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Abstract. The ring of projective invariants of ordered points on the projective line is one of the
most basic and earliest studied examples in Geometriciamiarheory. It is a remarkable fact and
the point of this paper that, unlike its close relative tmgrof invariants of: unordered points, this
ring can be completely and simply described. In 1894 Kempadaenerators for this ring, thereby
proving the First Main Theorem for it (in the terminologyriotiuced by Weyl). In this paper we
compute the relations among Kempe’s invariants, therebwipg the Second Main Theorem (again
in the terminology of Weyl), and completing the descriptafrthe ring 115 years later.

This paper introduces a number of new tools to the problechuaas the graphical algebra for-
malism to intermediate between representation-theaaagiements (for symmetric and Lie groups),
and the symmetry-breaking of the Speyer—Sturmfels degéoar
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1. Introduction

We consider the ring of invariants efpoints on the projective line, defined as the projec-
tive coordinate ring of the GIT quotient ¢P)” by the group SK2). This is a classical
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archetype of GIT and a common first example in the theory. Tmfthe quotient, one
must choose weights = (w1, ..., wy,); it is then given by

®YH" - @H" //, SL(2) = ProjR,,

whereR, = @2, RY, with RS = T((PYH", Okw, ..., kw,))S"®. (Note that we
use the notatiorR®) for the k piece of a graded ringR.) The ring of invariantsr,,
turns out to be generated in its lowest nonzero degree, sGlthguotient has a natural
projective embedding. We denote the weight. . ., 1) by 1”.

Theorem 1.1 (Main Theorem, informal version)lf w # 1°, the ideal of relations be-
tween lowest degree invariants is generated by quadratics.

Detailed motivation and background for this problem aresgiin the announcement
[HMSV2]. We describe there how small cases have long been knowreld lyeautiful
classical geometry. In this paper, we show that this richcstire extends to any num-
ber of points with any weighting: the relations for the maodydace are generated by a
particularly simple type of quadratic, with the single epiten of the Segre cubic for six
points. In a precise sense, the ideal is cut out by essgnbia#t equation, inherited from
then = 8 case. If Kempe's theorem is the analogue of Weyl's “FirstrivVieheorem” for
SL(2) (see W]), then this is the analogue of his “Second Main Theorem.”

This is the culmination of a number of papers on this topicwsowish to be clear
about its relationship to the other$dI1SV1] (subsuming two earlier arXiv preprints)
opened up this question: through blunt toric degeneratimhexplicit local calculation,
hints that the relations were simple quadrics were obselveas shown there that cer-
tain quadrics (not as simple as those in this paper) cut @egphace. The other important
paper HMSV6] is on the interplay of the geometry and representationrthische mod-
ular fivefold parametrizing eight points on the line.

The current paper is the main one of the series. It introdfiwedamentally new
techniques to the problem, and is not simply a refinement ofpoeliminary ideas of
[HMSV1]. The quadric here is simpler than those speculated abojHlfSV1]. The
argument uses the formalism of graphical algebras to balan@ne hand representation
theory arguments (of both symmetric and Lie groups), witlt@nother hand informa-
tion from symmetry-breaking (from a better toric degeneratdiscovered by Speyer and
Sturmfels from tropical motivation).

1.1. Integrality issues

For simplicity, we prove our results ovép, but our results apply more generally, as
we show in HMSV4]. In preparation for this, we prove intermediate resulterawmore
general base rings, which we hope will not distract readaerested in characteristic
0. In particular, this paper proves Theordni over Z[1/12!], but the precise version
(Theoreml.2) only overQ.



Relations for the ring of invariants afpoints 3

1.2. The graphical formalism

We use a graphical interpretation of the ring of invariamtisich allows us to deal effec-
tively with both the&,,-symmetries and the broken symmetries of toric degenestio
To a directed grapl on vertices labeled 1 through(in bijection with the points), with

valence vectokw = (kws, ..., kw,), we associate an invariant Rﬁf‘):
Xr = H(xiyj — Xjyi).
—

ij

Here the product is taken over the edg?_ésof I" andx; andy; are projective coordinates
for PL. Note that if" has aloop—that is, an edge with the same source and target—
then Xr = 0. (Throughout this paper, graphs are allowed to have loagsnaultiple
edges between the same vertices.) A fundamental resultdtassical invariant theory
states that th&(r spaanf). Kempe showed that fap = 1" andn even the ringR,, is
generated in degree 1 (Theoréri). Thus, in this situationR,, is generated by those
Xt whereTl is amatching that is, a graph in which each vertex belongs to precisety on
edge. A similar result holds for anyandw.

1.3. Relations

The theorem of Kempe mentioned above provides generatdissfoingR,,. The purpose
of this paper is to determine the relations between thesergans. A number of obvious
relations exist; we catalog some of them below. An imporgr@nomenon shows itself
already in these simple examples: relations:@oints can be extended to give relations
on more tham points. This is a key theme in our treatment and is discussettialil
in §7.1

The most obvious relation is thegn relation we haveX— = —X;>. This can be
regarded as a relation between two invariants with= 2 andw = 12. It extends to
invariants with arbitrary: andw as follows: ifI" is any graph and” is obtained fronT
by switching the direction of a single edge th€a = — X.

The next most simple relation appears whes 4 andw = 1*:

Xo= 1

This is the classicalucker relation It extends to eacﬁ,ﬁf‘) as well: given a graph' with
—> — . .
valence vectokw and two edgesb andcd of I' we have the identity

Xr :XF1+XF2 (1-1)

wherel'1 andI'2 are the graphs obtained framby replacing{;l);, ZJ} with {a_c)l, Ea)} and
- — — —
{ac, bd} respectively. We will use the phrase “tdieker two edgeab andbc of a graph

I'” to mean “to replace&Xr by Xr, + Xr,.” The sign and Ricker relations are both linear
relations; in fact, they span all linear relations.
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Some higher degree relations are conveniently thoughtigfrins of colored graphs.
By a k-colored graphwe mean a graph in which each edge has been assigned @ne of
colors. By amulti-matchingof degreek we mean &-colored graph in which each vertex
appears in precisely one edge of each color.ILée a multi-matching of degréeonn
vertices. We define the elemekif of (Rﬁ))®’< to be the pure tens@® Xr ;) where the
product is over the colorisandI' (i) is the subgraph df on the edges of colar In terms
of colored graphs, the ma(p?ﬁ))@" — RYE) “forgets the color.”

The Segre cubic relatiois described with colored graphs as follows:

. 7*7 H ) 7 N 77 w2

(Because the paper version of the article is black-and-syhihile the online publication

is in color, we will follow the convention that the solid Imare green, the dashed red
and the dotted blue frach edge should be directed in the same way on both sides of
the equation. This relation holds because the graphs onsdehave the same set of
edges—only the colors are different. The Segre cubic mlaktends to cubic relations

on RS) for any evem > 6. For example, we have the following relation on eight point
starting from the Segre cubic on six points:

= AN (1.3)

There is a “new” relation fon = 8, binomial and quadratic:

- L =

As with all previously discussed relations, the above reteg¢xtends to relations on more
points. One way to extend the above relation is to add soméauof doubled edges to
each side; we call such relations tsienplest binomial relationsExamples are given in
[HMSV2, §4].

1.4. The main theorem

We now state Theorerth 1 more precisely in the main casemgven and unit weights.

Theorem 1.2 (Main theorem, main casefor evenn # 6 the idealI3» of relations
(the kernel ofSymRﬁ) — R1n) is generated by the simplest binomial relations. The
symmetric groufs,, acts transitively on these relations, so any one of themrgéesl 1

as anG,,-ideal.
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(The ideallys is principal and generated by the Segre cubic relatlop) pverZ.)

Remark 1.3. The discussion of HMSV1, §2.17] explains how to reduce the case of
arbitrary weight to the “main case.” Thus as a corollary weehgheoreni.1, and more
precisely, the quadratics are explicitly given by “clungpivertices” (loc. cit.). Thus for
the remainder of the paper, we will deal only with this “ma#se” ofw = 1" andn even.

We essentially conjectured Theorefnd and1.2in [HMSV1, §1.5]. We saw the two
main theorems of that paper as evidence: first, that a clasdaifons called the “sim-
ple binomial relations,” containing the simplest binonmelations, cuts out the quotient
scheme-theoretically, and second, that the ideal is gtatEby relations of degree at most
four. These two results are subsumed by Theatehin the main case, and Theorelml
(in its more precise form, Remafk3) in general.

Remark 1.4. Given that Theoreni.2 states thaf1., for evenn # 6, is generated by a
single quadratic up t®,-symmetry, one may wonder whether the same holds when
is odd. A short representation-theoretic argument shoe#sifth is 5, 7 or 9 then this is
indeed the case (seHIISV2, Fig. 3(h)] for a simple generator with = 5), but ifn is
odd and at least 11 then the space of quadratic relations sscyelic S,,-module, saly»

is not principal as a®,-ideal.

1.5. Representation-theoretic description

Here is a representation-theoretic description of the ratas (in the main case) in char-

acteristic 0 that is both striking and relevant. Thg-representation ORS) is irreducible

and corresponds to the partitiafi2 4+ /2. The representation S)?rﬂﬁ) is multiplicity-
free and contains those irreducibles corresponding tdtipat with at most four parts,
all even (Propositio6.5). The space of quadratic relations is the subspace ofsz\jﬂﬁ
spanned by those irreducibles corresponding to partitiétispreciselyfour parts. Being
multiplicity-free, this is necessarily a cycl&,-module. The reader may wonder why we
privilege a particular generator; the answer is that tHegien is in some imprecise sense
forced upon us by the graphical formalism.

1.6. Outline of proof

We now outline the proof, noting where the arguments are asdhtess satisfactory. The
challenge is to relate three structures which often opetatess purposes: the generation
of new relations from relations on fewer points; the actidnSg, on everything; and
the graphical description of the algebra, including the afseolored graphs to describe
relations.

In 82, we set the stage by giving our preferred description of tivariant ring. We
replace the integer by a finite setL of cardinalityn, as this makes many constructions
more transparent. In384 we use a Speyer—Sturmfels toric degeneration to get some con
trol on the degrees and types of generators, temporarigkbrg theS; -symmetry. We



6 Benjamin Howard et al.

show that the degenerated ring is generated in degree orntbaritie relations between
the degree one generators are generated by quadratiomslaid certain explicit cubic
relations. In & we lift these explicit cubic relations to the original inigat ring. Having
deduced that the ideal of relations is generated by quadratid these particular (“small
generalized Segre”) cubics, we are done with the toric deiggion. Our next goal is to
show that the particular cubics lie in the idg} generated by quadratic relations.

In order to take advantage of ti&& -action, in ® we study the tensor powers of the
degree one invariants as representations, introducingfalupartition filtration.” Our
results will (for example) allow us to write invariants armelations in terms of highly
disconnected graphs, which is the key to our later induetigeiments. The last result of
this section is disappointing: it is the only place in thecdgtwhere computer calculation
is used. However, the calculations are quite mild—they eamcubic invariants on six
points and amount to simple linear algebra problems in vespgaces of dimension at
most 35—and we feel that a dedicated human being could peitteem in a matter of
hours.

In 87, we show that for > 10 all relations are induced from those on fewer points
(preciselyy — 2,n — 4 orn — 6 points), modulo quadratic relations. The cases 12 are
direct and structural, but the case= 10 is ad hoc and inelegant because “the graphs are
too small” to apply the structural techniques. As a consegeewe find that if the ideal
is generated by quadratics for- 2,n — 4 andn — 6 points then it is for points as well.

In 88, we show that the ideal is generated by quadratics whgr6. This implies The-
oreml1.1by Remarkl.3 Thanks to the previous section, showing generation by rqitad
ics reduces by induction to showing the result for the thizsst cases” whereis 8, 10
and 12. We accomplish this by further reducing the 10- angdiit cases to the 8-point
case and then appealing to earlier work for the 8 point case.r&duction from the 10-
and 12-point case to the 8-point case is one of the most diféiad least conceptual parts
of the paper, so the reader may wish to skip this section orstaréading. One might
hope that these results, being finite computations, couletlegated to a computer, but
the computations are large enough so that this is not pessitth current technology
using naive algorithms.

Finally, in 8 we show that the quadratic relations are spanned by the esmpi-
nomial relations using the representation theory®ef, completing the proof of Theo-
reml.2

1.7. The projective coordinate ring &f* // G

The third author has observed that many of the formal cosdepthis paper—such as
outer multiplication and the simple binomial relations—fct apply to the study of the
projective coordinate ring ok” // G for any projective varietyX with an action of a

group G. He has constructed a formalism for dealing with the resglstructures and
formulated a few general finiteness conjectures. One of thie reurprising realizations
is that the graphical formalism discussed above applieayovariety, in a certain sense.
This general point of view may even shed more light on theguresase: in this formal-
ism, Theoreml.2 can be reinterpreted as stating that a certain “ring,” mauefuhe
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rings Ry» with varying n, is finitely presented. If such finitely presented “rings”’reve
coherent (a weakening of the noetherian property) then anddrimmediately obtain
universal degree bounds on syzygies, as we have for resafidris work will appear in a
forthcoming paper.

1.8. Notation and conventions

We follow some conventions in an attempt to make the notédgismionerous. Throughout,

L will be a finite set. By areven setve mean finite set of even cardinality. Semigroups
will be in script, e.g..¢, .7, %. Graphs are denoted by uppercase Greek letters, e.g.,
I, A. Trivalent trees will be denoted [&. An edge of a directed (resp. undirected) graph
from vertexx to y is denotedx_; (resp.xy). In general,S (in various fonts) will refer to
constructions involving general directed graphs, &will refer to regular graphs. We
work overZ (see §.1) in general.

2. Theinvariant ring Ry,

In 82 we define the ring of invariant®;, for a finite setl., and give some of its properties.

2.1. The semigrou; and the ringsS; andR;,

Let L be a finite set. Denote I3¢;, the set of directed graphs dn Give ¥, the structure
of a semigroup by definin@ - I’ to be the graph o whose edge set is the disjoint
union of the edge sets @f andI"’. For an element of ¢, we denote the corresponding
element of the semigroup algeb#$¥; ] by Xr. (Readers interested in characteristic 0
may freely replace any occurrencebr Z[1/n] by Q throughout.)

Fora, b € L let ab denote the graph iff; with a single directed edge fromto b.

Clearly¢;, is the free commutative semigroup on ﬂ?é andZ[¥;] is the polynomial
ring on theXa—>.

Define the ringS;. as the quotient oZ[¥; ] by the following three types of relations,
described in 8.2

e Loop relation:If I has a loop thetX = 0.
o Sign relation:If T" is obtained fronT’ by reversing the direction of an edge th&n
= —Xp.
e Plicker relationiIf a, b, c andd are elements of, thenX— X— = X—» X—+X— X—.
ab” cd ad” cb ac” bd

The sign relation implies the loop relation when 2 is invérté/e still write X for the
image ofXr in the ringsS; .

Recall that a graph on L is said to beegular of degree! if each vertex of” belongs
to preciselyd edges. Defin?; to be the subgroup of; generated by th&r with I’
regular. ClearlyR; is a subring ofS; . GradeR;, by declaringXt to be of degred if I" is
regular of degred. If |L| is odd, then every regular graph @arhas even degree, & is
concentrated in even degrees. (The “first and second maineims of invariant theory,”
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mentioned implicitly in 8.2 imply that S; is the SL(2)-invariant part of the Cox ring
of (P)L and thatR; is the SL(2)-invariant part of the projective coordinate ring@f)~
with respect to the line bundlé’(l)&.)

These constructions are functorial in A map of setsp : L — L’ induces a ho-
momorphismg;, — ;. of semigroups and thus a homomorphigiy,] — Z[¥;/] of
semigroup rings. This ring homomorphism respects the sigrPdicker relations and so
induces a ring homomorphisfy — S;. If the fibers ofL all have the same cardinality
thenR; is mapped intaR;/, and we thus obtain a mafy, — R, /. As a special case, we
see that5; = Aut(L) acts onR;.

2.2. Translation from directed graphs to undirected graphs

To avoid confusion with signs, it will often be convenientianslate from directed graphs
to undirected graphs. Ldt be an even set. We denote b, the set of directed match-
ings onL. An orientationon L is amagpe : M; — {%1} satisfyinge(cT") = sgn(o)e(I")
foro € &, andI’ e M. There are two orientations dn 5

_ Fix an orientation ofL. For anundirectedmatchingl” we putYr = ¢(I') Xi where
I is any directed matching with underlying undirected matghi'. The Yr span the
spaceR(Ll) and satisfy the loop relation and the “undirecteddRer relation”

YF]_ + er + YF3 = Os

whenever', andI'3 are obtained by modifying two edgesiof appropriately. We often
prefer to work with theYr instead of theXr since there are no directions to keep track
of. However, one must keep in mind that the action of the sytrimgroup on theyr

is twisted by the sign character from the most obvious actdit = sgno)Y,r for

o € 6. We often use thé&p without explicitly mentioning the choice of an orientation

2.3. Kempe’s generation theorem

The purpose of this paper is to give a presentation for thg Rip. To do this we must
first find a set of generators. This problem was solved (fortha case) by KempexE].

