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Abstract. We study the geometry of D-bundles—locally projective D-modules—on algebraic
curves, and apply them to the study of integrable hierarchies, specifically the multicomponent
Kadomtsev–Petviashvili (KP) and spin Calogero–Moser (CM) hierarchies. We show that KP hi-
erarchies have a geometric description as flows on moduli spaces of D-bundles; in particular, we
prove that the local structure of D-bundles is captured by the full Sato Grassmannian. The rational,
trigonometric, and elliptic solutions of KP are therefore captured by D-bundles on cubic curves E,
that is, irreducible (smooth, nodal, or cuspidal) curves of arithmetic genus 1. We develop a Fourier–
Mukai transform describing D-modules on cubic curves E in terms of (complexes of) sheaves on a
twisted cotangent bundle E\ over E. We then apply this transform to classify D-bundles on cubic
curves, identifying their moduli spaces with phase spaces of general CM particle systems (realized
through the geometry of spectral curves in E\). Moreover, it is immediate from the geometric con-
struction that the flows of the KP and CM hierarchies are thereby identified and that the poles of the
KP solutions are identified with the positions of the CM particles. This provides a geometric expla-
nation of a much-explored, puzzling phenomenon of the theory of integrable systems: the poles of
meromorphic solutions to KP soliton equations move according to CM particle systems.
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1. Introduction

We study the geometry of D-bundles—locally projective D-modules—on algebraic
curves, and apply them to the study of integrable hierarchies, specifically the multicom-
ponent Kadomtsev–Petviashvili (KP) and spin Calogero–Moser (CM) hierarchies. We
show that KP hierarchies have a geometric description as flows on moduli spaces of D-
bundles; in particular, we prove that the local structure ofD-bundles is captured by the full
Sato Grassmannian. The rational, trigonometric, and elliptic solutions of KP are therefore
captured by D-bundles on cubic curves E, that is, irreducible (smooth, nodal, or cus-
pidal) curves of arithmetic genus 1. We develop a Fourier–Mukai transform describing
D-modules on cubic curves E in terms of (complexes of) sheaves on a twisted cotangent
bundle E\ over E. We then apply this transform to classify D-bundles on cubic curves,
identifying their moduli spaces with phase spaces of general CM particle systems (real-
ized through the geometry of spectral curves in E\). Moreover, it is immediate from the
geometric construction that the flows of the KP and CM hierarchies are thereby identified
and that the poles of the KP solutions are identified with the positions of the CM particles.
This provides a geometric explanation of a much explored, puzzling phenomenon of the
theory of integrable systems: the poles of meromorphic solutions to KP soliton equations
move according to CM particle systems.
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1.1. A brief history of the KP/CM correspondence

We begin with a rough sketch of the history of the problem in integrable systems that
motivated the present work—see the review articles [Be, GW] for more complete histories
and bibliographies. Also, an exposition of the present work appears in [BN2], together
with a leisurely historical discussion and overview.

In the seminal work [AMM], Airault, McKean, and Moser wrote down rational,
trigonometric, and elliptic solutions of the Korteweg–deVries equation and discovered
that the motion of their poles is governed by the Calogero–Moser classical many-body
systems of particles on the line, cylinder, and torus (respectively) with inverse-square
potentials. Krichever [Kr1, Kr2] and the Chudnovskys [CC] extended this correspondence
to the meromorphic solutions of the KP equation, where it becomes an isomorphism
between the phase spaces of generic rational (decaying at infinity), trigonometric, and
elliptic KP solitons and the corresponding Calogero–Moser systems. In fact, Krichever
wrote the elliptic CM systems in Lax form with elliptic spectral parameter and showed
that the generic elliptic KP solutions are algebro-geometric solutions associated to
line bundles on the corresponding branched covers of elliptic curves. This approach is
extended in [Kr3], where the elliptic CM systems are considered as part of a general
Hamiltonian theory of Lax operators on algebraic curves, and [AKV], where this field
analog of the elliptic CM system is related to the KP hierarchy. A detailed algebro-
geometric study of the CM spectral curves, as geometric phase spaces for the elliptic
KP/CM systems, was undertaken by Treibich and Verdier [TV1, TV2] and lead, in
particular, to a complete classification of elliptic solutions of the Korteweg–deVries
(KdV) equation.

The rational KP/CM correspondence was explored and deepened by Shiota [Shi] and,
especially, by Wilson [W2] (see [W4] for a review). Shiota identified all the higher flows
of the KP hierarchy on generic rational solutions with the higher Hamiltonians of the
rational CM particles. Wilson extended the correspondence away from generic solutions
by allowing collisions of Calogero–Moser particles. In [W1], Wilson had identified the
completed phase space of the rational KP hierarchy with an adelic Grassmannian (which
appears independently in the work of Cannings and Holland [CH1] classifying ideals in
the Weyl algebra of differential operators on the affine line). In [W2], Wilson gives an
explicit formula that defines a point of the adelic Grassmannian from the linear algebra
data describing the rational CM space. He then proves by direct calculations that this map
extends continuously to the completed phase spaces and takes the CM flows to the KP
flows.

The emergent relation between CM spaces and the Weyl algebra was explored in
the papers [BW1, BW2] by Berest and Wilson and extended in [BGK1, BGK2] by Bara-
novsky, Ginzburg, and Kuznetsov. Inspired by ideas of Le Bruyn [LB], these authors used
noncommutative geometry to identify the rational CM space (and its spin versions) with
the isomorphism classes of ideals in (and generally torsion-free modules over) the Weyl
algebra, and thus with Hilbert schemes of points on a noncommutative surface (see also
[NS]). This is closely related to the study of noncommutative instantons on C2 (see, for
example, [NeS, KKO, BrNe]).
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An independent development of great significance for the present project was the
work of Nakayashiki and Rothstein [N1, N2, Ro1] and especially [Ro2]. In these works,
the Fourier–Mukai transform on Jacobians of smooth curves is applied to construct D-
modules and, through Sato’s D-module description of the KP hierarchy, to describe the
Krichever construction of KP solutions from line bundles on the curve.

In this paper, we provide a direct relation between arbitrary meromorphic (rational,
trigonometric, and elliptic) solutions of KP (and its multicomponent generalization) and
the noncommutative geometry of modules over differential operators. We show that this
geometric description of the KP hierarchy is directly identified, through a Fourier–Mukai
transform, with the geometric description of the completed (spin generalizations of the)
Calogero–Moser systems. This provides a uniform conceptual description of the KP/CM
correspondence in its most general setting.

We now describe the contents of the present paper in detail.

1.2. Background

In Section 2.1, we include a brief reminder on our backdrop, the family of Weierstrass cu-
bic curves. These fall into three types, which parallel the three flavors of many-body sys-
tems: smooth elliptic curves (the elliptic case), the projective line with one node (trigono-
metric case), and the projective line with one cusp (rational case). All the constructions
of this paper work over the universal family of cubic curves; however, for readability, we
usually work over individual cubic curves. Over each such curve E, we consider a ruled
surface E\, with a section E∞ whose complement is the (unique nontrivial) affine bundle
E\ over E. In the elliptic case, E\ can be described alternatively as the universal additive
extension of E, as the space of line bundles with flat connections, or as the home of the
Weierstrass ζ -function.

In Section 2.2, we discuss the spin CM particle systems associated to cubic curves
following [BN3] (see also the overview [Ne2]). These are Hamiltonian systems describing
a system of n particles living in (the smooth part of) E and completed so as to allow
collisions of particles. The usual spin CM particles carry spins in an auxiliary vector
space Ck . We consider a more general version, in which the spins take value in a length
k torsion sheaf T on (the smooth locus of) E; the usual setting corresponds to T being a
length k skyscraper at the marked point of E. We present the general spin CM systems
in “geometric action-angle” variables, that is, in terms of line bundles on spectral curves.
More precisely, in [BN3] it is shown (following in the spinless case the works [Kr2,
TV2, DW, GN, Ne1], among others) that the phase spaces of the generalized spin CM
systems are identified with spaces of torsion-free sheaves supported on curves in E\ (the
CM spectral sheaves). The relation between the particle and spectral curve descriptions
is given by a Fourier transform. Specifically, the positions of CM particles are recovered
from the spectral curve description as the finite support of the Fourier–Mukai transform
of the projection to E of the spectral sheaf. The CM Hamiltonian flows are explicitly
identified with a hierarchy of flows that preserve the curve and “tweak” the sheaves along
the intersection with the curve E∞ ⊂ E\.
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In fact, we may tweak sheaves by arbitrary meromorphic endomorphisms near the
curve E∞, giving rise to a natural Lie algebroid acting on CM spectral sheaves, the CM
algebroid. For generic framings—for example, in the spinless case T = Ob)—these en-
domorphisms consist of several copies of the Lie algebra of Laurent series, so we get
several commuting hierarchies of flows (whose labeling depends on a choice of coordi-
nate on the spectral curve). In general, the algebroid is isomorphic to a sum of several
twisted loop algebras Lglk corresponding to the rank of a sheaf on the components of its
support. To give names to our flows, we may “Higgs” our spectral sheaves by picking
a distinguished such endomorphism, breaking down the symmetry to give a commuting
family of flows. Higgsed spectral sheaves carry a family of flows labeled by natural num-
bers, corresponding to tweaking the sheaf by powers of the endomorphism. We refer to
this enhancement as the “Higgsed CM hierarchy.”

In Section 2.3, we review the multicomponent generalizations of the KP hierarchy, in-
cluding their definition as flows on formal matrix-valued microdifferential Lax operators,
and Sato’s description as flows on the big cell of an infinite-dimensional Grassmannian.
In particular, we are interested in Sato’s reinterpretation of KP wave operators in terms
of the free modules they generate over the ring D of differential operators with Taylor
series coefficients (that is, as D-modules on the disc). Sato thereby identifies the big cell
of the Grassmannian with freeD-modules embedded in the algebra E of microdifferential
operators with Taylor coefficients.

1.3. D-bundles

In Section 3, we introduce D-bundles on smooth algebraic curves X (and their natural
extension to the case of cubic curves). A D-bundle is a torsion-free module over the
sheaf of differential operators on a curve. Examples include locally free D-modules
(V ⊗ DX for a vector bundle V on X), but also ideals in the Weyl algebra DA1 , and
have been extensively studied in [CH1, BW2, BGK1, BGK2, BN1], among others. It is
convenient to consider D-bundles from the point of view of noncommutative geometry,
as torsion-free coherent sheaves on a noncommutative affine bundle T ∗~X over X. For
the point of view of moduli problems, it is clearly better to consider torsion-free sheaves
on a noncommutative ruled surface T ∗~X = T

∗

~X∪X, which are the framed D-bundles.
For a vector bundle V on X, a V -framed D-bundle is a torsion-free sheaf on T ∗~X
whose restriction to the curve X at infinity is identified with V . The resulting moduli
spaces give deformations of Hilbert schemes of points on T ∗X (in rank 1) and of
more general moduli of framed torsion-free sheaves; they may be considered algebraic
analogs of spaces of noncommutative instantons (see, e.g., [KKO, BrNe]). See Section
3 for precise algebraic definitions in terms of D-modules equipped with normalized
filtrations.

We state our central result on D-bundles on cubic curves (Theorem 3.4) in Section
3.2 but defer the proof to Section 5, after we have studied the Fourier–Mukai transform.
The theorem identifies the moduli spaces of D-bundles with the phase spaces of the cor-
responding Calogero–Moser systems, via a generalized Fourier–Mukai transform. Fix a
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cubic curve E and a semistable degree zero vector bundle V on E, which corresponds
under the Fourier–Mukai transform to a torsion sheaf V ∨ supported on the smooth locus
of E.

Theorem 1.1 (Theorem 5.1). The moduli stack BunP(D)(E, V ) of V -framed D-bundles
on a cubic curve is isomorphic to the V ∨-framed spin Calogero–Moser phase space
CMn(E, V

∨). The isomorphism identifies the cusps of a D-bundle with the positions
of the corresponding Calogero–Moser particles.

Note that the usual spin Calogero–Moser spaces are obtained in the case of trivial framing
V = OkE , V ∨ = Okb .

The rank 1 case of this theorem recovers the identification of the space of ideals in
the Weyl algebra with the rational CM space [BW2]. It also refines the separation of
variables of [GNR], giving a birational identification between (spinless) Calogero–Moser
spaces and Hilbert schemes of points, by identifying the full CM spaces with deformed
Hilbert schemes of noncommutative points. Also, our description of this identification
as a Fourier–Mukai transform establishes the speculation of [GNR] that separation of
variables is a T-duality.

In Section 3.3, we relate D-bundles on arbitrary curves to Wilson’s adelic Grassman-
nian [W2]. We show that, in parallel to the situation for framed torsion-free sheaves on a
ruled surface, framed D-bundles on any curve have a canonical trivialization away from
a finite subset of the curve, the cusps of the D-bundle (named following [CH2, BN1]).
Wilson’s adelic Grassmannian can be identified, following Cannings and Holland [CH2]
(see also [BW1, BGK1, BN1]), with the moduli space of (unframed) D-bundles with
generic trivialization (in Wilson’s spinless settings, these are rank 1 D-bundles, while we
consider ones of arbitrary rank). Thus the canonical trivialization off cusps defines maps
from our moduli spaces of framed D-bundles to the adelic Grassmannians. These maps
give a set theoretic decomposition of the adelic Grassmannians into finite-dimensional
moduli spaces. The relevant “topologies,” i.e. notions of families of D-modules, are very
different, so that the different moduli ofD-bundles become connected in the adelic Grass-
mannian. The results of Section 3.3 generalize those of [W2, BW1, BW2, BGK1, BGK2]
on adelic Grassmannians and D-modules while giving precise algebraic meaning to Wil-
son’s set-theoretic decomposition of the rational rank 1 Grassmannian into Calogero–
Moser spaces. Using the Cannings–Holland–inspired interpretation of D-bundles on X
as coherent sheaves on cuspidal curves normalized by X, we thus also obtain a construc-
tion of solutions of multicomponent KP hierarchies (orbits in the Sato Grassmannian)
from D-bundles.

1.4. D-bundles and KP hierarchies

In Section 3.4, we relate the local structure of D-bundles to the KP hierarchy. We gen-
eralize Sato’s description of the big cell of the Grassmannian to a description of the full
Grassmannian by replacing the free D-modules in his construction by D-bundles:
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Theorem 1.2 (Theorem 6.5). The rank n Sato Grassmannian is isomorphic to the mod-
uli space of rank nD-bundlesM on the disc equipped with an isomorphismM⊗DE→En
of the microlocalization with the free rank n module over microdifferential operators E
on the disc.

Equivalently, the Grassmannian parametrizesD-lattices, which are torsion-free finite rank
D-submodules of En which generate En.1 This construction is interpreted as a noncom-
mutative version of the Krichever construction, where we replace line bundles on a curve
trivialized near a point by D-line bundles on the disc with a microlocal trivialization and
obtain in this way the full Sato Grassmannian.

The D-bundle description of the Sato Grassmannian also gives rise to a geometric re-
formulation of KP Lax operators, the micro-opers, introduced in Section 3.5. Micro-opers
are D-bundles equipped with a microlocal endomorphism, which may be considered as
a flat connection, satisfying a strong form of Griffiths transversality. A micro-oper on a
curve X canonically determines (and is determined by) a matrix Lax operator away from
the cusps of the underlying D-bundle. In other words, the cusps of a D-bundle provide a
natural geometric description of the poles of matrix KP Lax operators. Thus, micro-opers
are perfectly suited for the study of meromorphic solutions of multicomponent KP hier-
archies, which are our primary motivation. Micro-opers are the analogs for the setting of
(multicomponent) KP equations of the opers of Beilinson–Drinfeld [BD3], or more pre-
cisely of the affine opers of [BF], for the setting of Drinfeld–Sokolov (generalized KdV)
equations.

Micro-opers carry a hierarchy of flows that express the KP hierarchy on Lax opera-
tors on the disc. The flows are simply given by modifying (the transition functions of) the
underlying D-bundle by powers of the microlocal endomorphism. These flows are part
of a natural Lie algebroid on the space of D-bundles, the KP algebroid. This algebroid
consists of microlocal deformations of D-bundles, that is, deformations coming from en-
domorphisms of their microlocalizations, acting by deforming “transition functions along
the curve at infinity.” Thus a micro-oper structure on a D-bundle can be considered as a
choice of element of this Lie algebroid, with fixed polar part at E∞.

It is immediate from the construction of the Fourier–Mukai identification between
D-bundles and CM spectral sheaves that the corresponding Lie algebroids are identified.
Informally, the Fourier–Mukai transform identifies the (commutative and noncommuta-
tive) ruled surfaces on which CM spectral sheaves and D-bundles live, and respects the
sections at infinity. Since both hierarchies are given by modifying sheaves along the re-
spective sections at infinity, the CM and KP flows are intertwined by the Fourier–Mukai
transform.

Theorem 1.3 (Theorem 3.25). Let F : BunP(D)(E, V ) → CMn(E, V
∨) denote the

Fourier–Mukai isomorphism of framed D-bundles and framed CM spectral sheaves.

(1) F identifies the KP Lie algebroid with the CM Lie algebroid.

1 In fact, in Section 6 we prove a precise algebraic statement showing that Sato’s Grassmannian
represents an appropriate functor of flat families of D-modules.



1512 David Ben-Zvi, Thomas Nevins

(2) F lifts to an isomorphism of the moduli stack of V -framed micro-opers with the moduli
stack of V ∨-framed Higgsed CM spectral sheaves, identifying the multicomponent
KP hierarchy on micro-opers with the Higgsed CM hierarchy.

In the rank one case this theorem gives a strong form of the correspondence between CM
particles and meromorphic KP solutions:

Corollary 1.4 (Rank one reformulation). The completed phase spaces of the rational,
trigonometric, and elliptic (spinless) Calogero–Moser systems are identified with the
moduli spaces of rational, trigonometric, and elliptic (rank one) KP Lax operators (taken
up to change of coordinate in ∂−1). This isomorphism identifies poles of Lax operators
with positions of Calogero–Moser particles and identifies the KP and CM hierarchies.

To paraphrase, the tweaking flows on CM spectral sheaves are simply the expression in
action-angle coordinates of the matrix KP hierarchy. The location of the CM particles and
the poles of the matrix Lax operator are both described by the cusps of a D-bundle, and
all multicomponent KP flows are described spectrally by different tweakings of spectral
sheaves near the curve E∞. For generic framings, in particular in the rank 1 case, these
flows form a commuting family that is identified with Laurent series on the spectral curve
near its intersection(s) with E∞.2 In other situations, the possible flows form a noncom-
muting family, although by choosing a micro-oper or Higgs structure we pick out abelian
subalgebras of flows. This choice parallels the well-known dependence of matrix KP or
Drinfeld–Sokolov hierarchies on choices of Heisenberg subalgebras of loop groups.

This theorem demystifies and generalizes the results of [AMM, CC, Kr1, Kr2, TV1,
TV2, Shi, W2, BBKT, T1] on the relation between CM particles (and their collisions)
and the meromorphic solutions of KP. In particular, the theorem extends the results of
Wilson [W2] in two directions: over the family of cubic curves (that is, to the trigono-
metric and elliptic cases), and to higher rank (multicomponent/spin setting, as predicted
in [W2, W4] in the rational trivially framed case). In particular, in the higher rank case
we have the choice of framing V , with the trivial case V = Ok corresponding to the
ordinary spin CM system, but other framings correspond to integrable systems with very
different geometry and dynamics—in fact, generic framings V give rise to a much simpler
(abelian) hierarchy.

It is interesting to note that we now have (even in the rank 1 case) two independent
relations between D-bundles and KP solutions—our construction involving micro-opers
and the original construction of Wilson [W2] and [CH2], whereby the adelic Grassman-
nian on a curve X parametrizes Krichever data for algebro-geometric solutions of KP
associated to X together with all of its cuspidal quotients (curves obtained by adding
cusps to X). While there is no general relation between the two constructions, in genus
zero (where Wilson was working) they are identified by the geometric Fourier transform
on A1 (the natural auto-equivalence of D-modules on A1 exchanging multiplication and
differentiation). In other words, the geometric Fourier transform induces a self-map of

2 In other words, the choice of micro-oper structure or Higgsing is unique up to formal changes
of coordinates in ∂−1 or equivalently on the spectral curve.
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the appropriate moduli of D-bundles on A1 that exchanges the KP algebroid (microlocal
deformations of D-bundles, near “∂−1

= 0”) with the algebroid deforming D-bundles
near z−1

= 0. This gives a simple geometric explanation of (and multicomponent gen-
eralization of) the bispectral involution on rational solutions of KP, studied in detail in
[W1, BW1] (see Section 3.6.2). We plan to apply this point of view further in the less-
explored setting of difference modules.

