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Abstract. Let X be a compact Kähler manifold, x ∈ X be a base point and ρ : π1(X, x) →
GLN (C) be the monodromy representation of a C-VHS. Building on Goldman–Millson’s classical
work, we construct a mixed Hodge structure on the complete local ring of the representation variety
at ρ and a variation of mixed Hodge structures whose monodromy is the universal deformation
of ρ.

Let X be a compact connected Kähler manifold, x ∈ X and 0 = π1(X, x). Let
ρ : 0 → GLN (C) be a finite-dimensional semisimple representation. We assume ρ to
be the monodromy of a given polarized C-VHS (Vρ,F•,G

•
, S). Without loss of gener-

ality, we assume its weight is 0. If ρ is not irreducible then several distinct polarizations
could be chosen; we fix one once and for all. In the introduction, we fix an isomorphism
Vρ,x ∼= CN .

The variety R(0,GLN ) of representations of 0 in GLN [LuMa85] may be viewed as
an affine scheme over Z but we will only consider it as an affine scheme over C. The
group GLN acts algebraically on R(0,GLN ) by conjugation. The conjugation orbit �ρ
of ρ is a closed smooth algebraic subvariety of R(0,GLN ), considered as a subscheme
endowed with the induced reduced structure.

Denote by R(0,GLN )ρ the formal local scheme which is the germ at [ρ] of
R(0,GLN ). Similarly, denote by �̂ρ the germ of �ρ at [ρ]; it is a closed formal sub-
scheme of R(0,GLN )ρ . Let (Ôρ,m) be the complete local ring of [ρ] ∈ R(0,GLN )(C)
so that

R(0,GLN )ρ = Spf (Ôρ).

We construct on Ôρ a natural mixed Hodge structure whose weight filtration is given by
powers of the ideal of �̂ρ . It is infinite-dimensional, so it is easier to work with the natural
quotients by powers of the maximal ideal. Let n be a strictly positive integer and denote
by Oρ|n := Ôρ/mn the Artin algebra of the (n− 1)-th infinitesimal neighborhood of [ρ].
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A direct consequence of the formality result of [GoMi88] is the construction of a
split R-MHS on Oρ|n. This construction is essentially included in [Pri04, p. 5] (see also
[Pri06]). The choices made in the construction, the fact that the MHS is split, and the fact
that the outcome of the construction does not depend on x ∈ X, make it clear that this
split MHS is only the approximationGrW of the true object. Something more subtle must
be done to confirm the conjecture in [Sim97] that there should be a (not necessarily split)
MHS on Oρ|n depending explicitly on x. This is done in Section 3, where we show in
Theorem 3.24 that the finite-dimensional vector spaces Oρ|n carry natural mixed Hodge
structures. They are compatible with the inverse system of surjections Oρ|n+1 → Oρ|n
giving a pro-MHS on Ôρ whose GrW is the split MHS referred to above.

Unfortunately, in general the powers of the maximal ideal mn will not constitute the
weight filtration, and indeed the MHS on Ôρ obtained by passing to the limit is rather
unpleasant since it has infinite-dimensional weight subquotients. This distinguishes the
present situation from the special case when ρ is the identity representation. In general,
instead of considering the maximal ideal defining [ρ] itself, we should consider the ideal
of the orbit. Let j ⊂ Ôρ be the prime ideal defining �̂ρ . For n ≥ k ≥ 0, let W−kOρ|n '
jk/jk ∩ mn be the image of jk in Oρ|n. These subspaces will form the weight filtration
on Oρ|n.

By looking at a natural slice, we can get back to the situation where the weight filtra-
tion coincides with the filtration by powers of the maximal ideal. Let T be the formal germ
at the origin of the homogeneous quadratic cone defined by the zeroes of the obstruction
map

obs2 : S2H 1(X,End(Vρ))→ H 2(X,End(Vρ)),

and let ÔT be its complete local coordinate ring so T = Spf (ÔT ). Note that ÔT is just
the quotient of a power series ring by the ideal generated by the image of obs2

t . By
formality [GoMi88], the Kuranishi obstruction map is equivalent to its quadratic part and
T is isomorphic to the Kuranishi deformation space of ρ.

One can slightly revise the statements of [GoMi88] and give the construction of an
isomorphism of formal germs:

GMc : R(0,GLN )ρ → �̂ρ × T

which we call the preferred Goldman–Millson isomorphism (Definition 2.11). The main
theorem of [GoMi88] asserts that an abstract isomorphism between these two formal
germs exists.

The original construction is not quite canonical, and we have tried to make the choices
made there as explicit as possible. This is the rationale for the length of Section 2. It turns
out that there is no good reason to give any kind of privilege to this preferred isomorphism.
Two other very nice Goldman–Millson isomorphisms GM′ and GM′′ can be constructed
and the rest of the article can in retrospect be understood as the study of their interplay—
more concretely than in [Pri09].

The isomorphism GMc provides T with an inclusion in R(0,GLN )ρ making it a
slice transverse to the orbit �̂ρ . The complete local ring ÔT is somewhat better behaved
than Ôρ in certain respects. In particular, the graded Artin local ring (ÔT /mn) has a
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canonical split MHS with finite-dimensional weight subquotients and weight filtrations
given by the powers of the maximal ideal. On the other hand, beyond the simple split
structure, its mixed Hodge theory is a bit more messy than that of Ôρ because of the
choices involved in the isomorphisms GM.

The restriction to T ⊂ Spf (Ôρ) of the tautological representation 0→ GLN (Ôρ) is a
natural local system of ÔT -modules overX. Restricting to a finite infinitesimal neighbor-
hood, we get a representation denoted ρT ,n : 0→ GLN (ÔT /mn) or equivalently a locally
free rank N (ÔT /mn)-local system Vn on X. Since ρT ,n(0) preserves the decreasing fil-
tration defined at level k by mk(ÔT /mn)N ⊂ (ÔT /mn)N , this filtration induces on Vn an
increasing filtration indexed by the nonpositive integers W−n ⊂ · · · ⊂ W−k ⊂ W−k+1 ⊂

· · · ⊂ W0 = Vn. That is to say, this weight filtration is defined by powers of the maximal
ideal of (ÔT /mn).

Our original motivation was to give this local system a structure of variation of mixed
Hodge structure over X. Such a VMHS helps in the proof of the linear Shafarevich con-
jecture [E-R09]. The main result is the following basic fact:

Theorem 1. The filtration W• is the weight filtration of a C-variation of mixed Hodge
structures on X whose monodromy representation is ρT ,n : 0→ GLN (ÔT /mn).

The proof is given in the first part of Section 3. In the second part of that section, after The-
orem 3.24 concerning the mixed Hodge structure on Oρ|n, we give in Theorem 3.26 the
analogue of Theorem 1 saying that the full tautological representation 0 → GLN (Oρ|n)
underlies a C-VMHS compatible with the action of the MHS Oρ|n.

The VMHS of Theorems 1 and 3.26 are closely related to—but somewhat different
from—those constructed in [Ha98, Theorem 13.10 p. 82]. The explicit nature of the con-
struction in Theorem 1 makes these VMHS easier to use in applications such as [E-R09].
Understanding the relationship with [Ha98] is left as an interesting problem for the future.
A similar and related problem will be to investigate the behavior of the MHS onOρ|n and
the VMHS of Theorem 1 as the basepoint x moves around in X.

The twistor picture of [Sim97] should give a way of characterizing geometrically
the MHS on Oρ|n and the tautological VMHS of Theorem 3.26. Very briefly, the MHS
onOρ|n leads to a family of complete local rings indexed by P1 via the Rees constructions
at 0 and∞ using the Hodge and anti-Hodge filtrations respectively. The resulting formal
scheme, supported on and mapping to P1, should be naturally isomorphic to the formal
completion of the Hitchin twistor space of representations [Fuj91], along the preferred
section corresponding to the VHS ρ. We do not verify this compatibility here as that
would go beyond our present scope.

In contrast, the slice T not being quite canonical inside R(0,GLN )ρ , the possibility
of creating a VMHS as is done in Theorem 1 on the tautological local system restricted
over T is new and unexpected. We do not at present have any geometric interpretation or
characterization in terms of twistor geometry.

In Section 4 we generalize these results to the case of representations in a complex
reductive algebraic group G, and take the occasion to give more precise information on
some aspects. Everything is summed up in Theorem 4.1 which we now describe infor-
mally. Suppose σ : 0 → G(C) is a semisimple representation whose associated Higgs
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bundle is a fixed point of the C∗-action on MDol(X,G) [Sim94], in other words σ comes
from a principal variation of Hodge structure with structure group G. Let R(0,G)/C be
the affine scheme parametrizing the representations of 0 with values in G endowed with
the action ofG by conjugation; and denote by �̂σ the formal germ at [σ ] of the orbit of σ .
Let Ôσ denote the formal completion of the local coordinate ring of R(0,G) at σ , so the
formal infinitesimal neighborhood of σ is Spf (Ôσ ).

As before, let T = Spf (ÔT ) be the formal germ at the origin of the homogeneous
quadratic cone attached to the obstruction map

S2H 1(X, adσ )→ H 2(X, adσ ).

We will show in Theorem 4.1 that for every n, the truncated coordinate ring Ôσ /mn

carries a canonical functorial C-MHS. Along the way, we again construct a preferred
Goldman–Millson isomorphism GMc : Spf (Ôσ )→ �̂σ × T .

To generalize Theorem 1 in this case, choose a rational representation α : G→ GLN
and let σn : 0 → G(ÔT /mn) be the tautological representation. Denote by Vα,σ the
local system of (ÔT /mn) free modules on X attached to the representation α ◦ σ : 0 →
GLN (ÔT /mn).

The main statement of Theorem 4.1 says that the C-local system underlying Vα,σ is
the holonomy of a graded polarizable VMHS whose weight filtration is given by

W−kVα,σ = mk . Vα,σ , k = 0, . . . , n.

1. Basic definitions in mixed Hodge theory

The following definitions are well-known to experts. We nevertheless recall them for the
reader’s convenience.