Theorem 2.1 (Kempe). Let L be an even set. Then the ritRy is generated in degree
one. Equivalently, th&r (or Xr) with I" a matching generat&; .

Proof. We recall the proof of HMSV1, Theorem 2.3], which is simpler than Kempe’s
original proof, to motivate later arguments. For any reggtaphI” on L, we expres3r

as a polynomial in elements of the forry with T'" a matching. Partitiord. arbitrarily
into two sets of equal cardinality, one called “positivetlghe other “negative.” We then
have three types of edges: positive (both vertices pojithegative (both negative) and
neutral (one positive and one negative). After applyingRlieker relation to a positive
and a negative edge, one is left with only neutral edges:
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(We have neglected signs in the above identity.)JAis regular, it has a positive edge if
and only if it has a negative one. Thus by repeatedly applpiiigker relations to positive
and negative edges we end up with an expresgjor- ) £Yr, where thel'; have only
neutral edges, and are hence bipartite. Hall's marriager¢ime states that in a regular
bipartite graph one can find a matching. Thus eBgltan be factored into matchings,
which completes the proof. O

2.4. Kempe’s basis theorem

Fix an embedding of. into the unit circle in the plane. We say that a grépbn L is non-
crossingif no two of its edges cross when drawn as chords. The follgwiell-known
theorem of Kempe (also fronKEg]) will be used in the proofs of PropositioB.1 and
Lemma9.3

Theorem 2.2 (Kempe). The Xt with T' non-crossing spat§; . The only linear relations
among these elements are the sign and loop relations. Tl i€hooses for each undi-
rected loop-free non-crossing graph a direction on the edgen the corresponding
form a basis foiS; . The same is true faR; if one considers regular non-crossing graphs.

In fact, there is a procedure called thieaightening algorithnwhich expresses an arbi-
trary Xr in terms of the non-crossing basis. The algorithm is simiglke any pair of
edges inl" which cross and Rcker them. The algorithm terminates because the total
lengths of the edges in each of the two graphs resulting frétiieker operation is less
than that in the original graph. This nearly proves the taegrfor details seeHMSV1,
Propositions 2.5, 2.6].

2.5. Some definitions
We now define some notation that will be used constantly:

e R; isthe ring of invariants, as defined above.

e V, is the first graded piecE(Ll) of Ry ; itis spanned by th& with I" a matching.
e [; isthe ideal of relations, that is, the kernel of the map 8ym — R;.

e (O, isthe ideal of SymV;) generated byf); it is a subideal of/; .

3. Thetoric degenerationsgrg Sy, and grg Ry,

In 83, we discuss toric degenerations of the risgsand R, . These were first described
in [SY, and one was used itHMSV1]. By a “toric ring” we mean a ring isomorphic to
a semigroup algebra, where the semigroup is the set ofdaitints in a strictly convex
rational polyhedral cone; by a “toric degeneration” of aynime mean a toric ring obtained
as the associated graded of a filtration on the original fifng main points of § are the
following:
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(1) To each trivalent tre& with leaf setL we give a toric degeneration of the rin§g
andR;, denoted g S;, and gk, R, respectively.

(2) We give a presentation of the ring0§;..

(3) We discuss the theory of weightings on trivalent trees.

(4) We identify the rings g¢ S, and gg R, with semigroup algebras of “weightings.”

3.1. Trivalent trees

By atrivalent treewe mean a connected undirected graqtwithout cycles, all of whose
vertices have valence one or three. We call vertices of ealémredrinodes and vertices
of valence onéeaves We say leaves andy form amatched paiif they share a neighbor
(trinode). We say that a trivalent treenstchedf it has more than four vertices and every
leaf belongs to a (necessarily unique) matched pair. A nealtttivalent tree necessarily
has an even number of leaves.

b h

Fig. 1. Atrivalent tree. The vertices d and f are trinodes; the rest are leaves. The verticaad
b form a matched pair, as do the vertigeandh. The tree is not matched becavs#goes not belong
to a matched pair.

3.2. The toric ringgrg S, andgrg Ry,

Let E be a trivalent tree with leaf sét. For a grapH” on L, define thdevelof I (relative
to E) as
levg ' = Z (the distance from to b in 8)
ab

where the sum is over the edges Iof and distance is the number of edges in the
“geodesic.” Clearly ley induces a semigroup morphism {ev¥; — Zxo. Define an in-
creasing filtrationFz onZ[¥ ] by letting FéZ[%] be the subspace @[¥, ] spanned by
the Xt with levg I < i. (The notation lex will not be used further.) LeFé S be the im-
age ofFéZ[%L] under the surjectio[¥;] — S, giving a filtration of the ringS; . Let
grg Sr. denote the associated graded ring. We will show thatSgris a toric ring (Propo-
sition 3.3). For a graph of level n, let X denote the image ofr in FQSL/Fg‘lsL.
Clearly theX span gg S ..

Let FéRL be the filtration onR;, induced from its inclusion int§, . Let grz Ry be

the associated graded ring. It is naturally the subring @fSyr spanned by the( for
which T is regular.
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3.3. Presentation of the ringrg Si.
Let Jz denote the ideal iZ[¥; ] generated by the following (cf.&81):

e Loop relation:If T has a loop theiXr = 0.

e Sign relation:If '’ is obtained fronT" by reversing the direction of an edge th€p =
— X

e Toric Plucker relation:If a, b, c andd are elements of satisfying:

the path fromu to b in E meets the path fromto d, and

the path fromu to ¢ meets the path from to d (see Figure?) (3.1)

thenX—=X— = X—X-—.
ab” cd ac” bd
(The notation/z is only used in 8.3)

a b a b
7N N
d c d c
Fig. 2. The toric Plcker reIationXa—>bXC—d> = Xu—sz_a)l' Both pairs of geodesics overlap on the

. . — —
horizontal edge of the trivalent treé& Note thatad andbc do not overlap.

The purpose of this section is to prove the following, use83rbto identify grg S;.
with a semigroup algebra of “weightings.”

Proposition 3.1. The magZ[¥,] — grz S, given byXr ~— Xr is surjective with ker-
nel Jz.

The kernell of the mapZ[¥,.] — S. is generated by the sign anduEker relations.
The kernel of the mai[¥;] — grg S. is the ideal generated by the leading terms of
all elements off. In general, of course, this is not the same as the ideal gtteby the
leading terms of a generating set/ofPropositior3.1says that in this situation, however,
this is the case.

Proof of Propositior3.1. The map is clearly surjective and contains the sign reldtion
its kernel. We now check that the toriciieker relation lies in its kernel as well. Let b,
¢ andd belong toL and satisfy 8.1). The equation

Xa—>bXC—d> = XZXb_ZI + Xa_ZIXE):

) . —> —>
holds inS;, (the normal Riicker relation). The two grapla$-cd andac-bd have the same
level, sayn, since when drawn ifE they use the same edges with the same multiplicity

(see Figure?). The remaining graph_c)l . ﬁ has level less than (again, see Figurg).
Thus all terms in the above relation lie i S; . Reducing modulch‘lsL we obtain

X=X = X-Xp

a ac” bd’

which shows that the toric Btker relation lies in/z.
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We now show that non-crossing graphs s@§#; ]/ J=z. EmbedL into the unit circle
in the plane in such a way thatcan be drawn inside the circle without any crossings. Let

" be a graph orl. which contains crossing edg(;)é andch). The paths:b andcd then
meet inE. The same reasoning as in the non-toric case now applieliagphe toric
Pliicker relation to this pair of edges yields an idenfity = X where the total length

of edges i’ is less than that of (here length is computed as distance in the plane, not
the trivalent tree). Continuing in this manner, we get arresgionX = X wherel’

iS non-crossing.

It is now formal to conclude th&t[¥,]/J=z — grg Si. is an isomorphism. We elabo-
rate on this. Choose a s&tof directed non-crossing graphs such that for each unéidect
non-crossing graph there is a unique way to direct the edged'ado that the resulting
graph belongs t&. The previous paragraph shows thdt ifs any graph of level, we can
find I € Z such thatXy = +X + Y holds inS,, whereY ¢ FE‘1SL. Applying this
result toY repeatedly, we find that th€r with T" in Z and level at most form a basis of

1, (we already know they are linearly independent). It thufos that theX - with I
in Z are linearly independent in giS;.. Since the surjectio#[¥,]/Jz — grg S1. takes
a spanning set to a set of linearly independent vectors, $t Imeian isomorphism. 0O

3.4. Weightings

A weightingé on a trivalent tree2 is an assignment of a hon-negative integer to each
edge ofZ. Define theweight tripleof a trinodev of E to be the weights of the three edges
connected ta. (We write it as an ordered triple even though it is not order€onsider
the following two equivalent conditions on weight triples b, ¢):

(W1) The triple(a, b, ¢) satisfies the triangle inequalities, (» andc can form the sides
of a triangle) and: + b + c is even.

(W2) There exists atripléx, y, z) of non-negative integers such that x+y,b = x+z
andc =y +z.

Note that the triplgx, y, z) is uniquely determined bga, b, ¢). We say that a weighting
is admissiblef the weight triple at each trinode satisfies these conalitio

LetT" be an undirected graph on the leave&ofe say that an edgeof E meetsan
edgei; of T if e occurs in the geodesic joiningand j. We define a weightingr of &
by assigning to an edge & the number of edges df which it meets. We calf| the
weighting of 2 associatedo I" (see Figures).

Define (oric) Plucker equivalenct® be the equivalence relation on the semigroup
of undirected graph&;"" on L generated by the following two conditions:

e Givena, b, ¢, d in L satisfying 8.1), ab - c¢d ~ ac - bd.
o If ' ~ T andl'” is any graph thefr - T ~ T’ - T'".
The following result gives a correspondence between grapddsveightings.

Proposition 3.2. Associating a weighting & to a graph induces a bijection between the
Plucker classes of undirected graphs on the leave® ahd the admissible weightings
of B.
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3

6 6
Fig. 3. A graph on the leaves of a trivalent tree and its associatéghtiig.

Proof. Let I" be a graph and let be its associated weighting. We first show thas
admissible. Letv be a trinode of2 and let(a, b, ¢) be its weight triple. Consider the
picture

Herea is the number of edges ®f that meet edgev; b andc are defined similarly. We
let x be the number of edges Bfwhich, when drawn as geodesics &ngo through both
p andg; we lety andz be the analogous quantities. Cleadly= x + y, b = x + z, and

¢ = y + z. Thus we have shown that the weightifigatisfies condition (W2) at each
trinode and is therefore admissible.

If we apply a toric Plicker relation td” then its associated weighting does not change:
the two pairs of edges in the toricifeker relation contain the same edges when drawn
as geodesics. Thus associating a weighting to a graph ydeiddl-defined map from the
Pliicker classes of graphs to the set of admissible weightiftgsiow show that this map
is bijective.

We first prove that it is surjective. We are given an admissibeightingé and we
must produce a graph such that is its associated weighting. To do this it suffices to
prove the following: given an admissible weightiaghere exist two leavesand j of E
such that when the geodesic joinihgnd is subtracted fron§, the resulting weighting
is still admissible. For, if this is the case, then we cari jdie an edge of, subtract the
geodesic joining and;j from & and proceed by induction.

Thus let¢é be an admissible weighting &. Leti be any leaf ofg for which & does
not vanish on the edge containingWe produce the vertex by the following greedy
algorithm. Putvg = i and letv1 be the unique trinode connecteditcAssume now that
we have definedg throughuy. If v is a leaf then stop and pyt = v. Otherwisevy
is connected to two vertices other thap 1. Let v41 be the one for which the corre-
sponding edge has higher weight; if the two edges have the sagight then picko;1
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arbitrarily. We have thus produced a pair of leavasd j; note that they; are the trinodes
in a geodesic joining and j. We must show that when this geodesic is subtracted §om
the resulting weighting is still admissible.

Let ¢ lie strictly between 0 andél so thatv, is a trinode. We have the picture

Ve+1

Ve—1 Ve

By definition of vy11 we haveb > c¢. We know that(a, b, ¢) satisfies (W1). Clearly

(a —1,b — 1, c) still satisfies the parity condition. We must show that il stitisfies the
triangle inequalities, which amounts to proviag a 4+ b — 2. This inequality could fail

in two ways: 1)a = 0 andc equalsh orb — 1; or 2)a = 1 andb = c. The first case is
ruled out by the way we selecteg_; and an easy induction argument. The second case
is ruled out sincer + b + ¢ is even. This proves that the greedy algorithm indeed works
and completes the proof that our map is surjective. Noteithlatiilding the graph from

the weighting there are many arbitrary choices.

We now prove that the map is injective, i.e.JiffandI"’ have the same weighting
then they are Ricker equivalent. To show this we show thais Plicker equivalent to
any of the graphs constructed outfoby using the greedy algorithm. It suffices to prove
that if vo, ..., v IS @ sequence coming out of the greedy algorithm then we cply ap
toric Plucker relations td" so thatvg andvy are connected ift. For then we may remove
this edge fronT" and the corresponding path§rand proceed by induction.

Thus letug, ..., vy, come out of the greedy algorithm. We prove by inductionfon
thatI" is Plicker equivalent to a graph containing an edge which pakssmsghvg andv,

(we say that an edge &f passes through two vertices &fif its corresponding geodesic
does). This is clear fof = 1. Thus assume it is true férand we show that it is true for
£ + 1. We have the picture

vo v1 v2 vg Vel

X1 X2 Xe

Herex; is the unique vertex connectedipobesides; 1 andv; 1. We have assumed that
" contains an edgepassing throughg andv,; we must show thdt is Plicker equivalent
to a graph containing an edge passing throughndv,,1. Now, ¢ itself passes through
eithervyy1 or xy. In the former case we are done. Thus we may assume: thasses
throughx,.

By the definition of the greedy algorithm we have

E(vexe) < E(vever1),  E(vivipr) # 0.
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Thus there exists an edge Bfpassing throughy, andv, 1. If every edge which passed
throughv, andv,y1 also passed througty then, by the inequality, every edge which
passed through, andv, would also pass through  1; it would follow that no edge could
pass throughy,_1 andv,. However, this would imph& (ve—1v¢) = 0, a contradiction.
Thus there exists an edgeof I which passes through 1 andv, butnotthroughx,. If

vo IS a vertex ofe’ then we are done. Otherwise, applying the torigdRer relation tee
ande¢’ yields a graph containing an edge passing thrawgnduv, 1. This completes the
proof. O

3.5. Theringgrg S;, andgrg R;, as semigroup algebras of weightings

Let E be a trivalent tree with leaf sét. EmbedL into the unit circle in such a way that
E can be drawn inside the unit circle without crossings. Chaowotal order orl. which

is compatible with its embedding into the circle in the setis® if « < b < ¢ then
one encounters when traveling clockwise from to c. Fora, b € L definee,, to be 1 if

a < b,—1ifa > b,and 0ifa = b. For adirected graph on L definecr to be the product
of thee,;, over the edgegl)o of I'. We writeI"Y" for the undirected graph associatedto
Finally, let.”z denote the set of admissible weights®nlt is a semigroup since the sum
of two admissible weightings is again admissible. We can powe:

Proposition 3.3. There is a unique isomorphism of rings; S; — Z[.#z] mappingXr
to eré&run.

Proof. We define an auxiliary ring by modifying the sign relation iretpresentation of
grz S1. given in 8.3 Define the ideal/{" of Z[¢, ] by the following types of relations:

e Loop relation:If T has a loop thetX = 0.

o Modified sign relationif T’ is obtained fronT" by reversing the direction of an edge
thenXt = Xp.

e Toric Plucker relation:As in §3.3

Denote the image okt in Z[¢]/J;" by Ylén. Note thatY?n makes sense for amdi-
rectedgraphTl’, and that ifT" andTI"” are Plicker equivalent undirected graphs then the
toric Plucker relation implies??n = Ylﬁrf. By comparing the definition of;" to the
presentation of gy S;. given in Propositior8.1, we find that the map

Org Sp = Z[91)) Tz — Z[9.]) I8, Xr — er Xy,

is well-defined and an isomorphism. From the equivalence @fltings and Ricker
classes of undirected graphs given in Proposidhwe find that the map

Z[%)) I — 7[S=),  Xp > Epun,
is a well-defined isomorphism. The proposition now follows. O

We translate this result to the regular case. Call a weiglgtion E regular of degree/ if
for each lealv we havez(e,) = d, wheree, is the unique edge containing Let Zz be
the semigroup of admissible regular weightingstriVe then have:
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Corollary 3.4. There is a unique isomorphism of graded rirggg R, — Z[%#z] which
takesXr to er - &run.