1.5. Fourier transform and moduli of D-bundles

In Section 4, we recall the Fourier–Mukai autoequivalence of the bounded derived cate-
gory of coherent sheaves on a cubic curve [BuK]. In Section 4.3, we extend to singular
cubic curves the Fourier–Mukai transform for D-modules, discovered by Laumon [La]
and Rothstein [Ro2] for abelian varieties (and extended by Polishchuk and Rothstein
[PRo] to general D-algebras). Namely, the Fourier–Mukai transform on a cubic curve
identifies D-modules with (complexes of) coherent sheaves on the surface E\ → E, the
“twisted log cotangent bundle” of E:
Theorem 1.5 (Theorem 4.12). The bounded derived category of coherent Dlog-modules
on a cubic curve E is equivalent to the bounded derived category of coherent sheaves
on E\.

We also show, following [PRo], that this Fourier transform “compactifies,” identifying the
derived category of modules over the Rees algebra of D (coherent sheaves on the non-
commutative ruled surface T ∗~E) with that of coherent sheaves on the ruled surface E\,
and respects microlocalization (restriction near E∞).

In Section 5, the technical heart of the paper, we apply the Fourier–Mukai transform
to prove Theorem 1.1, describing the moduli spaces ofD-bundles on E which are framed
by a semistable vector bundle V on E of degree zero. Let V ∨ denote the torsion coherent
sheaf on E Fourier dual to V . We show that V -framed D-bundles are sent by the Fourier
transform to coherent sheaves on E\ (rather than complexes), of pure 1-dimensional sup-
port, whose restriction to the curve E∞ ⊂ E\ is identified with V ∨. More precisely, we
establish an equivalence of the corresponding moduli stacks. In the cuspidal case, the
moduli spaces of spectral sheaves are the rational spin Calogero–Moser spaces, which
are identified with certain Nakajima quiver varieties. In this case, our result recovers the
theorems of [BW2] classifying ideals in the Weyl algebra (and more general framed D-
bundles on A1) in terms of quiver data.

In Section 6, we prove Theorem 1.2, establishing that the Sato Grassmannian repre-
sents the functor of flat families of D-lattices on the disc, which are finitely-generated
D-submodules of the ring of microdifferential operators on the disc. This extends Sato’s
description of the big cell and refines it from a set-theoretic to a scheme-theoretic state-
ment (i.e., to families).

Finally, in Section 7, we carefully explain some technical aspects of D-bundles on
(possibly singular) cubic curves. More precisely, we discuss the sheaf Dlog of “loga-
rithmic” differential operators on a cubic curve E, which is generated by the invariant
vector field for the group structure on the smooth part of E. We also discuss filtered
Dlog-modules and their properties.
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1.6. Further directions

In [BN6], we extend the picture developed in this paper by replacing differential opera-
tors by difference operators. We describe the nonabelian Toda lattice hierarchies in terms
of difference modules, in particular realizing meromorphic (rational, trigonometric, and
elliptic) solutions in terms of difference modules on cubic curves. A modified version
of the Fourier–Mukai transform then identifies the moduli spaces of difference modules
with spaces of spectral sheaves on a ruled surface over the corresponding cubic curves.
These spectral sheaves realize the (generalized spin) Ruijsenaars–Schneiders (RS) rela-
tivistic many-body systems, which are deformations of the corresponding CM systems.
This gives a general geometric picture of the Toda/RS correspondence [KrZ]. This point
of view also has applications to the difference version of bispectrality.

In [BN5], we study the factorization (or “vertex algebra space”) structure [BD2] on
the adelic Grassmannian. This structure is shown to encapsulate both (infinitesimally) the
W1+∞-symmetry of the KP hierarchy and (globally) the Bäcklund transformations.

In [BN4], we develop a simple algebraic description ofD-bundles on arbitrary curves,
which generalizes the quiver description of Calogero–Moser spaces (the A1 case). We use
Koszul duality to describe moduli spaces of D-modules on curves as twisted cotangent
bundles to moduli of complexes of sheaves on the curve, extending the relation between
vector bundles with connections and Higgs bundles. The resulting picture of D-bundles
has the advantage of being concrete, local, and functorial.

1.7. Contents

We will now describe the contents of the paper section by section. Section 2 recollects
some necessary background material. Section 3 is the heart of the paper, containing the
main results on D-bundles and their application to the KP/CM correspondence. Sections
4 through 7 contain the technical tools used in Section 3. Specifically, Section 4 discusses
the main tool, the extended Fourier–Mukai transform for D-modules on cubic curves.
Section 5 applies this transform to prove an isomorphism of moduli stacks of D-bundles
and spectral sheaves. Section 6 provides the proof for the D-bundle description of the
Sato Grassmannian. Finally Section 7 is an appendix containing needed material about
differential operators and D-algebras on cubic curves.

2. Background material

In this section, we review some features of the geometry of cubic curves, describe the
spin Calogero–Moser systems, and review the multicomponent KP hierarchies.

2.1. Background on cubic curves

2.1.1. One-dimensional groups and cubic curves. Connected one-dimensional complex
groups G fall into three classes: the additive group C, the multiplicative group C×, and
the one-parameter family of elliptic curves. These cases fall under the monikers rational,
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trigonometric, and elliptic according to the type of functions on the universal cover C
which correspond to meromorphic functions on G.

A parallel classification applies to reduced and irreducible cubic plane curves, which
we will also call (slightly abusively) Weierstrass cubic curves: reduced and irreducible
complex projective curves E of arithmetic genus one with a nonsingular marked point
b ∈ E. (See [FM2] for a detailed discussion of cubic curves and bundles on them.)
The map q 7→ O(q − b) defines an isomorphism from the smooth locus of E to the
Jacobian Pic0(E); in particular, the smooth locus, which we denote by G, is equipped
with a structure of one-dimensional group, with b as the identity element. The three types
are then:

Rational:E is a cuspidal cubic, and is isomorphic to the curve y2
= x3. Its normalization

P1
→ E collapses 2 · ∞ to a cusp on E, and defines a group structure C = G ⊂ E

on the smooth locus.

Trigonometric: E is a nodal cubic, and is isomorphic to the curve y2
= x2(x − 1). Its

normalization P1
→ E identifies two points 0 and∞ to a node on E, and defines a

group structure C× = G ⊂ E on the smooth locus.

Elliptic: E is a smooth elliptic curve (in particular a group), and may be described by an
equation of the form y2

= x3
+ ax + b with 1 = −16(4a3

+ 27b2) 6= 0.

Let∞ denote the singular point in the rational and trigonometric cases. Then E is identi-
fied with its own compactified Jacobian, the moduli space of torsion free sheaves of rank
one and degree zero on E. The singular point corresponds to the unique rank 1 degree 0
torsion-free sheaf which is not locally free, namely the modification m∞(b) of the ideal
sheaf of∞.

2.1.2. Differential operators on cubic curves. The group variety G acts on E ∼= Jac(E),
and admits a unique nonzero invariant vector field ∂ on E up to a scalar. If E is smooth
this is the usual translation-invariant vector field, which is constant in a global analytic
coordinate. Writing the singular cubics in terms of their normalization P1, a choice of ∂
is represented by ∂/∂z in the cuspidal case (vanishing to order 2 at∞ ∈ P1) and by z ∂

∂z
in the nodal case (vanishing to order one at 0,∞).

We will abuse notation to denote the sheaf OE · ∂ (i.e. the action algebroid of G)
by TE . Note that in the nodal case this is the log tangent bundle of E; the dual sheaf
will be denoted by �E . The total space of �E (which is isomorphic to E × C) will
be denoted T ∗E. Both TE and �E are trivial line bundles on E; however, they are not
trivial over families of cubic curves, i.e. one cannot fix a ∂ (or differential) uniformly for
all cubic curves, hence we will maintain this distinction when necessary. A cubic curve
with a choice of ∂ gives a differential curve (curve with choice of global vector field, in
analogy with differential fields). In fact the constructions of this paper will not require a
differential structure (we only use the canonical line C∂).

The sheaf TE acts by derivations ofOE , hence it embeds in the sheaf of (Grothendieck)
differential operators on E.
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Definition 2.1. Dlog is the sheaf of OE-subalgebras of DE generated by C∂ .

We will usually abuse notation and terminology by denotingDE the sheaf of differen-
tial operators generated by TE and OE , and referring to it as the sheaf of log differential
operators on E (which it is in the smooth and nodal cases). See Section 7 for more
on Dlog.

2.1.3. The surface E\. In this section we discuss a surface E\ which figures prominently
in the study of both Calogero–Moser systems and the Fourier–Mukai transform.

We first consider the smooth case. Thus fix an elliptic curveE. LetA denote the Atiyah
bundle on E, that is, the unique nontrivial extension ofOE by itself (up to isomorphism),

0→ O→ A→ O→ 0. (2.1)

Definition 2.2. We set E\ = P(A). The algebraic surface E\ is the complement of the
section E∞ = P(O) ∼= E of the projectivization of the Atiyah bundle, E\ = P(A) \E∞.

The resulting surface E\ (which is a Stein manifold, but not an affine algebraic man-
ifold, when E is an elliptic curve) is the unique (up to isomorphism) nontrivial torsor
overOE . In classical terms, the surfaceE\ may be viewed as the receptacle for the Weier-
strass ζ -function of E (see [BN3] for a discussion).

To fix A and E\ canonically we set E\ = ConnO(b), the sheaf of connections on the
line bundle O(b); this is a twisted cotangent bundle of E [BB] (i.e. an affine bundle for
�E ' OE with compatible symplectic structure). Let A denote the pushforward of OE\
to E, i.e. the algebra of functions on the fibers of E. Thus A = A≤1, the subsheaf of
affine functions on E\, is isomorphic to the Atiyah bundle A. The sheaf A is canonically
an extension of TE (which is isomorphic toOE) byOE , and is isomorphic asOE-module
to A = D≤1(OE(b)), the sheaf of differential operators of order at most one acting on the
line bundle O(b). Concretely, the sheaf A lies in between

OE ⊕ TE(−b) ⊂ A ⊂ OE ⊕ TE(b),

andA is generated (in the canonical local coordinate near b) byOE⊕TE(−b) and the sec-
tion ∂ − 1/z. It is useful to note that the fiber Fb ⊂ E\ over the basepoint b is canonically
identified with the cotangent fiber to E at b.

It is also well-known that the twisted cotangent bundle E\ is canonically identified
with the universal additive extension of E, which is identified with the moduli space of
line bundles with flat connection on E. This isomorphism is uniquely characterized as an
isomorphism of torsors over the cotangent bundle preserving basepoints in the fiber over
the identity b (for flat connections the basepoint is the trivial connection).

2.1.4. E\ for singular cubics. The definition and properties of E\ extend naturally to
general cubics E. For any Weierstrass cubic E we have

Ext1E(O,O) = H
1(E,O) ∼= C.

SoE has a unique nontrivial extensionA ofOE ' TE byOE , up to isomorphism. (Recall
that TE is the subsheaf of the tangent sheaf generated by the G-action.) We again fix



D-bundles and integrable hierarchies 1517

A = D≤1(OE(b)) (here as elsewhere D denotes the sheaf of log differential operators).

Let E\ def
= Proj(Sym•A) denote the associated ruled surface, and p : E\→ E denote the

projection map.
The quotient map A � OE defines a section s : E → E\; we write E∞ = s(E)

and refer to it as the section at infinity. Note that every other section of E\ has nonempty
intersection with E∞ since the sequence (2.1) is nonsplit. However, unlike the case of
smooth E, if E is singular there are curves in E\ that fail to intersect E∞: for example,
the normalization of E embeds in E\ since the extension A splits when pulled back to P1.

The surface E\ def
= E\ r E∞ is called the twisted (log) cotangent bundle of E; it is the

nontrivial torsor over �E given by the nonzero class (up to scale) in H 1(�E). Canoni-
cally, it is given by the space of log-connections (liftings of TE) on the line bundle O(b).
(See [BN3] for the relation of E\ to the Weierstrass ζ -function of E.) In the context of
the Fourier–Mukai transform, we will identify E\ in Section 4.4 with the moduli space
of rank one torsion-free sheaves on E with log connection. Again this isomorphism is
uniquely characterized as an isomorphism of torsors over the (log) cotangent bundle pre-
serving basepoints in the fiber over the identity b.

2.2. Calogero–Moser systems and spectral curves

In this section we discuss the spin Calogero–Moser system [GH], summarizing the de-
tailed treatment in [BN3] (to which we refer for details and more complete references).
See also [BN2] and [Ne2] for reviews of the usual (spinless) complex Calogero–Moser
system following [KKS, W2, Ne1] (see [BBT] for a general introduction to integrable
systems, including CM and KP).

As in the previous section, we let G denote a one-dimensional complex group and E
the corresponding cubic curve. The k-spin n-particle Calogero–Moser system is a Hamil-
tonian dynamical system describing n identical particles moving on G, each equipped
with a vector in the auxiliary k-dimensional vector space Ck; this vector is known as
the spin of the particle. The system is then naturally described in terms of the positions
qi 6= qj in G of n distinct particles, momenta pi ∈ C of the particles, spin vectors
vj ∈ Ck , and a collection of covectors ui ∈ (Ck)∗. Let fij = ui(vj ) ∈ C be the contrac-
tion of the ith covector with the j th vector. The Hamiltonian for the spin Calogero–Moser
system is given by

H =
1
2

n∑
i=1

p2
i +

∑
i<j

fijfjiU(qi − qj ).

Here the potential energy function U on G has a double pole at the origin, and is given
(as a function on C, the universal cover of G) by

Rat : U(q) =
1
q2 , Trig : U(q) =

1

sin2(q)
, Ell : U(q) = ℘(q)

where ℘(q) is the Weierstrass ℘-function attached to the elliptic curve E. The usual
(spinless) Calogero–Moser particle system is recovered in the case k = 1 with all fij = 1.

The (spin) Calogero–Moser systems have a variety of different group-theoretic and
geometric descriptions, all of which have the feature that they incorporate collisions of
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the particles, in other words a locus where the qi are no longer distinct. Moreover the
Hamiltonian H = H2 is but one of a family Hi of Poisson commuting Hamiltonian
functions on these completed phase spaces. These are conveniently realized by writing the
system in Lax form (with spectral parameter) or as a Hitchin system, and taking (residues
of) traces of powers of the Lax operator (respectively, Higgs field). These descriptions are
explained in detail in [BN3]; in this paper, we rely on the description of CM particles by
spectral sheaves, which are geometric action-angle variables for the system, and which
we will now review.

2.2.1. Calogero–Moser spectral sheaves. Moduli spaces of spectral sheaves (specifi-
cally, of line bundles on curves in a Poisson surface) give a wide class of examples of
integrable systems (see e.g. [DM, Hu]). The prototypical example of such a setting is the
(GLn) Hitchin system on the moduli space T ∗ Bunn(X) of Higgs bundles on a curve X,
which can be described as a moduli of torsion free sheaves on curves in T ∗X finite of
degree n over X. We similarly realize the spin CM systems in terms of spectral curves
on the twisted cotangent bundle E\ of E, or rather its completion E\. Specifically, we
consider sheaves on E\ with pure 1-dimensional support, with a framing condition along
the curve E∞ = E\ \ E\: the restriction of the sheaf to E∞ is identified with a k-fold
skyscraper O⊕kb at the basepoint.

We highlight two aspects of this geometric translation: the positions of the particles
and the role of the spins. We encode the positions qi ∈ G of the Calogero–Moser particles
as follows: n distinct points in G define a rank n vector bundle W =

⊕
O(qi − b) on E,

which is in fact semistable of degree zero. Conversely, a generic degree 0 semistable
bundle on E is of the form W =

⊕
O(qi − b) for n distinct points qi ∈ G ⊂ E (deter-

mined up to permutation). More generally, there is an equivalence between semistable
degree zero vector bundles W on an elliptic curve E and length n torsion coherent
sheaves W∨ on the smooth locus G of E: W∨ is given by the Fourier–Mukai transform
of W (see Section 4 and [FM1]). The same holds for singular cubics E if we additionally
require that the pullback of W to the normalization of E is a trivial vector bundle. In the
generic case we haveW∨ =

⊕
Oqi . Thus the space of such bundlesW provides a partial

completion of the configuration space of points in G.
The identification between spin CM particles and spectral sheaves has the feature of

identifying the auxiliary space Ck in which the spins live with the space of sections of the
restriction of the spectral sheaves to E∞, which we have normalized to be Ck = 0(O⊕kb ).
This leads to a natural generalization of the spin CM system, in which we allow the spins
to live in a general length k coherent sheaf T on E: we simply consider sheaves whose
restriction to E∞ is identified with T .

Definition 2.3. Fix a finite length coherent sheaf T on G ⊂ E. A T -framed CM spectral
sheaf is a pair (F , φ) consisting of a coherent sheaf F on E\ of pure dimension one,
together with an isomorphism φ : F |E∞ → T , satisfying two normalization conditions:

(i) W = p∗F(−E∞) is a semistable vector bundle of degree 0; if E is singular, we also
require that the pullback of W to the normalization of E is a trivial vector bundle.

(ii) deg(p∗F(kE∞)) = (k + 1) deg(T ) for all k ≥ −1.
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The T -Calogero–Moser space CM(E, T ) =
⋃

CMn(E, T ) is the moduli space of T -
framed CM spectral sheaves (F , φ) (for which the rank of the vector bundle W is n).

For the (usual) spin CM system described above, one chooses T = Okb , and we will
call objects of CMk

n(E) = CMn(E,Okb) simply CM spectral sheaves.

Remark 2.4. The normalization conditions (i) and (ii) are open conditions on coher-
ent sheaves of pure dimension one. Condition (i) on the vector bundle W was discussed
above. Regarding condition (ii), note that we have the following:

Lemma 2.5. For a coherent sheaf F of pure dimension one on E\ such that F |E∞ ∼= T ,
F satisfies condition (ii) in Definition 2.3 if and only if

deg(p∗F(kE∞)) = (k + 1) deg(T ) for all k � 0.

We will see later (Section 4) that the full phase space CMn(E, T ) is identified by an
extended Fourier–Mukai transform with a moduli space of objects (framed D-bundles)
on E whose singularities are precisely at the points qi , and which are framed by the
semistable vector bundle T ∨ on E Fourier dual to T . This moduli space carries a natural
integrable system, the multicomponent KP system.

2.2.2. Flows on spectral sheaves. In [BN3] we discuss under the name “tweaking” a
simple construction of flows on moduli spaces of sheaves from germs of meromorphic
functions. This is a generalization of (the infinitesimal version of) the action of the Picard
group on sheaves by tensor product. Specifically, let F be a sheaf on a variety Y and
6 ⊂ Y the support of F . First note that any class in c ∈ H 1(6,O) defines a first order
deformation of any sheaf F—for example, we consider c as a sheaf on 6 over the dual
numbers and tensor with F to define a deformation class in Ext1(F ,F). If f is the germ
near a point s ∈ 6 of a meromorphic function on6, it defines a class [f ] ∈ H 1(6,O) (as
the connecting map coming from the inclusion ofO into meromorphic germs at s), which
in turn defines first order deformations as above. If we wish to deform sheaves framed
along a divisor D ⊂ 6 (i.e. deform sheaves fixing their restriction to D) we project f
to a class in H 1(6,O(−D)) covering [f ]. In [BN3] the flows of all meromorphic GLn
Hitchin systems are uniformly described in this way.

