐

k−1
◦ · · ·

ψ(m)−1
◦ · · · ◦

n−i
• ◦ · · ·

n
◦

(7.1)

In the same way, if m > ψ(k), then for i = ψ(k), we obtain ψ(i) − 1 = k − 1, and
hence ψ(k) /∈ S. That is, if m > ψ(k), k ≤ n < m, then S is white (k,m)-regular if and
only if the shifted scheme (5.5) has no black columns and the leftmost complete column
is white:

m
• · · ·

ψ(k)
◦ · · · •

n+i
◦ ◦ · · ·

n
◦ ⇐

k−1
◦ · · · ◦

n−i
• ◦ · · ·

n
◦

(7.2)
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Similarly, if k ≤ n < m and S is black (k,m)-regular, then n ∈ S. If additionally
m < ψ(k), then taking i = ψ(m)−1 we obtain ψ(i)−1 = m, and hence ψ(m)−1 ∈ S.
We see that if m < ψ(k) and k ≤ n < m, then S is black (k,m)-regular if and only if the
shifted scheme (5.5) has no white columns and the leftmost complete column is black:

m
• · · · •

n+i
◦ • · · ·

n
• ⇐

k−1
◦ · · ·

ψ(m)−1
• · · · •

n−i
• ◦ · · ·

n
•

(7.3)

If m > ψ(k), then for i = ψ(k) we get ψ(i) − 1 = k − 1, hence ψ(k) ∈ S. That is, if
m > ψ(k), k ≤ n < m, then S is black (k,m)-regular if and only if the shifted scheme
(5.5) has no white columns:

m
• · · ·

ψ(k)
• · · · •

n+i
◦ • · · ·

n
• ⇐

k−1
◦ · · · ◦

n−i
• • · · ·

n
•

(7.4)

At the same time, we should stress that if m = ψ(k), then no set is (k,m)-regular.
Indeed, for i = k − 1, we have ψ(i) − 1 = m. Hence, both i, ψ(i) − 1 belong to
S ∪ {k − 1, m}, and therefore S is not white (k, ψ(k))-regular. If we take i = m, then
ψ(i) − 1 = k − 1, and neither i nor ψ(i) − 1 belongs to S \ {k − 1, m}. Thus, S is not
black (k, ψ(k))-regular either.

Let S ∩ [k,m − 1] = {s1, . . . , sr}, s1 < · · · < sr . We denote ui = u[1 + si, si+1],
0 ≤ i ≤ r, where we formally put s0 = k − 1, sr+1 = m, while u[k,m] has been defined
in (3.16).

Lemma 7.2. If S is white (k,m)-regular, then the values in U+q (so2n+1) of the bracketed
words [urur−1 . . . u1u0] and [u0u1 . . . ur−1ur ] are independent of the arrangement of
brackets.

Proof. Let 0 ≤ i < j − 1, j ≤ r. Assume k ≤ n < m. The points si and ψ(1 + si)
form a column in the shifted scheme (7.1) or (7.2) since si + ψ(1 + si) = 2n. Hence,
ψ(1+si) = ψ(si)−1 is not a black point. In particular sj+1 6= ψ(1+si), sj 6= ψ(1+si).
Similarly, the points si+1 and ψ(si+1)−1 form a column in the shifted scheme, and hence
sj+1 6= ψ(si+1)− 1, sj 6= ψ(si+1)− 1.

We now have 1 + si ≤ si+1 < sj < sj+1, sj+1 6= ψ(1 + si), sj+1 6= ψ(si+1) − 1,
sj 6= ψ(1 + si), and sj 6= ψ(si+1) − 1. Therefore, Proposition 3.15 with k ← 1 + si,
i ← si+1, j ← sj , m← sj+1 implies [ui, uj ] = [uj , ui] = 0. If m ≤ n or k > n, then
ui and uj are separated. Hence, we still have [ui, uj ] = [uj , ui] = 0 due to Lemma 3.2.
It remains to apply Lemma 2.1. ut

Lemma 7.3. If S is white (k,m)-regular, then [u0u1 . . . ur ] = u[k,m].

Proof. We use induction on r. If r = 0, the equality is clear. In the general case, the
inductive supposition yields [u0u1 . . . ur−1] = u[k, sr ] because S is white (k, sr)-regular.
By Proposition 3.14, [u[k, sr ], ur ] = u[k,m] unless sr = ψ(m) − 1 or sr = ψ(k).

However, the white (k,m)-regularity implies thatψ(m)−1, ψ(k) are not black points. ut
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Lemma 7.4. If S is white (k,m)-regular, then in the above notation we have

8S(k,m) = (−1)r
∏

r≥i>j≥0

p(ui, uj )
−1
· [urur−1 . . . u0]. (7.5)

Proof. To prove the equality, it suffices to check the recurrence relations (5.2) for the
right-hand side. We shall use induction on r. If r = 0, there is nothing to prove. By
Lemma 7.3, we have u[k,m] = [u0u1 . . . ur−1ur ]. The inductive supposition for the
white (k,m)-regular set S \ {s1} takes the form

(−1)r−1p(u1, u0)
∏

r≥i>j≥0

p(ui, uj )
−1
· [urur−1 . . . u2[u0u1]] = [u0u1u2 . . . ur ]

− (1− q−2)

r∑
l=2

α
sl
k,m(−1)r−l

∏
r≥i>j≥l

p(ui, uj )
−1
· [urur−1 . . . ul] · [[u0u1]u2 . . . ul−1].

(7.6)

By definition, p(u0, u1)p(u1, u0) = µ
s2,s1
k (see Definition 3.6), while by (3.13) and

(3.15), we have µs2,s1k = q−2 because the regularity condition implies s1 6= n, s1 6=

ψ(s2)− 1, s1 6= ψ(k). Hence, by (2.13), we may write

p(u1, u0)[u0, u1] = −[u1, u0]+ (1− q−2)u1 · u0.

The above implies

p(u1, u0)[urur−1 . . . u2[u0u1]]

= −[urur−1 . . . u2u1u0]+ (1− q−2)[[urur−1 . . . u2], u1 · u0].

Because [ui, u0] = 0, i ≥ 2, the ad-identity (2.11) yields

[[urur−1 . . . u2], u1 · u0] = [urur−1 . . . u2u1] · u0.

Thus, the left-hand side of (7.6) reduces to

(−1)r
∏

r≥i>j≥0

p(ui, uj )
−1
· [urur−1 . . . u2u1u0]+ A,

where

A = (1− q−2)(−1)r−1
∏
r≥i>0

p(ui, u0)
−1

∏
r≥i>j≥1

p(ui, uj )
−1
· [urur−1 . . . u1] · u0.

At the same time, A coincides up to a sign with the missing summand of the right-hand
side of (7.6) corresponding to l = 1 because

α
s1
k,m = τs1p(urur−1 . . . u1, u0)

−1
=

∏
r≥i>0

p(ui, u0)
−1. ut
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Corollary 7.5. If S is white (k,m)-regular, s ∈ S ∪ {n}, k ≤ s < m, then

8S(k,m) = −p−1
ab [8S(1+ s,m),8S(k, s)],

where a = u(1+ s,m), b = u(k, s).

Proof. Let s = st , 1 ≤ t ≤ r. By Lemma 7.2, the value of the bracketed word
[urur−1 . . . u0] is independent of the arrangement of brackets. Therefore, we have
[urur−1 . . . u0] = [[urur−1 . . . ut ], [ut−1 . . . u0]]. It remains to apply Lemma 7.4.

Let k ≤ s = n < m. Because n is always white in a white regular set, we can find j
such that sj < n < sj+1.We denote u′j = u[1+sj , n] and u′′j = u[n+1, sj+1]. The points
sj and ψ(1+ sj ) form a column in the shifted scheme (7.1) or (7.2). Hence, ψ(1+ sj ) is
a white point. In particular, sj+1 6= ψ(1+ sj ). Thus, by Corollary 3.13 with k← 1+ sj ,
m← sj+1, we have uj = [u′j , u

′′

j ] = −p(u′′j , u
′

j )
−1[u′′j , u

′

j ].
Note that the value of the bracketed word

[urur−1 . . . uj+1u
′′

j u
′

juj−1 . . . u0] (7.7)

is independent of the arrangement of brackets. Indeed, Lemma 3.12 with k ← 1 + sj ,
i ← si, m← si+1 states [ui, u′j ] = 0, i > j, unless si+1 = ψ(1+ sj ) or si = ψ(1+ sj ).
However, the points sj and ψ(1+ sj ) form a column in the shifted scheme (7.1) or (7.2).
Hence, ψ(1+ sj ) is not a black point. In particular si+1 6= ψ(1+ sj ) and si 6= ψ(1+ sj ).

At the same time, if i < j − 1, then u′j and ui are separated by uj−1 (Definition 3.1);
hence, Lemma 3.2 implies [u′j , ui] = 0.

In perfect analogy, we obtain [u′′j , ui] = 0, i < j, and [ui, u′′j ] = 0, i > j + 1. Thus,
Lemma 2.1 implies that (7.7) is independent of the arrangement of brackets. In particular,

[urur−1 . . . uj+1u
′′

j u
′

juj−1 . . . u0] = [[urur−1 . . . uj+1u
′′

j ], [u′juj−1 . . . u0]].

It remains to apply Lemma 7.4. ut

Lemma 7.6. If k ≤ t < m, t /∈ S, then

8S∪{t}(k,m)−8S(k,m) = (q−2
− 1)p−1

ab τt8
S(1+ t, m)8S(k, t), (7.8)

where a = u(1+ t, m), b = u(k, t).

Proof. We use induction on m − k. If m = k, there is nothing to prove. By definition
(5.2), we have

8S∪{t}(k,m)−8S(k,m) = −(1− q−2){τtp
−1
ab 8

S(1+ t, m)u[k, t]

+

∑
si<t

τsip
−1
uivi
(8S∪{t}(1+ si, m)−8S(1+ si, m))u[k, si]},

where ui = u(1+ si, m), vi = u(k, si). By the inductive supposition the above equals

(q−2
− 1)p−1

ab τt8
S(1+ t, m)

·

{
u[k, t]− (1− q−2)

∑
si<t

τsip
−1
uivi
p−1
abi
pab8

S(1+ si, t)u[k, si]
}
,



1710 V. K. Kharchenko

where bi = u(1+ si, t). It remains to note that

p−1
uivi
p−1
abi
pab = p(u(1+ si, t), u(k, si))−1

and to use definition (5.2). ut

Corollary 7.7. If S ∪ {t} is white (k,m)-regular, t /∈ S, k ≤ t < m, then

8S(k,m) ∼ [8S(k, t),8S(1+ t, m)]. (7.9)

Proof. We denote A = 8S(k, t), B = 8S(1 + t, m). By Corollary 7.5 we have
8S∪{t}(k,m) = −p−1

ab [B,A].At the same time, t 6= n (for S∪{t} is white (k,m)-regular),
and hence, by Lemma 7.6, we get 8S∪{t}(k,m)−8S(k,m) = (q−2

− 1)p−1
ab BA. These

two equalities imply

8S(k,m) = −p−1
ab [B,A]− (q−2

− 1)p−1
ab BA

= p−1
ab (−BA+ pBAAB − (q

−2
− 1)BA)

= p−1
ab pBA(AB − q

−2p−1
BABA). (7.10)

By definition (3.6), we know that pABpBA = µ
m,t
k . In this case schemes (7.1) and (7.2)

related to the white regular set S ∪ {t} show that t 6= ψ(m) − 1, t 6= n, t 6= ψ(k), m 6=
ψ(k) because t, m are black points. Hence, formulae (3.13), (3.15) imply µm,tk = q−2.

Thus, we get pABpBA = q−2
; that is, q−2p−1

BA = pAB . Now, (7.10) reduces to (7.9). ut

Lemma 7.8. A set S is white (k,m)-regular if and only if ψ(S)− 1 is black regular with
respect to (ψ(m),ψ(k)). Here, ψ(S) − 1 denotes {ψ(s) − 1 | s ∈ S}, while the bar
denotes the complement with respect to the interval [ψ(m),ψ(k)− 1].

