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Abstract. The seminal theorem of Cobham has given rise during the last 40 years to a lot of work
about non-standard numeration systems and has been extended to many contexts. In this paper, as a
result of fifteen years of improvements, we obtain a complete and general version for the so-called
substitutive sequences.

Let α and β be two multiplicatively independent Perron numbers. Then a sequence x ∈ AN,
where A is a finite alphabet, is both α-substitutive and β-substitutive if and only if x is ultimately
periodic.

1. Introduction

The seminal theorem of Cobham has given rise during the last 40 years to a lot of work
about non-standard numeration systems and has been extended to many contexts. The
original Cobham’s theorem is concerned with integer base numeration systems. In this
paper, as a result of fifteen years of improvements, we obtain a complete and general
version for the so-called substitutive sequences.

A set E ⊂ N is p-recognizable for some p ∈ N \ {0, 1} if the language consisting of
the p-ary expansions of elements of E is recognizable by a finite automaton. It is obvious
that E is recognizable if and only if it is pk-recognizable. In 1969, A. Cobham obtained
the following remarkable theorem.

Cobham’s theorem ([Cob69]). Let p, q ≥ 2 be two multiplicatively independent inte-
gers (i.e., pk 6= q` for all integers k, ` > 0). A set E ⊂ N is both p-recognizable and
q-recognizable if and only if E is a finite union of arithmetic progressions.

It is interesting to recall what S. Eilenberg wrote in his book [Eil74]: The proof is correct,
long and hard. It is a challenge to find a more reasonable proof of this fine theorem. In
this direction, G. Hansel proposed a simpler presentation in [Han82]; also one can see
[Per90] or the dedicated chapter in [AS03] for an expository presentation, with a mistake
corrected in [RW06].

In [Cob72], Cobham made precise the structure of these p-recognizable sets: they
are exactly the images by letter-to-letter morphisms of constant-length substitution fixed
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points. He also defined the notion of p-automatic sequences: The n-th term of the se-
quence is a mapping of the last reached state of the automaton when its input is the digits
of n in some given base p numeration system. Clearly E ⊂ N is p-recognizable if and
only if its characteristic sequence is p-automatic. Automata provide a nice and easy de-
scription of p-recognizable sets whereas substitutions afford an algorithm to produce such
sets. From this a lot of other characterizations have been given, the first and major being
in terms of:

(1) p-definable sets (see [B–V94] for a survey);
(2) p-kernel [Eil74];
(3) (when p is prime) algebraic series over Fp(X) [Chr79, C–R80].

This opened a wide range of further work we briefly describe below.
The Cobham theorem has been generalized to recognizable subsets of Nd by A. L. Se-

menov [Sem77] for base p numeration systems (also called later standard numeration
systems) to give the so-called Cobham–Semenov theorem (see [B–V94] for a nice sur-
vey). Then the efforts were concentrated to simplify Cobham–Semenov’s theorem and
to generalize it to non-standard numeration systems given by linear recurrence relations
like the Fibonacci one. Alternative and satisfactory proofs (in terms of simplification)
have been proposed, among them a very interesting logical proof due to C. Michaux and
R. Villemaire [MV93, MV96] (see also [Bès97, Muc03]), using p-definable sets in the
formalism of first order logic in some arithmetic models like the Presburger arithmetic
〈N,+〉 (see [Bès01] for a survey on these methods). Another recent proof makes use of
ergodic measures [Dur08] and the fact that p-recognizable subsets of Nd are character-
ized by multidimensional substitutions [ČG86, Sal87]. This last characterization is an
extension of Cobham’s result of 1972.

The first result obtained for non-standard numeration systems is due to S. Fabre
[Fab94]. He considered subsets of N that are both p-recognizable and U -recognizable
where U is a non-standard numeration system associated with some restricted class of
Pisot numbers. Then, V. Bruyère and F. Point [PB97] proved such a result for subsets of
Nd under less restrictive (and more natural) assumptions on the Pisot numbers involved.
Later A. Bès [Bès00] succeeded in generalizing Cobham–Semenov’s theorem to subsets
of Nd recognizable by automata in two non-standard numeration systems which are asso-
ciated with the minimal polynomials of multiplicatively independent Pisot numbers. Up
to now it is the best generalization obtained for d ≥ 2.