The spin CM flows are defined in [BN3] in this fashion (following [TV2] in the rank
one case). Specifically, the choice of a global vector field ∂ on E (equivalently, a trivial-
ization of the tangent space Tb at b) defines a canonical function t on the completion ofE\

along the fiber Fb with first order pole at E∞. Namely t = k + π∗ζ , where k : E\ → P1

is the composition of the canonical map from E\ = ConnO(b) to T ∗E with pole along
the zero fiber, and ζ is (the Laurent expansion at b of) the Weierstrass ζ -function. The
ring of polynomials in t is canonically identified (independently of the choice of ∂) with
Sym• Tb = C[∂]. We thus have the following definition from [BN3]:

Definition 2.6. The Calogero–Moser hierarchy is the action of the polynomial ring
Sym• Tb = C[∂] on CMk

n(E) by tweaking of spectral sheaves by powers of t at b∞.

Proposition 2.7. The CM flows are the flows associated to the CM Hamiltonians: the
vector field given by the action of ∂ i is given by Poisson bracket with the ith CM Hamil-
tonian Hi .
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2.2.3. The Lie algebroid of tweakings. Rather than privileging the meromorphic germ t ,
we may consider more general deformations of CM spectral sheaves. Let AE denote the
sheaf of functions on the punctured formal neighborhood of E∞ ⊂ E\, i.e. the sheaf of
Laurent series along E∞. For a spectral sheaf F we may consider its “microlocalization”
FE = F ⊗O

E\
AE , i.e. the localization of F to this deleted formal neighborhood of E∞.

Since F has pure 1-dimensional support, it embeds (as OE\ -module) into FE . Given
any endomorphism ξ ∈ EndAE (FE ), we obtain a canonical first order deformation of F ,
deformingF ⊂ FE to (1+εξ)F ⊂ FE (over the dual numbers). More formally, construct
a first order deformation of F , [ξ ] ∈ Ext1(F ,F), as the image (under a connecting
homomorphism) of the operation of restricting sections of F to FE :

{s 7→ ξ(sE ) mod F} ∈ Hom(F ,FE/F)→ Ext1(F ,F).

If we project instead to Ext1(F,F(−E∞)) we likewise obtain deformations of framed
spectral sheaves.

Lemma 2.8. The sheaf EndE over CMn(E, T ) of endomorphisms of the microlocaliza-
tion of the universal sheaf (i.e. the sheaf whose fiber atF is EndAE (FE )) has the structure
of Lie algebroid, the CM algebroid, given by the tweaking action on spectral sheaves. The
anchor map sends an endomorphism to the corresponding Ext1 class defined above.

This algebroid is the spectral sheaf analog of the (transitive) Lie algebroid on the moduli
stack BunG(X) of G-bundles on a curve associated to the loop algebra Lg at a point
x ∈ X, whose fiber at a bundle P is the adjoint twist of the loop algebra, (Lg)P .

This Lie algebroid structure becomes very simple for the typical case of rank one
spectral sheaves. Namely if F is a rank one torsion-free sheaf on its support, then its en-
domorphisms are simply given by functions on the support: End(FE ) is the direct sum
of Laurent series on each component of the support of FE , i.e. each branch of the spec-
tral curve passing through E∞. In this case the action of the algebroid is simply given
by tweaking F by meromorphic function germs, and the resulting flows may be easily
written explicitly as Hitchin Hamiltonian flows following [BN3]. This is guaranteed if
T =

⊕
Oxi is a direct sum of skyscrapers at distinct points xi ∈ E, for example in the

standard spinless case T = Ob.
For general spectral sheaves this produces a noncommutative family of flows on the

moduli space. Namely, the algebroid at F is (noncanonically) isomorphic to a sum

End(FE ) '
⊕

Lglki

of loop algebras, where for each component 6i of the spectral curve SuppF near E∞,
ki is the rank of F on 6i .

To put the resulting flows in the more familiar form of a hierarchy of flows labeled
by natural numbers, we can instead look at spectral sheaves together with a “Higgs”
structure, breaking the symmetry down to an abelian family of flows (in analogy with the
abelian Lie algebroid on the moduli space of Higgs bundles, giving the Hitchin integrable
system):
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Definition 2.9. Fix ∂ ∈ 0(T ). A Higgsed T -framed CM spectral sheaf is a pair (F , ξ)
consisting of a T -framed CM spectral sheaf F and a germ ξ of a section of End(F)(E∞)
at b∞ ∈ E∞, with ξ |E∞ = ∂ as a section of OE\(E∞)|E∞ = TE .

We may then define the Higgsed CM hierarchy on enhanced spectral sheaves as the
action of the ring C[∂], where P(∂) acts on (F , ξ) by deforming F by P(ξ). Note that
the CM flows defined above are the restriction of the CM hierarchy to the locus of sheaves
Higgsed by t .

2.3. The KP hierarchy

Recall that the Kadomtsev–Petviashvili (or KP) equation is the following partial differen-
tial equation for a function u = u(t, x, y):3

3
4
uxx =

(
uy −

1
4
(6uut + ut t t )

)
t

, (2.2)

which first arose in connection with the study of shallow water waves. Overviews of this
equation and its algebro-geometric significance, as well as bibliographies, may be found
in [Mul, DJM, Ar]. (Our understanding of soliton equations is deeply indebted to the
seminal article [SW].) In this section we review the multicomponent KP hierarchies and
their formulation using the Sato Grassmannian.

2.3.1. Microdifferential operators. We begin by recalling the basic algebraic objects, the
algebras of differential and microdifferential operators over the ring of formal power se-
ries: for the rest of this section, D ⊂ E will denote the algebras of differential operators
and of formal microdifferential operators (also known as pseudodifferential symbols) with
coefficients in C[[t]]. Specifically, an element of E is a Laurent series

M =
∑
N�∞

aN∂
N , ai ∈ C[[t]], (2.3)

in the formal inverse ∂−1 of the derivation ∂ = ∂t of C[[t]]. Such an element M lies in D
if aN = 0 for N < 0.

The symbol ∂−1 does not, of course, make sense as an operator on C[[t]]; however,
it is possible to give the set E of microdifferential operators an algebra product. The
composition in E is determined by the Leibniz rule,

∂n · f =
∑
i≥0

(
n

i

)
f (i)∂n−i, (2.4)

where
(
n
i

)
is defined for n < 0 by taking(

n

i

)
=
n(n− 1) · · · (n− i + 1)

i(i − 1) · · · 2 · 1
.

3 For compatibility with our later choice of notation, we have permuted the usual labeling of
variables in this equation.
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This product structure makes E into a filtered algebra, with the kth term in the filtration4

given by
Ek = {ak∂k + ak−1∂

k−1
+ . . . }.

The induced product on D is the usual one, and D becomes a filtered subalgebra (again,
with the filtration induced from E agreeing with the usual order filtration on differential
operators).

2.3.2. The multicomponent KP hierarchy. We now review the Lax formulation of the
(multicomponent) KP hierarchy; for more information, see [KV, P].

The algebra vn = gln(E) of matrix-valued microdifferential operators consists of
series as in (2.3), but with aN ∈ gln[[t]] with its usual multiplication. We also have a sub-
algebra vC

n = gln((∂
−1)) ⊂ E of constant coefficient matrix microdifferential operators,

and an abelian subalgebra 0 = C((∂−1)) ⊂ vC
n of constant coefficient scalar operators.

Definition 2.10. (1) A matrix KP Lax operator is a microdifferential operator of the
form

L = Id ∂ + u1∂
−1
+ u2∂

−2
+ · · · ∈ gln(E),

where ui ∈ gln[[t]] for all i. We let Ln denote the set of all such n× n matrix KP Lax
operators.

(2) A matrix KP wave operator is a microdifferential operator of the form

W = Id+ w1∂
−1
+ w2∂

−2
+ · · · , (2.5)

wherewi ∈ gln[[t]] for all i. We refer to the group (in fact group scheme) of all matrix
KP wave operators as the n-component Volterra group and denote it by Vn.

We let VC
n ⊂ Vn denote the multiplicative group of constant coefficient matrix mi-

crodifferential operators, that is, expressions of the form 2.5 with wi ∈ gln(C). We also
let 0+ denote the abelian Lie algebra C[∂] ⊂ gln(E).
Lemma 2.11. The setLn of matrix KP Lax operators forms an infinite-dimensional affine
space. The n-component Volterra group scheme Vn acts transitively (on the left) on Ln by
(W,L) 7→ WLW−1. Under this action, the stabilizer of ∂ is the sub-group-scheme VC

n ,
and thus Ln is naturally identified with VC

n \Vn as a scheme.

Definition 2.12. The multicomponent KP hierarchy is the collection of compatible evo-
lution equations on a Lax operator L defined as follows:

∂L

∂tn
= [L, (Ln)+], (2.6)

where (M)+ =
∑
N≥0 aN∂

N
∈ gln(D) ⊂ gln(E) denotes the differential part of a matrix

microdifferential operator M as in (2.3). That is, we let the operator L = L(t, t1, t2, . . . )
depend on the infinitely many time variables tn and then require that the dependence of L
on tn (i.e. its “evolution along the nth time”) satisfies (2.6).

4 We use subscripts to denote the filtration degree in E ; while this is nonstandard, we hope it will
prevent confusion between filtration degree and the superscripts we will use to denote the rank of a
free module.
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The KP hierarchy can be written as an action of the abelian Lie algebra 0+ = C[∂]
onLn, i.e. a collection of commuting vector fields ∂n on the affine spaceLn corresponding
to the action of ∂n ∈ 0+. We define the vector field ∂n on the affine space Ln by taking
its value at L to be the commutator [L, (Ln)+]. A solution L of the equations (2.6) of the
KP hierarchy is then just an operator L(t, t1, t2, . . . ) that gives (formal) integral curves of
all these vector fields simultaneously. Note that the first KP time t1 is naturally identified
with translation along the original variable t . In the case n = 1, the compatibility of the
equations (2.6) in x = t2 and y = t3 (i.e. the fact that the corresponding vector fields on
the space of Lax operators commute) implies that u = u1 satisfies equation (2.2).

2.3.3. Sato Grassmannian. Sato’s formulation of the KP hierarchy begins with the intro-
duction of an infinite-dimensional Grassmannian.

Consider the vector space C((z−1))n of n-component Laurent series in a parame-
ter z−1. This is a topological vector space when equipped with a basis of open neigh-
borhoods of 0 given by the subspaces zkC[[z−1]]n for k ∈ Z.5 The space C((z−1))n is
the direct sum of the linearly compact vector space z−1C[[z−1]]n and the discrete vector
space C[z]n.

A c-lattice (or simply lattice) in C((z−1))n is a compact open subspace; one can check
that, equivalently, a vector subspace B ⊂ C((z−1))n is a c-lattice if there exist integers k
and ` such that (C[[z−1]]zk)n ⊆ B ⊆ (C[[z−1]]z`)n. A d-lattice in C((z−1))n is a discrete
subspace that is complementary to a c-lattice.

Definition 2.13. The Sato Grassmannian GRn = GR(C((z−1))n) is the set of d-lattices
in C((z−1))n.

Equivalently, one has the following well-known description.

Lemma 2.14. The Sato Grassmannian parametrizes subspaces B ⊂ C((z−1))n whose
projections on C((z−1))n/C[[z−1]]n have finite-dimensional kernel and cokernel.

The index of the projection map in the lemma, also known as the index of the subspace B,
gives a numerical invariant of subspaces B. The big cell GR◦n ⊂ GRn consists of sub-
spaces B which project isomorphically onto C((z−1))n/z−1C[[z−1]]n ∼= C[z]n; such d-
lattices are said to be generic.

The Sato Grassmannian can be given the structure of an infinite-dimensional scheme:
see Section 6.1. With this structure, each connected component consists of exactly the
subspaces of index k for a fixed k; we call the index k component Grkn.

2.3.4. KP flows via the Sato Grassmannian. Sato’s purpose in introducing the Grass-
mannian GRn (see [S]) was as follows.

Given a matrix KP wave operator W , one obtains a free right D-submodule W · Dn
⊂ En; since W · En

−1 = En
−1, the submodule W · Dn is a generic D-lattice, and thus

W · (Dn/Dnt) is a generic d-lattice.

5 More precisely, this makes C((z−1))n into a Tate vector space, or locally linearly compact space
[BD1, D]. This is a topological vector space which can be written as a direct sum of a discrete vector
space and a linearly compact vector space (the topological dual to a discrete vector space).
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The identification C((z−1))n = En/Ent gives rise to an action of the group GLn(E) (on
the left) and of the Lie algebra gln(E) on C((z−1))n and therefore, one may check, on the
Sato Grassmannian GRn. In particular, we obtain actions on GRn of the Volterra group Vn
and its subgroup VC

n of constant coefficient negative microdifferential operators, as well
as an action by vector fields of the Lie algebra 0n. The abelian subalgebra 0 thereby gives
rise to an infinite family of commuting vector fields on GRn. Sato’s approach to the KP
hierarchy is then encapsulated in the following theorem (see [Mul]):

Theorem 2.15 (Sato). (1) The group Vn preserves the big cell GR◦n, on which it acts
simply transitively. Thus, every generic d-lattice is of the form W · (Dn/Dnt) for a
unique W ∈ Vn.

(2) The isomorphism

VC
n \GR◦n

∼
←− VC

n \Vn
∼
−→ Ln, W · (Dn/Dnt)↔ W(Id ∂)W−1

between the quotient of the big cell and the space of Lax operators identifies the
infinitesimal action of ∂n ∈ C[∂] ⊂ 0 on VC

n \GR◦n with the nth KP flow ∂/∂tn on
Lax operators.

3. D-bundles

In this section we study D-bundles and use them to relate the KP and CM integrable
systems. In Section 3.1 we define D-bundles and describe their main properties. Rank
one D-bundles are, roughly, nothing more than right ideals in the algebra of differential
operators on a curve (with the caveat that they can only be embedded in this algebra
locally on the curve). In Section 3.2 we describe the identification between moduli spaces
of D-bundles and moduli spaces of CM spectral sheaves. In Section 3.3 we relate the
moduli spaces of D-bundles to Wilson’s adelic Grassmannian. In Section 3.4 we give a
D-bundle description of the Sato Grassmannian, which we use in Section 3.5 to interpret
KP Lax operators as enhanced D-bundles, the micro-opers. Finally in Section 3.25 we
explain the compatibility between the KP hierarchy on D-bundles on cubic curves and
the corresponding CM integrable systems.

3.1. D-bundles on curves

Let X denote either a smooth quasiprojective curve or a Weierstrass cubic curve. We
denote by TX the tangent sheaf, T ∗X the cotangent bundle, D = DX the sheaf of differ-
ential operators on X, with the convention that in the singular cubic case these notations
are defined as in Section 2.1 (i.e. as “log” versions).

Definition 3.1 (see [BD2]). A D-bundle M on X is a locally projective coherent right
DX-module—if X is singular, we require in addition that M be isomorphic to DnX (for
some n) in a neighborhood of the singular locus.

On an affine curve, one obtains a large number of examples of D-bundles of rank
one by taking finitely generated right ideals of D(X). A typical rank 1 D-bundle M on
a curve X is not locally free, but only generically locally free: away from finitely many
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points ofX,M is locally isomorphic toD—note the similarity to the behavior of the ideal
sheaf of a collection of points on an algebraic surface. For example, taking X = A1 and
thusD(X) = C[x, ∂], the right ideal I inD(A1) generated by x2 and 1− x∂ is projective
(indeed, the ring D(A1) is hereditary), but there is no f ∈ C[x] such that Mf is a free
D(X)-module. See [CH2, BW2, BN1, BN2] for more discussion.

Fix a coherent torsion sheaf V ∨ on E supported on the smooth locus of E; under the
Fourier–Mukai transform (see Section 4), this determines a vector bundle V on E.

Definition 3.2. A V -framed D-bundle is a D-bundle M equipped with a D-module fil-
tration {Mk} and an isomorphism

φ :
⊕
k≥k′

grk(M)→ V ⊗ gr≥k′(D)

of gr(D)-modules for some k′ with the following properties:

(i) If E is singular, there is an open neighborhood U of∞ such that M|U is isomorphic
to V ⊗Dlog|U compatibly with the isomorphism φ.

(ii) The canonical filtration {Mk} of M (see Definition 7.6) satisfies

rk(Mk) =

{
rk(V )(k + 1) for k ≥ 0,
0 for k < 0.

An isomorphism of V -framedD-bundles (M, {Mk}, φ) and (M ′, {M ′k}, φ
′) is aD-module

isomorphism ψ : M → M ′ such that ψ(Mk) = M
′

k for all k � 0 and φ′ ◦ gr(ψ) = φ
(when k′ is large enough so that both sides are defined).

Remark 3.3. Conditions (i) and (ii) of the definition are not necessary for a reasonable
theory of D-bundles; however, they are essential for applications to multicomponent KP.
Condition (i) simply tells us, in light of the relationship (which we will explain shortly)
between singularities of D-bundles and singularities of meromorphic KP solutions, that
the KP solution is regular “at infinity.” If we replace filtered modules over D by filtered
modules over Sym(TE ⊕ OE), then condition (ii) becomes the condition that the vector
bundle on S = P(TE ⊕ OE) corresponding to the graded module R(M) is trivial upon
restriction to a generic fiber of the projection map S → E—in particular, it is an open
condition.

We let BunP(D)(X, V ) denote the moduli stack of V -framed D-bundles (for a precise
definition see Section 5.1). For a projective curveX, BunP(D)(X, V ) is an algebraic stack.

3.2. Moduli of D-bundles and Calogero–Moser spectral sheaves

We now specialize to the case of a cubic curve X = E. Suppose V is a semistable vector
bundle of degree zero (with trivial pullback to the normalization, in case E is singular),
and let V ∨ denote the finite length sheaf on G ⊂ E defined as the Fourier–Mukai trans-
form of V (see Section 4). We will prove the following theorem (Theorem 5.1):
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Theorem 3.4. There is an isomorphism of stacks

F : BunP(D)(E, V )→ CM(E, V ∨),

given by the D-module Fourier–Mukai transform (Theorem 4.12). In particular there
is an isomorphism between trivially framed rank k D-bundles BunP(D)(E,Ok) and the
union over n of the k-spin n-particle Calogero–Moser spaces CMk

n(E).

Note that the following invariant of D-bundles appears implicitly in the theorem. Let M
be a V -framed D-bundle on E; the framing induces a canonical inclusion gr(M) ↪→
V ⊗ gr(D) of finite colength (where we have used the canonical filtration on M , see
Definition 7.6).

Definition 3.5. The local second Chern class c2(M) is the numerical invariant

c2(M) = length(V ⊗ gr(D)/gr(M)).

This local second Chern class is the noncommutative analog of the numerical invariant
length(F∗∗/F) for a torsion-free coherent sheaf F on a nonsingular surface, which, if
the surface is projective, is exactly c2(F) − c2(F∗∗): thus, it is the part of the second
Chern class that measures “how far F is from being a vector bundle.” With this definition,
the component of BunP(D)(E, V ) parametrizing D-bundles with c2 = n corresponds to
CMn(E, V

∨).
Let M denote a V -framed D-bundle and F the corresponding V ∨-framed spectral

sheaf. Let W = π∗F(−E∞) denote the associated semistable degree 0 vector bundle
on E (part (i) of Definition 2.3), so that its Fourier transform W∨ is the torsion sheaf on
E measuring the position of the Calogero–Moser particles.

Proposition 3.6. The V -framed D-bundle M is canonically identified with V ⊗D away
from the location of the corresponding CM particles. More precisely, there is a short exact
sequence

0→ M → Ṽ ⊗D→ Q→ 0,

where the vector bundle Ṽ is identified with V away from the support of the torsion sheaf
W∨ and supp(W∨) = supp(Q).

Proof. GiveM the canonical filtration. There is then a canonical injective homomorphism
M0 = gr0(M)→ gr0 V ⊗D = V . LetD = supp(V/M0) andU = X\D; it is immediate
thatU is the largest open set over whichM ∼= V⊗D and that the framing ofM determines
an inclusionM ↪→ (V ⊗D)|U . SinceM is finitely generated, one may choose a coherent
sheaf Ṽ so that V ⊆ Ṽ ⊂ V |U and M ⊆ Ṽ ⊗D.

It remains to check that D = supp(W∨). For this, we use the exact sequence (5.2) of
Proposition 5.8; it is then immediate from (5.3) and the discussion following it that, in the
notation used there, D = supp(F 0(Qk)) = supp(W∨). ut
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Remark 3.7. Proposition 3.6 is an analog of an easy statement about vector bundles (or
torsion-free sheaves) on a ruled surface. Namely, the condition that the vector bundle be
trivial on a fiber is open in the base (since the trivial bundle is open in bundles on P1),
and over that open set, the trivialization is fixed by choosing a trivialization of the bundle
along a section.