Proof. Let us replace the parameter i with j = ψ(i) − 1 in the definition of regularity.
Because ψ changes the order, we see that k − 1 ≤ i < m is equivalent to ψ(k) + 1 ≥
ψ(i) > ψ(m), that is, ψ(k) ≥ j ≥ ψ(m). Similarly, the condition k ≤ ψ(i) ≤ m + 1
is equivalent to ψ(k) ≥ i ≥ ψ(m) − 1. Because ψ(j) = i + 1, we obtain ψ(k) + 1 ≥
ψ(j) ≥ ψ(m).

The condition i /∈ S∪{k−1, m} is equivalent to j /∈ (ψ(S)−1)∪{ψ(m)−1, ψ(k)},
which, in turn, is equivalent to j ∈ (ψ(S)− 1) \ {ψ(m) − 1, ψ(k)}. In the same way,
ψ(i)− 1 /∈ S ∪ {k − 1, m} is equivalent to ψ(j)− 1 ∈ (ψ(S)− 1) \ {ψ(m)− 1, ψ(k)}.

ut

Lemma 7.9. A set S is black (k,m)-regular if and only if ψ(S)− 1 is white
(ψ(m),ψ(k))-regular.

Proof. This follows from the above lemma under the substitutions k←ψ(m), m←ψ(k),

S ← ψ(S)− 1. ut

Alternatively, one may easily check Lemmas 7.8 and 7.9 by means of the scheme interpre-
tation (7.1–7.4). Indeed, the shifted representation for 8T (ψ(m),ψ(k)), T = ψ(S)− 1
arises from one for8S(k,m) by changing the colour of all points and switching the rows.
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Proposition 7.10. If S is black (k,m)-regular, then

8S(k,m) = (−1)m−kq−2r
( ∏
m≥i>j≥k

p−1
ij

)
·8T (ψ(m),ψ(k)),

where T = ψ(S)− 1 is a white (ψ(m),ψ(k))-regular set with r elements, and, as above,
ψ(S)− 1 denotes {ψ(s)− 1 | s ∈ S}, while the bar denotes the complement with respect
to the interval [ψ(m),ψ(k)− 1].

Proof. We use double induction on r and on m − k. If m = k, then the equality reduces
to xk = xψ(k). If for given k,m we have r = 0, then S contains the interval [k,m − 1]
and the equality reduces to (6.1).

Suppose that r > 0. We fix t ∈ T . By the inductive supposition on r, we obtain

8S∪{ψ(t)−1}(k,m) = (−1)m−kq−2(r−1)
( ∏
m≥i>j≥k

p−1
ij

)
·8T \{t}(ψ(m),ψ(k)). (7.11)

We have t /∈ ψ(S) − 1, and hence ψ(t) − 1 /∈ S. In particular ψ(t) − 1 6= n, and
τψ(t)−1 = 1; see (4.10). Thus, relation (7.8) with t ← ψ(t)− 1 implies

8S(k,m) = 8S∪{ψ(t)−1}(k,m)+ (1− q−2)p−1
ab a · b, (7.12)

where a = 8S(ψ(t),m), b = 8S(k, ψ(t) − 1). The inductive supposition on m − k
yields

a = (−1)m−ψ(t)q−2r1
( ∏
m≥i>j≥ψ(t)

p−1
ij

)
·8T (ψ(m), t),

b = (−1)ψ(t)−1−kq−2r2
( ∏
ψ(t)>i>j≥k

p−1
ij

)
·8T (1+ t, ψ(k)),

where r1 is the number of elements in T ∩ [ψ(m), t−1], and r2 is the number of elements
in T ∩ [1+ t, ψ(k)− 1]. Obviously, r1 + r2 = r − 1. Therefore,

p−1
ab ab = (−1)m−k−1q−2(r−1)

( ∏
m≥i>j≥k

p−1
ij

)
· cd, (7.13)

where c = 8T (ψ(m), t), d = 8T (1+ t, ψ(k)). Now, (7.12) and (7.11) imply

8S(k,m) = (−1)m−kq−2(r−1)
( ∏
m≥i>j≥k

p−1
ij

)
· {8T \{t}(ψ(m),ψ(k))− (1− q−2)cd}.

(7.14)

We now have t 6= n because T is white regular. Hence, relation (7.8) with S ← T \ {t},

t ← t, k← ψ(m), m← ψ(k) implies

8T \{t}(ψ(m),ψ(k)) = 8T (ψ(m),ψ(k))+ (1− q−2)p−1
dc dc,
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and the expression in braces in (7.14) reduces to

8T (ψ(m),ψ(k))+ (1− q−2)p−1
dc [d, c]. (7.15)

At the same time, Corollary 7.5 with S ← T , s ← t, k← ψ(m), m← ψ(k) shows that
p−1
dc [d, c] = −8T (ψ(m),ψ(k)). This equality shows that (7.15) is equal to

8T (ψ(m),ψ(k))− (1− q−2)8T (ψ(m),ψ(k)) = q−28T (ψ(m),ψ(k)).

To obtain the required relation, it remains to replace the expression in braces in (7.14)
with q−28T (ψ(m),ψ(k)). ut

Corollary 7.11. If S is (k,m)-regular, then 8S(k,m) ∼ 8T (ψ(m),ψ(k)) for a suitable
(ψ(m),ψ(k))-regular set T .

Proof. If S is black (k,m)-regular, we apply Proposition 7.10. If S is white (k,m)-
regular, we may still apply Proposition 7.10 with S ← T , T ← S by Lemma 7.9. ut

Corollary 7.12. Let S be (k,m)-regular. If m > ψ(k), then the leading term of8S(k,m)
is proportional to u[ψ(m),ψ(k)]. In particular always 8S(k,m) 6= 0.

Proof. If m < ψ(k), then definition (5.2) shows that the leading term of 8S(k,m) in the
PBW-decomposition is u[k,m]; hence, 8S(k,m) 6= 0.

If m > ψ(k), then Proposition 7.10 (with T ← S, S ← T provided that S is
white regular) shows that 8S(k,m) is proportional to 8T (ψ(m),ψ(k)) 6= 0 because
ψ(k) < ψ(ψ(m)) = m. ut

Corollary 7.13. If S is black (k,m)-regular and t /∈ S \ {n}, k ≤ t < m, then

8S(k,m) ∼ [8S(k, t),8S(1+ t, m)].

Proof. If t /∈ S \{n}, then ψ(t)−1 ∈ T ∪{n},where T = ψ(S)− 1. By Proposition 7.10
we have 8S(k,m) ∼ 8T (ψ(m),ψ(k)). Corollary 7.5 yields

8T (ψ(m),ψ(k)) ∼ [8T (ψ(t), ψ(k)),8T (ψ(m),ψ(t)− 1)].

Because t is a white point or t = n, the set S is black (k, t)-regular and black (1+ t, m)-
regular; see the shifted schemes (7.3), (7.4). Hence, Proposition 7.10 implies 8S(k, t) ∼
8T (ψ(t), ψ(k)), 8S(1+ t, m) ∼ 8T (ψ(m),ψ(t)− 1). ut

Corollary 7.14. If S \ {s} is black (k,m)-regular, s ∈ S, k ≤ s < m, then

8S(k,m) ∼ [8S(1+ s,m),8S(k, s)]. (7.16)

Proof. This follows from Lemma 7.7 and Proposition 7.10 in a similar way. ut
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8. Root sequence

Our next goal is to show that the total number of right coideal subalgebras containing
k[G] is less than or equal to (2n)!! = 2n · n!.

In what follows we shall denote by [k : m], k ≤ m ≤ 2n, the element xk + xk+1 +

· · ·+xm, considered as an element of the group 0+. Of course, [k : m] = [ψ(m) : ψ(k)].
If k ≤ m < ψ(k), then [k : m] is a U+q (so2n+1)-root because u[k,m] is a PBW-generator
for U+q (so2n+1). The simple U+q (so2n+1)-roots are precisely the generators xk = [k : k],
1 ≤ k ≤ n. To put it another way, the U+q (so2n+1)-roots form the positive part R+ of the
classical root system of type Bn, provided that we formally replace symbols xi with αi
(the Weyl basis for R, see [3, Chapter IV, §6, Theorem 7]).

We fix the notation U for a (homogeneous if q t = 1, t > 4) right coideal subalge-
bra of U+q (so2n+1), q

t
6= 1 (respectively, of u+q (so2n+1)) that contains G. The U-roots

form a subset D(U) of R+. In this section we will see, in particular, that D(U) uniquely
defines U.

Definition 8.1. Let γk be a simple U-root of the form [k : m], k ≤ m < ψ(k), with m
maximal. We denote by θk the number m− k + 1, which equals the length of γk. If there
are no simple U-roots of the form [k : m], k ≤ m < ψ(k), we put θk = 0. The sequence
r(U) = (θ1, . . . , θn) satisfies 0 ≤ θk ≤ 2n−2k+1 and is uniquely defined by U. We shall
call r(U) a root sequence of U, or just an r-sequence of U. We define θ̃k to be k+ θk − 1,
the maximal value of m for the simple U-roots of the form [k : m] with fixed k.

Theorem 8.2. For each sequence θ = (θ1, . . . , θn) such that 0 ≤ θk ≤ 2n − 2k + 1,
1 ≤ k ≤ n, there exists at most one (homogeneous if q t = 1, t > 4) right coideal
subalgebra U⊇ G of U+q (so2n+1), q

t
6= 1 (respectively, of u+q (so2n+1)) with r(U) = θ.

This will result from the following lemmas.

Lemma 8.3. If [k : m] is a simple U-root, then there exists only one element a ∈ U of
the form a = 8S(k,m).

Proof. Suppose that a = 8S(k,m) and b = 8S
′

(k,m) are two different elements in U.
Then a − b is not a PBW-generator for U because its leading term, with respect to the
PBW-decomposition given in Proposition 4.1, is not equal to u[k,m]. Hence, the nonzero
homogeneous element a − b is a polynomial in the PBW-generators of U. Thus, [k : m],
being the degree of a − b, is a sum of U-roots, which is a contradiction. ut

Lemma 8.4. Let 8S(k,m) ∈ U, k ≤ m < ψ(k). Suppose that 8S
′

(k,m) /∈ U for all
subsets S′ ⊂ S. If j /∈ S, k ≤ j < m, then8S(1+ j,m) ∈ U. If j ∈ S, k ≤ j < m, then
8S
′′

(k, j) ∈ U with some S′′ ⊆ S ∩ [k, j ]. In particular [k : j ] is a U-root.

Proof. If in (5.2) we have 8S(1+ si, m) = 0, then the spectrum Sp(a) of a = 8S(k,m)
is a proper subset of S ∪ {m}. By Proposition 5.6, there exists a subset S′ ⊆ Sp(a) ⊂ S
such that 8S

′

(k,m) ∈ U. This contradiction implies that 8S(1 + j,m) 6= 0 for all
j ∈ S ∩ [k,m− 1].

If j /∈ S, then Lemma 5.4 implies 8S(1+ j,m) ∈ U.
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If j ∈ S, then we apply 1 · (id ⊗ νa) with a = 8S(1 + j,m) 6= 0 as defined
in Lemma 5.5 to both sides of (5.2). Lemma 5.5 shows that the value of 1(8S(1 +
i, m)u[k, i]) · (id⊗ νa) has the following three options: if j < i < m, it is zero; if i = j,
it is gau[k, j ]⊗a; if i < r, it is gab′iu[k, i], b′i ∈ Ak+1.Because1(u[k,m])·(id⊗νa) = 0
due to (4.8), we obtain

b = u[k, j ]+
∑

i<j, i∈S

b′iu[k, i] ∈ U, b′i ∈ Ak+1.

By definition this relation means that [k : j ] is a U-root, while Proposition 5.6 implies
8S
′′

(k, j) ∈ U with S′′ ⊆ Sp(b) ⊆ S ∩ [k, j ]. ut

Lemma 8.5. If [k : m] is a simple U-root, k ≤ m < ψ(k), then the minimal S such that
8S(k,m) ∈ U equals {j | k ≤ j < m, [k : j ] is a U-root}, and it is a (k,m)-regular set
(see Definition 7.1).

Proof. Suppose that S is not (k,m)-regular; we then have k ≤ n < m.

