DOI 10.4171/JEMS/291

V. K. Kharchenko

Right coideal subalgebras of U_a^+ q^+ (50_{2n+1})

Received May 3, 2008 and in revised form March 26, 2009

Abstract. We give a complete classification of right coideal subalgebras that contain all grouplike elements for the quantum group $U_q^+(\mathfrak{so}_{2n+1})$, provided that q is not a root of 1. If q has a finite multiplicative order $t > 4$, this classification remains valid for homogeneous right coideal subalgebras of the Frobenius–Lusztig kernel u_q^+ (\mathfrak{so}_{2n+1}). In particular, the total number of right coideal subalgebras that contain the coradical equals $(2n)$!!, the order of the Weyl group defined by the root system of type B_n .

Keywords. Coideal subalgebra, Hopf algebra, PBW-basis

1. Introduction

In the present paper, we continue the classification of right coideal subalgebras in quantised enveloping algebras begun in [\[13\]](#page-58-1). We offer a complete classification of right coideal subalgebras that contain all grouplike elements for the multiparameter version of the quantum group $U_q^+(s_0_{2n+1})$, provided that the main parameter q is not a root of 1. If q has a finite multiplicative order $t > 4$, this classification remains valid for homogeneous right coideal subalgebras of the multiparameter version of the Frobenius–Lusztig kernel $u_q^+(s_0z_{n+1})$. The main result of the paper is the establishment of a bijection between all sequences $(\theta_1, \ldots, \theta_n)$ such that $0 \leq \theta_k \leq 2n - 2k + 1$, $1 \leq k \leq n$, and the set of all (homogeneous if $q^t = 1$, $t > 4$) right coideal subalgebras of $U_q^+(\mathfrak{so}_{2n+1})$, $q^t \neq 1$ (respectively of $u_q^+(s \circ_{2n+1})$) that contain the coradical. (Recall that in a pointed Hopf algebra, the grouplike elements span the coradical.) In particular, there are $(2n)!!$ different right coideal subalgebras that contain the coradical. Interestingly, this number coincides with the order of the Weyl group for the root system of type B_n . In [\[13\]](#page-58-1), we proved that the number of different right coideal subalgebras that contain the coradical of $U_q^+(\mathfrak{sl}_{n+1})$ equals $(n + 1)!$, the order of the Weyl group for the root system of type A_n . Recently, B. Pogorelsky [\[16\]](#page-58-2) proved that the quantum Borel algebra $U_q^+(\mathfrak{g})$ for the simple Lie algebra of type G_2 has 12 different right coideal subalgebras over the coradical. This

Mathematics Subject Classification (2010): Primary 16W30, 16W35; Secondary 17B37

V. K. Kharchenko: Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlan, Mexico, and Sobolev Institute of Mathematics, Novosibirsk, Russia; ´ e-mail: vlad@servidor.unam.mx

number also coincides with the order of the Weyl group of type G_2 . Although there is no theoretical explanation for why the Weyl group appears in these results, we state the following general hypothesis.

Conjecture. *Let* g *be a simple Lie algebra defined by a finite root system* R. *The number of different right coideal subalgebras that contain the coradical in a quantum Borel alge*bra $U_q^+(\mathfrak{g})$ equals the order of the Weyl group defined by the root system R, provided that q is not a root of $1.^1$ $1.^1$

In Section 2, following $[13]$, we introduce the main concepts of the paper and we formulate known results that are useful for classification. In the third section, we prove auxiliary relations in a multiparameter version of $U_q^+(\mathfrak{so}_{2n+1})$. In the fourth section, we note that the Weyl basis

$$
\{u[k,m] \stackrel{\text{df}}{=} [\dots [x_k, x_{k+1}], \dots, x_m] \mid 1 \leq k \leq m \leq 2n - k, x_{n+r} \stackrel{\text{df}}{=} x_{n-r+1}\}
$$

of the Borel subalgebra \mathfrak{so}_{2n+1}^+ with skew bracket $[u, v] = uv - \chi^u(g_v)vu$ in place of the Lie operation is a set of PBW-generators for $U_q^+(\mathfrak{so}_{2n+1})$ and $u_q^+(\mathfrak{so}_{2n+1})$. By means of the shuffle representation, in Theorem [4.3,](#page-20-0) we prove an explicit formula for the coproduct of these PBW-generators, which is the key result for further considerations:

$$
\Delta(u[k,m]) = u[k,m] \otimes 1 + g_{km} \otimes u[k,m] + \sum_{i=k}^{m-1} \tau_i (1 - q^{-2}) g_{ki} u[i+1,m] \otimes u[k,i],
$$

where $\tau_i = 1$ with only one exception, $\tau_n = q$, while g_{ki} are suitable grouplike elements. Interestingly, this coproduct formula differs from that in U_{a}^{+} $q^{\frac{1}{2}}(\mathfrak{sl}_{2n+1})$ in just one term (see formula (3.3) in [\[11\]](#page-58-3)).

In Section 5, we show that each homogeneous right coideal subalgebra in $U_q^+(\mathfrak{so}_{2n+1})$ or in $u_q^+(\mathfrak{so}_{2n+1})$ has PBW-generators of a special form, $\Phi^S(k,m)$, where S is a set of integers from the interval [1, 2n]. The polynomial $\Phi^{S}(k, m)$ is defined by induction on the number r of elements in $S \cap [k, m - 1] = \{s_1, \ldots, s_r\}, k \le s_1 < \cdots < s_r < m$, as follows:

$$
\Phi^{S}(k,m) = u[k,m] - (1 - q^{-2}) \sum_{i=1}^{r} \alpha_{km}^{s_i} \Phi^{S}(1 + s_i, m) u[k, s_i],
$$

where α_{km}^s are scalars, $\alpha_{km}^s = \tau_s p(u(1+s,m), u(k,s))^{-1}$. The existence of those generators implies that the set of all (homogeneous) right coideal subalgebras that contain the coradical is finite (Corollary [5.7\)](#page-26-0).

In Sections 6 and 7, we single out special sets S , called (k, m) -regular sets. In Propo-sition [7.10,](#page-33-0) we establish a kind of duality for elements $\Phi^{S}(k,m)$ with regular S, which provides a powerful tool for investigating PBW-generators for right coideal subalgebras.

In Section 8, we define a root sequence $r(\mathbf{U}) = (\theta_1, \dots, \theta_n)$ in the following way. The number θ_i is the maximal m such that for some S the value of $\Phi^S(i, m)$ belongs to U,

¹ *Note added in proof:* Recently this conjecture was proved by I. Heckenberger and H.-J. Schneider in "Right coideal subalgebras of Nichols algebras and the Duflo order on the Weyl groupoid", arXiv:0909.0293, 43 pp.

while the degree $x_i + x_{i+1} + \cdots + x_m$ of $\Phi^S(i, m)$ is not a sum of other nonzero degrees of elements from U. In Theorem [8.2,](#page-36-0) we show that the root sequence uniquely defines the right coideal subalgebra U that contains the coradical.

In Section 9, we consider some important examples, including the right coideal subalgebra generated by $\Phi^{S}(k, m)$ with regular S. We also analyze in detail the simplest (but not trivial [\[2\]](#page-57-0)) case, $n = 2$.

In Section 10, we associate a right coideal subalgebra U_θ to each sequence of integers $\theta = (\theta_1, \dots, \theta_n), 0 \le \theta_i \le 2n-2i+1$, so that $r(\mathbf{U}_{\theta}) = \theta$. First, by downward induction on k , we define sets

$$
R_k \subseteq [k, 2n-k], \quad T_k \subseteq [k, 2n-k+1], \quad 1 \le k \le 2n,
$$

as follows. For $k > n$, we put $R_k = T_k = \emptyset$. Suppose that $R_i, T_i, k < i \leq 2n$, are already defined. Denote by **P** the following binary predicate on the set of all ordered pairs $i \leq j$:

$$
\mathbf{P}(i, j) \rightleftharpoons j \in T_i \vee 2n - i + 1 \in T_{2n - j + 1}.
$$

If $\theta_k = 0$, then we set $R_k = T_k = \emptyset$. If $\theta_k \neq 0$, then by definition, R_k contains $\tilde{\theta}_k =$ $k + \theta_k - 1$ and all m satisfying the following three properties:

(a) $k \leq m < \tilde{\theta}_k$;

- (b) $\neg \overline{\mathbf{P}}(m+1, \tilde{\theta}_k);$
- (c) $\forall r \ (k \leq r < m) \ \mathbf{P}(r+1,m) \Leftrightarrow \mathbf{P}(r+1,\tilde{\theta}_k).$

Further, we define an auxiliary set

$$
T'_{k} = R_{k} \cup \bigcup_{s \in R_{k}} \{a \mid s < a \leq 2n - k, \mathbf{P}(s+1, a)\},\
$$

and we put

$$
T_k = \begin{cases} T'_k & \text{if } (2n - R_k) \cap T'_k = \emptyset; \\ T'_k \cup \{2n - k + 1\} & \text{otherwise.} \end{cases}
$$

Next, the subalgebra U_{θ} is, by definition, generated over $\mathbf{k}[G]$ by values in $U_q^+(\mathfrak{so}_{2n+1})$ or in $u_q^+(\mathfrak{so}_{2n+1})$ of the polynomials $\Phi^{T_k}(k,m)$, $1 \leq k \leq m$, with $m \in R_k$.

Theorems [8.2](#page-36-0) and [10.3](#page-52-0) together show that all right coideal subalgebras over the coradical have the form U_θ .

In Section 11, we restate the main result in a slightly more general form. We consider homogeneous right coideal subalgebras U such that the intersection $\Omega = U \cap G$ with the group G of all grouplike elements is a subgroup. In this case $U = k[\Omega]U_{\theta}^1$, where U_{θ}^1 is the subalgebra generated by $g_a^{-1}a$ when $a = \Phi^{T_k}(k, m)$ runs through the above described generators of U_θ .

The present paper extends [\[13\]](#page-58-1) by using similar methods in a parallel way. However, it is much more complicated technically. The proof of the explicit formula for comultiplication (Theorem [4.3\)](#page-20-0) essentially depends on the shuffle representation given in Proposi-tion [4.2,](#page-17-0) while the same formula for the case A_n was proved by a simple induction [\[11\]](#page-58-3). The elements $\Phi^{S}(k, m)$ that naturally appear as PBW-generators for right coideal subalgebras do not satisfy all necessary properties for further development. Therefore, in Section 7, we introduce and investigate the elements $\Phi^{S}(k, m)$ with so called (k, m) -regular

sets S. In Proposition [7.10,](#page-33-0) we establish a powerful duality for such elements. Interestingly, as a consequence of the classification, we prove that every right coideal subalgebra over the coradical is generated as an algebra by elements $\Phi^{S}(k, m)$ with (k, m) -regular sets S (Corollary [10.4\)](#page-56-0). The construction of U_θ is more complicated and it has an important new element, a binary predicate defined on the ordered pairs of indices. In [\[13\]](#page-58-1), we find, relatively easily, a differential subspace generated by $\Psi^S(k, m)$, since this element is linear in each variable that it depends on. However, the elements $\Phi^{S}(k, m)$ that appear in the present work are not linear in some variables. Therefore, we fail to find their partial derivatives in an appropriate form. Instead, in Theorem [9.8,](#page-48-0) using the root technique developed in Section 8, we find algebra generators of the right coideal subalgebra generated by $\Phi^S(k, m)$ with a (k, m) -regular set S.

2. Preliminaries

PBW-generators

Let A be an algebra over a field **k** and B its subalgebra with a fixed basis $\{g_i \mid j \in J\}$. A linearly ordered subset $V \subseteq A$ is said to be a *set of PBW-generators of* A *over* B if there exists a function $h: V \to \mathbb{Z}^+ \cup \infty$, called the *height function*, such that the set of all products

$$
g_j v_1^{n_1} \cdots v_k^{n_k},\tag{2.1}
$$

where $j \in J$, $v_1 < \cdots < v_k \in V$, $n_i < h(v_i)$, $1 \le i \le k$, is a basis of A. The value $h(v)$ is called the *height* of v in V.

Skew brackets

Recall that a Hopf algebra H is referred to as a *character* Hopf algebra if the group G of all grouplike elements is commutative and H is generated over $\mathbf{k}[G]$ by skew primitive semi-invariants a_i , $i \in I$:

$$
\Delta(a_i) = a_i \otimes 1 + g_i \otimes a_i, \quad g^{-1} a_i g = \chi^i(g) a_i, \quad g, g_i \in G,
$$
 (2.2)

where χ^i , $i \in I$, are characters of the group G. By means of the Dedekind Lemma, it is easy to see that every character Hopf algebra is graded by the monoid G^* of characters generated by χ^i :

$$
H = \sum_{\chi \in G^*} \oplus H^{\chi}, \quad H^{\chi} = \{a \in H \mid g^{-1}ag = \chi(g)a, \ g \in G\}.
$$
 (2.3)

Let us associate a "quantum" variable x_i to a_i . For each word u in $X = \{x_i \mid i \in I\}$, we denote by g_u or $gr(u)$ the element of G that arises from u by replacing each x_i with g_i . In the same way, χ^u denotes the character that arises from u by replacing each x_i with χ^i . We define a bilinear skew commutator on homogeneous linear combinations of words in a_i or in x_i , $i \in I$, by the formula

$$
[u, v] = uv - \chi^u(g_v)vu,\tag{2.4}
$$

where we use the notation $\chi^u(g_v) = p_{uv} = p(u, v)$. Of course, $p(u, v)$ is a bimultiplicative map:

$$
p(u, vt) = p(u, v)p(u, t), \quad p(ut, v) = p(u, v)p(t, v).
$$
 (2.5)

The brackets satisfy the following Jacobi identity:

 $[[u, v], w] = [u, [v, w]] + p_{wv}^{-1}[[u, w], v] + (p_{vw} - p_{wv}^{-1})[u, w] \cdot v,$ (2.6)

or equivalently, in a less symmetric form,

$$
[[u, v], w] = [u, [v, w]] + p_{vw}[u, w] \cdot v - p_{uv}v \cdot [u, w]. \tag{2.7}
$$

The Jacobi identity (2.6) implies the following conditional identity:

$$
[[u, v], w] = [u, [v, w]] \text{ provided that } [u, w] = 0.
$$
 (2.8)

By the evident induction on length, this conditional identity admits the following generalisation (see $[13,$ Lemma 2.2]).

Lemma 2.1. *If* y_1, \ldots, y_m *are homogeneous linear combinations of words such that* $[y_i, y_j] = 0, 1 \le i \le j - 1 \le m$, then the bracketed polynomial $[y_1, \ldots, y_m]$ is inde*pendent of the arrangement of brackets:*

$$
[y_1 \dots y_m] = [[y_1 \dots y_s], [y_{s+1} \dots y_m]], \quad 1 \le s < m. \tag{2.9}
$$

The brackets are related to the product by the following ad-identities:

$$
[u \cdot v, w] = p_{vw}[u, w] \cdot v + u \cdot [v, w], \tag{2.10}
$$

$$
[u, v \cdot w] = [u, v] \cdot w + p_{uv}v \cdot [u, w]. \tag{2.11}
$$

In particular, if $[u, w] = 0$, we have

$$
[u \cdot v, w] = u \cdot [v, w]. \tag{2.12}
$$

The antisymmetry identity transforms into the following two equalities:

$$
[u, v] = -p_{uv}[v, u] + (1 - p_{uv}p_{vu})u \cdot v,
$$
\n(2.13)

$$
[u, v] = -p_{vu}^{-1}[v, u] + (p_{vu}^{-1} - p_{uv})v \cdot u.
$$
 (2.14)

In particular, if $p_{uv}p_{vu} = 1$, the "colour" antisymmetry, $[u, v] = -p_{uv}[v, u]$, holds.

The group G acts on the free algebra $\mathbf{k}\langle X\rangle$ by $g^{-1}ug = \chi^u(g)u$, where u is an arbitrary monomial in X. The skew group algebra $G(X)$ has the natural Hopf algebra structure:

$$
\Delta(x_i) = x_i \otimes 1 + g_i \otimes x_i, \quad i \in I, \quad \Delta(g) = g \otimes g, \quad g \in G.
$$

We fix a Hopf algebra homomorphism

$$
\xi: G\langle X \rangle \to H, \quad \xi(x_i) = a_i, \quad \xi(g) = g, \quad i \in I, g \in G.
$$
 (2.15)

PBW-basis of a character Hopf algebra

The *constitution* of a word u in $G \cup X$ is a family $\{m_x \mid x \in X\}$ of nonnegative integers such that u has m_x occurrences of x. Certainly, almost all m_x in the constitution are zero. We fix an arbitrary complete order, \lt , on the set X. Normally, if $X = \{x_1, \ldots, x_n\}$, we set $x_1 > \cdots > x_n$.

Let Γ^+ be the free additive (commutative) monoid generated by X. The monoid Γ^+ is completely ordered by declaring

$$
m_1x_{i_1} + \dots + m_kx_{i_k} > m'_1x_{i_1} + \dots + m'_kx_{i_k}
$$
 (2.16)

if the leftmost nonzero number in $(m_1 - m'_1, \ldots, m_k - m'_k)$ is positive, where $x_{i_1} >$ $\cdots > x_{i_k}$ in X. We associate a formal degree $D(u) = \sum_{x \in X} m_x x \in \Gamma^+$ to a word u in $G \cup X$, where $\{m_x \mid x \in X\}$ is the constitution of u. Moreover, if $f = \sum \alpha_i u_i \in G\langle X \rangle$, $0 \neq \alpha_i \in \mathbf{k}$, then

$$
D(f) = \max_{i} D(u_i). \tag{2.17}
$$

On the set of all words in X , we fix the lexicographical order with priority from left to right, where a proper initial segment of a word is considered to be greater than the word itself.

A nonempty word u is called *standard* (or a *Lyndon* or *Lyndon–Shirshov* word) if $vw > wv$ for each decomposition $u = vw$ with nonempty v, w. A *nonassociative* word is a word in which brackets [,] are arranged to show how the multiplication applies. If [u] denotes a nonassociative word, then u denotes the associative word obtained from [u] by removing the brackets. The set of *standard nonassociative* words is the largest set *SL* that contains all variables x_i and has the following properties:

1) If $[u] = [[v][w]] \in SL$, then $[v]$, $[w] \in SL$, and $v > w$ are standard. 2) If $[u] = [[[v_1][v_2]][w]] \in SL$, then $v_2 \leq w$.

Every standard word has only one arrangement of brackets such that the resulting nonas-sociative word is standard (Shirshov theorem [\[19\]](#page-58-4)). To find this arrangement, one may use the following inductive procedure:

Algorithm

The factors v, w of the nonassociative decomposition $[u] = [[v][w]]$ are the standard words such that $u = vw$ and v has minimal length ([\[20\]](#page-58-5), see also [\[14\]](#page-58-6)).

Definition 2.2. A *super-letter* is a polynomial that equals a nonassociative standard word, where the brackets are as in (2.4) . A *super-word* is a word in super-letters.

By Shirshov's theorem, every standard word u defines only one super-letter: in what follows, we shall denote it by [u]. The order on the super-letters is defined in the natural way: $[u] > [v] \Leftrightarrow u > v$.

In what follows, we reserve the notation H for a character Hopf algebra that is homogeneous in each a_i (see [\(2.2\)](#page-3-1) and [\(2.15\)](#page-4-1)).

Definition 2.3. A super-letter $[u]$ is called *hard in* H provided its value in H is not a linear combination of values of super-words of the same degree [\(2.17\)](#page-5-0) in super-letters smaller than $[u]$.

Definition 2.4. We say that the *height* of a hard super-letter [u] in H equals $h = h([u])$ if h is the smallest number such that the following hold: first, p_{uu} is a primitive t-th root of 1 and either $h = t$ or $h = t l^r$, where $l = \text{char}(\mathbf{k})$; and the value of $[u]^h$ in H is a linear combination of super-words of the same degree (2.17) in super-letters smaller than [u]. If no such number exists, then the height equals infinity.

Theorem 2.5 ([\[7,](#page-58-7) Theorem 2]). *The values of all hard super-letters in* H *with the abovedefined height function form a set of PBW-generators for* H *over* k[G].

PBW-basis of a homogeneous right coideal subalgebra

A set T of PBW-generators for a homogeneous right coideal subalgebra U, k[G] \subseteq $U \subseteq H$, can be obtained from the PBW-basis given in Theorem [2.5](#page-6-0) in the following way (see $[12,$ Theorem 1.1]).

Suppose that for a hard super-letter [u] there exists a homogeneous element $c \in U$ with leading term $[u]$ ^s in the PBW-decomposition given in Theorem [2.5:](#page-6-0)

$$
c = [u]^s + \sum_{i} \alpha_i W_i \in \mathbf{U},\tag{2.18}
$$

where W_i are the basis super-words starting with super-letters smaller than [u]. We fix one of the elements with the minimal s, and we denote it by c_u . Thus, for every hard super-letter [u] in H, we have at most one element c_u . We define the height function by means of the following lemma.

Lemma 2.6 ([\[12,](#page-58-8) Lemma 4.3]). In the representation (2.[18](#page-6-1)) of c_u either $s = 1$, or $p(u, u)$ *is a primitive t-th root of* 1 *and* $s = t$, *or* (*in the case of positive characteristic*) $s = t (\text{char } \mathbf{k})^r$.

If the height of $[u]$ in H is infinite, then the height of c_u in U is also defined to be infinite. If the height of [u] in H equals t, then, according to the above lemma, $s = 1$ (recall that in the PBW-decomposition [\(2.18\)](#page-6-1) the exponent s must be less than the height of $[u]$). In this case, the height of c_u in U is defined to be t as well. If the characteristic l is positive and the height of [u] in H equals t^r , then we define the height of c_u in U to be equal to t^r/s .

Proposition 2.7 ([\[12,](#page-58-8) Proposition 4.4]). *The set of all* c_u *with the above-defined height function is a set of PBW-generators for* U *over* k[G].

The reader is cautioned that the PBW-basis is not uniquely defined in the above process. Nevertheless, the set of leading terms of the PBW-generators is indeed uniquely defined.

Definition 2.8. The degree $sD(c_u) \in \Gamma^+$ of a PBW-generator c_u is said to be a U-*root*. A U-root $\gamma \in \Gamma^+$ is called *simple* if it is not the sum of two or more other U-roots.

The set of U-roots and the set of simple U-roots are invariants for any right coideal subalgebra U.

Shuffle representation

If the kernel of ξ defined in [\(2.15\)](#page-4-1) is contained in the ideal $G(X)^{(2)}$ generated by $x_i x_j$, $i, j \in I$, then there exists a Hopf algebra projection $\pi : H \to \mathbf{k}[G]$, $a_i \to 0$, $g_i \to g_i$. Hence, by the Radford theorem [\[18\]](#page-58-9), we have a decomposition into a biproduct, $H =$ A # $\mathbf{k}[G]$, where A is a subalgebra generated by $a_i, i \in I$ (see [\[1,](#page-57-1) §1.5, §1.7]).

Definition 2.9. In what follows, Λ denotes the largest Hopf ideal in $G(X)^{(2)}$. The ideal Λ is homogeneous in each $x_i \in X$ (see [\[11,](#page-58-3) Lemma 2.2]).

If Ker $\xi = \Lambda$ or equivalently if A is a quantum symmetric algebra (a Nichols algebra [\[1,](#page-57-1) §1.3, Section 2]), then A has a shuffle representation as follows.

The algebra A has the structure of a *braided Hopf algebra* [\[21\]](#page-58-10) with a braiding $\tau(u \otimes v) = p(v, u)^{-1}v \otimes u$. The braided coproduct Δ^b on A is connected with the coproduct on H in the following way:

$$
\Delta^{b}(u) = \sum_{(u)} u^{(1)} \text{gr}(u^{(2)})^{-1} \underline{\otimes} u^{(2)}.
$$
 (2.19)

The tensor space $T(V)$, $V = \sum x_i \mathbf{k}$, also has the structure of a braided Hopf algebra, which is the *quantum shuffle algebra* $Sh_{\tau}(V)$ with the coproduct

$$
\Delta^{b}(u) = \sum_{i=0}^{m} (z_1 \dots z_i) \, \underline{\otimes} \, (z_{i+1} \dots z_m), \tag{2.20}
$$

where $z_i \in X$, and $u = (z_1 \dots z_m)$ is the tensor $z_1 \otimes \cdots \otimes z_m$ considered as an element of $Sh_{\tau}(V)$. The shuffle product satisfies

$$
(w)(x_i) = \sum_{uv=w} p(x_i, v)^{-1}(ux_i v), \quad (x_i)(w) = \sum_{uv=w} p(u, x_i)^{-1}(ux_i v). \quad (2.21)
$$

The map $a_i \rightarrow (x_i)$ defines an embedding of the braided Hopf algebra A into the braided Hopf algebra $Sh_{\tau}(V)$. This embedding is extremely useful for calculating the coproduct due to formulae (2.19) and (2.20) .

Differential calculus

The free algebra $\mathbf{k}\langle X\rangle$ has a coordinate differential calculus

$$
\partial_j(x_i) = \delta_i^j, \quad \partial_i(uv) = \partial_i(u) \cdot v + \chi^u(g_i)u \cdot \partial_i(v). \tag{2.22}
$$

The partial derivatives connect the calculus with the coproduct on $k\langle X \rangle$ via

$$
\Delta(u) \equiv u \otimes 1 + \sum_{i} g_{i} \partial_{i}(u) \otimes x_{i} \pmod{G(X) \otimes \mathbf{k}(X)^{(2)}},
$$
 (2.23)

where $\mathbf{k}\langle X\rangle^{(2)}$ is the ideal generated by $x_i x_j$, $1 \le i, j \le n$.

Lemma 2.10. Let $u \in k\langle X \rangle$ be an element homogeneous in each x_i . If p_{uu} is a t-th *primitive root of* 1*, then*

$$
\partial_i(u^t) = p(u, x_i)^{t-1} \underbrace{[u, [u, \dots [u, \partial_i(u)] \dots]]}_{t-1}.
$$
 (2.24)

Proof. First, we note that the sequence $p_{uu}, p_{uu}^2, \ldots, p_{uu}^{t-1}$ contains all t-th roots of 1 except 1 itself. All members in this sequence are different. Hence, we may write the polynomial equality

$$
1 - xt = (1 - x) \prod_{s=1}^{t-1} (1 - puus).
$$
 (2.25)

Let us calculate the right-hand side of [\(2.24\)](#page-8-0). We denote by L_u and R_u the operators of left and right multiplication by u , respectively. The right-hand side of (2.24) has the following operator representation:

$$
p(u, x_i)^{t-1} \Big(\partial_i(u) \cdot \prod_{s=1}^{t-1} (L_u - Qp_{uu}^{s-1} R_u) \Big),
$$

where $Q = p(u, \partial_i(u)) = p_{uu} p(u, x_i)^{-1}$. Consider the polynomial

$$
f(\lambda) = \prod_{s=1}^{t-1} (1 - Qp_{uu}^{s-1}\lambda) \stackrel{df}{=} \sum_{k=0}^{t-1} \alpha_k \lambda^k.
$$

Because the operators R_u and L_u commute, we may develop the multiplication in the operator product considering R_u and L_u as formal commutative variables:

$$
\prod_{s=1}^{t-1} (L_u - Qp_{uu}^{s-1}R_u) = L_u^{t-1} f\left(\frac{R_u}{L_u}\right) = \sum_{k=0}^{t-1} \alpha_k L_u^{t-1-k} R_u^k.
$$

Thus the right-hand side of (2.24) equals

$$
p(u, x_i)^{t-1} \sum_{k=0}^{t-1} \alpha_k u^{t-1-k} \partial_i(u) u^k
$$
.

Further, because $Q = p_{uu} p(u, x_i)^{-1}$, the polynomial f has a representation

$$
f(\lambda) = \prod_{s=1}^{t-1} (1 - p_{uu}^s \xi),
$$

where $\xi = \lambda p(u, x_i)^{-1}$. Taking into account [\(2.25\)](#page-8-1), we obtain

$$
f(\lambda) = \frac{1 - \xi^{t}}{1 - \xi} = \frac{1 - \lambda^{t} p(u, x_{i})^{-t}}{1 - \lambda p(u, x_{i})^{-1}}
$$

= 1 + \lambda p(u, x_{i})^{-1} + \lambda^{2} p(u, x_{i})^{-2} + \dots + \lambda^{t-1} p(u, x_{i})^{1-t};

that is, $\alpha_k = p(u, x_i)^{-k}$, while the right-hand side of [\(2.24\)](#page-8-0) takes the form

$$
\sum_{k=0}^{t-1} p(u, x_i)^{t-1-k} u^{t-1-k} \partial_i(u) u^k.
$$
 (2.26)

At the same time the Leibniz formula [\(2.22\)](#page-7-2) shows that $\partial_i(u^t)$ also equals [\(2.26\)](#page-9-0). \Box

MS-criterion

The quantum symmetric algebra has several convenient characterisations. One of these characterisations says that the quantum symmetric algebra is the *optimal algebra* for the calculus defined by (2.22) . In other words, the above-defined algebra A is a quantum symmetric algebra (or equivalently Ker $\xi = \Lambda$) if and only if all constants in A are scalars.

For braidings of the Cartan type, this characterisation was proved by A. Milinski and H.-J. Schneider in [\[15\]](#page-58-11) and then generalised to arbitrary (even not necessarily invertible) braidings by the author in [\[10,](#page-58-12) Theorem 4.11]. Moreover, if X is finite, then $\Lambda \cap \mathbf{k}\langle X\rangle$ (as well as any differential ideal in $\mathbf{k}(X)$) is generated as a left ideal by constants from $\mathbf{k}\langle X\rangle^{(2)}$ (see [\[10,](#page-58-12) Corollary 7.8]). Thus, we may formulate the following criterion, which is useful for checking relations.

Lemma 2.11 (Milinski–Schneider criterion). *Suppose that* Ker $\xi = \Lambda$. *If a polynomial* $f \in \mathbf{k}\langle X \rangle$ *is a constant in* A (*that is,* $\partial_i(f) \in \Lambda$, $i \in I$), *then there exists* $\alpha \in \mathbf{k}$ *such that* $f - \alpha = 0$ *in* A.

Of course, one can easily prove this criterion by means of (2.19) , (2.20) and (2.23) using the above shuffle representation because (2.20) implies that all constants in the shuffle coalgebra are scalars.