It is not hard to see that a V -framedD-bundle on any nonsingular curve is canonically
identified with V ⊗ D outside of a finite subscheme, the cusps of the D-bundle [BN1],
where the local c2 is supported; moreover, this is true for families of D-bundles when
properly formulated. This follows for example from the local description of D-bundles
(Proposition 3.16): the canonical trivialization is defined wherever the local data of theD-
bundle is in the big cell of the Sato Grassmannian. In fact, there is a more precise version
of the proposition that holds on any nonsingular curve: namely, if we choose Ṽ minimal,
then Q will have length n = c2(M). This exact sequence will prove its value in [BN4].

3.3. The adelic Grassmannian

In this section we letX denote an arbitrary smooth projective curve or a Weierstrass cubic.

Definition 3.8. The rank k adelic Grassmannian Grad
k (X) is the set of isomorphism

classes of (unframed) D-bundles M equipped with a generic trivialization M ⊗K(X) ∼=
DkX ⊗K(X). When k = 1 we denote Grad

1 (X) by Grad(X).

Remark 3.9. The adelic Grassmannian is not, in any reasonable way, a variety or, more
generally, ind-scheme. However, it does have a reasonable algebro-geometric structure
if we keep track of the poles of the trivialization. More precisely, for a finite subset
x = (x1, . . . , xr) ∈ X

r the adelic Grassmannian Grad
k (X, x) at x is the moduli of D-

bundles, M equipped with an isomorphism M|X\x → DkX|X\x. The set Grad
k (X, x) is the

set of points of an ind-scheme of ind-finite type overXr , and the full adelic Grassmannian
is the inductive limit of these ind-schemes under the (unfiltered) directed system of theXr

under the action of permutations and diagonal maps. The directed system of ind-schemes
itself is what is known as a factorization space [BD2]—see [BN5].

Remark 3.10. The adelic Grassmannian we have defined is not quite the same as the
adelic Grassmannian of Wilson [W2]. However, the difference is (mostly) harmless: Wil-
son considered the case in which X = A1 (or, more precisely, X = P1 with the canonical
marked point∞). The triviality of Pic(X) in this case (up to a twist at the marked point∞)
shows that Wilson’s adelic Grassmannian is the quotient of our Grad(P1)∞ by the action
of multiplication by K(P1)× = C(z)× on the framing, together with modification at∞
(O 7→ O(k∞)). We prefer this definition since it is representable by a factorization ind-
scheme.

Fixing ∞ ∈ X, let BunP(D)(X, V )∞ ⊂ BunP(D)(X, V ) denote the open subspace
of D-bundles which are locally free at∞ and let Grad

k (X)∞ ⊂ Grad
k (X) be the subset of

D-bundles with a generic trivialization defined at∞ (which has a structure of C-space).
For example if X is a singular cubic, we may take for∞ the singular point, where all our
D-bundles are already required to be locally free.
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Let BunP(D)(X, k)∞ → Bunk(X) denote the moduli stack for pairs (V ,M) consist-
ing of a rank k vector bundle V on X (of any degree) trivialized at ∞ and a V -framed
D-bundle M on X. Let K(X)∞ denote the rational functions on X regular at ∞. We
now state an algebraic description of Wilson’s decomposition of the (rank one rational)
adelic Grassmannian into Calogero–Moser spaces (which we interpret as moduli spaces
of D-bundles):

Corollary 3.11. (1) There is a morphism of spaces BunP(D)(X,Ok)∞ → Grad
k (X)∞

sending a framed D-bundle to its canonical trivialization on an open∞ ∈ U ⊂ X.
(2) Let GLk(K(X)∞) act on Grad

k (X) by changing the trivialization. Then there
is a bijection on the level of field-valued points between BunP(D)(X, k)∞ and
Grad
k (X)∞/GLk(K(X)∞).

Proof. The first assertion is a consequence of Proposition 3.6 in light of Remark 3.7.
Given a vector bundle V and a V -framed D-bundle M as in the definition of

BunP(D)(X, k)∞, choose a trivialization of V in a neighborhood of infinity compatible
with the given trivialization at∞. By Proposition 3.6 and Remark 3.7, we obtain an object
of Grad

k (X)∞. In fact, this is easily seen to give a morphism from a GLk(K(X)∞)-torsor
over BunP(D)(X, k)∞ to Grad

k (X)∞.
To get an inverse on the level of field-valued points, we proceed as follows. Let

ξ = Spec(K). Given an object M ∼= DkU of Grad
k (X)∞ for some nonempty open sub-

set U of X that contains∞, we may give M the filtration induced from that of DkU—this
makes M into a V -framed D-bundle where V ⊗ T ` = gr`(M) for ` � 0, and moreover
V is trivialized near ∞ by the canonical trivialization of gr0(Dk) there. We thus get a
function Grad

k (X)∞(ξ)→ BunP(D)(X, k)∞(ξ). This function is certainly invariant under
the action of GLk(K(X)∞), so induces a function

Grad
k (X)∞/GLk(K(X)∞)(ξ)

p
−→ BunP(D)(X, k)∞(ξ).

These functions are easily checked to be inverses to each other. ut

The adelic Grassmannian was originally studied by Wilson as a parameter space for
certain algebro-geometric (finite gap) solutions of the KP hierarchy. Namely, Grad(X)

parametrizes all Krichever data for the curve X and its cusp quotients X → Y , curves
whose normalization is identified with X and for which the normalization map is a bi-
jection. To see this we use the identification of D-bundles with torsion-free sheaves on
cusp quotients discovered by Cannings and Holland [CH2] (this identification is given by
identifying the structure of the de Rham cohomology of D-bundles with generic trivial-
ization, as explained in [BD2]). The following proposition is due to [CH2] in rank one; a
more general result, implying in particular the general case, appears in [BN1].

Proposition 3.12 ([CH2, BN1]). Grad
k (X)∞ is isomorphic to the direct limit over cusp

quotients X → Y smooth at∞ of the set of isomorphism classes of rank k torsion-free
OY -modules equipped with a generic trivialization defined at∞.

Note that the same statement holds if we remove the restrictions on∞.
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This interpretation of D-bundles gives rise to a construction of solutions to the multi-
component KP hierarchy (orbits of the action of C[z] on GRk /GLk(C[[z−1]])) from D-
bundles on X, smooth at∞, considered as defining Krichever data on cusp quotients Y
of X:

Corollary 3.13. Fix a local coordinate z−1 on X at ∞. Then there is a canonical
Krichever map Grad

k (X)∞ → GRk from the adelic Grassmannian to the Sato Grass-
mannian, sending a rank k torsion-free sheaf V on a curve Y with trivialization near∞
to the subspace of C((z−1))k defined by sections of V on Y \ ∞. Quotienting by change
of trivialization gives a composite

BunP(D)(X, k)∞→ Grad
k (X)∞/GLk(K(X)∞)→ GRk /GLk(C[[z−1]]).

It is also easy to describe the corresponding flows directly in terms ofD-bundles: the flows
modify a D-bundle M inside its localization M ⊗ C((z−1)) by multiplication by powers
of z. Below we will introduce a “Fourier dual” relation between D-bundles on cubic
curves and KP solutions, where we modify M inside its microlocalization by powers of a
vector field ∂ .

3.4. Local D-bundles and the Sato Grassmannian

In this section we studyD-bundles on the discD = Spec C[[t]]: so, we letD and E denote
the rings of differential and microdifferential operators with coefficients in C[[t]], as in
Section 2.3.6 We introduce D-lattices and state our generalization of Sato’s D-module
description of the Sato Grassmannian.

3.4.1. D-lattices. Consider the fiber E |t=0
def
= E/E · t of the right C[[t]]-module E . Under

the identification z↔ ∂ , we see that this fiber is isomorphic to the vector space C((z−1));
its realization as E/E t , however, gives it a natural structure of left E-module. Likewise,
the fiber En|t=0 is identified with the vector space C((z−1))n. Taking the fibers at zero
of the right C[[t]]-submodules Dn and En

−1 of En, we obtain the subspaces C[z]n and
z−1C[[z−1]]n, respectively, of C((z−1))n.

Generalizing the example of Dn ⊂ En, we have the following.

Definition 3.14. A D-lattice in En is a finitely generated right D-submodule M ⊂ En
such that M · E = En (equivalently, the natural map M ⊗D E → En is an isomorphism).

A D-lattice is said to be generic if it is transversal to En
−1, that is, En = M ⊕ En

−1.

AD-latticeM ⊂ En is aD-bundle on the disc with a microlocal trivialization (i.e. near
∂ = ∞). Namely, M inherits the structure of On-framed D-bundle from its embedding
in En. Thus we may reformulate the notion ofD-lattice as anOn-framedD-bundle on the
disc, equipped with a filtered isomorphism M ⊗D E → En.

6 It is important to note that we use the disc rather than the formal disc D̂ = Spf(C[[t]]), on which
the theory of D-modules is trivial.
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Lemma 3.15. Let M ⊂ En be a finitely generated D-submodule. Then M is a D-lattice
if and only if the following conditions are satisfied:

(1) There exists an integer k such that M → En/Enk is surjective.
(2) There exists an integer ` such that M → En/En` is injective with cokernel a finitely

generated projective C[[z]]-module.

The proof uses standard techniques. In fact we will later adopt this equivalent reformula-
tion, since it is easier to work with in families than Definition 3.14: see Section 6.

We also have the following characterization of generic D-lattices:

Proposition 3.16. A D-lattice M ⊂ En is generic if and only if M (with its induced
filtration, Section 7.2) is isomorphic to Dn (with its standard filtration) as filtered D-
modules.

Proof. M is generic if and only if, with the induced filtration, the induced homomorphism

ψ : gr(M)→ gr(En/En
−1)
∼= gr(Dn)

of C[[t]]-modules is an isomorphism. Observe that ψ has a kernel if and only ifM−1 6= 0.
Furthermore, if ker(ψ) = 0, thenψ is an isomorphism if and only if gr(M) ∼= M0⊗gr(D).
A standard argument shows that this last equality holds if and only if the induced D-
module map M0 ⊗D→ M is an isomorphism of filtered D-modules. ut

3.4.2. Sato Grassmannian as moduli space. We now state our general Sato theorem (re-
stated and proved below as Theorem 6.5), relating D-lattices to the Grassmannian.

To anyD-latticeM ⊂ En we may assign its fiberM/Mt at 0. This is a subspace (with
no additional module structure in general) of En/Ent = C((z−1))n, and in fact always
gives a d-lattice: see Proposition 6.6.

We then have the following theorem:

Theorem 3.17 (see Theorem 6.5). The Sato Grassmannian GRn is isomorphic to the
moduli space for D-lattices, under the map taking a D-lattice M ⊂ En to the d-lattice
M/Mt ⊂ En/En = C((z−1))n. Under this map, generic D-lattices are identified with
d-lattices in the big cell.

The set-theoretic identification of the set of generic (i.e. free) D-lattices and the set of
generic d-lattices (the big cell GR◦n) was proven by Sato; see [Mul]. We will postpone the
proof until Section 6.

3.4.3. Interpretation: noncommutative Krichever data. Recall that a (rank one)
Krichever datum (defining an algebro-geometric solution for KP [Mul]) associated to
a curveX with a marked smooth point x and local coordinate z at x is a torsion-free sheaf
L on X, equipped with a trivialization near x. Equivalently we have a torsion-free sheaf
L on the affine curveX \x equipped with an isomorphism L⊗OX\x C((z)) (allowing us to
glue L on the punctured curve to the trivial bundle on the disc at x). Theorem 3.17 claims
that the (rank one) Sato Grassmannian is identified with the moduli space of (rank one)
D-bundles on the disc, equipped with a trivialization near infinity (i.e. of the associated
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filtered E-module). Thus the entire Grassmannian parametrizes a kind of Krichever data
for the noncommutative P1-bundle P(D). The latter is characterized as the space on which
coherent sheaves are filtered D-modules (if we adopt the definition of noncommutative
variety as Grothendieck category or as differential graded category), and is obtained by
gluing the noncommutative affine bundle SpecD to a “disc bundle at infinity” Spec E−
along Spec E . Classical Krichever solutions correspond to commutative subrings of D
(necessarily the affine rings of curves), in other words to maps from this noncommuta-
tive curve to ordinary curves. Thus classical algebro-geometric solutions correspond to
D-lattices which are pulled back from torsion-free sheaves L on curves X under maps
P(D)→ X.

3.5. Lax operators and micro-opers

As we have seen, the D-lattices provide a D-module interpretation for points in the Sato
Grassmannian, the big cell of which parametrizes KP wave operators. In this section
we introduce micro-opers, which give a similar interpretation for points in the quotient
VC
n \GRn and thus also for KP Lax operators. They are less rigid structures thanD-lattices

and hence turn out to be better suited for our goal of “globalizing” the Sato dictionary and
geometrically interpreting meromorphic Lax operators on a (cubic) curve.

Given a right D-module M , we write ME = M ⊗D E .

Definition 3.18. A V -framed micro-oper on a differential curve (Section 2.1) (X, ∂) is a
V -framed D-bundle M on X equipped with a left E-module endomorphism ∂M of ME =
M ⊗D E whose principal symbol is IdV ⊗∂ with respect to the induced filtration of ME .
In other words, ∂M has degree 1 with respect to the filtration and induces the isomorphism

(gr(∂M) = IdV ⊗ ∂) : (grnME ' V ⊗ grn E)→ (grn+1ME ' V ⊗ grn+1 E).

By a rank n local micro-oper we denote an On-framed micro-oper on the disc. A lo-
cal micro-oper is generic if the underlying filtered D-module is trivial, i.e. isomorphic
to Dn with its filtration. Local micro-opers are parametrized by a quotient of the Sato
Grassmannian:

Proposition 3.19. The parameter space (moduli stack) for rank n local micro-opers is the
quotient VC

n \GRn of the Sato Grassmannian by negative constant coefficient operators.

Proof. A D-lattice M ↪→ En defines a micro-oper structure on M by remembering only
the natural filtration, framing and ∂ action on ME = En. This defines a map from GRn

to micro-opers. Conversely, given a micro-oper structure on M we may pick a D-lattice
structure (i.e. an isomorphismM⊗D E → En) onM compatible with filtration and fram-
ing. Since ∂M is acting by right E-module endomorphisms of ME , the lattice structure
identifies ∂M with an endomorphism of En given by left multiplication by an operator of
the form ∂ ⊗ Id + a0 + a1∂

−1
+ · · · , where ai are matrices over formal power series.

Changing the D-lattice structure by the left action of Id+ gln(E−1) on En, we can conju-
gate the image of ∂M to ∂ ⊗ Id. Moreover, we can do so uniquely up to the centralizer of
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∂ ⊗ Id in gln(E<), namely VC
n . This identifies the D-lattice structures on M inducing the

given micro-oper structure on M with a VC
n -orbit on GRn, as desired.

The above proof extends immediately to S-families of micro-opers (note thatD-lattice
structures on M will exist only locally on the parameter scheme S), proving the stronger
assertion of the proposition. ut

Corollary 3.20. The space of generic local micro-opers is isomorphic to the affine space
of matrix KP Lax operators.

Proof. The genericity condition precisely characterizes micro-opers in the image of
VC
n \GR◦n, since D-lattice structures on such a framed D-module are automatically in

the big cell by Proposition 3.16. Note also that Dn has no automorphisms as a framed D-
module. Thus a trivial framedD-module has a unique trivialization. Therefore ∂M defines
a right E-module endomorphism of En, hence an element L of gln(E) acting from the left.
The micro-oper conditions guarantee that this is indeed a matrix KP Lax operator, i.e. has
the form ∂ ⊗ Id plus lower order terms. ut

On a global differential curve (X, ∂) we have the following “twisted” analog of a matrix
Lax operator:

Definition 3.21. A V -twisted Lax operator over an open set U ⊆ X is a filtration-
preserving right E-module endomorphism

L : V ⊗ E → V ⊗ E(1)

with principal symbol Id⊗ ∂ .

Note that “filtration-preserving” in this case means that

L(V ⊗ Ek) ⊂ (V ⊗ E(1))k = V ⊗ Ek+1

for all k. An easy argument shows that, in the case V = On, such L are exactly the matrix
Lax operators (more precisely, their initial values for fixed KP times).

Let us fix a point x ∈ X at which ∂ 6= 0 and use ∂ to identify ÔX,x with C[[t]].
Then the restriction of any micro-oper on X near x, together with a trivialization of V
near x, defines a micro-oper on the disc, i.e. a point of VC

n \GRn. If this local micro-
oper is generic then this is equivalent to the data of a matrix Lax operator on the disc.
In fact, by Proposition 3.6 there is an open set U on which ME is canonically identified
with V ⊗ E , so that the E-module endomorphism ∂M gives rise to a (V -twisted) matrix
microdifferential operator of degree one and principal symbol the identity:

Corollary 3.22. Let (M, ∂M) denote a V -framed micro-oper, andU ⊂ X the open subset
where M is trivial as a V -framed D-bundle (Proposition 3.6). Then the micro-oper M|U
determines, and is determined by, a V -twisted Lax operator.
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3.5.1. Micro-opers and opers. We see that micro-opers on a curve are global geometric
analogs of matrix Lax operators on the disc. Thus they are the matrix KP analogs of
opers, introduced by Beilinson and Drinfeld [BD3] following Drinfeld and Sokolov [DS]
(henceforth we only consider GLn opers). Opers are special connections defined on any
smooth curve, while opers on the disc are identified with KdV Lax operators, i.e. nth
order differential operators L = ∂n + u1∂

n−1
+ · · · + un ∈ D.

More precisely, micro-opers are the analogs of affine opers, introduced in [BF] for
the geometric study of Drinfeld–Sokolov hierarchies. A (GLn-)affine oper on a curve X
is a vector bundle V on X × P1, equipped with a connection ∇ along X on the bundle
of sections VA1 of V on A1

× X, and a flag V ·∞ on the fiber V∞ of V at X × ∞. The
connection is required to have a first order pole at∞ and to satisfy a strict form of Griffiths
transversality with respect to the flag at∞. The open set of generic affine opers, for which
V is trivial along P1, is identified with opers. Affine opers on the disc are identified with
(a quotient of) the loop Grassmannian for GLn, while opers form the corresponding big
cell.

The GLn loop Grassmannian is embedded in the Sato Grassmannian, reflecting the
inclusion of the KdV (and Gelfand–Dickey) hierarchies in KP. This corresponds to the
identification of affine opers with special micro-opers. Namely, affine opers (on any curve
differential (X, ∂)) are identified with O-framed micro-opers (M, ∂M) for which ∂nM pre-
serves the submodule M ⊂ ME . The identification preserves big cells: M is locally free
if and only if the corresponding affine oper is generic. To define the vector bundle V on
X × P1 we consider ME as an OX((z−1))-module via the endomorphism z = ∂nM . The
extension to P1

×X and the flag at∞ are constructed from the filtration, while the affine
oper connection comes from the (left version of the) right D-module structure on ME .
(See [BN2] for a more leisurely discussion.)

3.6. Flows of the KP and CM hierarchies

The flows of the multicomponent KP hierarchies on the Sato Grassmannian and the space
of Lax operators have natural formulations in terms of D-lattices and micro-opers, re-
spectively. First recall that the KP flows on GRn are given by the action of the subalgebra
0+ = C[∂] Id ⊂ gln(E) of constant coefficient scalar differential operators. The action of
this Lie algebra has the following simple description on D-lattices. Given a polynomial
P(∂) ∈ C[∂], its infinitesimal action on a D-lattice M ⊂ En is given by translating the
submodule M by the action of the (right D-module) endomorphism of En given by left
multiplication by P(∂). This means we deform elements m ∈ M ⊂ En to m+ εP (∂) ·m.
On the level of tangent spaces, write B = M/Mt for the corresponding d-lattice, and
make the identification

Hom(B,C((z−1))n/B) = HomD(M, En/M).