Prior to this result, for d = 1, Cobham’s theorem was extended to a much wider class
of non-standard numeration systems in [Dur98c] where no “Pisot conditions” are needed,
and later in [DR09] to abstract numeration systems (defined in [Rig00]). This last result
includes all previously known such results in dimension 1. It is important to notice that the
proofs in [Dur98c, DR09] used substitution fixed points while the papers [Bès00, B–V94,
MV93, MV96, Muc03, PB97] used a first order logic approach.

With every substitution there is associated an integer square matrix with non-negative
entries. It is well-known (see [HJ90] for instance) that such a matrix has a real eigenvalue
α which is greater than or equal to the modulus of all other eigenvalues. It is usually
called the dominant eigenvalue ofM . This allows us to define the notion of α-substitutive



Cobham’s theorem for substitutions 1801

sequences. From the characterization given in [Cob72] it is easy to deduce that the char-
acteristic sequences of p-recognizable subsets of N are p-substitutive sequences. This
suggested to G. Hansel the following result (see [AM95]) that is the main result of this
paper.

Theorem 1. Let α and β be two multiplicatively independent Perron numbers. LetA be a
finite alphabet and x be a sequence ofAN. Then x is both α-substitutive and β-substitutive
if and only if x is ultimately periodic.

Partial answers have been given in [Fab94, Dur98b, Dur02a] with conditions on the sub-
stitutions.

Observe that the main result in [Dur98c] on numeration systems is a consequence of
Cobham’s theorem for primitive substitutions established in [Dur98b] thanks to a result
of Fabre [Fab95] that characterizes the characteristic sequences of recognizable sets of
integers in non-standard numeration systems in terms of fixed points of substitutions.

Let us mention further generalizations of Cobham’s theorem. We could weaken the
assumption that a sequence is p- and q-automatic assuming that a p-automatic and a
q-automatic sequence share the same language (the set of finite words occurring in the
sequence), and asking if a Cobham’s theorem type result still holds in this context. It does,
as proven in [Fag97]. This was generalized to primitive substitutions in [Dur98c]. Trans-
lated to the framework of dynamical systems, this result means that if two subshifts, one
generated by a p-automatic sequence and the other by a q-automatic one (with p and q
multiplicatively independent), have a common topological factor then it contains a unique
minimal (and also uniquely ergodic) subshift, and moreover it is periodic. This point of
view is developed in [Dur02a] and provides a new proof of Cobham’s theorem. It uses the
ergodic measures of the subshifts and the values they take on cylinder sets. Moreover this
way to tackle the problem also works in higher dimensions. For example, it can be used
to get a new proof of Cobham–Semenov’s theorem (see [Dur08]) using multidimensional
subshifts. Moreover as subsets of Nd can be seen as tilings of Rd+ (which are self-similar,
see [Sol97] for the definition) it is not surprising that there are generalizations to self-
similar tiling dynamical systems [CD08].

The notion of recognizable subsets of R or Rd , in standard numeration systems, can
be easily defined. The authors of [BB07, BBB08, BBL09] obtained a very nice general-
ization of Cobham’s theorem. In dimension one the same result (but in a different setting)
has been obtained in [AB10a] independently.

The case of the ring of Gaussian integers with the numeration systems ((−a + i)n)n,
a ∈ N \ {0} (see [KS75]) has been investigated in [HS03]. They obtained a very partial
result and faced the problem of proving that ln a

ln b ,
tan−1 a

2π
ln a
ln b −

tan−1 b
2π , 1 are rationally

independent, which seems to be a difficult number theoretic problem. The generalization
remains open.

In [AS92], the notion of p-regular sequences is defined. They take values in a ring
and are defined using the notion of k-kernel. When the ring is finite they are k-automatic
sequences. J. Bell [Bel07] generalized Cobham’s theorem to this context.

G. Christol [Chr79] gave a famous and very concrete description of the elements
of Fq((t)) that are algebraic over Fq(t) (q = pn with p a prime number); it shows
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that being an algebraic power series is equivalent to the sequence of coefficients being
p-automatic. K. Kedlaya [Ked06] generalized this theorem to the so-called generalized
power series of Hahn (Fq((tQ))) in terms of quasi-automatic functions. Then, B. Adam-
czewski and J. Bell [AB08] proved an extension of Cobham’s theorem to quasi-automatic
functions and put it together with Kedlaya’s result to derive an analogue of the main result
in [C–R80] asserting that a sequence of coefficients represents two algebraic power series
in distinct characteristics if and only if these power series are rational functions.

For more details on all these developments we refer to [AB10b, DR10].

2. Words, morphisms, substitutions and numeration systems

In this section we recall classical definitions and notation.