Quantum Borel algebra

Let $C = ||a_{ij}||$ be a generalised Cartan matrix, symmetrisable by $D = diag(d_1, \ldots, d_n)$: $d_i a_{ij} = d_j a_{ji}$. We denote by g the Kac–Moody algebra defined by C (see [\[5\]](#page-57-2)). Suppose that parameters p_{ij} are related by

$$
p_{ii} = q^{d_i}, \quad p_{ij} p_{ji} = q^{d_i a_{ij}}, \quad 1 \le i, j \le n. \tag{2.27}
$$

Denote by g_i the linear transformation $g_i : x_i \rightarrow p_{ij} x_i$ of the linear space spanned by a set of variables $X = \{x_1, \ldots, x_n\}$. Let χ^i denote the character $\chi^i : g_j \to p_{ij}$ of the group G generated by g_i , $1 \le i \le n$. We consider each x_i as a "quantum variable" with parameters g_i , χ^i . As above, $G(X)$ denotes the skew group algebra with commutation rules $x_i g_j = p_{ij} g_j x_i$, $1 \le i, j \le n$. This algebra has the structure of a character Hopf algebra

$$
\Delta(x_i) = x_i \otimes 1 + g_i \otimes x_i, \quad \Delta(g_i) = g_i \otimes g_i.
$$
 (2.28)

In this case the multiparameter quantisation $U_q^+(\mathfrak{g})$ of the Borel subalgebra \mathfrak{g}^+ is a homomorphic image of $G(X)$ defined by Serre relations with the skew bracket in place of the Lie operation:

$$
[\dots[[x_i, \underbrace{x_j], x_j], \dots, x_j}_{1 - a_{ji} \text{ times}}] = 0, \quad 1 \le i \ne j \le n. \tag{2.29}
$$

By [\[6,](#page-58-13) Theorem 6.1], the left-hand sides of these relations are skew-primitive elements in $G(X)$. Therefore the ideal generated by these elements is a Hopf ideal, while $U_q^+(\mathfrak{g})$ has the natural structure of a character Hopf algebra.

Lemma 2.12 ([\[13,](#page-58-1) Corollary 3.2]). *If* q *is not a root of* 1*, and* C *is of finite type, then every subalgebra* U of $U_q^+(\mathfrak{g})$ containing G is homogeneous with respect to each of the *variables* xⁱ *.*

Definition 2.13. If the multiplicative order t of q is finite, then we define $u_q^+(\mathfrak{g})$ as $G(X)/\Lambda$, where Λ is the largest Hopf ideal in $G(X)^{(2)}$ (see Definition [2.9\)](#page-7-4).

Because a skew-primitive element generates a Hopf ideal, Λ contains all skew-primitive elements of $G\langle X\rangle^{(2)}$. Hence relations [\(2.29\)](#page-10-0) are still valid in $u_q^+(\mathfrak{g})$.

3. Relations in the quantum Borel algebra $U_q^+(\mathfrak{so}_{2n+1})$

In what follows, we fix a parameter q such that $q^4 \neq 1$, $q^3 \neq 1$. If C is a Cartan matrix of type B_n , relations [\(2.27\)](#page-9-1) take the form

$$
p_{nn} = q, \quad p_{ii} = q^2, \quad p_{i,i+1} p_{i+1,i} = q^{-2}, \quad 1 \le i < n; \tag{3.1}
$$

$$
p_{ij}p_{ji} = 1, \quad j > i + 1. \tag{3.2}
$$

Starting with parameters p_{ij} satisfying these relations, we define the group G and the character Hopf algebra $G(X)$ as in the above subsection. In this case the quantum Borel algebra $U_q^+(s \mathfrak{0}_{2n+1})$ is a homomorphic image of $G(X)$ subject to the following relations:

$$
[x_i, [x_i, x_{i+1}]] = 0, \quad 1 \le i < n; \quad [x_i, x_j] = 0, \quad j > i+1; \tag{3.3}
$$

$$
[[x_i, x_{i+1}], x_{i+1}] = [[[x_{n-1}, x_n], x_n], x_n] = 0, \quad 1 \le i < n-1. \tag{3.4}
$$

Here, we slightly modify the Serre relations [\(2.29\)](#page-10-0) so that the left-hand side of each relation is a super-letter. This modification is possible due to the following general relation in $k\langle X\rangle$ (see [\[9,](#page-58-14) Corollary 4.10]):

$$
[\dots[[x_i, \underbrace{x_j], x_j], \dots x_j}_{n}] = \alpha \underbrace{[x_j, [x_j, \dots [x_j, x_i], \dots]], \quad 0 \neq \alpha \in \mathbf{k}, \qquad (3.5)
$$

provided that $p_{ij} p_{ji} = p_{jj}^{1-n}$.

Definition 3.1. The elements u, v are said to be *separated* if there exists an index j , $1 \leq j \leq n$, such that either $u \in \mathbf{k}\langle x_i | i \rangle, v \in \mathbf{k}\langle x_i | i \rangle$ or vice versa: $u \in \mathbf{k}\langle x_i \mid i > j \rangle, v \in \mathbf{k}\langle x_i \mid i < j \rangle.$

Lemma 3.2. In the algebra $U_q^+(\mathfrak{so}_{2n+1})$, any two separated elements u, v, homogeneous *in each* $x_i \in X$, (*skew*) *commute:* $[u, v] = [v, u] = 0$.

Proof. Relations [\(3.2\)](#page-10-1) and conditional antisymmetry [\(2.13\)](#page-4-2) show that $[x_i, x_j] = [x_i, x_i]$ $= 0$ provided that $|i - j| > 1$. Now relations [\(2.10\)](#page-4-3) and [\(2.11\)](#page-4-4) allow one to perform an evident induction.

Certainly, the subalgebra of $U_q^+(\mathfrak{so}_{2n+1})$ generated over $\mathbf{k}[g_1,\ldots,g_{n-1}]$ by $x_i, 1 \leq i$ $\langle n, n \rangle$ is the Hopf algebra U_{a}^{+} q^{\pm} (\mathfrak{sl}_n) defined by the Cartan matrix of type A_{n-1} . Let us replace just one parameter, $p_{nn} \leftarrow q^2$. Then the quantum Borel algebra $U_{q^2}^+$ $q^{\pm}_2(\mathfrak{sl}_{n+1})$ is a homomorphic image of $G'(X)$ subject to the relations

$$
[[x_i, x_{i+1}], x_{i+1}] = [x_i, [x_i, x_{i+1}]] = [x_i, x_j] = 0, \quad j > i+1.
$$
 (3.6)

Here, G' is the group generated by the transformations $g_1, \ldots, g_{n-1}, g'_n$, where $g'_n(x_i) =$ $g_n(x_i)$ for $i \neq n$ and $g'_n(x_n) = q^2 x_n$.

Lemma 3.3. *A relation* $f = 0$, $f \in k\langle X \rangle$, linear in x_n is valid in $U_q^+(\mathfrak{so}_{2n+1})$ if and *only if it is valid in the above algebra* $U_{a^2}^+$ $q^{\pm}_{q^{2}}(\mathfrak{sl}_{n+1}).$

Proof. The element f, an element of a free algebra, belongs to the ideal generated by the defining relations that are independent of x_n or linear in x_n . All these relations are the same for $U_q^+(\mathfrak{so}_{2n+1})$ and for $U_{q^2}^+$ $q^{\frac{1}{2}}(\mathfrak{sl}_{n+1}).$

Lemma 3.4. *If u is a standard word, then either* $u = x_k x_{k+1} \dots x_m$, $k \le m \le n$, *or* $[u] = 0$ in $U_{a^2}^+$ $q^2 \left(\mathfrak{sl}_{n+1}\right)$. *Here* [u] is a nonassociative word with the standard arrangement *of brackets: see the Algorithm on page* [1682](#page-5-1).

Proof. See the third statement of [\[9,](#page-58-14) Theorem A_n].

As a corollary of the above two lemmas, we can prove some relations in $U_q^+(\mathfrak{so}_{2n+1})$:

$$
[[x_{k+1}x_kx_{k-1}], x_k] = 0, \quad [[x_{k-1}x_kx_{k+1}], x_k] = 0, \quad k < n. \tag{3.7}
$$

Indeed, $x_{k-1}x_kx_{k+1}x_k$ is a standard word, and the standard arrangement of brackets is precisely $[[x_{k-1}, [x_k, x_{k+1}]], x_k]$. Hence, [\(2.8\)](#page-4-5) together with Lemmas [3.3](#page-11-0) and [3.4](#page-11-1) implies the latter relation.

The former relation reduces to the latter by means of the replacement $x_i \leftarrow x_{n-i+1}$, $1 \le i \le n, k \leftarrow n - k + 1$. Note that the defining relations [\(3.6\)](#page-11-2) are invariant under this replacement (see [\(3.5\)](#page-10-2)), and we again use Lemmas [3.3](#page-11-0) and [3.4.](#page-11-1)

Definition 3.5. In what follows, x_i , $n < i \leq 2n$, denotes the generator x_{2n-i+1} . Moreover, $u(k, m)$, $1 \le k \le m \le 2n$, is the word $x_k x_{k+1} \ldots x_m$, while $u(m, k)$ is the word $x_mx_{m-1} \ldots x_k$. If $1 \le i \le 2n$, then $\psi(i)$ denotes the number $2n-i+1$, so that $x_i = x_{\psi(i)}$. We shall frequently use the following properties of ψ : if $i < j$, then $\psi(i) > \psi(j)$; $\psi(\psi(i)) = i$; $\psi(i + 1) = \psi(i) - 1$.

Definition 3.6. If $k \le i < m \le 2n$, then we set

$$
\sigma_k^m \stackrel{df}{=} p(u(k, m), u(k, m)),\tag{3.8}
$$

$$
\mu_k^{m,i} \stackrel{df}{=} p(u(k,i), u(i+1,m)) \cdot p(u(i+1,m), u(k,i)). \tag{3.9}
$$

Of course, one can find μ 's and σ 's by means of [\(3.1\)](#page-10-3), [\(3.2\)](#page-10-1). It turns out that these coefficients depend only on q. More precisely,

$$
\sigma_k^m = \begin{cases}\nq & \text{if } m = n \text{ or } k = n + 1; \\
q^4 & \text{if } m = \psi(k); \\
q^2 & \text{otherwise.} \n\end{cases}
$$
\n(3.10)

Indeed, the bimultiplicativity of $p(-, -)$ implies that $\sigma_k^m = \prod_{k \leq s, t \leq m} p_{st}$ is the product of all entries of the $(m-k+1) \times (m-k+1)$ -matrix $||p_{st}||$. By (3.1) all coefficients on the main diagonal equal q^2 with only two possible exceptions, $p_{nn} = q$, $p_{n+1,n+1} = q$. In particular, if $m < n$ or $k > n + 1$, then for nondiagonal coefficients, we have $p_{st}p_{ts} = 1$ unless $|s - t| = 1$, while $p_{s,s+1}p_{s+1,s} = q^{-2}$. Hence, $\sigma_k^m = q^{2(m-k+1)} \cdot q^{-2(k-m)} = q^2$. If $m = n$ or $k = n + 1$, then, by the same reasoning, we have $\sigma_k^m = q^{2(m-k)+1} \cdot q^{-2(k-m)}$ $= q$. In the remaining case, $k \leq n \lt m$, we split the matrix into four submatrices as follows:

$$
\sigma_k^m = \sigma_k^n \cdot \sigma_{n+1}^m \cdot \prod_{k \le s \le n, n+1 \le t \le m} p_{st} \cdot \prod_{n+1 \le s \le m, k \le t \le n} p_{st}.\tag{3.11}
$$

According to Definition [3.5,](#page-11-3) we have $p_{st} = p_{\psi(s)t} = p_{s\psi(t)} = p_{\psi(s)\psi(t)}$. Therefore, the third and fourth factors in (3.11) equal, respectively,

$$
\prod_{k\leq s\leq n,\ \psi(m)\leq t\leq n} p_{st},\qquad \prod_{\psi(m)\leq s\leq n,\ k\leq t\leq n} p_{st}.
$$

In particular, if $\psi(m) = k$, then all four factors in [\(3.11\)](#page-12-0) coincide with $\sigma_k^n = q$. Hence, $\sigma_k^m = q^4$. If $\psi(m) \neq k$, say $\psi(m) > k$, then we split the rectangle $A = [k, n] \times$ $[\psi(m), n]$ into the union of the square $B = [\psi(m), n] \times [\psi(m), n]$ and the rectangle $C = [k, \psi(m) - 1] \times [\psi(m), n]$. Similarly, the rectangle $A^* = [\psi(m), n] \times [k, n]$ is the union of the same square and the rectangle $C^* = [\psi(m), n] \times [k, \psi(m) - 1]$. Certainly, if $(s, t) \in C$, then $t - s > 1$ unless $t = \psi(m) - 1$, $s = \psi(m)$. Hence, relations [\(3.2\)](#page-10-1) imply

$$
\prod_{(s,t)\in C} p_{st} p_{ts} = p_{\psi(m)-1} \psi(m) p_{\psi(m)} \psi(m)-1 = q^{-2}.
$$

At the same time $\prod_{(s,t)\in B} p_{st} = \sigma_{\psi(m)}^n = q$. Finally, [\(3.11\)](#page-12-0) takes the form

$$
\sigma_k^m = q \cdot q \cdot \left(\prod_{(s,t)\in B} p_{st}\right)^2 \cdot \prod_{(s,t)\in C} p_{st} p_{ts} = q^2,
$$

which proves (3.10) .

To find μ 's we consider decomposition [\(3.11\)](#page-12-0) with $n \leftarrow i$. Because $p(-, -)$ is a bimultiplicative map, the product of the last two factors is precisely $\mu_k^{m,i}$. In particular,

$$
\mu_k^{m,i} = \sigma_k^m (\sigma_k^i \sigma_{i+1}^m)^{-1}.
$$
\n(3.12)

This formula, with [\(3.10\)](#page-12-1), allows one to find the μ 's easily. More precisely, if $m < \psi(k)$, then

$$
\mu_k^{m,i} = \begin{cases}\n q^{-4} & \text{if } m > n, i = \psi(m) - 1; \\
 1 & \text{if } i = n; \\
 q^{-2} & \text{otherwise.} \n\end{cases}
$$
\n(3.13)

If $m = \psi(k)$, that is, $x_m = x_k$, then

$$
\mu_k^{m,i} = \begin{cases} q^2 & \text{if } i = n; \\ 1 & \text{otherwise.} \end{cases}
$$
 (3.14)

If $m > \psi(k)$, then the μ 's satisfy $\mu_k^{m,i} = \mu_{\psi(m)}^{\psi(k), \psi(i)-1}$, hence one may use [\(3.13\)](#page-13-0):

$$
\mu_k^{m,i} = \begin{cases}\nq^{-4} & \text{if } k \le n, i = \psi(k); \\
1 & \text{if } i = n; \\
q^{-2} & \text{otherwise.} \n\end{cases}
$$
\n(3.15)

We define the bracketing of $u(k, m)$, $k \le m$, as follows:

$$
u[k,m] = \begin{cases} [[[...[x_k, x_{k+1}], ...], x_{m-1}], x_m] & \text{if } m < \psi(k); \\ [x_k, [x_{k+1}, [...,[x_{m-1}, x_m], ...]]] & \text{if } m > \psi(k); \\ \beta[u[n+1, m], u[k, n]] & \text{if } m = \psi(k), \end{cases}
$$
(3.16)

where $\beta = -p(u(n+1, m), u(k, n))^{-1}$ normalizes the coefficient of $u(k, m)$. The condi-tional identity [\(2.9\)](#page-4-6) shows that the value of $u[k, m]$ in $U_q^+(s_0, a_{2n+1})$ is independent of the arrangement of brackets provided that $m \le n$ or $k > n$.

In what follows, \sim denotes projective equality: $a \sim b$ if and only if $a = \alpha b$, where $0 \neq \alpha \in \mathbf{k}$.

Lemma 3.7. *If* $t \notin \{k - 1, k\}, t < n$, *then* $[u[k, n], x_t] = [x_t, u[k, n]] = 0$.

Proof. If $t \leq k - 2$, then the equality follows from the second group of defining relations [\(3.3\)](#page-10-4). Let $k < t < n$. By [\(2.8\)](#page-4-5), we may write

$$
[u[k,n], x_t] = [[u[k, t-2], u[t-1, n]], x_t] = [u[k, t-2], [u[t-1, n], x_t]].
$$

By Lemma [3.4,](#page-11-1) the element $[u[t-1, n], x_t]$ equals zero in U_{a}^+ $q^{\pm}_2(\mathfrak{sl}_{n+1})$ because the word $u(t-1, n)x_t$ is standard, and the standard bracketing is precisely [u[t−1, n], x_t]. This element is linear in x_n . Hence, $[u[k, n], x_t] = 0$ in $U_q^+(s_0_{2n+1})$ due to Lemma [3.3.](#page-11-0) Because $p(u(k, n), x_t)p(x_t, u(k, n)) = p_{t t+1}p_{t t}p_{t-1} \cdot p_{t+1 t}p_{t t}p_{t-1 t} = 1$, the antisymmetry identity (2.13) applies. **Lemma 3.8.** *If* $t \notin {\psi(m) - 1, \psi(m)}$, $t < n < m$, then

$$
[x_t, u[n+1, m]] = [u[n+1, m], x_t] = 0.
$$

Proof. If $t \le \psi(m) - 2$, then the required relation follows from the second group of relations [\(3.3\)](#page-10-4). Let $\psi(m) < t < n$. By Lemma [2.1,](#page-4-7) the value of $u[n + 1, m]$ in $U_q^+(\mathfrak{so}_{2n+1})$ is independent of the arrangement of brackets. In particular, $u[n+1,m] =$ $[[w, [x_{t+1}x_{t}x_{t-1}]], v],$ where $w = u[n+1, \psi(t) - 2], v = u[\psi(t) + 2, m].$ Because p_{t} _{t+1} p_{tt} p_{t-1} · p_{t+1} _t p_{tt} p_{t-1} _t = 1, the antisymmetry identity [\(2.13\)](#page-4-2) and the first equal-ity of [\(3.7\)](#page-11-4) imply $[x_t, [x_{t+1}x_t x_{t-1}]] \sim [[x_{t+1}x_t x_{t-1}], x_t] = 0$. Note that $[x_t, w] = [w, x_t]$ $= 0$, $[x_t, v] = [v, x_t] = 0$ according to the second group of defining relations [\(3.3\)](#page-10-4).

Lemma 3.9. *If* $k \le n < m < \psi(k)$, *then the value in* $U_q^+(\mathfrak{so}_{2n+1})$ *of the bracketed word* $[y_kx_{n+1}x_{n+2}...x_m]$, *where* $y_k = u[k, n]$, *is independent of the arrangement of brackets.*

Proof. To apply [\(2.9\)](#page-4-6), it suffices to check $[u[k, n], x_t] = 0, n + 1 < t \leq m$. Because the application of ψ changes the order, we have $k < \psi(m) \leq \psi(t) < n$. Hence, taking into account $x_t = x_{\psi(t)}$, one may use Lemma [3.7.](#page-13-1)

Lemma 3.10. *If* $k \le n < \psi(k) < m$, *then the value in* $U_q^+(\mathfrak{so}_{2n+1})$ *of the bracketed word* $[x_kx_{k+1} \ldots x_ny_m]$, *where* $y_m = u[n+1, m]$, *is independent of the arrangement of brackets.*

Proof. To apply [\(2.9\)](#page-4-6), we need $[x_t, u[n+1,m]] = 0, k \le t < n$. To obtain these equalities, one may use Lemma [3.8.](#page-13-2)

Lemma 3.11. *If* $m \neq \psi(k)$, $k \leq i \leq n \leq m$, *then*

$$
[u[k, i], u[n+1, m]] = [u[n+1, m], u[k, i]] = 0
$$

unless $i = \psi(m) - 1$.

Proof. We denote $u = u[k, i]$, $w = u[n + 1, m]$. Relations [\(3.1\)](#page-10-3), [\(3.2\)](#page-10-1) imply $p_{uw} p_{wu} = 1$. Hence, by [\(2.13\)](#page-4-2), we have $[u, w] = -p_{uw}[w, v]$.

If $\psi(m) < k$, then by Lemma [3.8,](#page-13-2) we have $[x_t, u[n+1, m]] = 0, k \le t \le i$. Hence, $[u[k, i], u[n+1, m]] = 0.$

Suppose that $\psi(m) > k$. If $i < \psi(m) - 1$, then by the second group of defining rela-tions [\(3.3\)](#page-10-4), we have $[x_t, u[n+1, m]] = 0, k \le t \le i$. Hence, $[u[k, i], u[n+1, m]] = 0$.

Let $\psi(m) \leq i < n$. If we define $u_1 = u[k, \psi(m) - 2], u_2 = u[\psi(m) - 1, i],$ then certainly $u = [u_1, u_2]$ unless $k = \psi(m) - 1$, $u = u_2$. Because $[u_1, w] = 0$, the conditional Jacobi identity (2.8) implies that, in both cases, we only need to check $[u_2, w] = 0.$

Let us put $u_3 = [x_{\psi(m)-1}, x_{\psi(m)}], u_4 = u[\psi(m) + 1, i].$ Then $u_2 = [u_3, u_4]$ unless $i = \psi(m)$, $u_2 = u_3$. By Lemma [3.8,](#page-13-2) we have $[x_t, u[n+1, m]] = 0$ for all t, $\psi(m)$ < $t < n$. Hence, $[u_4, w] = 0$. Now the Jacobi identity [\(2.6\)](#page-4-0) with $u \leftarrow u_3$, $v \leftarrow u_4$ shows that it suffices to prove the equality $[u_3, w] = 0$.

Let us put $w_1 = u[n + 1, m - 2], w_2 = [x_{m-1}, x_m].$ Then $w = [w_1, w_2]$ unless $m-2=n$, $w=w_2$ (recall that we are considering the case $\psi(m) \leq i < n$, in particular $\psi(m) \le n - 1$, and hence $m \ge \psi(n - 1) = n + 2$). We now have $[u_3, w_1] = 0$. Therefore the Jacobi identity [\(2.6\)](#page-4-0) with $u \leftarrow u_3$, $v \leftarrow w_1$, $w \leftarrow w_2$ shows that it is sufficient to obtain the equality $[u_3, w_2] = 0$, that is, $[[x_{t-1}, x_t], [x_{t+1}, x_t]] = 0$ with $t = \psi(m) < n$. Since $[[x_{t-1}, x_t], x_t] = 0$ is one of the defining relations, the conditional identity [\(2.8\)](#page-4-5) implies $[[x_{t-1}, x_t], [x_{t+1}, x_t]] = [[x_{t-1}x_t x_{t+1}], x_t]$. It remains to apply the second equality of (3.7) .

Lemma 3.12. *If* $m \neq \psi(k)$, $k \leq n < i < m$, then

$$
[u[k, n], u[i + 1, m]] = [u[i + 1, m], u[k, n]] = 0
$$

unless $i = \psi(k)$.

Proof. The proof is quite similar to the preceding one. It is based on Lemma [3.7](#page-13-1) and the first equality of (3.7) in the same way as the proof of the above lemma is based on Lemma [3.8](#page-13-2) and the second equality of (3.7) .

Corollary 3.13. *If* $m \neq \psi(k)$, $k \leq n < m$, then in $U_q^+(\mathfrak{so}_{2n+1})$ we have

$$
u[k,m] = [u[k,n], u[n+1,m]] = \beta[u[n+1,m], u[k,n]],
$$
\n(3.17)

where $\beta = -p(u(n + 1, m), u(k, n))^{-1}$.

Proof. Let us denote $u = u[k, n]$, $v = u[n + 1, m]$. Equalities [\(3.13\)](#page-13-0) and [\(3.15\)](#page-13-3) with $i = n$ show that $p_{uv}p_{vu} = \mu_k^{m,n} = 1$ provided that $m \neq \psi(k)$. Hence, $[u, v] = uv$ $p_{uv}vu = -p_{uv}[v, u]$, which proves the second equality. To prove the first, we apply Lemma [3.9](#page-14-0) if $m < \psi(k)$, and otherwise we apply Lemma [3.10.](#page-14-1)

Proposition 3.14. *If* $m \neq \psi(k)$, *then in* $U_q^+(\mathfrak{so}_{2n+1})$ *for each i*, $k \leq i < m$, we have

$$
[u[k, i], u[i + 1, m]] = u[k, m]
$$

with only two possible exceptions, $i = \psi(m) - 1$ *and* $i = \psi(k)$.

Proof. If $m \le n$ or $k \ge n + 1$, then the statement follows from [\(2.9\)](#page-4-6). Thus, we may suppose that $m > n$.

If $i = n$, then Corollary [3.13](#page-15-0) implies the required formula.

If $i > n$, then Corollary [3.13](#page-15-0) yields $u[k, i] = [u[k, n], u[n + 1, i]]$, while by Lem-ma [3.12](#page-15-1) we have $[u[k, n], u[i + 1, m]] = 0$. Hence, [\(2.8\)](#page-4-5) implies

 $[[u[k, n], u[n+1, i]], u[i+1, m]] = [u[k, n], [u[n+1, i], u[i+1, m]]].$

Now, [\(2.9\)](#page-4-6) shows that $[u[n+1, i], u[i+1, m]] = [u[n, m]]$, and again Corollary [3.13](#page-15-0) implies the required formula.

If $i < n$, then Corollary [3.13](#page-15-0) yields $u[i + 1, m] = [u[i + 1, n], u[n + 1, m]]$, while by Lemma [3.11](#page-14-2) we have $[u[k, i], u[n + 1, m]] = 0$. Hence, [\(2.8\)](#page-4-5) implies

$$
[[u[k, i], [u[i + 1, n], u[n + 1, m]]] = [[u[k, i], [u[i + 1, n]], u[n + 1, m]].
$$

Now, [\(2.9\)](#page-4-6) shows that $[u[k, i], u[i + 1, n] = u[k, n]$, and again Corollary [3.13](#page-15-0) implies the required formula.

Proposition 3.15. *If* $m \neq \psi(k)$, $k \leq i < j < m$, $m \neq \psi(i) - 1$, $j \neq \psi(k)$, then $[u[k, i], u[j + 1, m]] = 0$. *If, additionally,* $i \neq \psi(j) - 1$, *then* $[u[j + 1, m], u[k, i]] = 0$.

Proof. If $m \le n$ or $k > n$, then $u[k, i]$ and $u[j + 1, m]$ are separated by x_i ; hence, the statement follows from Lemma [3.2.](#page-11-5)

If $k \le n \le i$, then by Corollary [3.13,](#page-15-0) we have $u[k, i] = [a, b]$ with $a = u[k, n]$, $b = u[n + 1, i]$. The second group of relations [\(3.3\)](#page-10-4) implies [b, $u[j + 1, m]] = 0$, while Lemma [3.12](#page-15-1) implies $[a, u[j+1, m]] = 0$. Hence by [\(2.6\)](#page-4-0) we obtain the required relation.

If $j < n \le m$, then, again by Corollary [3.13,](#page-15-0) we have $u[j + 1, m] = [a, b]$ with $a =$ $u[j+1, n], b = u[n+1, m]$. The second group of relations [\(3.3\)](#page-10-4) implies [u[k, i], a] = 0, while Lemma [3.11](#page-14-2) implies $[u[k, i], b] = 0$. Hence, by [\(2.6\)](#page-4-0), we obtain the required relation.

Assume $i \le n \le j$. If $i > \psi(j) - 1$, then, by taking into account Lemma [3.3,](#page-11-0) one may apply Lemma [3.12](#page-15-1) with $n \leftarrow i$, $i \leftarrow j$. Similarly, if $i \leftarrow \psi(j) - 1$, one may apply Lemma [3.11](#page-14-2) with $n \leftarrow \psi(j) - 1$. Let $i = \psi(j) - 1$. We may apply the case " $i > \psi(j) - 1$ ", which was already considered, to the sequence $k \le i < j' < m$ with $j' = j + 1$, unless $j' = m$ or $j' = \psi(k)$. Thus, $[u[k, i], u[j + 2, m]] = 0$ provided that $j + 1 \neq m$, $j + 1 \neq \psi(k)$. Lemma [2.1](#page-4-7) implies

$$
[u[k, i], x_i] = [u[k, i-2], [[x_{i-1}, x_i], x_i]] = 0,
$$
\n(3.18)

because the inequality $i < j - 1$ and the equality $i = \psi(j) - 1$ imply $i < n$. Now, if $j + 1 \neq m$, $j + 1 \neq \psi(k)$, then using Lemma [2.1,](#page-4-7) we have

$$
[u[k, i], u[j+1, m]] = [u[k, i], [x_i, u[j+2, m]]] \stackrel{(2.8)}{=} [[u[k, i], x_i], u[j+2, m]] \stackrel{(3.18)}{=} 0,
$$

for $x_{j+1} = x_i$. The exceptional equality $j + 1 = \psi(k)$ implies $k = \psi(j) - 1 = i$. In this case, taking into account Lemma [2.1,](#page-4-7) we have

$$
[x_i, u[j+1, m]] = [[x_i, [x_i, x_{i-1}]], u[j+3, m]] = 0.
$$

The exceptional equality $j + 1 = m$ implies $u[1 + j, m] = x_m = x_i$, for $\psi(j + 1) = i$. Hence, relation [\(3.18\)](#page-16-0) applies. The equality $[u[k, i], u[j + 1, m]] = 0$ is proven.

Assume $i \neq \psi(j) - 1$. Definition [\(3.9\)](#page-12-2) shows that

$$
p(u(k, i), u(j + 1, m)) \cdot p(u(j + 1, m), u(k, i)) = \mu_k^{m, i} (\mu_k^{j, i})^{-1}.
$$

Using [\(3.13\)](#page-13-0) and [\(3.15\)](#page-13-3), we shall prove that $\mu_k^{m,i} = \mu_k^{j,i}$ $\mu_k^{j,i}$. If $i = n$, then $\mu_k^{m,i} = \mu_k^{j,i} = 1$. Let $i \neq n$. If $m < \psi(k)$, then $\mu_k^{m,i} = q^{-2}$ because $i = \psi(m) - 1$ is equivalent to $m = \psi(i) - 1$. Similarly, $\mu_k^{j,i} = q^{-2}$ since $j \neq \psi(i) - 1$ and $j \leq m < \psi(k)$.

If $m > \psi(k)$ and $i \neq \psi(k)$, then by [\(3.15\)](#page-13-3), we have $\mu_k^{m,i} = q^{-2}$, while $\mu_k^{j,i} = q^{-2}$ in both cases: if $j < \psi(k)$ by [\(3.13\)](#page-13-0), and if $j > \psi(k)$ by [\(3.15\)](#page-13-3). Finally, if $i = \psi(k)$, then $j > i = \psi(k)$; hence, [\(3.15\)](#page-13-3) implies $\mu_k^{m,i} = \mu_k^{j,i} = q^{-4}$.

To obtain $[u[j + 1, m], u[k, i]] = 0$, apply (2.13) .

4. PBW-generators of the quantum Borel algebra

Proposition 4.1. *If* $q^3 \neq 1$, $q^4 \neq 1$, *then the values of the elements* $u[k, m]$, $k \leq m$ $<\psi(k)$, form a set of PBW-generators for the algebra $U_q^+(\mathfrak{so}_{2n+1})$ over $\mathbf{k}[G]$. All heights *are infinite.*

Proof. By [\[9,](#page-58-14) Theorem B_n , p. 211] the set of PBW-generators (the values of hard super-letters; see Theorem [2.5\)](#page-6-0) consists of $[u_{km}]$, $k < m < n$, and $[w_{ks}]$, $1 < k < s < n$, where $[u_{km}]$, $[w_{ks}]$ are precisely the words $u(k, m)$, $u(k, \psi(s))$ with the standard arrangement of brackets (see Algorithm p. [1682\)](#page-5-1). By conditional identity [\(2.9\)](#page-4-6) we have $[u_{km}] = u[k, m]$ in $U_q^+($ $\mathfrak{so}_{2n+1})$. According to [\[9,](#page-58-14) Lemma 7.8], the brackets in [w_{ks}] are set by the following recurrence formulae:

$$
[w_{ks}] = [x_k[w_{k+1s}]] \quad \text{if } 1 \le k < s - 1; [w_{kk+1}] = [[w_{kk+2}]x_{k+1}] \quad \text{if } 1 \le k < n,
$$
\n
$$
(4.1)
$$

where, by definition, $w_{k,n+1} = u(k, n)$. We shall check the equality $[w_{ks}] = u[k, \psi(s)]$ in $U_q^+(\mathfrak{so}_{2n+1})$.