Proposition3.3 and Corollary3.4 show that gg S;, and gk, R, are semigroup algebras
and therefore toric rings. (It is not difficult to see that and %z are the set of lattice

points in a strictly convex rational polyhedral cone, bus till not be of importance

to us.)

3.6. Reduced weightings

We close 8 with a discussion of reduced weightings, which we use4r58Let E be
a trivalent tree. By aeduced weightingpn E we simply mean a weighting oB—the
terms are synonymous but used to distinguish the usage ofisatle.” We say that a
reduced weighting isdmissibléf it satisfies the triangle inequality (as in (W1)) at each
trinode; the parity condition is not enforced. We say thaduced weighting is regular
of degree< d if £(e,) < d for all leavesv, wheree, is the edge meeting leaf Let Z¢
be the set of all ordered pait§, d) with d a non-negative integer arfdan admissible
reduced weighting which is regular of degreel. We define thelegreeof (&, d) to bed.

Let E be a matched trivalent tree and Bt be the trivalent tree obtained by deleting
the leaves oE and the edges that they touch. We &l thetruncationof E.

Proposition 3.5. With notation as above, there is a canonical isomorphisrewofigroups
Az — X g- preserving degree. The image of a weightingn E is the pair(¢’, d) where
d is the degree of and&’ is the weighting orE~ given by&’(x) = %S(x).

The proof is easy. See Figuddor an illustration.

1 11 11 11 11 1
Y Y Y \{ \F 1 | | l 1
2 2 4 2 ‘ t ‘ t ‘ 2 ‘ 1 ‘
Fig. 4. An illustration of Propositior8.5. The admissible weighting on the left is regular of
degree 1, the associated reduced admissible weightingn the right is regular of degree 1.

4. Thetoricideal isgenerated by quadratics and toric generalized Segre cubics

We have described a family of toric degeneration®pf depending on a choice of triva-
lent tree. The purpose o#8§s to choose a specific family of trees (the Y-trees) to ensure
the degenerated ring (i) is generated in degree one, (iijdlasons generated in degrees
two and three, and (iii) is such that there is a precise detsoni of the degree three rela-
tions:

Theorem 4.1. Let E be a Y-treg(defined in84.1). Thengrg Ry, is generated in degree
one, and the relations between degree one elements areagedday quadratic relations
and the generalized toric Segre cubic relatiqdefined ing4.4).
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(Manon M] independently solved the presentation problem for a latgss of weighted
trivalent trees, including this one; however, we will nekd form of (iii).)

4.1. The Y- and caterpillar trees

Forr > 3, define the'th Y-treeas:

: 2 3 r—2 r—1 :

There arer “Y’s” in the tree, and 2 leaves. We call the vertex atthe ith base vertex
We call an edge between two base verticdmse edgeBy a stalk we mean one of the
internal edges in one of the Y’s. By tlith stalk, for 2< i < r — 1, we mean the one
above the'th base vertex. We call the remaining two stalks at eitheroéitige tree the 1st
andrth stalk. The Y-tree is a matched tre€3(8. Sometimes we bend the first and last
horizontal edges so that all the Y’s are in a row, as in FiguiEherth caterpillar treeis
the truncation of theth Y-tree:

2 3 r—2 r—1

We use the same terminology (base edges, stalks, etc.)ttapikar trees. Note that the
third caterpillar tree is just a trinode.

4.2. Generators afirg Ry,
We now prove the first half of Theoreml

Proposition 4.2. Let E be a Y-tree. Then the ringyg R;, iS generated in degree one.

Proof. (This proof essentially applies to any matched tree.) Wiexiothe spirit of our
proof of Kempe’s theorem (Theorethl). Assign to each leaf o a sign in such a way
that in each matched pair of leaves one leaf is positive amdtiter is negative. Suppose
" is aregular undirected graph of degke&ach edge of is then either positive, negative
or neutral. We will show thaF is Pliicker equivalent (&.4) to a graph with only neutral
edges. As in the proof of Theoreghl, this implies that it is a product of matchings,
expressingXr as a product of degree one elements. This proof is more diffltan that
of Theorem?2.1because we are now only allowed to apply thédRer relation to pairs of
edges ofl" which meet (i.e., whose geodesics meet) in the Bee

Step 1:Given a positive and negative edge Iofwhich meet ing, apply the toric
Plicker relation. In the resulting graph the two new edges atk beutral and so the
number of non-neutral edges has decreased. We can thusumthis process until we
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have reached a graph which igiBker equivalent t&" and contains no overlapping posi-
tive and negative edges.

Step 2:Suppose there are still non-neutral paths, but no two of sippparity meet
each other. Le¢ be the leftmost base edge &fwhich separates non-neutral edges of
of opposite parity and let’ be the edge to the left @f The edge’ will be a base edge
unless is the first base edge, in which case it will be the first stalkndn-neutral edges
of I which are entirely to the left of are of the same type, say positive. All edged of
which pass through are neutral.

There is a positive edge of I" which containg’. We claim there is an edge of I
which containg and wherel is positive and to the right af. Assuming the claim (which
we prove below)ab anded must meet (either af or at the stalk betweesi ande); now
apply the toric Riicker relation to this pair. The resulting positive pathtedmse. This
brings the leftmost cluster of positive paths closer to thgative paths. By continuing
this process, we will eventually cause the two clusters tetia which point we return
to Step 1 and reduce the number of non-neutral edges. Cargimuthis manner, we will
eventually remove all non-neutral edges.

Proof of claim:We now prove the claim that there must exist an edgef I" con-
taininge and for whichd is positive and to the right af. Suppose there aren2eaves to
the left ofe. Let A (resp.B, C) be the number of positive (resp. negative, neutral) edges
of " entirely to the left of. Let D (resp.E) be the number of neutral edges contairgng
for which the positive (resp. negative) leaf is to the lefeoThen

2A+C+ D =mk, 2B+ C+E =mk

as the first (resp. second) coukt8mes each positive (resp. negative) leaf to the left,of
and there are: such leaves. We thus findd2+ D = 2B + E and asB = 0 andA # 0
by assumption we conclude # 0, as claimed. O

4.3. Relations in a semigroup algebra

We now turn our attention to relations ingR; . We begin with a general discussion of
relations in a semigroup algebra. L#tbe a semigroup equipped with a homomorphism
deg :#Z — Z=o, so that the semigroup algeliff#] is graded. Assume tha# is gen-
erated by? = deg *(1), so that the natural map Sy#(¥')) — Z is a surjection (here
Sym(Z{7)) is the polynomial ring in indeterminates while Z[Z#] is the semigroup
algebra of%). Call the kernell of this surjection thédeal of relationsof Z[Z].

Let = (£1,...,&) andg’ = (&1, ..., &) be two elements of " such tha) & =
> &. We then write; ~ ¢ and say that and&’ arerelated For an elemeng of ¥
let [£] denote the corresponding element of SFtY)); for an element of ¥ let [£]
denote the monomiak{] - - - [£,]. Given relatedt andé’ the elementq] — [£’] belongs
to 7. We call such relationbinomial relations One easily verifies that is generated by
binomial relations.

We say that a relatiof ~ £" hasdegree< k if £ = &/ holds for all butk indices. We
say thatt ~ £ hasessentially degree  if there exists a sequence of relations

E=£0~gDW gDy
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for which eache @ ~ £(+D has degreec k. This notation is only relevant to us when
k is 2 or 3 and we then use the terms “essentially quadratic™assentially cubic.” If

& ~ &' has essential degreek then the elemeng] — [£'] of I lies in the ideal generated
by thekth graded piece of. -

Note that we consider our tuples as ordered, sothats) = (&2, &£1) constitutes a
non-trivial relation. However, as the symmetric group isgmted by transpositions, it
follows that if & is a permutation of the tuplé then the relatiors ~ &’ is essentially
quadratic. B -

4.4. The toric generalized Segre cubic relation

We have the following relation between degree one reducéghiviegs on the third cater-
pillar tree:

0 1 1

PP

1 1 0
- 1 ‘ 1 1 ‘ 1 () () (41)

(We will omit + signs in such equations, interpreting them as binomiafiogigainZ[#].)
One obtains this relation by converting the usual graptBegjre cubicX.2) into a rela-
tion between weightings on the third Y-tree and then pastinge associated reduced
weighting on the third caterpillar tree. One may verify byntiahat this single relation
generates all relations among admissible reduced wegghtin the third caterpillar tree.

We now introduce a class of toric relations that generaliz&).(We call a reduced
weighting of E~ of degree< 1 areduced matchingRecall that the sefz of reduced
matchings generategz (Propositiord.2). Let X, Y andZ be reduced matchings on the
rth caterpillar tree such that andY take value 1 on theth stalk andZ takes value 0 on
therth stalk. LetX’, Y’ andZ’ be reduced matchings on tkigh caterpillar tree such that
X’ andY’ take value 1 on the first stalk aritl takes value 0 on the first stalk. We then
have the relation

1 1 0
1 1 0
" [xhle{z] [zhola{x] [r}alaly]

We call theseoric generalized Segre cubielations.

4.5. The type vector of a triple

Leté = (1, &2, £3) be atriple of reduced matchings on ttth caterpillar tree. Define the
typeof & at theith base vertex to be one df, B or ¢, as follows. We calk type A ati if
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it looks like

1 1 1 ‘ 1 () ()
L L L L

at theith vertex (the order of the triple is irrelevant). We calype B ati if it looks like
there. In all other cases we célitype? ati. We define theype vectorof £, denoted
t(£), to be the ordered tuple of the— 2 types of¢. The type of a triple is a quadratic

invariant—if¢ ~ £’ is an essentially quadratic relation between triples, thign=1(&").
The toric generalized Segre cubic changes the type.

4.6. Reformulation of Theorefml

Rather than proving the statement about relations in Timedré directly, we will prove
the following:

Proposition 4.3. Let E be therth caterpillar tree(r > 3). Then the ideal of relationsg
of grg R, = Z[Zz] is generated by relations of degree two and three. Furtheemo
“type” is the only quadratic invariant on“//E3, that is, if§ ~ £’ is a relation withé, &’

€ ”1/33 theng ~ £’ is essentially quadratic if and onlyif£) = #(£").

Theorem4.1 follows easily from this, since generalized toric Segreicsilallow one to
switch the type of a triple betweehand B at any base vertex.

We now give an overview of the proof of PropositidrB. First of all we split rela-
tions into two types defined in488, “breakable” and “unbreakable.” Breakable means
that some degree one piece of the relation vanishes at sseechge. The first idea in
the proof is that, given a relation, one can chop the treepigoes such that the relation
is unbreakable on each piece. One can then use a gluing angtoneduce to the un-
breakable case. We then prove that an unbreakable relatiessentially quadratic. We
do this by introducing a normal form for monomials and shayihat any monomial
can be changed into normal form by a series of quadratidoai&tWe use the notion of
a “balanced” monomial, a tuple of matchings which assumeghityuthe same value on
each edge of the tree. A key result (Propositiod) is that any tuple can be balanced by
guadratic relations.

4.7. Balancing

We say that a tuple of intege(s;) is balancedif |x; — x;| is always 0 or 1. We say that
atupleé € 7" is balancedif for each base edge of E the tuple of integergé; (e)) is
balanced.
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Proposition 4.4. Given any tuplée in V" there exists an essentially quadratic relation
& ~ &' with ¢ balanced.

Proof. It suffices to prove the proposition far= 2, as one can repeatedly balance pairs
of integers to balance a set of integers. Thus suppose thaf. First we show that the
proposition holds for the third caterpillar tree. In the geal case of theth caterpillar,
we breakZ into its trinodes, balance the weightings on each of thegarately and then
“glue.”

Third caterpillar: We indicate a reduced matchiggon the third caterpillar tree by a
triple (a, b, ¢) wherea is the weight of the first (left) stallg is the weight of the second
(vertical) stalk and is the weight of the third (right) stalk. The triple, b, ¢) satisfies
the triangle inequalities and has< 1. If » = 0 thena = c. If b = 1 then one ok
or ¢ is non-zero, anda — ¢| < 1. Supposé&1 = (a1, b1, c1) andé&x = (az, b2, c2) are
reduced matchings andy — az| > 2 or|c1 — c2| > 2. Without loss of generality we take
a1+ 2 < ap. Sincecy < ap +1andeo > a» — 1 we haver; < ¢2. We know thaiey, > 1
sinceay > 2.

If c1 < cz2then defing; = (a1 + 1, b1, c1+ 1) andé, = (a2 — 1, b2, c2 — 1). Then
& +& =E1+£50(;, &) ~ (&1, &). The resulting paité;, £5) is now closer to being
balanced sincHa; +1) — (a2 — 1)| = |a1 —az| —2 and|(c1+ 1) — (c2 —1)| < |c1—c2].

If cy =cothenax =a1+2andcy =cp =ag + 1. Definegi = (a1 + 1, b1, ¢1) and
&, = (a2 — 1, b2, c2). Theng] andé, are reduced admissible matchings agfd &) ~
(&1, &2). Again, we get strictly closer to a balanced pair with suclassignment.

A finite number of steps as above will relate the original g&it &) to a balanced
pair.

Breaking and gluingSuppose now that we have a péit, &2) of reduced admissible
matchings on theth caterpillar. Break the caterpillar up into an ordereddugf r — 2
caterpillar trees with three vertices by cutting each balggén two. These are arranged
from left to right and indexed as 2. ., » — 1. The matching§; on the original caterpillar
define matchings on each copy of the third caterpillar.d;etf; andg; denote the first,
second and third stalk on thgh trinode and defing; ; = (& (ej), & (f)), & (g;)) for
i =1,2and2< j <r — 1. Now apply our previous result on the third caterpillaretea
pair (&1, €2, ;) is equivalent to a balanced pairij, ééyj).

Definer, = 1. Now, because the pairs are balanced, fer 3 < r — 1 we have either
C/l,j = a’l,jJrl andc’z’j = a’z’j+1, or C/l,j = a/2,j+l andc’z’j = a/l,j-',-l' In the former case
sett; = t;_1 while in the latter case sgt= 3 —#;_;. We will use the tuplér, ..., #._1)
of 1's and 2’s to glue these balanced pairs on individuabties to obtain a balanced pair
on therth caterpillar.

We now define a paité;, &) of admissible weightings on theth caterpillar by a
gluing procedure. Let the edges of thié caterpillar be labeled as, s2, b2, s3, b3, ...,
br_2, s,—1, sr, Wheres; is the jth stalk andpy is the base edge between thih and
(k + st base vertices. To begin, we defifle(resp.&5) on s, s2, b to agree withé, ,
(resp.&y,). For3< j <r — 3 set

(61(bj-1). &1(s)). §1(b))) = &, (E2(bj—1). &2(s)). £2(b))) = &5, .
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Finally define
(E1(br-2), &1(5r-1), &1(50) =& |, (Ea(br—2), E3(s5,-1), Ep(s5,)) = &5, .

The above assignments are well-defingd, &,) is balanced an¢k;, £)) ~ (61,&2). O

4.8. Reduction of Propositiof.3to the unbreakable case (Propositidrb)

We say that a matching on E is breakableif there exists a base edgewith £(e) = 0,
andunbreakableotherwise. We say that a tuple of matchifge 77 is unbreakablef
eachg; is. In 8.9 we will prove the following proposition:

Proposition 4.5. Let£ ~ &' be a relation withg, &’ € 7 and§ unbreakable. Then
& ~ &' is essentially quadratic.

In this section we prove the following:

Proposition 4.6. Proposition4.5implies Propositiort.3.

Proof. As remarked in 8.4, Propositiord.3is true for the third caterpillar tree. This will
be the base case of an inductive argument.

Letx ~ y be a relation of lengtlh. Using quadratic relations, we may assume that
bothx andy are balanced. If eact) is unbreakable then eaghis as well (sincec and
y are balanced) and we are done. Assume then that there is ad@gaefor which x; is
breakable a¢ for somei.

Cut the edge in half to produce two new tree8’ and2”. We regard: as an edge of
both of these trees. Both of these trees can be regarded #srsraterpillar trees. Also,
giving a weighting onE is equivalent to giving weightings oBE’ and E&” which agree
ate.