If n is a white point, n /∈ S, then by Lemma 8.4, we have 8S(1 + n,m) ∈ U. Hence
[n+1 : m] = [ψ(m) : n] is a U-root due to Corollary 7.12. Because S is not white (k,m)-
regular, in the shifted scheme (7.2) we can find a black column, say n + i ∈ S ∪ {m},
n− i ∈ S. By Lemma 8.4 applied to 8S(n+ 1, m), [n+ 1 : n+ i] is a U-root, while the
same lemma applied to 8S(k,m) shows that [k : n− i] is also a U-root. Now,

[k : m] = [k : n]+ [n+ 1 : m] = [k : n− i]+ [n+ 1 : n+ i]+ [n+ 1 : m]

is a sum of U-roots, which is a contradiction.
If n is a black point, n ∈ S, then by Lemma 8.4, we have 8S

′′

(k, n) ∈ U, and [k : n]
is a U-root. Because S is not black (k,m)-regular, we can find i, 1 ≤ i ≤ m − n, such
that n+ i /∈ S \ {m}, n− i /∈ S (see (7.3)). We have n− i /∈ S′′ because S′′ ⊆ S. Hence
Lemma 8.4 applied to8S

′′

(k, n) implies that [1+ n− i : n] = [n+ 1 : n+ i] is a U-root.
The same lemma applied to 8S(k,m) shows that 8S(1 + n + i, m) ∈ U. Hence, due to
Corollary 7.12, the element [1 + n + i : m] = [ψ(m) : n − i] is also a U-root. We now
have a similar contradiction:

[k : m] = [k : n]+ [n+ 1 : m] = [k : n]+ [n+ 1 : n+ i]+ [1+ n+ i : m].

Due to Lemma 8.4 it remains to show that if [k : j ] is a U-root, then j ∈ S. Suppose
that j /∈ S. Then Lemma 8.4 implies a = 8S(1+ j,m) ∈ U.

If S is (1 + j,m)-regular, or 1 + j < ψ(m), then a 6= 0 and [1 + j : m] is a U-root
(see Corollary 7.12). This is a contradiction, for [k : m] = [k : j ]+ [1+ j : m].

Suppose, finally, that S is not (1 + j,m)-regular and 1 + j ≥ ψ(m). Because S is
indeed (k,m)-regular, these conditions hold only in two cases: j = ψ(m)− 1, or n /∈ S,
ψ(j)− 1 ∈ S; see the shifted scheme representations (7.2), (7.4).

In the former case, by Lemma 8.4, either 8S(1+ n,m) ∈ U (if n /∈ S), or 8S
′′

(k,m)

∈ U and 8S(1 + j,m) ∈ U because j /∈ S′′ ⊆ S (if n ∈ S). Therefore, [n + 1 : m] =
[ψ(m), n] = [j + 1 : n] is a U-root due to Corollary 7.12. We have a contradiction
[k : m] = [k : ψ(m)− 1]+ [ψ(m), n]+ [n+ 1 : m].
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In the latter case, similarly, 8S(1 + n,m) ∈ U and 8S
′′

(1 + j, n) ∈ U. Hence,
Corollary 7.12 implies that [n + 1 : m], [1 + j : n] are U-roots. Again we have a
contradiction: [k : m] = [k : j ]+ [1+ j, n]+ [n+ 1 : m]. ut

Lemma 8.6. If [k : m] =
∑r+1
i=1 [li : mi], k ≤ m ≤ 2n, li ≤ mi < ψ(li), then it

is possible to replace some of the pairs (li, mi) with (ψ(mi), ψ(li)) so that the given
decomposition takes the form

[k : m] = [1+ k0 : k1]+ [1+ k1 : k2]+ · · · + [1+ kr : m] (8.1)

with k − 1 = k0 < k1 < k2 < · · · < kr < m = kr+1.

Proof. We use induction onm− k. Either xk or xm is the maximal letter among {xj | k ≤
j ≤ m}. Hence, there exists at least one i such that, respectively, li = k or li = ψ(m). In
the former case, we may put k1 = mi and apply the inductive supposition to [mi+1 : m].
In the latter case, we put kr = ψ(mi)− 1. Then [kr + 1 : m] = [ψ(mi) : ψ(li)] and one
may apply the inductive supposition to [k : kr ]. ut

Lemma 8.7. If [k : m], k ≤ m 6= ψ(k), is a sum of U-roots, then [k : m] itself is a
U-root.

Proof. Without loss of generality, we may suppose that m < ψ(k) because [k : m] =
[ψ(m) : ψ(k)]. By Lemma 8.6, we have a decomposition (8.1), where [1 + ki : ki+1],
0 ≤ i < r , are U-roots. By increasing r if necessary, we may suppose that all roots
[1+ ki : ki+1], 0 ≤ i < r , are simple.

If ki+1 < ψ(1 + ki), then by Proposition 5.6 we find a set Si ⊆ [1 + ki, ki+1 − 1]
such that 8Si (1+ ki, ki+1) ∈ U. Moreover, by Lemma 8.5, the set Si may be taken to be
(1+ ki, ki+1)-regular.

If ki+1 > ψ(1+ki), then of courseψ(1+ki) < ψ(ψ(ki+1)), and again by Proposition
5.6 and Lemma 8.5, we find a (ψ(ki+1), ψ(1+ ki))-regular set Ti ⊆ [ψ(ki+1), ψ(1+ ki)
− 1] such that 8Ti (ψ(ki+1), ψ(1 + ki)) ∈ U. By Corollary 7.11 with S ← Ti, we have
8Ti (ψ(ki+1), ψ(1 + ki)) ∼ 8Si (1 + ki, ki+1), where Si is (1 + ki, ki+1)-regular. Thus,
in all cases

fi
df
= 8Si (1+ ki, ki+1) ∈ U, Si ⊆ [1+ ki, ki+1 − 1], (8.2)

with regular Si (we stress that this is a restriction on Si only if 1+ ki ≤ n < ki+1).
By Definition 2.8, we must construct an element c ∈ U with the leading super-word

u[k,m]. First we shall prove that for r = 1, the element c = [f0, f1] is such an element
even if [1 + ki : ki+1] are not necessarily simple roots, but Si, i = 0, 1, are still regular
sets.

There is the following natural reduction process for the decomposition of a linear
combination of super-words in the PBW-basis given in Theorem 2.5 and Propositions
4.1, 4.5. Let W be a super-word. First, according to [7, Lemma 7], we decompose the
super-word W into a linear combination of smaller monotonous super-words. Then, we
replace each nonhard super-letter with the decomposition of its value that exists by Def-
inition 2.3, and again we decompose the arising super-words into linear combinations



1716 V. K. Kharchenko

of smaller monotonous super-words, and so on, until we obtain a linear combination of
monotonous super-words in hard super-letters. If these super-words are not restricted,
we may apply Definition 2.4 and repeat the process until we obtain only monotonous
restricted words in hard super-letters.

This process shows that if a super-word W starts with a super-letter smaller than
u[k,m], then so do all the super-words in the PBW-decomposition of W. Using this re-
mark we shall prove the following auxiliary statement.

If k ≤ i < j < m < ψ(k), m 6= ψ(i) − 1, then all super-words in the PBW-
decomposition of [u[k, i],8S(1+ j,m)] start with super-letters smaller than u[k,m].

Indeed, by definition (5.2) we have

8S(1+ j,m) = u[1+ j,m]+
∑

m>s≥1+j

γs8
S(1+ s,m) · u[1+ j, s], γs ∈ k.

We now use induction on m− j. By Proposition 3.15 we have [u[k, i], u[1+ j,m]] = 0,
for the inequalities ψ(k) > m > j imply j 6= ψ(k). We denote u = u[k, i], v =
8S(1+s,m), w = u[1+j, s]. Relation (2.11) reads [u, v ·w] = [u, v] ·w+puvv ·[u,w].
By the inductive supposition, all super-words in the PBW-decomposition of [u, v] start
with super-letters smaller than u[k,m], and consequently so do those for [u, v] · w. The
element v depends only on xi, i > k, and therefore so do all super-letters in the PBW-
decomposition of v, while the starting super-letters of v · [u,w] are still less than u[k,m].
Thus, all super-words in the PBW-decomposition of [u[k, i],8S(1 + j,m)] start with
super-letters smaller than u[k,m]. The auxiliary statement is proved.

We now have

[f1, f2] = [8S0(k, k1),8
S1(1+ k1, m)]

=

[
u[k, k1]+

∑
k1>s≥k

γs8
S0(1+ s, k1) · u[k, s],

u[1+ k1, m]+
∑

m>l≥1+k1

βl8
S1(1+ l, m) · u[1+ j, l]

]
= u[k,m]+

∑
m>l≥1+k1

βl[u[k, k1],8S1(1+ l, m) · u[1+ k1, l]]

+

∑
k1>s≥k

γs[8S0(1+ s, k1) · u[k, s], f2].

We see that each element in the latter sum has a nontrivial left factor that depends only
on xi, i > k, which is is either 8S0(1+ s, k1) or f2. Hence, all super-words in the PBW-
decomposition of that element start with super-letters smaller than u[k,m]. To check the
former sum, we denote u = u[k, k1], v = 8S1(1 + l, m), w = u[1 + k1, l]. By (2.11)
the general element in the sum is proportional to [u, v · w] = [u, v] · w + puvv · [u,w].
By the above auxiliary statement with i ← k1, j ← l, all super-words in the PBW-
decomposition of [u, v] start with super-letters smaller than u[k,m], and hence so do
those for [u, v] · w. The element v depends only on xi, i > k. Therefore, the starting
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super-letters in the PBW-decomposition of v · [u,w] are also smaller than u[k,m]. Thus,
the leading term of [f0, f1] is indeed u[k,m]. The case r = 1 is completed.

Consider the general case. Denote by t the index such that 1+ kt ≤ n ≤ kt+1, if any.
Recall that St is either white or black (1+ kt , kt+1)-regular, while each Si, i 6= t , is both
white and black (1 + ki, ki+1)-regular because its degree in xn is less than or equal to 1.
We shall consider four options for the regular set St given in (7.1–7.4) separately.

1. kt+1 < ψ(1 + kt ), and St is white regular. Let S =
⋃t
i=0 Si ∪ {ki | 0 < i < t}.

The set S is white (k, kt+1)-regular because all complete columns in the shifted scheme
(7.1) for 8S(k, kt+1) coincide with ones for 8St (kt , kt+1). By Lemma 7.4, we have

8S(k, kt+1) ∼ [ftft−1 . . . f0]

with an arbitrary arrangement of brackets on the right-hand side. In the same way consider
the set S′ =

⋃r
i=t+1 Si ∪ {ki | t + 1 < i < r}. This set is white (1 + kt+1, m)-regular

because the shifted scheme (7.1) for 8S
′

(1 + kt+1, m) has no complete columns at all.
Lemma 7.4 yields

8S
′

(1+ kt+1, m) ∼ [frfr−1 . . . ft+1].

Now we may apply the case r = 1 with S0 ← S, S1 ← S′, t1 ← kt+1. Thus, the leading
super-word of the element

c = [[ftft−1 . . . f0], [frfr−1 . . . ft+1]] (8.3)

equals u[k,m], and obviously c ∈ U since fi ∈ U, 0 ≤ i ≤ r.
2. kt+1 > ψ(1+ kt ), and St is white regular. In perfect analogy we consider the sets

S =
⋃t−1
i=0 Si ∪ {ki | 0 < i < t − 1} and S′ =

⋃r
i=t Si ∪ {ki | t < i < r}. By the

case r = 1 under the substitutions S0 ← S, S1 ← S′, t1 ← kt , we see that the required
element is

c = [[ft−1ft−2 . . . f1f0], [frfr−1 . . . ft+1ft ]]. (8.4)

3. kt+1 < ψ(1 + kt ), and St is black regular. Let S =
⋃t
i=0 Si . The set S is

black (k, kt+1)-regular because all complete columns in the shifted scheme (7.3) for
8S(k, kt+1) coincide with ones for 8St (kt , kt+1). None of the points k1, . . . , kr belongs
to S (see (8.2)). Therefore, by multiple use of Corollary 7.13, we have

8S(k, kt+1) ∼ [f0f1 . . . ft ]

with an arbitrary arrangement of brackets on the right-hand side. In the same way, con-
sider the set S′ =

⋃r
i=t+1 Si . It is black (1+ kt+1, m)-regular because the shifted scheme

(7.3) for 8S
′

(1 + kt+1, m) has no complete columns at all. The multiple use of Corol-
lary 7.13 yields

8S
′

(1+ kt+1, m) ∼ [ft+1ft+2 . . . fr ].