If $k = n - 1$ and $s = n$, then $w_{ks} = [[x_{n-1}, x_n], x_n] = u[n - 1, n + 2]$.

If $k < s - 1$, then, by [\(2.8\)](#page-4-5), we have

$$
[x_k, [u[k+1,n], u[n+1, \psi(s)]]] = [u[k,n], u[n+1, \psi(s)]]
$$

for $[x_k, x_l] = 0$, $n+1 \le t \le \psi(s)$. Thus, the evident induction applies because of [\(3.17\)](#page-15-0). If $s = k + 1 < n$, then the second option of [\(4.1\)](#page-17-1) is fulfilled. This allows us to apply the already proven equality for $[w_{k,k+2}]$.

If q is not a root of 1, then the fourth statement of [\[9,](#page-58-14) Theorem B_n , p. 211] shows that each skew-primitive element in $U_q^+(\mathfrak{so}_{2n+1})$ is proportional to either x_i , $1 \le i \le n$, or 1 − g, g ∈ G. In particular, ξ (G $\langle X \rangle$ ⁽²⁾) has no nonzero skew-primitive elements. At the same time, due to the Heyneman–Radford theorem [\[4\]](#page-57-3), [\[8,](#page-58-15) Corollary 5.3] every bi-ideal of a character Hopf algebra has a nonzero skew-primitive element. Therefore, Ker $\xi = \Lambda$, while the subalgebra A generated by the values of x_i , $1 \le i \le n$, in $U_q^+(\mathfrak{so}_{2n+1})$ has the shuffle representation given in Section 2.

If the multiplicative order of q is finite, then by the definition of $H = u_q^+(\mathfrak{so}_{2n+1}),$ we have Ker $\xi = \Lambda$. Hence, the subalgebra A generated by the values of x_i , $1 \le i \le n$, in $u_q^+(\mathfrak{so}_{2n+1})$ also has the shuffle representation.

Recall that $(u(m, k))$ denotes the tensor $x_m \otimes x_{m-1} \otimes \cdots \otimes x_k$ considered as an element of $Sh_{\tau}(V)$.

Proposition 4.2. *Let* $k \le m \le 2n$ *. In the shuffle representation, we have*

$$
u[k,m] = \alpha_k^m \cdot (u(m,k)), \quad \alpha_k^m \stackrel{df}{=} \varepsilon_k^m (q^2 - 1)^{m-k} \cdot \prod_{k \le i < j \le m} p_{ij}, \tag{4.2}
$$

where

$$
\varepsilon_k^m = \begin{cases}\n1 & \text{if } m \le n \text{ or } k > n; \\
q^{-1} & \text{if } k \le n < m, \ m \neq \psi(k); \\
q^{-3} & \text{if } m = \psi(k).\n\end{cases}
$$
\n(4.3)

Proof. We use induction on $m - k$. If $m = k$, the equality reduces to $x_k = (x_k)$.

(a) Consider first the case $m < \psi(k)$. By the inductive supposition, we have $u[k, m-1]$ $= \alpha_k^{m-1} \cdot (w), w = u(m-1, k)$. Using [\(2.21\)](#page-7-5), we may write

$$
u[k,m] = \alpha_k^{m-1} \{ (w)(x_m) - p(w, x_m) \cdot (x_m)(w) \}
$$

= $\alpha_k^{m-1} \sum_{uv=w} \{ p(x_m, v)^{-1} - p(w, x_m) p(u, x_m)^{-1} \} (ux_m v).$ (4.4)

Because $w = uv$, we have $p(w, x_m) p(u, x_m)^{-1} = p(v, x_m)$.

If $m \le n$, then relations [\(3.2\)](#page-10-1) imply $p(v, x_m)p(x_m, v) = 1$ except when $v = w$. Hence, the sum [\(4.4\)](#page-18-0) has just one term. The coefficient of $(x_m w) = (u(m, k))$ equals

$$
\alpha_k^{m-1} p(w, x_m) (p(w, x_m)^{-1} p(x_m, w)^{-1} - 1) = \alpha_k^{m-1} p(w, x_m) (q^2 - 1),
$$

as required.

If $m = n + 1$, then $p(v, x_m) p(x_m, v) = 1$ still holds, with two exceptions: for $v = w$ and $v = u(n - 1, k)$. In both cases, $(u x_m v)$ equals $(u(m, k))$. Hence, the coefficient of $(u(m, k))$ in the sum (4.4) equals

$$
p(x_n, u(k, n-1))^{-1} - p(u(k, n-1), x_n) + p(x_n, u(k, n))^{-1} - p(u(k, n), x_n)
$$

= $p(w, x_{n+1}) \{p_{n+1}^{-1} p_{n-1}^{-1} p_{nn}^{-1} - p_{nn}^{-1} + p_{n+1}^{-1} p_{nn}^{-1} p_{n-1}^{-1} n - 1\}.$

Due to [\(3.1\)](#page-10-3), [\(3.2\)](#page-10-1) we obtain $\alpha_k^m = \alpha_k^{m-1} p(w, x_{n+1}) (q^2 - 1) q^{-1}$, as required.

Suppose that $m > n + 1$. In this case, by definition, $x_m = x_t$, where $t = \psi(m)$ $\psi(n + 1) = n$. Let $v = u(s, k)$. If $s < t - 1$, then v depends only on x_i , $i < t - 1$, and relations [\(3.1\)](#page-10-3), [\(3.2\)](#page-10-1) imply $p(v, x_m)p(x_m, v) = 1$. If $s > t$, $s \neq m - 1$, then $p(v, x_m)p(x_m, v) = p_{t-1} p_{tt} p_{t+1} \cdot p_{tt-1} p_{tt} p_{t+1} = 1$. Hence, in [\(4.4\)](#page-18-0), three terms remain: with $s = t - 1$, $s = t$, and $s = m - 1$. If $v = u(t - 1, k)$ or $v = u(t, k)$, then (ux_mv) equals $(u(k, t)x_t^2u(t + 1, m - 1))$, while the coefficient of this tensor in [\(4.4\)](#page-18-0) is

$$
p(x_t, u(k, t-1))^{-1} - p(u(k, t-1), x_t) + p(x_t, u(k, t))^{-1} - p(u(k, t), x_t)
$$

=
$$
p(u(k, t), x_t) \{p_{tt-1}^{-1} p_{t-1}^{-1} p_{tt}^{-1} - p_{tt}^{-1} + p_{tt}^{-1} p_{t-1}^{-1} p_{t-1}^{-1} p_{tt}^{-1} - 1\} = 0.
$$

Thus, in [\(4.4\)](#page-18-0) only one term remains, with $v = u(m - 1, k)$. This term has the required coefficient:

$$
\alpha_k^m = \alpha_k^{m-1} (p(x_m, w)^{-1} - p(w, x_m)) = \alpha_k^{m-1} p(w, x_m) (q^2 - 1).
$$

(b) In perfect analogy, we consider the case $m > \psi(k)$. By the inductive supposition, we have $u[k + 1, m] = \alpha_{k+1}^m \cdot (w)$, $w = u(m, k + 1)$. Using [\(2.21\)](#page-7-5), we may write

$$
u[k,m] = \alpha_{k+1}^m \{(x_k)(w) - p(x_k, w) \cdot (w)(x_k)\}
$$

= $\alpha_{k+1}^m \sum_{uv=w} \{p(u, x_k)^{-1} - p(x_k, u)\}(ux_k v).$ (4.5)

If $k > n$, then $p(u, x_k)p(x_k, u) = 1$ unless $u = w$. Hence, [\(4.5\)](#page-18-1) has only one term, and the coefficient equals

$$
\alpha_{k+1}^m p(x_k, w) (p(w, x_k)^{-1} p(x_k, w)^{-1} - 1) = \alpha_{k+1}^m p(x_k, w) (q^2 - 1),
$$

as required.

If $k = n$, then $p(u, x_k)p(x_k, u) = 1$ with two exceptions, $u = w$ and $u = u(m, n+2)$. In both cases, (ux_kv) equals $(u(m, k))$, while the coefficient takes the form

$$
p(w, x_n)^{-1} - p(x_n, w) + p(u(m, n+2), x_n)^{-1} - p(x_n, u(m, n+2))
$$

= $p(x_n, w) \{p_{n}^{-1}p_{n-1}^{-1}p_{nn}^{-2} - 1 + p_{nn-1}^{-1}p_{n-1}^{-1}p_{nn}^{-1} - p_{nn}^{-1}\}.$

Due to relations [\(3.1\)](#page-10-3), [\(3.2\)](#page-10-1) we obtain $\alpha_n^m = \alpha_{n+1}^m p(x_n, w) (q^2 - 1) q^{-1}$, as required.

Suppose that $k < n$. In this case, $x_k = x_t$ with $m > t \stackrel{df}{=} \psi(k) > \psi(n) = n + 1$. Let $u = u(m, s)$. If $s > t$, then u depends only on x_i , $i < k - 1$, and relations [\(3.1\)](#page-10-3), [\(3.2\)](#page-10-1) imply $p(x_k, u)p(u, x_k) = 1$. If $s < t - 1$, $s \neq k + 1$, then $p(x_k, u)p(u, x_k) =$ $p_{k-1 k} p_{k k} p_{k+1 k} \cdot p_{k k-1} p_{k k} p_{k+1 k} = 1$. Hence, three terms remain in [\(4.5\)](#page-18-1), with s = t, $s = t + 1$, and $s = k + 1$. If $u = u(m, t)$ or $u = u(m, t + 1)$, then $ux_kv =$ $u(m, t + 1)x_k^2 u(t - 1, k)$, while the coefficient of the corresponding tensor is

$$
p(u(m, t+1), x_k)^{-1} - p(x_k, u(m, t+1)) + p(u(m, t), x_k)^{-1} - p(x_k, u(m, t))
$$

= $p(x_k, u(m, t+1)) \{p_{k-1}^{-1} k p_{k}^{-1} - 1 + p_{kk}^{-1} p_{k-1}^{-1} k p_{k-1}^{-1} - p_{kk}\} = 0.$

Thus, only one term remains in [\(4.4\)](#page-18-0), and

$$
\alpha_k^m = \alpha_{k+1}^m (p(w, x_k)^{-1} - p(x_k, w)) = \alpha_{k+1}^m p(x_k, w) (q^2 - 1).
$$

(c) Let us consider the remaining case, $m = \psi(k)$. In this case, $x_m = x_k$. If $k = n$, $m = n + 1$, then $u[n, n + 1] = -p_{nn}^{-1}[x_n, x_n] = (1 - q^{-1})x_n^2$, while in the shuffle representation we have $(x_n)(x_n) = (1+q^{-1})(x_n x_n)$. Hence, $u[n, n+1] = (1-q^{-2})(x_{n+1} x_n)$, which is as required: $(1 - q^{-2}) = q^{-3} \cdot (q^2 - 1) \cdot p_{nn}$.

If $k < n$, we put $u = u[n + 1, m]$, $v = x_k$, $w = u[k + 1, n]$. By definition [\(3.16\)](#page-13-4), we have $u[k, m] = \beta[u, [v, w]]$, where $\beta = -p(u(n + 1, m), u(k, n))^{-1}$; that is, $\beta =$ $-p_{u,vw}^{-1}$. Because $u[n+1,m] = [u[n+1,m-2], [x_{k+1}, x_k]]$, the conditional identity (2.8) implies $[u, v] = [u[n+1, m-2], [[x_{k+1}, x_k], x_k]] = 0$. Thus, $[[u, v], w] = 0$, and formula [\(2.7\)](#page-4-8) yields

$$
\beta^{-1}u[k,m] = p_{uv}x_k \cdot [u,w] - p_{vu}[u,w] \cdot x_k. \tag{4.6}
$$

Formula [\(3.17\)](#page-15-0) implies $\beta_1[u, w] = u[k + 1, m]$ with $\beta_1 = -p_{uw}^{-1}$. Hence case (b) allows us to find the shuffle representation $[u, w] = \alpha \cdot (z)$ with $z = u(m, k + 1)$ and $\alpha =$ $-p_{uw}\alpha_{k+1}^m$. By [\(2.21\)](#page-7-5), the shuffle representation of the right-hand side of [\(4.6\)](#page-19-0) is

$$
\alpha \sum_{sy=u(m,k+1)} (p_{uv} p(s, x_k)^{-1} - p_{vw} p(x_k, y)^{-1}) \cdot (sx_k y)
$$

We have $\beta \alpha = -\beta p_{uw} \alpha_{k+1}^m = p_{uv}^{-1} \alpha_{k+1}^m$, and

$$
p_{uv}p_{vu} = p_{k+1,k}p_{kk}p_{kk+1}p_{kk} = q^2
$$

because $k < n$. Therefore, we obtain

$$
u[k,m] = \alpha_{k+1}^m \sum_{\substack{sy=u(m,k+1)}} (p(s,x_k)^{-1} - q^{-2}p(x_k,s)) \cdot (sx_ky). \tag{4.7}
$$

If $s \notin \{0, x_m, z = u(m, k + 1)\}\$, then $p(s, x_k)p(x_k, s) = p_{k+1,k}p_{kk}p_{kk+1}p_{kk} = q^2$; that is, only three terms remain in [\(4.7\)](#page-20-1). If $s = \emptyset$ or $s = x_m$, then $(sx_ky) = (x_kz)$ because $x_m = x_k$. Hence, the coefficient of $(x_k z)$ in [\(4.7\)](#page-20-1) equals $1 - q^{-2} + p_{kk}^{-1} - q^{-2} p_{kk} = 0$. Thus, in [\(4.7\)](#page-20-1) only one term remains, with the coefficient

$$
\alpha_{k+1}^{m}(p(z, x_k)^{-1} - q^{-2}p(x_k, z)) = \alpha_{k+1}^{m}p(x_k, z)q^{-2}(q^2 - 1) = \alpha_{k}^{m}
$$

because $p(z, x_k) \cdot p(x_k, z) = p_{kk}p_{k+1k}p_{k+1k} \cdot p_{kk}p_{k+1}p_{k+1} = 1.$

Theorem 4.3. In $U_q^+(\mathfrak{so}_{2n+1})$ the coproduct on the elements $u[k, m]$, $k \le m \le 2n$, has *the following explicit form:*

$$
\Delta(u[k, m]) = u[k, m] \otimes 1 + g_k g_{k+1} \cdots g_m \otimes u[k, m]
$$

+
$$
\sum_{i=k}^{m-1} \tau_i (1 - q^{-2}) g_k g_{k+1} \cdots g_i u[i+1, m] \otimes u[k, i],
$$
 (4.8)

where $\tau_i = 1$ *for* $i \neq n$ *and* $\tau_n = q$.

Proof. Formulae (4.2) , (2.20) , and (2.19) show that the coproduct has the form (4.8) , where $\tau_i(1 - q^{-2}) = \alpha_k^m (\alpha_k^i \alpha_{i+1}^m)^{-1} \chi^{u(i+1,m)}(g_k g_{k+1} \dots g_i)$. We now have

$$
\left(\prod_{k\leq a
$$

Therefore the definition of μ_k^m given in [\(3.9\)](#page-12-2) and the definition of α_k^m given in [\(4.2\)](#page-17-2) imply $\tau_i(1-q^{-2}) = \varepsilon_k^m (\varepsilon_k^i \varepsilon_{i+1}^m)^{-1} (q^2-1) \mu_k^{m,i}$; that is, $\tau_i = \varepsilon_k^m (\varepsilon_k^i \varepsilon_{i+1}^m)^{-1} q^2 \mu_k^{m,i}$. By [\(3.12\)](#page-13-5), we have $\mu_k^{m,i} = \sigma_k^m (\sigma_k^i \sigma_{i+1}^m)^{-1}$. Using [\(3.10\)](#page-12-1) and [\(4.3\)](#page-17-0), we see that

$$
\varepsilon_k^m \sigma_k^m = \begin{cases} q^2 & \text{if } m < n \text{ or } k > n+1; \\ q & \text{otherwise.} \end{cases} \tag{4.9}
$$

Now, it is easy to check that the τ 's have the following elegant form:

$$
\tau_i = \varepsilon_k^m \sigma_k^m (\varepsilon_k^i \sigma_k^i)^{-1} (\varepsilon_{i+1}^m \sigma_{i+1}^m)^{-1} q^2 = \begin{cases} q & \text{if } i = n; \\ 1 & \text{otherwise.} \end{cases}
$$
 (4.10)

Interestingly, the coproduct formula differs from that in U_{a}^{+} q^{\pm}_{q} (\mathfrak{sl}_{2n+1}) in just one term: see formula (3.3) in [\[11\]](#page-58-3).

Now we are going to find PBW-generators for $u_q^+(\mathfrak{so}_{2n+1})$. To do this, we need more relations in $U_q^+(\mathfrak{so}_{2n+1})$.

Lemma 4.4. If $k \le m < \psi(k)$, then in the algebra $U_q^+(\mathfrak{so}_{2n+1})$ we have

$$
[u[k, m], [u[k, m], u[k + 1, m]]] = 0.
$$
 (4.11)

Proof. Suppose first $m < \psi(k) - 1$. In this case, both words $u(k, m)$ and $u(k + 1, m)$ are standard. The standard arrangement of brackets for these words is defined by [\(4.1\)](#page-17-1). How-ever, in Proposition [4.1,](#page-17-3) we have seen that $[u(k, m)] = u[k, m]$, and hence $[u(k+1, m)] =$ $u[k+1, m]$ in the algebra $U_q^+(\mathfrak{so}_{2n+1})$.

The word $w = u(k, m)u(k, m)u(k + 1, m)$ is standard. The Algorithm on p. [1682](#page-5-1) shows that the standard arrangement of brackets is precisely

$$
[[u(k, m)],[[u(k, m)],[u(k+1, m)]]].
$$

Hence, the value of the super-word [w] in $U_q^+(\mathfrak{so}_{2n+1})$ equals the left-hand side of [\(4.11\)](#page-21-0).

By Proposition [4.1,](#page-17-3) all hard super-letters in $U_q^+(\mathfrak{so}_{2n+1})$ are $[u(k, m)]$, $k \le m < \psi(k)$. Hence, $[w]$ is not hard. The multiple use of Definition [2.3](#page-5-2) shows that the value of $[w]$ is a linear combination of the values of super-words in hard super-letters smaller than [w]. Because $U_q^+(\mathfrak{so}_{2n+1})$ is homogeneous, each of the super-words in that decomposition has two hard super-letters smaller than $[w]$ and of degree 1 in x_k (if a hard super-letter $[u(r, s)]$ is of degree 2 in x_k , then $r < k$ and $u(r, s) > w$). At the same time, all such hard super-letters are $[u(k, m+1)]$, $[u(k, m+2)]$, ..., $[u(k, 2n-k)]$. Each has degree 2 in x_{m+1} if $m \ge n$, and each has degree at least 1 if $m < n$. Hence, the super-word has degree at least 4 in x_{m+1} if $m \ge n$, and at least 1 if $m < n$. However, w is of degree 3 in x_{m+1} if $m \ge n$, and it is independent of x_{m+1} if $m < n$. Therefore, the decomposition is empty, and $[w] = 0$.

Let, then, $m = \psi(k) - 1$. In this case, $u(k+1, m)$ is not standard, and we cannot apply the above arguments. Nevertheless, we shall prove similarly that $[u[k, 2n - k], x_t] = 0$, $k < t \le n$, which will imply both $[u[k, 2n-k], u[k+1, 2n-k]] = 0$ and [\(4.11\)](#page-21-0).

If $k + 1 < t < n$, then Lemmas [3.7](#page-13-1) and [3.8](#page-13-2) imply

$$
[u[k,n], x_t] = [u[n+1, 2n-k], x_t] = 0.
$$

Due to Corollary [3.13](#page-15-0) we have $[u[k, 2n-k], x_t] = 0$.

If $t = k + 1$, we consider the word $v = u(k, 2n - k)x_{k+1}$. It is standard, and the standard arrangement of brackets is $[v] = [[u(k, 2n - k)]x_{k+1}].$ Therefore, the value of the super-letter [v] equals $[u[k, 2n - k], x_{k+1}]$. At the same time, [v] does not belong to the set of PBW-generators; that is, it is not hard. The multiple use of Definition [2.3](#page-5-2) shows that the value of $[v]$ is a linear combination of the values of super-words in hard super-letters smaller than $[v]$. Each of the super-words in that decomposition has a hard super-letter smaller than [v] and of degree 1 in x_k . However, there are no such superletters. Thus, the decomposition is empty, and $[v] = 0$.

Let $t = n$. If $k = n - 1$, then $[u[k, 2n - k], x_n] = [[[x_{n-1}, x_n], x_n], x_n] = 0$ because of [\(3.4\)](#page-10-5). If $k = n-2$, we consider the word $u = u(k, 2n-k)x_n = x_{n-2}x_{n-1}x_nx_n-x_{n-1}x_n$. It is standard, while the super-letter $[u]$ is not hard. Again, there is no hard super-letter

smaller than [u] and of degree 1 in x_{n-2} . Hence, [u] = 0 in $U_q^+(\mathfrak{so}_{2n+1})$. The standard arrangement of brackets is $[[x_{n-2}x_{n-1}x_nx_n][x_{n-1}x_n]]$. Hence, we obtain

$$
\[[x_{n-2}, [[x_{n-1}, x_n], x_n]], [x_{n-1}, x_n] \] = 0.
$$

At the same time, $[x_{n-2}, x_n] = 0$ and $[[x_{n-1}, x_n], x_n], x_n] = 0$ imply

$$
\[[x_{n-2}, [[x_{n-1}, x_n], x_n]], x_n \] = 0.
$$

The conditional identity [\(2.8\)](#page-4-5) yields

$$
\big[[x_{n-2}, [[x_{n-1}, x_n], x_n]], [x_{n-1}, x_n]\big] = \big[[[x_{n-2}, [[x_{n-1}, x_n], x_n]], x_{n-1}], x_n\big],
$$

which is as required because $[u[n-2, n+2], x_n] = [[x_{n-2}, [[x_{n-1}, x_n], x_n]], x_{n-1}], x_n]$.

Finally, suppose that $k < n-2$. Denote $u_1 = u[k, n-3], v_1 = u[n+3, 2n-k], w_1 =$ $u[n-2, n+2]$. We have already proved that $[w_1, x_n] = 0$. The second group of relations [\(3.3\)](#page-10-4) implies $[u_1, x_n] = 0$, $[v_1, x_n] = 0$. At the same time, due to Proposition [3.14,](#page-15-2) we have $u[k, 2n - k] = [u[k, n + 2], v_1]$ and $u[k, n + 2] = [u_1, w_1]$; that is, $u[k, 2n - k] =$ [[u₁, w₁], v₁], which certainly implies the required relation [u[k, 2n − k], x_n] = 0. \Box

Proposition 4.5. *If the multiplicative order* t *of* q *is finite,* t > 4, *then the values of* $u[k, m], k \le m < \psi(k)$, form a set of PBW-generators for $u_q^+($ **so**_{$2n+1$}) over **k**[G]. The *height* h *of* $u[k, m]$ *equals* t *if* $m = n$ *or* t *is odd.* If $m \neq n$ *and* \hat{t} *is even, then* $h = t/2$. In *all cases,* $u[k, m]^h = 0$ *in* $u_q^+($ **so**_{2n+1} $)$.

Proof. First, we note that Definition [2.3](#page-5-2) implies that a nonhard super-letter in $U_q^+(\mathfrak{so}_{2n+1})$ is still nonhard in $u_q^+(\mathfrak{so}_{2n+1})$. Hence, all hard super-letters in $u_q^+(\mathfrak{so}_{2n+1})$ are in the list $u[k, m], k \leq m < \psi(k)$. Next, if $u[k, m]$ is not hard in $u_q^+(s_0, n+1)$, then by the multiple use of Definition [2.3,](#page-5-2) the value of $u[k, m]$ is a linear combination of super-words in hard super-letters smaller than the given $u[k, m]$. Because $u_q^+(\mathfrak{so}_{2n+1})$ is homogeneous, each of the super-words in that decomposition has a hard super-letter smaller than $u[k, m]$ and of degree 1 in x_k . At the same time, all such hard super-letters are in the list $[u(k, m+1)]$, $[u(k, m+2)]$, ..., $[u(k, 2n-k)]$. Each of these super-letters has degree 2 in x_{m+1} if $m \ge n$, and at least 1 if $m < n$. Hence, the super-word has a degree of at least 2 if $m \ge n$, and at least 1 if $m < n$. However $u[k, m]$ is of degree 1 in x_{m+1} if $m \ge n$, and is independent of x_{m+1} if $m < n$. Therefore the decomposition is empty, and $u[k, m] = 0$. We obtain a contradiction with Proposition [4.2](#page-17-0) because $(u(m, k)) \neq 0$ in the shuffle algebra.

For short we denote $u = u[k, m]$. Equation [\(3.10\)](#page-12-1) implies $p_{uu} = q$ if $m = n$ and $p_{uu} = q^2$ otherwise (recall that now $m < \psi(k)$). By Definition [2.4](#page-6-2) the minimal possible value for the height is precisely the h given in the proposition. It remains to show that $u^h = 0$ in $u_q^+(\mathfrak{so}_{2n+1})$. By Lemma [2.11,](#page-9-2) it suffices to prove that $\partial_i(u^h) = 0, 1 \le i \le n$. Lemma [2.10](#page-7-6) yields

$$
\partial_i(u^h) = p(u, x_i)^{h-1} \underbrace{[u, [u, \ldots [u, \partial_i(u)] \ldots]]}_{h-1}.
$$

The coproduct formula (4.8) with (2.23) implies

$$
\partial_i(u) = \begin{cases}\n(1 - q^{-2})\tau_k u[k+1, m] & \text{if } i \in \{k, \psi(k)\}, k < m; \\
0 & \text{if } i \notin \{k, \psi(k)\}; \\
1 & \text{if } i \in \{k, \psi(k)\}, k = m.\n\end{cases}
$$
\n
$$
(4.12)
$$

At the same time, Lemma [4.4](#page-20-2) provides the relation $[u, [u, u[k+1, m]]] = 0$ in $U_q^+(\mathfrak{so}_{2n+1})$, and hence in $u_q^+(\mathfrak{so}_{2n+1})$ as well. Because always $h > 2$, we obtain the required equalities $\partial_i(u^h) = 0, 1 \le i \le n$. □

Remark. To prove (4.8) , we have used the shuffle representation. Therefore, if q has a finite multiplicative order, then [\(4.8\)](#page-20-0) is proved only for $u_q^+(\mathfrak{so}_{2n+1})$. However, we have seen that the kernel of the natural homomorphism $U_q^+(\mathfrak{so}_{2n+1}) \to u_q^+(\mathfrak{so}_{2n+1})$ is generated by the elements $u[k, m]^h$, $k \le m < \psi(k)$. The degree of $u[k, m]^h$ in a given x_i is either zero or greater than 2. At the same time, all tensors in [\(4.8\)](#page-20-0) have degree at most 2 in each variable. Therefore, [\(4.8\)](#page-20-0), and hence [\(4.12\)](#page-23-0), are also valid in $U_q^+(\mathfrak{so}_{2n+1})$ provided that q has a finite multiplicative order $t > 4$.

5. PBW-generators for right coideal subalgebras

In what follows A_{k+1} , $k < n$, denotes the subalgebra of $U_q^+(s_0, 0, 0, 1)$ or $u_q^+(s_0, 0, 0, 1)$ generated by x_i , $k < i \leq n$, and correspondingly A is the subalgebra generated by all x_i , $1 \leq i \leq n$. Of course, $\mathbf{k}[g_{k+1},..., g_n]A_{k+1}$ may be identified with $U_q^+(\mathfrak{so}_{2(n-k)+1})$ or $u_q^+(\mathfrak{so}_{2(n-k)+1}).$

Suppose that a homogeneous element $f \in \mathbf{k}\langle X \rangle$ is linear in the maximal letter x_k , $1 \leq k \leq n$, that it depends on: $\deg_k(f) = 1$, $\deg_i(f) = 0$, $i < k$. Then, in the decomposition of $a = \xi(f)$ in the PBW-basis defined in Proposition [4.1](#page-17-3) or Proposition [4.5,](#page-22-0) each summand has only one PBW-generator that depends on x_k because $U_q^+(s_0z_{n+1})$ and $u_q^+(\mathfrak{so}_{2n+1})$ are homogeneous in each x_i . Moreover, this PBW-generator, considered as a super-letter, starts with x_k . Hence, it is the maximal super-letter of the summand. In particular, this super-letter is located at the end of the basis super-word; that is, the PBW-decomposition takes the form

$$
a = \sum_{i=k}^{2n-k} F_i u[k, i], \quad F_i \in A_{k+1}.
$$
 (5.1)

Definition 5.1. The set Sp(a) of all i such that $F_i \neq 0$ in [\(5.1\)](#page-23-1) is called the *spectrum* of a.

Let S be a set of integers from the interval [1, 2n]. We define a polynomial $\Phi^{S}(k, m)$, $1 \leq k \leq m \leq 2n$, by induction on the number r of elements in $S \cap [k, m - 1] =$ $\{s_1, \ldots, s_r\}, k \leq s_1 < \cdots < s_r < m$, as follows:

$$
\Phi^{S}(k,m) = u[k,m] - (1 - q^{-2}) \sum_{i=1}^{r} \alpha_{km}^{s_i} \Phi^{S}(1 + s_i, m) u[k, s_i]
$$
(5.2)

where $\alpha_{km}^s = \tau_s p(u(1+s,m), u(k,s))^{-1}$, while the τ 's were defined in [\(4.10\)](#page-20-3).