Now, letx” andx” be the restrictions of to £’ andZ” (and similarly fory). The key
point is that becauseis breakable and andy are balanced, these restricted weightings
arematchingsthat is, they assiga either 0 or 1. In other words, we hawg y" € Vg,
andx”, y"” € Vi

Proceeding by induction, we can assume that all relatiomessentially cubic o&’
andZ”, or essentially quadratic if the types agree. We can theng&equence of cubic
(resp. quadratic) relations betwegrandy’ and between” andy” and concatenate them
to form a sequence of cubic (resp. quadratic) relationséatwandy. By “concatenate,”
we mean that one should first order the tuples so that thosegte&lue zero at the edge
should be glued together (the order does not matter), argbttaking value one at
should be glued together (the order does not matter). In tiaé $iep—that is, after’
has been replaced with (up to permutation) and” has been replaced with’ (up
to permutation)—one can finally permute thé matchings taking value zero at and
permute those taking value oneeatand lastly permute the concatenated matchings, so
that the result is equal tp. (Recall that permutations are essentially quadraticesihey
are generated by 2-cycles.) O
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4.9. Proof of Propositiod.5

There are four possibilities for an unbreakable matchirtheatrinodes on the left end:

1 1 0| 1 1 1 1 2
0 1 1 1
A B C D

The right end is similar (flip each over). We order thesex B < C < D.
We say that an unbreakable tuple of matchigge 7z is in normal formif & is
balanced and the following conditions hold:

e The restriction of the sequen¢g) to the leftmost trinode is non-decreasing, under the
order described above; similarly for the rightmost trinode

e For each base edgethe sequencé;(e)) is non-decreasing.

e If e ande’ are consecutive base edges §nd) = &;(e) andé;(¢') = &;(e’) for some
i < jtheng;(s) < &;(s), wheres is the stalk betweeaande’.

e If ¢ ande’ are consecutive base edges §n@d) = &;(¢’) andé;(e) = &;(¢’) for some
i < jtheng;(s) < &;(s), wheres is the stalk betweeaande’.

Proposition4.5 now follows from the following proposition:

Proposition 4.7. Every unbreakable element 8§ is related to a unique normal form,
and this relation is essentially quadratic.

The following is the key lemma:

Lemma4.8. Let(£,&) € “//52 be unbreakable and balanced. Then there exists’)
€ 7/32 balanced and unbreakable such tifat- &’ = n + n’ and for each internal edge
we have

n(e) = min((e), '(e)),  n'(e) = max§(e), &'(e)).

Proof. The idea is the same as in the proof of Proposiiah break apart at a base edge
(or at an end), permute, and glue back together to achiewtetieed order. O

We now prove Propositiod.7.

Proof of Propositiord.7. Leté e 7% be a given unbreakable tuple. We may assume that
£ is balanced. By repeatediy using Lemeh& we find thats is quadratically related to
an unbreakable elemefite 7 which has the property thaf(e) < gjf(e) fori < jand
all internal edges.

For uniqueness, it suffices to show uniqueness for thirdgidites and for the ends.
Consider the third caterpillar at a base vertex. Supposestine of then weightings
(ai, bi,ci), 1 < i < n, on the third caterpillar is equal t@, b, ¢) (left, stalk, right).
Suppose these weightings are increasing in the order wedwefireed. This means the
a;’s are increasing, starting as the floorafrn and ending as the ceiling af/n. This
determines the value of eaah Similarly the value of each; is determined (beginning
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with floor of ¢/n, ending with ceiling ofc/n). Whereverw; # ¢; we must have; = 1,

so thesé;’s are determined. However df = ¢;, thenb; could be either 0 or 1. The set
{i | @; = ¢;} consists of at most two intervals J. There is some integer such that

I ={i|a =c¢ =nyandJ = {j | aj = ¢; = n + 1}. Within the intervall, the
b;’s must form a non-decreasing sequence. Similarly in therwal J, the b;'s form a
non-decreasing sequence. We also know the valQe€,of, ,; b;, and that we cannot have
any pairi € 1, j € J such thab; = 1 andb; = 0. These conditions together determine
the values of all thé;’s. The argument for the ends is similar. O

5. Theideal isgenerated by quadratics and generalized Segre cubics

In 85, we lift the generalized Segre toric cubics to the riygand prove the following:

Theorem 5.1. For any even sek the ideall; is generated ove¥ by quadratics and the
small generalized Segre cubic relations.

We will introduce the generalized Segre cubics, and thelsyealkeralized Segre cu-
bics, shortly. Theorers.1 will follow easily from our toric results once we make these
definitions. In one of our ad hoc arguments in the 10-poiné ces will need a slightly
refined version of Theore® 1given in Remarls.3. The proof of this theorem is the only
place we use the toric results.

5.1. Brief additional comments on colored graphs

We will use the language of colored graphs, introducedlinV@e consider both directed
and undirected colored graphsIifis a directed multi-matching oh whose edges have
been colored with colors from the sétthen X is defined as an element ¢ as

in 81. If L is oriented and" is a regular undirected multi-matching one can also make
sense ofYr as an element of/f’c. Clearly theX (or Yr) span Vf’c. Furthermore,
the Xt satisfy the sign and “colored” Btker relations, and these generate all the linear
relations among them. (The colorediBker relation is just the usualiRlker relation on a
pair of edges, with the restriction that these two edges Itigeacsame color.) We have thus
given a description oV,fgC in terms of colored graphs. There is a similar descriptian fo
Synf(V;). The only difference is that in SyhV; ) the particular color of an edge is not
relevant. What matters is whether two edges have the same-enlo colored graphs
represent the same element of 3y ) if one is obtained from the other by permuting
the colors.

5.2. Generalized Segre cubic data

Let L be an even set. Bygeneralized Segre datwve mean a paiE = (I', %) wherel’

is an undirected graph dnwhose edges have been colored one of red/dashed, gregn/soli
or blue/dotted and” = {Ug, Ug, Up} is a partition ofL into three even subsets (called
parts), such that
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e Every vertex ofl” has valence one for each of the three colors.

e Between any two parts there are either two edges or no edgbsré are two edges
then these edges have the color of the “opposite” part. Btauirte, any edge frofig
to Ug must be dashed.

See Figurés for a schematic presentation. We call the edges betweenattiespecial
We call X smallif Ug, Ug or Up has cardinality two.

Fig. 5. Schematic presentation of a generalized Segre datum.

Let = be a generalized Segre datum. Suppos@de’ are edges of" of the same
color and have a vertex in a common part. Given such a pairylet Y + Yr» = 0 be
the colored Ricker relation ore ande’. Then it is easily verified that’ = (I'/, %) and
¥" = (', %) are both generalized Segre data. Definedpace of generalized Segre
datato be theZ-module spanned by generalized Segre data modulo relaifdhe form
T+ ¥+ =0.

5.3. Generalized Segre cubic relations

Let ¥ = (I', %) be a generalized Segre datum. Cebe a directed colored graph with
underlying undirected graph. We lete(I") be the product of the(T";), whererl’; is the
directed matching of colarin r. (Heree is a chosen orientation ab, see .2) Form a
new directed colored grapF( as follows. The grapﬂT’ will be a recoloring ofl", so we
just specify a new color for each edge. We use the colors @digiit and black/dark. The
dashed (resp. dotted, solid) edged’dh Ug (resp.Us, Ug) are dark inl"" and all other
edges of” are lightinT". Itis clear that every vertex has dark valence one and tghs li
valence two.
DefineYs, € Synm?(V,) andvy, € R\Y ® R by

Yz = Yr =e(D)Xg, Yy= G(F)(Xliéark ® Xf-‘l/igm).

These only depend oR and not the choice of. There is a well-defined maﬁ(l)
(2) — Syn?(VL)/Q(?’) given by writing the element OR(L) in terms of degree one

elements and then formally multiplying to get an element win& Vv, ). (This is only
defined modulo quadratic relatiogk , because of the choice of how to write the element

of R(LZ) in terms of degree one elements.) We may therefore regaldigotind Yy, as
elements of SyR(R\")/ Q. Define

Rel(S) = Y5 — Y4,
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regarded as an element of Si(rﬁL)/Qf). As the two terms in R€E) are recolorings

of the same graph, R@l) is a relation, that is, it maps to zero ;. We call such
relationsgeneralized Segre cubic relatian®/e use the same name for lift of some &2l
to I£3) C SymP(Vy). A generalized Segre cubic relation is shown in Figgirdlote that
foro € &, we haves Rel(X) = sgn(o) Rel(c X2).

43
A la
1 R* - = 5 / /
28 N ‘6

Fig. 6. A generalized Segre relation on six points. Héle = {1,2}, Ur = {3,4} andUp =
{5, 6}. This is equal to the image of the usual Segre cubic relatidp Q.

One easily verifies that Rel gives a homomorphism

Rel : {the space of generalized Segre cubic }:iaféalfg)/Q(LS).
This allows us to interpret relations as graphs with extnacstire, which has two advan-
tages. First, it gives a source of linear relations betwato (thought of as operations we
can perform on) generalized Segre relationgicRér relations on the generalized Segre
data which respect the extra structure. Second, one carofeegitain properties of the
generalized Segre relation from the original graph. Foraimse, if ¥ is a generalized
Segre cubic datum for which is disconnected, then the associated generalized Segre re-
lation arises from a relation on fewer points (see Propmsiti3for a precise statement).

5.4. Degenerate Segre cubic relations
We call a generalized Segre datrdegeneraté:

(1) one of the pairs of special edges is missing; or
(2) in one of the parts the two pairs of special edges do natecin

By (2) we mean that one part, séi;, can be partitioned into two piecelsand B such
that no edges go betweenhand B, the dotted special edges go intoand the dashed
special edges go int®. A generalized Segre relation is called degenerate if itesom
from a degenerate generalized Segre datum.

Proposition 5.2. A degenerate generalized Segre relation lie®in.

Proof. First consider a degenerate datum satisfying (1). Sayleatashed special edges
are missing. We show how to move frari to Yy, using quadratic relations. First switch
the dashed edges and the solid edgeB wfhich occur inUg (this relation lies inQy).
Then switch the dashed edges and dotted edgésiofUg. The resulting graph now
looks likeT if we make the dashed edges dark and the other edges light.
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Now say thatZ is a degenerate datum satisfying (2). Say thd?inthe dashed and
dotted special edges do not connect and/let= A LI B be a decomposition as described
above. Lef™ be the graph obtained fromby switching the dashed and solid colorsdin
letU; = B, letUy = Ugr U A and letU, = Up. Let ¥’ be the generalized Segre datum
(I, {Ug, Ug. Ug)). ThenX' is degenerate of type (1) and so Rel) € Q. Consider
the difference

RelZ) — Rel(X') = (Ys — Ys) + (Y§ — Yi).

Now Yg = Yy.,. Also, Yy — Y5 € Oy (the dotted subgraphs &% andYs- are identical,
and the remainder of the graph gives a quadratic relatidn)s Re(X) € Q; . O

5.5. Proof of Theorer.1

It follows from Theoren¥.1that/; is generated by quadratics and lifts of the generalized
toric Segre cubics. Thus to prove Theorénj, it suffices to show that the generalized
Segre cubics are lifts of the generalized toric Segre cuhbibgh is what we now do.

Let L be an even set. Pick a Y-trég with leaf setL and letE~ be the associated
reduced (caterpillar) tree. Consider a generalized tegr&cubic relation o&™:

mmm
. .. . ; (5.1)

Implicit in this diagram is a decomposition & into three pieces:

p P q q

The labels indicate how these three pieces are glued tagegitter gluing,p andg dis-
appear). Corresponding to this decomposition is a decoitmosf L into three pieces,
the left pieceP, the right pieceP’ and the center piece, which has two elemengsdy

(the two vertices of the Y-tre& which connect to the stalk of the trinode in the center of
the above diagram). We regakd Y andZ as reduced degree one weightings on the left
caterpillar tree, wher& andY take value 1 orp while Z takes value 0 there. Similarly,
we regardX’, Y’ and Z’ as reduced weightings on the right caterpillar tree, whére
andY’ take value 1 oy while Z’ takes value 0 there.

Now, we can regard(, Y andZ as non-reduced degree one weightings on the Y-tree
with vertex setP U {p*, p~}. Similarly, we can regard’, Y’ and Z’ as non-reduced
degree one weightings on the Y-tree with vertex B&U g7, q ~}. We lift these six
weightings to matchings, which we denote ,kiyetc In the grapIK there are two ele-
ments ofP, saya andb, which connect tp™* andp~. We letXo be the restriction o
to P\ {a, b}. We letc andd be the two vertices i connecting top™ andp~ and letYy
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be the restriction of to P \ {c,d}. In Z the verticesp™ and p~ are connected to each
other. We similarly define primed versions.

We now define a small generalized Segre cubic datunThe partition is given by
Up = P',Ug = {x, y}andUg = P. The grapHl is given as follows:
e The dotted graph is the union &f, Z’ and the edgesx andby.
e The solid graph is the union df, X, and the edges'x andb’y.
o The dashed graph is the uniony, ¥/ and the edgesy, cc’ anddd’.

These three matchings are lifts for the three reduced wiegghappearing on the left side
of (5.1). Itis clear that this is a valid small generalized Segrecdhatum.

We must now show that the generalized Segre cubic relatibftR@ssociated to the
generalized Segre cubic datum defined above lifts the oeldsi.1). Now, the relation
associated to the datum is

Here the parenthesized expressions should each be inezt@® single graphs—for ex-
ample, the first parenthetical is the concatenatioX@fax, by and Z’. The quadratic
term A on the right side would be the light subgraph in the graphicghtion. Now, the
above relation belongs tkf’)/Q(L?’). To get an element dfzs), we must rewriteA in terms

of degree one elements. Because the toric ripgRyr is generated in degree one, we can

write
n
A= Z ®; D
i=1

where eachb; and ®; has degree oneb;®’ has toric weight equal to that af, and
®; @, has toric weight strlctly less than thamfforz > 1. We may takeb; = X - ax -
a'y - bb' - X’ and®; = Yo - cx - ¢’y -dd’ - Y}, since the product of these two graphs is
equal toA in the toric ring.

It now follows that Re{X) is represented by the relation

n
(Xo-ax by - Z)(Z-ax -y - Xo) (Ve -dd -3y - ¥V) = (3 @0i9])(Z-xy- 7).
i=1
The leading term (in terms of the grading) of this relation is

(Xo-ax-by-Z')(Z-a'x - Dy -Xp)(Y -ec -dd -xy - Y') = (@19))(Z - xy - Z)).
The two sides are the same as the two side$dj.(This shows that the leading term of
our generalized Segre relation Re) is equal to the generalized toric Segre relation we
started with, which proves Theoresiil

Remark 5.3. It follows from the proof that, if we totally ordek, then/; is generated by
guadratic relations and those small generalized Segre calaitions coming from data
forwhichUg < Ug < Up and|Ug| = 2. We will use this stronger form of Theoresril
in the proof of Propositiof7.9.
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6. Thestructureof V; and itstensor powers

In 86, we study the partition filtration o®" V., Syn"(V,) and \" V,, for n < 3 and
the & -action on the associated graded pieces. This providesthegsential structural
properties of the Ricker relation; for example: the elemeritg-)? with I' a matching
span SyrA(Vy) (see the discussion following Propositiéri) and useful generalizations.

6.1. The partition filtration

Let L be an even set. By partition of L we mean a collection of non-empty disjoint
subsets ofl. whose union ig.. We say that a partition imto even partsf each of the
subsets is even. We similarly speak of partitions$lgfinto even parts. Given a partition
2 of L we denote by | the corresponding partition ¢f.|. We partially order the set of
partitions ofL and|L| by refinement. For example22+ 2+ 2 is smaller than 4-2+ 2,
but 44 4 and 6+ 2 are not comparable.

Given a regular colored gragh on L we obtain a partitiorZ4 of L by taking the
vertex sets of the connected componentd’ofThe partitionZ necessarily has even
parts. We use this to define a filtration, indexed by the pamstof |L| into even parts,
on anyZ-moduleU which is spanned by graphs. We denote this filtration, whietceall
the partition filtration, by F,U. (Warning: this filtration is indexed by a partially ordered
set, not a totally ordered set.) For instancep iis a partition of|L| then F, Syt (V)
is the span of theXr (or Yr) for which || < p. We denote the associated graded
subquotient by grU. To be precise, grU is the quotient ofF,U by the span of the
F,yU with p" < p. The partition filtration is preserved by the action®f, so this group
naturally acts on gru.

6.2. Degree one spaces

Then = 1 case is easy: the only non-zero piece of the partitiontiitineon V;, occurs for
p=2+---+2andthen gy = V. is the irreducible representation &, corresponding
to the partitionn /2 4+ n/2 (81.5).

