J. Eur. Math. Soc. 13, 1799-1814

DOI 10.4171/JEMS/294

© European Mathematical Society 2011



Fabien Durand

# Cobham's theorem for substitutions

Received October 29, 2010 and in revised form March 23, 2011

**Abstract.** The seminal theorem of Cobham has given rise during the last 40 years to a lot of work about non-standard numeration systems and has been extended to many contexts. In this paper, as a result of fifteen years of improvements, we obtain a complete and general version for the so-called substitutive sequences.

Let  $\alpha$  and  $\beta$  be two multiplicatively independent Perron numbers. Then a sequence  $x \in A^{\mathbb{N}}$ , where A is a finite alphabet, is both  $\alpha$ -substitutive and  $\beta$ -substitutive if and only if x is ultimately periodic.

# 1. Introduction

The seminal theorem of Cobham has given rise during the last 40 years to a lot of work about non-standard numeration systems and has been extended to many contexts. The original Cobham's theorem is concerned with integer base numeration systems. In this paper, as a result of fifteen years of improvements, we obtain a complete and general version for the so-called substitutive sequences.

A set  $E \subset \mathbb{N}$  is *p*-recognizable for some  $p \in \mathbb{N} \setminus \{0, 1\}$  if the language consisting of the *p*-ary expansions of elements of *E* is recognizable by a finite automaton. It is obvious that *E* is recognizable if and only if it is  $p^k$ -recognizable. In 1969, A. Cobham obtained the following remarkable theorem.

**Cobham's theorem** ([Cob69]). Let  $p, q \ge 2$  be two multiplicatively independent integers (i.e.,  $p^k \ne q^{\ell}$  for all integers  $k, \ell > 0$ ). A set  $E \subset \mathbb{N}$  is both *p*-recognizable and *q*-recognizable if and only if *E* is a finite union of arithmetic progressions.

It is interesting to recall what S. Eilenberg wrote in his book [Eil74]: *The proof is correct, long and hard. It is a challenge to find a more reasonable proof of this fine theorem.* In this direction, G. Hansel proposed a simpler presentation in [Han82]; also one can see [Per90] or the dedicated chapter in [AS03] for an expository presentation, with a mistake corrected in [RW06].

In [Cob72], Cobham made precise the structure of these *p*-recognizable sets: they are exactly the images by letter-to-letter morphisms of constant-length substitution fixed

F. Durand: Université de Picardie Jules Verne, Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées, CNRS-UMR 6140, 33 rue Saint Leu, 80039 Amiens Cedex, France; e-mail: fabien.durand@u-picardie.fr

points. He also defined the notion of *p*-automatic sequences: The *n*-th term of the sequence is a mapping of the last reached state of the automaton when its input is the digits of *n* in some given base *p* numeration system. Clearly  $E \subset \mathbb{N}$  is *p*-recognizable if and only if its characteristic sequence is *p*-automatic. Automata provide a nice and easy description of *p*-recognizable sets whereas substitutions afford an algorithm to produce such sets. From this a lot of other characterizations have been given, the first and major being in terms of:

- (1) p-definable sets (see [B–V94] for a survey);
- (2) *p*-kernel [Eil74];
- (3) (when p is prime) algebraic series over  $\mathbb{F}_p(X)$  [Chr79, C–R80].

This opened a wide range of further work we briefly describe below.

The Cobham theorem has been generalized to recognizable subsets of  $\mathbb{N}^d$  by A. L. Semenov [Sem77] for base *p* numeration systems (also called later *standard numeration systems*) to give the so-called Cobham–Semenov theorem (see [B–V94] for a nice survey). Then the efforts were concentrated to simplify Cobham–Semenov's theorem and to generalize it to non-standard numeration systems given by linear recurrence relations like the Fibonacci one. Alternative and satisfactory proofs (in terms of simplification) have been proposed, among them a very interesting logical proof due to C. Michaux and R. Villemaire [MV93, MV96] (see also [Bès97, Muc03]), using *p*-definable sets in the formalism of first order logic in some arithmetic models like the Presburger arithmetic  $\langle \mathbb{N}, + \rangle$  (see [Bès01] for a survey on these methods). Another recent proof makes use of ergodic measures [Dur08] and the fact that *p*-recognizable subsets of  $\mathbb{N}^d$  are characterized by multidimensional substitutions [ČG86, Sal87]. This last characterization is an extension of Cobham's result of 1972.

The first result obtained for non-standard numeration systems is due to S. Fabre [Fab94]. He considered subsets of  $\mathbb{N}$  that are both *p*-recognizable and *U*-recognizable where *U* is a non-standard numeration system associated with some restricted class of Pisot numbers. Then, V. Bruyère and F. Point [PB97] proved such a result for subsets of  $\mathbb{N}^d$  under less restrictive (and more natural) assumptions on the Pisot numbers involved. Later A. Bès [Bès00] succeeded in generalizing Cobham–Semenov's theorem to subsets of  $\mathbb{N}^d$  recognizable by automata in two non-standard numeration systems which are associated with the minimal polynomials of multiplicatively independent Pisot numbers. Up to now it is the best generalization obtained for  $d \ge 2$ .

Prior to this result, for d = 1, Cobham's theorem was extended to a much wider class of non-standard numeration systems in [Dur98c] where no "Pisot conditions" are needed, and later in [DR09] to abstract numeration systems (defined in [Rig00]). This last result includes all previously known such results in dimension 1. It is important to notice that the proofs in [Dur98c, DR09] used substitution fixed points while the papers [Bès00, B–V94, MV93, MV96, Muc03, PB97] used a first order logic approach.

With every substitution there is associated an integer square matrix with non-negative entries. It is well-known (see [HJ90] for instance) that such a matrix has a real eigenvalue  $\alpha$  which is greater than or equal to the modulus of all other eigenvalues. It is usually called the dominant eigenvalue of *M*. This allows us to define the notion of  $\alpha$ -substitutive

sequences. From the characterization given in [Cob72] it is easy to deduce that the characteristic sequences of *p*-recognizable subsets of  $\mathbb{N}$  are *p*-substitutive sequences. This suggested to G. Hansel the following result (see [AM95]) that is the main result of this paper.

**Theorem 1.** Let  $\alpha$  and  $\beta$  be two multiplicatively independent Perron numbers. Let A be a finite alphabet and x be a sequence of  $A^{\mathbb{N}}$ . Then x is both  $\alpha$ -substitutive and  $\beta$ -substitutive if and only if x is ultimately periodic.

Partial answers have been given in [Fab94, Dur98b, Dur02a] with conditions on the substitutions.

Observe that the main result in [Dur98c] on numeration systems is a consequence of Cobham's theorem for primitive substitutions established in [Dur98b] thanks to a result of Fabre [Fab95] that characterizes the characteristic sequences of recognizable sets of integers in non-standard numeration systems in terms of fixed points of substitutions.