We represent the element $\Phi^{S}(k, m)$ schematically as a sequence of black and white points labelled by the numbers $k - 1$, k , $k + 1$, ..., $m - 1$, m , where the first point is always white, and the last one is always black. An intermediate point labelled by i is black if and only if $i \in S$:

$$
\begin{array}{ccccccccc}\nk-1 & k & k+1 & k+2 & k+3 & \dots & m-2 & m-1 & m \\
\circ & \circ & \circ & & \circ & & \circ & & \circ & & \bullet\n\end{array} \tag{5.3}
$$

Sometimes, if $k \le n < m$, it is more convenient to represent the element $\Phi^{S}(k, m)$ in two lines, putting the points labelled by indices i, $\psi(i)$ that define the same variable $x_i = x_{\psi(i)}$ in one column:

$$
\begin{array}{ccccccccc}\nm & & & & & & \psi(i) & \cdots & n+1 \\
\bullet & \cdots & & \bullet & \circ & \cdots & \bullet \\
k-1 & & \psi(m) & & & \bullet & & \cdots \\
\circ & \circ & \cdots & & \bullet & & \cdots & & \circ \\
\end{array}
$$
\n(5.4)

To illustrate the notion of a regular set, we need a *shifted representation* that arises from [\(5.4\)](#page-24-0) by shifting the upper line to the left one step and copying the coloured point labelled by n , if any, to the vacant position (so that this point appears twice in the shifted scheme):

m • · · · ◦ n+i ◦ · · · n+1 • n ◦ ⇐ k−1 ◦ ◦ · · · ψ(m)−1 • · · · • n−i • · · · n−1 ◦ n ◦ (5.5)

If $k \le m < \psi(k)$, then definition [\(5.2\)](#page-23-2) shows that the spectrum of $\Phi^{S}(k, m)$ is contained in $S\cup \{m\}$, while its leading term is $u[k, m]$. However, if $m \ge \psi(k)$, then [\(5.2\)](#page-23-2) does not provide sufficient information even for the immediate conclusion that $\Phi^{S}(k, m) \neq 0$. In particular some of the factors $\Phi^S(1+s_i, m)$ in [\(5.2\)](#page-23-2) may be zero even if $k \le m < \psi(k)$. Hence, *a priori* the spectrum of $\Phi^{S}(k, m)$, $k \leq m < \psi(k)$, may be a proper subset of $S \cup \{m\}.$

Let π_{kl} , $1 \le k \le l < \psi(k)$, denote a natural projection of $U_q^+(\mathfrak{so}_{2n+1})$ or $u_q^+(\mathfrak{so}_{2n+1})$ onto $\mathbf{k}u[k, l]$ with respect to the PBW-basis defined in Proposition [4.1](#page-17-3) or [4.5](#page-22-0) respectively.

Lemma 5.2. *If* $a \in A_{k+1}$, *then* $\pi_{kl}(au[k, i]) = 0, k \le i < \psi(k)$, *unless* $a \in \mathbf{k}$, $i = l$.

Proof. The PBW-decomposition \tilde{a} of a in the basis defined in Proposition [4.1](#page-17-3) or [4.5](#page-22-0) involves only PBW-generators that belong to A_{k+1} . They are all smaller than $u[k, i]$. Hence, the PBW-decomposition of $au[k, i]$ is $\tilde{a}u[k, i]$. We have $\pi_{kl}(\tilde{a}u[k, i]) \neq 0$ only if $\tilde{a} \in \mathbf{k}, i = l.$

Lemma 5.3. *If* $a \in A_{k+1}$, $k \leq l \leq \psi(k)$, then

$$
\Delta(au[k, i]) \cdot (\mathrm{id} \otimes \pi_{kl}) = \begin{cases} 0 & \text{if } i < l; \\ ag_{kl} \otimes u[k, l] & \text{if } i = l; \\ \tau_l(1 - q^{-2})a \, g_{kl}u[l+1, i] \otimes u[k, l] & \text{if } i > l, \end{cases}
$$
 (5.6)

where, by definition, $g_{kl} = g(u[k, l]) = g_k g_{k+1} \dots g_l$.

Proof. By [\(4.8\)](#page-20-0), we have $\Delta(au[k, i]) = \sum_{(a), j} a^{(1)} \alpha_j g_{kj} u[j + 1, i] \otimes a^{(2)} u[k, j]$ for suitable $\alpha_j \in \mathbf{k}$. By the above lemma, we obtain $\pi_{kl}(a^{(2)}u[k, j]) = 0$ unless $a^{(2)} \in \mathbf{k}$, $i = l$. It remains to apply the explicit formula [\(4.8\)](#page-20-0).

Lemma 5.4. *If* $k \le l < m < \psi(k)$, *then*

$$
\Delta(\Phi^S(k,m)) \cdot (\mathrm{id} \otimes \pi_{kl}) = \begin{cases} 0 & \text{if } l \in S; \\ \tau_l(1-q^{-2})g_{kl}\Phi^S(1+l,m) \otimes u[k,l] & \text{if } l \notin S. \end{cases}
$$

Proof. Let us apply $\Delta(\text{id} \otimes \pi_{kl})$ to [\(5.2\)](#page-23-2). Because $a_i \stackrel{\text{df}}{=} \Phi^S(1 + s_i, m) \in A_{k+1}$, we may use Lemma [5.3.](#page-24-1) We now have $a_i g_{kl} = \chi^{a_i}(g_{kl})g_{kl}a_i$, $\chi^{a_i}(g_{kl}) = p(u(1 + s_i, m), u(k, l)).$ Thus, if $s_i > l$, then $\alpha_{km}^{s_i} \chi^{a_i}(g_{kl}) = \alpha_{1+l,m}^{s_i}$, while if $s_i = l$, then $\alpha_{km}^{l} \chi^{a_l}(g_{kl}) = \tau_l$. Now, (5.6) implies the required relation.

Lemma 5.5. Let $k \leq l < m < \psi(k)$ and $a \in A_{k+1}$ be a nonzero homogeneous el*ement with* $D(a) = D(u(1 + l, m))$. *Denote by* v_a *any homogeneous projection* v_a : $U_q^+($ **so**_{2n+1} $) \to a$ **k**. *If* $D(b) = D(u(1 + i, m))$, *then*

$$
\Delta(bu[k, i]) \cdot (\mathrm{id} \otimes \nu_a) = \begin{cases} 0 & \text{if } l < i < m; \\ g_a u[k, l] \otimes a & \text{if } i = l, \ b = a; \\ g_a b' u[k, i] \otimes a & \text{if } i < l. \end{cases}
$$

Proof. All right-hand components of the tensors in (4.8) depend on x_k except the first summand. Because v_a kills all elements with a positive degree in x_k , we have

$$
\Delta(bu[k, i]) \cdot (\mathrm{id} \otimes \nu_a) = \sum_{(b)} b^{(1)} u[k, i] \otimes \nu_a(b^{(2)}). \tag{5.7}
$$

If $l < i < m$, then $D(b^{(2)}) \le D(b) < D(a)$. Hence, $v_a(b^{(2)}) = 0$. If $b = a$, $i = s$, then $D(b^{(2)}) = D(a)$ only if $b^{(1)} = g_a$, $b^{(2)} = a$. If $i < l$, then [\(5.7\)](#page-25-0) provides the third option given in the lemma.

Proposition 5.6. If a right coideal subalgebra $\mathbf{U} \supseteq \mathbf{k}[G]$ of $U_q^+(\mathfrak{so}_{2n+1})$ or $u_q^+(\mathfrak{so}_{2n+1})$ *contains a homogeneous element* $c \in A$ *with the leading term* $u[k, m], k \leq m < \psi(k)$, *then* $\Phi^{S}(k, m) \in \mathbf{U}$ *for a suitable subset S of the spectrum of c.*

Proof. Every summand of the decomposition of c in the PBW-basis defined in Proposi-tion [4.1](#page-17-3) or [4.5](#page-22-0) has only one PBW-generator that depends on x_k because $U_q^+(\mathfrak{so}_{2n+1})$ and $u_q^+(\mathfrak{so}_{2n+1})$ are homogeneous in each x_i . Moreover, this PBW-generator, considered as a super-letter, starts with x_k , and hence it is the maximal super-letter of the summand. The maximal super-letter is located at the end of the basis super-word; that is, the PBWdecomposition takes the form

$$
c = u[k, m] + \sum_{i=k}^{m-1} F_i u[k, i], \quad F_i \in A_{k+1}, k \le i < m. \tag{5.8}
$$

By definition, *i* belongs to the spectrum Sp(*a*) of *a* if and only if $F_i \neq 0$. We may rewrite this representation in the following way:

$$
\Phi^{S_t}(k,m) + \sum_{i \in \text{Sp}(a), i < t} F_i u[k, i] \in \mathbf{U},\tag{5.9}
$$

where $t = m$, and, by definition, $S_m = \emptyset$. We shall prove that relation [\(5.9\)](#page-25-1) with a given t, $k < t \le m$, $S_t \subseteq Sp(a)$, and $t \le \inf S_t$ implies a relation of the same type with $t \leftarrow l$, $S_l = S_l \cup \{l\}$, where l, as above, is the maximal i in [\(5.9\)](#page-25-1) such that $F_i \neq 0$. Because certainly $l < t$, by downward induction this will imply [\(5.9\)](#page-25-1) with $t = k$, $S = S_k \subseteq Sp(a)$:

$$
\Phi^S(k, m) \in \mathbf{U}.\tag{5.10}
$$

Let us apply $\Delta \cdot (\mathrm{id} \otimes \pi_{kl})$ to [\(5.9\)](#page-25-1), where π_{kl} is the projection onto $\mathbf{k}u[k, l]$, and l is the maximal i in [\(5.9\)](#page-25-1) with $F_i \neq 0$. By Lemma [5.3,](#page-24-1) we have $\Delta(F_iu[k, i]) \cdot (\text{id} \otimes \pi_{kl})$ = 0 if $i < l$, while $\Delta(F_lu[k, l]) \cdot (\text{id} \otimes \pi_{kl}) = F_lg_{kl} \otimes [k, l]$. Lemma [5.4](#page-25-2) implies $\Delta(\Phi^{S_t}(k,m)) \cdot (\mathrm{id} \otimes \pi_{kl}) = \tau_l(1-q^{-2})g_{kl}\Phi^{S_t}(1+l,m) \otimes u[k,l]$. Because U is a right coideal subalgebra that contains all grouplike elements, we get

$$
F_l + \chi^{F_l}(g_{kl})^{-1} \tau_l (1 - q^{-2}) \Phi^{S_l}(1 + l, m) = v \in \mathbf{U}.
$$
 (5.11)

We further consider any homogeneous projection v_a with $a = F_l$. Let us apply $\Delta \cdot (\mathrm{id} \otimes \nu_a)$ to [\(5.9\)](#page-25-1). As $l < \inf S_t$, Lemma [5.5](#page-25-3) and definition [\(5.2\)](#page-23-2) imply $\Delta(\Phi^{S_t}(k, m))$. $(id \otimes v_a) = 0$. Lemma [5.5](#page-25-3) also shows that $\Delta(F_l u[k, l]) \cdot (id \otimes v_a) = g_a u[k, l] \otimes a$, while $\Delta(F_iu[k, i]) \cdot (\text{id} \otimes \nu_a) = g_a A'_i u[k, i] \otimes a, i < l$. Hence, we arrive at the relation

$$
u[k, l] + \sum_{i \in \text{Sp}(a), i < l} F'_i u[k, i] = w \in \mathbf{U}.\tag{5.12}
$$

Relations (5.11) , (5.12) imply

$$
F_{l}u[k, l] = vw - \sum_{i \in Sp(a), i < l} v F'_{i}u[k, i] - \chi^{F_{l}}(g_{kl})^{-1} \tau_{l} (1 - q^{-2}) \Phi^{S_{l}}(1 + l, m) \cdot u[k, l].
$$

This equality allows one to replace $F_l u[k, l]$ in [\(5.9\)](#page-25-1). According to definition [\(5.2\)](#page-23-2) we have $\Phi^{\tilde{S}_t}(k,m) - \chi^{F_l}(g_{kl})^{-1} \tau_l(1-q^{-2}) \Phi^{S_t}(1+l,m) \cdot u[k,l] = \Phi^{S_t \cup \{l\}}(k,m)$; therefore we obtain the required relation

$$
\Phi^{S_i}(k,m) + \sum_{i \in \text{Sp}(a), i < l} (F_i - vF_i')u[k, i] \in \mathbf{U}.\tag{}
$$

Corollary 5.7. *If the main parameter* q *is not a root of* 1, *then every right coideal sub*algebra of $U_q^+(\mathfrak{so}_{2n+1})$ *that contains the coradical has a set of PBW-generators of the form* 8^S (k, m). *In particular, there exist only a finite number of right coideal subalgebras of* U_q^+ (so_{2n+1}) *that contain the coradical. If q has a finite multiplicative order* $t > 4$, then this is the case for the right coideal subalgebras of u^+_q (${\frak {so}}_{2n+1}$) homogeneous in each $x_i \in X$.

Proof. If **U** is a right coideal subalgebra of $U_q^+(\mathfrak{so}_{2n+1})$ that contains **k**[G], then, by Lemma [2.12,](#page-10-6) it is homogeneous in each x_i . By Propositions [4.1](#page-17-3) and [2.7,](#page-6-3) U has PBWgenerators of the form [\(2.18\)](#page-6-1):

$$
c_u = u^s + \sum \alpha_i W_i \in \mathbf{U}, \quad u = u[k, m], \, k \le m \le \psi(k). \tag{5.13}
$$

By [\(3.10\)](#page-12-1), we have $p_{uu} = \sigma_k^m = q^2$ if $m \neq n$, and $p_{uu} = q$ otherwise. Thus, if q is not a root of 1, Lemma 2.6 shows that in (5.13) the exponent s equals 1, while all heights of the c_u 's in **U** are infinite.

If q has a finite multiplicative order $t > 4$, then $u[k, m]^h = 0$ in $u_q^+(s \mathfrak{0}_{2n+1})$, where h is the multiplicative order of p_{uu} (see Proposition [4.5\)](#page-22-0). By Lemma [2.6,](#page-6-4) in [\(5.13\)](#page-26-3), we have $s \in \{1, h, hl^r\}$. Because $u[k, m]^h = u[k, m]^{hl^r} = 0$, the exponent s in [\(5.13\)](#page-26-3) equals 1, while the height of c_u in **U** equals h.

Because U is homogeneous with respect to each $x_i \in X$, the PBW-generators of U in both cases have the form

$$
c_u = u[k, m] + \sum \alpha_i W_i, \quad k \le m \le \psi(k), \tag{5.14}
$$

where W_i are the basis super-words starting with super-letters smaller than $u[k, m]$, $D(W_i) = D(u[k, m]) = x_k + x_{k+1} + \cdots + x_m$. By Proposition [5.6,](#page-25-4) we have $\Phi^S(k, m) \in \mathbf{U}$. The leading term of $\Phi^{S}(k, m)$ equals $u[k, m]$; see definition [\(5.2\)](#page-23-2). Hence, we may replace c_u with $\Phi^S(k, m)$ in the set of PBW-generators. The number of possible elements $\Phi^{S}(k, m)$ is finite. Hence, the total number of possible sets of PBW-generators of the form $\Phi^S(k, m)$ is also finite.

6. Elements $\Phi^{[k,m-1]}(k, m)$

In this section, we are going to prove the following relation in $U_q^+(\mathfrak{so}_{2n+1})$:

$$
\Phi^{[k,m-1]}(k,m) = (-1)^{m-k} \left(\prod_{m \ge i > j \ge k} p_{ij}^{-1} \right) \cdot u[\psi(m), \psi(k)], \tag{6.1}
$$

where, as above, $\psi(i) = 2n - i + 1$. The main idea of the proof is to use the Milinski– Schneider criterion (Lemma [2.11\)](#page-9-2). To do this, we need to find the partial derivatives of both sides. In what follows, ∂_i , $1 \le i \le 2n$, denotes the partial derivation with respect to x_i; see [\(2.22\)](#page-7-2). In particular $\partial_i = \partial_{\psi(i)}$. The coproduct formula [\(4.8\)](#page-20-0) with [\(2.23\)](#page-7-3) implies

$$
\partial_i(u[k,m]) = \begin{cases}\n(1 - q^{-2})\tau_k u[k+1,m] & \text{if } x_i = x_k, \ k < m; \\
0 & \text{if } x_i \neq x_k; \\
1 & \text{if } x_i = x_k, \ k = m.\n\end{cases} \tag{6.2}
$$

This equality allows us to easily find the derivatives of the right-hand side. By induction on $m - k$ we shall prove a similar formula

$$
\partial_i(\Phi^{[k,m-1]}(k,m)) = \begin{cases} \beta_k^m \Phi^{[k,m-2]}(k,m-1) & \text{if } x_i = x_m, \ k < m; \\ 0 & \text{if } x_i \neq x_m; \\ 1 & \text{if } x_i = x_m, \ k = m, \end{cases} \tag{6.3}
$$

where $\beta_k^m = -(1 - q^{-2})\alpha_{km}^{m-1} = -(1 - q^{-2})\tau_{m-1}p(x_m, u(k, m-1))^{-1}$. To simplify the notation, we remark that $\Phi^{[k,m-1]}(k,m) = \Phi^{S}(k,m)$ for each S that contains the interval [k, m – 1]. In particular, in the above formula, $\Phi^{[k,m-2]}(k, m-1) = \Phi^{[k,m-1]}(k, m-1)$.

If $x_i \neq x_m$, $x_i \neq x_k$, then [\(6.2\)](#page-27-0) and the inductive supposition applied to definition [\(5.2\)](#page-23-2) imply $\partial_i(\Phi^{[k,m-1]}(k,m)) = 0$.

If $x_i = x_k \neq x_m$, then $\partial_i = \partial_k$. Taking into account definition [\(5.2\)](#page-23-2) we have

$$
\partial_k(\Phi^{[k,m-1]}(k,m)) = \partial_k\Big(u[k,m] - (1-q^{-2})\sum_{i=k}^{m-1} \alpha_{km}^i \Phi^{[k,m-1]}(1+i,m)u[k,i]\Big),
$$

where $\alpha_{km}^i = \tau_i p(u(1 + i, m), u(k, i))^{-1}$, while the τ 's have been defined in [\(4.10\)](#page-20-3). By the inductive supposition, the skew differential Leibniz formula [\(2.22\)](#page-7-2), and [\(6.2\)](#page-27-0), the above displayed expression equals

$$
(1 - q^{-2})\tau_k(u[k+1, m] - \tau_k^{-1}\alpha_{km}^k p(u(1+k, m), x_k)\Phi^{[k, m-1]}(1+k, m)
$$

$$
-(1 - q^{-2})\sum_{i=k+1}^{m-1}\alpha_{km}^i p(u(1+i, m), x_k)\Phi^{[k, m-1]}(1+i, m)u[k+1, i]).
$$
(6.4)

Because obviously, $\alpha_{km}^k p(u(1 + k, m), x_k) = \tau_k$, $\alpha_{km}^i p(u(1 + i, m), x_k) = \alpha_{k+1m}^i$, definition [\(5.2\)](#page-23-2) shows that the above expression is zero.

If $x_i = x_m \neq x_k$, then $\partial_i = \partial_m$. Again, by definition [\(5.2\)](#page-23-2), the inductive supposition, the skew differential Leibniz formula (2.22) , and (6.2) , we have

$$
\partial_m(\Phi^{[k,m-1]}(k,m)) = -(1-q^{-2}) \sum_{i=k}^{m-2} \alpha_{km}^i \beta_{1+i}^m \Phi^{[k,m-2]}(1+i,m-1)u[k,i] - (1-q^{-2}) \alpha_{km}^{m-1} u[k,m-1].
$$
\n(6.5)

By definition, $-(1 - q^{-2})\alpha_{km}^{m-1} = \beta_k^m$. At the same time

$$
\alpha_{km}^i \beta_{1+i}^m = \tau_i p(u(1+i, m), u(k, i))^{-1} \cdot \{-(1 - q^{-2})\tau_{m-1} p(x_m, u(1+i, m-1))^{-1}\}
$$

=
$$
-(1 - q^{-2})\tau_{m-1} p(x_m, u(k, m-1))^{-1} \cdot \tau_i p(u(1+i, m-1), u(k, i))^{-1} = \beta_k^m \cdot \alpha_{km-1}^i.
$$

Thus, according to [\(5.2\)](#page-23-2), the right-hand side of [\(6.5\)](#page-28-0) equals $\beta_k^m \Phi^{[k,m-2]}(k, m-1)$, as required.

Finally, if $x_i = x_m = x_k$, $k \neq m$, that is, $m = \psi(k)$, then due to the skew differential Leibniz formula [\(2.22\)](#page-7-2), the derivative $\partial_i(\Phi^{[k,m-1]}(k,m))$ equals the sum of the expression (6.4) with the right-hand side of (6.5) . Note that (6.4) is still zero, while the right-hand side of [\(6.5\)](#page-28-0) still equals $\beta_k^m \Phi^{[k,m-2]}(k, m-1)$. Formula [\(6.3\)](#page-27-1) is completely proved.

We are now ready to prove [\(6.1\)](#page-27-2) by induction on $m-k$. If $m = k$, both sides equal x_k . If $k < m$, then the derivatives ∂_i of both sides are zero for all i except $i = m$ and $i = \psi(m)$. Due to [\(6.2\)](#page-27-0), the derivative ∂_m applied to the right-hand side of [\(6.1\)](#page-27-2) equals

$$
(-1)^{m-k} \Big(\prod_{m \ge i > j \ge k} p_{ij}^{-1} \Big) (1 - q^{-2}) \tau_{\psi(m)} \cdot u[\psi(m) + 1, \psi(k)]. \tag{6.6}
$$

Because $\psi(m) = n$ if and only if $m - 1 = n$, formula [\(4.10\)](#page-20-3) yields $\tau_{\psi(m)} = \tau_{m-1}$. At the same time, (6.3) and the inductive supposition imply

$$
\partial_m(\Phi^{[k,m-1]}(k,m)) = \beta_k^m (-1)^{m-1-k} \Big(\prod_{m>i>j \ge k} p_{ij}^{-1} \Big) u[\psi(m) + 1, \psi(k)]. \tag{6.7}
$$

By definition, we have

$$
\beta_k^m = -(1 - q^{-2})\tau_{m-1}p(x_m, u(k, m-1))^{-1} = -(1 - q^{-2})\tau_{m-1} \prod_{m > j \ge k} p_{mj}^{-1}.
$$

Thus, (6.6) coincides with (6.7) , and, due to the MS-criterion, (6.1) is proved.

Remark. To prove (6.1) , we used the MS-criterion. Therefore, if q has a finite multi-plicative order t, relation [\(6.1\)](#page-27-2) is proved only for $u_q^+(\mathfrak{so}_{2n+1})$. However, we have seen in Proposition [4.5](#page-22-0) that if $t > 4$, then the kernel of the natural homomorphism $U_q^+(\mathfrak{so}_{2n+1})$ $\rightarrow u_q^+(\mathfrak{so}_{2n+1})$ is generated by the elements $u[k,m]^h$, $h \geq 3$. At the same time, all polynomials in [\(6.1\)](#page-27-2) have degree at most 2 in each variable. Therefore, [\(6.1\)](#page-27-2) is valid in $U_q^+(\mathfrak{so}_{2n+1})$ provided that $t > 4$.

7. (k, m) -regular sets

Definition 7.1. Let $1 \leq k \leq n < m \leq 2n$. A set S is said to be *white* (k, m) *-regular* if for every i, $k - 1 \le i < m$, such that $k \le \psi(i) \le m + 1$, either i or $\psi(i) - 1$ does not belong to $S \cup \{k-1, m\}$.

A set S is said to be *black* (k, m) *-regular* if for every i, $k \le i \le m$, such that $k < \psi(i) < m + 1$, either i or $\psi(i) - 1$ belongs to $S \setminus \{k - 1, m\}$.

If $m \leq n$ or $k > n$ (or equivalently if $u[k, m]$ is of degree ≤ 1 in x_n), then, by definition, each set S is both white and black (k, m) -regular.

A set S is said to be (k, m)-*regular* if it is either black or white (k, m)-regular.

If $k \le n \le m$ and S is white (k, m) -regular, then $n \notin S$, for $\psi(n) - 1 = n$. If additionally $m < \psi(k)$, then taking $i = \psi(m) - 1$, we obtain $\psi(i) - 1 = m$. Hence, the definition implies $\psi(m) - 1 \notin S$. We see that if $m < \psi(k)$, $k \le n < m$, then S is white (k, m) -regular if and only if the shifted scheme of $\Phi^{S}(k, m)$ given in [\(5.5\)](#page-24-2) has no black columns: $n+1$

m • · · · • ◦ ◦ · · · n ◦ ⇐ k−1 ◦ · · · ψ(m)−1 ◦ · · · ◦ n−i • ◦ · · · n ◦ (7.1)

In the same way, if $m > \psi(k)$, then for $i = \psi(k)$, we obtain $\psi(i) - 1 = k - 1$, and hence $\psi(k) \notin S$. That is, if $m > \psi(k)$, $k \le n < m$, then S is white (k, m) -regular if and only if the shifted scheme [\(5.5\)](#page-24-2) has no black columns and the leftmost complete column is white:

m • · · · ψ(k) ◦ · · · • n+i ◦ ◦ · · · n ◦ ⇐ k−1 ◦ · · · ◦ n−i • ◦ · · · n ◦ (7.2)

Similarly, if $k \le n < m$ and S is black (k, m) -regular, then $n \in S$. If additionally $m < \psi(k)$, then taking $i = \psi(m) - 1$ we obtain $\psi(i) - 1 = m$, and hence $\psi(m) - 1 \in S$. We see that if $m < \psi(k)$ and $k \le n < m$, then S is black (k, m) -regular if and only if the shifted scheme [\(5.5\)](#page-24-2) has no white columns and the leftmost complete column is black:

m • · · · • n+i ◦ • · · · n • ⇐ k−1 ◦ · · · ψ(m)−1 • · · · • n−i • ◦ · · · n • (7.3)

If $m > \psi(k)$, then for $i = \psi(k)$ we get $\psi(i) - 1 = k - 1$, hence $\psi(k) \in S$. That is, if $m > \psi(k)$, $k \le n < m$, then S is black (k, m) -regular if and only if the shifted scheme [\(5.5\)](#page-24-2) has no white columns:

m • · · · ψ(k) • · · · • n+i ◦ • · · · n • ⇐ k−1 ◦ · · · ◦ n−i • • · · · n • (7.4)

At the same time, we should stress that if $m = \psi(k)$, then no set is (k, m) -regular. Indeed, for $i = k - 1$, we have $\psi(i) - 1 = m$. Hence, both $i, \psi(i) - 1$ belong to $S \cup \{k-1, m\}$, and therefore S is not white $(k, \psi(k))$ -regular. If we take $i = m$, then $\psi(i) - 1 = k - 1$, and neither i nor $\psi(i) - 1$ belongs to $S \setminus \{k - 1, m\}$. Thus, S is not black $(k, \psi(k))$ -regular either.

Let $S \cap [k, m - 1] = \{s_1, \ldots, s_r\}, s_1 < \cdots < s_r$. We denote $u_i = u[1 + s_i, s_{i+1}],$ $0 \le i \le r$, where we formally put $s_0 = k - 1$, $s_{r+1} = m$, while $u[k, m]$ has been defined in [\(3.16\)](#page-13-4).

Lemma 7.2. If S is white (k, m) -regular, then the values in $U_q^+(\mathfrak{so}_{2n+1})$ of the bracketed *words* $[u_r u_{r-1} \ldots u_1 u_0]$ *and* $[u_0 u_1 \ldots u_{r-1} u_r]$ *are independent of the arrangement of brackets.*

Proof. Let $0 \le i \le j - 1$, $j \le r$. Assume $k \le n \le m$. The points s_i and $\psi(1 + s_i)$ form a column in the shifted scheme [\(7.1\)](#page-29-1) or [\(7.2\)](#page-29-2) since $s_i + \psi(1 + s_i) = 2n$. Hence, $\psi(1+s_i) = \psi(s_i) - 1$ is not a black point. In particular $s_{i+1} \neq \psi(1+s_i)$, $s_i \neq \psi(1+s_i)$. Similarly, the points s_{i+1} and $\psi(s_{i+1})-1$ form a column in the shifted scheme, and hence $s_{i+1} \neq \psi(s_{i+1}) - 1, s_i \neq \psi(s_{i+1}) - 1.$

We now have $1 + s_i \leq s_{i+1} < s_i < s_{i+1}, s_{i+1} \neq \psi(1 + s_i), s_{i+1} \neq \psi(s_{i+1}) - 1$, $s_j \neq \psi(1 + s_i)$, and $s_j \neq \psi(s_{i+1}) - 1$. Therefore, Proposition [3.15](#page-15-3) with $k \leftarrow 1 + s_i$, $i \leftarrow s_{i+1}, j \leftarrow s_j, m \leftarrow s_{j+1}$ implies $[u_i, u_j] = [u_j, u_i] = 0$. If $m \le n$ or $k > n$, then u_i and u_j are separated. Hence, we still have $[u_i, u_j] = [u_j, u_j] = 0$ due to Lemma [3.2.](#page-11-5) It remains to apply Lemma [2.1.](#page-4-7) \Box

Lemma 7.3. *If S is white* (k, m) *-regular, then* $[u_0u_1 \dots u_r] = u[k, m]$ *.*

Proof. We use induction on r. If $r = 0$, the equality is clear. In the general case, the inductive supposition yields $[u_0u_1 \dots u_{r-1}] = u[k, s_r]$ because S is white (k, s_r) -regular. By Proposition [3.14,](#page-15-2) $[u[k, s_r], u_r] = u[k, m]$ unless $s_r = \psi(m) - 1$ or $s_r = \psi(k)$. However, the white (k, m) -regularity implies that $\psi(m)-1$, $\psi(k)$ are not black points. □ Lemma 7.4. *If* S *is white* (k, m)*-regular, then in the above notation we have*

$$
\Phi^{S}(k,m) = (-1)^{r} \prod_{r \geq i > j \geq 0} p(u_i, u_j)^{-1} \cdot [u_r u_{r-1} \dots u_0]. \tag{7.5}
$$

Proof. To prove the equality, it suffices to check the recurrence relations [\(5.2\)](#page-23-2) for the right-hand side. We shall use induction on r. If $r = 0$, there is nothing to prove. By Lemma [7.3,](#page-30-0) we have $u[k, m] = [u_0u_1 \dots u_{r-1}u_r]$. The inductive supposition for the white (k, m) -regular set $S \setminus \{s_1\}$ takes the form

$$
(-1)^{r-1} p(u_1, u_0) \prod_{r \ge i > j \ge 0} p(u_i, u_j)^{-1} \cdot [u_r u_{r-1} \dots u_2[u_0 u_1]] = [u_0 u_1 u_2 \dots u_r]
$$

$$
- (1 - q^{-2}) \sum_{l=2}^r \alpha_{k,m}^{s_l} (-1)^{r-l} \prod_{r \ge i > j \ge l} p(u_i, u_j)^{-1} \cdot [u_r u_{r-1} \dots u_l] \cdot [[u_0 u_1] u_2 \dots u_{l-1}].
$$

(7.6)

By definition, $p(u_0, u_1)p(u_1, u_0) = \mu_k^{s_2, s_1}$ (see Definition [3.6\)](#page-12-3), while by [\(3.13\)](#page-13-0) and [\(3.15\)](#page-13-3), we have $\mu_k^{s_2,s_1} = q^{-2}$ because the regularity condition implies $s_1 \neq n$, $s_1 \neq$ $\psi(s_2) - 1$, $s_1 \neq \psi(k)$. Hence, by [\(2.13\)](#page-4-2), we may write

$$
p(u_1, u_0)[u_0, u_1] = -[u_1, u_0] + (1 - q^{-2})u_1 \cdot u_0.
$$

The above implies

$$
p(u_1, u_0)[u_r u_{r-1} \dots u_2[u_0 u_1]]
$$

= -[u_r u_{r-1} \dots u_2 u_1 u_0] + (1 - q^{-2})[[u_r u_{r-1} \dots u_2], u_1 \cdot u_0].