6.3. Degree two spaces
We now study the partition filtration oVIi@Z, Synf(V;) and /\2 VL.
Proposition 6.1. We have, oveZ[1/2]:
Syn?(Vy) ifp=2+4---+2
ar, (V2 ={ N?v, fp=4+2+---42
0 otherwise.
The spacé/f@2 is spanned by regular 2-colored graphs. Such graphs acédispions of

cycles of even size. Propositiénl says thatvi@2 is spanned by graphs which are unions

of 2-cycles and at most one 4-cycle. Furthermore, Qy) is spanned by graphs which
are unions of 2-cycles: the elemei§-)2 with I" a matching span Syfiv; ).
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We begin our proof of Propositiof. 1 with the following result:

Lemma6.2. The spacevi@2 is spanned ove¥[1/2] by graphs which are unions &
cycles andi-cycles.

Proof. It suffices, by induction, to show that every regular 2-cetbgraph on at least
six vertices can be written as a sum of graphs which are natemiad. In other words,
letting U, be the subspace dfiez spanned by disconnected graphs, it suffices to show
that Viez/ Uy is zero. Thus lef” be a graph orL, which we can assume to be connected
(otherwise it already belongs @, ). We must showr = 0in V,jez/ Ur.

Pick four consecutive vertices b, ¢ andd of I". The Plicker relation on the edges
ab andcd is

The rightmost term belongs tG; . We therefore havétr = —Yr in VI?Z/ Ur where
[ is obtained by transposing two consecutive verticel.iln words, we may transpose
consecutive vertices at the cost of a sign, modujo

Now consider six consecutive verticesb, c, d, e and f in T'. Applying the Plicker
relation on the edgesh andef we find

c.d d...c cond
0 — b / \ e + e / \ b + b / ............ \ e
a f a f a

Again, the rightmost term belongs &@, and thus can be discarded. This shows that we
may pick four consecutive vertices and reverse their ortigreecost of picking up a sign.
However, we may now move the affected vertices back to thgnai position using six
transpositionsnot introducing a new sign. We thus find th&t = —Yr in VL®2/ UL,
which shows that P belongs taU; . O

In the proof of Lemmé6.2 we only ever use six consecutive vertices. By keeping track
of the graphs we discarded during the course of the proof wagroln identity, shown in
Figure7, that we will use on a few later occasions.

Lemma6.2 states thai/fz’2 is spanned by graphs with only 2- and 4-cycles. To prove
Proposition6.1, we must therefore show that two 4-cycles can be convertedwo 2-
cycles and one 4-cycle. This is a question about graphs i gagnts; in fact, it suffices
to show gg,4(Vf3’2) = 0 whenL has cardinality eight. We prove this after the following
lemma.

Lemma6.3. Let L be an even set and Iét be a regular2-colored graph onL. Put
p = |%r|. Assume thal' has a4-cycle and lef™ be the graph obtained by switching the
colors ofI" on this4-cycle. Ther¥ = —¥p holds ingr, (V22).
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Fig. 7. A graphical identity on six points. More accurately, thishl be regarded as a family of

identities between various tensdfg ® Y in Vl‘fﬂ for any L; we have only drawn the edges on
each side which are different.

Proof. Let I' be given and say that the vertices in the 4-cycle are labéled] 3, 4}. By
squaring the identity

we obtain

The middle two terms on the right side of this identity &randI"’. The other terms have
a more refined partition and so map to 0 in @ri@’z). This proves the lemma. O

Lemma 6.4. Let L be a set of cardinality eight. Thgr4,4(vi®2) = 0overZ[1/2].

Proof. In this proof we writeF,, for F,,(VE)Z), and similarly for gf. Letz be the involu-

tion on VE’Z which transposes factors. In terms of colored graptsyitches the colors.
We will show thatr acts by+1 and by—1 on gy, 4, which will establish the lemma.

We first show that acts by—1 on g, 4. By Lemma6.2we haveFy 4 = VI?Z and
Fg2 = Fa22. Thus gy, 4 can be described as the space of all degree two multi-magehin
on L modulo the disconnected ones. It therefore suffices to shate tacts by—1 on a
connected graph. Consider such a gr&pkay the following one:
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By the same reasoning as in the proof of Lenfrzawe may switch consecutive vertices
at the cost of a sign, when working modulo disconnected graphus we may pick
vertex 1 and move it counterclockwise around the cycle totigtion of vertex 8. This
uses seven transpositions and so introduces a sign. Thiéngstycle is the same as
the original but with the colors switched. We thus have = —I" modulo disconnected
graphs, which shows thatacts by—1 on g, 4.

We now show that acts by+1 on gy, 4. To do this, it suffices to show thatfixes the
graph

modulo gy, , ,. This follows immediately from Lemma&.3: switching the color in one
square introduces a sign modulg gk, so switching the color in both squares introduces
no sign. O

We now complete the proof of PropositiériL

Proof of Propositior6.1. Combining Lemma.2 with Lemma6.4 shows that g;(Viez)
=0unlessp =2+.---+20rp =442+ ---+4 2. We thus have a filtration

0C Fopi2(VP?) C Faropqa(VE?) = VP2

Let  be the transposition of factors dr‘sz, as in the proof of Propositiof.4. It is
clear thatr acts as the identity oz ...;2 since this space is spanned by graphs which
are unions of 2-cycles. On the other hand, LemBna shows thatr acts by—1 on
Fayot..42/Fot...ip. From this it follows that Syf(V,) = Fai.42 = gh,..,, and
that the quotient map’fz’2 — Qi 0, ..o factors to give an is;omorphism\2 Vi —

Ot 24 42: u]

6.4. The action o6&, on degree two spaces

Having described the spaces,,gVL®2), we now turn to their structure & -modules.
Our main result is the following. Note that characteristindlions and arguments from
the representation theory &f;, make sense ovét[1/|L|!] with the obvious changes.

Proposition 6.5. In the following table, eacl® ; -module is multiplicity-free. The set of
irreducibles it contains corresponds to the given set ofifians.

&, -module Set of partitions of L |
Symz(VL) at most four parts, all even
/\2 %3 exactly four parts, all odd
Vi®2 union of previous two sets
R(Lz) at most three parts, all even
I£2) exactly four parts, all even

These statements hold ov&l/|L|!].



Relations for the ring of invariants afpoints 33

For instanceliz) is a direct sum of those irreducible representation® ptorresponding

to partitions of L| into exactly four even parts. To prove the proposition ifisef to work
over the complex numbefs. We use Schur-Weyl theory: for a vector spacee have a
decomposition
A®L ~ @ M, ® S, (A)
A

where the sum is over all partitionsof |L|, M, denotes the irreducible representation
of & attached to a partition, andS, is the Schur functor corresponding 1o Here
A®L denotes the tensor product of copies4indexed byL. The above decomposition
respects the action @, and is functorial with respect ta.

Let P be the two-dimensional vector space o{fewith basis{x, y}. Let /\2 P—C
be the isomorphism takingA y to 1. We define SLP) = Sp(P) to be the group of linear
transformations of’ preserving this alternating form.

SinceV; is the space of degree one invariants, it is equal, by definito(P®L)SLP),
The action of&; on V; in this description is the obvious one. We thus havecgn
equivariant isomorphism

V. @V, = (P®L @ p®LYSUPIXSLP) _ ((p g p)®L)SLP)XSLP)

The G -action is the diagonal action on the first two spaces and si@lwone on the
last space. The above isomorphism is also equivariant witpact to the transposition of
factorst. We now apply the Schur—-Weyl decomposition to obtain

VL@ VL =P My ® Si(P @ P)SHPI¥SHP),
A

The space® ® P has a natural symmetric inner product coming from the adtiémg inner
product onP. This inner product is preserved by the group BL x SL(P), and it is not
hard to see that the resulting map(®) x SL(P) — SO(P ® P) is surjective. The
transpositiorr on P ® P preserves the inner product but has determirantThust and

SO(P ® P) generate QP ® P). Now, the space SyfiV; ) is just ther-invariant part of
Vi ® Vi, SO

SymA(Vy) = EBMA ® S, (P ® P)Orer),
A

Similarly, /\2 V is just the subspace &f, ® V,, on whicht acts by—1 and so

2 -
N\ Ve =@M esPeP)Orer
A

where the minus sign means to take the subspace on whiehgDP) acts by its sign
representation. The first three lines of the table in Prajpos6.5 now follow from the
n = 4 case of the following lemma. This lemma appears as statsni®Enand (2) in the
proof of [Ku, Lemma 2.2].

Lemma 6.6 (S. Kumar). Let A be a partition and letV be a vector space of dimension
n with a non-degenerate symmetric inner product.

e S, (V)P is one-dimensional if has at most parts, all even, and is zero otherwise.
e S, (V)O).— is one-dimensional if has exactly: parts, all odd, and is zero otherwise.
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We now turn our attention to the spaRéz), the degree two invariants. We have @p-
equivariant isomorphismt(? = (Syn?(P)&L)SLP)  so

R? = P M; ® S, (SynP(P))SHP).
A

Use the alternating inner product éhto define a symmetric inner product on S}(#)
via

(', ww') = (v, w) V', W) + (v, W)V, w).
The group SICP) preserves this inner product and it is not hard to show thatthap
SL(P) — SO(Syn?(P)) is surjective. We thus have

R = P My @ S, (Synf(P)) SO,
A

The fourth line of the table in Propositid5 now follows from the following lemma:

Lemma6.7. Let i be a partition of an even number and [Etbe a three-dimensional
vector space with a non-degenerate symmetric inner produens, (V)SXY) is one-
dimensional ifx. has at most three parts, all of which are even, and is zerorofise.

Proof. By the second part of Lemn@6éwe haveS, (V)°V)-~ = 0, as three odd numbers
cannot have an even sum. We thus hgye/)SAY) = S, (V)O") and the result follows
from the first part of Lemma&.6. O

The final line of the table in Propositigh5follows from Rf) = SymZ(VL)/Iiz).

6.5. Degree three spaces

We now turn our attention to the cubic spaclé,i@3 and Symi(Vz). We say that a 3-
regular graph ol is abenzene cycléit is a cycle in which the edges alternate between
being single and doubled (Figug. We use this term because molecules of benzene are
depicted with such graphs (on six points), as in the figureugésthe terntbenzene chain

for a chain of edges which alternate between being singlelandled. A benzene 2-cycle

is interpreted to mean a triple edge. The main result of #isien is the following:

Proposition 6.8. The spaceSynt(V;) is spanned ovefZ[1/2] by graphs which are
unions of benzer@., 4- and6-cycles. In particulargr, (SynP(Vy)) = O unless the parts

O

Fig. 8. A benzene 6-cycle.

We deduce Propositiod.8 from the following:

Proposition 6.9. Let L be a set of cardinality at least and letA be a fixed matching
on L. ThenVy is spanned by thosg- for which the graphAT is not connected.
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Proof. Let I" be a given matching. Think ok as having dotted edges aindas having
dark edges, saTI is a regular 2-colored graph. We must show that by using oati d
Plicker relations we can write it as a sum of disconnected graptle assume thatT”
is connected to begin with.)

Leta, b, c andd be four consecutive vertices inI", whereab is a dark edge. We
have the dark Ricker relation

The rightmost graph is disconnected. Thus, working moduthgraphs, we may trans-
pose dotted edges at the cost of a sign. Now:|ét, ¢, d, e and f be six consecutive
vertices where:b is a dark edge. We have the darki€er relation

c d d c c d
S \ / B \ / P A
a f a f a f

As before, the rightmost graph is disconnected. This shbatswe may take four con-
secutive vertices and reverse their direction, at the dosisign, assuming the outer two
edges are dotted. In the same way, by considering eight cotige vertices we see that
a consecutive string of six vertices may be flipped at the @batsign, assuming that the
outer two edges are dotted.

Now leta, b, ¢, d, e and f be six consecutive vertices, the outer two edges of which
are dotted. We writed], b, ¢, d, e, f] to denote this situation. By the above, we have

la,b,c,d,e, fl]=—[f,e,d,c,b,a]l =[f,e,a,b,c,d]
=_[b’a’e’f’c’d]:[b’a’d’c7f7e]=_[a7b7c7daeaf]

soYr = —Yr modulo matchings for whickAT" is disconnected, establishing the propo-
sition. O

By keeping track of the discarded graphs in the above proobltain a complicated
identity, shown in Figur®, that we will use on a few later occasions. As an immediate
corollary of the above proposition we have the following.

Corollary 6.10. LetT" be a regular3-colored graph and letb be a benzene cycle in.
Then ianz’3 one can writelr as a linear combination ofr,’s where in eaci”; the sub-
graph @ is replaced with a union of benzeBe 4- and6-cycles. This holds ovet[1/2].

Proof. Assume® has at least eight vertices (otherwise there is nothing tog)r Let
A be the doubled edges df and let®’ be the single edges @b, so thatd = A,
Use Propositior6.9 to rewrite Yo as a sum ofty, with A®’ disconnected. This will
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Fig. 9. A graphical identity. The dotted edges here are not relei@tite identity: they are just
drawn to emphasize the disconnectedness of the graphs oiglihaide. Thus this is a linear re-
lation betweenr’s where thel’ are matchings on eight points. This identity can be obtaimed
applying the procedure of PropositiérOto the term on the left side, or by applying the straight-
ening algorithm to the final term on the right side.

rewrite Yr as a sum of, where in eaclr, the benzene cyclé has been replaced with
a union of smaller benzene cycles. Continuing in this wag, @educes the statementa

We can now prove Propositidh8.

Proof of Proposition6.8. Let I be a regular 3-colored graph @n thought of as having

colors dashed, solid and dotted. Consider the dashedsdiigraph of". We may apply

Proposition6.1 to rewrite this graph as a sum of graphs which are unions ofcks.

Thus we may as well assume that the dashed-solid subgrdpisahade up of 2-cycles.

By now considering the dotted edges as well, we seelthata union of benzene cycles.

We may now appeal to CorollaB;10to break up large benzene cycles into smaller ones.
]

6.6. The action o6, on degree three spaces

We now examine the space;@ym?(VL)) more closely wheld is small and determine
their structure a®; -modules. We assume throughout thaf! is invertible. We denote
by M; theZ[&]-module with a basis given by the set of undirected matchngl.
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Proposition 6.11. As an&-representation the spadd; is multiplicity-free and con-
tains those irreducibles corresponding to partitiong bf into even parts.

This proposition is well-known and essentially equivalemthe decomposition of the
plethysm SyriSyn?. In any case, we only need to use this whierhas cardinality
four or six, where it can easily be established by hand. We hegin our study of
grp(Synﬁ(VL)). For the sake of brevity, we will denote this space simply byig this
section. We will also writeS,, in place of &, wheren = |L|. Our first result is the
following:

Proposition 6.12. The spaceyr,, ..., , is multiplicity-free and contains only those irre-
ducible representations @, which have an even number of parts.

Proof. The space g, .. ,, is the image of the map® M, — SynP(Vy) which takes a
matchingl" to Y. The result now follows from Propositich 11 o

We will only need to use the above proposition fiox 6. We now determine the spaces
gr, completely forn = 4 and 6. As a warm-up, consider the= 2 case: gy is one-
dimensional, and it is the sign representationéef. Reason: the space Syaw;) is
spanned by wherel is the graph onL with a tripled edge. The grou@- fixes T’
and so acts ol through the sign character. All other,gn this case are zero. We now
turn ton = 4.

Proposition 6.13. (a) The spacer, , is free overZ[1/4!] and three-dimensional. As an
G4-representation it decomposes into two irreducibles cgpmnding to the parti-
tions2+2andl1+1+ 1+ 1.

(b) The spacer, is free overZ[1/4!] and one-dimensional. The representatior@&afon
it is trivial.

Proof. The space gris spanned by benzene 4-cycles. We have the identity

obtained by Rickering the dotted edges. We thus see thaigbenzene 4-cycle in which
abis adoubled edge thefy +Y(4p)r = 01in gry, which can be rephrased @) Yr = Ir.

In particular, two benzene 4-cycles are equal in(gp to a possible sign) if they have the
same doubled edges. By cubing

K
|

I
+ \‘5
.

+
1

we obtain

in gr, (all other terms belong t6> ). This shows that we can switch which edges are the
doubled edges. We have thus shown thatigione-dimensional. Since we already know
that some transpositions act by the identity, it follows #a acts trivially on gy.
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Now, Sym3(VL) is four-dimensional. We know that gis one-dimensional and so
grp , must be three-dimensional. By Propositiéri2 we know that gj , is a quotient
of the direct sum of the irreducible representationsSafcorresponding to 2- 2 and
1+1+1+1. Asthis direct sum has dimension 3, it follows that gmust equal it. O

Finally we consider the case= 6. As stated in 8.6, the computer calculations in the
proof are very mild and could probably be done by hand in agnatthours.

Proposition 6.14. (a) The spacer, , , is free overZ[1/6!] and 15-dimensional. As an
Ge-representation it decomposes into three irreduciblestesponding to the parti-
tions3+3,2+2+1+1andl+14+1+14+1+1

(b) The spaceyr, , is free overZ[1/6'], 15-dimensional and decomposes into two irre-
ducibles: one corresponding &+ 1 and the other tel + 1 + 1.