Now, we may find c using the case r = 1 with S0 ← S, S1 ← S′, t1 ← kt+1:

c = [[f0f1 . . . ft ], [ft+1ft+2 . . . fr ]]. (8.5)
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4. kt+1 > ψ(1+ kt ), and St is black regular. In perfect analogy we consider the sets
S =

⋃t−1
i=0 Si and S′ =

⋃r
i=t Si . By the case r = 1 under the substitutions S0 ← S,

S1 ← S′, t1 ← kt , we see that the required element is

c = [[f0f1 . . . ft−1], [ftft+1 . . . fr ]]. (8.6)

The proof is complete. ut

Lemma 8.8. If [k : m], k ≤ m < ψ(k), is a simple U-root, k ≤ j < m, then [k : j ] is a
U-root if and only if [1+ j : m] is not a sum of U-roots.

Proof. If [k, j ] is a U-root, then [1 + j : m] is not a sum of U-roots because [k : m] =
[k : j ]+ [1+ j : m] is a simple U-root.

We note, first, that the converse statement is valid if the minimal S with8S(k,m) ∈ U
is (1 + j,m)-regular. Indeed, in this case, 8S(1 + j,m) 6= 0 due to Corollary 7.12. By
Lemma 8.5, the element [k : j ] is a U-root if and only if j ∈ S. If j /∈ S, then by
Lemma 8.4, we have a = 8S(1+ j,m) ∈ U. Hence, the nonzero homogeneous element
a is a polynomial in PBW-generators of U. Thus, [1 + j : m], being the degree of a, is
a sum of U-roots (by Lemma 8.7, it is even a U-root because the regularity hypothesis
implies ψ(1+ j) 6= m).

Suppose, next, that S is not (1+j,m)-regular and j /∈ S. In this case, 1+j ≤ n < m.

Moreover, m ≥ ψ(1+ j), because otherwise all complete columns in the shifted scheme
(7.1)–(7.4) of8S(1+ j,m) coincide with those of8S(k,m). Obviously, in general, only
the leftmost complete column for 8S(1 + j,m) may be different from a complete col-
umn for 8S(k,m). Hence, we have only the following three options: 1) ψ(1 + j) = m;
2) ψ(1+ j) ∈ S, while n /∈ S; 3) ψ(1+ j) /∈ S, while n ∈ S.

1) In the shifted scheme of 8S(k,m), the point j = ψ(m) − 1 has the same colour
as n (see (7.1), (7.3)); that is, n is a white point. At the same time, because S is always
(n+ 1, m)-regular, we already know that n is white if and only if [n+ 1 : m] is a U-root.
Thus, [n+1 : m] is a U-root, while [1+j : m] = [1+j : n]+ [n+1 : m] = 2[n+1 : m]
is a sum of two U-roots.

2) In the second case, S is certainly (n + 1, m)-regular. Hence, n /∈ S implies that
[n+ 1 : m] is a U-root. By Lemma 8.4, we have 8S

′′

(k, ψ(1+ j)) ∈ U with S′′ ⊆ S, for
ψ(1 + j) ∈ S. In particular, we still have n /∈ S. Hence the same lemma again implies
a = 8S(n + 1, ψ(1 + j)) ∈ U. By Corollary 7.12, the leading super-word of a equals
u[1+ j, n]; that is, [1+ j : n] is a U-root. Now, [1+ j : m] = [1+ j : n]+ [n+ 1 : m]
is a sum of two roots, as required.

3) By Lemma 8.4, we have 8S
′′

(k, n) ∈ U with S′′ ⊆ S since n ∈ S. In particular,
we still have j /∈ S′′. Hence the same lemma implies that [1 + j : n] is a U-root. Be-
cause ψ(1 + j) /∈ S, and obviously S is (ψ(1 + j),m)-regular, we already know that
[1+ ψ(1+ j) : m] = [ψ(j) : m] is a U-root. Now [1+ j : m] = [1+ j : n]+ [n+ 1 :
ψ(1+ j)]+ [ψ(j) : m] is a sum of U-roots because [n+1 : ψ(1+ j)] = [1+ j : n]. ut

Lemma 8.9. A (homogeneous) right coideal subalgebra U that contains k[G] is uniquely
defined by the set of all its simple roots.
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Proof. Two subalgebras with the same PBW-basis obviously coincide; hence, it suffices
to find a PBW-basis of U that depends only on the set of simple U-roots. We note first that
the set of all U-roots is uniquely defined by the set of simple U-roots. Indeed, if [k : m]
is a U-root, then it is a sum of simple U-roots. By Lemma 8.6 there exists a sequence
k− 1 = k0 < k1 < · · · < kr < m = kr+1 such that [1+ ki : ki+1], 0 ≤ i ≤ r , are simple
U-roots. Conversely, if there exists a sequence k − 1 = k0 < k1 < · · · < kr = m + 1
such that [1+ ki : ki+1], 0 ≤ i < r , are simple U-roots, then by Lemma 8.7, the element
[k : m] is a U-root. Of course, the decomposition of [k : m] into a sum of simple U-roots
is not unique in general. However, for the construction of the PBW-basis, we may fix a
decomposition for each nonsimple U-root from the very beginning.

Now, if [k : m] is a simple U-root, Lemmas 8.3 and 8.5 show that the element
8S(k,m) ∈ U is uniquely defined by the set of simple U-roots. We include this ele-
ment in the PBW-basis of U. If [k : m] is a nonsimple U-root with a fixed decomposition
into a sum of simple U-roots, then we include in the PBW-basis the element c defined in
one of the formulae (8.3)–(8.6) depending on the type of decomposition. ut

Lemma 8.10. If for (homogeneous) right coideal subalgebras U, U′ containing k[G] we
have r(U) = r(U′), then U= U′.

Proof. By Lemma 8.9, it suffices to show that the r-sequence uniquely defines the set of
all simple roots. We use downward induction on k defined by a simple U-root [k : m]. If
k = n, then the only possible γ = [n : n] is a simple U-root if and only if θn = 1. Let
k < n. By definition, simple U-roots of the form [k : m], m > θ̃k , do not exist, while
[k : θ̃k] is a simple U-root. Ifm < θ̃k, then by Lemma 8.8, the element [k : m] is a U-root
if and only if [m+1 : θ̃k] is not a sum of U-roots starting with a number greater than k. By
the inductive supposition, the r-sequence defines all roots starting with a number greater
than k. Hence, by Lemma 8.8, the r-sequence also defines the set of all U-roots of the
form [k : m], m < θ̃k. Thus, the r-sequence defines the set of all U-roots and the set of
all simple U-roots. ut

9. Examples

In this section, we find the simple roots for fundamental examples of right coideal subal-
gebras. We keep all the notation of the above section.

Example 9.1. Let U(k,m) be the right coideal subalgebra generated over k[G] by a sin-
gle element u[k,m], k ≤ m ≤ ψ(k). By (4.8), the right coideal generated by u[k,m]
is spanned by the elements gkiu[i + 1, m]. Hence, U(k,m), as an algebra, is generated
over k[G] by the elements u[i, m], k ≤ i ≤ m. Accordingly, the additive monoid of
degrees of homogeneous elements from U(k,m) is generated by [i : m], k ≤ i ≤ m. In
this monoid, the indecomposable elements (by definition, they are simple U(k,m)-roots)
are precisely [i : m], k ≤ i ≤ m, i 6= ψ(m). The length of [i : m] equals m − i + 1.
However, if i > ψ(m), then the maximal letter among xj , i ≤ j ≤ m, is xψ(m) because
[i : m] = [ψ(m) : ψ(i)], with ψ(m) ≤ ψ(i) < ψ(ψ(m)). Hence, the maximal length
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of a simple root starting with ψ(m) equals m− (ψ(m)+ 1)+ 1 = 2(m− n)− 1, while
there are no simple roots of the form [k′ : m′], k′ ≤ m′ < ψ(k′), with k′ > ψ(m). Thus
because of Definition 8.1, we have

θi =

m− i + 1 if k ≤ i < ψ(m);

2(m− n)− 1 if k ≤ i = ψ(m) ≤ n;
0 otherwise.

(9.1)

The set {u[i, m] | k ≤ i ≤ m, i 6= ψ(m)} is a set of PBW-generators for U(k,m) over
k[G].

Example 9.2. Let us analyse in detail the simplest (but not trivial [2]) case n = 2. Con-
sider the six elements w1 = u[1, 3] = [[x1, x2], x2], w2 = u[2, 4] = [x2, [x2, x1]],
w3 = u[1, 2] = [x1, x2], w4 = u[3, 4] = [x2, x1], w5 = x1, w6 = x2. We denote by Uj ,
1 ≤ j ≤ 6, the right coideal subalgebra generated by wj and k[G].

By (9.1), we have r(U1) = (3, 1). Indeed, in this case, k = 1, m = 3, ψ(m) = 2;
hence, θ1 = m−1+1 = 3 according to the first option of (9.1), while θ2 = 2(m−n)−1
= 1 by the second option of (9.1).

In the same way, r(U2) = (3, 0) because in this case k = 2, m = 4, ψ(m) = 1;
hence θ1 = 2(m − 2) − 1 = 3 according to the second option, while θ2 = 0 due to the
third option.

In perfect analogy, we have r(U3) = (2, 1), r(U4) = (2, 0), r(U5) = (1, 0), r(U6) =

(0, 1). We see that all six right coideal subalgebras are different. There are two more
(improper) right coideal subalgebras U7 = U+q (so5), U8 = k[G] with the r-sequences
(1, 1) and (0, 0) respectively. Thus, we have found all (2n)!! = 8 possible right coideal
subalgebras in U+q (so5) containing G, and they form the following lattice:

•

@
@

U+q (so5)

• [x1, x2]

• [[x1, x2], x2]

• x2

•[x2, [x2, x1]] �
��

•[x2, x1]

•x1 @
@
•

k[G]

�
��

We note that in [17], B. Pogorelsky found a similar lattice for the quantum groups
Uq(g), uq(g), where g is the simple Lie algebra of type G2.

Our next goal is to generalise formula (9.1) to an arbitrary right coideal subalge-
bra US(k,m) generated over k[G] (as a right coideal subalgebra) by a single element
8S(k,m) with a (k,m)-regular set S.
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Proposition 9.3. If S is (k,m)-regular, then the coproduct of 8S(k,m) has a decompo-
sition

1(8S(k,m)) =
∑

a(1) ⊗ a(2), (9.2)

where the degrees of the left components of tensors belong to the additive monoid 6
generated by all [1+ t : s] with t being a white point (t = k − 1, or t /∈ S, k ≤ t < m)

and s being a black point (s ∈ S ∩ [k,m− 1], or s = m).

Proof. Let S be white (k,m)-regular. Lemma 7.4 shows that 8S(k,m) is a linear com-
bination of products (in different orders) of ui = u[1 + si, si+1], 0 ≤ i ≤ r. Hence, by
(4.8), the coproduct is a linear combination of products of the tensors

ui ⊗ 1, fi ⊗ ui, hiu[1+ ti, si+1]⊗ u[1+ si, ti], (9.3)

where si < ti < st+1, fi = gr(ui), hi = gr(u[1 + si, ti]). The degrees of the left
components of these tensors, except ui ⊗ 1, i > 0, belong to 6. We stress that in each
product there is exactly one tensor of (9.3) related to a given i.

We denote by 6′ the additive monoid generated by all [1 + t : s], where t /∈ S,
k ≤ t < m, while s is a black point. By induction on the number r of elements in
S ∩ [k,m− 1], we shall prove that there exists a decomposition (9.2) such that for each i
either D(a(1)) ∈ 6′ or D(a(1)) = [k : s]+ α, where s is a black point and α ∈ 6′.