Let us mention further generalizations of Cobham's theorem. We could weaken the assumption that a sequence is p- and q-automatic assuming that a p-automatic and a q-automatic sequence share the same language (the set of finite words occurring in the sequence), and asking if a Cobham's theorem type result still holds in this context. It does, as proven in [Fag97]. This was generalized to primitive substitutions in [Dur98c]. Translated to the framework of dynamical systems, this result means that if two subshifts, one generated by a p-automatic sequence and the other by a q-automatic one (with p and q) multiplicatively independent), have a common topological factor then it contains a unique minimal (and also uniquely ergodic) subshift, and moreover it is periodic. This point of view is developed in [Dur02a] and provides a new proof of Cobham's theorem. It uses the ergodic measures of the subshifts and the values they take on cylinder sets. Moreover this way to tackle the problem also works in higher dimensions. For example, it can be used to get a new proof of Cobham–Semenov's theorem (see [Dur08]) using multidimensional subshifts. Moreover as subsets of  $\mathbb{N}^d$  can be seen as tilings of  $\mathbb{R}^d_{\perp}$  (which are self-similar, see [Sol97] for the definition) it is not surprising that there are generalizations to selfsimilar tiling dynamical systems [CD08].

The notion of recognizable subsets of  $\mathbb{R}$  or  $\mathbb{R}^d$ , in standard numeration systems, can be easily defined. The authors of [BB07, BBB08, BBL09] obtained a very nice generalization of Cobham's theorem. In dimension one the same result (but in a different setting) has been obtained in [AB10a] independently.

The case of the ring of Gaussian integers with the numeration systems  $((-a + i)^n)_n$ ,  $a \in \mathbb{N} \setminus \{0\}$  (see [KS75]) has been investigated in [HS03]. They obtained a very partial result and faced the problem of proving that  $\frac{\ln a}{\ln b}$ ,  $\frac{\tan^{-1} a}{2\pi} \frac{\ln a}{\ln b} - \frac{\tan^{-1} b}{2\pi}$ , 1 are rationally independent, which seems to be a difficult number theoretic problem. The generalization remains open.

In [AS92], the notion of *p*-regular sequences is defined. They take values in a ring and are defined using the notion of *k*-kernel. When the ring is finite they are *k*-automatic sequences. J. Bell [Bel07] generalized Cobham's theorem to this context.

G. Christol [Chr79] gave a famous and very concrete description of the elements of  $\mathbb{F}_q((t))$  that are algebraic over  $\mathbb{F}_q(t)$   $(q = p^n \text{ with } p \text{ a prime number})$ ; it shows

that being an algebraic power series is equivalent to the sequence of coefficients being *p*-automatic. K. Kedlaya [Ked06] generalized this theorem to the so-called generalized power series of Hahn ( $\mathbb{F}_q((t^{\mathbb{Q}}))$ ) in terms of quasi-automatic functions. Then, B. Adamczewski and J. Bell [AB08] proved an extension of Cobham's theorem to quasi-automatic functions and put it together with Kedlaya's result to derive an analogue of the main result in [C–R80] asserting that a sequence of coefficients represents two algebraic power series in distinct characteristics if and only if these power series are rational functions.

For more details on all these developments we refer to [AB10b, DR10].

# 2. Words, morphisms, substitutions and numeration systems

In this section we recall classical definitions and notation.

## 2.1. Words and sequences

An *alphabet* A is a finite set of elements called *letters*. A *word* over A is an element of the free monoid generated by A, denoted by  $A^*$ . Let  $x = x_0x_1 \cdots x_{n-1}$  (with  $x_i \in A$ ,  $0 \le i \le n-1$ ) be a word; its *length* is n and is denoted by |x|. The *empty word* is denoted by  $\epsilon$ ,  $|\epsilon| = 0$ . The set of non-empty words over A is denoted by  $A^+$ . The elements of  $A^{\mathbb{N}}$ are called *sequences*. If  $x = x_0x_1 \cdots x_l$  and we say that  $x_i \in A$ ,  $i \in \mathbb{N}$ ) and I = [k, l]an interval of  $\mathbb{N}$  we set  $x_I = x_k x_{k+1} \cdots x_l$  and we say that  $x_I$  is a *factor* of x. If k = 0, we say that  $x_I$  is a *prefix* of x. The set of factors of length n of x is written  $\mathcal{L}_n(x)$  and the set of factors of x, or the *language* of x, is denoted  $\mathcal{L}(x)$ . The *occurrences* in x of a word u are the integers i such that  $x_{[i,i+|u|-1]} = u$ . If u has an occurrence in x, we also say that u *appears* in x. When x is a word, we use the same terminology with similar definitions.

The sequence x is *ultimately periodic* if there exist a word u and a non-empty word v such that  $x = uv^{\omega}$ , where  $v^{\omega} = vvv \cdots$ . It is *periodic* if u is the empty word. A word u is *recurrent* in x if it appears in x infinitely many times. The set of recurrent words of x is denoted by  $\mathcal{L}_{rec}(x)$ . A sequence x is *uniformly recurrent* if every factor u of x appears infinitely often in x and the greatest difference of two successive occurrences of u is bounded.

#### 2.2. Morphisms and matrices

Let *A* and *B* be two alphabets. Let  $\tau$  be a *morphism* from  $A^*$  to  $B^*$ . Such a map induces by concatenation a morphism from  $A^*$  to  $B^*$ . When  $\tau(A) = B$ , we say  $\tau$  is a *coding*. Thus, codings are onto. If  $\tau(A)$  is included in  $B^+$ , it induces by concatenation a map from  $A^{\mathbb{N}}$  to  $B^{\mathbb{N}}$ . These two maps are also called  $\tau$ . With the morphism  $\tau$  there is naturally associated a matrix  $M_{\tau} = (m_{i,j})_{i \in B, j \in A}$  where  $m_{i,j}$  is the number of occurrences of *i* in the word  $\tau(j)$ .

It is well-known that any non-negative square matrix M has a real eigenvalue  $\alpha$  which is real and greater than or equal to the modulus of any other eigenvalue. We call  $\alpha$  the *dominating eigenvalue* of M. Moreover  $\alpha$  is a *Perron number*: it is an algebraic real number > 1 strictly dominating the modulus of all its algebraic conjugates (see for instance [LM95]). The matrix M is called *primitive* if it has a power such that all its entries are positive. In this case the dominating eigenvalue is unique, positive and it is a simple root of the characteristic polynomial. This is Perron's Theorem.

## 2.3. Substitutions and substitutive sequences

A substitution is a morphism  $\tau : A^* \to A^*$ . If there exist a letter  $a \in A$  and a word  $u \in A^+$  such that  $\sigma(a) = au$  and  $\lim_{n \to +\infty} |\sigma^n(a)| = +\infty$ , then  $\sigma$  is said to be *prolongable* on a.

Since for all  $n \in \mathbb{N}$ ,  $\sigma^n(a)$  is a prefix of  $\sigma^{n+1}(a)$  and because  $|\sigma^n(a)|$  tends to infinity with *n*, the sequence  $(\sigma^n(aaa \cdots))_{n\geq 0}$  converges (for the usual product topology on  $A^{\mathbb{N}}$ ) to a sequence denoted by  $\sigma^{\omega}(a)$ . The morphism  $\sigma$  being continuous for the product topology,  $\sigma^{\omega}(a)$  is a fixed point of  $\sigma: \sigma(\sigma^{\omega}(a)) = \sigma^{\omega}(a)$ . A sequence obtained in this way by iterating a prolongable substitution is said to be *purely substitutive* (with respect to  $\sigma$ ). If  $x \in A^{\mathbb{N}}$  is purely substitutive and if  $\phi: A^* \to B^*$  is a coding, then the sequence  $y = \phi(x)$  is said to be *substitutive*.