Because $[u_i, u_0] = 0$, $i \ge 2$, the ad-identity [\(2.11\)](#page-4-4) yields

$$
[[u_r u_{r-1} \ldots u_2], u_1 \cdot u_0] = [u_r u_{r-1} \ldots u_2 u_1] \cdot u_0.
$$

Thus, the left-hand side of [\(7.6\)](#page-31-0) reduces to

$$
(-1)^{r} \prod_{r \geq i > j \geq 0} p(u_{i}, u_{j})^{-1} \cdot [u_{r}u_{r-1} \dots u_{2}u_{1}u_{0}] + \mathfrak{A},
$$

where

$$
\mathfrak{A} = (1 - q^{-2})(-1)^{r-1} \prod_{r \geq i > 0} p(u_i, u_0)^{-1} \prod_{r \geq i > j \geq 1} p(u_i, u_j)^{-1} \cdot [u_r u_{r-1} \dots u_1] \cdot u_0.
$$

At the same time, $\mathfrak A$ coincides up to a sign with the missing summand of the right-hand side of (7.6) corresponding to $l = 1$ because

$$
\alpha_{k,m}^{s_1} = \tau_{s_1} p(u_r u_{r-1} \dots u_1, u_0)^{-1} = \prod_{r \geq i > 0} p(u_i, u_0)^{-1}.
$$

Corollary 7.5. *If* S *is white* (k, m) *-regular,* $s \in S \cup \{n\}$ *,* $k \leq s \leq m$ *, then*

$$
\Phi^{S}(k,m) = -p_{ab}^{-1}[\Phi^{S}(1+s,m), \Phi^{S}(k,s)],
$$

where $a = u(1 + s, m)$, $b = u(k, s)$.

Proof. Let $s = s_t$, $1 \le t \le r$. By Lemma [7.2,](#page-30-1) the value of the bracketed word $[u_r u_{r-1} \dots u_0]$ is independent of the arrangement of brackets. Therefore, we have $[u_r u_{r-1} \dots u_0] = [[u_r u_{r-1} \dots u_t], [u_{t-1} \dots u_0]].$ It remains to apply Lemma [7.4.](#page-30-2)

Let $k \leq s = n < m$. Because *n* is always white in a white regular set, we can find j such that $s_j < n < s_{j+1}$. We denote $u'_j = u[1+s_j, n]$ and $u''_j = u[n+1, s_{j+1}]$. The points s_i and $\psi(1 + s_i)$ form a column in the shifted scheme [\(7.1\)](#page-29-1) or [\(7.2\)](#page-29-2). Hence, $\psi(1 + s_i)$ is a white point. In particular, $s_{i+1} \neq \psi(1 + s_i)$. Thus, by Corollary [3.13](#page-15-0) with $k \leftarrow 1 + s_i$, $m \leftarrow s_{j+1}$, we have $u_j = [u'_j, u''_j] = -p(u''_j, u'_j)^{-1} [u''_j, u'_j]$.

Note that the value of the bracketed word

$$
[u_r u_{r-1} \dots u_{j+1} u''_j u'_j u_{j-1} \dots u_0]
$$
\n(7.7)

is independent of the arrangement of brackets. Indeed, Lemma [3.12](#page-15-1) with $k \leftarrow 1 + s_i$, $i \leftarrow s_i, m \leftarrow s_{i+1}$ states $[u_i, u'_j] = 0, i > j$, unless $s_{i+1} = \psi(1 + s_j)$ or $s_i = \psi(1 + s_j)$. However, the points s_i and $\psi(\hat{1} + s_j)$ form a column in the shifted scheme [\(7.1\)](#page-29-1) or [\(7.2\)](#page-29-2). Hence, $\psi(1 + s_j)$ is not a black point. In particular $s_{i+1} \neq \psi(1 + s_j)$ and $s_i \neq \psi(1 + s_j)$.

At the same time, if $i < j - 1$, then u'_j and u_i are separated by u_{j-1} (Definition [3.1\)](#page-10-7); hence, Lemma [3.2](#page-11-5) implies $[u'_j, u_i] = 0$.

In perfect analogy, we obtain $[u_j'', u_i] = 0$, $i < j$, and $[u_i, u_j''] = 0$, $i > j + 1$. Thus, Lemma [2.1](#page-4-7) implies that [\(7.7\)](#page-32-0) is independent of the arrangement of brackets. In particular,

$$
[u_r u_{r-1} \dots u_{j+1} u''_j u'_j u_{j-1} \dots u_0] = [[u_r u_{r-1} \dots u_{j+1} u''_j], [u'_j u_{j-1} \dots u_0]].
$$

It remains to apply Lemma [7.4.](#page-30-2) \Box

Lemma 7.6. *If* $k \le t < m$, $t \notin S$, *then*

$$
\Phi^{SU(t)}(k,m) - \Phi^{S}(k,m) = (q^{-2} - 1)p_{ab}^{-1} \tau_t \Phi^{S}(1+t,m) \Phi^{S}(k,t), \tag{7.8}
$$

where $a = u(1 + t, m)$, $b = u(k, t)$.

Proof. We use induction on $m - k$. If $m = k$, there is nothing to prove. By definition (5.2) , we have

$$
\Phi^{S \cup \{t\}}(k,m) - \Phi^S(k,m) = -(1 - q^{-2}) \{ \tau_t p_{ab}^{-1} \Phi^S(1+t,m) u[k,t] + \sum_{s_i < t} \tau_{s_i} p_{u_i v_i}^{-1} (\Phi^{S \cup \{t\}}(1+s_i, m) - \Phi^S(1+s_i, m)) u[k,s_i] \},
$$

where $u_i = u(1 + s_i, m)$, $v_i = u(k, s_i)$. By the inductive supposition the above equals

$$
(q^{-2} - 1)p_{ab}^{-1} \tau_t \Phi^S(1+t, m)
$$

$$
\cdot \left\{ u[k, t] - (1 - q^{-2}) \sum_{s_i < t} \tau_{s_i} p_{u_i v_i}^{-1} p_{ab_i}^{-1} p_{ab} \Phi^S(1+s_i, t) u[k, s_i] \right\}
$$

,

where $b_i = u(1 + s_i, t)$. It remains to note that

$$
p_{u_i v_i}^{-1} p_{ab_i}^{-1} p_{ab} = p(u(1 + s_i, t), u(k, s_i))^{-1}
$$

and to use definition (5.2) .

Corollary 7.7. *If* $S \cup \{t\}$ *is white* (k, m) *-regular,* $t \notin S$, $k \le t < m$ *, then*

$$
\Phi^S(k,m) \sim [\Phi^S(k,t), \Phi^S(1+t,m)].
$$
\n(7.9)

Proof. We denote $A = \Phi^{S}(k, t)$, $B = \Phi^{S}(1 + t, m)$. By Corollary [7.5](#page-31-1) we have $\Phi^{S \cup \{t\}}(k,m) = -p_{ab}^{-1}[B, A]$. At the same time, $t \neq n$ (for $S \cup \{t\}$ is white (k,m) -regular), and hence, by Lemma [7.6,](#page-32-1) we get $\Phi^{S \cup \{t\}}(k, m) - \Phi^{S}(k, m) = (q^{-2} - 1)p_{ab}^{-1}BA$. These two equalities imply

$$
\Phi^{S}(k, m) = -p_{ab}^{-1}[B, A] - (q^{-2} - 1)p_{ab}^{-1}BA
$$

= $p_{ab}^{-1}(-BA + p_{BA}AB - (q^{-2} - 1)BA)$
= $p_{ab}^{-1} p_{BA}(AB - q^{-2}p_{BA}^{-1}BA).$ (7.10)

By definition [\(3.6\)](#page-12-3), we know that $p_{AB}p_{BA} = \mu_k^{m,t}$. In this case schemes [\(7.1\)](#page-29-1) and [\(7.2\)](#page-29-2) related to the white regular set $S \cup \{t\}$ show that $t \neq \psi(m) - 1$, $t \neq n$, $t \neq \psi(k)$, $m \neq$ $\psi(k)$ because t, m are black points. Hence, formulae [\(3.13\)](#page-13-0), [\(3.15\)](#page-13-3) imply $\mu_k^{m,t} = q^{-2}$. Thus, we get $p_{AB}p_{BA} = q^{-2}$; that is, $q^{-2}p_{BA}^{-1} = p_{AB}$. Now, [\(7.10\)](#page-33-1) reduces to [\(7.9\)](#page-33-2). □

Lemma 7.8. *A set S is white* (*k*, *m*)*-regular if and only if* $\overline{\psi(S) - 1}$ *is black regular with respect to* $(\psi(m), \psi(k))$ *. Here,* $\psi(S) - 1$ *denotes* ${\psi(s) - 1 \mid s \in S}$ *, while the bar denotes the complement with respect to the interval* $[\psi(m), \psi(k) - 1]$.

Proof. Let us replace the parameter i with $j = \psi(i) - 1$ in the definition of regularity. Because ψ changes the order, we see that $k - 1 \le i \le m$ is equivalent to $\psi(k) + 1$ $\psi(i) > \psi(m)$, that is, $\psi(k) > i > \psi(m)$. Similarly, the condition $k < \psi(i) < m + 1$ is equivalent to $\psi(k) \ge i \ge \psi(m) - 1$. Because $\psi(j) = i + 1$, we obtain $\psi(k) + 1 \ge$ $\psi(j) > \psi(m)$.

The condition $i \notin S \cup \{k-1, m\}$ is equivalent to $j \notin (\psi(S) - 1) \cup \{\psi(m) - 1, \psi(k)\},\$ which, in turn, is equivalent to $j \in (\psi(S) - 1) \setminus {\psi(m) - 1, \psi(k)}$. In the same way, $\psi(i) - 1 \notin S \cup \{k - 1, m\}$ is equivalent to $\psi(j) - 1 \in (\overline{\psi(S) - 1}) \setminus {\psi(m) - 1, \psi(k)}$. \Box

Lemma 7.9. *A set* S *is black* (k, m)-regular if and only if $\overline{\psi(S)-1}$ is white $(\psi(m), \psi(k))$ -regular.

Proof. This follows from the above lemma under the substitutions $k \leftarrow \psi(m), m \leftarrow \psi(k)$, $S \leftarrow \overline{\psi(S) - 1}.$

Alternatively, one may easily check Lemmas [7.8](#page-33-3) and [7.9](#page-33-4) by means of the scheme interpre-tation [\(7.1](#page-29-1)[–7.4\)](#page-30-3). Indeed, the shifted representation for $\Phi^T(\psi(m), \psi(k))$, $T = \overline{\psi(S) - 1}$ arises from one for $\Phi^{S}(k, m)$ by changing the colour of all points and switching the rows.

Proposition 7.10. *If* S *is black* (k, m)*-regular, then*

$$
\Phi^{S}(k,m) = (-1)^{m-k} q^{-2r} \left(\prod_{m \ge i > j \ge k} p_{ij}^{-1} \right) \cdot \Phi^{T}(\psi(m), \psi(k)),
$$

where $T = \overline{\psi(S) - 1}$ *is a white* ($\psi(m), \psi(k)$)*-regular set with* r *elements, and, as above,* $\psi(S) - 1$ *denotes* $\{\psi(s) - 1 \mid s \in S\}$, *while the bar denotes the complement with respect to the interval* $[\psi(m), \psi(k) - 1]$.

Proof. We use double induction on r and on $m - k$. If $m = k$, then the equality reduces to $x_k = x_{\psi(k)}$. If for given k, m we have $r = 0$, then S contains the interval $[k, m - 1]$ and the equality reduces to (6.1) .

Suppose that $r > 0$. We fix $t \in T$. By the inductive supposition on r, we obtain

$$
\Phi^{SU(\psi(t)-1)}(k,m) = (-1)^{m-k} q^{-2(r-1)} \Biggl(\prod_{m \ge i > j \ge k} p_{ij}^{-1} \Biggr) \cdot \Phi^{T \setminus \{t\}}(\psi(m), \psi(k)). \tag{7.11}
$$

We have $t \notin \psi(S) - 1$, and hence $\psi(t) - 1 \notin S$. In particular $\psi(t) - 1 \neq n$, and $\tau_{\psi(t)-1} = 1$; see [\(4.10\)](#page-20-3). Thus, relation [\(7.8\)](#page-32-2) with $t \leftarrow \psi(t) - 1$ implies

$$
\Phi^{S}(k,m) = \Phi^{S \cup \{\psi(t)-1\}}(k,m) + (1 - q^{-2}) p_{ab}^{-1} a \cdot b, \qquad (7.12)
$$

where $a = \Phi^{S}(\psi(t), m)$, $b = \Phi^{S}(k, \psi(t) - 1)$. The inductive supposition on $m - k$ yields

$$
a = (-1)^{m - \psi(t)} q^{-2r_1} \Biggl(\prod_{m \ge i > j \ge \psi(t)} p_{ij}^{-1} \Biggr) \cdot \Phi^T(\psi(m), t),
$$

$$
b = (-1)^{\psi(t) - 1 - k} q^{-2r_2} \Biggl(\prod_{\psi(t) > i > j \ge k} p_{ij}^{-1} \Biggr) \cdot \Phi^T(1 + t, \psi(k)),
$$

where r_1 is the number of elements in $T \cap [\psi(m), t-1]$, and r_2 is the number of elements in *T* ∩ [1 + *t*, ψ (*k*) − 1]. Obviously, $r_1 + r_2 = r - 1$. Therefore,

$$
p_{ab}^{-1}ab = (-1)^{m-k-1}q^{-2(r-1)}\left(\prod_{m\geq i>j\geq k}p_{ij}^{-1}\right)\cdot cd,\tag{7.13}
$$

where $c = \Phi^T(\psi(m), t)$, $d = \Phi^T(1 + t, \psi(k))$. Now, [\(7.12\)](#page-34-0) and [\(7.11\)](#page-34-1) imply

$$
\Phi^{S}(k,m) = (-1)^{m-k} q^{-2(r-1)} \Biggl(\prod_{m \ge i > j \ge k} p_{ij}^{-1} \Biggr) \cdot \{ \Phi^{T \setminus \{t\}}(\psi(m), \psi(k)) - (1 - q^{-2})cd \}.
$$
\n(7.14)

We now have $t \neq n$ because T is white regular. Hence, relation [\(7.8\)](#page-32-2) with $S \leftarrow T \setminus \{t\}$, $t \leftarrow t, k \leftarrow \psi(m), m \leftarrow \psi(k)$ implies

$$
\Phi^{T\setminus\{t\}}(\psi(m), \psi(k)) = \Phi^{T}(\psi(m), \psi(k)) + (1 - q^{-2})p_{dc}^{-1}dc,
$$

and the expression in braces in (7.14) reduces to

$$
\Phi^{T}(\psi(m), \psi(k)) + (1 - q^{-2}) p_{dc}^{-1}[d, c]. \qquad (7.15)
$$

At the same time, Corollary [7.5](#page-31-1) with $S \leftarrow T$, $s \leftarrow t$, $k \leftarrow \psi(m)$, $m \leftarrow \psi(k)$ shows that $p_{dc}^{-1}[d, c] = -\Phi^{T}(\psi(m), \psi(k))$. This equality shows that [\(7.15\)](#page-35-0) is equal to

$$
\Phi^T(\psi(m), \psi(k)) - (1 - q^{-2}) \Phi^T(\psi(m), \psi(k)) = q^{-2} \Phi^T(\psi(m), \psi(k)).
$$

To obtain the required relation, it remains to replace the expression in braces in [\(7.14\)](#page-34-2) with $q^{-2}\Phi^T(\psi(m), \psi(k)).$

Corollary 7.11. *If* S *is* (k, m)-regular, then $\Phi^{S}(k, m) \sim \Phi^{T}(\psi(m), \psi(k))$ for a suitable $(\psi(m), \psi(k))$ -regular set T.

Proof. If S is black (k, m) -regular, we apply Proposition [7.10.](#page-33-0) If S is white (k, m) -regular, we may still apply Proposition [7.10](#page-33-0) with $S \leftarrow T$, $T \leftarrow S$ by Lemma [7.9.](#page-33-4) \Box

Corollary 7.12. Let S be (k, m) -regular. If $m > \psi(k)$, then the leading term of $\Phi^{S}(k, m)$ *is proportional to* $u[\psi(m), \psi(k)]$. *In particular always* $\Phi^{S}(k, m) \neq 0$.

Proof. If $m < \psi(k)$, then definition [\(5.2\)](#page-23-2) shows that the leading term of $\Phi^{S}(k, m)$ in the PBW-decomposition is $u[k, m]$; hence, $\Phi^{S}(k, m) \neq 0$.

If $m > \psi(k)$, then Proposition [7.10](#page-33-0) (with $T \leftarrow S$, $S \leftarrow T$ provided that S is white regular) shows that $\Phi^{S}(k,m)$ is proportional to $\Phi^{T}(\psi(m), \psi(k)) \neq 0$ because $\psi(k) < \psi(\psi(m)) = m.$

Corollary 7.13. *If* S *is black* (*k*, *m*)*-regular and* $t \notin S \setminus \{n\}$, $k \le t < m$, *then*

$$
\Phi^S(k,m) \sim [\Phi^S(k,t), \Phi^S(1+t,m)].
$$

Proof. If $t \notin S \setminus \{n\}$, then $\psi(t) - 1 \in T \cup \{n\}$, where $T = \overline{\psi(S) - 1}$. By Proposition [7.10](#page-33-0) we have $\Phi^{S}(k, m) \sim \Phi^{T}(\psi(m), \psi(k))$. Corollary [7.5](#page-31-1) yields

$$
\Phi^{T}(\psi(m), \psi(k)) \sim [\Phi^{T}(\psi(t), \psi(k)), \Phi^{T}(\psi(m), \psi(t)-1)].
$$

Because t is a white point or $t = n$, the set S is black (k, t) -regular and black $(1 + t, m)$ -regular; see the shifted schemes [\(7.3\)](#page-30-4), [\(7.4\)](#page-30-3). Hence, Proposition [7.10](#page-33-0) implies $\Phi^{S}(k, t)$ ~ $\Phi^T(\psi(t), \psi(k)), \Phi^S(1+t, m) \sim \Phi^T(\psi(m), \psi(t) - 1).$

Corollary 7.14. *If* $S \setminus \{s\}$ *is black* (k, m) *-regular,* $s \in S$, $k \leq s < m$ *, then*

$$
\Phi^{S}(k,m) \sim [\Phi^{S}(1+s,m), \Phi^{S}(k,s)].
$$
\n(7.16)

Proof. This follows from Lemma [7.7](#page-33-5) and Proposition [7.10](#page-33-0) in a similar way. \square

Service and the service of the service

8. Root sequence

Our next goal is to show that the total number of right coideal subalgebras containing $\mathbf{k}[G]$ is less than or equal to $(2n)!! = 2^n \cdot n!$.

In what follows we shall denote by $[k : m]$, $k \le m \le 2n$, the element $x_k + x_{k+1}$ + $\cdots + x_m$, considered as an element of the group Γ^+ . Of course, $[k : m] = [\psi(m) : \psi(k)]$. If $k \le m < \psi(k)$, then $[k : m]$ is a $U_q^+(\mathfrak{so}_{2n+1})$ -root because $u[k, m]$ is a PBW-generator for $U_q^+(\mathfrak{so}_{2n+1})$. The simple $U_q^+(\mathfrak{so}_{2n+1})$ -roots are precisely the generators $x_k = [k : k]$, $1 \leq k \leq n$. To put it another way, the $U_q^+(\mathfrak{so}_{2n+1})$ -roots form the positive part R^+ of the classical root system of type B_n , provided that we formally replace symbols x_i with α_i (the Weyl basis for R , see [\[3,](#page-57-4) Chapter IV, §6, Theorem 7]).

We fix the notation U for a (homogeneous if $q^t = 1$, $t > 4$) right coideal subalgebra of $U_q^+(\mathfrak{so}_{2n+1}), q^t \neq 1$ (respectively, of $u_q^+(\mathfrak{so}_{2n+1})$) that contains G. The U-roots form a subset $D(U)$ of R^+ . In this section we will see, in particular, that $D(U)$ uniquely defines U.

Definition 8.1. Let γ_k be a simple U-root of the form $[k : m]$, $k \le m < \psi(k)$, with m maximal. We denote by θ_k the number $m - k + 1$, which equals the length of γ_k . If there are no simple U-roots of the form $[k : m]$, $k \le m < \psi(k)$, we put $\theta_k = 0$. The sequence $r(\mathbf{U}) = (\theta_1, \dots, \theta_n)$ satisfies $0 \le \theta_k \le 2n-2k+1$ and is uniquely defined by U. We shall call $r(\mathbf{U})$ a *root sequence of* \mathbf{U} , or just an *r*-*sequence of* \mathbf{U} . We define $\tilde{\theta}_k$ to be $k + \theta_k - 1$, the maximal value of m for the simple U-roots of the form $[k : m]$ with fixed k.

Theorem 8.2. *For each sequence* $\theta = (\theta_1, \dots, \theta_n)$ *such that* $0 \le \theta_k \le 2n - 2k + 1$, $1 \leq k \leq n$, there exists at most one (homogeneous if $q^t = 1$, $t > 4$) right coideal $subalgebra \mathbf{U} \supseteq G$ of $U_q^+(\mathfrak{so}_{2n+1}), q^t \neq 1$ (*respectively, of* $u_q^+(\mathfrak{so}_{2n+1})$) *with* $r(\mathbf{U}) = \theta$.

This will result from the following lemmas.

Lemma 8.3. *If* $[k : m]$ *is a simple* U-root, then there exists only one element $a \in U$ of *the form* $a = \Phi^S(k, m)$.

Proof. Suppose that $a = \Phi^S(k, m)$ and $b = \Phi^{S'}(k, m)$ are two different elements in U. Then $a - b$ is not a PBW-generator for U because its leading term, with respect to the PBW-decomposition given in Proposition [4.1,](#page-17-3) is not equal to $u[k, m]$. Hence, the nonzero homogeneous element $a - b$ is a polynomial in the PBW-generators of U. Thus, $[k : m]$, being the degree of $a - b$, is a sum of U-roots, which is a contradiction.

Lemma 8.4. *Let* $\Phi^{S}(k, m) \in U$, $k \leq m < \psi(k)$. *Suppose that* $\Phi^{S'}(k, m) \notin U$ *for all* $subsets S' \subset S$. If $j \notin S$, $k \leq j < m$, then $\Phi^S(1+j, m) \in U$. If $j \in S$, $k \leq j < m$, then $\Phi^{S''}(k, j) \in U$ *with some* $S'' \subseteq S \cap [k, j]$. In particular $[k : j]$ *is a* U-root.

Proof. If in [\(5.2\)](#page-23-2) we have $\Phi^{S}(1 + s_i, m) = 0$, then the spectrum Sp(a) of $a = \Phi^{S}(k, m)$ is a proper subset of $S \cup \{m\}$. By Proposition [5.6,](#page-25-4) there exists a subset $S' \subseteq Sp(a) \subset S$ such that $\Phi^{S'}(k,m) \in U$. This contradiction implies that $\Phi^{S}(1+j,m) \neq 0$ for all $j \in S \cap [k, m-1].$

If $j \notin S$, then Lemma [5.4](#page-25-2) implies $\Phi^{S}(1+j, m) \in \mathbf{U}$.

If $j \in S$, then we apply $\Delta \cdot (\mathrm{id} \otimes \nu_a)$ with $a = \Phi^S(1+j, m) \neq 0$ as defined in Lemma [5.5](#page-25-3) to both sides of [\(5.2\)](#page-23-2). Lemma 5.5 shows that the value of $\Delta(\Phi^S(1 +$ i, m)u[k, i]) · (id $\otimes v_a$) has the following three options: if $j < i < m$, it is zero; if $i = j$, it is $g_a u[k, j] \otimes a$; if $i < r$, it is $g_a b'_i u[k, i]$, $b'_i \in A_{k+1}$. Because $\Delta(u[k, m]) \cdot (\mathrm{id} \otimes v_a) = 0$ due to (4.8) , we obtain

$$
b = u[k, j] + \sum_{i < j, i \in S} b'_i u[k, i] \in U, \quad b'_i \in A_{k+1}.
$$

By definition this relation means that $[k : j]$ is a U-root, while Proposition [5.6](#page-25-4) implies $\Phi^{S''}(k, j) \in U$ with $S'' \subseteq Sp(b) \subseteq S \cap [k, j].$

Lemma 8.5. *If* $[k : m]$ *is a simple* **U**-root, $k \le m < \psi(k)$, *then the minimal S such that* $\Phi^{S}(k, m) \in U$ equals $\{j \mid k \leq j < m, [k : j]$ *is a* U-root}, and *it is a* (k, m) -regular set (*see Definition* [7](#page-29-3).1).

Proof. Suppose that S is not (k, m) -regular; we then have $k \le n < m$.

If *n* is a white point, $n \notin S$, then by Lemma [8.4,](#page-36-1) we have $\Phi^{S}(1 + n, m) \in U$. Hence $[n+1 : m] = [\psi(m) : n]$ is a U-root due to Corollary [7.12.](#page-35-1) Because S is not white (k, m) -regular, in the shifted scheme [\(7.2\)](#page-29-2) we can find a black column, say $n + i \in S \cup \{m\}$, $n - i \in S$. By Lemma [8.4](#page-36-1) applied to $\Phi^{S}(n + 1, m)$, $[n + 1 : n + i]$ is a U-root, while the same lemma applied to $\Phi^{S}(k, m)$ shows that $[k : n - i]$ is also a U-root. Now,

$$
[k : m] = [k : n] + [n + 1 : m] = [k : n - i] + [n + 1 : n + i] + [n + 1 : m]
$$

is a sum of U-roots, which is a contradiction.

If *n* is a black point, $n \in S$, then by Lemma [8.4,](#page-36-1) we have $\Phi^{S''}(k, n) \in U$, and $[k : n]$ is a U-root. Because S is not black (k, m) -regular, we can find $i, 1 \le i \le m - n$, such that $n + i \notin S \setminus \{m\}, n - i \notin S$ (see [\(7.3\)](#page-30-4)). We have $n - i \notin S''$ because $S'' \subseteq S$. Hence Lemma [8.4](#page-36-1) applied to $\Phi^{S''}(k,n)$ implies that $[1+n-i:n] = [n+1:n+i]$ is a U-root. The same lemma applied to $\Phi^{S}(k, m)$ shows that $\Phi^{S}(1 + n + i, m) \in U$. Hence, due to Corollary [7.12,](#page-35-1) the element $[1 + n + i : m] = [\psi(m) : n - i]$ is also a U-root. We now have a similar contradiction:

$$
[k : m] = [k : n] + [n + 1 : m] = [k : n] + [n + 1 : n + i] + [1 + n + i : m].
$$

Due to Lemma [8.4](#page-36-1) it remains to show that if $[k : j]$ is a U-root, then $j \in S$. Suppose that $j \notin S$. Then Lemma [8.4](#page-36-1) implies $a = \Phi^{S}(1 + j, m) \in U$.

If S is $(1 + j, m)$ -regular, or $1 + j < \psi(m)$, then $a \neq 0$ and $[1 + j : m]$ is a U-root (see Corollary [7.12\)](#page-35-1). This is a contradiction, for $[k : m] = [k : j] + [1 + j : m]$.

Suppose, finally, that S is not $(1 + j, m)$ -regular and $1 + j \ge \psi(m)$. Because S is indeed (k, m) -regular, these conditions hold only in two cases: $j = \psi(m) - 1$, or $n \notin S$, $\psi(j) - 1 \in S$; see the shifted scheme representations [\(7.2\)](#page-29-2), [\(7.4\)](#page-30-3).

In the former case, by Lemma [8.4,](#page-36-1) either $\Phi^{S}(1+n, m) \in \mathbf{U}$ (if $n \notin S$), or $\Phi^{S''}(k, m)$ \in U and $\Phi^{S}(1 + j, m) \in$ U because $j \notin S'' \subseteq S$ (if $n \in S$). Therefore, $[n + 1 : m] =$ $[\psi(m), n] = [j + 1 : n]$ is a U-root due to Corollary [7.12.](#page-35-1) We have a contradiction $[k : m] = [k : \psi(m) - 1] + [\psi(m), n] + [n + 1 : m].$

In the latter case, similarly, $\Phi^{S}(1 + n, m) \in U$ and $\Phi^{S''}(1 + j, n) \in U$. Hence, Corollary [7.12](#page-35-1) implies that $[n + 1 : m]$, $[1 + j : n]$ are U-roots. Again we have a contradiction: $[k : m] = [k : j] + [1 + j, n] + [n + 1 : m]$.

Lemma 8.6. *If* $[k : m] = \sum_{i=1}^{r+1} [l_i : m_i]$, $k \leq m \leq 2n$, $l_i \leq m_i \leq \psi(l_i)$, then it *is possible to replace some of the pairs* (l_i, m_i) *with* $(\psi(m_i), \psi(l_i))$ *so that the given decomposition takes the form*

$$
[k : m] = [1 + k_0 : k_1] + [1 + k_1 : k_2] + \dots + [1 + k_r : m]
$$
\n(8.1)

with $k - 1 = k_0 < k_1 < k_2 < \cdots < k_r < m = k_{r+1}$.

Proof. We use induction on $m - k$. Either x_k or x_m is the maximal letter among $\{x_i \mid k \leq k\}$ $j \leq m$. Hence, there exists at least one i such that, respectively, $l_i = k$ or $l_i = \psi(m)$. In the former case, we may put $k_1 = m_i$ and apply the inductive supposition to $[m_i + 1 : m]$. In the latter case, we put $k_r = \psi(m_i) - 1$. Then $[k_r + 1 : m] = [\psi(m_i) : \psi(l_i)]$ and one may apply the inductive supposition to $[k : k_r]$.

Lemma 8.7. *If* $[k : m]$, $k \le m \ne \psi(k)$, is a sum of **U**-roots, then $[k : m]$ itself is a U*-root.*

Proof. Without loss of generality, we may suppose that $m < \psi(k)$ because $[k : m] =$ $[\psi(m) : \psi(k)]$. By Lemma [8.6,](#page-38-0) we have a decomposition [\(8.1\)](#page-38-0), where $[1 + k_i : k_{i+1}]$, $0 \le i \le r$, are U-roots. By increasing r if necessary, we may suppose that all roots $[1 + k_i : k_{i+1}], 0 \le i < r$, are simple.

If $k_{i+1} < \psi(1 + k_i)$, then by Proposition [5.6](#page-25-4) we find a set $S_i \subseteq [1 + k_i, k_{i+1} - 1]$ such that $\Phi^{S_i}(1 + k_i, k_{i+1}) \in U$. Moreover, by Lemma [8.5,](#page-37-0) the set S_i may be taken to be $(1 + k_i, k_{i+1})$ -regular.