If r = 0, then 8S(k,m) = u[k,m], and the statement follows from (4.8).
If r > 0, then Corollary 7.5 implies that 8S(k,m) ∼ [8S(1 + s1, m), u[k, s1]]. By

the inductive supposition, we have 1(8S(1 + s1, m)) =
∑
b(1) ⊗ b(2), where either

D(b(1)) = α ∈ 6′1 or D(b(1)) = [1 + s1 : s] + α, α ∈ 6′1, with s being a black point
in the scheme of 8S(1 + s1, m); see (5.3). Here, 6′1 is the 6′ related to 8S(1 + s1, m):
the additive monoid generated by all [1 + t : s], where t /∈ S, s1 < t < m, and s is a
black point. Certainly, 6′1 ⊆ 6

′ because in the scheme of 8S(1 + s1, m), there is only
one point, s1, that has a colour different from the one it has in the scheme of 8S(k,m).

By (4.8), the coproduct of u0 = u[k, s1] is a linear combination of the tensors (9.3)
with i = 0. The degree of the left components of the tensors of

[b(1) ⊗ b(2), h0u[1+ t0, s1]⊗ u[k, t0]]

equals either [1 + t0 : s1] + α or [1 + t0 : s1] + [1 + s1 : s] + α = [1 + t0 : s] + α.
In both cases, the degree belongs to 6′ because t0 is a white point in both schemes, and
t0 6= k − 1.

In the same way, the degree of the left components of the tensors of [b(1)⊗b(2), u0⊗1]
equals either [k : s1] + α or [k : s1] + [1 + s1 : s] + α = [k : s] + α. In both cases, the
degree has the required form.

It remains to consider the skew commutator

[b(1) ⊗ b(2), f0 ⊗ u0] = b(1)f0 ⊗ b
(2)u0 − p(b

(1)b(2), u0)f0b
(1)
⊗ u0b

(2).

The degree of the left components of these tensors equals D(b(1)). We shall prove that
one of the following three options is valid: [b(1) ⊗ b(2), f0 ⊗ u0] = 0, or D(b(1)) ∈ 6′,
or D(b(1)) = [k : s]+ α, α ∈ 6′ with s black.
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The comments on (9.3) show that there exists a sequence of elements (ti | 0 ≤ i ≤ r)
such that si ≤ ti ≤ si+1, and

D(b(1)) =

r∑
i=1

[1+ ti : si+1], D(b(2)) =

r∑
i=1

[1+ si : ti], (9.4)

where, formally, [1 + si : si] = [1 + si+1 : si+1] = 0. We consider the following two
cases separately.

Case 1. t1 > s1. Due to the first equality of (9.4), the degree of b(1) in x1+s1 is less than
or equal to 1. At the same time the equality D(b(1)) = [1 + s1 : s] + α shows that this
degree equals 1, and the x1+s1 -th component of α is zero. Hence, there exists i ≥ 2 such
that ti < ψ(1 + s1) ≤ si+1. However, ψ(1 + s1) = ψ(s1) − 1 is a white point because
S is white (k,m)-regular. In particular, ψ(1 + s1) 6= si+1; that is, ψ(1 + s1) < si+1.

Now, the nonempty interval [1+ ψ(1+ s1) : si+1] = [ψ(s1) : si+1] must be covered by
α ∈ 6′1. This is possible only if α has a summand α1 = [ψ(s1) : sj ], j ≥ i + 1, because
the degree of 8S(1 + s1, m) in each xl, ψ(s1) ≤ l ≤ m, equals 1, while the xψ(s1)−1-th
component of α is zero (recall that xψ(s1)−1 = x1+s1). Thus, we have α − α1 ∈ 6

′

1.

If ψ(sj ) > k, or equivalently sj < ψ(k), then ψ(sj ) − 1 is a white point because
ψ(1+ s1) < si+1 ≤ sj implies s1 > ψ(sj )− 1. We have

α1 + [1+ s1 : s] = [ψ(s1) : sj ]+ [1+ s1 : s] = [ψ(sj ) : s] ∈ 6′.

Hence, D(b(1)) = (α1 + [1+ s1 : s])+ (α − α1) ∈ 6
′, as required.

If ψ(sj ) < k, or equivalently sj > ψ(k), then ψ(k) is a white point (see (7.2)).
Hence, [ψ(sj ) : k − 1] = [1+ ψ(k) : sj ] ∈ 6′, while

α1 + [1+ s1 : s] = [ψ(sj ) : k − 1]+ [k : s] = [ψ(sj ) : s] ∈ [k : s]+6′,

and D(b(1)) = (α1 + [1+ s1 : s])+ (α − α1) ∈ [k : s]+6′.
Of course, sj 6= ψ(k) because S is white (k,m)-regular (see (7.2)).

Case 2. t1 = s1. Assume first that the sequence (ti | 1 < i ≤ r) does not contain
the point ψ(s1) − 1 = ψ(1 + s1). We have seen (see comments regarding (9.3)) that
b(2) is the product of the elements u[1 + si, ti], i > 0, in some order. For i = 1 the
tensor u1 ⊗ 1 does enter the construction of b(1) ⊗ b(2) (recall that now t1 = s1). By
Proposition 3.15 with i ← s1, j ← si, m ← ti we have [u[1 + si, ti], u0] = 0, i > 1,
because now ti 6= ψ(s1) − 1 and si 6= ψ(k) (see (7.2)). Hence, the ad-identity (2.10)
implies [b(2), u0] = 0; that is, b(2)u0 = p(b(2), u0)u0b

(2). Because f0 = gr(u0), we
have

(b(1) ⊗ b(2))(f0 ⊗ u0) = b
(1)f0 ⊗ b

(2)u0

= p(b(1), u0)f0b
(1)
⊗ p(b(2), u0)u0b

(2)
= p(b(1)b(2), u0)(f0 ⊗ u0)(b

(1)
⊗ b(2)).

In more compact form, this equality is [b(1) ⊗ b(2), f0 ⊗ u0] = 0, which is one of the
desired options.
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Suppose next that ψ(s1) − 1 = ti for a suitable i, 1 < i ≤ r. By the first equality of
(9.4) the degree of b(1) in x1+si = xti equals 1, while the equality D(b(1)) = [1 + s1 :
s] + α implies that the x1+s1 -th component of α is zero. At the same time, ti 6= si+1
because ti and s1 are in the same column of the shifted scheme (7.1), (7.2). Hence, again
by the first equality of (9.4), the nonempty interval [1 + ti : si+1] = [ψ(s1) : si+1] must
be covered by α ∈ 6′. This is possible only if α has a summand α1 = [ψ(s1) : sj ],
j ≥ i + 1, because the degree of 8S(1 + s1, m) in each xl, ψ(s1) ≤ l ≤ m, equals 1,
while the xψ(s1)−1-th component of α is zero (recall that xψ(s1)−1 = x1+s1). Thus, we
have α − α1 ∈ 6

′

1.

If ψ(sj ) > k, or equivalently sj < ψ(k), then ψ(sj ) − 1 is a white point because
ψ(1+ s1) < si+1 ≤ sj implies s1 > ψ(sj )− 1. We now have

α1 + [1+ s1 : s] = [ψ(s1) : sj ]+ [1+ s1 : s] = [ψ(sj ) : s] ∈ 6′.

Hence, D(b(1)) = (α1 + [1+ s1 : s])+ (α − α1) ∈ 6
′, as required.

If ψ(sj ) < k, or equivalently sj > ψ(k), then ψ(k) is a white point (see (7.2)). Hence
[ψ(sj ) : k − 1] = [1+ ψ(k) : sj ] ∈ 6′, while

α1 + [1+ s1 : s] = [ψ(sj ) : k − 1]+ [k : s] = [ψ(sj ) : s] ∈ [k : s]+6′,

andD(b(1)) = (α1+ [1+ s1 : s])+ (α−α1) ∈ [k : s]+6′. Of course sj 6= ψ(k) because
S is white (k,m)-regular (see (7.2)). The proof for a white regular set S is completed.

If S is black (k,m)-regular, then by Proposition 7.10 we have 8S(k,m) ∼

8T (ψ(m),ψ(k)), where T = ψ(S)− 1 is a white (ψ(m),ψ(k))-regular set. If t, s are,
respectively, white and black points for8S(k,m), then so are ψ(s)−1 and ψ(t)−1 with
respect to 8T (ψ(m),ψ(k)). We have

[1+ t : s] = [ψ(s) : ψ(1+ t)] = [1+ (ψ(s)− 1) : ψ(t)− 1].

Hence,8S(k,m) and8T (ψ(m),ψ(k)) define the same additive monoid 6. It remains to
apply the already proven statement to 8T (ψ(m),ψ(k)). ut

Corollary 9.4. If S is (k,m)-regular, then all US(k,m)-roots belong to the monoid 6
defined in the above proposition.

Proof. We recall that the coassociativity of the coproduct implies that the left components
of the tensor (9.2) span a right coideal. Hence, US(k,m) as an algebra is generated by the
a(1)’s and by k[G]. Hence, the degrees of all homogeneous elements from US(k,m) be-
long to 6. In particular, all US(k,m)-roots, being the degrees of PBW-generators, belong
to 6 as well. ut

Lemma 9.5. Let S be a white (k,m)-regular set. An element [1 + t : s], t < s, with t
white and s black is indecomposable in 6 if and only if one of the following conditions is
fulfilled:

(a) ψ(1+ t) is not black (it is white or does not appear in the scheme at all ).
(b) In the shifted scheme, all columns between t and s are white-black or black-white (in

particular, all are complete and n /∈ [t, s]).
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Proof. If none of the conditions is fulfilled, then ψ(1+ t) is a black point, and there exists
j, t ≤ j ≤ s, such that both j and ψ(1 + j) are white points in the scheme (the white
regular shifted scheme has no black-black columns). Certainly, j 6= t, j 6= s. We have

[1+ t : j ] = [ψ(j) : ψ(1+ t)] = [1+ ψ(1+ j) : ψ(1+ t)] ∈ 6.

Thus, [1+ t : s] = [1+ t : j ]+ [1+ j : s] is a nontrivial decomposition in 6.
Conversely, assume that [1+ t : s] is decomposable in 6:

[1+ t : s] =
r∑
i=1

[1+ li : si]. (9.5)

Without loss of generality we may suppose that si ≤ ψ(1+li) since [1+li : si] = [ψ(si) :
ψ(1 + li)]. Moreover, if si = ψ(1 + li), then [1 + li : n] = [1 + n : si] ∈ 6 because n
is a white point (S is white regular). This equality allows one to replace [1+ li : si] with
2[1+ n : si] in (9.5). Thus, we may suppose that si ≤ ψ(1+ li) for all i in (9.5).

By Lemma 8.6, we find a sequence t = t0 < t1 < · · · < tr < s = tr+1 such that for
each i, either ti is white and ti+1 black, or ψ(1 + ti+1) is white and ψ(1 + ti) black. In
the former case, we associate the sign “+” to the index i, while in the latter case we mark
it “−”. It is clear that in the sequence of indices 0, 1, 2, . . . , r, no pair of neighbours have
the same sign.

Now, if ψ(1+ t) is not a black point, then 0 is marked “+”. Hence, 1 is marked “−”.
In particular, ψ(1 + t1) is black point. However, t1 is also black. This combination is
impossible because S is white regular.

Assume that in the shifted scheme, all columns between t and s are white-black or
black-white. If t1 is a white point, then both t0 = t and t1 are white, while both ψ(1+ t1)
and ψ(1+ t0) are black; that is, no sign can be associated to index 0. Hence, t1 is a black
point, whileψ(1+t1)must be white. In this case, 1 cannot be marked “−”, so it is marked
“+”. However t1 is then a white point, which is a contradiction. ut

Lemma 9.6. Let S be a black (k,m)-regular set. An element [1 + t : s], t < s, with t
white and s black is indecomposable in 6 if and only if one of the following conditions is
fulfilled:

(a) ψ(1+ s) is not white (it is black or does not appear in the scheme at all ).
(b) In the shifted scheme, all columns between t and s are white-black or black-white (in

particular, all are complete and n /∈ [t, s]).