Whenever the matrix associated with  $\tau$  is primitive we say that  $\tau$  is a *primitive sub*stitution. We say  $\tau$  is a growing substitution if  $\lim_{n\to+\infty} |\tau^n(b)| = +\infty$  for all  $b \in A$ . It is *erasing* if there exists  $b \in A$  such that  $\tau(b)$  is the empty word.

**Definition 2.** Let *A* be a finite alphabet. A sequence  $x \in B^{\mathbb{N}}$  is said to be  $\alpha$ -substitutive (with respect to  $\sigma$ ) if  $\sigma : A^* \to A^*$  is a substitution prolongable on the letter *a* such that:

(1) all letters of A have an occurrence in  $\sigma^{\omega}(a)$ ;

- (2)  $\alpha$  is the dominating eigenvalue of the incidence matrix of  $\sigma$ ;
- (3) there exists a coding  $\phi : A^* \to B^*$  with  $x = \phi(\sigma^{\omega}(a))$ .

If moreover  $\sigma$  is primitive, then  $\phi(\sigma^{\omega}(a))$  is said to be a *primitive*  $\alpha$ -substitutive infinite sequence (with respect to  $\sigma$ ).

The condition (1) is important. Indeed, consider the substitution  $\tau$  defined by  $\tau(a) = aaab$ ,  $\tau(b) = bc$  and  $\tau(c) = cb$ . It has three fixed points  $\tau^{\omega}(a)$ ,  $\tau^{\omega}(b)$  and  $\tau^{\omega}(c)$ . The sequence  $\tau^{\omega}(a)$  is 3-substitutive and we do not want to say that  $\tau^{\omega}(b)$  and  $\tau^{\omega}(c)$  are 3-substitutive. With our definition they are 2-substitutive.

## 2.4. Growth type and erasures

The following well known result (see Chapter III.7 in [SS78]) will be very useful in what follows.

**Proposition 3.** Let  $\sigma : A^* \to A^*$  be a substitution. For all  $a \in A$ , one of the following two situations occurs:

(1) there exists  $N \in \mathbb{N}$  such that for all n > N,  $|\sigma^n(a)| = 0$ , or

(2) there exist  $d(a) \in \mathbb{N}$  and real numbers  $c(a), \theta(a)$  such that

$$\lim_{n \to +\infty} \frac{|\sigma^n(a)|}{c(a) n^{d(a)} \theta(a)^n} = 1.$$

Moreover, in the situation (2), for all  $i \in \{0, ..., d(a)\}$  there exists a letter  $b \in A$  appearing in  $\sigma^{j}(a)$  for some  $j \in \mathbb{N}$  satisfying

$$\lim_{n \to +\infty} \frac{|\sigma^n(b)|}{c(b) n^i \theta(a)^n} = 1.$$

This justifies the following definition.

**Definition 4.** Let  $\sigma : A^* \to A^*$  be a non-erasing substitution. For all  $a \in A$ , the couple  $(d(a), \theta(a))$  defined in Proposition 3 is called the *growth type* of a and  $\theta(a)$  is called the *growth rate* of a (with respect to  $\sigma$ ). The growth type of a word is the maximal growth type of its letters. If  $(d, \theta)$  and  $(e, \beta)$  are two growth types we say that  $(d, \theta)$  is *less than*  $(e, \beta)$  (written  $(d, \theta) < (e, \beta)$ ) whenever  $\theta < \beta$ , or  $\theta = \beta$  and d < e.

We say that  $a \in A$  is a growing letter if  $(d(a), \theta(a)) > (0, 1)$  or equivalently, if  $\lim_{n \to +\infty} |\sigma^n(a)| = +\infty$ .

We set  $\Theta := \max\{\theta(a) \mid a \in A\}$ ,  $D := \max\{d(a) \mid a \in A, \theta(a) = \Theta\}$  and  $A_{\max} := \{a \in A \mid \theta(a) = \Theta, d(a) = D\}$ . The dominating eigenvalue of M is  $\Theta$ . Consequently, any sequence which is substitutive with respect to  $\sigma$  is  $\Theta$ -substitutive. We will say that the letters of  $A_{\max}$  are of maximal growth and that  $(D, \Theta)$  is the growth type of  $\sigma$ . Observe that if  $\Theta = 1$ , then in view of the last part of Proposition 3, there exists at least one non-growing letter (of growth type (0, 1)). In other words, if a letter has a polynomially bounded growth, then there exists at least one non-growing letter. Consequently,  $\sigma$  is growing (i.e., all its letters are growing) if and only if  $\theta(a) > 1$  for all  $a \in A$ . We observe that for all  $k \ge 1$ , the growth type of  $\sigma^k$  is  $(D, \Theta^k)$ .

The following theorem allows us to suppose that the substitutions we deal with are non-erasing. We refer to [CN03, Théorème 4] for the proof, even if property (3) is not stated in that paper but is clear from the proof. Other references with other proofs are in [Cob68, Pan83, AS03, Hon09].

**Theorem 5.** Let  $\sigma : A^* \to A^*$  be a substitution prolongable on the letter a and  $\phi : A^* \to C^*$  be a morphism such that  $\phi(\sigma^{\omega}(a))$  belongs to  $A^{\mathbb{N}}$ . Then  $\phi(\sigma^{\omega}(a)) = \psi(\tau^{\omega}(b))$  where:

ψ : B\* → C\* is a coding;
 τ : B\* → B\* is a non-erasing substitution prolongable on b;
 there exist γ : A → B\* and k such that

$$\gamma \circ \sigma^k = \tau \circ \gamma \quad and \quad \psi \circ \gamma = \phi.$$

From the classical theory of non-negative matrices (see [HJ90]) we deduce the following corollary.

**Corollary 6.** The image under a non-erasing morphism of an  $\alpha$ -substitutive sequence is an  $\alpha^k$ -substitutive sequence with respect to a non-erasing substitution for some k.

*Proof.* Let  $\sigma : A^* \to A^*$  be a substitution prolongable on the letter *a*, and  $\alpha$  the dominating eigenvalue of its incidence matrix. Let  $y = \sigma^{\omega}(a)$  and  $\phi : A^* \to C^*$  be a non-erasing morphism. We can suppose all letters of *C* appear in some words of  $\phi(A)$ . It suffices to show that  $\phi(y)$  is  $\alpha^k$ -substitutive for some *k*.

From Theorem 5 we can suppose  $\phi(y) = \psi(\tau^{\omega}(b))$  where  $\psi$  and  $\tau$  satisfy (1)–(3) of this theorem. It suffices to show that the dominating eigenvalue of the incidence matrix  $M_{\tau}$  of  $\tau$  is  $\alpha^k$  (where k comes from (3)). Let  $M_{\phi}$ ,  $M_{\psi}$  and  $M_{\sigma}$  be the incidence matrices of the corresponding morphisms. Let v be an eigenvector of  $M_{\sigma}$  for the eigenvalue  $\alpha$ . Then  $\alpha^k M_{\gamma}v = M_{\tau}M_{\gamma}v$ . As  $\phi$  is non-erasing and  $M_{\psi}M_{\gamma} = M_{\phi}$ ,  $M_{\gamma}v$  is a non-zero vector. Hence it is an eigenvector of  $M_{\tau}$  for the eigenvalue  $\alpha^k$ .