Then the tangent space to GRn at M has the form

TM GRn = Hom(B,C((z−1))n/B).
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The vector field on GRn given by P(∂) then has value at M equal to the composite

M ↪→ En P (∂)·−
−−−−→ En � En/M;

this is typically nontrivial since M is a right, but not left, D-submodule of En.
The action of 0+ descends from GRn to its quotient VC

n \GRn (whose big cell para-
metrizes Lax operators). By Proposition 3.19 this is the parameter space for local micro-
opers. It is easy to describe this action directly on micro-opers:

Proposition 3.23. The matrix KP flow associated to a polynomial P(∂) ∈ C[∂] on a
local micro-oper (M, ∂M : ME → ME ) is given by translating the D-module M ⊂ ME
by the action of the (right D-module) endomorphism P(∂M) (that is, we deform elements
m ∈ M ⊂ ME to m+ εP (∂M) ·m).

Micro-opers on a global differential curve (X, ∂) (i.e. meromorphic twisted Lax oper-
ators) also carry an action of the abelian Lie algebra C[∂], defined just as in the local
setting.7 Namely, the action of P(∂) ∈ C[∂] on a micro-oper (M, ∂M) is simply given
by translating the D-submodule M ⊂ ME by the action of the (right D-module) endo-
morphism P(∂M), and preserving the filtration, framing and endomorphism ∂M on ME .
In particular, these flows act on the associated rational Lax operator of Corollary 3.22 by
the standard multicomponent KP flows. More precisely, if we trivialize V |U then P acts
on the Lax operator LM ∈ gln(E) by commutator with P(∂).

3.6.1. The KP algebroid. We may also describe the KP flows on micro-opers in terms of
deformations of the underlyingD-bundles. More precisely, we introduce, by analogy with
Section 2.2.3, a Lie algebroid on D-bundles, which describes all deformations of a D-
bundleM coming from its microlocal endomorphisms (such as ∂M ), acting by movingM
inside ME :

Lemma 3.24. The sheaf EndE over BunP(D)(E, V ) of endomorphisms of the microlo-
calization of the universal sheaf (i.e. the sheaf whose fiber at M is EndE (ME )) has the
structure of Lie algebroid, the KP algebroid, whose action on a D-bundle M deforms
M ⊂ ME by left multiplication.

On the other hand, from Definition 2.6 we have an action of C[∂] on V ∨-framed CM
spectral sheaves CMn(E, V

∨). More generally by Lemma 2.8 we have a natural algebroid
describing all deformations of a CM spectral sheaf along the curve E∞. The definitions
of the CM and KP algebroids are precisely analogous, as are the structures of Higgsed
spectral sheaf and micro-oper. It is then an immediate consequence of the Fourier–Mukai
construction of the isomorphism between D-bundles and spectral sheaves (Theorem 3.4)
(and of the compatibility of the Fourier–Mukai transform with microlocalization [PRo])
that the corresponding algebroids and hierarchies are identified:

7 Note that we do not in fact need the full structure of differential curve, only the choice of ∂ up
to scalar, which is canonical in the cubic case.
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Theorem 3.25. Let F : BunP(D)(E, V )→ CMn(E, V
∨) denote the Fourier–Mukai iso-

morphism of framed D-bundles and framed CM spectral sheaves.

(1) F identifies the KP and CM algebroids.
(2) F lifts to an isomorphism of the moduli stack of V -framed micro-opers with the moduli

stack of V ∨-framed Higgsed CM spectral sheaves, identifying the multicomponent
KP hierarchy on micro-opers with the Higgsed CM hierarchy (i.e. intertwining the
two C[∂]-actions).

We defer the proof to Section 5.4, after the relevant facts about the Fourier–Mukai trans-
form have been established.

3.6.2. Bispectrality. We have now defined two relations between D-bundles and KP so-
lutions: the construction of rational Lax operators on X from micro-opers on X, and
the construction of Krichever data from the adelic Grassmannian, i.e. D-bundles with
generic trivialization. Alternatively, we have defined two Lie algebroids on the moduli
BunP(D)(E, V ) of D-bundles, describing deformations of a D-bundle M by endomor-
phisms of M ⊗D E and of M ⊗D D((z−1)). For D-bundles on a general curve, there is no
obvious relation between the two constructions. In particular note that the constructions
of KP solutions land in different copies of the Sato Grassmannian: Krichever data give
rise to subspaces of C((z−1)), where z−1 is a local coordinate at a point ∞ ∈ X, while
micro-opers give rise to subspaces of C((∂−1)), where ∂ is a nonvanishing vector field
on X.

It is natural to expect that the relation between the two constructions is a sort of Fourier
transform, exchanging microlocal and local trivializations. This can be made precise in
the rational case X = P1, using the geometric Fourier transform.8 This is an autoequiva-
lence of the category of D-modules on A1, and exchanges C((z−1)) and C((∂−1)). Let us
then consider the moduli problem for D-bundles on P1, with framing (i.e. trivialization
at ∂−1

= 0) and trivialization at z−1
= 0, i.e. the noncommutative version of sheaves

on the quadric P1
× P1, framed along P1

× ∞ ∪ ∞ × P1. This moduli stack acquires
an automorphism from the geometric Fourier transform, interchanging the KP algebroid
(deformations at ∂−1

= 0) with the algebroid of deformations at z−1
= 0 (given by endo-

morphisms of D-bundles restricted to Spec C((z−1))). In other words, the automorphism
exchanges the spectral parameter ∂ and the differential parameter z, and is easily seen
to give (on the level of points) the bispectral involution [W1, W3] in the rank one case.
Specifically this is a geometric reformulation of the picture of Berest and Wilson [BW1],
and the two algebroids in the rank one case are the two commutative subalgebras of the
automorphisms of the Weyl algebra studied in [BW1].

8 Note that the categories of D-modules on the rational cubic and on P1 are equivalent, and
D-bundles on P1 trivial at∞ and D-bundles on the cuspidal cubic curve are canonically identified
[SS, BN1].
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4. Fourier transform for cubic curves

In this section we explain the Fourier–Mukai autoequivalence of the derived category
of a cubic curve, extend it to give an analog of the theorem of Laumon and Rothstein
concerning D-modules on abelian varieties, and give some fundamental calculations for
the Fourier–Mukai transform of torsion-free sheaves.

4.1. Fourier equivalence for Weierstrass cubics

Fix a cubic curve E as before. In this section we describe the Fourier–Mukai autoequiva-
lence of the derived category of coherent sheaves on E.

Recall that the generalized Jacobian Jac(E) (the group of line bundles of degree 0
on E) is isomorphic to the smooth locus G ⊂ E via the map e 7→ O(e − b). The
compactified Jacobian of E, denoted by Jac(E), is the moduli space for rank 1, torsion-
free sheaves on E of degree (equivalently, Euler characteristic) 0; it is isomorphic to E,
with the additional point (when E is singular) coming from the unique rank 1 torsion-free
sheaf of degree 0 that is not locally free (which is isomorphic, in a neighborhood of the
singular point, with the ideal of the singular point).

Let1 ⊂ E×E denote the diagonally embedded copy of E. We define a sheaf P∨ on
E× Jac(E) = E×E by P∨ = I1⊗ (O(b)�O(b)). P∨ is flat over both factors: indeed,
we have a short exact sequence

0→ P∨→ O(b) �O(b)→ O1(2b)→ 0 (4.1)

with the second and third terms flat over both factors, implying that the kernel P∨ is as
well.

Definition 4.1. Let πi : E × E → E denote projection on the ith factor. The Fourier
functor F from the coherent derived category Dbcoh(E) to itself is defined by

F(M) = Rπ2∗(P∨
L
⊗ π∗1M).

Note that Lπ∗i = π
∗

i since the projection is flat. Note also that our curve E is Goren-
stein, so the dualizing sheaf ω = ωE is a line bundle—in fact, for our cubic curves,
ωE ' OE .

To the sheaf P∨ we may also associate its derived dual, the object (P∨)∨ =
RHom(P∨,OE×E) of the derived category of E × E. We write P = (P∨)∨; this no-
tation is consistent, since by taking the derived dual twice one obtains a complex quasi-
isomorphic to the original complex P∨. In fact, P is a sheaf that fits in an exact sequence

0→ O(−b) �O(−b)→ P → O1(−2b)→ 0 (4.2)

and, like P∨, P is a flat family of torsion-free sheaves of rank 1 and degree 0 over both
factors. Moreover, let (−1) : E → E denote the involution on E induced by the inverse
for the group structure of G. Then

P = (id×(−1))∗P∨. (4.3)
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Consider the functor

F(N) = Rπ1∗(P
L
⊗ π∗2N)[1]. (4.4)

Theorem 4.2 (see [BuK, Theorem 2.12]). The Fourier functor F : Dbcoh(E)→Dbcoh(E)

is an exact equivalence of triangulated categories, with quasi-inverse given by (4.4).

Remark 4.3. In [BN2, Theorem 5.2(1)], we announced a proof of this theorem (a proof
using Bridgeland’s criterion appeared in an early uncirculated draft of the present paper).
The theorem cited in [BuK] is actually considerably more general, but a special case of
that general theorem gives the fact we need.

Notation 4.4. We let F−1
= F [−1].

Corollary 4.5. The Fourier functor F : Dbqcoh(E) → Dbqcoh(E) is an exact equivalence
of triangulated categories.

Proof. A complex M of quasicoherent sheaves is the colimit of coherent complexes Mi .
By Remark 2.2 and Lemma 4.1 of [BoN], we then have

F ◦ F(M) = lim
−→

FF(Mi) ' M and F ◦ F(M) = lim
−→

FF(Mi) ' M

as desired. ut

Corollary 4.6. We have

R(p13)∗(p
∗

12P ⊗ p
∗

23P
∨) ' 1∗OE[−1] and R(p13)∗(p

∗

12P
∨
⊗ p∗23P) ' 1∗OE[−1]

(4.5)
in the derived category of coherent OE×E-modules.

Proof. This is immediate from Corollary 4.5 and [To]. ut

4.2. Fourier transform of torsion-free sheaves

Our goal in this subsection is to prove analogs, for singular Weierstrass cubics, of the
usual characterizations of torsion-free sheaves on an elliptic curve whose Fourier trans-
forms are again sheaves (that is, have cohomology in only a single degree). The reader
who is familiar with the standard techniques for these problems may consult the state-
ments of Propositions 4.7 and 4.8 for the expected facts; note, however, that while the
proof of Proposition 4.8 is standard, the proof of Proposition 4.7 is not entirely standard.

Recall that, if M is a torsion-free coherent sheaf on E, the slope of M is

µ(M)
def
=

deg(M)
rk(M)

. (4.6)

On a Weierstrass cubic curve E, the slope of M satisfies µ(M) = χ(M)/rk(M) where
χ(M) is the Euler characteristic of M; see Section 0.2 of [FMW] for this and other basic
facts about torsion-free sheaves and semistability on Weierstrass cubics.
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Recall the Harder–Narasimhan filtration of a torsion-free coherent sheaf M on E:
this is the unique decreasing filtration

F∞(M) = 0 ⊂ Fµ1(M) ⊂ · · · ⊂ Fµr (M) = M (4.7)

(that is, µ1 > · · · > µr ) such that each term grµi (M) = Fµi (M)/Fµi−1(M) of the
associated graded sheaf is torsion-free and semistable of slope µi .

Proposition 4.7. Suppose M is a torsion-free coherent sheaf on E. In the notation of
(4.7), F(M) and F(M) are concentrated in cohomological degree 0 if and only if µr > 0.

Proof. We give the proof only for F(M); the proof for F(M) is nearly identical in light
of equation (4.3).

Use the exact sequence

0→ P∨ = I1 ⊗ (O(b) �O(b))→ O(b) �O(b)→ O1(2b)→ 0

on E × E. Tensoring with p∗1M and applying Rp2∗ gives an exact sequence

0→ F 0(M)→ O(b)⊗H 0(M(b))→ M(2b)→ F 1(M)→ O(b)⊗H 1(M(b))→ 0

on E. So, F(M) is a sheaf in degree 0 if and only if

(a) H 1(M(b)) = 0,
(b) M(b) is globally generated.

First, then, suppose that µr > 0; we will prove that M satisfies (a) and (b). An induc-
tive argument using the long exact cohomology sequence shows that if H 1(T (b)) = 0
for all torsion-free semistable T of slope µ(T ) > 0 then also H 1(M(b)) = 0. But for
such T , Serre duality givesH 1(T (b))∗ = Hom(T (b),O) = Hom(T ,O(−b)) = 0 by the
semistability of T . This proves (a).

For (b), we suppose for the moment that

T (b) is globally generated for all semistable T with µ(T ) > 0 (4.8)

and let Qµ denote M/Fµ(M). Consider the commutative diagram

0 // O ⊗H 0(grµi (M)(b))
//

��

O ⊗H 0(Qµi−1(b))
//

��

O ⊗H 0(Qµi (b))
//

��

0

0 // grµi (M)(b) // Qµi−1(b)
// Qµi (b)

// 0

Part (a) above shows that the top row is exact. By (4.8), the left-hand vertical arrow is
surjective. Hence M(b)/Fµi−1(M)(b) is globally generated if M(b)/Fµi (M)(b) is, and
an induction then proves part (b). So it suffices to prove (4.8).

To prove (4.8), suppose that T is torsion-free and semistable and µ(T ) > 0. If T (b)
is not globally generated, then there is some p ∈ E such that

H 0(T (b))→ H 0(T (b)⊗OE/mp) = T (b)⊗OE/mp
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is not surjective. It follows that there is a quotient T (b)
φ
−→ OE/mp such that

H 0(φ) : H 0(T (b))→ H 0(OE/mp) ∼= C

is zero. The long exact cohomology sequence then implies that Hom(ker(φ),O)∗ ∼=
H 1(ker(φ)) 6= 0. Choosing a nonzero map ker(φ)

a
−→ O, we get a pushout diagram

0 // ker(φ) //

a

��

T (b)
φ //

��

OE/mp //

'

��

0

0 // O // ξ // OE/mp // 0

Letting tors(ξ) denote the (possibly zero) torsion subsheaf of ξ , we get a nonzero map
T (b)→ ξ/tors(ξ), where ξ/tors(ξ) is torsion-free of slope at most 1. But this contradicts
semistability of T (b) (since µ(T (b)) > 1), hence it contradicts semistability of T . This
proves (b).

It remains to show that if M satisfies (a) and (b) then µr > 0. So suppose that M
satisfies (a) and (b). It then follows from the long exact cohomology sequence that

(a′) H 1(grµr (M)(b)) = 0,
(b′) grµr (M)(b) is globally generated

hold as well.
Suppose that µr < 0. Write T = grµr (M). By paragraph 0.2 of [FMW],

deg(T (b)) = χ(T (b)) = rk(T )+ deg(T ) ≤ rk(T ).

SinceH 1(T (b)) = 0 by (a′), we get h0(T (b)) ≤ rk(T ). By (b′), we have a surjective map
O ⊗ H 0(T (b))→ T (b) of torsion-free sheaves, necessarily of the same rank. This map
is, consequently, an isomorphism. But then

H 1(T (b)) = H 1(O ⊗H 0(T (b))) 6= 0,

contradicting (a′). So µr > 0 after all. This completes the proof. ut

Proposition 4.8. Let M be a torsion-free coherent sheaf on E. Then F 0(M) = 0 if and
only if µ1 ≤ 0 (in the notation of (4.7)).

The proof is standard.

4.3. Fourier equivalence for Dlog-modules

In general, given a quasicoherent sheaf of ringsA on E, letA-mod (resp. mod-A) denote
the category of left (resp. right) A-modules that are quasicoherent as OE-modules.
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Recall the sheaf of rings D = Dlog of differential operators on a cubic curve E (for a
singular curve these are the log differential operators defined in Section 2.1.2 and studied
in Section 7). We wish to calculate the Fourier transform of D as an OE-bimodule (in
fact as an algebra object in the derived category). Consider D as a quasicoherent sheaf on
E×E, and letA = (p14)∗(P ⊗p∗23D⊗P

∨) be its bimodule Fourier transform; this is a
special D-algebra by Corollary 7.3 and [PRo, Props. 6.2 and 6.3]. We also let R(D) and
R(A) denote the Rees algebras of D and A, that is, the graded algebras given by

R(D) =
⊕
k≥0

Dk · tk and R(A) =
⊕
k≥0

Ak · tk

where t is a formal variable that keeps track of the grading. Note that R(D)/t ·R(D) =
gr(D) and similarly for A. For a quasicoherent sheaf of graded rings R we let R-mod
denote the category of finitely generated graded R-modules that are quasicoherent as
OE-modules.

Theorem 4.9.
(1) Let (SD,SA) be one of the following pairs:

(a) (SD,SA) = (D,A).
(b) (SD,SA) = (R(D),R(A)).
(c) (SD,SA) = (R(D)/tkR(D),R(A)/tkR(A)) for some k > 0.

Then the Fourier functor F of Corollary 4.5 may be refined to a functor

F : Db(SD-mod)→ Db(SA-mod)

that is an exact equivalence of triangulated categories.
(2) Fix k > 0. Then the change-of-rings functors

R(D)-mod→ (R(D)/tkR(D))-mod and R(A)-mod→ (R(A)/tkR(A))-mod

given byN 7→ N /tkN induce triangulated functors of the derived categories; more-
over, the following diagram commutes:

Db(R(D)-mod)
F //

��

Db(R(A)-mod)

��
Db((R(D)/tkR(D))-mod)

F // Db((R(A)/tkR(A))-mod)

Proof. This follows from [PRo, Theorem 6.5] by Corollaries 4.6 and 7.3. ut

4.4. The twisted log cotangent bundle

In this section we describe the Fourier transform algebra A of D from Theorem 4.9, and
relate it to the twisted log cotangent bundle E\ of E.

Let µ : G×E denote the action of the group G on E. For a torsion sheaf T on G, we
define the convolution action Db(E)→ Db(E), F 7→ T ∗ F , by

T ∗ F = µ∗(T � F).

(Note that µ is an affine morphism and is proper on the support of T � F for any F .)
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Lemma 4.10. The Fourier transform F(T ∗ F) of convolution is canonically identified
with the tensor product F(T )⊗ F(F).

The proof of the lemma is identical to the analogous convolution statement for abelian
varieties [Muk], once we note the character property of the Poincaré sheaf, namely the
canonical isomorphism on G×E ×E of (µ× 1)∗P and P12 ⊗ P23 (where P12 denotes
the restriction of P to G× E, pulled back to G× E × E).

Next we note that the sheaf D of log differential operators on E is the D-algebra
generated by the action of the group G on E (or specifically from that of its enveloping
algebra). Let U k denote the kth filtered piece of the enveloping algebra of G, which is
(as OG-module) the C-dual of functions on the kth order neighborhood of the identity
in G (i.e. U k = �E((k + 1)b)/�E via the residue pairing). We obtain the following
description of D as a bimodule (as for an arbitrary group action on a variety):

Lemma 4.11. Let p1, p2 denote the projections of G×E on the factors and µ the multi-
plication map to E. Then as anOE-bimodule (sheaf on E×E),Dk for any k is identified
with (µ× p2)∗p

∗

1U
k .

We will now identify A in terms of the twisted cotangent bundle E\ of E (Section 2.1.3).

Recall that A denotes the Atiyah extension, and E\ def
= Proj(Sym•A) the associated ruled

surface. We let p : E\ → E denote the projection map, and E∞ ⊂ E\ the section at
infinity. Note that every other section of E\ has nonempty intersection with E∞ since the
Atiyah sequence is nonsplit.

Theorem 4.12. (1) The bimodule Fourier transform Ak of Dk is scheme-theoretically
supported on the diagonal and is canonically identified with the Fourier transform
F(U k) on E.

(2) The commutative algebra A is canonically isomorphic (as filtered OE-algebra) to
p∗OE\ (functions on the twisted cotangent bundle), inducing isomorphisms E\ =
Proj(R(A)) and E\ = Spec(A).

(3) The Fourier transform induces an exact equivalence of the bounded derived category
of coherentD-modules and the bounded derived category of coherent sheaves on E\.