2.1. Words and sequences

An alphabet A is a finite set of elements called letters. A word over A is an element of
the free monoid generated by A, denoted by A∗. Let x = x0x1 · · · xn−1 (with xi ∈ A,
0 ≤ i ≤ n−1) be a word; its length is n and is denoted by |x|. The empty word is denoted
by ε, |ε| = 0. The set of non-empty words over A is denoted by A+. The elements of AN

are called sequences. If x = x0x1 · · · is a sequence (with xi ∈ A, i ∈ N) and I = [k, l]
an interval of N we set xI = xkxk+1 · · · xl and we say that xI is a factor of x. If k = 0, we
say that xI is a prefix of x. The set of factors of length n of x is written Ln(x) and the set
of factors of x, or the language of x, is denoted L(x). The occurrences in x of a word u
are the integers i such that x[i,i+|u|−1] = u. If u has an occurrence in x, we also say that
u appears in x. When x is a word, we use the same terminology with similar definitions.

The sequence x is ultimately periodic if there exist a word u and a non-empty word v
such that x = uvω, where vω = vvv · · · . It is periodic if u is the empty word. A word u
is recurrent in x if it appears in x infinitely many times. The set of recurrent words of x
is denoted by Lrec(x). A sequence x is uniformly recurrent if every factor u of x appears
infinitely often in x and the greatest difference of two successive occurrences of u is
bounded.

2.2. Morphisms and matrices

Let A and B be two alphabets. Let τ be a morphism from A∗ to B∗. Such a map induces
by concatenation a morphism from A∗ to B∗. When τ(A) = B, we say τ is a coding.
Thus, codings are onto. If τ(A) is included in B+, it induces by concatenation a map
from AN to BN. These two maps are also called τ . With the morphism τ there is naturally
associated a matrix Mτ = (mi,j )i∈B,j∈A where mi,j is the number of occurrences of i in
the word τ(j).

It is well-known that any non-negative square matrixM has a real eigenvalue α which
is real and greater than or equal to the modulus of any other eigenvalue. We call α the
dominating eigenvalue ofM . Moreover α is a Perron number: it is an algebraic real num-
ber > 1 strictly dominating the modulus of all its algebraic conjugates (see for instance
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[LM95]). The matrix M is called primitive if it has a power such that all its entries are
positive. In this case the dominating eigenvalue is unique, positive and it is a simple root
of the characteristic polynomial. This is Perron’s Theorem.

2.3. Substitutions and substitutive sequences

A substitution is a morphism τ : A∗ → A∗. If there exist a letter a ∈ A and a word u ∈
A+ such that σ(a) = au and limn→+∞ |σ

n(a)| = +∞, then σ is said to be prolongable
on a.

Since for all n ∈ N, σ n(a) is a prefix of σ n+1(a) and because |σ n(a)| tends to infinity
with n, the sequence (σ n(aaa · · · ))n≥0 converges (for the usual product topology on AN)
to a sequence denoted by σω(a). The morphism σ being continuous for the product topol-
ogy, σω(a) is a fixed point of σ : σ(σω(a)) = σω(a). A sequence obtained in this way
by iterating a prolongable substitution is said to be purely substitutive (with respect to σ ).
If x ∈ AN is purely substitutive and if φ : A∗ → B∗ is a coding, then the sequence
y = φ(x) is said to be substitutive.

Whenever the matrix associated with τ is primitive we say that τ is a primitive sub-
stitution. We say τ is a growing substitution if limn→+∞ |τ

n(b)| = +∞ for all b ∈ A. It
is erasing if there exists b ∈ A such that τ(b) is the empty word.

Definition 2. Let A be a finite alphabet. A sequence x ∈ BN is said to be α-substitutive
(with respect to σ ) if σ : A∗→ A∗ is a substitution prolongable on the letter a such that:

(1) all letters of A have an occurrence in σω(a);
(2) α is the dominating eigenvalue of the incidence matrix of σ ;
(3) there exists a coding φ : A∗→ B∗ with x = φ(σω(a)).

If moreover σ is primitive, then φ(σω(a)) is said to be a primitive α-substitutive infinite
sequence (with respect to σ).

The condition (1) is important. Indeed, consider the substitution τ defined by τ(a) =
aaab, τ(b) = bc and τ(c) = cb. It has three fixed points τω(a), τω(b) and τω(c). The
sequence τω(a) is 3-substitutive and we do not want to say that τω(b) and τω(c) are
3-substitutive. With our definition they are 2-substitutive.