1.1. C-MHS

Definition 1.1. Letw ∈ Z be an integer. A complex (finite-dimensional) Hodge structure
(for short, HS) of weight w is a triple (V , F •, Ḡ•) where F •, Ḡ• are w-opposed decreas-
ing biregular filtrations on the (finite-dimensional) C-vector space V , that is, GrpFGrq

Ḡ
(V )

= 0 if p + q 6= w.
If V is finite-dimensional, a hermitian form S on V polarizes the Hodge structure

if, using the usual definition Hp,q
= Fp ∩ Ḡq for p + q = w, the decomposition

V =
⊕
p+q=w H

p,q is S-orthonormal and (−1)p+wS|Hp,q > 0.
A complex (finite-dimensional) mixed Hodge structure (for short, C-MHS) is a quad-

ruple (V , F •, Ḡ•,W•) where F •, Ḡ• decreasing biregular filtrations and W• is an in-
creasing filtration on the (finite-dimensional) C-vector space V such that the filtrations
induced by F •, Ḡ• on GrWk (V ) give rise to a weight k complex HS.

A complex (finite-dimensional) HS defined over the reals is an R-vector space VR
with a C-Hodge structure (VC, F •, F̄ •) on its complexification, such that F̄ • is the com-
plex conjugate of F •. A real polarization is a real symmetric or antisymmetric bilinear
form whose associated hermitian form is polarizing in the above sense.
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A complex (finite-dimensional) MHS defined over the reals is a R-vector space VR
with a C-mixed Hodge structure (VC, F •, F̄ •,W•) on its complexification, such that W•
is the complexification of an increasing filtration of VR and F̄ • is the complex conjugate
of F •.

Proposition 1.2 ([Del71]). The category of complex mixed Hodge structures is abelian.
For the usual tensor product and duality functor the category of complex mixed Hodge
structures is tannakian. The C-Hodge structures form a full abelian and tannakian sub-
category.

The following definition is thus natural:

Definition 1.3. A C-Hodge (positively) graded Lie algebra is a complex graded vector
space

⊕
k≥0 L

k , each Lk being endowed with a C-Hodge structure of weight k, with a
graded Lie algebra bracket respecting the Hodge structure.

A Hodge Lie algebra is a real finite-dimensional Lie algebra g such that gC carries a
C-Hodge structure of weight zero defined over R respected by the Lie bracket.

Example 1.4. The Lie algebra of a group of Hodge type [Sim92] is a Hodge Lie algebra.

Lemma 1.5. Let M = (V , F •, Ḡ•,W•) be a mixed Hodge structure. Let u ∈ GL(V )
such that u − IdV ∈ W−1 End(V ). Then Mu = (V , F

•, u(Ḡ•),W•) is a MHS such that
GrW• (Mu) = GrW• (M) as split mixed Hodge structures.

Proof. This is immediate since the filtration induced by Ḡ• and u(Ḡ•) on GrW• (V ) coin-
cide. Indeed, u preserves W • and induces the identity on GrW• (V ). ut

Lemma 1.6. Let (V , F •, Ḡ•,W•) be a finite-dimensional complex vector space with
three biregular filtrations having a fourth biregular filtration U• such that the filtrations
induced by F •, Ḡ•,W• on every GrrU (V ) give rise to a mixed Hodge structure. Then
(V , F •, Ḡ•,W•) is itself a mixed Hodge structure.

Proof. There should be a reference for this claim in the MHS literature, but here is a short
proof. It suffices by induction to prove this for a 2-step filtration, which comes down to the
following statement: if U is a vector space with three filtrations W,F,G, and U ′ ⊂ U

is a subspace with quotient denoted U ′′ := U/U ′, and if we suppose that the induced
filtrations on U ′ and U ′′ are MHS, then the filtrations on U form a MHS.

In turn, this can be seen by Penacchio’s interpretation [Pen02]: given three filtrations
we get a bundle on P2, and they form a MHS if and only if the bundle is µ-semistable of
slope 0. The subspace U ′ with its filtrations corresponds to a locally free subsheaf, and
U ′′ is the reflexive sheaf associated to the quotient sheaf. We get a short exact sequence
of sheaves outside of codimension 2, and in this case if the kernel and cokernel are µ-
semistable of slope 0 then so is the middle bundle. ut

Suppose A is an artinian local ring, with increasing filtration W and decreasing filtra-
tions F and G, all compatible with the algebra structure. Let m denote the maximal ideal
and let Mk := mk be the decreasing filtration of A by powers of n. Let n be the smallest
integer with Mn

= 0.
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Set V := M1/M2
= Gr1

M(A), which is the dual of the Zariski tangent space of A.
Note that the filtrations W , F and G induce filtrations given by the same letter on the
associated graded pieces GrkM(A), in particular on V . The associated-graded algebra
Gr•M(A) =

⊕n−1
k=0 GrkM(A) is generated by the piece in degree 1 which is V . This means

that we have surjections

Symk(V )
µk

−→ GrkM(A)→ 0.

The source Symk(V ) has three filtrations obtained from the symmetric product operation
applied to the filtrations of V , whereas the target GrkM(A) has induced filtrations as stated
above. The map µk comes from the algebra structure so it preserves the three filtrations.

Proposition 1.7. Suppose that the above data satisfy the following hypotheses:

(1) Spec(A) is the n-th neighborhood of the origin in a quadratic cone,
(2) the filtrations W,F,G induce a complex MHS on V , which we use also to give a

C-MHS on Symk(V ),
(3) the kernel K of the map µ2 : Sym2(V )→ Gr2

M(A) is a sub-C-MHS of Sym2(V ),
(4) for each k, the filtrations induced by W , F and G on GrkM(A) are the same as the

quotient filtrations induced by the map µk from the filtrations on Symk(V ), in other
words µk strictly preserves the filtrations.

Then W,F,G induce a C-MHS on A and M• is a filtration by sub-C-MHS’s.

Proof. Using condition (1) we get exact sequences

K ⊗ Symk−2(V )→ Symk(V )→ GrkM(A)→ 0.

By condition (3), K is a sub-C-MHS of Sym2(V ), so the map K ⊗ Symk−2(V ) →

Symk(V ) is a morphism of C-MHS. Hence, its cokernel is a C-MHS; then condition (4)
says that GrkM(A) with its triple of filtrations is equal to this cokernel, so GrkM(A) is a
C-MHS. Now, apply Lemma 1.6. ut

1.2. C-VMHS

Definition 1.8. A C-VHS (polarized complex variation of Hodge structures) on X of
weight w ∈ Z is a 5-tuple (X,V,F•,G•, S) where:

(1) V is a local system of finite-dimensional C-vector spaces,
(2) S a nondegenerate flat sesquilinear pairing on V,
(3) F• = (Fp)p∈Z is a biregular decreasing filtration of V⊗COX by locally free coher-

ent analytic sheaves such that d ′Fp ⊂ Fp−1
⊗�1

X,
(4) G• = (Gq)q∈Z is a biregular decreasing filtration of V⊗COX̄ by locally free coherent

antianalytic sheaves such that d ′′Gp ⊂ Gp−1
⊗�1

X̄
,

(5) for every point x ∈ X the fiber at x, (Vx,F•x ,G
•

x), is a C-HS polarized by Sx .

This definition is easily seen to be equivalent to that given by [Sim88].
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Example 1.9. Let ρ : π1(X, x)→ GL(Vρ,x) be the monodromy representation underly-
ing a C-VHS and Vρ be the corresponding local system. Then adρ = End(Vρ) is a local
system of Lie algebras that underlies a C-VHS.

Then H •(X,End(Vρ)) is a C-Hodge graded Lie algebra for the bracket obtained by
composing the usual cup product

H •(X,End(Vρ))⊗H •(X,End(Vρ))→ H •(X,End(Vρ)⊗ End(Vρ))

with the cohomology operation

H •(X,End(Vρ)⊗ End(Vρ))→ H •(X,End(Vρ))

induced by the Lie bracket End(Vρ)⊗ End(Vρ)→ End(Vρ).

The C-Hodge structure on the cohomology of a C-VHS can be constructed by a
straightforward adaptation of the Deligne–Zucker argument [Zu79], which is written for
the real case.

The following definition is a slight generalization of the definition in [Usu83].

Definition 1.10. A C-VMHS on X is a 6-tuple (X,V,W•,F•,G
•
, (Sk)k∈Z) where:

(1) V is a local system of finite-dimensional C-vector spaces,
(2) W• = (Wk)k∈Z is a decreasing filtration of V by local subsystems,
(3) F• = (Fp)p∈Z is a biregular decreasing filtration of V⊗COX by locally free coher-

ent analytic sheaves such that d ′Fp ⊂ Fp−1
⊗�1

X,
(4) G• = (Gq)q∈Z is a biregular decreasing filtration of V⊗COX̄ by locally free coherent

antianalytic sheaves such that d ′′Gp ⊂ Gp−1
⊗�1

X̄
,

(5) for all x ∈ X the stalk (Vx,W•,x,F•x ,G
•

x) is a C-MHS,
(6) Sk is a flat sesquilinear nondegenerate pairing on GrW

k (V),
(7) (X,GrW

k (V),F•GrW
k (V)⊗C OX,G

•
GrW

k (V)⊗C OX̄, Sk) is a C-VHS of weight k.

A C-VMHS is uniquely determined by its monodromy (as a W-filtered representa-
tion of π1(X, x)) and the MHS (Vx,W•x,F•x ,G

•

x) (rigidity theorem, cf. [HaZu87, p. 85,
(1.7)c]) and the references therein).

To be consistent with earlier terminology, we could also have called C-VHS polarized
C-VHS (resp. C-VMHS graded polarized C-VMHS).

Lemma 1.11. Let E• = E•(X,End(Vρ)) be the C∞-de Rham complex of the C-VHS
attached to adρ = End(Vρ). It is endowed with the usual Hodge filtrations, and the usual
Lie bracket preserves the Hodge filtrations. Endow E• with the shifted (décalée) weight
filtration defined by Wi+1E

i
= Ei , WiE

i
= ker(d), Wi−1E

i
= 0. We have the familiar

conditions from [Del75]:

• The differential of E• is strictly compatible with the two filtrations induced by F •

and Ḡ•.
• The induced filtrations on H k(X,End(Vρ)) give a C-Hodge structure of weight k.

The Lie bracket induces on the cohomology H •(X,End(Vρ)) = H •(E•) the structure of
a Hodge graded Lie algebra described in Example 1.9.
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2. Goldman–Millson theory

In what follows, we fix a C-VHS (Vρ,F•,G
•
, S) on X and denote by ρ : π1(X, x) →

GL(Vρ,x) its holonomy.
In [GoMi88] the complete local ring Ôρ is described rather precisely. We shall review

this theory, pointing out some additional facts easily deduced from this classical reference.
We shall also review some additions made by these authors in [GoMi90].