Conversely, let  $\beta$  be the dominating eigenvalue of  $M_{\tau}$ , and w be a corresponding left eigenvector. Then  $wM_{\gamma}M_{\sigma}^{k} = \beta wM_{\gamma}$ . As  $\psi$  is a coding, there exists w' with non-negative coordinates such that  $w = w'M_{\psi}$ . Thus,  $w'M_{\phi}M_{\sigma}^{k} = \beta w'M_{\phi}$ . Since all letters of *C* appear in some words of  $\phi(A)$ ,  $w'M_{\phi}$  is a non-negative vector different from 0. This concludes the proof.

Once Theorem 1 is proven, it will show that, in this corollary, the non-erasing assumption cannot be removed. For example, we can consider  $\sigma$  defined by  $\sigma(a) = ab$ ,  $\sigma(b) = bac$  and  $\sigma(c) = ccc$ , and, the (erasing) morphism  $\phi$  defined by  $\phi(a) = a$ ,  $\phi(b) = b$  and  $\phi(c)$  is the empty word. Then  $\sigma^{\omega}(a)$  is 3-substitutive while  $\phi(\sigma^{\omega}(a))$  is a non-ultimately periodic 2-substitutive sequence.

# 3. Proof of Theorem 1

### 3.1. Already known results used to prove the conjecture

The proofs of most of the generalizations of Cobham's theorem are divided into two parts.

- (i) Dealing with a subset X of integers, we have to prove that X is syndetic. Equivalently, dealing with an infinite sequence x, we have to prove that the letters occurring infinitely many times in x appear with bounded gaps.
- (ii) In the second part of the proof, the ultimate periodicity of *X* or *x* has to be demonstrated.

The first part is already known in the framework of substitutions.

**Theorem 7** ([DR09, Theorem 17]). Let  $\alpha, \beta \in [1, +\infty)$  be two multiplicatively independent real numbers. If a sequence x is both  $\alpha$ -substitutive and  $\beta$ -substitutive then the words having infinitely many occurrences in x appear in x with bounded gaps.

The second part is proved in the context of "good" substitutions in [Dur02b] and was proven previously in many other papers (see [DR10] for a survey).

**Definition 8.** Let  $\sigma : A^* \to A^*$  be a substitution whose dominating eigenvalue is  $\alpha$ . If there exists  $B \subseteq A$  such that  $\sigma(b) \in B^*$  for all  $b \in B$ , then the substitution  $\tau : B^* \to B^*$  defined by  $\tau(b) = \sigma(b)$  for all  $b \in B$  is a *sub-substitution* of  $\sigma$ . The substitution  $\sigma$  is *good* if it is growing and has a primitive sub-substitution whose dominating eigenvalue is  $\alpha$ .

Not all non-erasing substitutions have a primitive sub-substitution, for example  $0 \mapsto 010, 1 \mapsto 2$  and  $2 \mapsto 1$ . But all have a power that has at least a primitive sub-substitution ([Dur02b]). But, even up to some power, some are not good. For example the substitution  $\sigma$  defined by  $0 \mapsto 0100, 1 \mapsto 12$  and  $2 \mapsto 21$  has a unique primitive sub-substitution ( $\tau : 1 \mapsto 12$  and  $2 \mapsto 21$ ) but is not good because the dominant eigenvalue of  $\sigma$  is 3 and it is 2 for  $\tau$ .

We recall that in the (non-erasing) purely substitutive context the expected extension of Cobham's theorem is known.

**Theorem 9** ([Dur02b, Corollary 19]). Let  $\sigma : A^* \to A^*$  and  $\tau : A^* \to A^*$  be two non-erasing growing substitutions prolongable on  $a \in A$  with respective dominating eigenvalues  $\alpha$  and  $\beta$ . Suppose that all letters of A appear in  $\sigma^{\omega}(a)$  and in  $\tau^{\omega}(a)$  and that  $\alpha$  and  $\beta$  are multiplicatively independent. If  $x = \sigma^{\omega}(a) = \tau^{\omega}(a)$ , then x is ultimately periodic.

## 3.2. Concatenation of return words

Let *A* be a finite alphabet. Let  $x \in A^{\mathbb{N}}$  and  $u \in \mathcal{L}(x)$ . A *return word to u* (for *x*) is a word *w* such that *wu* belongs to  $\mathcal{L}(x)$ , *u* is a prefix of *wu*, and *u* has exactly two occurrences in *wu*. The set of return words is denoted by  $\mathcal{R}_x(u)$ . A sequence  $x \in A^{\mathbb{N}}$  is *linearly recurrent* (*with constant L*) if *x* is uniformly recurrent and for all  $w \in \mathcal{R}_x(u)$  we have  $|w| \le L|u|$ .

**Lemma 10** ([DHS99, Theorem 24]). Let  $x \in A^{\mathbb{N}}$  be a non-periodic linearly recurrent sequence (with constant L). Then:

(1) for all  $w \in \mathcal{R}_x(u)$  we have  $|u|/L \le |w|$ ;

(2) there exists a constant K such that for all  $u \in \mathcal{L}(x)$  we have  $\#\mathcal{R}_x(u) \leq K$ .

The following lemma will be, in some sense, the last decisive argument to prove Theorem 1. When W is a set of words,  $W^*$  stands for the set of all concatenations of elements of W.

**Lemma 11.** Let x be a non-periodic linearly recurrent sequence (with constant L). Then there exists a constant K such that for all  $u \in \mathcal{L}(x)$  and all  $l \in \mathbb{N}$ ,

$$\# \bigcup_{0 \le n \le l} (\mathcal{R}_x(u)^* \cap \mathcal{L}_n(x)) \le (1+K)^{|L|/|u|}.$$

*Proof.* Let *K* be the constant given by Lemma 10. Let  $l, n \in \mathbb{N}$  with  $n \leq l, u \in \mathcal{L}(x)$  and  $w \in \mathcal{R}_x(u)^* \cap \mathcal{L}_n(x)$ . As the distance between two occurrences of *u* in *w* is at least

|u|/L, in w there are at most Ll/|u| occurrences of u. Hence w is a concatenation of exactly Ll/|u| words belonging to  $\mathcal{R}_x(u) \cup \{\epsilon\}$ . This concludes the proof.

The following proposition allows us to apply this lemma to primitive substitutive sequences.

**Theorem 12** ([Dur98a, Theorem 4.5]). All primitive substitutive sequences are linearly recurrent.

Note that it is shown in [Dur96] through the Chacon example that uniformly recurrent substitutive sequences are primitive substitutive. In [Dur10] the generality of the case of the Chacon substitution is explained. The same result has been obtained in [DL06] but with a significantly longer proof.