(c) The spacerg is free overZ[1/6!] and five-dimensional. It is irreducible and corre-
sponds td3 + 3.

(d) Let Q be a set of cardinality six and let d and e be three distinct elements ¢f.
Thenng(Sym3(VQ)) is spanned by benzeigecycles in whiched or ce appears as
a doubled edge(We call the seD here, rather tharnl., since that is what it will be
called in the one place where we apply this statement.

Proof. The code for the computer calculations required here caolelfon the webpage
[HMSV35].

(a) A computer calculation shows th&f 2 2 = gr, , , is 15-dimensional. By Proposi-
tion 6.12 the space gr; , is a quotient of the direct sum of the irreducible represiesra
of Gg corresponding to the partitions given in the statementisfgtoposition. Since this
direct sum is also 15-dimensional the quotient map is andasphism.

(b) A computer calculation shows thdy ;> is 30-dimensional, and so g =
Fa2/F22 2 is 15-dimensional. Now observe that there is a Mia® F2 — F42 which
takes an element df, on the verticegl, 2, 3, 4} and appends a tripled edge on the ver-
tices_{5, 6}. One sees using this that. thaa,giris a quqtient of In@ixgz(gu ®.gr2). By
the Littlewood—Richardson rule, the induction is a direghf the two irreducible repre-
sentations 064 corresponding to the partitions given in the statement@fttoposition.
Since this sum is also 15-dimensional, the quotient map is@norphism.

(c) On the one hand, we have a non-canoni€glequivariant decomposition
Symt(Vy) = grp22®Qary 2 ®grg. On the other hand, a character computation shows
that Synt(V,) = 9222 D9l , ®M3.3 (Where M3 3 is the irreducible representation
corresponding to 3 3). Thus gg = M3, 3.

(d) This is a straightforward computer calculation. O

7. Retrogeneration of theideal

In this section, we prove that fof | sufficiently large, the ideal of relations is retrogener-
ated (generated by quadratics and relations on fewer points
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Theorem 7.1. Let L be an even set of cardinality at leasd. Then/; = Iie”". For
|L| > 12this holds ove#[1/2] while for|L| = 10it holds overZ[1/10!].

The ideall[®"™ of retrogenerated relations will be defined ih.§ We use general struc-
tural arguments to prove Theorefrl when|L| > 12 but whenL| = 10 the small size
of the graphs involved forces us to give an inelegant ad hguraent. We suggest that a
reader consider skipping the arguments injthe= 10 case on a first reading.

7.1. Outer multiplication and the retrogenerated idég"™

Let L andL’ be even sets. We have aater multiplicationmap

R:VP"QVE - V. Yr®Yp e Yrur.

In words, one takes a colored graplon L and a colored graph’ on L’, with the same
set of colors, and obtains a colored graphlohl L’ by taking the disjoint union of’
andI"’. We will often omit the symbadK and write the outer product using juxtaposition.

Outer multiplication does not descend to symmetric pownasshown by the follow-
ing example:

=)= ) L

e -] L

Let L and L’ be the two sets of four vertices occurring on the left siddwe fwo left
sides above define equal elements of $¢¥n) ® Syn?(V,/). However, the two right
sides are different elements of S§¥, 11 .-)—their difference is the simplest binomial
relation (L.4).

One sees from the above example that outer multiplicati@s ot descend to sym-
metric powers for the following reason:Iifis ann-colored graph o, and one permutes
the colors in each connected component'ab obtain a new:-colored graph™ then
Yr andY do not represent the same element of Sg¥i ) in general. Now, ifl” andT™’
are as in the previous sentence thgn— Y lies in the idealQ; of Sym(V,) generated
by quadratic relations. (Reason: any permutation of calarsbe obtained by successive
transpositions of colors, and the relations thus arisimgcéearly quadratic.) We hence
find that outer multiplication descends to a map

X : Synt'(V)/ 0 @ Synl' (V) /0 — Syml' (Vi )/ 0%,

and that/” /0" ® Synﬁ(VL/)/Q(L",) is mapped intolz"ﬁI L,/Q(L"I)_I ;, underf, that is,
the outer product of anything with a relation is still a redat A motivating example
appeared in the introduction: the Segre relation on sixtpdin2) induces a relation on
eight points L.3).

For a givenL, we define thedeal of retrogenerated relationslenoted’ [*", to be the

ideal of SymiV;)/Q;. generated by the images of’/0\" ® Synt'(V;.»)/QY) under
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X as(L’, L") varies over all partitions of. into two disjoint proper even subsets and
varies over all positive integers. We also wrif&" for the inverse image aff®" under
Sym(V) — Sym(V.)/ Q. We have inclusion®; C I;*" c I,. (Theorem8.1 will
show that these three ideals are all the same.) We say are(ati/; ) is retrogenerated
if it lies in 7;°"°.

A basic fact is that outer multiplication does not incredse ‘essential degree” of a
relation:

Proposition 7.2. Let L = L’ II L” be a partition ofL into two proper even subsets.
Letx € Ié’,‘)/Q(L”,) belong to the ideal generated by relations of degreek and let

y € Syrﬁ(VLn)/Q(L",,). Then the outer produatX y belongs to the ideal a8ym(V.)/ Q0
generated by relations of degreek.

Proof. Write x = Y a;r; wherer; is a relation of degree< k anda; belongs to
Sym(Vy)/Qp and writey = > y; where eachy; is a product of degree one ele-
ments. The outer product of X y is a sum of terms of the form;r; X y;. Sayr;
has degre&’ < k so thatq; has degree: — k', and writey; = b1---b,. Then
airi®y; = (a; X (b1 by_y))(ri ¥ (by_ir41 - - - by))—this basic compatibility between
outer multiplication and usual multiplication is trivia terify. We have thus shown that
air; X y; is a multiple ofr; X (b,_p41 - - - by), arelation of degrek’ < k. O

Outer multiplication, simple binomial relations and theegenerated ideal are quite for-
mal constructions and are present when studyiig// G for any X andG. They are
described nicely by the formalism of the third author meméid in 8..7. By contrast, the
following two propositions are specific to the present case.

Proposition 7.3. LetX = (I', %) be a generalized Segre datum for whiclis discon-
nected. TheRel(Z) belongs ta/[e'™.

Proof. WriteI = I'1 IT». If one of "1 or 'z is entirely contained within one of the parts
Ug, Ug or Up then the relation RéE) is manifestly retrogenerated. For instancd, if
is contained within one of the parts théa with the partition induced fron¥s forms
a generalized Segre datuBp and Re(X) is the outer product ofr, and Re{Xy). If
neitherl"; nor I'y is contained solely within one part then each contains agiapecial
edges and the datum is forced to be degenerate (of the second case giveb.®).Fhe
relation Re{X) thus belongs t@,, C 1] by Propositiorb.2 |

The next proposition is a key point in our inductive argunsent

Proposition 7.4. The ideal/[®™ c Sym(V.)/Q, is generated oveZ[1/2] by the im-
ages oflﬁ)/Q(L?l) ® Ser?(VLn)/Q(L?? underX as(L’, L") varies over all partitions of.

into two disjoint subsets wheig’ has cardinality2, 4 or 6.

Proof. Proposition7.2 shows that/[®"° is generated by elements of the forn® Y

wherer belongs tolﬁ)/Q(Lg,) and Yr belongs to Syr?l(VLw)/Q(L%?, as(L’, L") varies
over all partitions ofZ into two disjoint even subsets. Propositié:8 shows that we can
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write Yr = ) a; Y1, wherea; belongs taZ[1/2] and eacH; is a union of benzene 2-,
4- and 6-cycles. It follows thatr, is itself an outer productr,, X --- K Yr, where
eachlr, is a benzene 2-, 4- or 6-cycle. Singeis associative, we have X Yr, =
(rXYr, 8- -®¥r,, )XY, which expressesX Y, as the outer product of a graph
on 2, 4 or 6 fewer points with a graph on 2, 4 or 6 points. Th&Yr is a sum of such
graphs, which establishes the proposition. O

7.2. Square rotation relations

To prove TheorenY.1l we introduce thesquare rotation relationsneeded only in this
proof. A square rotation datuns a pairll = (I', U) whereU is a subset of. of cardi-
nality 4 andr" is an undirected graph anwith edges colored light and dark such that:

e The vertices ofL \ U have dark valence one and light valence two.
e The vertices ot/ have dark valence zero and light valence one.

Let IT be a given square rotation datum. Suppose that a pair of edgek’ in I have the
same color. Lef” + TV +T'” = 0 be the Ricker relation ore ande’. ThenIl’ = (I, U)
andI1” = (I'”, U) are both square rotation data. We defineshace of square rotation
datato be theZ-span of the square rotation data modulo the relatidrsIT’ + I1” = 0.

Let IT be a square rotation datum. We have the following quadretation on the
four points inU:

‘ ‘ _ )

Multiplying both sides byl" we obtain an element dﬁ(Ll) ® R(Lz) which maps to zero
in R;. We may thus regard it as an elementlésr)/Q(Ls), similar to what we did for
generalized Segre relations. We call such relatemsare rotation relationsWe have a
linear map

Rel : {the space of square rotation data 1 f’) / Q(LS)

mapping a square rotation datum to its associated relation.

7.3. Retrogeneration of square rotation relations

The result is:

Proposition 7.5. If L has cardinality at leastl2 then any square rotation relation is
retrogenerated.

We use a lemma to prove the proposition. [LEbe a given square rotation datum. The
light subgraph of” has valence two everywhere except at the four verticés.ih thus
breaks up into a union of cycles and two paths terminating.iiVe call these two paths
thespecial pathsThelengthof a special path is the number of vertices it contains.
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Lemma7.6. (a) A square rotation relation with both special paths of evemglé lies
in Or.
(b) A square rotation relation with one special path of even tarig quadratic.

Proof. (a) The way we obtain a square rotation relation from the gratation datum
is to simply append the gragdhto the relation 7.1). Now, on each side of7(1) there are
two light edges. Change the color of these edges to grey. fingtiesis on the lengths of
the special paths says that we can color every other edge sp#tial paths grey (keeping
the first and last edges light) so that each vertex belongee¢@oey and one light edge.
We may assume that the light cycles occurring’ihave even size (as we can force this
using Plicker relations), so we can pick a light-grey alternatinpiéog of them. Thus
we have factored the light subgraphIoin such a way that all the light edges appearing
in (7.2 have been colored grey. But now the relation is evidentsersally quadratic
(i.e., belongs t@) ) since it is taking place solely on the dark-grey graph.

(b) If one special path has even length and one has odd lemgtirthas an odd light
cycle. We can thus Btker the odd special path and the odd cycle so that bothapeci
paths have even length. We now use part (a). O

We now prove Propositioi.5.

Proof of Proposition7.5. Let a square rotation datum be given. By the above lemma,
we can assume that each of the special paths has odd lengtly. Alguments similar to
those occurring in the proof of Propositi@nl, we can force the special paths to have
lengths three. Thus each special path contains a singlexvedt belonging td/. Call
these two vertices andy. We now use Propositiofi.1to convert the light cycles in

" into 2-cycles. We thus have a benzene chain joinirtg y. The graphl’ now looks

like the following (with the possibility that there are somaditional dark-light benzene

cycles not pictured):
y

PN WS

X

Here the numbered vertices constitute thelseThe special paths arex-2 and 3y-4. If

there are in fact benzene cycledlirthen the relation is retrogenerated (the proof of this
is similar to that of Propositioid.3). We can thus assume that there are no benzene cycles
and so the graph really does look like the above one. Sinceawe &t least 12 vertices,

the benzene chain will have at least four single dark edgesesan apply Corollarg.10

or the identity of Figured to break up the benzene chain and get a disconnected graph.
The associated relation will therefore be retrogenerated. O

7.4. Retrogeneration of the ideal on at least 12 points (Témd.1with |[L| > 12)

We begin with two lemmas.

Lemma7.7. LetX = (I', ) be a generalized Segre datum, andletc Ug be a set
of four vertices such that the dotted-solid graphiohas a4-cycle contained irU. Let
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T be the graph obtained by rotating the colors in thisycle and letc = (T, %). Then
Rel(¥) = Rel(X) modulo quadratic and square rotation relations.

Proof. We must show that
Rel(X) —Rel(X) = Yr — Y} — Yr + YL

belongs to the ideal generated by quadratic and squaréorotaiations. Clearlyyr —
Y+ € Qg since the dashed subgraph in each is the same, W{nﬂe” is a square rotation
relatlon by definition. O

Lemma7.8. Letx = (I', %) be a generalized Segre datum andletc Ug be a set

of four vertices such that the dotted-solid graphiohas a4-cycle contained irU. Let

{T';} be the three graphs obtained by replacing theycle onU by two2-cycles(there

are three ways to do thisLet{X;} be the corresponding generalized Segre data. Then
2RelX) = ) Rel(%;) modulo quadratic and square rotation relations.

Proof. Recall the identity

of the proof of Lemmd.3. This identity holds inV®2 that s, it follows from the colored
Plucker relatlons This shows that in the space of generalbaggte data, we have +

T = Z 1% whereX was defined in the previous lemma. By the previous lemma, we
have Re(X) = Rel(X) modulo quadratic and square rotation relations. This moke
current lemma. O

We now complete the proof of Theorefml when|L| > 12.

Proof of Theoren7.1when|L| > 12. By Theoren®b.], it suffices to show that small gen-
eralized Segre cubic relations are retrogenerated. Thishe a given small generalized
Segre datum. We assume without loss of generalityhzahas cardinality two, and that
3 is non-degenerate.

We begin by considering the dotted-solid subgrapl/gf This is a union of cycles
and a single chain going between the two special dotted eBgassing Propositior®.1,
or more accurately the identity of Figui® we can convert this graph into a union of
2-cycles and 4-cycles and make the chain have length thodbgsthe two special dotted
edges are joined by a single solid edge). We can now use tlve alvso lemmas to convert
the 4-cycles into 2-cycles, modulo retrogenerated ralatio

We have thus reduced to the case where the dotted-solidaplbgfT" in Ug is made
up of 2-cycles (except for the path of length three involuing two special dotted edges).
We now consider the dashed edges. Except for the specialddediges, the gradh|y,
is a union of benzene chains with the dotted and solid edgeg paired. There are two
incoming special dashed edges and two dashed edges cahteettte two special dotted
edges. From each of these edges a benzene chain emanatesnukiderminate at one
of the other edges. These four dashed edges are thus cahtaitveo benzene chains.
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If the two special dashed edges are contained in the samereighain then the graph
is degenerate and the relation liesgn . It therefore suffices to consider the case where
each special dashed edge connects to a special dotted edgbemzene chain.

Now, we may run the entire argument given above ingigeas well. We thus con-
clude thatl"|, is a union of benzene chains with the dotted and solid edgeg paired.
The two special dashed edges connect with the two specidlesties by benzene chains.
The picture is thus something like:

HereUg = {1,2,3,4}, Ug = {5,6,7,8,9,10} andUy = {11, 12}. If there are other
benzene cycles present, then the relation is immediatélggenerated. Also, the two
benzene chains connecting the left and right side could bssed; that is, the chains
could go from 1 to 7 and 2 to 8 instead of as they do. However,camealways rectify
this by Plickering two dashed edges suctB8sand67—one of the resulting graphs has
the chains uncrossed while the other is degenerate. So tlve gbaph is the only sort we
need consider.

Now, we can repartition the vertices so that all the dot@idsdoubled edges are
contained inUg. For example, with the above graph we would repartition so &l =
{1,2,3,4,5,6,9, 10}, Ug = {7,8} andUyp = {11, 12}. The resulting Segre datum yields
the same relation as the original. We next point out that wepa all the dotted-solid
doubled edges into a single benzene chain ligkdring two dashed edges. For example,
in the above graph we would iRlker the edge$ 10 and67. In one graphl7 is a dashed
edge and all the dotted-solid doubled edges are in a singleebe chain running between
2 and 8. The other graph is degenerate. Now, since we havasatli2 vertices, the ben-
zene chain will have at least four single dashed edges. Itteeefore be broken apart
using Corollary6.100r the identity of Figure, yielding a disconnected graph and there-
fore a retrogenerated relation. This completes the prodhebrem7.1when|L| > 12.

O

7.5. Retrogeneration of the ideal on 10-points (Theorehwith |L| = 10)

For the remainder of 8we let L be a finite set of cardinality 10. To prove Theor&m
in this case, we show the following:

Proposition 7.9. The spacd?/1/®"® has dimension at most twoverZ[1,2]).