2.1. General representability criteria in Deligne–Goldman–Millson theory

2.1.1. The Deligne–Goldman–Millson groupoid attached to a dgla. Given a small group-
oid G, we will denote by IsoG the set of its isomorphism classes, i.e. the quotient of the
set of objects by the equivalence relation induced by the arrows.1 Iso is a covariant functor
from the category of small groupoids to the category of sets.

Let L• be a dgla, graded by the nonnegative integers and defined over C. We will
assume finite-dimensionality of its cohomology objects. Let (A,m) be an Artin local C-
algebra (we assume A/m = C). Then one defines the small groupoid DGM(L•, A) by:

Obj DGM(L•, A) = {α ∈ L1
⊗m | dα + 1

2 [α, α] = 0},

HomDGM(L•,A)(α, β) = {λ ∈ L
0
⊗m | exp(λ)α = β},

where exp(λ)α denotes the gauge transformation eλ ◦ α ◦ e−λ − d(eλ) ◦ e−λ.
This gives a covariant functor DGM(L•,−) on the category Art of C-Artin local

rings with values in the category of small groupoids. Let us describe this functor. In what
follows, the generic object of Art will be denoted by A, and m will stand for the maximal
ideal of A. The groupoid DGM(L•, A) is the transformation groupoid2 associated to the
set-theoretic action of the simply connected nilpotent (infinite-dimensional) Lie group
exp(L0

⊗m) on Obj DGM(L•, A).3 The transition maps are the obvious ones.
For every action of a group H on a set S, we will denote by [S/H ] the associated

transformation groupoid. Hence,

DGM(L•, A) = [Obj DGM(L•, A)/exp(L0
⊗m)].

If H acts on another set Y , we define4 [S/H ] FG Y := [S × Y/H ].

Remark 2.1. In the notation of [Man99], MCL•(A) = Obj DGM(L•, A) and DefL• =
Iso DGM(L•,−).

1 We are working in the category of sets enriched with a functorial version of all small limits and
colimits.

2 See [GoMi88, p. 52] for this notion.
3 See [GoMi88, 2.2, p. 53]. The action is defined in 1.3 there, pp. 50–51, using the Baker–

Campbell–Hausdorff formula. The differentiable structure on exp(L0
⊗ m) will not be used, only

its set-theoretic group structure.
4 See [GoMi88, p. 63]. This could also be viewed as a homotopy fiber product [S/H ] FG Y =

[S/H ]×[∗/H ] [Y/H ].
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Proposition 2.2. If H 0(L•) = 0 then Iso DGM(L•, ) is prorepresentable. In general,
for every splitting δ of L•, a hull in the sense of [Sch69], KurδL• → DefL• , can be con-
structed; it is called the formal Kuranishi space.

Proof. See [GoMi90], and also [Man99]. ut

For the reader’s convenience, we recall:

Definition 2.3. Let F be a covariant functor of Artin rings. Let T be the formal spectrum
of a complete local algebra R and φ : T → F a morphism of functors5 given by ξ ∈
F(T ). Then φ is a hull if it has the following properties:

(1) φ(C[ε]/(ε2)) is an isomorphism.
(2) For every Artin ring B and w ∈ F(B) there is a morphism ψ : R → B such that

w = ψ(ξ).

If unicity occurs in the last property then F is prorepresentable by its hull.

2.1.2. The Deligne–Goldman–Millson groupoid attached to an augmented dgla. Let g
be a Lie algebra over C, viewed as a dgla in degree 0, and let ε : L• → g be an augmen-
tation of the dgla L•. Let (A,m) be an Artin local C-algebra. Then one defines the small
groupoid DGM(L•, ε, A) by:

Obj DGM(L•, ε, A) = {(α, er) ∈ L1
⊗m× exp(g⊗m) | dα + 1

2 [α, α] = 0},

Hom((α, er), (β, es)) = {λ ∈ L0
⊗m | exp(λ)α = β, exp(ε(λ)) . er = es}.

In the preceding notation, one has

DGM(L•, ε, A) = DGM(L•, A) FG exp(g⊗m)ε,

the ε subscript meaning that the gauge group acts via ε.
This gives a covariant functor DGM(L•, ε,−) on the category Art of C-Artin local

rings with values in the category of small groupoids.

Proposition 2.4. If ε : H 0(L•) → g is injective then DGM(L•, ε,−) is a discrete
functor in groupoids, then DefL•,ε = Iso DGM(L•, ε,−) is prorepresentable. For every
splitting δ of (L•, ε) one can construct an explicit formal scheme and an isomorphism
KurδL•,ε → DefL•,ε .

Remark 2.5. KurδL•,ε → DefL•,ε is uniquely determined up to a unique isomorphism.

Proof. The proof, implicit in [GoMi88], is an adaptation of [GoMi90] with an ε. It may
nevertheless be useful to give an outline.

Suppose (K•, d, [ , ]) is a positively graded dgla, h a Lie algebra, and ε : K0
→ h

a Lie algebra map. Suppose we are given decreasing filtrationsM•K• andM•g such that
[M i,Mj ] ⊂ M i+j and d, ε : M i

→ M i . Assume the nilpotency condition K• = M1K•

and h = M1h, and Mk
= 0 for k � 0. In this case the Lie brackets are nilpotent.

5 We use the Yoneda lemma to justify using the same notation for T and its functor of points.
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A splitting is a collection of maps denoted δ : K i
→ K i−1 such that δ2

= 0, d = dδd
and δ = δdδ. In this case, we get a decomposition

K i
= im(d)⊕ im(δ)⊕ (ker(d) ∩ ker(δ)).

Indeed, any element u can be written as u = dδ(u) + δd(u) + (1 − dδ − δd)(u) and
any decomposition u = du1 + δu2 + u3 with du3 = 0, δu3 = 0 has to be of that
form. Conversely, suppose we are given a decomposition K i

= Ai ⊕ Bi ⊕ Ci such that

d(K i−1) = Ai and ker(d) = Ai ⊕Ci . Then d : Bi−1 ∼=
−→ Ai and we can define δ|Ai to be

the inverse, extended by 0 on Bi and Ci . The above decomposition associated to δ is the
same as the given Ai ⊕Bi ⊕Ci . So, to give a splitting is the same thing as to give such a
decomposition.

We also assume thet there is given a splitting δ : h → H 0(K•) such that ε(u) =
εδε(u) for any u ∈ H 0(K•) = ker(d : K0

→ K1). This is equivalent to specifying a
subspace ker(δ) ⊂ h complementary to ε(H 0(K•)). Injectivity of ε : H 0(K•)→ h then
implies that δ(v) = δεδ(v) for any v ∈ h.

We assume that our differentials and splittings strictly preserve the filtrationM•. This
is equivalent to requiring the direct sum decomposition to be compatible with the filtration
in the sense that the filtered vector space K i is the direct sum of the subspaces with their
induced filtrations (and the same for h).

With the above notation, recall the gauge fixing procedure underlying Goldman–
Millson’s construction [GoMi90]:

Lemma 2.6. Suppose η ∈ K1 with d(η)+ 1
2 [η, η] = 0, and r ∈ h. Then there is a unique

gauge transformation es for s ∈ K0, taking (η, er) to a new Maurer–Cartan element
(ζ, ez) such that δ(ζ ) = 0 and δ(z) = 0.

Proof. The proof is by induction on the filtration M•. Suppose we have chosen our
gauge transformation to get to (ζ, ez) with δ(ζ ) ∈ MkK0 and δ(z) ∈ MkH 0(K•).
Then use the gauge transformation s = −δ(ζ ) − δ(z). Modulo Mk+1 the effect of this
gauge transformation adds d(s) = −dδ(ζ ) to ζ , and adds ε(s) = −εδ(z) to z. But
δ(ζ−dδ(ζ )) = 0 and δ(z−εδ(z)) = 0, so the new element (ζ1, e

z1) has δ(ζ ) ∈ Mk+1K0

and δ(z) ∈ Mk+1H 0(K•). This proves the existence of the gauge transformation in ques-
tion. Uniqueness is proved similarly: if (η, er) already satisfies the gauge-fixing property
and es is a gauge transformation taking it to another (ζ, ez) with this property, then we
can prove by induction that s ∈ MkK0 for all k, so s = 0. ut

Let us turn to the construction of the representing formal scheme for the functor A 7→
Iso DGM(L, ε;A) for the proof of Proposition 2.4. Choose splittings as described pre-
viously, for the dgla L•. In the analytic case, one possible choice of δ is to compose d∗

with the Green’s operator. Note that δ will not be in any way compatible with the Lie
bracket. However, it induces morphisms also denoted by δ on the complexes L⊗mA for
any artinian algebra A. We apply the gauge-fixing procedure to the dgla K• := L• ⊗mA

with filtration MkK• := L• ⊗ mk
A. This filtration will be compatible with the splitting δ

and satisfies the required nilpotency condition.
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Similarly choose a map δ : g → H 0(L) which again induces a splitting on h :=
g⊗mA, which is compatible with the filtration Mkh := g⊗mk

A.
By Lemma 2.6 applied with K• = L• ⊗ m we have h = g ⊗ m, any Maurer-Cartan

element (η, er) is gauge-equivalent to a unique Maurer–Cartan element (ζ, ez) such that
δ(ζ ) = 0 and δ(z) = 0 in addition to the Maurer–Cartan equation d(ζ ) + 1

2 [ζ, ζ ] = 0.
By hypothesis (∗) the gauge transformation is unique. In this way we obtain a functor

A 7→ DGMδ(L, ε;A)

:= {(ζ, er) | r ∈ g⊗mA, ζ ∈ L
1
⊗mA, d(ζ )+

1
2 [ζ, ζ ] = 0, δ(ζ ) = 0, δ(r) = 0}.