#### 3.3. Reduction of the problem

Let us make two obvious but important remarks. Let  $\alpha$ ,  $\beta > 1$ . When a sequence is  $\alpha$ -substitutive with respect to a substitution  $\sigma$ , it is also  $\alpha^k$ -substitutive with respect to  $\sigma^k$ . Moreover, for all positive integers l and k,  $\alpha$  and  $\beta$  are multiplicatively independent if and only if  $\alpha^l$  and  $\beta^k$  are multiplicatively independent. Hence due to the statement we want to prove, we can suppose that  $\sigma$  has the properties some  $\sigma^k$  would have (changing  $\sigma$  to  $\sigma^k$  if needed). Hence we can always suppose that:

- (1)  $\sigma$  is non-erasing (Corollary 6);
- (2)  $\sigma$  is growing or there exists a growing letter  $a \in A$  such that  $\sigma(a) = vau$  (or uav) with  $u \in B^* \setminus \{\epsilon\}$  where *B* is the set of non-growing letters ([Pan84, Théorème 4.1]);
- (3)  $\sigma$  has a primitive sub-substitution (see [Dur02b]).

# 3.4. Technical lemmata and proof of Theorem 1

Before proving the main result of this paper we need to establish some lemmata.

**Lemma 13.** Let x be a substitutive sequence with respect to a growing substitution. If each word in  $\mathcal{L}_{rec}(x)$  appears with bounded gaps in x then there exists a primitive substitutive sequence y such that  $\mathcal{L}_{rec}(x) = \mathcal{L}(y)$ .

*Proof.* Let  $\sigma : A^* \to A^*$  be a growing substitution prolongable on the letter a and  $\phi : A^* \to B^*$  be a coding such that  $x = \phi(\sigma^{\omega}(a))$ . We can suppose that all letters of A occur in some  $\sigma^n(a), n \in \mathbb{N}$ . Proposition 15 in [Dur02a] asserts that growing substitutions have at least one primitive sub-substitution. Let  $\tau : C^* \to C^*$  be a primitive sub-substitution of  $\sigma$ . It is necessarily a growing substitution and it is easy to check that each word  $\sigma^n(b)$ ,  $b \in C, n \in \mathbb{N}$ , is recurrent in  $\sigma^{\omega}(a)$ . There exist  $c \in C$  and a positive integer l such that c is a prefix of  $\sigma^l(c)$ . Thus  $y = \phi((\sigma^l)^{\omega}(c))$  exists, is primitive substitutive and  $\mathcal{L}(y) \subset \mathcal{L}_{rec}(x)$ . As primitive substitutive sequences are uniformly recurrent, from the hypothesis we deduce that  $\mathcal{L}_{rec}(x) = \mathcal{L}(y)$ .

**Lemma 14.** Let x be a sequence and u be a word such that if  $u = v^k$  then k = 1. Suppose that each word in  $\mathcal{L}_{rec}(x)$  appears in x with bounded gaps and that  $\mathcal{L}_{rec}(x)$  contains  $\{u^n \mid n \in \mathbb{N}\}$ . Then x is ultimately periodic and  $\mathcal{L}_{rec}(x) = \mathcal{L}(uuu \cdots)$ .

*Proof.* Let *u* be such that if  $u = v^k$  then k = 1. Let us reproduce arguments already used in [Dur02b, Theorem 18] in order to conclude that *x* is ultimately periodic. As *u* belongs to  $\mathcal{L}_{rec}(x)$ , it appears with bounded gaps in *x*. Thus, the set  $\mathcal{R}_x(u)$  of return words to *u* is finite. There exists an integer *N* such that all the words  $wu \in \mathcal{L}(x_N x_{N+1} \cdots)$ ,  $w \in \mathcal{R}_x(u)$ , appear infinitely many times in *x*. Hence these words appear with bounded gaps in *x*. We set  $t = x_N x_{N+1} \cdots$ . We can suppose that *u* is a prefix of *t*. Then *t* is a concatenation of return words to *u*. Let *w* be a return word to *u* such that *wu* belongs to  $\mathcal{L}(t)$ . It appears in some power of *u*:  $wu = su^k p$  where  $k \ge 1$ , *s* is a suffix of *u* with |s| < |u|, and *p* a prefix of *u* with |p| < |u|. Hence *p* is also a suffix of *u* and there exists *p'* such that u = pp' = p'p. If *p* and *p'* are non-empty then  $u = v^k$  for some *v* and  $k \ge 2$  (see [Lot83, Proposition 1.3.2]). This is in contradiction with our assumption. Consequently, *p* or *p'* is empty. Doing the same with *s* we will deduce that necessarily w = u. It follows that  $t = u^{\omega}$ , *x* is ultimately periodic and  $\mathcal{L}_{rec} = \mathcal{L}(t) = \mathcal{L}(uuu \cdots)$ .

We have seen that Theorem 1 was proven in [Dur02b] in the context of good substitutions. The following lemma, together with Theorem 7, is the main argument to treat, in Theorem 1, the case where one of the two substitutive sequences is not good.

**Lemma 15.** Let x be purely substitutive with respect to  $\sigma : A^* \to A^*$  satisfying (1) and (2) of Section 3.3, having a dominating eigenvalue  $\alpha$  strictly greater than 1 and such that all letters of A occur in x. Suppose there exists a coding  $\phi : A^* \to B^*$  such that all words belonging to  $\mathcal{L}_{rec}(\phi(x))$  appear with bounded gaps in  $\phi(x)$ . Then either all letters of A have the same growth rate (with respect to  $\sigma$ ) or  $\phi(x)$  is ultimately periodic.

*Proof.* Suppose  $\sigma$  is prolongable on a',  $x = \sigma^{\omega}(a')$  and  $y = \phi(x)$ . Suppose  $\sigma$  has at least two growth rates and let us show  $\phi(x)$  is ultimately periodic. The growth type of  $\sigma$  is  $(d, \alpha)$  for some d.

We consider two cases. Suppose  $\sigma$  is not a growing substitution. Then, from assumption (2) in Section 3.3, there exists a growing letter  $c \in A$  such that  $\sigma(c) = vcu$  (or ucv) with  $u \in B^* \setminus \{\epsilon\}$  where *B* is the set of non-growing letters. It is convenient to notice that  $\sigma^n(c) = \sigma^{n-1}(v)cu\sigma(u)\cdots\sigma^{n-1}(u)$  or  $\sigma^n(c) = \sigma^{n-1}(u)\cdots\sigma(u)uc\sigma^{n-1}(v)$  and there exist two distinct positive integers *i* and *j* such that  $\sigma^i(u) = \sigma^j(u)$ .

Let us show that c necessarily belongs to  $\mathcal{L}_{rec}(x)$  whenever x is not ultimately periodic.

Suppose c = a' and  $\sigma(c) = vcu$ . If v is not the empty word then  $\sigma(c) = cv'cu$ and c is clearly recurrent in x. If v is the empty word then  $\sigma^n(c) = cu\sigma(u) \cdots \sigma^{n-1}(u)$ . Consequently, because  $\sigma^i(u) = \sigma^j(u)$ , x is ultimately periodic. Suppose c = a' and  $\sigma(c) = ucv$ . Then a' is a non-growing letter. This contradicts our assumptions. Suppose  $c \neq a'$ . Then  $\sigma^m(a') = a'sct$  for some m, and c is clearly recurrent.