2.4. Growth type and erasures

The following well known result (see Chapter III.7 in [SS78]) will be very useful in what
follows.

Proposition 3. Let σ : A∗ → A∗ be a substitution. For all a ∈ A, one of the following
two situations occurs:

(1) there exists N ∈ N such that for all n > N , |σ n(a)| = 0, or
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(2) there exist d(a) ∈ N and real numbers c(a), θ(a) such that

lim
n→+∞

|σ n(a)|

c(a) nd(a) θ(a)n
= 1.

Moreover, in the situation (2), for all i ∈ {0, . . . , d(a)} there exists a letter b ∈ A appear-
ing in σ j (a) for some j ∈ N satisfying

lim
n→+∞

|σ n(b)|

c(b) ni θ(a)n
= 1.

This justifies the following definition.

Definition 4. Let σ : A∗ → A∗ be a non-erasing substitution. For all a ∈ A, the couple
(d(a), θ(a)) defined in Proposition 3 is called the growth type of a and θ(a) is called the
growth rate of a (with respect to σ ). The growth type of a word is the maximal growth
type of its letters. If (d, θ) and (e, β) are two growth types we say that (d, θ) is less than
(e, β) (written (d, θ) < (e, β)) whenever θ < β, or θ = β and d < e.

We say that a ∈ A is a growing letter if (d(a), θ(a)) > (0, 1) or equivalently, if
limn→+∞ |σ

n(a)| = +∞.
We set 2 := max{θ(a) | a ∈ A}, D := max{d(a) | a ∈ A, θ(a) = 2} and

Amax := {a ∈ A | θ(a) = 2, d(a) = D}. The dominating eigenvalue of M is 2.
Consequently, any sequence which is substitutive with respect to σ is 2-substitutive. We
will say that the letters of Amax are of maximal growth and that (D,2) is the growth
type of σ . Observe that if 2 = 1, then in view of the last part of Proposition 3, there
exists at least one non-growing letter (of growth type (0, 1)). In other words, if a letter
has a polynomially bounded growth, then there exists at least one non-growing letter.
Consequently, σ is growing (i.e., all its letters are growing) if and only if θ(a) > 1 for all
a ∈ A. We observe that for all k ≥ 1, the growth type of σ k is (D,2k).

The following theorem allows us to suppose that the substitutions we deal with are
non-erasing. We refer to [CN03, Théorème 4] for the proof, even if property (3) is not
stated in that paper but is clear from the proof. Other references with other proofs are in
[Cob68, Pan83, AS03, Hon09].

Theorem 5. Let σ : A∗ → A∗ be a substitution prolongable on the letter a and φ :
A∗→ C∗ be a morphism such that φ(σω(a)) belongs toAN. Then φ(σω(a))=ψ(τω(b))
where:

(1) ψ : B∗→ C∗ is a coding;
(2) τ : B∗→ B∗ is a non-erasing substitution prolongable on b;
(3) there exist γ : A→ B∗ and k such that

γ ◦ σ k = τ ◦ γ and ψ ◦ γ = φ.

From the classical theory of non-negative matrices (see [HJ90]) we deduce the following
corollary.
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Corollary 6. The image under a non-erasing morphism of an α-substitutive sequence is
an αk-substitutive sequence with respect to a non-erasing substitution for some k.

Proof. Let σ : A∗→ A∗ be a substitution prolongable on the letter a, and α the dominat-
ing eigenvalue of its incidence matrix. Let y = σω(a) and φ : A∗→ C∗ be a non-erasing
morphism. We can suppose all letters of C appear in some words of φ(A). It suffices to
show that φ(y) is αk-substitutive for some k.

From Theorem 5 we can suppose φ(y) = ψ(τω(b)) where ψ and τ satisfy (1)–(3)
of this theorem. It suffices to show that the dominating eigenvalue of the incidence ma-
trix Mτ of τ is αk (where k comes from (3)). Let Mφ , Mψ and Mσ be the incidence
matrices of the corresponding morphisms. Let v be an eigenvector of Mσ for the eigen-
value α. Then αkMγ v = MτMγ v. As φ is non-erasing and MψMγ = Mφ , Mγ v is a
non-zero vector. Hence it is an eigenvector of Mτ for the eigenvalue αk .