This is given by algebraic equations but in a possibly infinite-dimensional space L1.
We can reduce to a finite-dimensional space in the following way. Let H 1 := ker(d) ∩
ker(δ) ⊂ L1. We can solve the equations

δd(ζ )+ 1
2δ[ζ, ζ ] = 0 in im(δ : L2

→ L1)

because δd maps L1 surjectively onto im(δ). The space of solutions is maped isomorphi-
cally to H 1 by the projection P 1 : L1

→ H 1 which vanishes on im(d) + im(δ). Hence
the functor of formal solutions in an artinian local algebra A is represented by the formal
completion of the vector spaceH 1 at the origin. Let Ĥ 1

×�̂ denote the space of solutions
(ζ, er) with δ(r) = 0. Let P 2 : L2

→ H 2 be the projection vanishing on the images
of d and δ. Then the map ζ 7→ P 2([ζ, ζ ]) is a formal regular function from Ĥ 1 to H 2,
and DGMδ(L, ε) is the zero-set of this map. This gives an explicit representation of the
functor and finishes the proof of Proposition 2.4. ut

2.2. Goldman–Millson isomorphisms

2.2.1. Deforming representations of a Kähler group. Let x ∈ X and

εx : H •(X,End(Vρ))→ End(Vρ)x

be the augmentation of the Hodge dgla H • = H •(X,End(Vρ)) by evaluation at x.
We also define, for every Artin local algebra A, a group G0

A = ker(GL(Vρ,x)(A) →
GL(Vρ,x)).6 Then we have a morphism of groups exp(H 0

⊗ m) → G0
A induced by the

augmentation map. The left action gives a set-theoretic action of exp(H 0
⊗ m) on G0

A,
which can be used to define the transformation groupoid

DGM(H •, A) FG G0
A = [Obj DGM(L•, A)×G0

A/exp(L0
⊗m)].

Note also that G0
A = exp(End(Vρ)x ⊗m) so

DGM(H •, A) FG G0
A = DGM(H •, εx, A)

in the notation of 2.1.2.

6 See [GoMi88, 3.9 p. 66]; G0
−

is a prorepresentable group object in the category of covariant
set-valued functors on Art.
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Proposition 2.7. The functor hGM on Art defined by

A 7→ Iso DGM(H •, A) FG G0
A

is canonically isomorphic to the pro-Yoneda functor on Art associated to Spf (Ôρ), the
germ at ρ of R(0,GL(Vρ,x)), i.e. to the functor hR(0,GL(Vρ,x ))ρ :

(A 7→ R(0,GL(Vρ,x))(A)ρ = {ρA ∈ R(0,GL(Vρ,x))(A) | ρA mod m = ρ}).

Proof. This is actually what is proven in [GoMi88]. The combination of Theorem 3.5
p. 63, Theorem 6.8 p. 82 and the argument in Sections 7–8 there implies that the first
functor prorepresents Spf (Ôρ). But the isomorphism of functors constructed in [GoMi88]
is actually canonically defined. Since we want to be as explicit as possible, we shall give
a more detailed sketch of their argument.

Let M• ⊂ E• be the subdgla of Dc-closed twisted forms inside the dgla of Lem-
ma 1.11. Then the natural projection M i

→ H i
Dc (X,End(Vρ)) and the Hodge-theoretic

canonical isomorphism H i
Dc (X,End(Vρ))→ H i(X,End(Vρ)) gives rise to a dgla mor-

phism fromM• toH •. Now, theD′D′′-lemma implies (see [GoMi88, Sect. 7] or [D-S75])
that

E•← M•→ H •

is a dgla quasiisomorphism. Using the DGM(−,−) functor and [GoMi88, Corollary 2.12
p. 59], we get a diagram of objectwise equivalences of functors from Art to Gpd:

DGM(E•,−)← DGM(M•,−)→ DGM(H •,−).

Since the above quasiisomorphism commutes with the natural augmentation εx : E• →
End(Vρ)x , we deduce7 equivalences of functors in groupoids:

DGM(E•,−) FG G0
−← DGM(M•,−) FG G0

−→ DGM(H •,−) FG G0
−.

Now, an object α of DGM(E•, A) can be interpreted as a flat A-linear connectionDα
on C∞(Vρ ⊗A) such that Dα = DVρ ⊗ IdA mod m. Then we see that holonomy defines
a map from Obj DGM(E•, A) to R(0,GL(Vρ,x))(A)ρ . [GoMi88, Sect. 6] states (implic-
itly) that this can be enhanced to a natural equivalence of groupoids

DGM(E•, A)→ [R(0,GL(Vρ,x))(A)ρ/G0
A].

Eliminating the superfluous isotropy using identity as a basepoint for G0
A gives a

natural equivalence of groupoids:

[R(0,GL(Vρ,x))(A)ρ/G0
A] FG G0

A← [R(0,GL(Vρ,x))(A)ρ/{Id}].

Since we have a natural identification

Iso[R(0,GL(Vρ,x))(A)ρ/{Id}] = R(0,GL(Vρ,x))(A)ρ,

7 See [GoMi88, Sections 3.7–3.9 pp. 63–64].
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passing to Iso in the above long chain of objectwise natural equivalences gives the re-
quired natural isomorphism. ut

The above proposition gives a different proof of the representability of Proposition
2.4 in the special cases L• = E•, H • or M•. That was in fact the original proof of
representability in [GoMi88].

Corollary 2.8. Let Artn be the full subcategory of Art whose objects (A,m) satisfy mn+1

= 0. Then the Yoneda functor on Artn corepresented by Oρ|n is canonically isomorphic
to the restriction to Artn of

A 7→ Iso DGM(H •, A) FG G0
A.

2.2.2. Parameters for Goldman–Millson isomorphisms. Let�0
H 1
ρ

be the formal germ at 0

of End(Vρ)x/ε(H 0(X,End(Vρ))) and let (S1,m1) be its complete local algebra. LetQH 1
ρ

be the formal germ at 0 of the quadratic cone

{α ∈ H 1(X,End(Vρ)) | [α, α] = 0},

and (S2,m2) be its complete local algebra.
Let h1 and h2 be the pro-Yoneda functors of �0

H 1
ρ

and QH 1
ρ
. Note that S1 (resp. S2)

prorepresents h1 (resp. h2).

Definition 2.9. A formal subscheme t ⊂ (End(Vρ)x, 0) transverse to ε(H 0) will be
called a GM-transversal.

A GM-transversal t is smooth or equivalently its complete local ring is isomorphic to
a ring of power series. In fact, we will tacitly assume that the transversals we consider are
attached to a linear subspace, although more general choices could be envisioned.

Theorem 2.10. To every GM-transversal t, we can associate a well defined isomorphism
of covariant functors on Art,

GMt : hR(0,GL(Vρ,x ))ρ
∼
−→ h1 × h2.

With this choice, the inclusion of h1 in hR(0,GL(Vρ,x ))ρ is the transformation of func-
tors induced by the inclusion of the formal germ at ρ of �ρ into the formal germ
R(0,GL(Vρ,x))ρ .

Proof. In [GoMi88, Lemma 3.10], an isomorphism of functors between hGM and h1×h2
is constructed. By definition:

h1(A) = End(Vρ)x ⊗m/ε(H 0(X,End(Vρ)))⊗m),

h2(A) = Obj DGM(H •, A),

hGM(A) = h2(A)× exp(End(Vρ)x ⊗m)/exp(ε(H 0(X,End(Vρ)))⊗m).
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Although this point is not made explicitly in [GoMi88], one way to define pre-
cisely the isomorphism is to prescribe the additional choice of a formal subscheme
t ⊂ (End(Vρ)x, 0) transverse to ε(H 0). The exponential gives an isomorphism ht → h1
and a natural isomorphism i : ht × h2 → hGM by

i(t, η2) = (η2, exp(t))/exp(ε(H 0(X,End(Vρ))⊗m)).

This choice of a Goldman–Millson isomorphism has indeed the required property, by
inspection of the construction. ut

Since ε(H 0) is actually a sub-Hodge structure of the polarized Hodge structure
End(Vρ)x , the germ tH of the orthogonal complement is a canonical choice for t; we
will call this choice the Hodge transversal. Admittedly, this is a rather artificial way of
rigidifying Goldman–Millson’s theorem. Hence, it seems abusive to call the resulting
isomorphism canonical and we will call GMc

tH
the preferred Goldman–Millson isomor-

phism.

Definition 2.11. The isomorphism GMc
tH

: R(0,GL(Vρ,x))ρ → �0
H 1
ρ
× T constructed

above will be called the preferred Goldman–Millson isomorphism attached to the C-
VHS ρ.

In a less artificial way, we have:

Remark 2.12. The morphisms h2 → hGM and hGM → h1 are independent of the choice
of transversal t. The functor on Art defined by

h′1 : A 7→ exp(End(Vρ,x)⊗m)/exp(ε(H 0(X,End(Vρ))⊗m))

is isomorphic to h1 and the projection map hGM → h′1 is a retraction of the inclusion
h′1 → hGM given by A 7→ (0, h′1(A))/exp(ε(H 0(X,End(Vρ))⊗m)).

Let us restate this in terms of complete local algebras.

Corollary 2.13. Choose a GM-transversal t. There is an isomorphism ict : Ôρ→S1⊗̂S2.
The ideal j is mapped by this isomorphism to S1 ⊗̂m2. Passing to the quotient, it induces
an isomorphism Oρ|n→ S1⊗̂S2/m

n, which will also be denoted by ict .

Proof. This follows from the previous theorem, and the construction of [Sch69]. ut

We define the ideal q as the ideal mapped to m1⊗̂S2 by the dual of the preferred Goldman–
Millson isomorphism. The formal subscheme T = Spf (ÔT ) ⊂ Spf (Ôρ) defined by q will
be called the preferred formal slice at ρ. Note that ÔT is canonically isomorphic to S2,
and in fact the formal subscheme T , representing the functor h2, is embedded in hGM
independently of the choice of the transversal t. The adic filtration (jn)n∈N induces on the
complete local ring ÔT = (Ôρ/q,m) the filtration (mn)n∈N .
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2.2.3. Interpretation in terms of formal Kuranashi space. Since the dgla with a trivial
differential, (H •Dc (X,End(Vρ)), 0), has just one splitting, namely δ = 0, T is isomorphic
through a uniquely defined tautological isomorphism to the uniquely defined Kuranishi
formal space of H •Dc (X,End(Vρ)).

If we fix a Kähler metric on X, Hodge theory enables us to define the orthogonal
splitting of the dgla E• = E•(X,End(Vρ)). The preceding chain of quasiisomorphisms
gives rise to a natural map κc : T → DefE• which is a hull.

Holonomy at x ∈ X gives a canonical isomorphism hx : DefE• → Def (ρ) where
Def (ρ) is the Yoneda functor of Artin rings germ at ρ of the groupoid R(0,GL(Vρ,x))//
GL(Vρ,x) attached to the conjugation action.