The letter *c*, and consequently  $\sigma^n(c)$ ,  $n \in \mathbb{N}$ , having infinitely many occurrences in *x*, it is also the case for the words  $u^{(n)} = (\sigma^i(u)\sigma^{i+1}(u)\cdots\sigma^{j-1}(u))^n$ ,  $n \in \mathbb{N}$ . Then all

words in  $\{(\phi(u^{(1)}))^n \mid n \in \mathbb{N}\}$  appear infinitely many times in  $\phi(x)$ . Lemma 14 implies that  $\phi(x)$  is ultimately periodic.

Suppose now that  $\sigma$  is a growing substitution. Then all letters of A have an exponential growth rate  $\gamma$  with  $\gamma > 1$ . From the assumptions, the numbers

$$\beta = \max\{\theta(a) \mid \theta(a) < \alpha, a \in A\}$$
 and  $f = \max\{d(a) \mid \theta(a) = \beta, a \in A\}$ 

exist and  $(f, \beta)$  is a growth type of some letter of A with  $1 < \beta < \alpha$ .

There necessarily exist two letters occurring infinitely many times in x, one having growth type  $(f, \beta)$  and the other having an exponential growth rate  $\alpha$ . Hence, there exists a non-empty word awb, appearing infinitely many times in x, where w has growth type  $(f, \beta)$ , and a and b have an exponential growth rate  $\alpha$ . Once we observe that for all letters c with exponential growth rate  $\alpha$  there exist letters c', c'' with exponential growth rate  $\alpha$  such that  $\sigma(c) = u'c'u = vc''v'$  where u and v (possibly empty) have exponential growth rates strictly less than  $\alpha$ . Then, by a recurrence starting with awb, it is easy to prove that there exist two sequences of letters  $(a_n)_n$  and  $(b_n)_n$  and two sequences of words  $(u_n)_n$  and  $(v_n)_n$  such that for all  $n \in \mathbb{N}$ :

- (1)  $a_n u_n \sigma(u_{n-1}) \cdots \sigma^{n-1}(u_1) \sigma^n(w) \sigma^{n-1}(v_1) \cdots \sigma(v_{n-1}) v_n b_n$  appears infinitely many times in *x*;
- (2)  $a_n$  has growth type  $(d_n, \alpha)$ ;
- (3)  $b_n$  has growth type  $(e_n, \alpha)$ ;
- (4)  $u_n$  has growth type  $(f_n, \beta_n)$  with  $\beta_n < \alpha$  and  $|u_n| < \max_{c \in A} |\sigma(c)|$ ;
- (5)  $v_n$  has growth type  $(g_n, \gamma_n)$  with  $\gamma_n < \alpha$  and  $|v_n| < \max_{c \in A} |\sigma(c)|$ .

Consequently, for all *n* and *k* the word  $W(n, k) = \sigma^k(a_n)U(n, k)\sigma^k(b_n)$ , where

$$U(n,k) = \sigma^k(u_n) \cdots \sigma^{k+n-1}(u_1) \sigma^{k+n}(w) \sigma^{k+n-1}(v_1) \cdots \sigma^k(v_n),$$

appears infinitely many times in x. There exist a strictly increasing sequence  $(m_i)$  and two letters a and b such that

$$a_{m_i} = a''$$
 and  $b_{m_i} = b''$  for all *i*. (3.1)

From Lemma 13, there exists a linearly recurrent sequence z such that

(P1) 
$$\mathcal{L}(z) = \mathcal{L}_{rec}(y).$$

If z is periodic, we complete the proof with Lemma 14. Hence we suppose z is not periodic. From Lemmata 10 and 11 there exist some constants K, d, e such that:

- (P2) for all  $u \in \mathcal{L}_{rec}(y)$  and  $w \in \mathcal{R}_y(u) \cap \mathcal{L}_{rec}(y)$  we have  $|u|/K \le |w| \le K|u|$ ;
- (P3) for all  $u \in \mathcal{L}_{rec}(y)$  we have  $\#\mathcal{R}_y(u) \cap \mathcal{L}_{rec}(y) \leq K$ ;
- (P4) for all  $u \in \mathcal{L}_{rec}(y)$  and all  $l \in \mathbb{N}$ ,

$$\# \bigcup_{0 \le n \le l} (\mathcal{R}_{y}(u)^{*} \cap \mathcal{L}_{n}(y) \cap \mathcal{L}_{\mathrm{rec}}(y)) \le (1+K)^{lK/|u|};$$

(P5) for all n and k,

$$\begin{split} |U(n,k)| &\leq K((n+k)^{f+1}\beta^{n+k}), \\ \frac{1}{K}k^d\alpha^k &\leq |\sigma^k(a'')| \leq Kk^d\alpha^k, \quad \frac{1}{K}k^e\alpha^k \leq |\sigma^k(b'')| \leq Kk^e\alpha^k. \end{split}$$

From (3.1) and the previous inequalities, there exists k such that  $|\sigma^k(b'')| \le |\sigma^k(a'')|$  (the other case can be treated in the same way),  $2(1 + K) \le |\sigma^k(b'')|$  and

$$|U(m_i, k)| \le |\sigma^k(b'')| \quad \text{for all } 1 \le i \le (1+K)^{2(K+3)(K+1)K} + 1.$$
(3.2)

From (P1) and (P2), for all *j*, all words in  $\mathcal{L}_{rec}(y) \cap \mathcal{L}_j(y)$  appear in all words of  $\mathcal{L}_{rec}(y) \cap \mathcal{L}_{(K+1)j}(y)$ . Let *u* be a prefix of  $\phi(\sigma^k(b''))$  such that

$$\frac{|\sigma^k(b'')|}{K+1} - 1 \le |u| \le \frac{|\sigma^k(a'')|}{K+1}.$$

Then *u* is non-empty and occurs in  $\phi(\sigma^k(a''))$ . We can decompose  $\phi(\sigma^k(a''))$  and  $\phi(\sigma^k(b''))$  in such a way that  $\phi(\sigma^k(a'')) = Q_p u Q_s$  and  $\phi(\sigma^k(b'')) = u R_s$  with

$$|Q_s| \le (K+1)|u|.$$

Observe that u, a'', b'' and  $Q_s$  do not depend on i. Moreover, for all i belonging to  $[1, (1 + K)^{2(K+3)(K+1)K} + 1]$ , the word  $uQ_s\phi(U(m_i, k))$  belongs to  $\mathcal{L}_{\text{rec}}(y)$ , is a concatenation of return words to u and satisfies

$$|uQ_{s}\phi(U(m_{i},k))| \leq (K+3)|\sigma^{k}(b'')|.$$

Moreover,

$$\# \bigcup_{n=0}^{(K+3)|\sigma^{k}(b'')|} \mathcal{R}_{u}(y)^{*} \cap \mathcal{L}_{n}(y) \leq (1+K)^{(K+3)|\sigma^{k}(b'')|K/|u|} \\ \leq (1+K)^{2(K+3)(K+1)K}.$$
(3.3)

But observe that  $(|U(m_i, k)|)_{0 \le i \le 1 + (1+K)^{2(K+3)(K+1)K}}$  being strictly increasing, the words  $uQ_s\phi(U(m_i, k)), 0 \le i \le 1 + (1+K)^{2(K+3)(K+1)K}$ , are all distinct (and belong to  $\bigcup_{0 \le n \le (K+3)|\sigma^k(b'')|} \mathcal{R}_u(y)^* \cap \mathcal{L}_n(y)$ ). This is in contradiction with (3.3).