We now explain why this implies Theoreml for |L| = 10. For the next few sentences
we work over a fieldk of characteristic not 2, 3, 5 or 7. A character computaticonsh
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that Synt(V,) does not contain the trivial or alternating representatidow, the rep-
resentationl > /17*"*® is at most two-dimensional, and a summand of 3g¥p). As
any representation a&; of dimension at most two is made up of some combination

of the trivial and alternating representations, it follotat 7\> /17" ® vanishes. Thus

123) = Izem(s) over k. Since this holds for alk of characteristic not 2, 3, 5 or 7, we

concludel? = 17°"*® overZ[1/101]. Sincel, is generated by quadratics anff’
(Theorem.1), this implies,, = 1;°" overZ[1/10!].
We now turn to proving Proposition.9. We prove the following result:

Proposition 7.10. Let Z = {Ug, Ug, Up} be a fixed partition ofL with |[Ug| = 2.
Consider the subspadeof 1¥ /17*"*® spanned by all generalized Segre cubic relations

coming from data with partition equal t& . Then, ove#Z[1/2]:

(1) If Ug (and thusUp) has cardinality four theri/ = 0.
(2) If either Ug or Up has cardinality six thegimV < 1.

We explain why Propositio.10implies Propositiory.9. Fix an order orL. Call a par-
tition % = {Ug, Ug, Ug} of L admissiblef each part is non-empty of even cardinality,
Us < Ug < Up inthe order andUg| = 2. We call a generalized Segre cubic datum
admissibléf its partition is; we extend the notion to relations in thevaus manner. By
inspection, there are three admissible partitions.dDne of these had/;| = |Ug| = 4,
while in the other two, one ot/; or Up has cardinality six. It follows from Propo-
sition 7.10that the admissible Segre cubic relations span a subspa¢® af"® of

dimension at most two. On the other hand, we know that the ssibdé generalized Segre
cubic relations span'> /0¥ (see Remar.3). As 1;°"®® containsQ'® we conclude

that7® /1/"® has dimension at most two, establishing Proposifich

We now begin proving Proposition1Q We first consider the case wheilé;| = 4
(so|Ug| = 4 too). Consider the dotted-solid subgraphl&f. In it there are two solid
edges, two dotted edges contained entirelf/gnand two dotted edges (the special ones)
going betweerU; andUg. By using the identity of Figur@ we can force there to be a
dotted-solid doubled edge. This implies that the specittedcedges are joined by one
solid edge. By now considering the dashed edges, we seédratdre two possibilities
for the picture inUg:

The right case is disconnected, hence retrogenerated. Wgentied only consider the
left case. We now go through the same consideratioriggiras we just did inUg and
conclude that it too must look like the graph on the left, @taeith the colors dotted and
solid reversed. We find that the graph as a whole must be oredfvb in the statement
of the following lemma. That lemma then shows that that theegalized Segre relation
we are considering is retrogenerated, which completedthe= 4 case.
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Lemma 7.11. LetI" be one of the following two graphs:

.10 210
.....' / 0 /
lg lg
or .
2777 w7 4 28 -4
7
15 reeeer . assssnss /‘ 3 1= T e /‘ 3
5 6 7 8 5 6

Let% = {Ug, Ug, U} be a partition such that/x = {9, 10}, Ug D {1, 2}, Ug D {3, 4}
andX = (I, %) is a generalized Segre cubic datum. THe(X) is retrogenerated over
7[1/2].

Proof. We first note that the relation R&) is independent of the partitiofy . We there-
fore assume that the vertices 5, 6, 7 and 8 belongdoNow, letT" be the left graph.
Redrawl" as follows:

5 6

/:T:T:T:T:T\
1_[ \‘ 7
il 8
R /
/T0A4 ....... /

All the dashed edges other th@rl0 contain at least one vertexlif; so we are allowed
to Plicker any of them together to obtain a relation of generdl2egre cubic data. We
thus may apply the identity of Figuto the dashed edges. All the resulting terms either
come from fewer points by outer multiplication or else argeteerate. (Precisely: the first
two graphs from the first row of Figur@ come from fewer points, and the last two are
degenerate. In the second row, all are degenerate excepeftiird. In the third row, all
are degenerate except the first.) We conclude thatRes retrogenerated.

Now letT" be the right graph. By applying theiRker relation to the edg@8 and36
we get two graphs, one of which is degenerate, the other afhwlbioks like the graph
handled in the previous paragraph. Thus(Rglfor the right graph is retrogenerated as
well. O

We now establish the second case of Propositid@ Thus let% be a partition in which
|Ug| = 6. In this case, botli/x and Up have cardinality two and so the situation is
symmetric with respect to these two colors. We begin withfefiewing observation:

Lemma 7.12. If there is a solid-dotted or solid-dashed doubled edg¥& inthenRel(X)
is retrogenerated ovef[1/2].

Proof. Say there is a solid-dotted doubled edgd/ig. Then, as in the casé/;| = 4,

we can apply identity of Figur@ to force there to be a second solid-dotted doubled edge
in Ug. The graphl” must now look like one of the two in Lemmalland so, by that
lemma, we obtain the present one. O
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Now consider a general generalized Segre cubic d&tuwith |Ug| = 6. By applying
the identity of Figure7 repeatedly, or appealing to Propositiéri, we can arrange it so
that the dotted-solid subgraph of; is of the form

The right graph has a dotted-solid doubled edge, and so sueiased relation belongs
to I; by Lemma7.12 We therefore need only consider the left graph. We now densi
the dashed edges. There are two that are completely codtaidg; and the two special
edges, each of which has one verteX/in. Here are three possible graphs:

We will refer to these as type A, B and C, respectively. Of seuthere are many other
possibilities for what the graph could look like. Howevdlraduce to one of the above
three types after some simpldieker relations. For instance, one could consider the graph
which is like the type A one, but where the dotted and solidihre switched in the
square 2-3-5-6. By applying theiRlker relation to the edgets and the dashed special
edge containing 3, this relation is rewritten as a sum of tiuh@se appearing above.

We now have the following result:

Lemma 7.13. Type B and C relations are retrogenerated 0%t /2].

Proof. Consider the type B graph drawn above. We apply the identiBigure 7 to the
dashed-solid chain 4-5-2-3-§-wherex is the relevant vertex of/p. The first graph
on the right side of the identity is disconnected and theesfetrogenerated. All the
remaining graphs have solid-dashed doubled edges and sasareetrogenerated by
Lemma7.12 This completes the type B case. The type C case is handlé@rymin
the above labeling one applies the identity of Figate the chain 4-5-2-6-3-and then
proceeds exactly as in the type B case. O
The following completes the proof of Propositi@rLQ

Lemma7.14. The type A relations span a subspacédt/1;°"® of dimension at most
one overzZ[1/2].

Proof. PutUg = {1, 2, 3, 4, 5, 6} and letl" be a 3-colored graph oh whose restriction
to Ug is the type A graph
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Applying the Plicker relation to the edgd® and12 gives an expression forin terms of
two other graph$'; andI'z, one of which (say'1) is degenerate. Now apply thetieker
relation to the edges6 and23 of I',. Again, this expressd in terms of two other graphs
'3 andT'4, one of which (say'4) is degenerate. Thus, we see that(Rgland Re(Z4)
are scalar multiples of each other. But R&}) is nothing other tha25) Rel(X). We thus
see thal” and(25)T" yield the same relation (up to a scalar). By similar reaspnive see
that (14T and(36)I" give the same relation d%

Now consider the Ricker relation orl” on the edged2 and3«, wheresx is the
relevant vertex ol/z. This results in two graphB; andI'2. SayTI'; is the graph which
has the edgd . ThenT'; is a type B graph and thus retrogenerated. Now apply the
Pliicker relation on the edg@$ and36 toT"; to get two new graphEs andT'4. One of
these, say's, has a solid-dotted doubled edge and is thus retrogeneiitedther['4,
is just(23)I". We thus see thdt and(23)T" give the same relation, up to a scalar. Similar
reasoning shows th&5 I, (56)I" and(12)I" give the same relation d&

From the previous two paragraphs, we see thatig any permutation ot/ thenl’
ando I" give the same relation, up to a scalar. Since every type Ahgsapf the formo T’
for someo, this establishes the lemma. O

8. Theideal isgenerated by quadratics

The goal of 8 is to prove thatl;, is generated by quadratics|if| > 8:

Theorem 8.1. If L is an even set of cardinality at least eight thén = Q; over
Z[1/121].

As described in .6, this concludes the proof of Theoreliril Thanks to our work in g,
the main remaining work is to prove three base cases:

Theorem 8.2. The idealsls, 119 and I12 are generated by quadratics ovéfl/12!].

This implies Theoren8.1 (and hence Theoreth1) by the following inductive argument.
Letn > 14 and assume the theorem has been established for evehcatdinality less
thann. By Theorem7.1we havel, = I'®"°. By Proposition7.4we know thatl®"° is
generated by the outer products of cubic relationa en2, n — 4 andn — 6 points with
arbitrary graphs on 2, 4 and 6 points. The inductive hypashasd the fact that > 14,
ensures that any cubic relationor-2,n — 4 orn — 6 points lies in the ideal generated by
guadratics. Since outer multiplication does not increasemtial degree (Propositi@rp),
we find 1'®° = Q,. Thus Theoren8.1is established by induction.

As for Theorem8.2, quadratic generation df is proved ovelZ[1/3] in [HMSV3].
(Quadratic generation afs over Q had previously been established by computer; see
e.g., Ko] or [FS, Lemma 1.1].) We handle the 10- and 12-point cases by shavaid; o
(resp.I12) is generated by relations coming from 8 (resp. 8 and 10)tpoame does not
need relations coming from six points to genergteThe quadratic generation & then
implies that of/;g and hence of12 as well.
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Here is an overview of the argument. We Iébe the quotient of the cubic part of the
ideal by quadratic relations and relations retrogeneratad 8 (resp. 8 and 10) points.
We wish to show that this space is zero. By Theorgrh I’ is generated as a6 1o
module (resp&12-module) by a single relation: the outer product of the Segigc on
six points by a benzene 4-cycle (resp. 6-cycle). (Hence viermed to prove that these
two relations are generated by quadratics. This could icjple be checked by computer,
but with current technology would probably require an aldpon of equal difficulty to our
proof!) We can thus writd’ as a quotient of a representati@ninduced fromSg x G4
(resp.Gg x Gg), where the first factor acts on the Segre cubic on six poimddiae second
on the benzene cycle. We then write down a family of elementisé kernel ofvV — I,
which allows us to obtain an upper bound on the dimensiai.dfinally, we examine the
irreducibleS10-modules (respSi2-modules) occurring iry and find that they all have
larger dimension than the bound found 6r This shows thaf’ is zero. The fact that
we use the representation theory®{p andS12 is the source of the denominator 12! in
Theorem8.1

Throughout 8, L will always denote a set of cardinality 10 or 12. We handlettfe
cases simultaneously as much as possible. When we makeedtffgatements for the
two cases, we give the 10-point statement first and the Ii-pt@tement second.

8.1. The spaces’g and the A-, B- and C-relations

By abipartition of L we mean an ordered pa? = (P, Q) with P I Q = L, whereP

has cardinality six, an@ has cardinality four ifL| = 10, and cardinality six ifL| = 12.

By a graph otype A(resp.type B resp.type Q with respect to a bipartitior’”? we mean
one of the form

/% respectively %

‘.
~ respectively | | respectively |
V) N <9
\.......t/ \......// N—

when|L| = 12. In all cases the vertices of the top hexagon belomgwhile the vertices
in the bottom square or hexagon belongito

We name some edges that we will refer to often. The most obwda@iinguished edges
are the two dashed edges joining tRhevertices and?-vertices. We call them thepecial
dashed edge§ here is a unique dotted (resp. solid) edge in the top hexaggeting one
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of the special dashed edges; we call it {tagp) special dottedresp.solid) edge Finally,
for type B graphs, we call the solid edge in the bottom hexagoich meets the special
dashed edges tHmttom special solid edga\Ve call the chaim-b-c-d, whereab is the
special dotted edgéc is the special dashed edge to which it connects a@his the
bottom special solid edge, tispecial chainonly defined for type B graphs).

Let I be a graph of type A, B or C with respect 1&#. Define a partitionZ =
{Ug, Ug, Up} of L as follows. In the type A casd/z, Us and Up each contain two
vertices in the top hexagon, and these vertices must be ctathby a dashed, solid and
dotted edge respectively. The bottom benzene cycle i5ginin the type B and C cases
we takeU; to be the two vertices belonging to the top special solid edgetakeUp
to be the two vertices belonging to the top special dottec @édgether with the bottom
set (that is, the saD), and we takd/y to be the leftover two vertices in the top hexagon
(they form a dashed edge). In each ca$eZ/) is a generalized Segre cubic datum, and
so has an associated generalized Segre cubic relatiore tggh A case the partitior
was not uniquely determined, but its imagé jnis independent of the choice of partition.
We may thus in all cases speak unambiguously of the relagfinetl byI", denoted by
Rel(I"). Note that ifo is a permutation of. then Re{oT") = ¢(o)o (RelT)).

We let 17, be the subspace dff generated by the relations attached to all type A
graphs with respect te”. Now, I, carries a natural representation®p x So. As

such it is a quotient of the representatibfl ® gr: e p (resp. ¥ ® grff)Q) In particu-

lar, it is either zero or irreducible of dimension one (refdge), asI(B) is irreducible of

dimension one and @) (resp. g?) ) is irreducible of dimension one (resp. five; see
Propositionss.13and6. 14) The natural map (o6 -modules)

@Iﬁﬂ_’ 1]
E@

is surjective sincd,, is retrogenerated (Theoremil) and there are no relations on two or
four points.

Proposition 8.3. Let %2 be a bipartition ofL. Then the type B relations with respect to
& belong toI&, and span it. The same is true for the type C relations.

We prove this proposition by showing that type A relationa ba written in terms of
type B relations, type B in terms of type C and finally type Cdmts of type A, all with
respect to the same”. We accomplish this in a series of lemmas. After this proofuile

have no need for the type C relations.

Lemma 8.4. Any type A relation with respect t&’ belongs to the space spanned by the
type B relations with respect t&”.

Proof. Given a type A graph, Btker a dashed edge from the top hexagon and a dashed
edge from the bottom benzene cycle. This expresses the typkat#ion as a sum of two
type B relations. O

Lemma8.5. Any type B relation with respect t&” belongs to the space spanned by the
type C relations with respect t&?.
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Proof. To establish this lemma we just have to rewrite the dottdidgwaph onQ in
terms of squares of matchings. This is exactly what we did henwvproving Theo-
rem7.1(a) (see in particular Lemmas7and7.8). The key point is that all square rotation
relations which come up in our particular case have speeidigoof even length and are
therefore quadratic.

Alternatively, one can argue as follows. The generalizegt&eelation associated to
graphs of type B is a genuine cubic relation, that is, thetd@drk graph on the right side
of the relation factors into a product of degree one grapbsirstance, in the 12-point
case the factored relation may be written as

VRA ANA
VoY _ oy
— - O

{ Y, { Y,
N NS /

(the dark graph on the right is colored dotted while the ligitatph has been factored into
the solid and dashed graphs). Now, the bottom half of eadhisithe same. One can
therefore apply the same colorediBker and quadratic relations on each side and rewrite
the dotted-solid graph o@ as a sum of squares of matchings. This expresses the type B
relation in terms of type C relations. O

Lemma 8.6. Any type C relation with respect t& belongs to the space spanned by the
type A relations with respect t&’.

Proof. The proof of the 10-point case proceeds exactly as the pfdgfama7.11 Note
that after applying the identity of Figui@to the redrawn graph, the first graph on the
second line of the right side is a type A graph with respec#toAll other graphs either
come from eight points or else are degenerate. To prove #poiti? case, we again use
the identity of Figure9, applying it to the bottom four dashed edges, that is, the two
special dashed edges and the two dashed edges containedbnttbm hexagon. The
first term in Figure9 is a type A relation with respect t&2. All the other terms come
from eight or ten points. O

8.2. Relations among differen,

In this section we demonstrate some linear dependencieeégthe various spaces,:
Proposition 8.7. LetI" be a type A graph with respect to a bipartitio® = (P, Q),
let a and b be two distinct elements @f and letc andd be two distinct elements @

which are joined by a doubled edge. THeelT") is contained in) I/ ,, where the sum
is taken over those permutatioasof {a, b, ¢, d} for whicho &2 £ 2.

We deduce this proposition from the following one:
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Proposition 8.8. LetI" be a type B graph with respect #&# and leta-b-c-d be its special
chain. Then

Rell") = (ad) RekT) — (bc) RekT) + (ad)(bc) RekT) + Rel(A)

where A is a type A graph with respect thd) 2. In particular, Rel(T') belongs to
> I(;@, the sum taken over those permutatiensf {a, b, ¢, d} for whicho & # 2.