Hence hcx : hx ◦ κc : T → Def (ρ) is just a hull of the deformation functor Def (ρ). In
particular for every g ∈ Aut(T /Def (ρ)), hx ◦κ ◦g is another hull. One easily establishes,
using [Rim72] (or [Rim80]):

Lemma 2.14. Aut(T /Def (ρ)) ⊂ ker(Aut(ÔT ,m)→ Aut(ÔT /m2)) is the image of the
natural map exp(H 0(X,End(Vρ))⊗m2)→ Aut(T ).

Observe that H 0(X,End(Vρ)) is nothing but the Lie algebra of the reductive algebraic
group H ⊂ GL(Vρ,x) which centralizes ρ. The group H consists of the automorphisms
of the local system Vρ , hence it acts on T . On the other hand, choosing a vector space
complementary to ε(H 0(X,End(Vρ))) in gl(Vρ,x) (call the resulting linear transversal t)
is tantamount to choosing a splitting of the cohomology augmented Lie algebra. Hence
the choice of a linear transversal gives us a uniquely defined natural isomorphism of
punctual formal schemes

GMc : ̂GL(Vρ,x)×H T ρ → R(0,GL(Vρ,x))ρ = Spf (Ôρ).

In general, the best basepoint free way to state the main result of [GoMi88] is that
there is a canonical equivalence of formal groupoids

[T/H ]→ [R(0,GL(Vρ,x))/GL(Vρ,x)]ρ

where the second groupoid is the germ at ρ of the conjugation groupoid. This is actually
independent of x (or more precisely, independent up to a unique isomorphism).

2.3. Split C-MHS on Ôρ and ÔT
Since H 1(X,End(Vρ)) is a weight one C-HS, H 2(X,End(Vρ)) is a weight two C-HS,
and

p = [−,−] : S2H 1(X,End(Vρ))→ H 2(X,End(Vρ))
respects the Hodge structure, we deduce that H 1(X,End(Vρ))∗ is a C-HS of weight −1
and

I2 = Im(pt : H 2(X,End(Vρ))∗→ S2H 1(X,End(Vρ))∗)
is a weight −2 C-HS. Hence

In = I2S
n−2H 1(X,End(Vρ))∗ ⊂ SnH 1(X,End(Vρ))∗
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is a weight −n sub-C-Hodge structure. Hence,

5n = S
nH 1(X,End(Vρ))∗/In (†)

is a weight−n C-HS and the algebra SH2 :=
∑
n∈N5n viewed as an infinite-dimensional

split C-MHS with an algebra structure respecting the MHS. The weight filtration is ex-
actly W−nSH2 = mn

2 since m2 =
∑
n>05n is a maximal ideal of the complete local

algebra SH2 , and 51 generates m2.
The formerly introduced complete local algebra S2 is canonically isomorphic to the

algebra obtained from SH2 by forgetting the Hodge filtrations, hence ÔT carries a canon-
ical split C-MHS whose weight filtration is given by the powers of the maximal ideal.

On the other hand S1 is the free complete local algebra generated by the weight zero
HS (End(Vρ)/ε(H 0(X,End(Vρ))))∗. It can thus be viewed as a weight zero C-Hodge
algebra.

Hence S1 ⊗̂ S2 carries a canonical split C-MHS whose weight filtration is given by
the powers of S1 ⊗̂m2.

Proposition 2.15. The filtration W• is the weight filtration of a split C-mixed Hodge
structure on Oρ|n. Passing to the limit we get a MHS on Ôρ .

Proof. Choose a GM-transversal t. Using the isomorphism GMt, we transfer this mixed
Hodge structure to Ôρ , the weight filtration being defined by the powers of j. The
power mn of the maximal ideal is easily seen to correspond to the split sub-C-MHS∑
k+l≥n S

kH 0(X,End(Vρ)) ⊗ 5l . Thus, the powers of j are the weight filtration of a
C-MHS on Oρ|n. This concludes the proof. ut

3. Mixed-Hodge-theoretical aspects of Goldman–Millson’s theory at a C-VHS

This section continues our exegesis of [GoMi88] and aims at making more explicit the
use of formality. Despite the fact that the preferred Goldman–Millson isomorphism is
rather artificial, T does not depend on any choices, so an explicit description should be
available.

An explicit construction of three ‘canonical’ hulls will be described next. They will
not coincide in general. One of them corresponds to the preferred Goldman–Millson iso-
morphism constructed above.

The two new slices will be used in the last sections to produce the C-MHS and C-
VMHS we are seeking.

3.1. Preliminary remarks and definitions

3.1.1. Universal Maurer–Cartan elements. Assume T = Spf (OT ) is a formal scheme
and L• is a dgla. In order to define the map h : T → DefL• for a hull, one
needs to construct a universal Maurer–Cartan element for this hull, i.e. an element of
Obj DGM(L•,OT ) whose gauge equivalence class gives rise to h.
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Definition 3.1. Assume T = Spf (OT ) is a formal scheme and L• is a dgla. A universal
Maurer–Cartan element for L• defined on T is an element of Obj DGM(L•,OT ) whose
gauge equivalence class gives rise to a hull.

Observe that the hull KurδL• canonically attached to a splitting δ as in Proposition 2.2
carries a tautological universal Maurer–Cartan element.

The following lemma restates the versality property (2) of Definition 2.3.

Lemma 3.2. Let η ∈ Obj DGM(L•, T ) be a universal Maurer–Cartan element and sup-
pose η′ ∈ Obj DGM(L•, S) is another Maurer–Cartan element. Then there exists a ring
morphism φ : T → S and a gauge transformation er ∈ exp(L0

⊗ mS) such that
η′ = er . φ(η). Unicity for (φ, r) holds if H 0(L•) = 0.

If T is an object of Artn (i.e. satisfies mn+1
T = 0) and (T , η) satisfies the preceding

universal property with respect to Artn then we say that (T , η) is a universal Maurer–
Cartan element of order n.

3.1.2. Choice of a model. The construction of GMc depends on the choice of
(ker(Dc),D) setting up a quasiisomorphism between E•(X,End(Vρ)) and its cohomol-
ogy algebra. This is fine if ρ is actually real for a certain real structure since GMc will be
defined over the reals. The real Zariski closure of the monodromy group being Hodge, it
carries a real structure, but it is not clear how the real structure extends in the non-Zariski
dense case. If we drop the reality constraint, other very natural choices are available.

We may indeed choose (ker(D′),D) and (ker(D′′),D) as intermediate models result-
ing in two alternative formal Kuranishi spaces h′x : T → Def (ρ) and h′′x : T → Def (ρ).

3.2. Constructing a C-VMHS

In this section we first construct a universal Maurer–Cartan element for T using
(ker(D′),D), then another one using (ker(D′′),D), and glue them together.

3.2.1. The D′D′′-lemma

Lemma 3.3. Let η1, . . . , ηb ∈ E
• form a basis of the subspace H1(X,End(Vρ)) of har-

monic twisted one-forms, each ηi being of pure Hodge type (Pi,Qi) for the Deligne–
Zucker C-MHC structure on E•. Then {ηi} is a basis of H 1(X,End(Vρ)) whose dual
basis for 51 = H

1(X,End(Vρ))∗ is denoted by ({η1}
∗, . . . , {η∗b}). The End(Vρ) ⊗51-

valued one-form α1 defined by

α1 :=
b∑
i=1

ηi ⊗ {ηi}
∗

is D-closed and Dc-closed.

Proof. This is a consequence of the already mentioned Deligne–Zucker construction
[Zu79]. ut

Let π2 : 51 ⊗51 → 52 be the product mapping constructed above (see (†) in §2.3).
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Lemma 3.4. β2 = π2([α1, α1]) is D-closed, Dc-closed and cohomologous to 0.

Proof. [α1, α1] ∈ E2
⊗ 51 ⊗ 51 is D′- and D′′-closed since E• is a dgla and D′ also

preserves the Lie bracket. π2 being a linear map, β2 is D′- and D′′-closed.
Let φ : 52 → C be a linear form. Then φ can be interpreted as an element∑

1≤i,j≤b ci,j {ηi} ⊗ {ηj } in the kernel of

[−,−] : ⊗2H 1(X,End(Vρ))→ H 2(X,End(Vρ)),

i.e. such that ∑
1≤i,j≤b

ci,j [{ηi}, {ηj }] = 0. (R)

Hence φ(β2) =
∑

1≤i,j≤b ci,jηi∧ηj . If (ci,j ) is any antisymmetric matrix, then this form
vanishes and (R) holds. If (ci,j ) is symmetric and satisfies (R) then

φ(β2) =
1
2

∑
i,j

ci,j [ηi, ηj ].

Since [ηi, ηj ] is a de Rham representative of [{ηi}, {ηj }], φ(β2) is cohomologous to zero
thanks to (R). Hence β2 is cohomologous to zero. ut

Lemma 3.5. There is a form γ2 ∈ E
0
⊗52 such thatD′D′′γ2 = β2. Define α2 ∈ E

1
⊗52

to be 1
2D
′γ2. Then α2 is D′-exact and satisfies Dα2 +

1
2β2 = 0.

Proof. This is a consequence of the D′D′′-lemma: see for instance [D-S75]. ut

If α ∈ E1
⊗5b and β ∈ E1

⊗5b we define α ∧ β ∈ E2
⊗5a+b using composition of

matrices and product in 5. With this notation α1 ∧ α1 =
1
2β2.

Lemma 3.6. β3 = α1 ∧ α2 + α2α1 is D′-exact and D′′-closed. By the D′D′′-lemma we
conclude β3 = D

′D′′γ3 and we define α3 = D
′γ3.

Proof. Dα2 + α1α1 = 0. Hence Dβ3 = α1 ∧ α1 ∧ α1 − α1 ∧ α1 ∧ α1. ut

Lemma 3.7. For k ≥ 3 we can construct a D′-exact form αk ∈ E
1
⊗5k such that

Dαk + αk−1α1 + αk−2α2 + · · · + α1αk−1 = 0.

Proof. We have done the k = 3 case explicitly. The first step for k→ k+ 1 is to observe
that αkα1 + · · · + α1αk is D′′-closed and D′-exact and then apply the D′D′′-lemma. ut

Lemma 3.8.
∑
∞

k=1 αk is a universal Maurer–Cartan element for T and (ker(D′),D).