*Proof of Theorem 1.* The sufficiency is proven in [Dur02b, Proposition 7]. The necessity is proven in [Dur02b, Theorem 18] in the context of good substitutions. We conclude by reducing the problem to better assumptions (Subsection 3.3), then using Theorem 7 and Lemma 15 (after we observe that substitutions having a primitive sub-substitution and that are not good necessarily have at least two growth rates).

### 3.5. For morphisms instead of codings

We start with an example. Let  $\sigma$  :  $\{0, 1\}^* \rightarrow \{0, 1\}^*$  be defined by  $\sigma(0) = 01$  and  $\sigma(1) = 0$ . The sequence  $x = \sigma^{\omega}(0)$  is  $(1 + \sqrt{5})/2$ -substitutive. Now let  $\tau$  :  $\{a, 0, 1\}^* \rightarrow \{a, 0, 1\}^*$  be defined by  $\tau(a) = a0a$ ,  $\sigma(0) = a01$  and  $\sigma(1) = a0a$ . The sequence  $y = \sigma^{\omega}(a)$  is 3-substitutive. But  $x = \phi(y)$  where  $\phi$  :  $\{a, 0, 1\}^* \rightarrow \{0, 1\}^*$  is defined by  $\phi(0) = 0, \phi(1) = 1$  and  $\phi(a)$  is the empty word. Hence a Cobham-like theorem does not hold for erasing coding morphisms instead of coding. But thanks to Corollary 6 (and Theorem 5) it holds for non-erasing morphisms.

**Theorem 16.** Let  $\alpha > 1$  and  $\beta > 1$  be two multiplicatively independent Perron numbers, and  $\phi : A^* \to C^*$  and  $\psi : B^* \to C^*$ , defined on finite alphabets, be non-erasing morphisms. Suppose  $x \in A^{\mathbb{N}}$  is  $\alpha$ -substitutive and  $y \in B^{\mathbb{N}}$  is  $\beta$ -substitutive. If  $\phi(x) = \psi(y)$  then  $\phi(x)$  is ultimately periodic.

Acknowledgments. The author would like to thank M. Rigo and V. Berthé for their reading of the first draft.

## References

- [AB08] Adamczewski, B., Bell, J.: Function fields in positive characteristic: expansions and Cobham's theorem. J. Algebra **319**, 2337–2350 (2008) Zbl 1151.11060 MR 2388308
- [AB10a] Adamczewski, B., Bell, J.: An analogue of Cobham's theorem for fractals. Trans. Amer. Math. Soc., to appear
- [AB10b] Adamczewski, B., Bell, J.: Automata in number theory. In: J.-E. Pin (ed.), AutoMathA Handbook, preprint
- [AM95] Allouche, J.-P., Mendès France, M.: Automata and automatic sequences. In: Beyond Quasicrystals (Les Houches, 1994), Springer, Berlin, 293–367 (1995) Zbl 0881.11026 MR 1420422
- [AS92] Allouche, J.-P., Shallit, J. O.: The ring of *k*-regular sequences. Theoret. Comput. Sci. **98**, 163–197 (1992) Zbl 0774.68072 MR 1166363
- [AS03] Allouche, J.-P., Shallit, J. O.: Automatic Sequences, Theory, Applications, Generalizations. Cambridge Univ. Press (2003) Zbl 1086.11015 MR 1997038
- [Bel07] Bell, J. P.: A generalization of Cobham's theorem for regular sequences. Sém. Lothar. Combin. **54A**, art. B54Ap, 15 pp. (2005/07) Zbl 1194.11032 MR 2223028
- [Bès97] Bès, A.: Undecidable extensions of Büchi arithmetic and Cobham–Semënov theorem. J. Symbolic Logic 62, 1280–1296 (1997) Zbl 0896.03011 MR 1617949
- [Bès00] Bès, A.: An extension of the Cobham–Semënov theorem. J. Symbolic Logic **65**, 201–211 (2000) Zbl 0958.03025 MR 1782115
- [Bès01] Bès, A.: A survey of arithmetical definability. Bull. Belg. Math. Soc. Simon Stevin 2001, suppl., 1–54 Zbl 1013.03071 MR 1900397
- [BB07] Boigelot, B., Brusten, J.: A generalization of Cobham's theorem to automata over real numbers. In: Automata, Languages and Programming, Lecture Notes in Comput. Sci. 4596, Springer, Berlin, 813–824 (2007) Zbl 1171.68522 MR 2424734
- [BBB08] Boigelot, B., Brusten, J., Bruyère, V.: On the sets of real numbers recognized by finite automata in multiple bases. In: Proc. 35th ICALP (Reykjavik), Lecture Notes in Comput. Sci. 5126, Springer, 112–123 (2008) Zbl 1155.03308 MR 2503581