Conversely, let β be the dominating eigenvalue of Mτ , and w be a corresponding
left eigenvector. Then wMγM

k
σ = βwMγ . As ψ is a coding, there exists w′ with non-

negative coordinates such that w = w′Mψ . Thus, w′MφM
k
σ = βw

′Mφ . Since all letters
of C appear in some words of φ(A), w′Mφ is a non-negative vector different from 0. This
concludes the proof. ut

Once Theorem 1 is proven, it will show that, in this corollary, the non-erasing assumption
cannot be removed. For example, we can consider σ defined by σ(a) = ab, σ(b) = bac
and σ(c) = ccc, and, the (erasing) morphism φ defined by φ(a) = a, φ(b) = b and
φ(c) is the empty word. Then σω(a) is 3-substitutive while φ(σω(a)) is a non-ultimately
periodic 2-substitutive sequence.

3. Proof of Theorem 1

3.1. Already known results used to prove the conjecture

The proofs of most of the generalizations of Cobham’s theorem are divided into two parts.

(i) Dealing with a subset X of integers, we have to prove that X is syndetic. Equiva-
lently, dealing with an infinite sequence x, we have to prove that the letters occurring
infinitely many times in x appear with bounded gaps.

(ii) In the second part of the proof, the ultimate periodicity of X or x has to be demon-
strated.

The first part is already known in the framework of substitutions.

Theorem 7 ([DR09, Theorem 17]). Let α, β ∈ ]1,+∞[ be two multiplicatively inde-
pendent real numbers. If a sequence x is both α-substitutive and β-substitutive then the
words having infinitely many occurrences in x appear in x with bounded gaps.

The second part is proved in the context of “good” substitutions in [Dur02b] and was
proven previously in many other papers (see [DR10] for a survey).
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Definition 8. Let σ : A∗ → A∗ be a substitution whose dominating eigenvalue is α. If
there exists B ⊆ A such that σ(b) ∈ B∗ for all b ∈ B, then the substitution τ : B∗→ B∗

defined by τ(b) = σ(b) for all b ∈ B is a sub-substitution of σ . The substitution σ is good
if it is growing and has a primitive sub-substitution whose dominating eigenvalue is α.

Not all non-erasing substitutions have a primitive sub-substitution, for example 0 7→
010, 1 7→ 2 and 2 7→ 1. But all have a power that has at least a primitive sub-substitution
([Dur02b]). But, even up to some power, some are not good. For example the substitu-
tion σ defined by 0 7→ 0100, 1 7→ 12 and 2 7→ 21 has a unique primitive sub-substitution
(τ : 1 7→ 12 and 2 7→ 21) but is not good because the dominant eigenvalue of σ is 3 and
it is 2 for τ .

We recall that in the (non-erasing) purely substitutive context the expected extension
of Cobham’s theorem is known.

Theorem 9 ([Dur02b, Corollary 19]). Let σ : A∗ → A∗ and τ : A∗ → A∗ be two
non-erasing growing substitutions prolongable on a ∈ A with respective dominating
eigenvalues α and β. Suppose that all letters of A appear in σω(a) and in τω(a) and that
α and β are multiplicatively independent. If x = σω(a) = τω(a), then x is ultimately
periodic.

3.2. Concatenation of return words

Let A be a finite alphabet. Let x ∈ AN and u ∈ L(x). A return word to u ( for x) is
a word w such that wu belongs to L(x), u is a prefix of wu, and u has exactly two
occurrences in wu. The set of return words is denoted by Rx(u). A sequence x ∈ AN is
linearly recurrent (with constant L) if x is uniformly recurrent and for all w ∈ Rx(u) we
have |w| ≤ L|u|.

Lemma 10 ([DHS99, Theorem 24]). Let x ∈ AN be a non-periodic linearly recurrent
sequence (with constant L). Then:

(1) for all w ∈ Rx(u) we have |u|/L ≤ |w|;
(2) there exists a constant K such that for all u ∈ L(x) we have #Rx(u) ≤ K .

The following lemma will be, in some sense, the last decisive argument to prove Theo-
rem 1. When W is a set of words, W ∗ stands for the set of all concatenations of elements
of W .

Lemma 11. Let x be a non-periodic linearly recurrent sequence (with constant L). Then
there exists a constant K such that for all u ∈ L(x) and all l ∈ N,

#
⋃

0≤n≤l

(Rx(u)∗ ∩ Ln(x)) ≤ (1+K)lL/|u|.

Proof. Let K be the constant given by Lemma 10. Let l, n ∈ N with n ≤ l, u ∈ L(x)
and w ∈ Rx(u)∗ ∩ Ln(x). As the distance between two occurrences of u in w is at least
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|u|/L, in w there are at most Ll/|u| occurrences of u. Hence w is a concatenation of
exactly Ll/|u| words belonging toRx(u) ∪ {ε}. This concludes the proof. ut

The following proposition allows us to apply this lemma to primitive substitutive se-
quences.