Proof. This follows from the form of α1. ut

Remark 3.9. Since H1(X,End(Vρ)) = ker(D′ : E1
→ E2) ∩ ker(D′′ : E1

→ E2)

and ker(D′D′′ : E0
→ E2) = ker(D′′) the construction of (αk)k≥1 is canonical, purely

complex analytic (does not depend on the Kähler structure), functorial and the αk are
uniquely determined.
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3.2.2. A canonical connection. Let (Vn,D) be the smooth vector bundle with a flat con-
nection underlying the local system

Vρ ⊗C (ÔT /mn) =

0⊕
k=−n

Vρ ⊗5−k.

The weight filtration on (ÔT /mn) gives rise to a filtration {(WkVn,D)}−n≤k≤0. Actually
Vρ ⊗C (ÔT /mn) is naturally a split VMHS, whose monodromy representation is just a
direct sum of copies of the initial representation ρ.

This is not the local system we are interested in for Theorem 1—rather, it is the
associated-graded—so we should perturb it by adding a new term to the connection. Let
A′k : Vn → Vn ⊗ E1

X be defined as
∑
l A

l
k where Alk : Vρ ⊗5l → Vρ ⊗5l+k ⊗ E1

X is
the natural multiplication by αk .

Proposition 3.10. D +
∑n
k=1A

′

k is a flat (ÔT /mn)-linear connection on the filtered
smooth vector bundle {(WkVn)}−n≤k≤0. Its holonomy representation ρT ,n : π1(X, x)→

GL(Vρ,x⊗(ÔT /mn)) passes to the limits and gives rise to a representation ρT : π1(X, x)

→ GL(Vρ,x ⊗ ÔT ) which induces the Goldman–Millson slice T → R(0,GL(Vρ,x)).

Proof. The fact that the connection is flat is a restatement of the construction in the pre-
vious subsection. The link with the construction in [GoMi88] can be easily made by
inspecting that reference. ut

3.2.3. Nontriviality of the extension. Already at n = 2 we can see that the new repre-
sentation ρT ,2 will not be semisimple. Indeed, the associated local system Vρ,T ,2 is an
extension

0→ Vρ ⊗ (m/m2)→ Vρ,T ,2 → Vρ → 0

whose extension class is the element of

H 1(Hom(Vρ,Vρ ⊗ (m/m2))) = H 1(End(Vρ))⊗m/m2

corresponding to the identity matrix under the identification

m/m2 ∼= H
1(End(Vρ))∗.

So, as soon as dim(m/m2) > 0 the extension is nontrivial.

3.2.4. Griffiths transversality. Since Vρ ⊗5−k carries a weight −k C-HS, (Vn,D) un-
derlies a split VMHS whose Hodge and anti-Hodge bundles are:

Fp(Vn) =
0⊕

k=−n

Fp(Vρ ⊗5−k), Gq(Vn) =
0⊕

k=−n

Gq(Vρ ⊗5−k).
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Lemma 3.11. The connection D + A′ = D +
∑n
k=1A

′

k is Griffiths transversal in the
sense that (

D +

n∑
k=1

A′k

)1,0
C∞(Fq) ⊂ C∞(Fq−1)⊗�1,0,

(
D +

n∑
k=1

A′k

)0,1
C∞(Fq) ⊂ C∞(Fq)⊗�0,1.

Proof. Observe that the twisted one-form α1 is a Hodge type (0, 0) vector in a weight
zero HS. Since it is in G0 it follows that A′1 . F

q(Vn) ⊂ Fq(Vn ⊗ E1), i.e.

A′1 . F
q(Vn) ⊂ Fq ⊗�0,1

+ Fq−1
⊗�1,0.

Now, β2 is also a Hodge type (0, 0) vector in a weight 0 HS. Hence, γ2 is also a
Hodge type (−1,−1) vector in a weight −2 HS. Hence α2 is of Hodge type (0,−1) in
the weight−1 HS E1

⊗52. Hence α2 ∈ F0
∩G−1

(E1
⊗52). Since it is in F0 it follows

that A′2 . F
q(Vn) ⊂ Fq(Vn ⊗ E1).

Continuing this way, we see that αk is of Hodge type (0, 1− k) and(∑
A′k

)
. Fq(Vn) ⊂ Fq(Vn ⊗ E1).

This is Griffiths transversality. ut

3.2.5. The second filtration

Remark 3.12. D + (
∑n
k=1A

′

k) is not Griffiths antitransversal for the above definition
of G•.

So, we need to introduce the following variant of our basic construction:

Lemma 3.13. Let αv1 denote the twisted one-form α1 called by another name. For k ≥ 2,
we can construct a D′′-exact form αvk ∈ E

1
⊗5k such that

D′αvk + α
v
k−1α

v
1 + α

v
k−2α

v
2 + · · · + α

v
1α

v
k−1 = 0.

αvk is of Hodge type (1−k, 0) andD+A′′ = D+
∑
αvk satisfies Griffiths antitransversality

for the above G•.

In order to get a VMHS structure on ρT ,n one needs to prove the following proposition
where m stands for the maximal ideal in (ÔT /mn):

Proposition 3.14. There is a W•-preserving gauge transformation g and φ∗ ∈

Aut((ÔT /mn)) such that:

(1) g ∈ exp(E0
⊗m2), hence induces Id on Gr•W (Vn),

(2) (φ∗ : m/m2
→ m/m2) = Idm/m2 , hence IdVρ ⊗ φ

∗ preserves W• and induces Id on
Gr•W (Vn),

(3) D + A′′ = g(IdVρ ⊗ φ
∗)(D + A′)(IdVρ ⊗ φ

∗)−1g−1.
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Proof. Let us remark first that the automorphisms of (ÔT /mn) act on the group of gauge
transformations exp(E0

⊗ m) so that the group of filtered bundle automorphisms they
generate is isomorphic to the semidirect product deduced from this action.

Since A′1 = A1, the statement is obviously true for n = 1. Since αv2 = +
1
2D
′γ2, we

have αv2 − α2 = Dγ2. Then exp(±γ2) is the required gauge transformation for n = 2, in
which case we can still set φ∗ = Id. For larger n, we have not been able to get such an
explicit construction of the pair (g, φ∗).

In general, since A′ and A′′ come from a universal Maurer–Cartan element, this is a
consequence of the universality property given in Lemma 3.2. ut

Theorem 3.15. The filtered vector bundle (Vn,W•) with connection D +A′ constructed
in Proposition 3.10, Hodge filtration constructed in Lemma 3.11, and anti-Hodge filtra-
tion defined by transporting the anti-Hodge filtration constructed in Lemma 3.11 using
the bundle automorphism g(IdVρ ⊗ φ

∗) constructed in Proposition 3.14 gives rise to a
C-VMHS whose holonomy is the filtered representation ρT ,n.

Proof. Since the bundle automorphism contsructed in Proposition 3.14 induces the iden-
tity on Gr•W (Vn), the new Hodge filtration still defines on each stalk a C-VMHS thanks
to Lemma 1.5. Griffiths antitransversality is obtained by transport of structure from Lem-
ma 3.13. ut

This concludes the proof of Theorem 1.

Remark 3.16. In the real case, if one insists on using the definition that F• is the com-
plex conjugate of F•, one has to transport F• to a real model, for instance the model
given by (kerDc,D) using a real fundamental automorphism couple and a pair of conju-
gate gauge transformations.

Remark 3.17. In case H 0(X,End(Vρ)) 6= C Id, this VMHS is not uniquely defined,
since we may twist it by the action of the ambiguity group.

3.3. C-MHS on Ôρ

We may use the preceding construction and Lemma 1.5 to put a C-MHS on ÔT which
will be only defined up to the action of the ambiguity group Aut(T /Def (ρ)) constructed
in Lemma 2.14.

Since the reductive group H acts as a group of automorphisms of Vρ , the whole
construction is H -invariant [Rim80], which yields a uniquely defined C-MHS on OH

T

which is the ring of formal series at [ρ] in MB(X,GL(Vρ,x)).
To treat the case ofOρ|n, we need to introduce an augmented version of the preceding

construction.

3.3.1. Filtered Goldman–Millson theory. Consider the following situation: we are given
a nonnegatively graded dgla L with a decreasing filtrationG• such that d : GpL→ GpL

and [ , ] : GpL × GqL → Gp+qL. Let GrG(L) =
⊕
GpL/Gp+1L be the associated-

graded dgla. Suppose furthermore that we are given a finite-dimensional Lie algebra g
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and an augmentation ε : L0
→ g compatible with the Lie bracket. Suppose g is also

given a filtration denoted G•g, compatible with the Lie bracket, and ε is compatible with
the filtrations.

Suppose B is an artinian local algebra also provided with a decreasing filtration
denoted G•B compatible with the algebra structure GpB × GqA → Gp+qA, with
1B ∈ G0B. We assume that the filtration is exhaustive, that is, GpB = B for p � 0
and GpB = 0 for p � 0. Let mB denote the maximal ideal of B, which has its induced
filtration GpmB := GpB ∩mB .

Let exp(g⊗mB) denote the nilpotent Lie group associated to the nilpotent Lie algebra
g⊗mB .

An augmented Maurer–Cartan element is a pair (η, er) with

η ∈ L1
⊗C mB , d(η)+ 1

2 [η, η] = 0,

and er ∈ exp(g ⊗ mB). Let Obj DGM(L, ε;B) denote the space of augmented Maurer–
Cartan elements. An element (η, er) is compatible with the filtrations if η ∈ G0(L1

⊗mB)

and β ∈ exp(G0(g ⊗ mB)). Let Obj DGM(L, ε;B)G denote the subspace of elements
compatible with the filtration.

The group exp(L0
⊗ mB), with elements denoted es , acts as a group of gauge trans-

formations which acts on both components.
The group exp(G0(L0

⊗mB)) acts on Obj DGM(L, ε;B)G. Let

DGM(L, ε;B)G := [Obj DGM(L, ε;B)G/exp(G0(L0
⊗mB))]

denote the filtered Deligne–Goldman–Millson groupoid, the quotient groupoid of the
filtered-compatible space by the filtered gauge group.

Suppose K is another dgla, with filtration G•K and an augmentation ε towards the
same g. A filtered augmented quasiisomorphism from K to L is a morphism of dgla’s
ψ : K → L, compatible with the filtrations, making a commutative square with the
augmentations, and such that GrG(ψ) : GrG(K)→ GrG(L) is a quasiisomorphism.

The quasiisomorphism invariance of the Deligne–Goldman–Millson groupoid gener-
alizes here:

Proposition 3.18. Suppose ψ is a filtered augmented quasiisomorphism. Then the in-
duced map

DGM(K, ε;B)G
DGM(ψ;1B )
−−−−−−−→ DGM(L, ε;B)G

is an equivalence of groupoids.