If $k_{i+1} > \psi(1+k_i)$, then of course $\psi(1+k_i) < \psi(\psi(k_{i+1}))$, and again by Proposition [5.6](#page-25-4) and Lemma [8.5,](#page-37-0) we find a ($\psi(k_{i+1}), \psi(1+k_i)$)-regular set $T_i \subseteq [\psi(k_{i+1}), \psi(1+k_i)]$ -1] such that $\Phi^{T_i}(\psi(k_{i+1}), \psi(1 + k_i)) \in U$. By Corollary [7.11](#page-35-2) with $S \leftarrow T_i$, we have $\Phi^{T_i}(\psi(k_{i+1}), \psi(1 + k_i)) \sim \Phi^{S_i}(1 + k_i, k_{i+1})$, where S_i is $(1 + k_i, k_{i+1})$ -regular. Thus, in all cases

$$
f_i \stackrel{df}{=} \Phi^{S_i} (1 + k_i, k_{i+1}) \in \mathbf{U}, \quad S_i \subseteq [1 + k_i, k_{i+1} - 1], \tag{8.2}
$$

with regular S_i (we stress that this is a restriction on S_i only if $1 + k_i \le n < k_{i+1}$).

By Definition [2.8,](#page-6-5) we must construct an element $c \in U$ with the leading super-word $u[k, m]$. First we shall prove that for $r = 1$, the element $c = [f_0, f_1]$ is such an element even if $[1 + k_i : k_{i+1}]$ are not necessarily simple roots, but S_i , $i = 0, 1$, are still regular sets.

There is the following natural reduction process for the decomposition of a linear combination of super-words in the PBW-basis given in Theorem [2.5](#page-6-0) and Propositions [4.1,](#page-17-3) [4.5.](#page-22-0) Let W be a super-word. First, according to [\[7,](#page-58-7) Lemma 7], we decompose the super-word W into a linear combination of smaller monotonous super-words. Then, we replace each nonhard super-letter with the decomposition of its value that exists by Definition [2.3,](#page-5-2) and again we decompose the arising super-words into linear combinations of smaller monotonous super-words, and so on, until we obtain a linear combination of monotonous super-words in hard super-letters. If these super-words are not restricted, we may apply Definition [2.4](#page-6-2) and repeat the process until we obtain only monotonous restricted words in hard super-letters.

This process shows that if a super-word W starts with a super-letter smaller than $u[k, m]$, then so do all the super-words in the PBW-decomposition of W. Using this remark we shall prove the following auxiliary statement.

If $k \le i \le j \le m \le \psi(k)$, $m \ne \psi(i) - 1$, *then all super-words in the PBW*decomposition of $[u[k, i], \Phi^S(1 + j, m)]$ *start with super-letters smaller than* $u[k, m]$ *.*

Indeed, by definition (5.2) we have

$$
\Phi^{S}(1+j,m) = u[1+j,m] + \sum_{m>s \ge 1+j} \gamma_{s} \Phi^{S}(1+s,m) \cdot u[1+j,s], \quad \gamma_{s} \in \mathbf{k}.
$$

We now use induction on $m - j$. By Proposition [3.15](#page-15-3) we have $[u[k, i], u[1 + j, m]] = 0$, for the inequalities $\psi(k) > m > i$ imply $j \neq \psi(k)$. We denote $u = u[k, i]$, $v =$ $\Phi^{S}(1+s,m), w = u[1+j, s]$. Relation [\(2.11\)](#page-4-4) reads $[u, v \cdot w] = [u, v] \cdot w + p_{uv}v \cdot [u, w]$. By the inductive supposition, all super-words in the PBW-decomposition of $[u, v]$ start with super-letters smaller than $u[k, m]$, and consequently so do those for $[u, v] \cdot w$. The element v depends only on x_i , $i > k$, and therefore so do all super-letters in the PBWdecomposition of v, while the starting super-letters of $v \cdot [u, w]$ are still less than $u[k, m]$. Thus, all super-words in the PBW-decomposition of $[u[k, i], \Phi^{S}(1 + j, m)]$ start with super-letters smaller than $u[k, m]$. The auxiliary statement is proved.

We now have

$$
[f_1, f_2] = [\Phi^{S_0}(k, k_1), \Phi^{S_1}(1 + k_1, m)]
$$

\n
$$
= [u[k, k_1] + \sum_{k_1 > s \ge k} \gamma_s \Phi^{S_0}(1 + s, k_1) \cdot u[k, s],
$$

\n
$$
u[1 + k_1, m] + \sum_{m > l \ge 1 + k_1} \beta_l \Phi^{S_1}(1 + l, m) \cdot u[1 + j, l]]
$$

\n
$$
= u[k, m] + \sum_{m > l \ge 1 + k_1} \beta_l [u[k, k_1], \Phi^{S_1}(1 + l, m) \cdot u[1 + k_1, l]]
$$

\n
$$
+ \sum_{k_1 > s \ge k} \gamma_s [\Phi^{S_0}(1 + s, k_1) \cdot u[k, s], f_2].
$$

We see that each element in the latter sum has a nontrivial left factor that depends only on x_i , $i > k$, which is is either $\Phi^{S_0}(1 + s, k_1)$ or f_2 . Hence, all super-words in the PBWdecomposition of that element start with super-letters smaller than $u[k, m]$. To check the former sum, we denote $u = u[k, k_1]$, $v = \Phi^{S_1}(1 + l, m)$, $w = u[1 + k_1, l]$. By [\(2.11\)](#page-4-4) the general element in the sum is proportional to $[u, v \cdot w] = [u, v] \cdot w + p_{uv}v \cdot [u, w]$. By the above auxiliary statement with $i \leftarrow k_1, j \leftarrow l$, all super-words in the PBWdecomposition of [u, v] start with super-letters smaller than $u[k, m]$, and hence so do those for $[u, v] \cdot w$. The element v depends only on x_i , $i > k$. Therefore, the starting super-letters in the PBW-decomposition of $v \cdot [u, w]$ are also smaller than $u[k, m]$. Thus, the leading term of $[f_0, f_1]$ is indeed $u[k, m]$. The case $r = 1$ is completed.

Consider the general case. Denote by t the index such that $1 + k_t \le n \le k_{t+1}$, if any. Recall that S_t is either white or black $(1 + k_t, k_{t+1})$ -regular, while each S_i , $i \neq t$, is both white and black $(1 + k_i, k_{i+1})$ -regular because its degree in x_n is less than or equal to 1. We shall consider four options for the regular set S_t given in [\(7.1](#page-29-1)[–7.4\)](#page-30-3) separately.

1. $k_{t+1} < \psi(1 + k_t)$, and S_t is white regular. Let $S = \bigcup_{i=0}^t S_i \cup \{k_i \mid 0 \le i \le t\}$. The set S is white (k, k_{t+1}) -regular because all complete columns in the shifted scheme [\(7.1\)](#page-29-1) for $\Phi^{S}(k, k_{t+1})$ coincide with ones for $\Phi^{S_t}(k_t, k_{t+1})$. By Lemma [7.4,](#page-30-2) we have

$$
\Phi^S(k, k_{t+1}) \sim [f_t f_{t-1} \dots f_0]
$$

with an arbitrary arrangement of brackets on the right-hand side. In the same way consider the set $S' = \bigcup_{i=t+1}^r S_i \cup \{k_i \mid t+1 < i < r\}$. This set is white $(1 + k_{t+1}, m)$ -regular because the shifted scheme [\(7.1\)](#page-29-1) for $\Phi^{S'}(1 + k_{t+1}, m)$ has no complete columns at all. Lemma [7.4](#page-30-2) yields

$$
\Phi^{S'}(1 + k_{t+1}, m) \sim [f_r f_{r-1} \dots f_{t+1}].
$$

Now we may apply the case $r = 1$ with $S_0 \leftarrow S$, $S_1 \leftarrow S'$, $t_1 \leftarrow k_{t+1}$. Thus, the leading super-word of the element

$$
c = [[f_t f_{t-1} \dots f_0], [f_r f_{r-1} \dots f_{t+1}]] \tag{8.3}
$$

equals $u[k, m]$, and obviously $c \in U$ since $f_i \in U$, $0 \le i \le r$.

2. $k_{t+1} > \psi(1 + k_t)$, and S_t is white regular. In perfect analogy we consider the sets $S = \bigcup_{i=0}^{t-1} S_i \cup \{k_i \mid 0 < i < t-1\}$ and $S' = \bigcup_{i=t}^{r} S_i \cup \{k_i \mid t < i < r\}$. By the case $r = 1$ under the substitutions $S_0 \leftarrow S$, $S_1 \leftarrow S'$, $t_1 \leftarrow k_t$, we see that the required element is

$$
c = [[f_{t-1}f_{t-2} \dots f_1f_0], [f_r f_{r-1} \dots f_{t+1}f_t]].
$$
\n(8.4)

3. $k_{t+1} < \psi(1 + k_t)$, and S_t is black regular. Let $S = \bigcup_{i=0}^t S_i$. The set S is black (k, k_{t+1}) -regular because all complete columns in the shifted scheme [\(7.3\)](#page-30-4) for $\Phi^{S}(k, k_{t+1})$ coincide with ones for $\Phi^{S_t}(k_t, k_{t+1})$. None of the points k_1, \ldots, k_r belongs to S (see (8.2)). Therefore, by multiple use of Corollary [7.13,](#page-35-3) we have

$$
\Phi^S(k, k_{t+1}) \sim [f_0 f_1 \dots f_t]
$$

with an arbitrary arrangement of brackets on the right-hand side. In the same way, consider the set $S' = \bigcup_{i=t+1}^{r} S_i$. It is black $(1 + k_{t+1}, m)$ -regular because the shifted scheme [\(7.3\)](#page-30-4) for $\Phi^{S'}(1 + k_{t+1}, m)$ has no complete columns at all. The multiple use of Corollary [7.13](#page-35-3) yields

$$
\Phi^{S'}(1 + k_{t+1}, m) \sim [f_{t+1}f_{t+2} \dots f_r].
$$

Now, we may find c using the case $r = 1$ with $S_0 \leftarrow S$, $S_1 \leftarrow S'$, $t_1 \leftarrow k_{t+1}$:

$$
c = [[f_0 f_1 \dots f_t], [f_{t+1} f_{t+2} \dots f_r]]. \tag{8.5}
$$

 $4. k_{t+1} > \psi(1 + k_t)$, and S_t is black regular. In perfect analogy we consider the sets $S = \bigcup_{i=0}^{r-1} S_i$ and $S' = \bigcup_{i=t}^{r} S_i$. By the case $r = 1$ under the substitutions $S_0 \leftarrow S$, $S_1 \leftarrow S', t_1 \leftarrow k_t$, we see that the required element is

$$
c = [[f_0 f_1 \dots f_{t-1}], [f_t f_{t+1} \dots f_r]]. \tag{8.6}
$$

The proof is complete. \Box

Lemma 8.8. *If* $[k : m]$, $k \le m < \psi(k)$, is a simple **U**-root, $k \le j < m$, then $[k : j]$ is a U-root if and only if $[1 + j : m]$ is not a sum of U-roots.

Proof. If [k, j] is a U-root, then $[1 + j : m]$ is not a sum of U-roots because $[k : m] =$ $[k : j] + [1 + j : m]$ is a simple U-root.

We note, first, that the converse statement is valid if the minimal S with $\Phi^{S}(k, m) \in U$ is $(1 + j, m)$ -regular. Indeed, in this case, $\Phi^{S}(1 + j, m) \neq 0$ due to Corollary [7.12.](#page-35-1) By Lemma [8.5,](#page-37-0) the element $[k : j]$ is a U-root if and only if $j \in S$. If $j \notin S$, then by Lemma [8.4,](#page-36-1) we have $a = \Phi^{S}(1 + j, m) \in U$. Hence, the nonzero homogeneous element a is a polynomial in PBW-generators of U. Thus, $[1 + j : m]$, being the degree of a, is a sum of U-roots (by Lemma [8.7,](#page-38-2) it is even a U-root because the regularity hypothesis implies $\psi(1 + j) \neq m$).

Suppose, next, that S is not $(1+j, m)$ -regular and $j \notin S$. In this case, $1+j \le n \le m$. Moreover, $m > \psi(1 + i)$, because otherwise all complete columns in the shifted scheme (7.1) – (7.4) of $\Phi^{S}(1 + j, m)$ coincide with those of $\Phi^{S}(k, m)$. Obviously, in general, only the leftmost complete column for $\Phi^{S}(1 + j, m)$ may be different from a complete column for $\Phi^{S}(k, m)$. Hence, we have only the following three options: 1) $\psi(1 + j) = m$; 2) $\psi(1 + j) \in S$, while $n \notin S$; 3) $\psi(1 + j) \notin S$, while $n \in S$.

1) In the shifted scheme of $\Phi^{S}(k, m)$, the point $j = \psi(m) - 1$ has the same colour as n (see [\(7.1\)](#page-29-1), [\(7.3\)](#page-30-4)); that is, n is a white point. At the same time, because S is always $(n + 1, m)$ -regular, we already know that *n* is white if and only if $[n + 1 : m]$ is a U-root. Thus, $[n+1:m]$ is a U-root, while $[1+j:m] = [1+j:n]+[n+1:m] = 2[n+1:m]$ is a sum of two U-roots.

2) In the second case, S is certainly $(n + 1, m)$ -regular. Hence, $n \notin S$ implies that $[n+1:m]$ is a U-root. By Lemma [8.4,](#page-36-1) we have $\Phi^{S''}(k, \psi(1+j)) \in U$ with $S'' \subseteq S$, for $\psi(1 + j) \in S$. In particular, we still have $n \notin S$. Hence the same lemma again implies $a = \Phi^{S}(n+1, \psi(1+j)) \in U$. By Corollary [7.12,](#page-35-1) the leading super-word of a equals $u[1 + j, n]$; that is, $[1 + j : n]$ is a U-root. Now, $[1 + j : m] = [1 + j : n] + [n + 1 : m]$ is a sum of two roots, as required.

3) By Lemma [8.4,](#page-36-1) we have $\Phi^{S''}(k, n) \in U$ with $S'' \subseteq S$ since $n \in S$. In particular, we still have $j \notin S''$. Hence the same lemma implies that $[1 + j : n]$ is a U-root. Because $\psi(1 + j) \notin S$, and obviously S is $(\psi(1 + j), m)$ -regular, we already know that $[1 + \psi(1 + j) : m] = [\psi(j) : m]$ is a U-root. Now $[1 + j : m] = [1 + j : n] + [n + 1 :$ $\psi(1+j)] + [\psi(j) : m]$ is a sum of U-roots because $[n+1 : \psi(1+j)] = [1 + j : n]$. \Box

Lemma 8.9. *A* (*homogeneous*)*right coideal subalgebra* U *that contains* k[G] *is uniquely defined by the set of all its simple roots.*

Proof. Two subalgebras with the same PBW-basis obviously coincide; hence, it suffices to find a PBW-basis of U that depends only on the set of simple U-roots. We note first that the set of all U-roots is uniquely defined by the set of simple U-roots. Indeed, if $[k : m]$ is a U-root, then it is a sum of simple U-roots. By Lemma [8.6](#page-38-0) there exists a sequence $k-1 = k_0 < k_1 < \cdots < k_r < m = k_{r+1}$ such that $[1 + k_i : k_{i+1}], 0 \le i \le r$, are simple U-roots. Conversely, if there exists a sequence $k - 1 = k_0 < k_1 < \cdots < k_r = m + 1$ such that $[1 + k_i : k_{i+1}]$, $0 \le i < r$, are simple U-roots, then by Lemma [8.7,](#page-38-2) the element $[k : m]$ is a U-root. Of course, the decomposition of $[k : m]$ into a sum of simple U-roots is not unique in general. However, for the construction of the PBW-basis, we may fix a decomposition for each nonsimple U-root from the very beginning.

Now, if $[k : m]$ is a simple U-root, Lemmas [8.3](#page-36-2) and [8.5](#page-37-0) show that the element $\Phi^{S}(k, m) \in U$ is uniquely defined by the set of simple U-roots. We include this element in the PBW-basis of U. If $[k : m]$ is a nonsimple U-root with a fixed decomposition into a sum of simple U-roots, then we include in the PBW-basis the element c defined in one of the formulae (8.3) – (8.6) depending on the type of decomposition.

Lemma 8.10. *If for* (*homogeneous*) *right coideal subalgebras* U*,* U 0 *containing* k[G] *we have* $r(\mathbf{U}) = r(\mathbf{U}')$, *then* $\mathbf{U} = \mathbf{U}'$.

Proof. By Lemma [8.9,](#page-41-1) it suffices to show that the r-sequence uniquely defines the set of all simple roots. We use downward induction on k defined by a simple U-root $[k : m]$. If $k = n$, then the only possible $\gamma = [n : n]$ is a simple U-root if and only if $\theta_n = 1$. Let $k < n$. By definition, simple U-roots of the form $[k : m]$, $m > \tilde{\theta}_k$, do not exist, while $[k : \tilde{\theta}_k]$ is a simple U-root. If $m < \tilde{\theta}_k$, then by Lemma [8.8,](#page-41-2) the element $[k : m]$ is a U-root if and only if $[m+1 : \tilde{\theta}_k]$ is not a sum of U-roots starting with a number greater than k. By the inductive supposition, the r-sequence defines all roots starting with a number greater than k . Hence, by Lemma [8.8,](#page-41-2) the r -sequence also defines the set of all U-roots of the form $[k : m]$, $m < \tilde{\theta}_k$. Thus, the *r*-sequence defines the set of all U-roots and the set of all simple U-roots. \Box

9. Examples

In this section, we find the simple roots for fundamental examples of right coideal subalgebras. We keep all the notation of the above section.

Example 9.1. Let $U(k, m)$ be the right coideal subalgebra generated over $\mathbf{k}[G]$ by a single element $u[k, m], k \le m \le \psi(k)$. By [\(4.8\)](#page-20-0), the right coideal generated by $u[k, m]$ is spanned by the elements $g_{ki}u[i + 1, m]$. Hence, $U(k, m)$, as an algebra, is generated over $\mathbf{k}[G]$ by the elements $u[i, m], k \leq i \leq m$. Accordingly, the additive monoid of degrees of homogeneous elements from $U(k, m)$ is generated by $[i : m], k \le i \le m$. In this monoid, the indecomposable elements (by definition, they are simple $U(k, m)$ -roots) are precisely $[i : m]$, $k \le i \le m$, $i \ne \psi(m)$. The length of $[i : m]$ equals $m - i + 1$. However, if $i > \psi(m)$, then the maximal letter among x_i , $i < j < m$, is $x_{\psi(m)}$ because $[i : m] = [\psi(m) : \psi(i)]$, with $\psi(m) \leq \psi(i) < \psi(\psi(m))$. Hence, the maximal length of a simple root starting with $\psi(m)$ equals $m - (\psi(m) + 1) + 1 = 2(m - n) - 1$, while there are no simple roots of the form $[k': m'], k' \le m' < \psi(k')$, with $k' > \psi(m)$. Thus because of Definition [8.1,](#page-36-3) we have

$$
\theta_i = \begin{cases} m - i + 1 & \text{if } k \le i < \psi(m); \\ 2(m - n) - 1 & \text{if } k \le i = \psi(m) \le n; \\ 0 & \text{otherwise.} \end{cases} \tag{9.1}
$$

The set $\{u[i, m] \mid k \le i \le m, i \neq \psi(m)\}$ is a set of PBW-generators for $U(k, m)$ over $k[G]$.

Example 9.2. Let us analyse in detail the simplest (but not trivial [\[2\]](#page-57-0)) case $n = 2$. Consider the six elements $w_1 = u[1, 3] = [[x_1, x_2], x_2], w_2 = u[2, 4] = [x_2, [x_2, x_1]],$ $w_3 = u[1, 2] = [x_1, x_2], w_4 = u[3, 4] = [x_2, x_1], w_5 = x_1, w_6 = x_2$. We denote by U_j , $1 \leq j \leq 6$, the right coideal subalgebra generated by w_i and $\mathbf{k}[G]$.

By [\(9.1\)](#page-43-0), we have $r(U_1) = (3, 1)$. Indeed, in this case, $k = 1$, $m = 3$, $\psi(m) = 2$; hence, $\theta_1 = m - 1 + 1 = 3$ according to the first option of [\(9.1\)](#page-43-0), while $\theta_2 = 2(m - n) - 1$ $= 1$ by the second option of [\(9.1\)](#page-43-0).

In the same way, $r(U_2) = (3, 0)$ because in this case $k = 2$, $m = 4$, $\psi(m) = 1$; hence $\theta_1 = 2(m - 2) - 1 = 3$ according to the second option, while $\theta_2 = 0$ due to the third option.

In perfect analogy, we have $r(U_3) = (2, 1), r(U_4) = (2, 0), r(U_5) = (1, 0), r(U_6) =$ (0, 1). We see that all six right coideal subalgebras are different. There are two more (improper) right coideal subalgebras $U_7 = U_7^+(0.65)$, $U_8 = \mathbf{k}[G]$ with the *r*-sequences $(1, 1)$ and $(0, 0)$ respectively. Thus, we have found all $(2n)!! = 8$ possible right coideal subalgebras in $U_q^+(\mathfrak{so}_5)$ containing G, and they form the following lattice:

We note that in [\[17\]](#page-58-16), B. Pogorelsky found a similar lattice for the quantum groups $U_q(\mathfrak{g})$, $u_q(\mathfrak{g})$, where $\mathfrak g$ is the simple Lie algebra of type G_2 .

Our next goal is to generalise formula (9.1) to an arbitrary right coideal subalgebra $\mathbf{U}^{S}(k, m)$ generated over $\mathbf{k}[G]$ (as a right coideal subalgebra) by a single element $\Phi^{S}(k, m)$ with a (k, m) -regular set S.

Proposition 9.3. If S is (k, m) -regular, then the coproduct of $\Phi^{S}(k, m)$ has a decompo*sition*

$$
\Delta(\Phi^S(k,m)) = \sum a^{(1)} \otimes a^{(2)},\tag{9.2}
$$

where the degrees of the left components of tensors belong to the additive monoid Σ *generated by all* $[1 + t : s]$ *with* t *being a white point* $(t = k - 1, \text{ or } t \notin S, k \leq t < m)$ *and s being a black point* ($s \in S \cap [k, m - 1]$, *or* $s = m$).

Proof. Let S be white (k, m) -regular. Lemma [7.4](#page-30-2) shows that $\Phi^{S}(k, m)$ is a linear combination of products (in different orders) of $u_i = u[1 + s_i, s_{i+1}]$, $0 \le i \le r$. Hence, by [\(4.8\)](#page-20-0), the coproduct is a linear combination of products of the tensors

$$
u_i \otimes 1, \quad f_i \otimes u_i, \quad h_i u[1 + t_i, s_{i+1}] \otimes u[1 + s_i, t_i], \tag{9.3}
$$

where $s_i < t_i < s_{t+1}$, $f_i = \text{gr}(u_i)$, $h_i = \text{gr}(u[1 + s_i, t_i])$. The degrees of the left components of these tensors, except $u_i \otimes 1$, $i > 0$, belong to Σ . We stress that in each product there is exactly one tensor of (9.3) related to a given i.

We denote by Σ' the additive monoid generated by all $[1 + t : s]$, where $t \notin S$, $k \leq t \leq m$, while s is a black point. By induction on the number r of elements in $S \cap [k, m - 1]$, we shall prove that there exists a decomposition [\(9.2\)](#page-44-1) such that for each i either $D(a^{(1)}) \in \Sigma'$ or $D(a^{(1)}) = [k : s] + \alpha$, where s is a black point and $\alpha \in \Sigma'$.

If $r = 0$, then $\Phi^{S}(k, m) = u[k, m]$, and the statement follows from [\(4.8\)](#page-20-0).

If $r > 0$, then Corollary [7.5](#page-31-1) implies that $\Phi^{S}(k,m) \sim [\Phi^{S}(1 + s_1, m), u[k, s_1]]$. By the inductive supposition, we have $\Delta(\Phi^S(1 + s_1, m)) = \sum b^{(1)} \otimes b^{(2)}$, where either $D(b^{(1)}) = \alpha \in \Sigma'_1$ or $D(b^{(1)}) = [1 + s_1 : s] + \alpha, \alpha \in \Sigma'_1$, with s being a black point in the scheme of $\Phi^S(1 + s_1, m)$; see [\(5.3\)](#page-24-3). Here, Σ'_1 is the Σ' related to $\Phi^S(1 + s_1, m)$: the additive monoid generated by all $[1 + t : s]$, where $t \notin S$, $s_1 < t < m$, and s is a black point. Certainly, $\Sigma'_1 \subseteq \Sigma'$ because in the scheme of $\Phi^S(1 + s_1, m)$, there is only one point, s_1 , that has a colour different from the one it has in the scheme of $\Phi^S(k, m)$.

By [\(4.8\)](#page-20-0), the coproduct of $u_0 = u[k, s_1]$ is a linear combination of the tensors [\(9.3\)](#page-44-0) with $i = 0$. The degree of the left components of the tensors of

$$
[b^{(1)} \otimes b^{(2)}, h_0 u[1 + t_0, s_1] \otimes u[k, t_0]]
$$

equals either $[1 + t_0 : s_1] + \alpha$ or $[1 + t_0 : s_1] + [1 + s_1 : s] + \alpha = [1 + t_0 : s] + \alpha$. In both cases, the degree belongs to Σ' because t_0 is a white point in both schemes, and $t_0 \neq k - 1$.

In the same way, the degree of the left components of the tensors of $[b^{(1)} \otimes b^{(2)}, u_0 \otimes 1]$ equals either $[k : s_1] + \alpha$ or $[k : s_1] + [1 + s_1 : s] + \alpha = [k : s] + \alpha$. In both cases, the degree has the required form.

It remains to consider the skew commutator

$$
[b^{(1)} \otimes b^{(2)}, f_0 \otimes u_0] = b^{(1)} f_0 \otimes b^{(2)} u_0 - p(b^{(1)} b^{(2)}, u_0) f_0 b^{(1)} \otimes u_0 b^{(2)}
$$

The degree of the left components of these tensors equals $D(b^{(1)})$. We shall prove that one of the following three options is valid: $[b^{(1)} \otimes b^{(2)}, f_0 \otimes u_0] = 0$, or $D(b^{(1)}) \in \Sigma'$, or $D(b^{(1)}) = [k : s] + \alpha, \alpha \in \Sigma'$ with s black.

.

The comments on [\(9.3\)](#page-44-0) show that there exists a sequence of elements $(t_i | 0 \le i \le r)$ such that $s_i \leq t_i \leq s_{i+1}$, and

$$
D(b^{(1)}) = \sum_{i=1}^{r} [1 + t_i : s_{i+1}], \quad D(b^{(2)}) = \sum_{i=1}^{r} [1 + s_i : t_i], \quad (9.4)
$$

where, formally, $[1 + s_i : s_i] = [1 + s_{i+1} : s_{i+1}] = 0$. We consider the following two cases separately.

Case 1. $t_1 > s_1$. Due to the first equality of [\(9.4\)](#page-45-0), the degree of $b^{(1)}$ in x_{1+s_1} is less than or equal to 1. At the same time the equality $D(b^{(1)}) = [1 + s_1 : s] + \alpha$ shows that this degree equals 1, and the x_{1+s_1} -th component of α is zero. Hence, there exists $i \ge 2$ such that $t_i < \psi(1 + s_1) \leq s_{i+1}$. However, $\psi(1 + s_1) = \psi(s_1) - 1$ is a white point because S is white (k, m) -regular. In particular, $\psi(1 + s_1) \neq s_{i+1}$; that is, $\psi(1 + s_1) < s_{i+1}$. Now, the nonempty interval $[1 + \psi(1 + s_1) : s_{i+1}] = [\psi(s_1) : s_{i+1}]$ must be covered by $\alpha \in \Sigma'_1$. This is possible only if α has a summand $\alpha_1 = [\psi(s_1) : s_j]$, $j \ge i + 1$, because the degree of $\Phi^{S}(1 + s_1, m)$ in each $x_l, \psi(s_1) \le l \le m$, equals 1, while the $x_{\psi(s_1)-1}$ -th component of α is zero (recall that $x_{\psi(s_1)-1} = x_{1+s_1}$). Thus, we have $\alpha - \alpha_1 \in \Sigma'_1$.

If $\psi(s_i) > k$, or equivalently $s_i < \psi(k)$, then $\psi(s_i) - 1$ is a white point because $\psi(1 + s_1) < s_{i+1} \leq s_i$ implies $s_1 > \psi(s_i) - 1$. We have

$$
\alpha_1 + [1 + s_1 : s] = [\psi(s_1) : s_j] + [1 + s_1 : s] = [\psi(s_j) : s] \in \Sigma'.
$$

Hence, $D(b^{(1)}) = (\alpha_1 + [1 + s_1 : s]) + (\alpha - \alpha_1) \in \Sigma'$, as required.

If $\psi(s_i) < k$, or equivalently $s_i > \psi(k)$, then $\psi(k)$ is a white point (see [\(7.2\)](#page-29-2)). Hence, $[\psi(s_j) : k-1] = [1 + \psi(k) : s_j] \in \Sigma'$, while

$$
\alpha_1 + [1 + s_1 : s] = [\psi(s_j) : k - 1] + [k : s] = [\psi(s_j) : s] \in [k : s] + \Sigma',
$$

and $D(b^{(1)}) = (\alpha_1 + [1 + s_1 : s]) + (\alpha - \alpha_1) \in [k : s] + \Sigma'.$ Of course, $s_i \neq \psi(k)$ because S is white (k, m) -regular (see [\(7.2\)](#page-29-2)).

Case 2. $t_1 = s_1$. Assume first that the sequence $(t_i \mid 1 \le i \le r)$ does not contain the point $\psi(s_1) - 1 = \psi(1 + s_1)$. We have seen (see comments regarding [\(9.3\)](#page-44-0)) that $b^{(2)}$ is the product of the elements $u[1 + s_i, t_i]$, $i > 0$, in some order. For $i = 1$ the tensor $u_1 \otimes 1$ does enter the construction of $b^{(1)} \otimes b^{(2)}$ (recall that now $t_1 = s_1$). By Proposition [3.15](#page-15-3) with $i \leftarrow s_1, j \leftarrow s_i, m \leftarrow t_i$ we have $[u[1 + s_i, t_i], u_0] = 0, i > 1$, because now $t_i \neq \psi(s_1) - 1$ and $s_i \neq \psi(k)$ (see [\(7.2\)](#page-29-2)). Hence, the ad-identity [\(2.10\)](#page-4-3) implies $[b^{(2)}, u_0] = 0$; that is, $b^{(2)}u_0 = p(b^{(2)}, u_0)u_0b^{(2)}$. Because $f_0 = \text{gr}(u_0)$, we have

$$
(b^{(1)} \otimes b^{(2)})(f_0 \otimes u_0) = b^{(1)} f_0 \otimes b^{(2)} u_0
$$

= $p(b^{(1)}, u_0) f_0 b^{(1)} \otimes p(b^{(2)}, u_0) u_0 b^{(2)} = p(b^{(1)} b^{(2)}, u_0) (f_0 \otimes u_0) (b^{(1)} \otimes b^{(2)}).$

In more compact form, this equality is $[b^{(1)} \otimes b^{(2)}, f_0 \otimes u_0] = 0$, which is one of the desired options.