Theorem 12 ([Dur98a, Theorem 4.5]). All primitive substitutive sequences are linearly
recurrent.

Note that it is shown in [Dur96] through the Chacon example that uniformly recurrent
substitutive sequences are primitive substitutive. In [Dur10] the generality of the case of
the Chacon substitution is explained. The same result has been obtained in [DL06] but
with a significantly longer proof.

3.3. Reduction of the problem

Let us make two obvious but important remarks. Let α, β > 1. When a sequence is α-
substitutive with respect to a substitution σ , it is also αk-substitutive with respect to σ k .
Moreover, for all positive integers l and k, α and β are multiplicatively independent if and
only if αl and βk are multiplicatively independent. Hence due to the statement we want
to prove, we can suppose that σ has the properties some σ k would have (changing σ to
σ k if needed). Hence we can always suppose that:

(1) σ is non-erasing (Corollary 6);
(2) σ is growing or there exists a growing letter a ∈ A such that σ(a) = vau (or uav)

with u ∈ B∗ \ {ε} where B is the set of non-growing letters ([Pan84, Théorème 4.1]);
(3) σ has a primitive sub-substitution (see [Dur02b]).

3.4. Technical lemmata and proof of Theorem 1

Before proving the main result of this paper we need to establish some lemmata.

Lemma 13. Let x be a substitutive sequence with respect to a growing substitution. If
each word in Lrec(x) appears with bounded gaps in x then there exists a primitive substi-
tutive sequence y such that Lrec(x) = L(y).

Proof. Let σ : A∗ → A∗ be a growing substitution prolongable on the letter a and φ :
A∗→ B∗ be a coding such that x = φ(σω(a)). We can suppose that all letters of A occur
in some σ n(a), n ∈ N. Proposition 15 in [Dur02a] asserts that growing substitutions have
at least one primitive sub-substitution. Let τ : C∗ → C∗ be a primitive sub-substitution
of σ . It is necessarily a growing substitution and it is easy to check that each word σ n(b),
b ∈ C, n ∈ N, is recurrent in σω(a). There exist c ∈ C and a positive integer l such
that c is a prefix of σ l(c). Thus y = φ((σ l)ω(c)) exists, is primitive substitutive and
L(y) ⊂ Lrec(x). As primitive substitutive sequences are uniformly recurrent, from the
hypothesis we deduce that Lrec(x) = L(y). ut
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Lemma 14. Let x be a sequence and u be a word such that if u = vk then k = 1.
Suppose that each word in Lrec(x) appears in x with bounded gaps and that Lrec(x)

contains {un | n ∈ N}. Then x is ultimately periodic and Lrec(x) = L(uuu · · · ).

Proof. Let u be such that if u = vk then k = 1. Let us reproduce arguments already
used in [Dur02b, Theorem 18] in order to conclude that x is ultimately periodic. As u
belongs toLrec(x), it appears with bounded gaps in x. Thus, the setRx(u) of return words
to u is finite. There exists an integer N such that all the words wu ∈ L(xNxN+1 · · · ),
w ∈ Rx(u), appear infinitely many times in x. Hence these words appear with bounded
gaps in x. We set t = xNxN+1 · · · . We can suppose that u is a prefix of t . Then t is a
concatenation of return words to u. Let w be a return word to u such that wu belongs
to L(t). It appears in some power of u: wu = sukp where k ≥ 1, s is a suffix of u with
|s| < |u|, and p a prefix of u with |p| < |u|. Hence p is also a suffix of u and there
exists p′ such that u = pp′ = p′p. If p and p′ are non-empty then u = vk for some v
and k ≥ 2 (see [Lot83, Proposition 1.3.2]). This is in contradiction with our assumption.
Consequently, p or p′ is empty. Doing the same with s we will deduce that necessarily
w = u. It follows that t = uω, x is ultimately periodic and Lrec = L(t) = L(uuu · · · ).

ut

We have seen that Theorem 1 was proven in [Dur02b] in the context of good substitu-
tions. The following lemma, together with Theorem 7, is the main argument to treat, in
Theorem 1, the case where one of the two substitutive sequences is not good.