Proof. Let M• be the filtration of mB by powers of mB . We can choose a common split-
ting mB =

⊕
V p,q for the two filtrations M• and G• on the vector space mB , not

necessarily compatible with the algebra structure. Thus Mk
=
⊕
p≥k V

p,q and Gr =⊕
q≥r V

p,q . The filtration M• induces filtrations going by the same name on K• ⊗ mB
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and L• ⊗mB . Furthermore, we can express the filtrations G• on these complexes as

Gr(L• ⊗mB) =
⊕
p,j

Gj (L•)⊗ V p,r−j ,

Gr(K• ⊗mB) =
⊕
p,j

Gj (K•)⊗ V p,r−j .

These expressions also give splittings for the filtrations M•. These expressions are com-
patible with the differential, but not with the bracket. However, the condition for a map
to be a filtered quasiisomorphism depends only on the differential. Thus, the morphism
K• ⊗mB → L• ⊗mB is a bifiltered quasiisomorphism with respect to the pair of filtra-
tions G•,M•. In particular, the morphism

G0(K• ⊗mB)→ G0(L• ⊗mB)

is a filtered quasiisomorphism for the filtration M•, and this filtration makes the bracket
nilpotent (that is, the bracket is trivial on the associated graded of M•). A similar discus-
sion holds for the filtrations on g⊗mB .

The groupoid in the filtered case DGM(K, ε;B)G is just the groupoid of Maurer–
Cartan elements in G0(K• ⊗mB) together with a framing in G0(g⊗mB), and the same
for L•. Using [GoMi88, Cor. 2.12 p. 59], we conclude that

DGM(K, ε;B)G
DGM(ψ;1B )
−−−−−−−→ DGM(L, ε;B)G

is an equivalence of groupoids. ut

On the other hand, if f : B → B ′ is a morphism of filtered artinian local algebras, we
obtain a morphism

DGM(L, ε;B)G
DGM(1L;f )
−−−−−−−→ DGM(L, ε;B ′)G.

Say that an element (η, er) ∈ Obj DGM(L, ε;B)G is an order k universal augmented
filtered Maurer–Cartan element if mk

B = 0 and, for any artinian local algebra with an ex-
haustive filtration (R,G•) such that mk

R = 0 the map f 7→ DGM(1L; f )(η, er) induces
an equivalence from the discrete groupoid of filtered algebra morphisms B → R to the
filtered DGM groupoid

Homfilt.alg((B,G
•), (R,G•))

∼
−→ DGM(L, ε;R)G.

Note in particular that this condition means that for any R the objects in the groupoid
DGM(L, ε;R) do not have nontrivial automorphisms.

Let us now develop a filtered analog of Proposition 2.4. We do not consider the general
question of representability of the filtered DGM groupoid functor. Probably, in the very
general case representability will not hold, so some conditions on the filtrations would be
necessary. In the case of interest to us, using filtered augmented quasiisomorphisms we
can reduce to a case where the filtration is decomposed, in which case it is easier to show
representability.
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We say that a filtered augmented dgla (L, ε,G•) is decomposed if there exists an ac-
tion of C∗ on the dgla L and an action on g such that the augmentation is compatible
with the action, and L and g decompose into eigenspaces for the action which split the
filtrations G•. Concretely this means that we are given isomorphisms L ∼= GrG(L) and
g ∼= GrG(g) which are compatible with the differential, the bracket, and the augmen-
tation. Denote by L(k) the subspace corresponding to GrkG(L) and similarly g(k). The
decomposition corresponds to the action of C∗ on (L, g, ε).

We can use the decomposition condition to show representability of the filtered DGM
groupoid functor.

Assume ε : H 0(L•) → g is injective. Choose a splitting δ compatible with the de-
compositions of L• and g•. We get an action of C∗ on the representing formal scheme
DGMδ(L, ε) constructed explicitly above. Let R be the complete local coordinate ring of
KurδL•,ε , with its universal Maurer–Cartan element η. From the construction, we see that
the action on R/mk

R is an algebraic action. Furthermore, the universal Maurer–Cartan
element η is compatible with these actions of C∗.

LetG• denote the filtration ofL• and g corresponding to the decomposition. Note that
d and ε are strictly compatible withG•. The decomposition ofR induces a filtration which
we also denote by G•, and the universal Maurer–Cartan element lies in DGM(L, ε;R)G.

Theorem 3.19. SupposeB is an artinian local algebra with an action of C∗, and suppose
ζ ∈ DGM(L, ε;B) is a Maurer–Cartan element fixed by C∗. Then the corresponding map
ν : R→ B and gauge transformation w between ν(η) and ζ , are fixed by C∗.

Suppose B is provided with a decreasing filtration G• and (η, er) ∈ DGM(L, ε;B)G

is a Maurer–Cartan element compatible with the filtration. Then the map ν : R→ B and
gauge transformation w are compatible with the filtrations.

Proof. IfB has a decomposition and (η, er) is a Maurer–Cartan element preserved by C∗,
then let es be the gauge transformation going from (η, er) to (ζ, ez) with δ(ζ ) = 0 and
δ(z) = 0. By unicity of s, we see that s, ζ and z are fixed by C∗. The (η, ez) give the
coordinates for the map ν : R→ B and s gives w, so ν and w are fixed by C∗.

Consider now the filtered case. The dgla at index 0 in the filtration can be expressed
as

G0(L• ⊗mB) =
⊕
j

L•(−j)⊗GjmB , G0(g⊗mB) =
⊕
j

g(−j)⊗GjmB .

The splitting δ is defined separately on each complexL•(−j) and g(−j), so it induces
a splitting of the dgla K• := G0(L• ⊗ mB) with Lie algebra h := G0(g ⊗ mB). Hence
the gauge fixing Lemma 2.4 can be applied to (K•, h).

Given a Maurer–Cartan element (η, er) ∈ DGM(L, ε;B)G, this means exactly that
we have a Maurer–Cartan element for (K•, h) so by Lemma 2.6 there is a unique gauge
transformation s ∈ K0

= G0(L0
⊗ mB) transforming (η, er) to a Maurer–Cartan el-

ement (ζ, ez) for (K•, h) with δ(ζ ) = 0 and δ(z) = 0. This new element is again
in DGM(L, ε;B)G, and it corresponds to a morphism ν : R → B which sends R(j)
to Gj (B). ut
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Remark 3.20. When finishing this paper, we realized that the C∗-invariant part of this
construction was actually done in [GiKa04].

Corollary 3.21. Suppose (L, ε,G•) is a filtered augmented dgla, with finite-dimensional
cohomology groups H i for i = 0, 1, 2. Suppose that ε : H 0L→ g is injective. Suppose
that (L, ε,G•) is filtered quasiisomorphic to a filtered augmented dgla which has a split-
ting of the filtration compatible with differential, bracket and augmentation.

Then for any k there exists a filtered artinian algebra R with mk
R = 0 and a k-th order

universal augmented Maurer–Cartan element (η, er) ∈ Obj DGM(L, ε;R)G compatible
with the filtration. In fact, R may also be split in the sense that there is an action of C∗
(or equivalently R ∼= Gr(B)) and (η, er) is compatible with the splitting; this splitting
depends on the choice of a filtered quasiisomorphism with a split dgla.

The universal object (R,G•; (η, er)) is unique up to a unique isomorphism and gauge
transformation. That is, if (R′,G•; (η′, er

′

)) is another universal element then there is an
isomorphism of filtered algebras ν : (R,G•) ∼= (R′,G•) and a gauge transformation
s ∈ exp(G0(L0

⊗mB ′)) such that es(ν(η)) = η′. The pair (ν, s) such that es(ν(η)) = η′

is unique.

Proof. For the split dgla, Theorem 3.19 provides the representability. By the invariance
statement of Proposition 3.18, this representing object works for the original L•, and
unicity comes from the universal property. ut

Corollary 3.22. LetR′ be an artinian algebra and (η, er) ∈ DGM(L•, ε;R) a k-th order
universal Maurer–Cartan element. Let (R,G•) be as in Corollary 3.21 and (η′, er

′

) a
filtered k-th order universal Maurer–Cartan element. Then there is a unique isomorphism
ν : R′ ∼= R and a unique gauge transformation ew going from ν(η′, er

′

) to (η, er). The
isomorphism ν induces a filtration G•R′ := ν(G•R) on R′.

Proof. Indeed, the splitting used to construct the universal filtered Maurer–Cartan ele-
ment is a splitting that can be used to construct a universal Maurer–Cartan element, the
construction being parallel. Hence the filtered Maurer–Cartan element is good enough to
serve as an ordinary Maurer–Cartan element. ut

However, the original universal element (η, er) is not necessarily compatible with the fil-
tration; we have existence of a gauge transformation ew such that ew ·(η, er) is compatible
with the filtration.

3.3.2. The mixed Hodge structure on the formal completion of the representation space.
We now wish to apply Proposition 1.7 to the case A = Oρ|n. Let us first define three
filtrations on this ring:

Definition 3.23. The weight filtration on Oρ|n is by powers of the ideal W−k = jk . The
Hodge filtration F comes from Corollary 3.22 applied to the Hodge filtration of the aug-
mented Goldman–Millson dgla (E•(X,End(Vρ)), εx) where the augmentation is evalua-
tion at x. The anti-Hodge filtration comes from the same construction.
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Theorem 3.24. These provide A = Oρ|n with a C-MHS which is unique up to a unique
isomorphism.

Proof. Let us check the conditions in Proposition 1.7.
Condition (1) comes from Goldman–Millson’s theorem (indeed, the product of a

quadratic cone with a vector space is again a quadratic cone).
For condition (2), note that V is the dual of the space of deformations of ρ

in R(X, x,G). This space of deformations is a relative cohomology group: V ∗ =
H 1((X, x),End(Vρ)). This has a mixed Hodge structure, which is exactly the one given
by the restrictions of the filtrations W,F,G above. There are only two weight quotients,
in degrees 0 and −1 for V or degrees 0 and 1 for V ∗.

For condition (3), note that the kernel is given by the obstruction map. Since End(Vρ)
has a Lie algebra structure which is antisymmetric, the multiplication H 1

×H 1
→ H 2 is

symmetric, that is,

Sym2(V ∗) = Sym2(H 1((X, x),End(Vρ)))→ H 2(X,End(Vρ)).