Suppose next that $\psi(s_1) - 1 = t_i$ for a suitable i, $1 < i \le r$. By the first equality of [\(9.4\)](#page-45-0) the degree of $b^{(1)}$ in $x_{1+s_i} = x_{t_i}$ equals 1, while the equality $D(b^{(1)}) = [1 + s_1 :$ s + α implies that the x_{1+s_1} -th component of α is zero. At the same time, $t_i \neq s_{i+1}$ because t_i and s_1 are in the same column of the shifted scheme [\(7.1\)](#page-29-1), [\(7.2\)](#page-29-2). Hence, again by the first equality of [\(9.4\)](#page-45-0), the nonempty interval $[1 + t_i : s_{i+1}] = [\psi(s_1) : s_{i+1}]$ must be covered by $\alpha \in \Sigma'$. This is possible only if α has a summand $\alpha_1 = [\psi(s_1) : s_j]$, $j \ge i + 1$, because the degree of $\Phi^{S}(1 + s_1, m)$ in each $x_l, \psi(s_1) \le l \le m$, equals 1, while the $x_{\psi(s_1)-1}$ -th component of α is zero (recall that $x_{\psi(s_1)-1} = x_{1+s_1}$). Thus, we have $\alpha - \alpha_1 \in \Sigma'_1$.

If $\psi(s_i) > k$, or equivalently $s_i < \psi(k)$, then $\psi(s_i) - 1$ is a white point because $\psi(1 + s_1) < s_{i+1} < s_i$ implies $s_1 > \psi(s_i) - 1$. We now have

$$
\alpha_1 + [1 + s_1 : s] = [\psi(s_1) : s_j] + [1 + s_1 : s] = [\psi(s_j) : s] \in \Sigma'.
$$

Hence, $D(b^{(1)}) = (\alpha_1 + [1 + s_1 : s]) + (\alpha - \alpha_1) \in \Sigma'$, as required.

If $\psi(s_i) < k$, or equivalently $s_i > \psi(k)$, then $\psi(k)$ is a white point (see [\(7.2\)](#page-29-2)). Hence $[\psi(s_j) : k-1] = [1 + \psi(k) : s_j] \in \Sigma'$, while

$$
\alpha_1 + [1 + s_1 : s] = [\psi(s_j) : k - 1] + [k : s] = [\psi(s_j) : s] \in [k : s] + \Sigma',
$$

and $D(b^{(1)}) = (\alpha_1 + [1 + s_1 : s]) + (\alpha - \alpha_1) \in [k : s] + \Sigma'$. Of course $s_j \neq \psi(k)$ because S is white (k, m) -regular (see [\(7.2\)](#page-29-2)). The proof for a white regular set S is completed.

If S is black (k, m) -regular, then by Proposition [7.10](#page-33-0) we have $\Phi^{S}(k, m) \sim$ $\Phi^T(\psi(m), \psi(k))$, where $T = \overline{\psi(S) - 1}$ is a white $(\psi(m), \psi(k))$ -regular set. If t, s are, respectively, white and black points for $\Phi^S(k, m)$, then so are $\psi(s) - 1$ and $\psi(t) - 1$ with respect to $\Phi^T(\psi(m), \psi(k))$. We have

$$
[1 + t : s] = [\psi(s) : \psi(1 + t)] = [1 + (\psi(s) - 1) : \psi(t) - 1].
$$

Hence, $\Phi^{S}(k, m)$ and $\Phi^{T}(\psi(m), \psi(k))$ define the same additive monoid Σ . It remains to apply the already proven statement to $\Phi^T(\psi(m), \psi(k))$.

Corollary 9.4. If S is (k, m) -regular, then all $\mathbf{U}^{S}(k, m)$ -roots belong to the monoid Σ *defined in the above proposition.*

Proof. We recall that the coassociativity of the coproduct implies that the left components of the tensor [\(9.2\)](#page-44-1) span a right coideal. Hence, $\mathbf{U}^S(k,m)$ as an algebra is generated by the $a^{(1)}$'s and by $\mathbf{k}[G]$. Hence, the degrees of all homogeneous elements from $\mathbf{U}^{S}(k, m)$ belong to Σ . In particular, all $\mathbf{U}^S(k, m)$ -roots, being the degrees of PBW-generators, belong to Σ as well.

Lemma 9.5. Let S be a white (k, m) -regular set. An element $[1 + t : s]$, $t < s$, with t *white and s black is indecomposable in* Σ *if and only if one of the following conditions is fulfilled:*

- (a) $\psi(1 + t)$ *is not black (it is white or does not appear in the scheme at all*).
- (b) *In the shifted scheme, all columns between* t *and* s *are white-black or black-white* (*in particular, all are complete and* $n \notin [t, s]$.

Proof. If none of the conditions is fulfilled, then $\psi(1+t)$ is a black point, and there exists j, $t \le j \le s$, such that both j and $\psi(1 + j)$ are white points in the scheme (the white regular shifted scheme has no black-black columns). Certainly, $j \neq t$, $j \neq s$. We have

$$
[1 + t : j] = [\psi(j) : \psi(1 + t)] = [1 + \psi(1 + j) : \psi(1 + t)] \in \Sigma.
$$

Thus, $[1 + t : s] = [1 + t : j] + [1 + j : s]$ is a nontrivial decomposition in Σ . Conversely, assume that $[1 + t : s]$ is decomposable in Σ :

$$
[1 + t : s] = \sum_{i=1}^{r} [1 + l_i : s_i].
$$
\n(9.5)

Without loss of generality we may suppose that $s_i \leq \psi(1 + l_i)$ since $[1 + l_i : s_i] = [\psi(s_i) :$ $\psi(1 + l_i)$]. Moreover, if $s_i = \psi(1 + l_i)$, then $[1 + l_i : n] = [1 + n : s_i] \in \Sigma$ because n is a white point (S is white regular). This equality allows one to replace $[1 + l_i : s_i]$ with $2[1 + n : s_i]$ in [\(9.5\)](#page-47-0). Thus, we may suppose that $s_i \leq \psi(1 + l_i)$ for all i in (9.5).

By Lemma [8.6,](#page-38-0) we find a sequence $t = t_0 < t_1 < \cdots < t_r < s = t_{r+1}$ such that for each *i*, either t_i is white and t_{i+1} black, or $\psi(1 + t_{i+1})$ is white and $\psi(1 + t_i)$ black. In the former case, we associate the sign "+" to the index i , while in the latter case we mark it " $-$ ". It is clear that in the sequence of indices 0, 1, 2, ..., r, no pair of neighbours have the same sign.

Now, if $\psi(1 + t)$ is not a black point, then 0 is marked "+". Hence, 1 is marked "-". In particular, $\psi(1 + t_1)$ is black point. However, t_1 is also black. This combination is impossible because S is white regular.

Assume that in the shifted scheme, all columns between t and s are white-black or black-white. If t_1 is a white point, then both $t_0 = t$ and t_1 are white, while both $\psi(1 + t_1)$ and $\psi(1 + t_0)$ are black; that is, no sign can be associated to index 0. Hence, t_1 is a black point, while $\psi(1+t_1)$ must be white. In this case, 1 cannot be marked "−", so it is marked "+". However t_1 is then a white point, which is a contradiction.

Lemma 9.6. Let *S* be a black (k, m) -regular set. An element $[1 + t : s]$, $t < s$, with t *white and s black is indecomposable in* Σ *if and only if one of the following conditions is fulfilled:*

- (a) $\psi(1 + s)$ *is not white* (*it is black or does not appear in the scheme at all*).
- (b) *In the shifted scheme, all columns between* t *and* s *are white-black or black-white* (*in particular, all are complete and* $n \notin [t, s]$.

Proof. This follows from Lemma [9.5](#page-46-0) by means of Lemma [7.9](#page-33-4) and Proposition [7.10.](#page-33-0) □

Lemma 9.7. *Let S be a* (*k*, *m*)-regular set. An element $\alpha = [a:b]$ *is a simple* $\mathbf{U}^{S}(k,m)$ *root if and only if* $\alpha \in \Sigma$ *and it is indecomposable in* Σ (*in particular* $\alpha = [1 + t : s]$, t < s*, with* t *white and* s *black determined in Lemmas* [9](#page-46-0).5, [9](#page-47-1).6).

Proof. Without loss of generality, we may suppose that $k \le m \le \psi(k)$ due to Propo-sition [7.10.](#page-33-0) We have already mentioned that all $\mathbf{U}^{S}(k, m)$ -roots belong to Σ (see Corollary [9.4\)](#page-46-1).

Certainly, $[k : m]$ is a $\mathbf{U}^{S}(k, m)$ -root, for $\Phi^{S}(k, m) \in \mathbf{U}^{S}(k, m)$. Because $\psi(k-1)$ – $1 = \psi(k) > m$, the point $\psi(k-1) - 1$ does not appear in the scheme of $\Phi^{S}(k, m)$. If S is black (k, m) -regular, then $\psi(m) - 1$ is a black point (see [\(7.3\)](#page-30-4)). Hence, Lemmas [9.5](#page-46-0) and [9.6](#page-47-1) show that, in both cases, $[k : m]$ is indecomposable in Σ . Thus, $[k : m]$ is a simple $\mathbf{U}^{\mathcal{S}}(k,m)$ -root.

If s is a black point, then $[1 + s : m] \notin \Sigma$ (otherwise $[k : m]$ would be decomposable in Σ). In particular, $[1 + s : m]$ is not a sum of $\mathbf{U}^{S}(k, m)$ -roots. By Lemma [8.8,](#page-41-2) the element [$k : s$] is an $\mathbf{U}^{S}(k, m)$ -root (in particular, Lemma [8.5](#page-37-0) implies that S equals the minimal set S' such that $\Phi^{S'}(k, m) \in U^{S}(k, m)$). If additionally $[k : s]$ is indecomposable in Σ , then it is a simple $\mathbf{U}^{S}(k, m)$ -root.

If t, s are, respectively, white and black points, $k \le t \le s$, then by Lemma [8.4,](#page-36-1) we have $\Phi^{S''}(k, s) \in U^S(k, m)$ for a suitable (minimal) set $S'' \subseteq S$. Because t is still a white point for $\Phi^{S''}(k, s)$, the same lemma applied to $\Phi^{S''}(k, s)$ implies $\Phi^{S''}(1 + t, s) \in$ $\mathbf{U}^{\mathcal{S}}(k,m).$

Let α be indecomposable in Σ . Because by definition, Σ is an additive monoid generated by elements of the form $[1 + t : s]$ with t white and s black, all indecomposable elements have a similar form: $\alpha = [1 + t : s]$. First, if $[1 + t : s]$ has property (b) of Lemma [9.5](#page-46-0) or Lemma [9.6,](#page-47-1) then $n \notin [t, s]$. Hence S'' (as well as any other set) is white and black $(1 + t, s)$ -regular. By Corollary [7.12](#page-35-1) we have $\Phi^{S''}(1 + t, s) \neq 0$, hence $[1 + t : s]$ is a $\mathbf{U}^{S}(k, m)$ -root. This root is simple because it is indecomposable in Σ .

Next, if $[1 + t : s]$ has property (a) of Lemma [9.5](#page-46-0) or Lemma [9.6,](#page-47-1) then so does $[k : s]$; that is, $[k : s]$ is indecomposable in Σ . In particular $[k : t] \notin \Sigma$, and hence $[k : t]$ is not a $\mathbf{U}^{S}(k,m)$ -root. By the application of Lemma [8.8](#page-41-2) to the simple $\mathbf{U}^{S}(k,m)$ -root $[k : s]$, we see that $[1 + j : s]$ is a sum of $\mathbf{U}^S(k, m)$ -roots. Because $[1 + j : s]$ is indecomposable in Σ and all roots belong to Σ , the sum has just one summand; that is, $[1+j : s]$ is a simple $\mathbf{U}^{\mathcal{S}}(k,m)$ -root.

Conversely, if α is a simple $\mathbf{U}^S(k,m)$ -root, then by Corollary [9.4,](#page-46-1) we have $\alpha \in \Sigma$. In particular, α is a sum of elements indecomposable in Σ . However, we have already proved that each element indecomposable in Σ is a $\mathbf{U}^{S}(k, m)$ -root. Thus, the sum has only one summand; that is, α is indecomposable in Σ .

Theorem 9.8. *Let* S *be a white* [*black*] (k, m)*-regular set. The right coideal subalgebra* U S (k, m) *coincides with the subalgebra* A *generated over* k[G] *by all elements* $\Phi^{S}(1 + t, s)$, where $t < s$ are, respectively, white and black points that satisfy one of *the conditions of Lemma* [9](#page-46-0).5 [*Lemma* 9.[6\]](#page-47-1).

Proof. Of course, we should show that $\Phi^{S}(1 + t, s) \in \mathbf{U}^{S}(k, m)$. First, let us suppose that $s < \psi(1+t)$. We denote by S' a minimal set such that $\Phi^{S'}(1+t, s) \in U^{S}(k, m)$ (see Lemmas [8.5,](#page-37-0) [9.7\)](#page-47-2).

If $a \in S \cap [1 + t, s - 1]$, then, by definition, $[1 + t : a] \in \Sigma$. Hence, $[1 + t : a]$ is a sum of $\mathbf{U}^{S}(k, m)$ -roots. Lemma [8.7](#page-38-2) applied to $[1 + t : s]$ shows that $[1 + t : a]$ itself is a U^S (k, m) -root (note that $a \neq \psi(1 + t)$ because $a < s < \psi(1 + t)$). Thus, Lemma [8.5](#page-37-0) applied to $[1 + t : s]$ shows that $a \in S'$; that is, $S \cap [1 + t, s - 1] \subseteq S'$.

If $b \in S'$, then by Lemma [8.5](#page-37-0) applied to $[1 + t : s]$, the element $[1 + t : b]$ is a $\mathbf{U}^{S}(k, m)$ -root. In particular, $[1+t:b] \in \Sigma$. If $b \notin S$, then by definition, $[1+b:s] \in \Sigma$, and we get a contradiction $[1 + t : s] = [1 + t : b] + [1 + b : s]$. Thus, $b \in S$; that is, $S' = S \cap [1 + t, s - 1]$, and $\Phi^{S}(1 + t, s) = \Phi^{S'}(1 + t, s) \in \mathbf{U}^{S}(k, m)$.

If $s > \psi(1+t)$, then by Proposition [7.10,](#page-33-0) we have $\Phi^{S}(1+t, s) \sim \Phi^{T}(\psi(s), \psi(1+t))$. Certainly $\psi(1 + t) < \psi(\psi(s))$. Therefore, we may apply the case already considered: $\Phi^T(\psi(s), \psi(1 + t)) \in U^T(\psi(m), \psi(k)) = U^S(k, m).$

If [a : b] is a nonsimple $\mathbf{U}^{S}(k, m)$ -root, then it has a decomposition into a sum of simple roots of the form $[1 + t : s]$. The element c defined in each of the formulae [\(8.3\)](#page-40-0)– [\(8.6\)](#page-41-0) belongs to the subalgebra $\mathfrak A$ generated by all $\Phi^S(1 + t, s)$. Hence, $\mathbf{U}^S(k, m)$ has PBW-generators from \mathfrak{A} ; that is, $\mathbf{U}^S(k,m) = \mathfrak{A}$.

The theorem just proved allows one to easily find the root sequence for $\mathbf{U}^{S}(k, m)$ with regular S. By Corollary [7.11,](#page-35-2) it suffices to consider the case $k \le m < \psi(k)$.

Proposition 9.9. Let *S* be a white (k, m) -regular set, $k \le m \le \psi(k)$. The root sequence $(\theta_i, 1 \leq i \leq n)$ for $\mathbf{U}^{\mathcal{S}}(k,m)$ has the following form in terms of the shifted scheme of $\Phi^S(k,m)$:

$$
\theta_i = \begin{cases}\n0 & \text{if } i - 1 \text{ is not white;} \\
\psi(i) - a_i & \text{if } i - 1 \text{ is white and } \psi(i) \text{ is black;} \\
b_i - i + 1 & \text{if } i - 1 \text{ is white and } \psi(i) \text{ is not black,}\n\end{cases}
$$
\n(9.6)

where a_i *is the minimal number such that* $(a_i, \psi(a_i) - 1)$ *is a white-white column, while* $b_i, i \leq b_i < \psi(i)$, *is the maximal black point, if any; otherwise,* $b_i = i - 1$ (*hence* $\theta_i = b_i - i + 1 = 0$.

Proof. An element $\alpha = [1 + t : s]$ given in Lemma [9.7](#page-47-2) defines a simple $\mathbf{U}^{S}(k, m)$ -root starting with i if either $i = 1 + t \& s < \psi(1 + t)$ or $s = \psi(i) \& s > \psi(1 + t)$.

If $i - 1$ is not a white point, then of course $i \neq 1 + t$; hence $s = \psi(i)$. The column $(s, i - 1) = (\psi(i), i - 1)$ is not black-black because S is white-regular, and therefore it is incomplete; that is, $t = i - 1$ does not appear in the scheme, which is a contradiction. Thus, there are no simple $\mathbf{U}^{S}(k, m)$ -roots starting with i, and $\theta_i = 0$.

Assume $i - 1$ is white and $\psi(i)$ is black. In this case, $[1+n : \psi(i)]$ satisfies condition (a) of Lemma [9.5.](#page-46-0) Hence, $[i : n] = [\psi(n) : \psi(i)] = [1 + n : \psi(i)]$ is a simple $\mathbf{U}^{S}(k, m)$ root starting with *i*. In particular, $\theta_i > n - i$.

If $i = 1+t$, $s < \psi(1+t)$, then $[1+t:s]$ does not satisfy condition (a) of Lemma [9.5](#page-46-0) because $\psi(1 + t) = \psi(i)$ is black. If $[1 + t : s]$ satisfies condition (b), then its length is less than $n - i$.

If $s = \psi(i)$, $s > \psi(1 + t)$, then $[1 + t : s]$ satisfies condition (a) of Lemma [9.5](#page-46-0) if and only if $(t, \psi(t+1))$ is a white-white column. In this case, its length equals $s-(1+t)+1 =$ $\psi(i) - t$. This length has the maximal value if t is minimal: $t = a_i$.

Assume $i - 1$ is white and $\psi(i)$ is not black. In this case, $s \neq \psi(i)$. Hence, $i = 1 + t$, and s is a black point such that $s < \psi(1 + t) = \psi(i)$. The length of $[1 + t : s]$ equals $s - t = s - i + 1$. This is maximal if s is the maximal black point such that $i \leq s \leq \psi(i)$; that is, $s = b_i$. If all points in the interval [i, $\psi(i) - 1$] are white, then there are no simple **-roots starting with** *i***. Hence, we still have** $θ_i = b_i − i + 1 = 0$ **.** $□$

Proposition 9.10. *Let* S *be a black* (k, m) *-regular set,* $k \le m \lt \psi(k)$ *. The root sequence* $(\theta_i, 1 \leq i \leq n)$ for $\mathbf{U}^{\mathcal{S}}(k,m)$ has the following form in terms of the shifted scheme of $\Phi^S(k,m)$:

$$
\theta_i = \begin{cases}\n0 & \text{if } i - 1 \text{ is not white and } \psi(i) \text{ is not black;} \\
\psi(i) - d_i & \text{if } i - 1 \text{ is not white and } \psi(i) \text{ is black;} \\
\psi(i) - c_i & \text{if } i - 1 \text{ is white,}\n\end{cases}
$$
\n(9.7)

where c_i *is the minimal number such that* $(c_i, \psi(c_i) - 1)$ *is a black-black column, while* $d_i, i \leq d_i < \psi(i)$, *is the minimal white point, if any; otherwise* $d_i = \psi(i)$ (*hence* $\theta_i = \psi(i) - d_i = 0$.

Proof. This follows from Lemma [9.6](#page-47-1) just as the above proposition follows from Lemma $9.5.$

Example 9.11. Consider the right coideal subalgebra $U(w)$ generated over $\mathbf{k}[G]$ by the element $w = [[x_3, [x_3x_2x_1]], x_2]$ with $n = 3$ (recall that the value of $[x_3x_2x_1]$ in $U_q^+($ $\leq \sigma_7)$ is independent of the arrangement of brackets; see (2.8)). By definition (3.16) , we have $[x_3, [x_3, [x_2, x_1]]] = u[3, 6]$, while Lemma [7.4](#page-30-2) implies [u[3, 6], x_2] ∼ Φ ⁽²⁾(2, 6). Here, {2} is a white (2, 6)-regular set; however, $6 > \psi(2) = 5$. By Proposition [7.10,](#page-33-0) we have $\Phi^{\{2\}}(2,6) \sim \Phi^{\{1,2,3\}}(1,5)$. Because $5 < \psi(1) = 6$ and $\{1,2,3\}$ is a black $(1,5)$ -regular set, to find the root sequence for $U(w) = U^{(1,2,3)}(1, 5)$, we may apply Proposition [9.10.](#page-50-0) The shifted scheme

$$
\begin{array}{ccc}\n5 & 4 & 3 \\
\bullet & \circ & \bullet \\
0 & 1 & 2 & 3 \\
\circ & \bullet & \bullet\n\end{array} \tag{9.8}
$$

shows that $c_1 = 1$, $c_2 = 3$, $c_3 = 3$, while $d_1 = 4$, $d_2 = 4$, $d_3 = \psi(3) = 4$. If $i = 1$, then $i - 1 = 0$ is a white point, and by the third option of [\(9.7\)](#page-50-0) we have $\theta_1 = \psi(1) - c_1 = 5$. If $i = 2$, then $i - 1 = 1$ and $\psi(i) = 5$ are black points. Hence, the second option of [\(9.7\)](#page-50-0) applies: $\theta_2 = \psi(2) - d_2 = 5 - 4 = 1$. If $i = 3$, then $i - 1 = 2$ is a black point, while $\psi(i) = 4$ is white; that is, according to the first option of [\(9.7\)](#page-50-0) we have $\theta_3 = 0$. Thus, $\theta(U(w)) = (5, 1, 0).$

10. Construction

Our next goal is to construct a right coideal subalgebra with a given root sequence

$$
\theta = (\theta_1, \dots, \theta_n) \quad \text{such that} \quad 0 \le \theta_k \le 2n - 2k + 1, \ 1 \le k \le n. \tag{10.1}
$$

We shall require the following auxiliary objects.

Definition 10.1. By downward induction on k, we define sets $R_k \subseteq [k, \psi(k) - 1]$, $T_k \subseteq$ [k, $\psi(k)$], $1 \le k \le 2n$, associated to a given sequence [\(10.1\)](#page-50-1) as follows.

For $k > n$ we put $R_k = T_k = \emptyset$.

Suppose that R_i , T_i , $k < i \leq 2n$, are already defined. Let **P** be the following binary predicate on the set of all ordered pairs $i \leq j$:

$$
\mathbf{P}(i, j) \rightleftharpoons j \in T_i \lor \psi(i) \in T_{\psi(j)}.\tag{10.2}
$$

Of course, for the time being the predicate is defined only on pairs (i, j) such that $k <$ $i \leq j \leq \psi(k)$. We note that $P(i, j) = P(\psi(j), \psi(i))$. Also, it is useful to note that for given *i* and *j* one of the conditions $j \in T_i$ or $\psi(i) \in T_{\psi(j)}$ is false because $T_s \subseteq [s, \psi(s)]$ for all s, and $T_s = \emptyset$ for $s > n$, except for $j = \psi(i)$ when these conditions coincide. In particular, we see that if $j < \psi(i)$, then $P(i, j)$ is equivalent to $j \in T_i$.

If $\theta_k = 0$, then we set $R_k = T_k = \emptyset$. If $\theta_k \neq 0$, then by definition, R_k contains $\tilde{\theta}_k = k + \theta_k - 1$ and all m satisfying the following three conditions:

(a)
$$
k \le m < \tilde{\theta}_k
$$
;
\n(b) $\neg \mathbf{P}(m+1, \tilde{\theta}_k)$;
\n(c) $\forall r (k \le r < m)$ $\mathbf{P}(r+1, m) \Leftrightarrow \mathbf{P}(r+1, \tilde{\theta}_k)$. (10.3)

Further, we define an auxiliary set

$$
T'_{k} = R_{k} \cup \bigcup_{s \in R_{k}} \{a \mid s < a < \psi(k), \mathbf{P}(s+1, a)\},\tag{10.4}
$$

and finally,

$$
T_k = \begin{cases} T'_k & \text{if } \psi(R_k + 1) \cap T'_k = \emptyset; \\ T'_k \cup \{\psi(k)\} & \text{otherwise.} \end{cases}
$$
 (10.5)

For example, the first step of the construction is as follows. If $\theta_n = 0$, we certainly have $R_n = T_n = \emptyset$. Because by definition $\theta_n \leq 2n - 2n + 1 = 1$, there exists only one additional option $\theta_n = 1$. In this case $\tilde{\theta}_n = n$ and $R_n = \{n\}$, while $T'_n = R_n$. We have $\psi(R_n + 1) \cap T'_n = \{n\} \neq \emptyset$. Hence, $T_n = \{n, \psi(n)\} = \{n, n + 1\}$.

Example 10.2. Assume $n = 3$, $\theta = (5, 1, 0)$. Because $\theta_3 = 0$, by definition we have $R_k = T_k = \emptyset, k \geq 3.$

Let $k = 2$. We have $\theta_2 = 1 \neq 0$; hence, $\tilde{\theta}_2 = 2 + \theta_2 - 1 = 2 \in R_2$. Certainly, there are no points m that satisfy $k = 2 \le m < \tilde{\theta}_2 = 2$; that is, $R_2 = \{2\}$. Now [\(10.4\)](#page-51-0) yields

$$
T_2' = \{2\} \cup \bigcup_{s \in \{2\}} \{a \mid 2 = s < a < \psi(2) = 5, \mathbf{P}(3, a)\} = \{2\}.
$$

We have $\psi(R_2 + 1) \cap T'_2 = \{4\} \cap \{2\} = \emptyset$, hence $T_2 = \{2\}$.

To find R_1 , it is convenient to tabulate the already known values of the predicate **P**.

We have $\theta_1 \neq 0$; that is, $\tilde{\theta}_1 = 1 + 5 - 1 = 5 \in R_1$.

There exist four points m that satisfy $k = 1 \le m < \tilde{\theta}_1 = 5$; they are 1, 2, 3, and 4. Point $m = 4$ does not satisfy (b) because $P(5, 5)$ is true. Hence, $4 \notin R_1$. Points $m = 1, 2$, and 3 satisfy (b) because in the last column of the table, there is only one "T"; this corresponds to $m + 1 = 5$.

Let us check condition (c) for $m = 1$. The interval $1 = k \le r < m = 1$ is empty. Therefore, the equivalence (c) is true (elements of the empty set satisfy all conditions, even $r \neq r$). Thus, $1 \in R_1$.

In terms of the table of the values of P , condition (c) means that the column corresponding to $j = m$ equals a subcolumn corresponding to $j = \tilde{\theta}_1 = 5$. This is indeed the case for $m = 3$, but not for $m = 2$. Thus $R_1 = \{1, 3, 5\}$.

To find T'_1 we only need to check the two remaining points: $a = 2, 4$. From the table, we see that $\mathbf{P}(x, 4)$ is always false; hence, $4 \notin T'_1$. At the same time, $\mathbf{P}(s + 1, 2)$ is true for $s = 1 \in R_1$. Hence, $2 \in T'_1$.

Finally, $\psi(R_1 + 1) \cap T_1' = \{5, 3, 1\} \cap \{1, 2, 3, 5\} \neq \emptyset$; hence, $T_1 = \{1, 2, 3, 5, 6\}$. Thus, for $\theta = (5, 1, 0)$ we have $R_3 = T_3 = \emptyset$, $R_2 = T_2 = \{2\}$, $R_1 = \{1, 3, 5\}$, and $T_1 = \{1, 2, 3, 5, 6\}.$

Theorem 10.3. *For each sequence* $\theta = (\theta_1, \dots, \theta_n)$ *such that*

$$
0 \le \theta_k \le 2n - 2k + 1, \quad 1 \le k \le n,
$$

there exists a homogeneous right coideal subalgebra $U \supseteq k[G]$ *with* $r(U) = \theta$. In what *follows, we shall denote this subalgebra by* U_{θ} .

Proof. We denote by **U** the subalgebra generated over **k**[G] by the values in $U_q^+(\mathfrak{so}_{2n+1})$ or in $u_q^+(\mathfrak{so}_{2n+1})$ of the elements

$$
\Phi^{S}(k, m), \quad 1 \le k \le m, \quad \text{with } m \in R_k, \ S = T_k. \tag{10.6}
$$

(For example, if $\theta = (5, 1, 0)$, then the generators are $x_1, x_2, [x_3x_2x_1], [x_3[x_3x_2x_1]], x_2]$.) We shall prove that U is a right coideal subalgebra with $r(U) = \theta$. To this end, we need to check some properties of R_k , T_k , and **P**.

Claim 1. P(k, m) *is true if and only if there exists a sequence*

$$
k - 1 = k_0 < k_1 < \dots < k_r < m = k_{r+1} \tag{10.7}
$$

such that for each $i, 0 \le i \le r$, *either* $k_{i+1} \in R_{1+k_i}$ *or* $\psi(1+k_i) \in R_{\psi(k_{i+1})}$.

We use induction on $m - k$. If $m = k$, then the condition $k \in T_k$ is equivalent to $k \in T_k$ because $k \neq \psi(k)$. Formula [\(10.4\)](#page-51-0) implies, in turn, that $k \in T_k'$ is equivalent to $k \in R_k$. Thus, $P(k, k)$ is equivalent to $k \in R_k \vee \psi(k) \in R_{\psi(k)}$; that is, we have a sequence [\(10.7\)](#page-52-1) with $r = 0$.

Assume first $m \in T_k$. If $m \in R_k$, we put $k_1 = m + 1$, $r = 1$.

If $m \notin R_k$, $m \neq \psi(k)$, then by definition $m \in T'_k$; that is, by [\(10.4\)](#page-51-0) there exists $s \in R_k$, $s < m$, such that $P(s + 1, m)$ is true. By the inductive supposition applied to $(s + 1, m)$, there exists a sequence [\(10.7\)](#page-52-1) with $k_0 = s$. One may extend it on the left with $k-1 < k < s$ as $s \in R_k$.

If $m = \psi(k)$, then by definition, $\psi(s_1 + 1) \in T'_k$ for a suitable $s_1 \in R_k$. Of course, ${\bf P}(k, \psi(s_1 + 1))$ is true. Hence, the above case with $m \leftarrow \psi(s_1 + 1)$ yields a sequence [\(10.7\)](#page-52-1) with $k_{r+1} = \psi(s_1 + 1)$. We may extend it on the right with $\psi(s_1 + 1) < \psi(k) = m$ because $s_1 = \psi(1 + \psi(s_1 + 1)) \in R_{\psi(\psi(k))} = R_k$.