- [BBL09] Boigelot, B., Brusten, J., Leroux, J.: A generalization of Semenov's theorem to automata over real numbers. In: R. A. Schmidt (ed.), Automated Deduction (Montreal, 2009), Lecture Notes in Comput. Sci. 5663, Springer, 469–484 (2009) Zbl pre05587957 MR 2550354
- [B–V94] Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc. 1, 191–238 (1994) Zbl 0804.11024 MR 1318968
- [CN03] Cassaigne, J., Nicolas, F.: Quelques propriétés des mots substitutifs. Bull. Belg. Math. Soc. Simon Stevin 10, 661–676 (2003) Zbl 1071.68086 MR 2073019
- [ČG86] Černý, A., Gruska, J.: Modular trellises. In: G. Rozenberg and A. Salomaa (eds.), The Book of L, Springer, 45–61 (1986) Zbl 0586.68049
- [Chr79] Christol, G.: Ensembles presque périodiques k-reconnaissables. Theoret. Comput. Sci. 9, 141–145 (1979) Zbl 0402.68044 MR 0535129
- [C-R80] Christol, G., Kamae, T., Mendès France, M., Rauzy, G.: Suites algébriques, automates et substitutions. Bull. Soc. Math. France 108, 401–419 (1980) Zbl 0472.10035 MR 0614317
- [Cob68] Cobham, A.: On the Hartmanis–Stearns problem for a class of tag machines. In: IEEE Conference Record of Ninth Annual Symposium on Switching and Automata Theory, 51–60 (1968)
- [Cob69] Cobham, A.: On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3, 186–192 (1969) Zbl 0179.02501 MR 0250789
- [Cob72] Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972) Zbl 0253.02029 MR 0457011
- [CD08] Cortez, M. I., Durand, F.: Self-similar tiling systems, topological factors and stretching factors. Discrete Comput. Geom. 40, 622–640 (2008) Zbl 1168.52016 MR 2453331
- [DL06] Damanik, D., Lenz, D.: Substitution dynamical systems: Characterization of linear repetitivity and applications. J. Math. Anal. Appl. 321, 766–780 (2006) Zbl 1094.37007 MR 2241154
- [Dur96] Durand, F.: Contribution à l'étude des suites substitutives. PhD thesis, Université de la Méditerranée (1996)
- [Dur98a] Durand, F.: A characterization of substitutive sequences using return words. Discrete Math. **179**, 89–101 (1998) Zbl 0895.68087 MR 1489074
- [Dur98b] Durand, F.: A generalization of Cobham's theorem. Theory Comput. Systems **31**, 169–185 (1998) Zbl 0895.68081 MR 1491657
- [Dur98c] Durand, F.: Sur les ensembles d'entiers reconnaissables. J. Théor. Nombres Bordeaux 10, 65–84 (1998) Zbl 1046.11500 MR 1827286
- [Dur02a] Durand, F.: Combinatorial and dynamical study of substitutions around the theorem of Cobham. In: Dynamics and Randomness (Santiago, 2000), Nonlinear Phenom. Complex Systems 7, Kluwer, Dordrecht, 53–94 (2002) Zbl 1038.11016 MR 1975575
- [Dur02b] Durand, F.: A theorem of Cobham for non-primitive substitutions. Acta Arith. **104**, 225–241 (2002) Zbl 1014.11016 MR 1914721
- [Dur08] Durand, F.: Cobham–Semenov theorem and  $\mathbb{N}^d$ -subshifts. Theoret. Comput. Sci. **391**, 20–38 (2008) Zbl 1133.68036 MR 2381349
- [Dur10] Durand, F.: Bratteli diagrams. In: V. Berthé and M. Rigo (eds.), Combinatorics, Automata and Number Theory 135, Cambridge Univ. Press, 338–386 (2010)
- [DHS99] Durand, F., Host, B., Skau, C.: Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergodic Theory Dynam. Systems 19, 953–993 (1999) Zbl 1044.46543 MR 1709427
- [DR09] Durand, F., Rigo, M.: Syndeticity and independent substitutions. Adv. Appl. Math. 42, 1–22 (2009) Zbl 1160.68028

- [DR10] Durand, F., Rigo, M.: On Cobham's theorem. Preprint (2010)
- [Eil74] Eilenberg, S.: Automata, Languages, and Machines, Vol. A. Academic Press (1974) Zbl 0317.94045 MR 0530382
- [Fab94] Fabre, S.: Une généralisation du théorème de Cobham. Acta Arith. **67**, 197–208 (1994) Zbl 0814.11015 MR 1292734
- [Fab95] Fabre, S.: Substitutions et  $\beta$ -systèmes de numération. Theoret. Comput. Sci. **137**, 219–236 (1995) Zbl 0872.11017 MR 1311222
- [Fag97] Fagnot, I.: Sur les facteurs des mots automatiques. Theoret. Comput. Sci. 172, 67–89 (1997) Zbl 0983.68102 MR 1432857
- [Han82] Hansel, G.: À propos d'un théorème de Cobham. In: D. Perrin (ed.), Actes de la Fête des Mots, Greco de Programmation, CNRS, Rouen, 55–59 (1982)
- [HS03] Hansel, G., Safer, T.: Vers un théorème de Cobham pour les entiers de Gauss. Bull. Belg. Math. Soc. Simon Stevin 10, 723–735 (2003) Zbl 1071.68089 MR 2073023
- [Hon09] Honkala, J.: On the simplification of infinite morphic words. Theoret. Comput. Sci. 410, 997–1000 (2009) Zbl 1162.68031 MR 2492043
- [HJ90] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge Univ. Press, Cambridge (1990) Zbl 0704.15002 MR 1084815
- [KS75] Kátai, I., Szabó, J.: Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37, 255–260 (1975) Zbl 0309.12001 MR 0389759
- [Ked06] Kedlaya, K. S.: Finite automata and algebraic extensions of function fields. J. Théor. Nombres Bordeaux 18, 379–420 (2006) Zbl 1161.11317 MR 2289431
- [LM95] Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge Univ. Press, Cambridge (1995) Zbl 1106.37301 MR 1369092
- [Lot83] Lothaire, M.: Combinatorics on Words. Encyclopedia Math. Appl. 17, Addison-Wesley (1983) Zbl 0874.20040 MR 0675953
- [MV93] Michaux, C., Villemaire, R.: Cobham's theorem seen through Büchi's theorem. In: Automata, Languages and Programming (Lund, 1993), Lecture Notes in Comput. Sci. 700, Springer, Berlin, 325–334 (1993)
- [MV96] Michaux, C., Villemaire, R.: Presburger arithmetic and recognizability of sets of natural numbers by automata: New proofs of Cobham's and Semenov's theorems. Ann. Pure Appl. Logic 77, 251–277 (1996) Zbl 0857.03003 MR 1370990
- [Muc03] Muchnik, A.: The definable criterion for definability in Presburger arithmetic and its applications. Theoret. Comput. Sci. **290**, 1433–1444 (2003) Zbl 1052.68079 MR 1937730
- [Pan83] Pansiot, J.-J.: Hiérarchie et fermeture de certaines classes de tag-systèmes. Acta Inform.
   20, 179–196 (1983) Zbl 0507.68046 MR 0727164
- [Pan84] Pansiot, J.-J.: Complexité des facteurs des mots infinis engendrés par morphismes itérés.
   In: J. Paredaens (ed.), ICALP84, Lecture Notes in Comput. Sci. 172, Springer, 380–389 (1984) Zbl 0554.68053 MR 0784265
- [Per90] Perrin, D.: Finite automata. In: J. van Leeuwen (ed.), Handbook of Theoretical Comput. Science, Volume B: Formal Models and Semantics, Elsevier – MIT Press, 1–57 (1990) Zbl 0900.68312 MR 1127186
- [PB97] Point, F., Bruyère, V.: On the Cobham–Semenov theorem. Theory Comput. Systems 30, 197–220 (1997) Zbl :0870.68065 MR 1424937
- [Rig00] Rigo, M.: Generalization of automatic sequences for numeration systems on a regular language. Theoret. Comput. Sci. 244, 271–281 (2000) Zbl 0945.68105 MR 1774400
- [RW06] Rigo, M., Waxweiler, L.: A note on syndeticity, recognizable sets and Cobham's theorem. Bull. Eur. Assoc. Theor. Comput. Sci. 88, 169–173 (2006) Zbl 1169.68490 MR 2222340

- [SS78] Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer, New York (1978) Zbl 0377.68039 MR 0483721
- [Sal87] Salon, O.: Suites automatiques à multi-indices et algébricité. C. R. Acad. Sci. Paris Sér. I Math. 305, 501–504 (1987) Zbl 0628.10007 MR 0916320
- [Sem77] Semenov, A. L.: The Presburger nature of predicates that are regular in two number systems. Sibirsk. Mat. Zh. 18, 403–418, 479 (1977) (in Russian); English transl.: Siberian J. Math. 18, 289–300 (1977) Zbl 0369.02023 MR 0450050
- [Sol97] Solomyak, B.: Dynamics of self-similar tilings. Ergodic Theory Dynam. Systems 17, 695–738 (1997) Zbl 0884.58062 MR 1738956