We do not include the basepoint x on the right because it does not affectH 2. The transpose
or dual of this map is

H 2(X,End(Vρ))∗→ Sym2(V )

and by Goldman–Millson’s theory, the kernel K as defined in the theorem is exactly the
image of this map. The map is a map of C-MHS (the target is even pure) so the image is
a sub-C-MHS, which is condition (3).

We just have to check condition (4). For F , the strictness is a consequence of the fact
that the Goldman–Millson formality isomorphism trivializes the Hodge filtration. In other
words, the C∗-action on the algebra of forms (ker(D′),D′′) gives a C∗-action on the local
ring Oρ|n inducing the filtration. The map µn preserves the decomposition, so it strictly
preserves the filtration.

The statement for G follows from the same argument. Finally, for W the statement
can be seen by using the GM isomorphism Spec(A) ∼= (�ρ × T )n. ut

Remark 3.25. This C-MHS on Oρ|n is uniquely defined and only depends on the base-
point x ∈ X.

3.4. The universal VMHS

Theorem 3.26. The universal representation ρn : π1(X, x) → GL(Vρ,x ⊗ Oρ|n) is the
monodromy of a Gr polarizable C-VMHS.

Remark 3.27. This VMHS is uniquely defined and only depends on the basepoint x ∈ X.

Proof. On the bundle Vρ ⊗ Oρ|n over X, we have filtrations sF , sG and sW coming
from the splitting of the Hodge decomposition on V , and the given filtrations on Oρ|n.
We also have a universal Maurer–Cartan element (η, er) where er can be viewed as a
framing at the point x ∈ X. However, the universal Maurer–Cartan element need not be
compatible with the filtrations. Hence, there are gauge transformations ef , eg and ew such
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that ef · (η, er) is compatible with sF , eg · (η, er) is compatible with sG, and ew · (η, er)
is compatible with sW . Define

F := e−f (sF ), G := e−g(sG), W := e−w(sW).

These give three filtrations on the bundle V ⊗Oρ|n. The connection ∇ + η is then com-
patible with these, in the sense of Griffiths transversality for F , antitransversality for G,
and preserves W (these are because of how the filtrations F , G and W were defined on
the algebra of forms). The action of Oρ|n preserves these filtrations, and it follows from
an analogue of the argument of the previous section that these filtrations define MHS’s at
each point; so we get a VMHS. Furthermore, the weight-graded pieces are polarizable.

ut

We conclude this section by stating two obvious properties of the above constructions.

Lemma 3.28. The natural maps Oρ|n+1 → Oρ|n are morphisms of mixed Hodge Artin
local rings.

Lemma 3.29. We have a morphism of mixed Hodge rings Oρ|n→ End(Vρn).

Remark 3.30. The construction is independent of the Kähler form and functorial under
morphisms (Y, y)→ (X, x).

In order to see this, one has to adapt the argument of Section 3.2 starting with the
obvious α1 which is the tensor corresponding to the natural map

H 1((X, x),End(Vρ))→ H1(X,End(Vρ))

given by composition of the Hodge isomorphism and the natural map

H 1((X, x),End(Vρ))→ H 1(X,End(Vρ)).

4. Representations in a reductive group G

We can generalize our work until now to the case of representations in a reductive groupG
defined over C.

Theorem 4.1. Let G be a reductive algebraic group defined over C. Let σ : 0 → G(C)
be a semisimple representation whose associated Higgs bundle is a fixed point of the
C∗-action on MDol(X,G) [Sim94].

Let R(0,G)/C be the affine scheme parametrizing the representations of 0 with val-
ues in G endowed with the action of G by conjugation. Let �̂σ be the formal germ at [σ ]
of the orbit of σ . There is a preferred isomorphism GMc : Spf (Ôσ ) → �̂σ × T where
T is the formal germ at the origin of the homogeneous quadratic cone attached to the
Goldman–Millson obstruction map

S2H 1(X, adσ )→ H 2(X, adσ ).
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Let Ôσ be the complete local algebra of R(0,G) at σ . Then Ôσ /mn carries a functo-
rial C-MHS whose weight filtration comes from the powers of the ideal defining the orbit
of σ .

Let α be a rational representation of G with values in GLN and let σn : 0 →
G(ÔT /mn) be the tautological representation defined in terms of GMc. Denote by Vα,σ
the local system of (ÔT /mn) free modules on X attached to the representation α ◦ σ :
0→ GLN (ÔT /mn).

The C-local system underlying Vα,σ is the holonomy of a graded polarizable VMHS
whose weight filtration is given by

W−kVα,σ = mk . Vα,σ , k = 0, . . . , n.

To prove Theorem 4.1, we spell out the differences between this more general case and
the case G = GLn treated in Theorem 1.

LetE be the real Zariski closure of the monodromy group of σ . This is a real reductive
subgroup of G(C) viewed as a real reductive group. E is also of Hodge type [Sim92].

Recall that a real reductive algebraic group E is said to be of Hodge type if there is a
morphism of real algebraic groups h : U(1) → Aut(E) such that h(−1) is a Cartan in-
volution of E (see [Sim92, p. 46]). By definition, h is a Hodge structure on E. Connected
groups of Hodge type are precisely those admitting an isotropic Cartan subgroup.

Consider a finite-dimensional complex representation of E, α : E→ GL(VC).

Lemma 4.2. ker(α) is fixed by h.

Proof. By [Sim92, p. 63, proof of Lemma 5.5] there is a morphism of real algebraic
groups z : U(1)→ E and an isogeny π : U(1)→ U(1) such that ad(z) = h(π(z)). Let
z′, z ∈ U(1) be such that π(z) = z′. Then h(z′) = ad(z). Hence h(z′) . g ∈ ker(α) iff
zgz−1

∈ ker(α) iff g ∈ ker(α). ut

By [Sim92, Lemma 5.5], VC inherits a pure polarizable Hodge structure of weight zero
and α is a Hodge representation in the sense of [Sim92, Lemma 5.6]. Hence, the local
system attached to α ◦ σ underlies a polarized C-VHS. There is no uniqueness since the
polarization is not uniquely defined and the Hodge filtration can be shifted by an integer
depending on each irreducible component of α.

The adjoint representation of G(C) restricted to E gives rise to a C-VHS on X of
weight zero which we call adσ . If we keep track of the real structures then we can elimi-
nate the shift of the Hodge filtration as a source of nonuniqueness but not the polarization.

Then, we can rewrite the construction of Subsection 2.2 replacing GLN by G, using
the new definition for H • and E• given by H • = H •(X, adσ ) and E• = E•(X, adσ ) and
the new augmentation with values in g defined by evaluation at x.

To adapt Subsection 2.3, we use the fact that p = [−;−] : S2H 1(X, adσ ) →
H 2(X, adσ ) respects the Hodge structure to deduce that

I2 = Im(pt : H 2(X, adσ )∗→ S2H 1(X, adσ )∗)

is a weight −2 C-HS. Hence,

In = I2S
n−2H 1(X, adσ )∗ ⊂ SnH 1(X, adσ )∗
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is a weight −n sub-C-Hodge structure. Hence,

5n = S
nH 1(X, adσ )∗/In

is a weight−n C-HS and the algebra SH2 :=
∑
n∈N5n viewed as an infinite-dimensional

split C-MHS is naturally endowed with an algebra structure respecting the MHS. The
weight filtration is exactlyW−nSH2 = mn

2 since m2 =
∑
n>05n is a maximal ideal of the

complete local algebra SH2 , and 51 generates m2. Thus we have Ôσ ' SH2 .
Section 3.2 is also easily adapted by using a basis of H1(X, adσ ) in place of a basis

ofH1(X,End(Vρ)) in Lemma 3.3 and the rest of the argument goes through without any
difficulty.

In particular, we can put yet another MHS on the Artin local ring Ôσ |n which corre-
sponds to the n-th infinitesimal neighborhood of σ and whose weight filtration is given
by the powers of the ideal defining the orbit of σ . We can also interpret the universal
representation π1(X, x)→ G(Ôσ |n) as the monodromy of a Gr polarizable C-VMHS.

This concludes the proof of Theorem 4.1.

There are several natural properties of the present construction that we have not fully
developed yet. For instance, the MHS on Ôσ |n is likely to vary in a C-VMHS when x
varies. We hope to understand this in a future work which should at the same time make
a comparison with [Ha98].
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[Del75] Deligne, P.: Théorie de Hodge, III. Publ. Math. IHES 44, 6–77 (1975) Zbl 0237.14003
MR 0498552

[D-S75] Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: The real homotopy theory of Kähler
manifolds. Invent. Math. 29, 245–274 (1975) Zbl 0312.55011 MR 0382702

[E-R09] Eyssidieux, P., Katzarkov, L., Pantev, T., Ramachandran, M.: Linear Shafarevich con-
jecture. arxiv/math:0904.0693 (2009)

[Fuj91] Fujiki, A.: Hyperkähler structure on the moduli space of flat bundles. In: Prospects in
Complex Geometry (Katata, 1989), Lecture Notes in Math. 1468, Springer, 1–83 (1991)
Zbl 0749.32011 MR 1123536

[GiKa04] Ginzburg, V., Kaledin, D.: Poisson deformation of symplectic quotient singularities.
Adv. Math. 186, 1–57 (2004) Zbl 1062.53074 MR 2065506

[GoMi88] Goldman, W., Millson, J.: The deformation theory of representations of funda-
mental groups of compact Kähler manifolds. Publ. Math. IHES 67, 43–96 (1988)
Zbl 0678.53059 MR 0972343

[GoMi90] Goldman, W., Millson, J.: The homotopy invariance of the Kuranishi space. Illinois
J. Math. 34, 337–367 (1990) Zbl 0707.32004 MR 1046568

[Ha87] Hain, R.: The de Rham homotopy theory of complex algebraic varieties, I. K-theory 1,
271–324 (1987) Zbl 0637.55006 MR 0908993

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0219.14007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0498551
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0237.14003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0498552
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0312.55011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0382702
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0749.32011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1123536
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1062.53074&format=complete
http://www.ams.org/mathscinet-getitem?mr=2065506
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0678.53059&format=complete
http://www.ams.org/mathscinet-getitem?mr=0972343
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0707.32004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1046568
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0637.55006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0908993


1798 Philippe Eyssidieux, Carlos Simpson

[Ha98] Hain, R.: The Hodge de Rham theory of relative Malcev completion. Ann. Sci. École
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