Lemma 15. Let x be purely substitutive with respect to σ : A∗ → A∗ satisfying (1) and
(2) of Section 3.3, having a dominating eigenvalue α strictly greater than 1 and such that
all letters ofA occur in x. Suppose there exists a coding φ : A∗→ B∗ such that all words
belonging to Lrec(φ(x)) appear with bounded gaps in φ(x). Then either all letters of A
have the same growth rate (with respect to σ) or φ(x) is ultimately periodic.

Proof. Suppose σ is prolongable on a′, x = σω(a′) and y = φ(x). Suppose σ has at
least two growth rates and let us show φ(x) is ultimately periodic. The growth type of σ
is (d, α) for some d.

We consider two cases. Suppose σ is not a growing substitution. Then, from assump-
tion (2) in Section 3.3, there exists a growing letter c ∈ A such that σ(c) = vcu (or ucv)
with u ∈ B∗ \ {ε} where B is the set of non-growing letters. It is convenient to notice that
σ n(c) = σ n−1(v)cuσ(u) · · · σ n−1(u) or σ n(c) = σ n−1(u) · · · σ(u)ucσ n−1(v) and there
exist two distinct positive integers i and j such that σ i(u) = σ j (u).

Let us show that c necessarily belongs to Lrec(x) whenever x is not ultimately peri-
odic.

Suppose c = a′ and σ(c) = vcu. If v is not the empty word then σ(c) = cv′cu

and c is clearly recurrent in x. If v is the empty word then σ n(c) = cuσ(u) · · · σ n−1(u).
Consequently, because σ i(u) = σ j (u), x is ultimately periodic. Suppose c = a′ and
σ(c) = ucv. Then a′ is a non-growing letter. This contradicts our assumptions. Suppose
c 6= a′. Then σm(a′) = a′sct for some m, and c is clearly recurrent.

The letter c, and consequently σ n(c), n ∈ N, having infinitely many occurrences in x,
it is also the case for the words u(n) = (σ i(u)σ i+1(u) · · · σ j−1(u))n, n ∈ N. Then all
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words in {(φ(u(1)))n | n ∈ N} appear infinitely many times in φ(x). Lemma 14 implies
that φ(x) is ultimately periodic.

Suppose now that σ is a growing substitution. Then all letters ofA have an exponential
growth rate γ with γ > 1. From the assumptions, the numbers

β = max{θ(a) | θ(a) < α, a ∈ A} and f = max{d(a) | θ(a) = β, a ∈ A}

exist and (f, β) is a growth type of some letter of A with 1 < β < α.
There necessarily exist two letters occurring infinitely many times in x, one having

growth type (f, β) and the other having an exponential growth rate α. Hence, there exists
a non-empty word awb, appearing infinitely many times in x, where w has growth type
(f, β), and a and b have an exponential growth rate α. Once we observe that for all
letters c with exponential growth rate α there exist letters c′, c′′ with exponential growth
rate α such that σ(c) = u′c′u = vc′′v′ where u and v (possibly empty) have exponential
growth rates strictly less than α. Then, by a recurrence starting with awb, it is easy to
prove that there exist two sequences of letters (an)n and (bn)n and two sequences of
words (un)n and (vn)n such that for all n ∈ N:

(1) anunσ(un−1) · · · σ
n−1(u1)σ

n(w)σ n−1(v1) · · · σ(vn−1)vnbn appears infinitely many
times in x;

(2) an has growth type (dn, α);
(3) bn has growth type (en, α);
(4) un has growth type (fn, βn) with βn < α and |un| < maxc∈A |σ(c)|;
(5) vn has growth type (gn, γn) with γn < α and |vn| < maxc∈A |σ(c)|.

Consequently, for all n and k the word W(n, k) = σ k(an)U(n, k)σ k(bn), where

U(n, k) = σ k(un) · · · σ
k+n−1(u1)σ

k+n(w)σ k+n−1(v1) · · · σ
k(vn),

appears infinitely many times in x. There exist a strictly increasing sequence (mi) and
two letters a and b such that

ami = a
′′ and bmi = b

′′ for all i. (3.1)

From Lemma 13, there exists a linearly recurrent sequence z such that

(P1) L(z) = Lrec(y).