Proof. It follows from the above lemmas that

F(Dk ⊗M) = F(U k ∗M) = F(U k)⊗M

for any complex M , from which the description as a bimodule follows. Since the alge-
bra A is completely determined by the bimodule A1 with the inclusion OE ⊂ A1 as an
enveloping algebroid, it follows that it is commutative (this is immediate from the fact
that the associated graded algebra is isomorphic to Sym•OE). Next note that the Fourier
transform of the nonsplit extension U1

= �E(2b)/�E of Tb by Ob is isomorphic to the
Atiyah extension A of TE by OE . It follows that A is isomorphic to p∗OE\ compatibly
with the inclusions of OE in A and p∗OE\ . The isomorphisms on Spec and Proj fol-
low. In order to fix these isomorphisms canonically, we note that the fiber of Spec(A)
over b ∈ E has a canonical basepoint. This point d is characterized by the statement
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that the Fourier–Mukai transform of the skyscraper at d (as A-module) is the trivial line
bundle OE (which is guaranteed by the isomorphism Od = Ob as plain OE-modules)
with its canonical D-module structure. On the other hand from the definition of A we
find that the fiber Fb = p−1(b) ⊂ E\ has a canonical identification with the cotangent
fiber to E at b. There is now a unique isomorphism Spec(A) → E\ identifying these
basepoints, fixing the algebra isomorphism above uniquely. The final assertion follows
from Theorem 4.9, noting that the coherence condition for D-modules and A-modules is
identified by the Fourier transform. ut

4.5. Microlocalization

We have, in addition to the algebras discussed above, microlocalizations of the algebrasD
and A: these are obtained by inverting elements that have invertible principal symbol
and completing with respect to the given filtration. If we microlocalize D, we obtain the
sheaf E of microdifferential operators associated to D. Similarly, if we microlocalize A
we obtain a sheaf of filtered algebras AE that is the sheaf of “functions on the punctured
formal neighborhood of E∞”—that is, if we take the structure sheaf of the formal com-
pletion of E\ along E∞ and invert a local defining function for the closed subscheme E∞
in this formal completion, the resulting sheaf of functions is exactly AE .

By [AVV], the microlocalizations are obtained as follows. WritingR for the Rees ring
of either algebra, we form the graded rings gr(n) = R/tnR. Each of these is a nilpotent
extension of gr = R/tR, and so any local lift to gr(n) of an invertible element of gr is
invertible. Our ring gr(n) is generated by a single element, which we denote by ∂ . We lift
this locally and invert to obtain localized rings (gr(n))∂ which form an inverse system of
graded rings. We take the inverse limit and “reverse the formation of the Rees algebra”
to obtain a filtered ring, the microlocalization, whose Rees algebra is this inverse limit.
Since the graded rings at each stage are quasicoherent sheaves, one can make sense of
the Fourier transform of the microlocalization (which is not itself quasicoherent) as the
“de-Reesed inverse limit” of the Fourier-transformed inverse system.

Corollary 4.13. We have F(E) = AE and F−1(AE ) = E .

Proof. This was essentially proven in the pre-publication (arXiv) version of [PRo], but
we sketch the proof for completeness.

The Fourier transform of the localization F
(
(gr(n)(D))∂

)
is a nilpotent extension of

F(gr(D)∂) = gr(A)∂ , and consequently any local lift of the element ∂ to F
(
(gr(n)(D))∂

)
is invertible. The universal property of localizations then gives us an induced homomor-
phism

(R(A)/tkR(A))∂ = F(R(D)/tkR(D))∂ → F
(
(R(D)/tkR(D))∂

)
.

A standard argument using the filtration shows that this is an isomorphism, and conse-
quently we obtain an identification of the two inverse systems. The result now follows
from the construction of the microlocalization in [AVV]. ut

In fact, we will also want slightly more: given a filtered D-moduleM or anA-module F ,
we may similarly form an inverse system of graded modules gr(n)(M) (or similarly forF)
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over the system of graded rings gr(n)(R) used in Corollary 4.13, invert a local lift of ∂ ,
and take the inverse limit. If M or F is equipped with a good filtration, this procedure
gives us ME or FE , respectively. We can thus make sense of F(ME ) or F−1(FE ). With
this in mind, we have the following.

Corollary 4.14. Suppose ( for simplicity) that M is a D-module with good filtration
whose Fourier dual is the A-module F (in some cohomological degree) with induced
good filtration. Then the microlocalizations ME and FE satisfy F(ME ) = FE and
F−1(FE ) = ME .

Proof. The proof follows the same argument as in Corollary 4.13. ut

5. Isomorphism theorem for moduli spaces of D-bundles

In this section we give our principal application of the Fourier–Mukai transform.

5.1. Moduli stacks and isomorphism theorem

We begin by defining the moduli stacks for V ∨-framed spectral sheaves and V -framed
D-bundles.

As above, let V ∨ denote a nonzero coherent torsion sheaf on E supported on the
smooth locus G. We will let CM(E, V ∨) denote the moduli stack of V ∨-framed spectral
sheaves on E\: its objects are pairs (F , ψ) consisting of

(1) a finitely presented S-flat family F of sheaves of pure dimension 1 on E\ paramet-
rized by a scheme S,

(2) an isomorphism ψ : F |E∞×S → V ∨,

such that the restriction to E\ × {s} is a V ∨-framed spectral sheaf on E\ for each s ∈ S
(Definition 2.3). An isomorphism from (F , ψ) to (F ′, ψ ′) consists of an isomorphism
F → F ′ of coherent sheaves on E\ × S that is compatible with the framings ψ,ψ ′.

Standard arguments prove that CM(E, V ∨) is an algebraic stack, locally of finite type
over C. Note that CM(E, V ∨) will have many components, since we have not fixed one
discrete invariant of F , namely rk(p∗F(−E∞)).

Let V denote the semistable vector bundle of degree 0 on E that is the Fourier trans-
form of V ∨. Let BunP(D)(E, V ) denote the moduli stack of V -framed D-bundles on E:
its objects are triples (M, {Mk}, φ) consisting of

(1) a finitely generated S-flat family M of locally projective DS-modules on E × S,
(2) a D-module filtration {Mk} of M such that Mk is a vector bundle over E × S for

k � 0,
(3) an isomorphism φ :

⊕
k≥N grk(M) →

⊕
k≥N grk(D)S ⊗ V as gr(D)S-modules for

N � 0,

such that the restriction to E × {s} is a V -framed D-bundle for each s ∈ S. We will refer
to such a triple as an S-flat family of V -framedD-bundles on E, or, when S is understood,
simply as a V -framed D-bundle.
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An isomorphism between two such triples (M, {Mk}, φ) and (M ′, {M ′k}, φ
′) is an

isomorphism ψ : M → M ′ of DS-modules such that ψ(Mk) = M ′k for all k � 0 and
grψ ◦ φ|grk(M) = φ

′
◦ grψ |grk(M) for all k � 0.

The principal result of this section is the following isomorphism of moduli stacks.

Theorem 5.1. The Fourier functor F induces an isomorphism of stacks

F : BunP(D)(E, V )→ CM(E, V ∨).

Remark 5.2. This is not, in fact, the most general such theorem possible, in the following
sense. One may enlarge the class of D-bundles and the class of spectral sheaves in such
a way that the Fourier–Mukai transform induces an isomorphism between the moduli
stacks for these more general classes of objects. Since these more general classes do not
seem to be useful for studying solutions of the KP or CM systems, we confine ourselves
to formulating the general theorem. The proof uses the same techniques as we use for
Theorem 5.1.

Theorem 5.3. Given a coherent sheaf F on E\ of pure dimension one, define the quo-
tient sheaf F≤0 as in Definition 5.9. Then the Fourier–Mukai transform induces an iso-
morphism of the moduli stacks for the following objects:

(1) Pairs (F , φ) consisting of a coherent sheaf F of pure dimension one on E\ and an
isomorphism φ : F |E∞ → V ∨ that satisfies:

(a) F has no nonzero subsheaves G ⊂ F with both F |E∞ = 0 and µ(p∗G) > 0.
(b) The quotient sheaf F≤0 of F is zero.

(2) Pairs (M,ψ) consisting of a torsion-freeD-moduleM equipped with a good filtration
and an isomorphism

ψ :
⊕
k≥k′

grk(M)→ V ⊗
⊕
k≥k′

grk(D)

for some k′ sufficiently large.

5.2. Framed D-bundles and framed spectral sheaves

We begin by proving Theorem 5.1 at the level of points: the Fourier transform identi-
fies V -framed D-bundles (Definition 3.2) with V ∨-framed spectral sheaves (Definition
2.3). We continue to fix a coherent torsion sheaf V ∨ on E that is supported on G and
V = F−1(V ∨).

We first recall a basic result on sheaves on projective bundles (see Sections II.5 and
III.8 of [Ha]). Suppose F =

⊕
k≥n Fk is a finitely generated graded R(A)-module, and

let F̃ denote the corresponding sheaf on E\ = Proj(R(A)). Conversely, given a coherent

sheaf F on E\, let 0F =
⊕

k≥0 0kF
def
=
⊕
p∗F(kE∞) denote the associated R(A)-

module.
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Proposition 5.4. Suppose S is a noetherian scheme, and let AS = A � OS on E × S.
Then:

(1) If F is a finitely generated R(AS)-module, then there is a map F → 0F̃ of graded
R(AS)-modules that is functorial in F and is an isomorphism in sufficiently high
degrees.

(2) IfF is a coherent sheaf onE\×S, then there is an isomorphism 0̃F → F of coherent
sheaves that is functorial in F .

(3) The functor N 7→ Ñ is exact and commutes with tensor product over OS .
(4) The functor 0 takes exact sequences of coherent sheaves on E\ × S to complexes of

graded R(AS)-modules that are exact in all sufficiently high graded degrees.

Suppose thatM is a V -framedD-bundle; in particular, it comes equipped with a canonical
structure of filtered D-module (see Definition 7.6). Let R(M) denote the Rees module
of M .

We will need the following basic fact relating M and R(M):

Proposition 5.5.

(1) Suppose that M is a V -framed (D)S-bundle on E for some scheme S. Then the
Rees module R(M) is an S-flat family of torsion-free graded R(D)-modules, and

the framing becomes an isomorphism R(M)/tR(M) φ
−→ gr(D)S ⊗ V in high degree

as gr(D)S-modules.
(2) Conversely, if N =

⊕
Nk is an S-flat family of torsion-free graded R(D)-modules

equipped with a V -framing N/tN
φ
−→ gr(D)S ⊗ V , then lim

−→
Nk together with the

induced filtration, filtered D-module structure and framing is an S-flat family of V -
framed D-bundles.

These constructions give an equivalence between the groupoid of V -framed D-bundles
and the groupoid of V -framed torsion-free R(D)-modules.

Proof. See [LvO]. ut

We will first check thatM , together with its filtration, transforms to a filtered sheaf on E\.

Lemma 5.6. Suppose that M is a V -framed D-bundle. Then:

(1) F(R(M)) is a sheaf in cohomological degree 1.
(2) The element t ∈ R(A) is a non-zero-divisor on F(R(M)).
Proof. Suppose (M,Mk, φ) is a V -framed D-bundle. Part (i) of Proposition 7.8 implies
that, for m sufficiently large, the canonical filtration 2 on M satisfies 2k(M) = Mk for
all k ≥ m. By parts (a) and (i) of Proposition 7.8, we find that

2k(M) ⊆ 2k(ME )/2−1(ME )

for all k. Part (iii) of Proposition 7.8 implies that2k(ME )/2−1(ME ) is an iterated exten-
sion of copies of V ; since F 0(V ) = 0, we also have F 0(Mk) = 0.

Since F 0(V ) = 0, we find that F(Mk) = F 1(Mk) → F 1(Mk+1) = F(Mk+1) is
injective for all k in the great range. This implies (2). ut
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Corollary 5.7. The exact sequence

0→ tR(M)→ R(M)→ gr(D)⊗ V → 0

of graded R(D)-modules in sufficiently high degree has as its Fourier transform a short
exact sequence

0→ tF (R(M))→ F(R(M))→ gr(A)⊗ V ∨→ 0 (5.1)

of graded R(A)-modules in cohomological degree 1.

Proof. It follows from Lemma 5.6 that the exact sequence

0→ tR(M)→ R(M)→ R(M)/tR(M) = gr(D)⊗ V → 0

is taken by the Fourier functor to an exact sequence

0→ tF (R(M))→ F(R(M))→ F(R(M)/tR(M)) = F(gr(D)⊗ V )→ 0

of sheaves in cohomological degree 1. So it suffices to check that F(gr(D) ⊗ V ) =
gr(A)⊗ V ∨ as gr(A)-modules. This is immediate from part (2) of Theorem 4.9. ut

Write Nk = F(Mk) and N = F(R(M)), and let F = ˜F(R(M)) = Ñ (see 5.4). Taking
the sequence of coherent sheaves on E\ associated to the sequence (5.1) gives an exact
sequence

0→ F(−E∞)→ F → V ∨→ 0

on E\; in other words, F is a V ∨-framed coherent sheaf on E\.

Proposition 5.8. If M is a V -framed D-bundle, then F = ˜F(R(M)) (with its induced
V ∨-framing) is a V ∨-framed CM spectral sheaf.

Proof. Observe first that F has one-dimensional support: indeed, since Mk ⊂

ME,k/ME,−1 is torsion-free of negative degree, a standard Fourier–Mukai computation
shows that F(Mk) has support equal to E, and thus supp(F) has dimension at least one.

Suppose F ′ is a subsheaf of F of dimension 0. By part (1) of Proposition 5.4 and
part (2) of Lemma 5.6, the natural map p∗F(kE∞) → p∗F((k + 1)E∞) is injective
for k sufficiently large. On the other hand, if the support of F ′ had nontrivial intersection
withE∞, the natural maps p∗F ′(kE∞)→ p∗F ′((k+1)E∞)would fail to be injective for
all k. Since p∗F ′(kE∞) ⊆ p∗F(kE∞) for all k, it follows that supp(F ′)∩E∞ = ∅. Then
the maps p∗F ′(kE∞) → p∗F ′((k + 1)E∞) are isomorphisms for all k, implying that⋃
k≥0 p∗F ′(kE∞) is a finite-lengthOE-submodule of F(M). This transforms under F−1

to an O-coherent D-submodule of M , a contradiction since M is torsion-free over D.
Thus F is of pure dimension 1.

It remains to prove the normalization conditions (i) and (ii) in Definition 2.3. By
hypothesis, deg(Mk) = −n and rk(Mk) = (k + 1) rk(V ) for all k sufficiently large;
a standard Fourier–Mukai computation then shows that F(Mk) = Nk has rank n and
degree (k + 1) rk(V ) for k � 0. Condition (i) then follows from Lemma 2.5.
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To verify condition (ii), we use the exact sequence

0→ Mk → ME,k/ME,−1 → Qk → 0 (5.2)

for k � 0 in which, by Definition 3.2 and Proposition 7.7, Qk is a torsion OE-module
supported on the smooth locus of E. Applying F , we get an exact sequence

0→ F 0(Qk)→ Nk → Nk/N−1 → 0. (5.3)

For k�0, moreover, we have Nk=p∗F(kE∞) and Nk/N−1∼=p∗(F(kE∞)/F(−E∞))
by Theorem 4.9. It follows that for k � 0, p∗F(−E∞) = F(Qk), a vector bundle W of
the kind required by condition (i) of Definition 2.3. This proves the proposition. ut

We next study the transform of a CM spectral sheaf.

Definition 5.9. Let
F≤0

def
=

(0F/ tors(0F))
F>0(0F/ tors(0F))

.

The quotient sheaf F → F≤0 is defined by F≤0 = F̃≤0.

Remark 5.10. Note that, by Proposition 5.4, we have F≤0 → 0F≤0 which is an isomor-
phism in high degree.

Proposition 5.11. Every CM spectral sheaf (F , φ) has the following two properties:

(1) F has no nonzero subsheaves G ⊂ F satisfying both G|E∞ = 0 and µ(p∗G) > 0.
(2) The quotient sheaf F≤0 of F is zero.

Proof. Suppose that G ⊂ F is a subsheaf satisfying G|E∞ = 0. Then p∗G = p∗G(−E∞)
⊂ p∗F(−E∞), implying, since the last term is a semistable vector bundle of degree 0,
that deg(p∗G) ≤ 0. This proves statement (1) above. For statement (2), we proceed as
follows. For every k, we have a map φk : F−1 → (Fk)≤0 from a semistable vector
bundle of degree 0 to a sheaf whose Harder–Narasimhan subquotients all have nonpositive
degrees; a standard argument shows that the image is a semistable torsion-free sheaf of
degree 0 with torsion-free quotient. From the short exact sequence 0 → F−1 → Fk →

Qk → 0 for all k ≥ 0, where Qk is a torsion O-module, it then follows that the induced
map fromQk to (Fk)≤0/Im(φk) is zero. Since Fk surjects onto (Fk)≤0, however, it follows
that φk must already be surjective, i.e. (Fk)≤0 is torsion-free semistable of degree 0, and
F−1 → (Fk)≤0 is surjective. The filtration on (Fk)≤0 induced from the one on F−1 by
part (ii) of [FM1, Lemma 1.2.5] then has subquotients that are line bundles of degree 0.

Suppose, then, that F≤0 is nonzero. Then, for all k sufficiently large, p∗F≤0(kE∞) =

(Fk)≤0. We claim that for all k sufficiently large, p∗F≤0(kE∞) = p∗F≤0((k + 1)E∞):
if not, then, since for k large rk(p∗F≤0(kE∞)) = rk(p∗F≤0((k + 1)E∞)), we find that
deg(Fk)≤0 is a strictly increasing function of k, a contradicition since it is bounded above.
It follows that, for k sufficiently large, the terms in the graded A-module

⊕
m(Fm)≤0

stabilize, and thus that there is a morphism—the multiplication map—of the form
At⊗(Fk)≤0 → (Fk)≤0 that is the identity map on the subsheaf O ⊗ (Fk)≤0—in other
words, the extension given by tensoring the Atiyah extension with (Fk)≤0 is split. But we
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have already seen that (Fk)≤0 is a successive extension of line bundles on E, and is in
particular a vector bundle on E. Hence, taking the trace on Ext1((Fk)≤0, (Fk)≤0) gives a
splitting (up to scale) of the inclusion map

Ext1(O,O)→ Ext1((Fk)≤0, (Fk)≤0)

that tensors an extension of O by O with the vector bundle (Fk)≤0. In particular, the
Atiyah extension cannot split when tensored with (Fk)≤0 if the latter is nonzero. This
completes the proof. ut

Proposition 5.12. Suppose F is a V ∨-framed spectral sheaf on E\. Then F−1(0F) cor-
responds, under the equivalence of Proposition 5.5, to a V -framed D-bundle on E.

Proof. Since F is of pure dimension 1 and F |E∞ = V ∨, F has no local sections sup-
ported set-theoretically on E∞. Thus the map F(kE∞)→ F((k+ 1)E∞) is injective for
all k, and the action of t on 0F is regular. Taking the direct image of

0→
⊕

F(kE∞)→
⊕

F((k + 1)E∞)→
⊕

F((k + 1)E∞)|E∞ = V
∨(kE∞)→ 0

thus gives an exact sequence

0→ t0F → 0F → 0F/t0F = gr(A)⊗ V ∨→ 0 (5.4)

in high degree.
Consider the torsion-free quotient 0kF/tors(0kF). By Proposition 5.11, for k � 0

all terms in its Harder–Narasimhan filtration have positive slope; applying Proposition 4.7
and using the exact sequence

0→ tors(0kF)→ 0kF → 0kF/tors(0kF)→ 0, (5.5)

we find that F−1(0kF) is a sheaf in cohomological degree 0 for k � 0. It then follows
that the same is true for every term of (5.4) for k � 0, and we obtain an exact sequence

0→ tF−1(0F)→ F−1(0F)→ gr(D)⊗ V → 0

in high degrees. In particular, M =
⋃
F−1(0kF) is a filtered D-module equipped with

an isomorphism gr(M) = gr(D)⊗ V of gr(D)-modules in high degree.
We wish to prove next that M is torsion-free; so suppose not. The V -framing implies

that the torsion submodule tors(M) is contained in Mk = F−1(0kF) for some k suffi-
ciently large. In particular, tors(M) is anO-coherent D-submodule ofM . Since F(M) =
p∗(F |E\) is a sheaf concentrated in cohomological degree 1, we find that F(tors(M)) is
an O-coherent sheaf concentrated in degree 1 that gives a subsheaf G = ˜F(R(tors(M)))
of F with the property (since tors(M)k = tors(M)k+1 for k � 0) that G|E∞ = 0. By
Proposition 5.4, p∗(G) = F(tors(M)k) for k � 0; this sheaf is torsion-free since it is the
direct image of a sheaf of pure dimension 1 that has zero intersection with E∞. Because
F−1(p∗G) = tors(M)k in degree 0, Proposition 4.7 then implies that p∗G has positive
slope, contradicting part (1) of Proposition 5.11. So tors(M) = 0.
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By condition (ii) of Definition 2.3, we get rk(Mk) = (k + 1) rk(V ) for all k � 0.
Since M is V -framed and gr(M) is torsion-free, we conclude that M is normalized if and
only if M−1 = 0. So, suppose that M−1 6= 0; it would then follow that rk(Mk) < rk(V )
for all k < 0. Let k be the smallest integer such that Mk 6= 0, and consider the D-
submodule N of M generated by Mk . This is a D-bundle of rank rk(Mk). Then, under
the induced filtration from M , rk(gr`(N)) = rk(Mk) for all ` ≥ k. Thus, shifting the
filtration by k, we find that N(k) is a normalized D-bundle. Let G be the Fourier trans-
form of N . It follows from our earlier argument that deg(p∗(G((−1 + k)E∞))) = 0,
hence deg(p∗(G(−E∞))) = (−k) rk(Mk). Since k < 0 and p∗G(−E∞) is a subsheaf of
0−1(F), this contradicts semistability of 0−1(F). So M satisfies condition (ii) of Defini-
tion 3.2.