Proof. This follows from Lemma 9.5 by means of Lemma 7.9 and Proposition 7.10. ut

Lemma 9.7. Let S be a (k,m)-regular set. An element α = [a : b] is a simple US(k,m)-
root if and only if α ∈ 6 and it is indecomposable in 6 (in particular α = [1 + t : s],
t < s, with t white and s black determined in Lemmas 9.5, 9.6).

Proof. Without loss of generality, we may suppose that k ≤ m < ψ(k) due to Propo-
sition 7.10. We have already mentioned that all US(k,m)-roots belong to 6 (see Corol-
lary 9.4).
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Certainly, [k : m] is a US(k,m)-root, for 8S(k,m) ∈ US(k,m). Because ψ(k − 1)−
1 = ψ(k) > m, the point ψ(k − 1) − 1 does not appear in the scheme of 8S(k,m). If
S is black (k,m)-regular, then ψ(m)− 1 is a black point (see (7.3)). Hence, Lemmas 9.5
and 9.6 show that, in both cases, [k : m] is indecomposable in6. Thus, [k : m] is a simple
US(k,m)-root.

If s is a black point, then [1+ s : m] /∈ 6 (otherwise [k : m] would be decomposable
in 6). In particular, [1 + s : m] is not a sum of US(k,m)-roots. By Lemma 8.8, the
element [k : s] is an US(k,m)-root (in particular, Lemma 8.5 implies that S equals the
minimal set S′ such that8S

′

(k,m) ∈ US(k,m)). If additionally [k : s] is indecomposable
in 6, then it is a simple US(k,m)-root.

If t, s are, respectively, white and black points, k ≤ t < s, then by Lemma 8.4, we
have 8S

′′

(k, s) ∈ US(k,m) for a suitable (minimal) set S′′ ⊆ S. Because t is still a
white point for 8S

′′

(k, s), the same lemma applied to 8S
′′

(k, s) implies 8S
′′

(1+ t, s) ∈
US(k,m).

Let α be indecomposable in 6. Because by definition, 6 is an additive monoid gen-
erated by elements of the form [1 + t : s] with t white and s black, all indecomposable
elements have a similar form: α = [1 + t : s]. First, if [1 + t : s] has property (b) of
Lemma 9.5 or Lemma 9.6, then n /∈ [t, s].Hence S′′ (as well as any other set) is white and
black (1+ t, s)-regular. By Corollary 7.12 we have 8S

′′

(1+ t, s) 6= 0, hence [1+ t : s]
is a US(k,m)-root. This root is simple because it is indecomposable in 6.

Next, if [1+ t : s] has property (a) of Lemma 9.5 or Lemma 9.6, then so does [k : s];
that is, [k : s] is indecomposable in 6. In particular [k : t] /∈ 6, and hence [k : t] is not a
US(k,m)-root. By the application of Lemma 8.8 to the simple US(k,m)-root [k : s], we
see that [1+ j : s] is a sum of US(k,m)-roots. Because [1+ j : s] is indecomposable in
6 and all roots belong to6, the sum has just one summand; that is, [1+ j : s] is a simple
US(k,m)-root.

Conversely, if α is a simple US(k,m)-root, then by Corollary 9.4, we have α ∈ 6.
In particular, α is a sum of elements indecomposable in 6. However, we have already
proved that each element indecomposable in 6 is a US(k,m)-root. Thus, the sum has
only one summand; that is, α is indecomposable in 6. ut

Theorem 9.8. Let S be a white [black] (k,m)-regular set. The right coideal subalge-
bra US(k,m) coincides with the subalgebra A generated over k[G] by all elements
8S(1 + t, s), where t < s are, respectively, white and black points that satisfy one of
the conditions of Lemma 9.5 [Lemma 9.6].

Proof. Of course, we should show that 8S(1 + t, s) ∈ US(k,m). First, let us suppose
that s < ψ(1+ t).We denote by S′ a minimal set such that8S

′

(1+ t, s) ∈ US(k,m) (see
Lemmas 8.5, 9.7).

If a ∈ S ∩ [1+ t, s − 1], then, by definition, [1+ t : a] ∈ 6. Hence, [1+ t : a] is a
sum of US(k,m)-roots. Lemma 8.7 applied to [1 + t : s] shows that [1 + t : a] itself is
a US(k,m)-root (note that a 6= ψ(1 + t) because a < s < ψ(1 + t)). Thus, Lemma 8.5
applied to [1+ t : s] shows that a ∈ S′; that is, S ∩ [1+ t, s − 1] ⊆ S′.

If b ∈ S′, then by Lemma 8.5 applied to [1 + t : s], the element [1 + t : b] is a
US(k,m)-root. In particular, [1+ t : b] ∈ 6. If b /∈ S, then by definition, [1+b : s] ∈ 6,
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and we get a contradiction [1 + t : s] = [1 + t : b] + [1 + b : s]. Thus, b ∈ S; that is,
S′ = S ∩ [1+ t, s − 1], and 8S(1+ t, s) = 8S

′

(1+ t, s) ∈ US(k,m).
If s > ψ(1+t), then by Proposition 7.10, we have8S(1+t, s) ∼8T (ψ(s), ψ(1+t)).

Certainly ψ(1 + t) < ψ(ψ(s)). Therefore, we may apply the case already considered:
8T (ψ(s), ψ(1+ t)) ∈ UT (ψ(m),ψ(k)) = US(k,m).

If [a : b] is a nonsimple US(k,m)-root, then it has a decomposition into a sum of
simple roots of the form [1+ t : s]. The element c defined in each of the formulae (8.3)–
(8.6) belongs to the subalgebra A generated by all 8S(1 + t, s). Hence, US(k,m) has
PBW-generators from A; that is, US(k,m) = A. ut

The theorem just proved allows one to easily find the root sequence for US(k,m) with
regular S. By Corollary 7.11, it suffices to consider the case k ≤ m < ψ(k).

Proposition 9.9. Let S be a white (k,m)-regular set, k ≤ m < ψ(k). The root sequence
(θi, 1 ≤ i ≤ n) for US(k,m) has the following form in terms of the shifted scheme of
8S(k,m):

θi =

0 if i − 1 is not white;
ψ(i)− ai if i − 1 is white and ψ(i) is black;
bi − i + 1 if i − 1 is white and ψ(i) is not black,

(9.6)

where ai is the minimal number such that (ai, ψ(ai)− 1) is a white-white column, while
bi, i ≤ bi < ψ(i), is the maximal black point, if any; otherwise, bi = i − 1 (hence
θi = bi − i + 1 = 0).

Proof. An element α = [1 + t : s] given in Lemma 9.7 defines a simple US(k,m)-root
starting with i if either i = 1+ t & s < ψ(1+ t) or s = ψ(i) & s > ψ(1+ t).

If i − 1 is not a white point, then of course i 6= 1 + t; hence s = ψ(i). The column
(s, i − 1) = (ψ(i), i − 1) is not black-black because S is white-regular, and therefore it
is incomplete; that is, t = i − 1 does not appear in the scheme, which is a contradiction.
Thus, there are no simple US(k,m)-roots starting with i, and θi = 0.

Assume i−1 is white and ψ(i) is black. In this case, [1+n : ψ(i)] satisfies condition
(a) of Lemma 9.5. Hence, [i : n] = [ψ(n) : ψ(i)] = [1+ n : ψ(i)] is a simple US(k,m)-
root starting with i. In particular, θi > n− i.

If i = 1+ t, s < ψ(1+ t), then [1+ t : s] does not satisfy condition (a) of Lemma 9.5
because ψ(1 + t) = ψ(i) is black. If [1 + t : s] satisfies condition (b), then its length is
less than n− i.

If s = ψ(i), s > ψ(1+ t), then [1+ t : s] satisfies condition (a) of Lemma 9.5 if and
only if (t, ψ(t+1)) is a white-white column. In this case, its length equals s−(1+t)+1 =
ψ(i)− t. This length has the maximal value if t is minimal: t = ai .

Assume i−1 is white and ψ(i) is not black. In this case, s 6= ψ(i). Hence, i = 1+ t,
and s is a black point such that s < ψ(1 + t) = ψ(i). The length of [1 + t : s] equals
s− t = s− i+1. This is maximal if s is the maximal black point such that i ≤ s < ψ(i);

that is, s = bi . If all points in the interval [i, ψ(i)− 1] are white, then there are no simple
US(k,m)-roots starting with i. Hence, we still have θi = bi − i + 1 = 0. ut



Right coideal subalgebras of U+q (so2n+1) 1727

Proposition 9.10. Let S be a black (k,m)-regular set, k ≤ m < ψ(k). The root sequence
(θi, 1 ≤ i ≤ n) for US(k,m) has the following form in terms of the shifted scheme of
8S(k,m):

θi =

0 if i − 1 is not white and ψ(i) is not black;
ψ(i)− di if i − 1 is not white and ψ(i) is black;
ψ(i)− ci if i − 1 is white,

(9.7)

where ci is the minimal number such that (ci, ψ(ci) − 1) is a black-black column, while
di, i ≤ di < ψ(i), is the minimal white point, if any; otherwise di = ψ(i) (hence
θi = ψ(i)− di = 0).

Proof. This follows from Lemma 9.6 just as the above proposition follows from Lem-
ma 9.5. ut

Example 9.11. Consider the right coideal subalgebra U(w) generated over k[G] by the
elementw = [[x3, [x3x2x1]], x2] with n = 3 (recall that the value of [x3x2x1] in U+q (so7)

is independent of the arrangement of brackets; see (2.8)). By definition (3.16), we have
[x3, [x3, [x2, x1]]] = u[3, 6], while Lemma 7.4 implies [u[3, 6], x2] ∼ 8{2}(2, 6). Here,
{2} is a white (2, 6)-regular set; however, 6 > ψ(2) = 5. By Proposition 7.10, we have
8{2}(2, 6) ∼ 8{1,2,3}(1, 5). Because 5 < ψ(1) = 6 and {1, 2, 3} is a black (1, 5)-regular
set, to find the root sequence for U(w) = U{1,2,3}(1, 5), we may apply Proposition 9.10.
The shifted scheme

5
•

4
◦

3
• ⇐

0
◦

1
•

2
•

3
•

(9.8)

shows that c1 = 1, c2 = 3, c3 = 3, while d1 = 4, d2 = 4, d3 = ψ(3) = 4. If i = 1, then
i − 1 = 0 is a white point, and by the third option of (9.7) we have θ1 = ψ(1)− c1 = 5.
If i = 2, then i − 1 = 1 and ψ(i) = 5 are black points. Hence, the second option of (9.7)
applies: θ2 = ψ(2) − d2 = 5 − 4 = 1. If i = 3, then i − 1 = 2 is a black point, while
ψ(i) = 4 is white; that is, according to the first option of (9.7) we have θ3 = 0. Thus,
θ(U(w)) = (5, 1, 0).

10. Construction

Our next goal is to construct a right coideal subalgebra with a given root sequence

θ = (θ1, . . . , θn) such that 0 ≤ θk ≤ 2n− 2k + 1, 1 ≤ k ≤ n. (10.1)

We shall require the following auxiliary objects.

Definition 10.1. By downward induction on k, we define sets Rk ⊆ [k, ψ(k)− 1], Tk ⊆
[k, ψ(k)], 1 ≤ k ≤ 2n, associated to a given sequence (10.1) as follows.

For k > n we put Rk = Tk = ∅.
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Suppose that Ri, Ti, k < i ≤ 2n, are already defined. Let P be the following binary
predicate on the set of all ordered pairs i ≤ j :

P(i, j) 
 j ∈ Ti ∨ ψ(i) ∈ Tψ(j). (10.2)

Of course, for the time being the predicate is defined only on pairs (i, j) such that k <
i ≤ j < ψ(k). We note that P(i, j) = P(ψ(j), ψ(i)). Also, it is useful to note that for
given i and j one of the conditions j ∈ Ti or ψ(i) ∈ Tψ(j) is false because Ts ⊆ [s, ψ(s)]
for all s, and Ts = ∅ for s > n, except for j = ψ(i) when these conditions coincide. In
particular, we see that if j < ψ(i), then P(i, j) is equivalent to j ∈ Ti .