If z is periodic, we complete the proof with Lemma 14. Hence we suppose z is not peri-
odic. From Lemmata 10 and 11 there exist some constants K , d , e such that:

(P2) for all u ∈ Lrec(y) and w ∈ Ry(u) ∩ Lrec(y) we have |u|/K ≤ |w| ≤ K|u|;
(P3) for all u ∈ Lrec(y) we have #Ry(u) ∩ Lrec(y) ≤ K;
(P4) for all u ∈ Lrec(y) and all l ∈ N,

#
⋃

0≤n≤l

(Ry(u)∗ ∩ Ln(y) ∩ Lrec(y)) ≤ (1+K)lK/|u|;
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(P5) for all n and k,

|U(n, k)| ≤ K((n+ k)f+1βn+k),

1
K
kdαk ≤ |σ k(a′′)| ≤ Kkdαk,

1
K
keαk ≤ |σ k(b′′)| ≤ Kkeαk.

From (3.1) and the previous inequalities, there exists k such that |σ k(b′′)| ≤ |σ k(a′′)|
(the other case can be treated in the same way), 2(1+K) ≤ |σ k(b′′)| and

|U(mi, k)| ≤ |σ
k(b′′)| for all 1 ≤ i ≤ (1+K)2(K+3)(K+1)K

+ 1. (3.2)

From (P1) and (P2), for all j , all words in Lrec(y)∩Lj (y) appear in all words of Lrec(y)∩

L(K+1)j (y). Let u be a prefix of φ(σ k(b′′)) such that

|σ k(b′′)|

K + 1
− 1 ≤ |u| ≤

|σ k(a′′)|

K + 1
.

Then u is non-empty and occurs in φ(σ k(a′′)). We can decompose φ(σ k(a′′)) and
φ(σ k(b′′)) in such a way that φ(σ k(a′′)) = QpuQs and φ(σ k(b′′)) = uRs with

|Qs | ≤ (K + 1)|u|.

Observe that u, a′′, b′′ and Qs do not depend on i. Moreover, for all i belonging to
[1, (1 + K)2(K+3)(K+1)K

+ 1], the word uQsφ(U(mi, k)) belongs to Lrec(y), is a con-
catenation of return words to u and satisfies

|uQsφ(U(mi, k))| ≤ (K + 3)|σ k(b′′)|.

Moreover,

#
(K+3)|σ k(b′′)|⋃

n=0

Ru(y)∗ ∩ Ln(y) ≤ (1+K)(K+3)|σ k(b′′)|K/|u|

≤ (1+K)2(K+3)(K+1)K . (3.3)

But observe that (|U(mi, k)|)0≤i≤1+(1+K)2(K+3)(K+1)K being strictly increasing, the words
uQsφ(U(mi, k)), 0 ≤ i ≤ 1 + (1 + K)2(K+3)(K+1)K , are all distinct (and belong to⋃

0≤n≤(K+3)|σ k(b′′)|Ru(y)∗ ∩ Ln(y)). This is in contradiction with (3.3). ut

Proof of Theorem 1. The sufficiency is proven in [Dur02b, Proposition 7]. The necessity
is proven in [Dur02b, Theorem 18] in the context of good substitutions. We conclude by
reducing the problem to better assumptions (Subsection 3.3), then using Theorem 7 and
Lemma 15 (after we observe that substitutions having a primitive sub-substitution and
that are not good necessarily have at least two growth rates). ut
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3.5. For morphisms instead of codings

We start with an example. Let σ : {0, 1}∗ → {0, 1}∗ be defined by σ(0) = 01 and
σ(1) = 0. The sequence x = σω(0) is (1+

√
5)/2-substitutive. Now let τ : {a, 0, 1}∗→

{a, 0, 1}∗ be defined by τ(a) = a0a, σ(0) = a01 and σ(1) = a0a. The sequence y =
σω(a) is 3-substitutive. But x = φ(y) where φ : {a, 0, 1}∗ → {0, 1}∗ is defined by
φ(0) = 0, φ(1) = 1 and φ(a) is the empty word. Hence a Cobham-like theorem does
not hold for erasing coding morphisms instead of coding. But thanks to Corollary 6 (and
Theorem 5) it holds for non-erasing morphisms.

Theorem 16. Let α > 1 and β > 1 be two multiplicatively independent Perron numbers,
and φ : A∗ → C∗ and ψ : B∗ → C∗, defined on finite alphabets, be non-erasing
morphisms. Suppose x ∈ AN is α-substitutive and y ∈ BN is β-substitutive. If φ(x) =
ψ(y) then φ(x) is ultimately periodic.

Acknowledgments. The author would like to thank M. Rigo and V. Berthé for their reading of the
first draft.
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J. Symbolic Logic 62, 1280–1296 (1997) Zbl 0896.03011 MR 1617949

[Bès00] Bès, A.: An extension of the Cobham–Semënov theorem. J. Symbolic Logic 65, 201–211
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