To prove that condition (i) of Definition 3.2 holds, we use the exact sequence

0→ 0−1F → 0kF → p∗(F(kE∞)/F(−E∞))→ 0.

Using Corollary 4.14, this transforms under Fourier–Mukai to the exact sequence

Mk → ME,k/ME,−1 → F(0−1F)→ 0

for k � 0. By condition (i) of Definition 2.3, F(0−1F) is a coherent OE-torsion sheaf
supported on the smooth locus of E, from which it follows that Mk

∼= ME,k/ME,−1 as
filtered sheaves in a neighborhood of∞. The desired conclusion is then immediate. ut

We may summarize the results of Propositions 5.8 and 5.12 as follows.

Corollary 5.13. The construction M 7→ ˜F(R(M)) gives a bijective correspondence be-
tween V -framed D-bundles on E and V ∨-framed spectral sheaves on E\.

5.3. Proof of Theorem 5.1

Now that we have proven the isomorphism for C-points of the stacks (Corollary 5.13),
what remains is simply to extend this bijection to families and check that it is functorial
and compatible with base change.

By standard limit arguments, we may assume that all parameter schemes S are noethe-
rian; we will do so without comment below.

The proof will require the following facts from [Br].

Lemma 5.14. Let S and T be schemes.

(1) Let g : T → S be a morphism and fix E ∈ D(S × E) of finite Tor-dimension over S.
Then there exists an isomorphism

F ◦ L(g × 1E)∗E ' L(g × 1E)∗ ◦ F(E).

(2) Let E be a coherent sheaf on S × E that is flat over S. Suppose that for each s ∈ S,
F(Es) is a sheaf (in some cohomological degree). Then F(E) is a sheaf on S×E that
is flat over S.
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The isomorphism of Theorem 5.1 will follow from a certain collection of technical facts
(Lemmas 5.15 through 5.20).

Given a V -framed D-bundle (M, {Mk}, φ) on E × S, we obtain an object F(R(M))
of the derived category of R(A)-modules.

Lemma 5.15. F(R(M)) is an S-flat sheaf of R(A)-modules concentrated in degree 1.

Proof. By assumption,R(M) is S-flat. By part (2) of Lemma 5.14 and part (1) of Lemma
5.6, the result follows. ut

It then follows from part (3) of Proposition 5.4 that F = ˜F(R(M)) is an S-flat family of
coherent sheaves on E\. We next prove:

Lemma 5.16. ˜F(R(M))|
E
\
s
= ˜F(R(M|

E
\
s
)) for all s ∈ S.

Proof. By Lemma 5.15 and part (1) of Lemma 5.14, we have F(R(M)s) = F(R(M))s
for all s ∈ S. The lemma then follows by part (3) of Proposition 5.4. ut

Lemma 5.17. The Fourier transform of the exact sequence

0→ tR(M)→ R(M)→ gr(D)⊗ V → 0 (5.6)

in high graded degrees becomes a short exact sequence

0→ F(−E∞)→ F → s∗V
∨
→ 0 (5.7)

of sheaves on E\ (where s : E→ E\ is the section at infinity).

In particular, it then follows by Corollary 5.13 that (F , F (φ)) is an S-flat family of V ∨-
framed spectral sheaves.

Proof of Lemma 5.17. The Fourier transforms of the terms in (5.6) are all sheaves in
cohomological degree 1 by Lemma 5.15. Hence, by the long exact cohomology sequence,
F applied to (5.6) is an exact sequence of sheaves in degree 1 in high graded degrees. We
get an exact sequence

0→ F(R(M))(−1)→ F(R(M))→ gr(A)⊗ V ∨→ 0

as a result. Part (3) of Proposition 5.4 then proves the lemma. ut

It is clear from the construction that this takes isomorphisms of V -framed D-bundles to
isomorphisms of V ∨-framed spectral sheaves. Moreover, by Lemma 5.15 and part (1)
of Lemma 5.14, this construction commutes with pull back along morphisms S′ → S.
Hence it gives a morphism of stacks F : BunP(D)(E, V )→ CM(E, V ∨).

In the other direction, we start with an S-flat family of V ∨-framed spectral sheaves
(F , ψ). We will prove:
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Lemma 5.18. Applying 0 to

0→ F(−E∞)→ F φ
−→ V ∨→ 0 (5.8)

gives an exact sequence

0→ 0F(−1)→ 0F → gr(A)⊗ V ∨→ 0 (5.9)

of S-flat graded R(A)-modules in all sufficiently high graded degrees. Moreover, for any
morphism S′→ S we have 0k(FS′) = (0kF)S′ for all k sufficiently large.

Proof. The exactness is immediate from part (4) of Proposition 5.4; indeed, the sequence
is exact in graded degree k by construction whenever

R1p∗F((k − 1)E∞) = 0.

For flatness over S, we begin with the observation that it is enough to check this
locally over E. In particular, we may restrict attention to an open set of E over which E\

is a trivial P1-bundle and choose a Čech covering of P1 by two open sets. We then obtain
a two-term Čech complex C• over (an open set of) E\ × S; since F is S-flat, so are the
terms of the complex F(kE∞)⊗ C•. Thus the terms of

p∗F(kE∞)⊗ C0
→ p∗F(kE∞)⊗ C1 (5.10)

are also S-flat. Choosing k sufficiently large that R1p∗F(kE∞) = 0, we find that 0kF =
p∗F(kE∞) is the kernel of the surjective map (5.10) of S-flat sheaves, hence is itself
S-flat. Moreover, if S′ → S is any morphism, the pullback of (5.10) to S′ has 0k(FS′) as
its kernel (by S-flatness of the terms of the exact sequence), completing the proof. ut

We next prove:

Lemma 5.19. In all sufficiently high degrees, the Fourier transform of (5.9) is an exact
sequence

0→ F−1(0(F))(−1)→ F−1(0F)→ gr(D)⊗ V → 0 (5.11)

of S-flat families of R(D)-modules concentrated in cohomological degree 0.

By Lemma 5.18, Lemma 5.19, and part (1) of Lemma 5.14, the formation of the exact
sequence (5.11) then commutes with arbitrary base changes S′→ S.

Proof of Lemma 5.19. By Lemma 5.18, part (2) of Lemma 5.14, and Corollary 5.13,
F−1(0F) is, in sufficiently high graded degrees, an S-flat sheaf in cohomological de-
gree 0. Since this applies to F−1 of all terms in (5.9), it follows from the long exact
cohomology sequence that F−1 applied to (5.9) is an exact sequence of the form (5.11)
in all sufficiently high graded degrees. ut

We obtain, as an immediate consequence, the following analog of Proposition 5.5:

Lemma 5.20. The natural map F−1(ιk) : F−1(0kF) → F−1(0k+1F) is injective for
all k sufficiently large and satisfies F−1(ιk)S′ = F

−1(ιk,S′) for every S′→ S.
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It follows that M =
⋃
k F
−1(0kF) is a D-module satisfying

(1) MS′ =
⋃
k F
−1(0k(FS′)) for every S′→ S,

(2) Mk = F
−1(0Fk) defines a good filtration on M ,

(3)
⊕

k≥n grk(M) =
⊕

k≥n gr(D)⊗ V as gr(D)-modules for some n sufficiently large.

Combining these observations with Corollary 5.13, we find that (M, {Mk}, F
−1(ψ)) is

an S-flat family of V -framed D-bundles on E.
It is again clear from the constructions that the map (F , ψ) 7→ (M, {Mk}, F

−1(ψ))

takes isomorphisms of V ∨-framed spectral sheaves to isomorphisms of V -framed D-
bundles. We have proven above the compatibility of this construction with base change,
so we obtain a morphism of stacks F−1 : CM(E, V ∨)→ BunP(D)(E, V ).

To see that these functors give isomorphisms of stacks, let (F , ψ) = F(M, {Mk}, φ).
Applying 0 to F we obtain an exact sequence of R(A)-modules of the form (5.9)
in which, by Proposition 5.4, the left-hand and middle terms are isomorphic to
F(R(M))(−1) and F(R(M)) respectively in high degrees. Applying F−1 to this ex-
act sequence we then obtain, by the construction and Theorem 4.2, an exact sequence
equipped with a canonical isomorphism to (5.6) in high degrees; this reconstructs
(M, {Mk}, φ) if we forget the terms Mk in the filtration for small k, and hence is iso-
morphic to (M, {Mk}, φ) as a family of framed D-bundles. Thus F−1

◦ F ' 1.
Similarly, starting from (F , ψ) we apply 0 to the sequence (5.8) to obtain (5.9);

applying F−1 to this we obtain a short exact sequence of the form (5.11) and thereby a
flat family of V -framed D-bundles (M, {Mi}, φ). Applying F to these data then returns
the complex (5.9) in sufficiently high degrees by construction and Theorem 4.2. Finally,
taking the associated coherent sheaves on E\ × S gives us (5.8) by Proposition 5.4. Thus
F ◦ F−1

' 1.
This completes the proof of Theorem 5.1. ut

5.4. Compatibility of KP and CM hierarchies

We now complete the proof of the compatibility between KP and CM hierarchies, stated
in Theorem 3.25.

Proof of Theorem 3.25. We first establish that F identifies the KP algebroid EndE on
BunP(D)(E, V ) with the CM algebroid, also denoted EndE , on CM(E, V ∨). Let M,F
denote a D-bundle and its Fourier transform spectral sheaf. By Corollaries 4.13 and 4.14,
the Fourier–Mukai transform is compatible with microlocalization, sending ME to FE . It
follows that endomorphisms of each, with their Lie bracket, are also identified. The defi-
nitions of the respective algebroid structures (i.e. the actions deformingM,F inside their
microlocalization by multiplication) are then also clearly identified. Finally, the choice
of a micro-oper structure ∂M acting on ME corresponds to the choice of endomorphism
ξ of FE , and the restriction on the symbol of ∂M is precisely the condition making ξ a
Higgsing of F . Since the KP flows on micro-opers and CM hierarchy on Higgsed spec-
tral sheaves are given by the action of the corresponding algebroids, the compatibility of
hierarchies is established. ut
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6. D-lattices and d-lattices

Our goal in this section is to prove an extension of Sato’s D-module description of the
big cell GR◦n. Namely, we will show that the entire Sato Grassmannian is a moduli space
for certain D-submodules of En, the D-lattices.

6.1. d-lattices

We begin by recalling the scheme structure on GRn, following [AMP]. In [AMP], it is
proven that GRn is an infinite-dimensional scheme that represents a certain functor which
we now describe.

Let z be a formal parameter. Recall (Section 3.4) that a vector subspaceB ⊂ C((z−1))n

is called a c-lattice if there exist integers k and ` such that (C[[z−1]]zk)n ⊆ B ⊆

(C[[z−1]]z`)n.
For a scheme S, a discrete sub-OS-module (or d-lattice) L ⊂ OS((z−1))n is a quasi-

coherent OS-module L equipped with an injection of OS-modules in OS((z−1))n such
that

(1) For every morphism S′
f
−→ S, the base-changed (composite) morphism

f ∗L→ f ∗(OS((z−1))n)→ OS′((z−1))n

is injective.
(2) For every s ∈ S, there exists an open neighborhood Us of s and a c-lattice B ⊂

C((z−1))n such that L|Us ∩ OUs ⊗̂ B ⊂ OUs ((z−1))n is locally free of finite type
over OUs , and L|Us ⊕OUs ⊗̂ B → OUs ((z−1))n is surjective.

The functor GRn : Schop
→ Sets takes, as its value on a scheme S, the set

GRn(S) = {d-lattices L ⊂ OS((z−1))n}.

Theorem 6.1 ([BS, AMP]). The functor GRn is represented by a scheme.

The scheme GRn is called the (rank n) Sato Grassmannian.
It is convenient for us to use a slightly different, but equivalent, definition of a d-

lattice.

Lemma 6.2. A quasicoherent OS-module L with an injective map L→ OS((z−1))n is a
d-lattice if and only if the following hold:

(1) For every s ∈ S there is an open neighborhood Us of s and an integer k such that
the map L→ OS((z−1))n/(OS[[z−1]]zk)n is surjective with kernel a locally free OS-
module of finite type.

(2) For every s ∈ S there is an open neighborhood Us of s and an integer ` such that
the map L → OS((z−1))n/(OS[[z−1]]z`)n is injective with cokernel a locally free
OS-module of finite type.
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Proof. First, we suppose L is a d-lattice. By the definition, for each s ∈ S there is an
open set Us containing s and a c-lattice B ⊂ C((z−1))n giving an exact sequence

0→ L|Us ∩OUs ⊗̂ B → L|Us → OUs ((z−1))n/OUs ⊗̂ B → 0

over Us with kernel locally free of finite type. Choosing some k such that B ⊆
(C[[z−1]]zk)n, we get a surjective map f : L|Us → OUs ((z−1))n/(OUs [[z−1]]zk)n whose
kernel sits in an exact sequence

0→ L|Us ∩OUs ⊗̂ B → ker(f )→ OS ⊗̂ ((C[[z−1]]zk)n/B)→ 0.

This proves that (1) holds for L.
We next prove that there exists ` such that L|Us ∩ (OS[[x−1]]x`)n = 0. To see that,

start with Us and B such that F = L|Us ∩ (OUs ⊗̂ B) is finitely generated and lo-
cally free over OUs . Choosing Us smaller and B larger if necessary, we may assume
that Us = Spec(R) is an affine scheme, that B = (C[[z−1]]zk)n, and that F is a free
OUs -module of rank N . So, suppose that F = RN and let P ⊂ R be the prime of R cor-
responding to the point s ∈ S. Let φ : RN → R((z−1))n be the corresponding map of R-
modules; this map factors through (R[[z−1]]zk)n ⊂ R((z−1))n by construction. By part (1)
of the definition of d-lattice, the induced map φRP /P : (RP /P )N → (RP /P )((z

−1))n is
injective. SinceK = RP /P is a field, for any ` sufficiently negative the map φK : KN

→

(K[[z−1]]zk)n/(K[[z−1]]z`)n is injective. It follows from Nakayama’s Lemma that, letting
r = k − ` − N , there is an R-homomorphism ψ : Rr → (R[[z−1]]zk)n/(R[[z−1]]z`)n

such that the localized sum

RNP ⊕ R
r
P

φ+ψ
−−−→ (RP [[z−1]]zk)n/(RP [[z−1]]z`)n

is surjective, hence also an isomorphism. Since the cokernel of φ+ψ is finitely generated
over R, it follows that there is some element f ∈ R \ P such that

(φ + ψ)⊗ Rf : RNf ⊕ R
r
f → (Rf [[z−1]]zk)n/(Rf [[z−1]]z`)n (6.1)

is an isomorphism. Consequently, over Spec(Rf ), the map

L|Spec(Rf )→ OSpec(Rf )((z
−1))n/(OS[[z−1]]z`)n

is injective with cokernel a locally free OSpec(Rf )-module of finite type (isomorphic to
OrSpec(Rf )

), proving that (2) holds.
For the converse, part (1) of the definition of d-lattice is automatic from statement (2)

in the lemma, and part (2) of that definition is immediate from statement (1). ut

6.2. D-lattices

We now turn to the description of the D-modules that interest us. For the remainder of
the subsection, we let D = C[[x]][∂] where ∂ = ∂/∂x. For a scheme S, we let DS =
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OS[[x]][∂]; that is, DS is the sheaf on S whose sections on an open set U ⊂ S are given
by DS(U) = OS(U)[[x]][∂]. Similarly, we define a sheaf ES = OS[[x]]((∂−1)) in the same
way. Note that DS is a quasicoherent sheaf on the formal scheme S × Spf(C[[x]]). Note
also that ES is not quasicoherent over S × Spf(C[[x]]). Nevertheless, it is clear from the

construction that, if S′
f
−→ S is a morphism of schemes, there is a homomorphism of

sheaves of algebras f−1ES → ES′ on S′.

Note. We use subscripts rather than superscripts to denote the filtration on the sheaf E ;
this is nonstandard in the theory of D-modules, but makes our formulas more readable
(especially in this section).

For a scheme S, a D-lattice M ⊂ EnS is a quasicoherent sheaf on S × Spf(C[[x]])
with a structure of right DS-module that is finitely presented as a DS-module and comes
equipped with an injectiveDS-module homomorphismM → EnS that satisfies the follow-
ing:

(1) For all s ∈ S, there exist an open neighborhood Us of s and an integer k such that
M|Us → EnUs/E

n
Us ,k

is surjective, with kernel a finitely generated, locally projective
OUs [[x]]-module.

(2) For all s ∈ S, there exist an open neighborhood Us of s and an integer ` such that
M|Us → EnUs/E

n
Us ,`

is injective, with cokernel a finitely generated, locally projective
OUs [[x]]-module.

This definition is useful since, on C-points, framed D-bundles give D-lattices:

Proposition 6.3. Let M be an On-framed D-bundle. Choose an isomorphism ME ∼= En
compatible with the framing. Then:

(1) For any k sufficiently large, the map M → En/Enk is surjective, with kernel a finitely
generated projective C[[x]]-module.

(2) For any ` sufficiently small, the mapM → En/En` is injective, with cokernel a finitely
generated projective C[[x]]-module.

Proof. Since we have chosen an isomorphism compatible with the framing, the canonical
filtration on En induced from that on M (Proposition 7.8) agrees with the standard one
on En. Corollary 7.7 implies that grM ⊂ gr En is finitely generated and torsion-free over
grD and that the inclusion is an isomorphism in all sufficiently large graded degrees. An
inductive argument proves that M/Mk

∼= En/Enk for all k � 0. Now each Mk is finitely
generated over C[[x]] by assumption and torsion-free over C[[x]] since M is torsion-free
over D. Hence each Mk is projective over C[[x]]. This proves (1).

For (2), observe that Proposition 7.8 yieldsM ∩En` = 0 for `� 0, soM → En/En` is
injective. It follows from Corollary 7.7 that En/(En` +M) is finitely generated over C[[x]],
so to prove that it is projective, it suffices to prove that it is torsion-free.

First, suppose that En/M has nonzero C[[x]]-torsion. Then it has a D-submodule N
that is finitely generated over D and consists of C[[x]]-torsion. Taking the induced filtra-
tion on En/M and thus on N , we get a filtration of N with gr`(N) ⊂ gr`(En) for ` � 0.
But this is impossible (since the right-hand module is C[[x]]-torsion-free), so the filtration
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of N must be bounded below. However, by Corollary 7.7 the filtration is also bounded
above, so N is a finitely generated torsion module over C[[x]] equipped with a D-module
structure, a contradiction. Thus En/M is C[[x]]-torsion-free.