Next, we assume $\psi(k) \in T_{\psi(m)}$. Because $\psi(k) - \psi(m) = m - k$, we may apply the above case with $k \leftarrow \psi(m), m \leftarrow \psi(k)$. Hence, there exists a sequence [\(10.7\)](#page-52-1) with $k_0 = \psi(m) - 1$, $k_{r+1} = \psi(k)$. Let us denote $k'_i = \psi(k_i) - 1$, $0 \le i \le r + 1$. We have

$$
k - 1 = k'_{r+1} < k'_{r} < \dots < k'_{1} < k'_{0} = m. \tag{10.8}
$$

In this case, $k'_i \in R_{1+k'_{i+1}}$ is equivalent to $\psi(1+k_i) \in R_{\psi(k_{i+1})}$, while $\psi(1+k'_{i+1}) \in$ $R_{\psi(k_i')}$ is equivalent to $k_{i+1} \in R_{1+k_i}$.

Conversely, suppose that we have a sequence (10.7) . Without loss of generality, we may suppose that $m \leq \psi(k)$; otherwise, we turn to [\(10.8\)](#page-53-0). The inductive supposition implies that $P(1+k_1, m)$ is true. Moreover, $k_1 \in R_k$. Indeed, otherwise $\psi(k) \in R_{\psi(k_1)} \subseteq$ [$\psi(k_1)$, k_1-1]. In particular $\psi(k) < k_1$, and hence $k > \psi(k_1)$. However, $k_1 \le m \le \psi(k)$ implies $\psi(k_1) \geq k$. Now, if $m \neq \psi(k)$, then definition [\(10.4\)](#page-51-0) with $s \leftarrow k_1, a \leftarrow m$ implies $m \in T'_k$.

Let $m = \psi(k)$. In this case, considering the sequence [\(10.8\)](#page-53-0) as above, we have $k'_r \in R_k$. By definition, $k'_r = \psi(k_r) - 1$. Hence, $k_r \in \psi(R_k + 1)$. At the same time, defini-tion [\(10.4\)](#page-51-0) shows that $k_r \in T'_k$ because the inductive supposition implies that $P(1+k_1, k_r)$ is true provided that $r > 1$, while if $r = 1$, then $k_r = k_1 \in R_k$. Thus, definition [\(10.5\)](#page-51-1) implies $m = \psi(k) \in T_k$.

Claim 2. *If* $P(k, s)$ *and* $P(s + 1, m)$ *, then* $P(k, m)$ *.*

Indeed, one may extend the sequence (10.7) corresponding to the pair (k, s) by the sequence corresponding to $(s + 1, m)$.

Claim 3. *If* $P(k, m)$ *, then for each* s, $k \leq s < m$ *, either* $P(k, s)$ *or* $P(s + 1, m)$ *.*

We use induction on $m - k$. Without loss of generality, we may suppose that $m \leq \psi(k)$ because $\mathbf{P}(k, m)$ is equivalent to $\mathbf{P}(\psi(m), \psi(k))$. By Claim 1, there exists a sequence [\(10.7\)](#page-52-1) with $k_0 = k - 1$, $k_{r+1} = m$. The same claim implies $P(1 + k_1, m)$ provided that $r \geq 1$.

Because $k \le s < m$, there exists $i, 1 \le i \le r$, such that $k_i < s \le k_{i+1}$. If $i \ge 1$, then the inductive supposition applied to $(1 + k_1, m)$ implies that either $P(1 + k_1, s)$ or $P(s + 1, m)$ holds. In the latter case, we have obtained the required condition. If $P(1 + k_1, s)$ is true, then Claim 2 implies $P(k, s)$ because $P(k, k_1)$ is true according to Claim 1.

Thus, it remains to check the case $i = 0$; that is, $k \le s \le k_1$. In this case, $k_1 \in R_k$. Indeed, otherwise $\psi(k) \in R_{\psi(k_1)} \subseteq [\psi(k_1), k_1 - 1]$. In particular, $\psi(k) < k_1$, and hence $k > \psi(k_1)$. However, $k_1 \le m \le \psi(k)$ implies $\psi(k_1) \ge k$.

Claim 2 with $s \leftarrow 1 + k_1, k \leftarrow s + 1$ states that $P(s + 1, k_1)$ and $P(1 + k_1, m)$ imply $P(s + 1, m)$. Hence, it is sufficient to show that either $P(k, s)$ or $P(s + 1, k_1)$ is true. If $s = k_1$, then of course $s = k_1 \in R_k$ yields $P(k, s)$. Therefore, we may replace m with k_1 and suppose further that $m \in R_k$, $i = 0$. In this case, condition [\(10.3\)](#page-51-2)(c) with $r \leftarrow s$ is " $\mathbf{P}(s+1, m) \Leftrightarrow \mathbf{P}(s+1, \tilde{\theta}_k)$." Therefore we only need to consider one case, $m = \tilde{\theta}_k$.

Let us suppose that for some $s, k \leq s < \tilde{\theta}_k$, we have $\neg P(k, s)$ and $\neg P(s + 1, \tilde{\theta}_k)$. By induction on s, in addition to the induction on $m - k$, we shall show that these conditions are inconsistent (more precisely, they imply $s \in R_k$, which contradicts $\neg P(k, s)$; see definition [\(10.4\)](#page-51-0)).

Definition [\(10.3\)](#page-51-2) with $m = k$ shows that $k \in R_k$ if and only if $\neg P(k + 1, \tilde{\theta}_k)$. Since in our case, $\neg \mathbf{P}(s+1, \tilde{\theta}_k)$, we have $s \in R_k$ provided that $s = k$.

Let $s > k$. Conditions [\(10.3\)](#page-51-2)(a) and (10.3)(b) with $m \leftarrow s$ are valid. Suppose that [\(10.3\)](#page-51-2)(c) fails. In this case, we may find a number t, $k \le t \le s$, such that $\neg(\mathbf{P}(t+1, s) \Leftrightarrow$ $\mathbf{P}(t+1, \tilde{\theta}_k)$.

If $P(t + 1, s)$, but $\neg P(t + 1, \tilde{\theta}_k)$, then by the inductive supposition (induction on s), either $P(k, t)$ or $P(t + 1, \hat{\theta}_k)$; that is, $P(k, t)$ is true. Claim 2 implies $P(k, s)$, which is a contradiction.

If $P(t + 1, \tilde{\theta}_k)$, but $\neg P(t + 1, s)$, then the inductive supposition (of the induction on $m - k$) with $k \leftarrow t + 1$, $m \leftarrow \tilde{\theta}_k$ shows that either $P(t + 1, s)$ or $P(s + 1, \tilde{\theta}_k)$; that is, $P(s + 1, \tilde{\theta}_k)$, which is again a contradiction.

Thus, s satisfies all conditions $(10.3)(a)$ $(10.3)(a)$ – $10.3(c)$; hence, $s \in R_k$.

Claim 4. *If* $k \le m < \tilde{\theta}_k$, *then* $m \in T_k$ *if and only if* $\neg \mathbf{P}(m+1, \tilde{\theta}_k)$ *.*

First, recall that condition $m \in T_k$ is equivalent to $P(k, m)$ because by definition, $\tilde{\theta}_k$ $\lt \psi(k)$.

According to Claim 3, one of the conditions $P(k, m)$ or $P(m + 1, \tilde{\theta}_k)$ always holds. If both conditions are valid, then, because of Claim 1, we find a sequence (10.7) with $k_0 = k - 1$, $k_{r+1} = m$, such that $k_{i+1} \in R_{1+k_i} \vee \psi(1 + k_i) \in R_{\psi(k_{i+1})}$, $0 \le i \le r$. By [\(10.3\)](#page-51-2)(b), we have $m \notin R_k$, and of course $\psi(k) \notin R_{\psi(m)}$, for $m \leq \tilde{\theta}_k < \psi(k)$. Hence, $r > 1$.

Again by the first claim, we obtain $P(1 + k_1, m)$. Because $k_1 \le m \le \psi(k)$, we have $\psi(k) \notin R_{\psi(k_1)}$. Hence, $k_1 \in R_k$. Therefore, k_1 satisfies condition [\(10.3\)](#page-51-2)(b), which is $\neg P(1+k_1, \tilde{\theta}_k)$. However, Claim 2 shows that the conditions $P(1+k_1, m)$ and $P(m+1, \tilde{\theta}_k)$ imply $P(1 + k_1, \tilde{\theta}_k)$; this is a contradiction, which proves the claim.

Claim 5. *The set* T_k *is* (k, m) *-regular for all* $m \in R_k$ *.*

We may suppose that $k \le n < m$ because otherwise we have nothing to prove.

First, assume that *n* is a white point, that is, $n \notin T_k$, while scheme [\(7.1\)](#page-29-1) has a black column, say $n - i \in T_k$, $n + i \in T_k$, $i > 0$. Condition $n + i \in T_k$ implies $P(k, n + i)$. Hence, by Claim 3 with $m \leftarrow n+i$, $s \leftarrow n$, we have $P(k, n) \vee P(n+1, n+i)$. However, $n \notin T_k$ implies $\neg \mathbf{P}(k, n)$ as $\psi(k) \notin T_{\psi(n)} = T_{n+1} = \emptyset$. Hence $\mathbf{P}(n+1, n+i)$ is true. We see that $P(n + 1, n + i) = P(\psi(n + i), \psi(n + 1)) = P(n - i + 1, n)$ is also true. Because $n - i \in T_k$ implies $P(k, n - i)$, Claim 2 with $s \leftarrow n - i$, $m \leftarrow n$ shows that $P(k, n)$ is true. However, $n \notin T_k$ implies $\neg P(k, n)$, which is a contradiction.

Then, let n be a black point, that is, $n \in T_k$, while scheme [\(7.3\)](#page-30-4) has a white column, say $n - i \notin T_k$, $n + i \notin T_k$, $i > 0$. Condition $n - i \notin T_k$ implies $\neg P(k, n - i)$, since $T_{\psi(n-i)} = T_{n+i+1} = \emptyset$. By Claim 3 with $m \leftarrow n, s \leftarrow n-i$, we have $P(n-i+1, n)$, because $n \in T_k$ implies $P(k, n)$. Hence, $P(n - i + 1, n) = P(\psi(n), \psi(n - i + 1)) =$ $P(n + 1, n + i)$ is also true. At the same time, Claim 4 with $m \leftarrow n + i$ implies $\mathbf{P}(n + i + 1, \tilde{\theta}_k)$, while Claim 2 with $k \leftarrow n + 1$, $s \leftarrow n + i$ implies $\mathbf{P}(n + 1, \tilde{\theta}_k)$. Again, Claim 4 with $m \leftarrow n$ shows that $n \notin T_k$, which is a contradiction.

Next, it remains to show that if $n \in T_k$, then the leftmost complete column of [\(7.3\)](#page-30-4) is black; that is, $\psi(m) - 1 \in T_k$. Assume $\psi(m) - 1 \notin T_k$. We then have $\neg P(k, \psi(m) - 1)$ since $T_{\psi(\psi(m)-1)} = T_{m+1} = \emptyset$. Claim 3 with $s \leftarrow \psi(m)-1, m \leftarrow n$ implies $P(\psi(m), n)$, while Claim 4 with $m \leftarrow n$ implies $\neg P(n + 1, \tilde{\theta}_k)$. We see that point $r = n < m$ does not satisfy condition [\(10.3\)](#page-51-2)(c), because $P(n+1, m) = P(\psi(n), m) = P(\psi(m), n)$ is true, while $P(n + 1, \tilde{\theta}_k)$ is false. Thus $m \notin R_k$, which is a contradiction.

Claim 6. Let $\tilde{\mathbf{U}}$ be the subalgebra generated by all right coideals $\mathbf{U}^{T_k}(k,m)$, $m \in R_k$. *If* $1 \le a \le b \le 2n$, $b \ne \psi(a)$, *then* $P(a, b)$ *is true if and only if* $[a : b]$ *is a* \hat{U} *-root. In particular, the set of all* $\tilde{\mathbf{U}}$ *-roots is* $\{[k : m] \mid m \in T'_{k}\}.$

Certainly, \tilde{U} is a right coideal subalgebra that contains $\mathbf{k}[G]$. By Theorem [9.8,](#page-48-0) it is generated over $\mathbf{k}[G]$ by elements $\Phi^{T_k}(1+t,s)$, where $t < s$ are, respectively, white and black points for $\Phi^{T_k}(k, m)$; that is, $t = k - 1$ or $t \notin T_k$, and $s = m$ or $s \in T_k$. In particular, $P(k, s)$ is true, while $P(k, t)$ is false $(\psi(k) \notin [t, \psi(t)] \supseteq T_{\psi(t)}$ since $k \leq t < s < \psi(k)$). Hence, by Claim 3 with $s \leftarrow t$, we have $P(1 + t, s)$.

If $\gamma = [a : b]$, $a \le b \le \psi(a)$, is a **U**-root, then, by definition, in **U** there exists a homogeneous element $c_u \in \mathbf{\bar{U}}$ of the form [\(5.14\)](#page-27-3) of degree γ . Because $\mathbf{\bar{U}}$ is generated by $\Phi^{T_k}(1+t,s)$, the degree γ is a sum of degrees $[1+t:s]$ of the generators. In particular, $\gamma = \sum_i [a_i : b_i]$, where $P(a_i, b_i)$ are true and $b_i \neq \psi(a_i)$. By Lemma [8.6,](#page-38-0) we may modify the decomposition of γ so that

$$
\gamma = [k_0 - 1 : k_1] + [1 + k_1 : k_2] + \cdots [1 + k_r : k_{r+1}],
$$

where $a - 1 = k_0 < k_1 < \cdots < k_r < b = k_{r+1}$, and for each $i, 0 \le i \le r$, we still have $P(1 + k_i, k_{i+1})$ true. Now, Claim 2 implies $P(a, b)$. Hence, $b \in T'_a$, for $a \le b < \psi(a)$.

Conversely, if $m \in T'_k$, then by Claim 1, we have a sequence $k - 1 = k_0 < k_1$ $\cdots < k_r < m = k_{r+1}$ such that for each $i, 0 \le i \le r$, either $k_{i+1} \in R_{1+k_i}$ or $\psi(1+k_i) \in R_{1+k_i}$ $R_{\psi(k_{i+1})}$. By definition, $\tilde{\mathbf{U}}$ contains elements $\Phi^{T_{a_i}}(a_i, b_i)$, where $a_i = 1 + k_i$, $b_i = k_{i+1}$ provided that $k_{i+1} < \psi(1 + k_i)$, and $a_i = \psi(k_{i+1}), b_i = \psi(1 + k_i)$ provided that $k_{i+1} > \psi(1+k_i)$. Hence, $[a_i : b_i] = [1+k_i : k_{i+1}]$ are \tilde{U} -roots. In particular, $[k : m]$ is a sum of \tilde{U} -roots. By Lemma [8.7,](#page-38-2) the element $[k : m]$ itself is a \tilde{U} -root.

Claim 7. *The set of all simple* \tilde{U} *-roots is* $\{[k : m] \mid m \in R_k\}$ *. In particular* $r(\tilde{U}) = \theta$ *.*

If $\gamma = [k : m], k \le m < \psi(k)$, is a simple **U**-root, then, due to the above claim, $P(k, m)$ is true. Hence, according to Claim 1, we may find a sequence [\(10.7\)](#page-52-1). In this case, $\gamma = [k : k_1] + [1 + k_1 : k_2] + \cdots + [1 + k_r : m]$ is a sum of \tilde{U} -roots, because $P(1 + k_i, k_{i+1})$ is true by definition [\(10.2\)](#page-51-3); this is a contradiction for the simple root γ , unless $r = 0$. Thus, $m = k_1 \in R_k$ because $\psi(k) \notin [m, \psi(m)] \supseteq R_{\psi(m)}$.

Conversely, let $m \in R_k$. Then, by definition [\(10.5\)](#page-51-1), we have $m \in T_k$. Claim 6 implies that $[k : m]$ is a U-root. If it is not simple, then it is a sum of two or more U-roots,

 $[k : m] = [k : k_1] + [1 + k_1 : k_2] + \cdots + [1 + k_r : m]$, where, due to Claim 6, $P(1 + k_i, k_{i+1})$, $0 \le i \le r$, are true. Claim 2 implies that $P(1 + k_1, m)$ is also true. Definition [\(10.3\)](#page-51-2)(c) with $r \leftarrow k_1$ implies $\mathbf{P}(1+k_1, \tilde{\theta}_k)$. Now, Claim 4 provides a contradiction, $k_1 \notin T_k$ (recall that $P(k, k_1)$ implies $k_1 \in T_k$ because $k \leq k_1 \leq m < \psi(k)$).

Claim 8. $\tilde{\mathbf{U}}$ *is generated as an algebra by* $\mathbf{k}[G]$ *and* $\Phi^{T_k}(k, m)$, $m \in R_k$; *that is*, $\tilde{\mathbf{U}} = \mathbf{U}$.

It suffices to note that U contains a set of PBW-generators for \tilde{U} over $k[G]$. If $[k : m]$ is a $\tilde{\mathbf{U}}$ -root, then it is a sum of simple $\tilde{\mathbf{U}}$ -roots, $[k : m] = \sum [k_i : m_i]$, $m_i \in R_{k_i}$. The elements $f_i = \Phi^{T_{k_i}}(k_i, m_i)$, by definition, belong to U. The PBW-generator corresponding to the root $[k : m]$ can be taken to be a polynomial in f_i determined in one of the formulae (8.3) – (8.6) depending on the type of decomposition of [k : m] into a sum of simple roots. Theorem [10.3](#page-52-0) is completely proved. \square

Corollary 10.4. *Every* (*homogeneous if* $q^t = 1$, $t > 4$) *right coideal subalgebra* **U** *of* $U_q^+($ **so**_{2n+1}), $q^t \neq 1$ (*respectively, of* $u_q^+($ **so**_{2n+1})) *that contains* G *is generated as an* algebra by G and a set of elements $\Phi^S(k, m)$ with (k, m) -regular sets S.

Proof. Theorems [8.2](#page-36-0) and [10.3](#page-52-0) imply that **U** has the form U_θ , where θ is the root sequence. At the same time, definition [\(10.6\)](#page-52-2) shows that U_θ , as an algebra, is generated by G and elements $\Phi^{T_k}(k, m)$, $m \in R_k$. It remains to apply Claim 5.

11. Right coideal subalgebras that do not contain the coradical

In this brief section, we restate the main result in a slightly more general form. We consider homogeneous right coideal subalgebras in $U_q^+(\mathfrak{so}_{2n+1})$ (respectively, in $u_q^+(\mathfrak{so}_{2n+1})$) that do not contain G , but whose intersection with G is a subgroup. We recall that for every submonoid $\Omega \subseteq G$, the set of all linear combinations $\mathbf{k}[\Omega]$ is a right coideal subalgebra. Conversely, if $U_0 \subseteq \mathbf{k}[G]$ is a right coideal subalgebra, then $U_0 = \mathbf{k}[\Omega]$ for $\Omega = U_0 \cap G$ because $a = \sum_i \alpha_i g_i \in U_0$ implies $\Delta(a) = \sum_i \alpha_i g_i \otimes g_i \in U_0 \otimes \mathbf{k}[G];$ that is, $\alpha_i g_i \in U_0$.

Definition 11.1. For a sequence $\theta = (\theta_1, \dots, \theta_n)$ such that $0 \le \theta_k \le 2n - 2k + 1$, $1 \le k \le n$, we define \mathbf{U}_{θ}^{1} to be the subalgebra with 1 generated by $g_{km}^{-1} \overline{\Phi}^{S}(k, m)$, where $g_{km} = g(u(k, m))$ and $m \in R_k$, $S = T_k$; see Theorem [10.3.](#page-52-0)

Lemma 11.2. *The subalgebra* \mathbf{U}_{θ}^1 *is a homogeneous right coideal, and* $\mathbf{U}_{\theta}^1 \cap G = \{1\}$ *.*

Proof. The subalgebra U^1_{θ} is homogeneous because it is generated by homogeneous elements. Its zero homogeneous component equals **k** because among the generators only one, the unity, has degree zero.

We denote by B_{θ} the k-subalgebra generated by $\Phi^{S}(k,m)$ with $m \in R_k$, $S = T_k$. The algebra U_{θ}^1 is spanned by all elements of the form $g_a^{-1}a$, $a \in B_{\theta}$. Because U_{θ} is a right coideal, for any homogeneous $a \in B_\theta$, we have $\Delta(a) = \sum g(a^{(2)}) a^{(1)} \otimes a^{(2)}$ where $a^{(1)} \in B_\theta$, $g_a = g(a^{(1)})g(a^{(2)})$. Therefore, $\Delta(g_a^{-1}a) = \sum g(a^{(1)})^{-1}a^{(1)} \otimes g_a^{-1}a^{(2)}$ with $g(a^{(1)})^{-1}a^{(1)} \in U^1_\theta.$ **Lemma 11.3.** *If* Ω *is a submonoid of G*, *then* $\mathbf{k}[\Omega] \mathbf{U}_{\theta}^1$ *is a homogeneous right coideal* $subalgebra, and $\mathbf{k}[\Omega] \mathbf{U}_{\theta}^1 \cap G = \Omega$. Moreover $\mathbf{k}[\Omega] \mathbf{U}_{\theta}^1 = \mathbf{k}[\Omega'] \mathbf{U}_{\theta'}^1$ if and only if $\Omega = \Omega'$$ $and \theta = \theta'.$

Proof. The subalgebra $\mathbf{k}[\Omega] \mathbf{U}_{\theta}^1$ is homogeneous because it is generated by homogeneous elements. Its zero homogeneous component equals $\mathbf{k}[\Omega]$. Hence $\mathbf{k}[\Omega] \mathbf{U}_{\theta}^1 \cap G = \Omega$. By the above lemma, we have

$$
\Delta(\mathbf{k}[\Omega] \mathbf{U}_{\theta}^1) \subseteq (\mathbf{k}[\Omega] \otimes \mathbf{k}[\Omega]) \cdot (\mathbf{U}_{\theta}^1 \otimes U_q^+(\mathfrak{so}_{2n+1})).
$$

Hence, $\mathbf{k}[\Omega] \mathbf{U}_{\theta}^1$ is a right coideal subalgebra. Finally, the equality $\mathbf{k}[\Omega] \mathbf{U}_{\theta}^1 = \mathbf{k}[\Omega'] \mathbf{U}_{\theta'}^1$ implies both the equality of zero homogeneous components, $\mathbf{k}[\Omega] = \mathbf{k}[\Omega']$, and $\mathbf{U}_{\theta} =$ $\mathbf{k}[G]\mathbf{U}_{\theta}^1 = \mathbf{k}[G]\mathbf{U}_{\theta'}^1 = \mathbf{U}_{\theta'}$. Hence $\theta = \theta'$ by Theorem [10.3.](#page-52-0)

Theorem 11.4. If U is a homogeneous right coideal subalgebra of $U_q^+(\mathfrak{so}_{2n+1})$ (resp. of $u_q^+(\mathfrak{so}_{2n+1}))$ such that $\Omega \stackrel{\mathrm{df}}{=} U \cap G$ is a group, then $U = \mathbf{k}[\Omega] \mathbf{U}_\theta^1$ for some θ .

Proof. Let $u = \sum h_i a_i \in U$ be a homogeneous element of degree $\gamma \in \Gamma^+$ with different $h_i \in G$, and $a_i \in A$, where A is the **k**-subalgebra generated by x_i , $1 \le i \le n$. We denote by π _γ the natural projection on the homogeneous component of degree γ. Moreover, π _g, $g \in G$, is a projection on the subspace kg. We have $\Delta(u) \cdot (\pi_\gamma \otimes \pi_{h_i}) = h_i a_i \otimes h_i$. Thus, $h_i a_i \in U$.

By Theorems [10.3](#page-52-0) and [8.2,](#page-36-0) we have $\mathbf{k}[G]U = \mathbf{U}_{\theta}$ for some θ . If $u = ha \in U$, $h \in G$, $a \in A$, then $\Delta(u) \cdot (\pi_{hg_a} \otimes \pi_{\gamma}) = hg_a \otimes ha$. Therefore, $hg_a \in U \cap G = \Omega$; that is, $u = \omega g_a^{-1} a$, $\omega \in \Omega$. Because Ω is a subgroup, we obtain $g_a^{-1} a \in U$. It remains to note that all elements $g_a^{-1}a$ such that $ha \in U$ span the algebra \mathbf{U}_{θ}^1 . The contract of \Box

If $U \cap G$ is not a group, then U may have a more complicated structure; see [\[13,](#page-58-1) Example 6.4].

Acknowledgments. The author was supported by PAPIIT IN 108306-3, UNAM, and PACIVE CONS-304, GC-19, FES-C UNAM, Mexico. ´

References

- [1] Andruskiewitsch, N., Schneider, H.-J.: Pointed Hopf algebras. In: S. Montgomery and H.-J. Schneider (eds.), New Directions in Hopf Algebras, MSRI Publ. 43, Cambridge Univ. Press, 1–68 (2002) [Zbl 1011.16025](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1011.16025&format=complete) [MR 1913436](http://www.ams.org/mathscinet-getitem?mr=1913436)
- [2] Beattie, M., Dăscălescu, S., Raianu, Ş.: Lifting of Nichols algebras of type B_2 . Israel J. Math. 132, 1–28 (2002) [Zbl 1054.16027](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1054.16027&format=complete) [MR 1952612](http://www.ams.org/mathscinet-getitem?mr=1952612)
- [3] Jacobson, N.: Lie Algebras. Interscience Publ., New York–London, 1962. [Zbl 0121.27504](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0121.27504&format=complete) [MR 0143793](http://www.ams.org/mathscinet-getitem?mr=0143793)
- [4] Heyneman, R. G., Radford, D. E.: Reflexivity and coalgebras of finite type. J. Algebra 29, 215–246 (1974) [Zbl 0291.16008](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0291.16008&format=complete) [MR 0346001](http://www.ams.org/mathscinet-getitem?mr=0346001)
- [5] Kac, V.: Infinite Dimensional Lie Algebras. Cambridge Univ. Press (1990) [Zbl 0716.17022](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0716.17022&format=complete) [MR 1104219](http://www.ams.org/mathscinet-getitem?mr=1104219)
- [6] Kharchenko, V. K.: An algebra of skew primitive elements. Algebra i Logika 37, 181–223 (1998) (in Russian); English transl.: Algebra and Logic 37, 101–126 (1998) [Zbl 0917.16017](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0917.16017&format=complete) [MR 1672889](http://www.ams.org/mathscinet-getitem?mr=1672889)
- [7] Kharchenko, V. K.: A quantum analog of the Poincaré–Birkhoff–Witt theorem. Algebra i Logika 38, 476–507 (1999) (in Russian); English transl.: Algebra and Logic 38, 259–276 (1999) [Zbl 0936.16034](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0936.16034&format=complete) [MR 1763385](http://www.ams.org/mathscinet-getitem?mr=1763385)
- [8] Kharchenko, V. K.: Skew primitive elements in Hopf algebras and related identities. J. Algebra 238, 534–559 (2001) [Zbl 0987.16031](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0987.16031&format=complete) [MR 1823773](http://www.ams.org/mathscinet-getitem?mr=1823773)
- [9] Kharchenko, V. K.: A combinatorial approach to the quantifications of Lie algebras. Pacific J. Math. 203, 191–233 (2002) [Zbl 1069.17008](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1069.17008&format=complete) [MR 1895931](http://www.ams.org/mathscinet-getitem?mr=1895931)
- [10] Kharchenko, V. K.: Constants of coordinate differential calculi defined by Yang–Baxter operators. J. Algebra 267, 96–129 (2003) [Zbl 1040.17009](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1040.17009&format=complete) [MR 1993469](http://www.ams.org/mathscinet-getitem?mr=1993469)
- [11] Kharchenko, V. K., Andrade Álvarez, A.: On the combinatorial rank of Hopf algebras. In: Algebraic Structures and Their Representations, Contemp. Math. 376, Amer. Math. Soc., 299–308 (2005) [Zbl 1143.16305](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1143.16305&format=complete) [MR 2147030](http://www.ams.org/mathscinet-getitem?mr=2147030)
- [12] Kharchenko, V. K.: PBW-bases of coideal subalgebras and a freeness theorem. Trans. Amer. Math. Soc. 360, 5121–5143 (2008) [Zbl 1165.16023](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1165.16023&format=complete) [MR 2415067](http://www.ams.org/mathscinet-getitem?mr=2415067)
- [13] Kharchenko, V. K., Lara Sagahon, A. V.: Right coideal subalgebras in $U_q(\mathfrak{sl}_{n+1})$. J. Algebra 319, 2571–2625 (2008) [Zbl 1186.17008](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1186.17008&format=complete) [MR 2388323](http://www.ams.org/mathscinet-getitem?mr=2388323)
- [14] Lothaire, M.: Algebraic Combinatorics on Words. Cambridge Univ. Press (2002) [Zbl 1001.68093](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1001.68093&format=complete) [MR 1905123](http://www.ams.org/mathscinet-getitem?mr=1905123)
- [15] Milinski, A., Schneider, H.-J.: Pointed indecomposable Hopf algebras over Coxeter groups. In: New Trends in Hopf Algebra Theory, Contemp. Math. 267, Amer. Math. Soc., 215–236 (2000) [Zbl 1093.16504](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1093.16504&format=complete) [MR 1800714](http://www.ams.org/mathscinet-getitem?mr=1800714)
- [16] Pogorelsky, B.: Right coideal subalgebras of the quantum Borel subalgebra of type G_2 . J. Algebra, 322, 2335–2354 (2009) [Zbl pre05655011](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre05655011&format=complete) [MR 2553203](http://www.ams.org/mathscinet-getitem?mr=2553203)
- [17] Pogorelsky, B.: Right coideal subalgebras of quantized universal enveloping algebras of type G2. Comm. Algebra 39, 1181–1207 (2011) [Zbl pre05880604](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05880604&format=complete) [MR 2782598](http://www.ams.org/mathscinet-getitem?mr=2782598)
- [18] Radford, D. E.: The structure of Hopf algebras with a projection. J. Algebra 92, 322–347 (1985) [Zbl 0104.26004](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0104.26004&format=complete) [MR 0778452](http://www.ams.org/mathscinet-getitem?mr=0778452)
- [19] Shirshov, A. I.: On free Lie rings. Mat. Sb. 45, 113–122 (1958) (in Russian) [Zbl 0080.25503](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0080.25503&format=complete) [MR 0099356](http://www.ams.org/mathscinet-getitem?mr=0099356)
- [20] Shirshov, A. I.: Some algorithmic problems for Lie algebras. Sibirsk. Mat. Zh. 3, 292–296 (1962) (in Russian) [Zbl 0104.26004](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0104.26004&format=complete) [MR 0183753](http://www.ams.org/mathscinet-getitem?mr=0183753)
- [21] Takeuchi, M.: Survey of braided Hopf algebras. In: New Trends in Hopf Algebra Theory, Contemp. Math. 267, Amer. Math. Soc., 301–324 (2000) [Zbl 0978.16035](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0978.16035&format=complete) [MR 1800719](http://www.ams.org/mathscinet-getitem?mr=1800719)