If θk = 0, then we set Rk = Tk = ∅. If θk 6= 0, then by definition, Rk contains
θ̃k = k + θk − 1 and all m satisfying the following three conditions:

(a) k ≤ m < θ̃k;

(b) ¬P (m+ 1, θ̃k);
(c) ∀r (k ≤ r < m) P (r + 1, m)⇔ P (r + 1, θ̃k).

(10.3)

Further, we define an auxiliary set

T ′k = Rk ∪
⋃
s∈Rk

{a | s < a < ψ(k), P(s + 1, a)}, (10.4)

and finally,

Tk =

{
T ′k if ψ(Rk + 1) ∩ T ′k = ∅;
T ′k ∪ {ψ(k)} otherwise. (10.5)

For example, the first step of the construction is as follows. If θn = 0, we certainly
have Rn = Tn = ∅. Because by definition θn ≤ 2n − 2n + 1 = 1, there exists only one
additional option θn = 1. In this case θ̃n = n and Rn = {n}, while T ′n = Rn. We have
ψ(Rn + 1) ∩ T ′n = {n} 6= ∅. Hence, Tn = {n,ψ(n)} = {n, n+ 1}.

Example 10.2. Assume n = 3, θ = (5, 1, 0). Because θ3 = 0, by definition we have
Rk = Tk = ∅, k ≥ 3.

Let k = 2. We have θ2 = 1 6= 0; hence, θ̃2 = 2+ θ2 − 1 = 2 ∈ R2. Certainly, there
are no points m that satisfy k = 2 ≤ m < θ̃2 = 2; that is, R2 = {2}. Now (10.4) yields

T ′2 = {2} ∪
⋃
s∈{2}

{a | 2 = s < a < ψ(2) = 5, P(3, a)} = {2}.

We have ψ(R2 + 1) ∩ T ′2 = {4} ∩ {2} = ∅, hence T2 = {2}.
To find R1, it is convenient to tabulate the already known values of the predicate P.

Values of P

i \ j 2 3 4 5

2 T F F F
3 F F F
4 F F
5 T
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We have θ1 6= 0; that is, θ̃1 = 1+ 5− 1 = 5 ∈ R1.

There exist four points m that satisfy k = 1 ≤ m < θ̃1 = 5; they are 1, 2, 3,
and 4. Point m = 4 does not satisfy (b) because P(5, 5) is true. Hence, 4 /∈ R1. Points
m = 1, 2, and 3 satisfy (b) because in the last column of the table, there is only one “T ”;
this corresponds to m+ 1 = 5.

Let us check condition (c) for m = 1. The interval 1 = k ≤ r < m = 1 is empty.
Therefore, the equivalence (c) is true (elements of the empty set satisfy all conditions,
even r 6= r ). Thus, 1 ∈ R1.

In terms of the table of the values of P, condition (c) means that the column corre-
sponding to j = m equals a subcolumn corresponding to j = θ̃1 = 5. This is indeed the
case for m = 3, but not for m = 2. Thus R1 = {1, 3, 5}.

To find T ′1 we only need to check the two remaining points: a = 2, 4. From the table,
we see that P(x, 4) is always false; hence, 4 /∈ T ′1. At the same time, P(s + 1, 2) is true
for s = 1 ∈ R1. Hence, 2 ∈ T ′1.

Finally, ψ(R1 + 1) ∩ T ′1 = {5, 3, 1} ∩ {1, 2, 3, 5} 6= ∅; hence, T1 = {1, 2, 3, 5, 6}.
Thus, for θ = (5, 1, 0) we have R3 = T3 = ∅, R2 = T2 = {2}, R1 = {1, 3, 5}, and

T1 = {1, 2, 3, 5, 6}.

Theorem 10.3. For each sequence θ = (θ1, . . . , θn) such that

0 ≤ θk ≤ 2n− 2k + 1, 1 ≤ k ≤ n,

there exists a homogeneous right coideal subalgebra U⊇ k[G] with r(U) = θ. In what
follows, we shall denote this subalgebra by Uθ .

Proof. We denote by U the subalgebra generated over k[G] by the values in U+q (so2n+1)

or in u+q (so2n+1) of the elements

8S(k,m), 1 ≤ k ≤ m, with m ∈ Rk, S = Tk. (10.6)

(For example, if θ=(5, 1, 0), then the generators are x1, x2, [x3x2x1], [[x3[x3x2x1]], x2].)
We shall prove that U is a right coideal subalgebra with r(U) = θ. To this end, we need
to check some properties of Rk, Tk, and P.

Claim 1. P(k,m) is true if and only if there exists a sequence

k − 1 = k0 < k1 < · · · < kr < m = kr+1 (10.7)

such that for each i, 0 ≤ i ≤ r, either ki+1 ∈ R1+ki or ψ(1+ ki) ∈ Rψ(ki+1).

We use induction on m − k. If m = k, then the condition k ∈ Tk is equivalent to k ∈ T ′k
because k 6= ψ(k). Formula (10.4) implies, in turn, that k ∈ T ′k is equivalent to k ∈ Rk.
Thus, P(k, k) is equivalent to k ∈ Rk ∨ ψ(k) ∈ Rψ(k); that is, we have a sequence (10.7)
with r = 0.

Assume first m ∈ Tk. If m ∈ Rk, we put k1 = m+ 1, r = 1.
If m /∈ Rk, m 6= ψ(k), then by definition m ∈ T ′k; that is, by (10.4) there exists

s ∈ Rk, s < m, such that P(s + 1, m) is true. By the inductive supposition applied to
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(s + 1, m), there exists a sequence (10.7) with k0 = s. One may extend it on the left with
k − 1 < k < s as s ∈ Rk.

If m = ψ(k), then by definition, ψ(s1 + 1) ∈ T ′k for a suitable s1 ∈ Rk. Of course,
P(k, ψ(s1 + 1)) is true. Hence, the above case with m ← ψ(s1 + 1) yields a sequence
(10.7) with kr+1 = ψ(s1+1).We may extend it on the right with ψ(s1+1) < ψ(k) = m

because s1 = ψ(1+ ψ(s1 + 1)) ∈ Rψ(ψ(k)) = Rk.
Next, we assume ψ(k) ∈ Tψ(m). Because ψ(k) − ψ(m) = m − k, we may apply

the above case with k ← ψ(m), m← ψ(k). Hence, there exists a sequence (10.7) with
k0 = ψ(m)− 1, kr+1 = ψ(k). Let us denote k′i = ψ(ki)− 1, 0 ≤ i ≤ r + 1. We have

k − 1 = k′r+1 < k′r < · · · < k′1 < k′0 = m. (10.8)

In this case, k′i ∈ R1+k′
i+1

is equivalent to ψ(1 + ki) ∈ Rψ(ki+1), while ψ(1 + k′i+1) ∈

Rψ(k′i )
is equivalent to ki+1 ∈ R1+ki .

Conversely, suppose that we have a sequence (10.7). Without loss of generality, we
may suppose that m ≤ ψ(k); otherwise, we turn to (10.8). The inductive supposition
implies that P(1+ k1, m) is true. Moreover, k1 ∈ Rk. Indeed, otherwise ψ(k) ∈ Rψ(k1) ⊆

[ψ(k1), k1−1]. In particularψ(k) < k1, and hence k > ψ(k1).However, k1 ≤ m ≤ ψ(k)

implies ψ(k1) ≥ k. Now, if m 6= ψ(k), then definition (10.4) with s ← k1, a ← m

implies m ∈ T ′k .
Let m = ψ(k). In this case, considering the sequence (10.8) as above, we have

k′r ∈ Rk. By definition, k′r = ψ(kr)−1. Hence, kr ∈ ψ(Rk+1). At the same time, defini-
tion (10.4) shows that kr ∈ T ′k because the inductive supposition implies that P(1+k1, kr)

is true provided that r > 1, while if r = 1, then kr = k1 ∈ Rk. Thus, definition (10.5)
implies m = ψ(k) ∈ Tk.

Claim 2. If P(k, s) and P(s + 1, m), then P(k,m).

Indeed, one may extend the sequence (10.7) corresponding to the pair (k, s) by the se-
quence corresponding to (s + 1, m).

Claim 3. If P(k,m), then for each s, k ≤ s < m, either P(k, s) or P(s + 1, m).

We use induction on m − k. Without loss of generality, we may suppose that m ≤ ψ(k)
because P(k,m) is equivalent to P(ψ(m),ψ(k)). By Claim 1, there exists a sequence
(10.7) with k0 = k − 1, kr+1 = m. The same claim implies P(1 + k1, m) provided that
r ≥ 1.

Because k ≤ s < m, there exists i, 1 ≤ i ≤ r, such that ki < s ≤ ki+1. If i ≥ 1,
then the inductive supposition applied to (1 + k1, m) implies that either P(1 + k1, s)

or P(s + 1, m) holds. In the latter case, we have obtained the required condition. If
P(1 + k1, s) is true, then Claim 2 implies P(k, s) because P(k, k1) is true according to
Claim 1.

Thus, it remains to check the case i = 0; that is, k ≤ s ≤ k1. In this case, k1 ∈ Rk.

Indeed, otherwise ψ(k) ∈ Rψ(k1) ⊆ [ψ(k1), k1 − 1]. In particular, ψ(k) < k1, and hence
k > ψ(k1). However, k1 ≤ m ≤ ψ(k) implies ψ(k1) ≥ k.

Claim 2 with s ← 1+ k1, k← s + 1 states that P(s + 1, k1) and P(1+ k1, m) imply
P(s + 1, m). Hence, it is sufficient to show that either P(k, s) or P(s + 1, k1) is true. If
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s = k1, then of course s = k1 ∈ Rk yields P(k, s). Therefore, we may replace m with k1
and suppose further that m ∈ Rk, i = 0. In this case, condition (10.3)(c) with r ← s is
“P(s + 1, m)⇔ P (s + 1, θ̃k).” Therefore we only need to consider one case, m = θ̃k.

Let us suppose that for some s, k ≤ s < θ̃k , we have ¬P(k, s) and ¬P(s + 1, θ̃k). By
induction on s, in addition to the induction on m− k, we shall show that these conditions
are inconsistent (more precisely, they imply s ∈ Rk, which contradicts ¬P(k, s); see
definition (10.4)).

Definition (10.3) with m = k shows that k ∈ Rk if and only if ¬P(k + 1, θ̃k). Since
in our case, ¬P(s + 1, θ̃k), we have s ∈ Rk provided that s = k.

Let s > k. Conditions (10.3)(a) and (10.3)(b) with m ← s are valid. Suppose that
(10.3)(c) fails. In this case, we may find a number t, k ≤ t < s, such that¬(P(t+1, s)⇔
P(t + 1, θ̃k)).

If P(t + 1, s), but ¬P(t + 1, θ̃k), then by the inductive supposition (induction on s),
either P(k, t) or P(t + 1, θ̃k); that is, P(k, t) is true. Claim 2 implies P(k, s), which is a
contradiction.

If P(t + 1, θ̃k), but ¬P(t + 1, s), then the inductive supposition (of the induction on
m − k) with k ← t + 1, m ← θ̃k shows that either P(t + 1, s) or P(s + 1, θ̃k); that is,
P(s + 1, θ̃k), which is again a contradiction.

Thus, s satisfies all conditions (10.3)(a)–10.3(c); hence, s ∈ Rk.

Claim 4. If k ≤ m < θ̃k, then m ∈ Tk if and only if ¬P(m+ 1, θ̃k).

First, recall that condition m ∈ Tk is equivalent to P(k,m) because by definition, θ̃k
< ψ(k).

According to Claim 3, one of the conditions P(k,m) or P(m + 1, θ̃k) always holds.
If both conditions are valid, then, because of Claim 1, we find a sequence (10.7) with
k0 = k − 1, kr+1 = m, such that ki+1 ∈ R1+ki ∨ ψ(1 + ki) ∈ Rψ(ki+1), 0 ≤ i ≤ r. By
(10.3)(b), we have m /∈ Rk, and of course ψ(k) /∈ Rψ(m), for m ≤ θ̃k < ψ(k). Hence,
r > 1.

Again by the first claim, we obtain P(1 + k1, m). Because k1 ≤ m < ψ(k), we
have ψ(k) /∈ Rψ(k1). Hence, k1 ∈ Rk. Therefore, k1 satisfies condition (10.3)(b), which is
¬P(1+k1, θ̃k).However, Claim 2 shows that the conditions P(1+k1, m) and P(m+1, θ̃k)
imply P(1+ k1, θ̃k); this is a contradiction, which proves the claim.