Now, suppose that En/(En` +M) has C[[x]]-torsion submodule T`. For `� 0, we have
an exact sequence

0→ gr` En = C[[x]]n→ En/(M + En`−1)→ En/(M + En` )→ 0,

so in particular the natural map T`−1 → T` is injective. But T` is finitely generated over
C[[x]] for each `; in particular, it is of finite length. Now lim

←−
En/(M + En` ) = E/M is

C[[x]]-torsion-free, so lim
←−

T` = 0. Since each T` is of finite length, we get T` = 0 for all
sufficiently negative `. This completes the proof. ut

We remark that D-lattices pull back well:

Lemma 6.4. If S′
f
−→ S is a morphism and M ⊂ EnS is a D-lattice, then f ∗M →

f ∗EnS → En
S′

makes f ∗M a D-lattice.

We thus obtain a functor GRD,n : Schop
→ Sets by setting

GRD,n(S) =
{
D-lattices M ⊂ EnS

}
.

The main theorem of this section is the following:

Theorem 6.5. The scheme GRn represents the moduli functor GRD,n of D-lattices.

6.3. Proof of Theorem 6.5

We begin the proof of Theorem 6.5 by describing a natural transformation between the
two moduli functors.

Given a D-lattice M ⊂ EnS , we get a map

M ⊗ C[[x]]/(x)→ EnS ⊗ C[[x]]/(x) ∼= OS((z−1))n,

where we have identified ∂−1 with z−1.

Proposition 6.6. This construction defines a natural transformation of functors GRD,n
→ GRn.

Proof. Suppose that M ⊂ EnS is a D-lattice. Over an open set U ⊂ S, if we have
M|U � EnU/E

n
U,k surjective with locally free kernel K , then we get a surjective map

M|U ⊗ C[[x]]/(x) → (EnU/E
n
Ux)/(E

n
U,k/E

n
U,kx) = OU ((z

−1))n/(OU [[z−1]]zk)n with ker-
nel K ⊗ C[[x]]/(x), a locally free OU -module.

Similarly, over an open set U ⊂ S, if we take `� 0, we get

0→ M|U → EnU/E
n
U,`→ W → 0
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exact with W finitely generated and locally free over OU [[x]]. Tensoring with C[[x]]/(x),
we get

0→ (M|U )/(M|Ux)→ OU ((z−1))n/(OU [[z−1]]zk)n→ W ⊗ C[[x]]/(x)→ 0

exact, withW ⊗C[[x]]/(x) locally free overOU . SoM/Mx → En/Enx is a d-lattice. We
thus get a function GRD,n(S)→ GRn(S) for every scheme S. Furthermore, since tensor
product over C[[x]] commutes with pullback, these functions commute with the pullback
along morphisms S′→ S, and thus define a natural transformation, as desired. ut

We want to prove that this natural transformation is actually an isomorphism. In particular,
we first show that it is surjective: given a d-lattice L ⊂ OS((z−1))n, we want to produce
a D-lattice M ⊂ EnS whose fiber at x = 0 is L. Since both our functors are sheaves
in the Zariski topology, it suffices to do this over an open set Us containing s for each
point s of S. We begin with the construction for those L that are transverse to some
(OS[[z−1]]zk)n.

Lemma 6.7. IfL ⊂ OS((z−1))n is a d-lattice satisfyingL⊕(OS[[z−1]]zk)n = OS((z−1))n,
then there is an injection of DS-modules DnS

ι
−→ EnS satisfying ι(DnS) ⊕ E

n
S,k = EnS and

ι(DnS ⊗ C[[x]]/(x)) = L. Moreover, the image ι(DnS) consists of all sections θ of EnS such
that θ ·D|x=0 ∈ L for every section D of DS .

Proof. The first part follows from Theorem 7.4 of [Mul] and Theorem 6.2 of [LM]: in-
deed, those results construct such aD-module embedding ofDn in En in the case in which
the base scheme is C, but the proofs, which produce an element 9 of GLn(E<) such that
ι(m) = 9 ·m, work over any base ring.

For the second part, let

N = {θ ∈ EnS | (θ ·D)|x=0 ∈ L for all D ∈ DS}. (6.2)

Observe that ι(DnS) ⊆ N . Since ι(DnS) = 8 · D
n
S for some invertible 8 ∈ GLn(ES), after

multiplying by 8−1 we may assume that ι(DnS) = DnS and that L = OS[z]. Then any
θ ∈ N satisfies θ · OS[z]n ⊂ OS[z]n, which, by Proposition 6.1 of [LM], implies that
θ ∈ Dn (again, the proof there is written for the base C but the proof works equally well
over any base ring). ut

Next, suppose that L ⊂ OS((z−1))n is any d-lattice. Fix s ∈ S. By restricting attention to
an open neighborhood of s in S, we may assume, by Lemma 6.2, that there are k and `
such that we have exact sequences

0→ V → L
α
−→ OS((z−1))n/(OS[[z−1]]zk)n→ 0

and
0→ L→ OS((z−1))n/(OS[[z−1]]z`)n→ W → 0

with V , W vector bundles over OS . Choosing a splitting α−1 of α, we get an OS-
submodule L− = Im(α−1) ⊂ L such that L−

α
−→ OS((z−1))n/(OS[[z−1]]zk)n is an iso-

morphism and L/L− ∼= V . Similarly, shrinking S further if necessary, we may choose a
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splitting W
β
−→ OS((z−1))n of OS((z−1))n → OS((z−1))n/(OS[[z−1]]z`)n → W . We then

have L⊕ β(W) ∼= OS((z−1))n/(OS[[z−1]]z`)n. We let L+ = L+ β(W) ⊂ OS((z−1))n.
We now have L− ⊂ L ⊂ L+ with L− ⊕ (OS[[z−1]]zk)n = OS((z−1))n and L+ ⊕

(OS[[z−1]]z`)n = OS((z−1))n. By Lemma 6.7, we have injective DS-homomorphisms
DnS

ι−
−→ EnS and DnS

ι+
−→ EnS such that ι−(DnS)|x=0 = L− and ι+(DnS)|x=0 = L+. Lemma

6.7 also implies that ι−(DnS) ⊂ ι+(DnS). By construction, moreover, ι+(DnS)/ι−(D
n
S)
∼=

EnS,k/E
n
S,` as OS[[x]]-modules.

Proposition 6.8. There is a finitely presented DS-module M ⊂ EnS satisfying:

(1) ι−(DnS) ⊂ M ⊂ ι+(D
n
S).

(2) M ⊗ C[[x]]/(x) = L.
(3) M consists of all θ ∈ EnS such that θ ·D|x=0 ∈ L for all sections D of DS .

Proof. Consider the quotient DS-module Q = ι−(DnS)/ι+(D
n
S); by construction, this is

a finitely generated locally free OS[[x]]-module, hence, working locally over S, choosing
a basis, and changing to a left DS-module, Q corresponds to a vector bundle with flat
connection. The usual construction of flat sections with power series coefficients shows
that there is a bijection between vector subbundles of Q/Qx and right DS-submodules
of Q. In particular, choosing the vector subbundle L/L− of L+/L−, there is a lift to a
DS-module M , ι−(DnS) ⊂ M ⊂ ι+(D

n
S), with M/Mx = L.

For part (3), define a module N as in (6.2), and note that Lemma 6.7 implies that
we have ι−(DnS) ⊆ M ⊆ N ⊆ ι+(DnS). Then N/M defines a DS-submodule of Q′ =
ι+(DnS)/M all of whose sections θ satisfy (θ ·D)|x=0 = 0 ∈ Q′/Q′x; the standard results
for flat connections then imply that N/M = 0, as desired. ut

It follows that the natural transformation GRD,n → GRn is Zariski-locally surjective,
hence surjective.

Finally, suppose thatM ′ ⊂ EnS is aD-lattice withM⊗C[[x]]/(x) = L. LetM ⊂ EnS be
the D-lattice lifting L that was constructed by Proposition 6.8. By part (3) of Proposition
6.8, M ′ ⊆ M . Since M and M ′ are D-lattices, the quotient M/M ′ is a finitely generated
OS[[x]]-module: this follows by applying part (2) of the Definition of D-lattice and con-
sidering M/M ′ ⊂ En/En` for ` sufficiently small, to find that M/M ′ is a submodule of
a finitely generated OS[[x]]-module, hence is itself finitely generated (the ring OS[[x]] is
Noetherian).

Tensoring the exact sequence

M ′→ M → M/M ′→ 0

with C[[x]]/(x) and noting that the map from M ′ to M becomes the identity map of L,
we find that (M/M ′) ⊗ C[[x]]/(x) = 0. It follows from Nakayama’s Lemma (Theorem
2.2 of Matsumura [M]) that there is an element a of OS[[x]] such that a(M/M ′) = 0 and
a ∼= 1 mod (x). But the completeness of OS[[x]] with respect to (x) then implies that a
is a unit, and thus M/M ′ = 0. So the natural transformation GRD,n → GRn is injective.
This completes the proof of Theorem 6.5. ut
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7. Appendix: D-algebras and log differential operators

In this appendix, we explain the construction of the sheaves Dlog on singular cubics that
we use in the body of the paper. We also explain some facts about filtrations onD-modules
and microlocalization that are needed for our main theorems.

7.1. D-algebras

Let X denote a reduced and irreducible quasiprojective complex variety. A differential
OX-bimodule is a quasicoherent sheaf M of OX-bimodules, such that, if we give M the
filtration defined by M−1 = 0 and Mi = {m ∈ M | [r,m] ∈ Mi−1 for all r ∈ OX}, then
M =

⋃
iMi .

Definition 7.1 (1.1.4 of [BB]). A D-algebra on X is a quasicoherent sheaf D of asso-
ciative algebras on X equipped with an algebra homomorphism OX → D making D a
differential OX-bimodule. As above, a D-algebra D comes with a canonical filtration; to
be consistent with the usual notation for the sheaf of rings of differential operators, we
write Di for the ith term in the filtration.

AD-algebraA on X is called a specialD-algebra (Section 6.2 of [PRo]) if the terms
gri(A) in the associated graded bimodule for the standard bimodule filtration are of the
form gri(A) = 1∗Fi for some free OX-modules Fi (i.e. the terms in the associated
graded bimodule are trivial vector bundles).

The standard example of a D-algebra on a scheme X is the sheaf of rings of differen-
tial operators [BB].

Lemma 7.2. Let X be a reduced, irreducible complex variety, and U ⊆ X a nonempty
open subvariety. Let DX denote the sheaf of rings of differential operators on X. Then:

(1) DX(X) ⊆ DX(U).
(2) DkX(X) = DX(X) ∩D

k
X(U).

(3) SupposeA ⊆ DX is a subalgebra containingOX. ThenA is aD-algebra with canon-
ical filtration given by Ak = A ∩DkX.

The proofs follow standard arguments.
Recall (Section 2.1.2) the definition of the sheaf Dlog of log differential operators on

a cubic curve, generated by functions and the G-invariant vector fields.

Corollary 7.3. Let E be a Weierstrass cubic. Then:

(1) Dklog = Dlog ∩DkG.
(2) Dlog is a specialD-algebra with associated graded algebra isomorphic to Sym•OE .

Proof. (1) Dlog is a D-algebra by part (3) of Lemma 7.2. We then have

Dklog = Dlog ∩D
k
X by part (3) of Lemma 7.2

= Dlog ∩D
k
G by part (2) of Lemma 7.2.
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(2) By part (1) above, we have

gr(Dlog) ⊆ gr(DG) = Sym•OG.

Since Dlog is generated over OE by the vector field X, gr(Dlog) is generated over OE by
the image of the vector field X inD1

G/D
0
G. TheOE-submodule generated by this element

is exactly Sym•OE ⊂ Sym•OG, as desired. ut

7.2. Microlocalization and torsion-free D-modules

For the remainder of this section, we fix a reduced and irreducible quasiprojective com-
plex curve X and a D-algebra D on X.

We will call the D-algebra D symmetric if it satisfies gr(D) = Sym•(B) as algebras
for some line bundle B on X.

We will write E for the microlocalization of D; for background on the procedure of
microlocalization and its properties, see for example [Ka, vdE, AVV, Sch, Sp]. Note that,
by our assumption that D is symmetric, the associated graded ring gr(E) for the natural
filtration is isomorphic to

⊕
k∈Z B

k as a graded OX-algebra.
By a finitely generated (left or right) D-module on X we mean a D-module that is

quasicoherent as a sheaf of OX-modules and locally finitely generated over D.
A symmetricD-algebra is, in particular, a sheaf of noetherian domains by Proposition

2.6.1 of [Bj]. It follows by Theorem 1.15 of [MR] that, for any affine open set U ⊆ X,
the ring D(U) has a quotient skew field, which we denote by Q(D) (it does not depend
on U since X is irreducible). Consequently, we may define a torsion-free D-module to
be a (left or right) D-module M such that for every open set U of X and all nonzero
s ∈ H 0(U,D) and nonzerom ∈ H 0(U,M)we have s ·m 6= 0. IfM is a finitely generated
and torsion-free right D-module and U is an affine open set of X, then H 0(U,M) ⊂

H 0(U,M) ⊗ Q(D) ∼= Q(D)r for some integer r which we refer to as the rank of M
(and similarly for left D-modules); note that this does not depend on the choice of U .
Moreover, in this case there is some vector bundleW on X such thatM embeds in the D-
module D⊗OX W . We then have the following standard fact about the microlocalization
of a finitely generated torsion-free D-module.

Lemma 7.4. If M is a torsion-free and finitely generated left (or right) D-module then
the natural map M → E ⊗M (respectively M → ME = M ⊗ E) is injective.

Recall that a good filtration of aD-moduleM is a filtrationM =
⋃
Fi(M) that makesM

a filteredD-module and such that grF (M) is a finitely generated gr(D)-module. We often
write Mi in place of Fi(M) when there can be no confusion.

Suppose that M is a D-module with good filtration F•. Then ME = M ⊗D E has a
canonical sequence of filtrations induced from F•: set Fk(ME , `) = F`(M) · Ek−`; this is
the kth term in the `th filtration. Note that for some choices of ` it may not be the case
that

⋃
k≥0 Fk(ME , `) = ME .

We have the following easy lemma.
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Lemma 7.5. Suppose that M is a D-module with good filtration F•.

(1) F•(ME , `) makes ME into a filtered E-module for each `.
(2) For each ` and k we have Fk(ME , `− 1) ⊆ Fk(ME , `).
(3) There exists ` � 0 such that for all n ≥ 0 and all k, Fk(ME , ` + n) = Fk(ME , `).

Moreover, for any such `,
⋃
k Fk(ME , `) = ME .

Definition 7.6. We will refer to the filtration F•(ME , `) for sufficiently large ` as in part
(3) of Lemma 7.5 as the induced filtration or canonical filtration of ME , and will simply
write F•(ME ) or even ME,• for its terms. We also call the induced filtration Mk = M ∩

ME,k on M the canonical filtration on M .

We then have the following:

Corollary 7.7. Suppose that M is a D-module equipped with a good filtration F• such
that

⊕
k≥n grFk (M) is a torsion-free gr(D)-module for some n. Then:

(1) grk(ME ) = grFk (M) for all k sufficiently large.
(2) F•(ME ) is a filtration of ME with torsion-free associated graded module.

Proof. For k ≥ ` � 0, we have Fk(ME , `) = Fk(ME , k) = Fk(M) · E0. Also, for
k ≥ `, we have Fk−1(ME , `) = Fk−1(ME , k) = Fk(M) · E−1. Since Fk(M) · E0 =

Fk(M)+ Fk(M) · E−1, the map Fk(M)/Fk−1(M)→ Fk(ME )/Fk−1(ME ) becomes

Fk(M)

Fk−1(M)
→

Fk(M)

Fk(M) · E−1 ∩M
→

Fk(M)+ Fk(M) · E−1

Fk(M) · E−1
,

which is evidently surjective. To prove that it is injective, it suffices, by our assumption,
to prove that its restriction to some nonempty open set U ⊂ X is injective.

By choosingU sufficiently small and n sufficiently large, we may assume that grn(M)
= W is a vector bundle, that the symbol map Fn(M)→ grn(M) = W is a split surjection,
and, choosing a splitting W → Fn(M) as OX-modules, that the natural map W ⊗ D →
Fn(M) is an isomorphism on associated graded modules in degrees greater than or equal
to n. It follows by a standard inductive argument that the induced map of filtered E-
modules W ⊗ E → ME is an isomorphism. This proves (1). Part (2) is then immediate.

ut

LetM be a finitely generated, torsion-free rightD-module equipped with a good filtration
such that gr(M) is a torsion-free gr(D)-module in high degree—we will call M a D-
module with torsion-free filtration for simplicity.

Proposition 7.8. Suppose M is a D-module with torsion-free filtration on X. Then the
canonical filtration on ME induced by the given filtration on M is the unique E-module
filtration on ME that satisfies:

(a) The induced map M → ME is a homomorphism of filtered D-modules.
(b) The induced map grk(M)→ grk(ME ) is an isomorphism of OX-modules for k � 0.

Furthermore, this filtration has the properties:
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(i) Mk = M ∩ME,k for all k � 0.
(ii) ME,k =

⋃
n≥0Mk+n · E−n.

(iii) gr(ME ) ∼= V ⊗ gr(E) as graded gr(E)-modules.

Proof. The canonical filtration satisfies (a) and (b) by construction and Corollary 7.7. If
2• is any other filtration of ME satisfying (a) and (b), then 2k(ME ) = 2k(ME )E0 ⊆

Fk(M)E0 = Fk(ME ) for k sufficiently large. Since 2k−n(ME ) = 2k(ME )En− and
Fk−n(ME ) = Fk(ME )E−n for all n ≥ 0, we find that Fk(ME ) ⊆ 2k(ME ) for all k.

The induced map grFk (ME ) → gr2k (ME ) is an isomorphism for k large by Corol-
lary 7.7 and assumption (b), hence for all k since it is the restriction of a homo-
morphism of torsion-free graded gr(E)-modules. It is immediate that Fk−1(ME ) =
Fk(ME )∩2k−1(ME ) for all k. Suppose, by way of inductive hypothesis, that Fk+n(ME )∩
2k−1(ME ) = Fk−1(ME ). Then

Fk+n+1 ∩2k−1 = (Fk+n+1 ∩2k+n) ∩2k−1 = Fk+n ∩2k−1 = Fk−1.

It follows that Fk+n ∩2k = Fk for all k. Since ME =
⋃
n Fk+n(ME ), we get 2k(ME ) =

Fk(ME ), proving the uniqueness statement.
Properties (ii) and (iii) are clear from the constructions. To prove (i), let F ′k(M) =

M ∩ Fk(ME ). Then Fk ⊆ F ′k for all k. The map grF
′

k (M) → grk(ME ) is injective by
construction, hence by (b) is an isomorphism for k sufficiently large. It follows that the
map grFk (M)→ grF

′

k (M) is an isomorphism for k sufficiently large, say k ≥ k0. It follows
that Fk∩F ′k−1 = Fk−1 for k ≥ k0. An inductive argument just like that for F and2 above
then proves that Fk = F ′k for all k ≥ k0, as desired. ut

Any finitely generated torsion-free D-module can be equipped with a torsion-free filtra-
tion locally on X, and consequently we have:

Lemma 7.9. If M is a finitely generated torsion-free D-module, then M has no nonzero
O-coherent D-submodules.

In fact, more is true: every finitely generated torsion-freeD-module can be equipped with
a torsion-free filtration globally on X, and in rank 1 this filtration is essentially unique.

Proposition 7.10. Suppose that M is a finitely generated, torsion-free right D-module
on X.

(1) Let n = rk(M). Then M admits a filtration such that gr(M) is a torsion-free gr(D)-
module and rk(grk(M)) = n for k ≥ 0 and 0 for k < 0.

(2) Suppose that, in addition, M has rank n = 1 and that F 1 and F 2 are two D-
module filtrations of M such that for some n0 sufficiently large,

⊕
k≥n0

grk(M,F
i)

is a torsion-free gr(D)-module for i = 1, 2. Then there exists l ∈ Z such that for all
k ≥ min{n0, n0 + l}, F 1

k+l = F
2
k .

Proof. (1) Since M is torsion-free, there is a nonempty open subset U ⊆ X such that
M|U ∼= DnU . Let D = X \ U . Since M is finitely generated, there exists ` such that the
inclusion M ↪→ DnU factors through O(`D)⊗ Dn; the map M ↪→ O(`D)⊗ Dn is also
an isomorphism over U . The induced filtration on M then has the desired property.

(2) The question is local on X, so we may restrict to an affine open subset U of X.
The claim then follows from Lemma 3.2 of [NS]. ut
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