Claim 5. The set Tk is (k,m)-regular for all m ∈ Rk.

We may suppose that k ≤ n < m because otherwise we have nothing to prove.
First, assume that n is a white point, that is, n /∈ Tk, while scheme (7.1) has a black

column, say n − i ∈ Tk, n + i ∈ Tk, i > 0. Condition n + i ∈ Tk implies P(k, n + i).
Hence, by Claim 3 withm← n+ i, s ← n, we have P(k, n)∨P(n+ 1, n+ i). However,
n /∈ Tk implies ¬P(k, n) as ψ(k) /∈ Tψ(n) = Tn+1 = ∅. Hence P(n+ 1, n+ i) is true. We
see that P(n+ 1, n+ i) = P(ψ(n+ i), ψ(n+ 1)) = P(n− i+ 1, n) is also true. Because
n − i ∈ Tk implies P(k, n − i), Claim 2 with s ← n − i, m ← n shows that P(k, n) is
true. However, n /∈ Tk implies ¬P(k, n), which is a contradiction.

Then, let n be a black point, that is, n ∈ Tk, while scheme (7.3) has a white column,
say n − i /∈ Tk, n + i /∈ Tk, i > 0. Condition n − i /∈ Tk implies ¬P(k, n − i), since
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Tψ(n−i) = Tn+i+1 = ∅. By Claim 3 with m← n, s ← n − i, we have P(n − i + 1, n),
because n ∈ Tk implies P(k, n). Hence, P(n − i + 1, n) = P(ψ(n), ψ(n − i + 1)) =
P(n + 1, n + i) is also true. At the same time, Claim 4 with m ← n + i implies
P(n + i + 1, θ̃k), while Claim 2 with k ← n + 1, s ← n + i implies P(n + 1, θ̃k).
Again, Claim 4 with m← n shows that n /∈ Tk, which is a contradiction.

Next, it remains to show that if n ∈ Tk, then the leftmost complete column of (7.3) is
black; that is, ψ(m)− 1 ∈ Tk. Assume ψ(m)− 1 /∈ Tk. We then have ¬P(k, ψ(m)− 1)
since Tψ(ψ(m)−1) = Tm+1 = ∅.Claim 3 with s ← ψ(m)−1, m← n implies P(ψ(m), n),
while Claim 4 with m ← n implies ¬P(n + 1, θ̃k). We see that point r = n < m does
not satisfy condition (10.3)(c), because P(n+1, m) = P(ψ(n),m) = P(ψ(m), n) is true,
while P(n+ 1, θ̃k) is false. Thus m /∈ Rk, which is a contradiction.

Claim 6. Let Ũ be the subalgebra generated by all right coideals U Tk (k,m), m ∈ Rk.

If 1 ≤ a ≤ b ≤ 2n, b 6= ψ(a), then P(a, b) is true if and only if [a : b] is a Ũ-root. In
particular, the set of all Ũ-roots is {[k : m] | m ∈ T ′k}.

Certainly, Ũ is a right coideal subalgebra that contains k[G]. By Theorem 9.8, it is gener-
ated over k[G] by elements 8Tk (1+ t, s), where t < s are, respectively, white and black
points for 8Tk (k,m); that is, t = k − 1 or t /∈ Tk, and s = m or s ∈ Tk. In particular,
P(k, s) is true, while P(k, t) is false (ψ(k) /∈ [t, ψ(t)] ⊇ Tψ(t) since k ≤ t < s < ψ(k)).
Hence, by Claim 3 with s ← t, we have P(1+ t, s).

If γ = [a : b], a ≤ b < ψ(a), is a Ũ-root, then, by definition, in Ũ there exists a
homogeneous element cu ∈ Ũ of the form (5.14) of degree γ. Because Ũ is generated by
8Tk (1+ t, s), the degree γ is a sum of degrees [1+ t : s] of the generators. In particular,
γ =

∑
i[ai : bi], where P(ai, bi) are true and bi 6= ψ(ai). By Lemma 8.6, we may

modify the decomposition of γ so that

γ = [k0 − 1 : k1]+ [1+ k1 : k2]+ · · · [1+ kr : kr+1],

where a − 1 = k0 < k1 < · · · < kr < b = kr+1, and for each i, 0 ≤ i ≤ r, we still have
P(1+ ki, ki+1) true. Now, Claim 2 implies P(a, b). Hence, b ∈ T ′a, for a ≤ b < ψ(a).

Conversely, if m ∈ T ′k, then by Claim 1, we have a sequence k − 1 = k0 < k1 <

· · · < kr < m = kr+1 such that for each i, 0 ≤ i ≤ r, either ki+1 ∈ R1+ki or ψ(1+ ki) ∈
Rψ(ki+1). By definition, Ũ contains elements 8Tai (ai, bi), where ai = 1 + ki, bi = ki+1
provided that ki+1 < ψ(1 + ki), and ai = ψ(ki+1), bi = ψ(1 + ki) provided that
ki+1 > ψ(1+ ki). Hence, [ai : bi] = [1+ ki : ki+1] are Ũ-roots. In particular, [k : m] is
a sum of Ũ-roots. By Lemma 8.7, the element [k : m] itself is a Ũ-root.

Claim 7. The set of all simple Ũ-roots is {[k : m] | m ∈ Rk}. In particular r(Ũ) = θ.

If γ = [k : m], k ≤ m < ψ(k), is a simple Ũ-root, then, due to the above claim,
P(k,m) is true. Hence, according to Claim 1, we may find a sequence (10.7). In this
case, γ = [k : k1] + [1 + k1 : k2] + · · · + [1 + kr : m] is a sum of Ũ-roots, because
P(1 + ki, ki+1) is true by definition (10.2); this is a contradiction for the simple root γ ,
unless r = 0. Thus, m = k1 ∈ Rk because ψ(k) /∈ [m,ψ(m)] ⊇ Rψ(m).

Conversely, let m ∈ Rk. Then, by definition (10.5), we have m ∈ Tk. Claim 6 implies
that [k : m] is a Ũ-root. If it is not simple, then it is a sum of two or more Ũ-roots,
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[k : m] = [k : k1]+[1+k1 : k2]+· · ·+[1+kr : m],where, due to Claim 6, P(1+ki, ki+1),

0 ≤ i ≤ r , are true. Claim 2 implies that P(1 + k1, m) is also true. Definition (10.3)(c)
with r ← k1 implies P(1+k1, θ̃k).Now, Claim 4 provides a contradiction, k1 /∈ Tk (recall
that P(k, k1) implies k1 ∈ Tk because k ≤ k1 ≤ m < ψ(k)).

Claim 8. Ũ is generated as an algebra by k[G] and8Tk (k,m), m ∈ Rk; that is, Ũ = U.

It suffices to note that U contains a set of PBW-generators for Ũ over k[G]. If [k : m] is a
Ũ-root, then it is a sum of simple Ũ-roots, [k : m] =

∑
[ki : mi], mi ∈ Rki . The elements

fi = 8
Tki (ki, mi), by definition, belong to U. The PBW-generator corresponding to the

root [k : m] can be taken to be a polynomial in fi determined in one of the formulae
(8.3)–(8.6) depending on the type of decomposition of [k : m] into a sum of simple roots.

Theorem 10.3 is completely proved. ut

Corollary 10.4. Every (homogeneous if q t = 1, t > 4) right coideal subalgebra U of
U+q (so2n+1), q

t
6= 1 (respectively, of u+q (so2n+1)) that contains G is generated as an

algebra by G and a set of elements 8S(k,m) with (k,m)-regular sets S.

Proof. Theorems 8.2 and 10.3 imply that U has the form Uθ ,where θ is the root sequence.
At the same time, definition (10.6) shows that Uθ , as an algebra, is generated by G and
elements 8Tk (k,m), m ∈ Rk. It remains to apply Claim 5. ut

11. Right coideal subalgebras that do not contain the coradical

In this brief section, we restate the main result in a slightly more general form. We con-
sider homogeneous right coideal subalgebras inU+q (so2n+1) (respectively, in u+q (so2n+1))
that do not contain G, but whose intersection with G is a subgroup. We recall that for
every submonoid � ⊆ G, the set of all linear combinations k [�] is a right coideal sub-
algebra. Conversely, if U0 ⊆k [G] is a right coideal subalgebra, then U0 =k [�] for
� = U0 ∩ G because a =

∑
i αigi ∈ U0 implies 1(a) =

∑
i αigi ⊗ gi ∈ U0⊗k [G];

that is, αigi ∈ U0.

Definition 11.1. For a sequence θ = (θ1, . . . , θn) such that 0 ≤ θk ≤ 2n − 2k + 1,
1 ≤ k ≤ n, we define U1

θ to be the subalgebra with 1 generated by g−1
km8

S(k,m), where
gkm = g(u(k,m)) and m ∈ Rk, S = Tk; see Theorem 10.3.

Lemma 11.2. The subalgebra U1
θ is a homogeneous right coideal, and U1

θ ∩G = {1}.

Proof. The subalgebra U1
θ is homogeneous because it is generated by homogeneous el-

ements. Its zero homogeneous component equals k because among the generators only
one, the unity, has degree zero.

We denote by Bθ the k-subalgebra generated by 8S(k,m) with m ∈ Rk, S = Tk.

The algebra U1
θ is spanned by all elements of the form g−1

a a, a ∈ Bθ . Because Uθ is a
right coideal, for any homogeneous a ∈ Bθ , we have1(a) =

∑
g(a(2))a(1)⊗a(2) where

a(1) ∈ Bθ , ga = g(a
(1))g(a(2)). Therefore, 1(g−1

a a) =
∑
g(a(1))−1a(1) ⊗ g−1

a a(2) with
g(a(1))−1a(1) ∈ U1

θ . ut



1734 V. K. Kharchenko

Lemma 11.3. If � is a submonoid of G, then k[�]U1
θ is a homogeneous right coideal

subalgebra, and k[�]U1
θ ∩G = �. Moreover k[�]U1

θ = k[�′]U1
θ ′

if and only if � = �′

and θ = θ ′.

Proof. The subalgebra k[�]U1
θ is homogeneous because it is generated by homogeneous

elements. Its zero homogeneous component equals k[�]. Hence k[�]U1
θ ∩ G = �. By

the above lemma, we have

1(k[�]U1
θ ) ⊆ (k[�]⊗ k[�]) · (U1

θ ⊗ U
+
q (so2n+1)).

Hence, k[�]U1
θ is a right coideal subalgebra. Finally, the equality k[�]U1

θ = k[�′]U1
θ ′

implies both the equality of zero homogeneous components, k[�] = k[�′], and Uθ =
k[G]U1

θ = k[G]U1
θ ′
= Uθ ′ . Hence θ = θ ′ by Theorem 10.3. ut

Theorem 11.4. If U is a homogeneous right coideal subalgebra of U+q (so2n+1) (resp. of

u+q (so2n+1)) such that �
df
= U ∩G is a group, then U = k[�]U1

θ for some θ.

Proof. Let u =
∑
hiai ∈ U be a homogeneous element of degree γ ∈ 0+ with different

hi ∈ G, and ai ∈ A, where A is the k-subalgebra generated by xi, 1 ≤ i ≤ n. We denote
by πγ the natural projection on the homogeneous component of degree γ. Moreover, πg,
g ∈ G, is a projection on the subspace kg.We have1(u) · (πγ ⊗πhi ) = hiai ⊗hi . Thus,
hiai ∈ U.

By Theorems 10.3 and 8.2, we have k[G]U = Uθ for some θ. If u = ha ∈ U, h ∈ G,
a ∈ A, then 1(u) · (πhga ⊗ πγ ) = hga ⊗ ha. Therefore, hga ∈ U ∩ G = �; that is,
u = ωg−1

a a, ω ∈ �. Because � is a subgroup, we obtain g−1
a a ∈ U. It remains to note

that all elements g−1
a a such that ha ∈ U span the algebra U1

θ . ut

If U ∩ G is not a group, then U may have a more complicated structure; see [13, Ex-
ample 6.4].
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