Proof of Proposition8.7 given Propositior8.8. LetT', a, b, ¢ andd be given as in the
statement of Propositio.7. The verticesc andd are connected by dashed and solid
edges. Now, using a quadratic relation we may recoloPthgart of I so thata andb are
connected by a dotted edge. Sir@e acts on the Segre cubic relation #rvia the sign
character, all dotted edges fhare more or less the same so we may draas:

respectively

We now Plicker the dashed edge joiniagandd and the unique dashed edge containing
b. We obtain an expressidn = I'1 + I'> where each’; is a type B graph with respect
to <. The special chain i’y iS a-b-c-d while in I'z it is a-b-d-c. By Proposition8.8,
both Re(I'1) and Re(I'2) belong to) I;y, where the sum is over those permutations
o of {a, b, ¢, d} for whicho & £ Z2. Thus Re(I") belongs to this space as well, which
completes the proof. O

We now begin proving Propositidh8. Consider a type B graph. For convenience, we
label it:

14 6
27 s respectively
314
9= =10

With this labeling, the special chainb-c-d is 1-2-3-4. We let# be the relevant biparti-
tion.
By Pliickering the edge27 and34 we obtainl™ = —I', — '3 wherel', andI's are:

N
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We now Plicker the edge$2 and39 inI's to obtain a relation’s = —I'4 — I's wherel's
andT’s are given by:

respectively ‘
\ 7 N 7
Now, we have'y = (23)I". Thus (as generalized Segre data)
' —23I'+ T2 =Ts5. (8.1)

Lemma 8.9. We haveg14) Rel(I'2) = Rel(I'2) + Rel(A) whereA is a type A graph with
respect to(24) £.

Proof. The graphl"z has a benzene chain with three (resp. four) dotted edgeiseg
at vertex 1 and ending at vertex 4. The picture is thus:

14 (4 respectively 1 (4
8/ ‘e 7/ \s5 8/ ‘6 7/ \s
Note thatUg = {7, 8} andUg; = {5, 6} while U consists of the remaining vertices.

We now Plicker the edge81 and74. In the first term, 8 connects to 4 and 7 to 1.
The second term is a degenerate Segre datum (8lheed74 are the special solid edges
in Up). Itis thus quadratic and can be ignored. We nektRér the edge€1 and54, the
results being similar. We have thus shown that(Rgl defines the same elementKjfas
the relation associated to following graph (since we usedRiiicker relations, no sign is
introduced):

2 3 9 11 12 10

respectively
8/ ‘6 7/ \s 8/ \6 7/ \s
We now Plicker 12 and4 10. The first term ig14)I'5. The second term is a type A

graphA with respect tq24) &2. We thus find Rell"2) = — Rel((14)I'2) — Rel(A), which
establishes the proposition. O

Lemma 8.10. We havg14) Rel(I's) = Rel(T's).
Proof. We redrawl'5 in @ more convenient way:

10 9 10 12 11 9
3 2 i - 3.2
(7 fa ¥ respectively L AL

7 's 8/ \& 7 '5 8/ 6

As before,Ug = {7, 8} andUg = {5, 6} while Up consists of the remaining vertices.
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We now Plicker the edge61 and54. In the first term, 5 connects to 1 and 6 to 4. The
second term is a degenerate Segre datum and can be ignorexX\Rlicker24 with
81. In the first term, 8 connects to 4 and 2 to 1. The second &degenerate and can be
ignored. We have thus shown that R&J) defines the same elementkjf as the relation
associated to the following graph:

10 9
Tiﬁi 4 respectively
7 s g \ 6

We now Plicker the edge$9 and4 10. The first term is justl4)I's. The second term is
retrogenerated from eight (resp. ten) points and therefoes not contribute i, . We
thus have R€l's) = — Rel((14)T'5), which establishes the proposition. O

We can now complete the proof of Propositi®:3.

Proof of Propositior8.8. By Lemma8.10and 8.1), we see that Rél') — Rel((23)T") +
Rel(I'») is invariant under(14), that is,

RelT) — Rel(23)I") + Rel(I'2) = (14) RekT) — (14) Rek(23)T) + (14) RekT).

We now apply Lemm&.9and write(14) Rel(I'2) = Rel(I'2) + Rel(A) whereA is a type
A graph with respect t¢24) #2. TheI's terms on each side of the equation cancel, and we
are left with

RelT") = (14) RelT) — (23) Rel(T") + (14)(23) RekT") + Rel(A).

This completes the proof. O

8.3. Proof of TheorerB.2

We now complete the proof of Theore8r2. As we have explained, to do this it suffices
to show that’; = 0. To do this we first use Propositi@7 to obtain an upper bound for
the dimension of; , and then we use representation theory to show that this inoped
forcesI; to be zero.

Fix an order onl.. Forn = 10 (respn = 12), we say that a bipartitios? = (P, Q)
of L is goodif there is at most one (resp. if there are at most two) eletagaf Q which
are larger than the second smallest elemerft.of

Proposition 8.11. The natural magp 77, — I’ is surjective, where the sum is taken
over all good bipartitions#.

Proof. We handle the two cases= 10 and 12 separately, for the sake of clarity. We
begin with the 10-point case. Le? be a bipartition which is not good. Let < » be
the smallest two elements &f and letc < d be the largest two elements &. Since

Z is not good, we have < b < ¢ < d. Now letT" be a type A graph with respect
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to £2. Sincelf) ® grf)Q is one-dimensional, i’ is any other type A graph with respect
to & then we have RéI") = Rel(l'’). Thus we may assume thatndd are connected
by a doubled edge ifi. We may then apply Propositidh7 to conclude that" belongs
to) I’ ,, the sum taken over those permutatiensf {a, b, ¢, d} for whicho & # 2.
Each of these &7 is closer to being good tha®? (measured by how many elements®f
are larger than the second smallest elemem dbr instance). By induction, we deduce
the proposition.

We now handle the case whekehas cardinality 12. Let” be a bipartition which is
not good. Letz < b be the smallest two elements Bfand letc < d < e be the largest
three elements of). SinceZ is not good, we have < b < ¢ < d < e. Now letT"
be a type A graph with respect t&. By Proposition6.14d) we can rewrite R€I™) in
terms of Re(I';), where each’; is a type A graph with respect t& in which eithercd
or ce appears as a doubled edge. We may as well then just assunie tasicd as a
doubled edge (thee argument is the same). We now apply Proposidhand find that
Rel(T") belongs to) | I/ ,, aso varies over those permutations {f, b, ¢, d} for which
o + . As before, eacla &2 is closer to being good thag? and so we deduce the
proposition by induction. O

Proposition 8.12. For n = 10 (resp.n = 12) there are25 (resp.112) good bipartitions
of L.

Proof. We again consider the two cases separately, and begin vétiQkpoint case.
Identify L with {1, ..., 10}. Consider bipartitions of. for which the second smallest
element ofP is x. Of course, we must have < 6. On the other hand, ¥ < 4 then at
least two elements a will be larger tharx and so the bipartition will not be good. Thus
we must haver = 5 orx = 6.

e x = 6. In this caseP must contain each of 7, 8, 9 and 10. In additidn¢contains one
number less than 6. There are five such choices, each of wiviehi@good bipartition.

e x = 5. In this caseP must contain each of 6, 7, 8, 9 and 10 except for one (it cannot
contain them all for them would not be second smallest). There are five ways to choose
what to omit. In additionP must contain one number less than 5. There are four such
choices. Thus, all told, there are 20 good bipartitions.

Thus in total we have 5§ 20 = 25 good bipartitions.

We now handle the case whefe has cardinality 12. Again, we identit§ with
{1, ..., 12} and consider bipartitions for which the second smalleshelg of P is x.
We must haver < 8. Now, if x < 5 thenQ necessarily has three elements larger than
and so the bipartition is not good. Thus we only need to canghie cases = 6, 7, 8.

e x = 8. In this caseP must contain each of 9, 10, 11 and 12. In additiBngontains
one number less than 8. There are seven choices for such @&nwant all give good
bipartitions.

e x = 7. In this caseP must contain each of 8, 9, 10, 11 and 12 except for one (it
cannot contain them all for thenwould not be second smallest). There are five ways
to choose what to omit. Furthermoi must contain one element smaller than 7. There
are six such choices. Thus there are 30 good bipartitiortgsrcase.
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e x = 6. In this caseP must contain each of 7, 8, 9, 10, 11 and 12 except for two. There
are 15 ways to omit two of these numbers. Furtherm8rejust contain one element
smaller than 6. There are five such choices. Thus there aredatblgpartitions in this
case.

Thus in total we have # 30+ 75 = 112 good bipartitions. O

Corollary 8.13. Forn = 10 (resp.n = 12) we havedimI; < 25(resp.< 560).

Proof. We know that/; admits a surjection frondp 7, the sum taken over the good
bipartitions<”. WhenL has cardinality 10, there are 25 of these bipartitions act £g

has dimension at most one. Wherhas cardinality 12, there are 112 of these bipartitions
and each’{;, has dimension at most five. This gives the result. O

Proposition 8.14. For n = 10 (resp.n = 12) the spaced 17, (summed over all bi-
partitions &) is either zero or a direct sum of two irreducib&, -representations of
dimension$34 and 126 (resp. three irreducible representations of dimensiéhe, 1925
and2079.

Proof. The spac&p I, is isomorphic as a®-module to Incg[ﬁxgg 17, for any fixed
bipartition &2 = (P, Q). We now handle the two cases separately.

First suppose: = 10. Then/, is either zero or isomorphic as d®p x Sg)-

module to/ ) ® gry’),. As an@ p-module’ Y corresponds to the partition4 1+ 1+

1+ 1+ 1, (the alternating representation) while asé&g-module gﬁs)Q corresponds to
the partition 4 (the trivial representation). We now useltititewood—Richardson rule to
compute '”@ixeg 17,. Excluding the case wheig,, = 0, we find that the induction
decomposes into a direct sum of two irreducibles, corredipgrio the partitions

5+41+14+1+1+1 4+14+14+14+14+14+1

By the hook length formula these irreducibles have dimersik®?6 and 84, respectively.

Now sayn = 12. Again,l/g, is either zero or isomorphic as &6 p x S p)-module to

15,3) ® grg’)Q . The representatiol]f,s) corresponds to the partitiontd141+1+141 while

grg)Q corresponds to 3 3. The Littlewood—-Richardson rule shows that the induction

decomposes into three irreducibles, corresponding todh#ipns
44+3+14+14+1+1+1, 4+44+141+1+1, 3+34+14+1+1+14+141

These irreducibles have dimensions 2079, 1925 and 616G ctagly. O
We now complete the proof of Theore8r2

Proof of Theoren8.2 We must show; = 0. If n = 10, we know that on one han#, is

at most 25-dimensional, while on the other, it is a direct sidfirat most two irreducibles
of dimensions 84 and 126. It follows that must be zero. Similarly, whem = 12, we
know that, on one hand; is at most 560-dimensional, while on the other, it is a direct
sum of at most three irreducibles of dimensions 616, 19258@8. Again, we conclude
I; =0. O
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9. Thequadratics are generated by the simplest binomials
In 89, we prove the following, concluding the proof of Theorér

Theorem 9.1. If L has even cardinality, then the simplest binomial relations spr(ﬁ)
overZ[1/n].

The proof uses thesimple binomial relationsWe show that the spans of the simple bi-
nomial relations and simplest binomial relations coincie then use thé&;-module
structure oflf) to show that simple binomial relations generate it. It seffito prove
the result over any field of characteristic O or greater thaso we do this. (We always
assume that the base field is not of characteristic 2.)

9.1. Simple binomial relations

Let L be an even set. Ainomial quadratic datunis a pairD = (I", U) wherel is an
undirected regular 2-colored graph frandU is a subset of. such that all edges df
are contained i/ or L \ U. Definel"’ to be the graph obtained by inverting the colors of
the edges of" contained inJ, and set

Rel(D) = Y — Yp,

which is clearly a relation.

Let D be a binomial quadratic datum. Suppose that a pair of eglgade’ of I' have
the same color and both lie iti or L \ U. LetI” andT"” be the other graphs occurring
in the colored Ricker relation ore ande’. ThenD’ = (I, U) andD” = (I'”, U) are
binomial quadratic data. We define thigace of binomial quadratic data be theZ-span
of the binomial quadratic data modulo the ({ker) relationsD + D’ + D” = 0. The
associatiorD — Rel(D) descends to a linear map

@)

Rel : {the space of binomial quadratic data: 1, .

We call a binomial quadratic datusimpleif U has cardinality four. We call the
resulting relationsimple binomial relationsWe say that a binomial quadratic datum is
simplestif it is simple and in additior” is made up of 2-cycles and two 4-cycles. The
associated relations are thinplest binomial relationdefined in the introduction;1(4)
is an example. Note that i = (U, I') is a binomial quadratic datum andis a union
of 2-cycles and zero or one 4-cycle then &) = 0. Although there are more simple
binomial relations than simplest binomial relations, tpgan the same space:

Proposition 9.2. Every simple binomial relation is a linear combination afngilest bi-
nomial relations ovef[1/2].

Thus to prove Theore®.1it suffices to show that the simple binomial relations spgth

Proof. Let D = (T", U) be a simple binomial quadratic datum. By Proposiichwe can
use colored Ricker relations irl. \ U to writeI'| 1\ as a sum of graphs, each of which is
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a union of 2-cycles and at most one 4-cycle. This expressg® R terms of simplest
binomial relations. O

Let L be an even set and Iét be a subset of cardinality four. L&t = L \ U. Define a
map

2 2 2
N Ve® N Vo> 1P by (Yr AYR) @ (YA AYa) B> YraYra — YeaYra.

This is the simple binomial relation associated to the senghomial data®, U) where
® is the 2-colored grapfRiT’AA’ in which " A has one color anfi’A’ the other. Note
thatt is (6, x Gy)-equivariant.

Lemma9.3. The map is injective.

Proof. Let YA, Yar be a basis ofVy. It suffices to show that the maut)\2 Vi —
syn?(R'V) given by
Yr AYr = YraYra — YraYra

is injective. Letf (resp.f’) be the map/,, — Ril) given byYr — Yra (resp.Yr —
Yras). Both f and f’ are injective. Furthermore, the images 6fand f’ are linearly
disjoint. To see this, use the fact that planar graphs forrasdastforRil) (Theorem2.2):
PutL on a circle so that the vertices Ui are consecutive. IF andI™” are planar graphs
on L’ andA andA’ are distinct planar graphs @anthenl” A andI"’ A’ are distinct planar
graphs orl. The lemma now follows from the following lemma in linear elya. O

Lemma94. Let f, g : V — W be linear maps of vector spaces which are injective and
have linearly disjoint images. Then the map

NV = Synt(W),  vawe f)gw) — fF)gw),
is also injective.

Proof. Let v; be a basis foV and assume that = ) «;;v; A v; belongs to the kernel,
o)

0= Zaij(f(vi)g(vj) — fvp)g)) = Z(Oéij —aji) f(vi)g(vy).

The vectorsf (v;)g(v;) are linearly independent in SYtv), sow;; = «j; and hence
v=0. O

9.2. Completion of the proof of Theoréri

Let X denote the set of partitions afinto exactly four even parts and It be the set of
partitions ofn — 4 into exactly four odd parts. Thus has the partitions occurring i,
and X~ has those occurring iy‘}\2 Vi (Proposition6.5). For a partitiomh € X we define

a corresponding partitioh~ € X~ by removing one box from each row in the Young
diagram:(a, b,c,d) — (a—1,b—1,¢—1,d — 1). This bijection of set&( — X~ has

a representation-theoretic characterization:
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Lemma9.5. LetA™ € X~ andu € X be given.(Recall from $.4that M, _is the irre-
ducible representation of5; corresponding to the partition). Then

1 if A=pu,

dimHo , M,-®¢e, M,) = .
M, x&u (M, 2 0 otherwise

Heree denotes the sign representation®{,.

Proof. By Frobenius reciprocity, the dimension of the Hom spaceyisaéto the multi-
plicity of M, occurring in the induction In@i/xGU (M,- ® €). This can be computed
using the Littlewood—Richardson rule, which is simple iistbase becauseis just the
alternating representation (the Young diagram is a singjienen of four boxes). The key
point is that the only way to add on four boxesitand end up with something iX is to
put one box at the end of each row. O

Corollary 9.6. The map carries (A2 V,)[A7] ® A2V into I/2[2] for any » € X,
where as usuaV[A] is theA-isotypic part of a representatioVi of the symmetric group.

We can now prove Theorefl

Proof of Theoren®.1 According to the above corollaryjnduces a map
2 _ 2
(/\ VL,)[)\ 10 \ Vo — 120]

for anyi € X. This map is injective (Lemm8@.3), and(/\2 Vr)[A~]is non-zero (Propo-
sition 6.5). Thus the image of has non-zero projection to eadﬁa[k]. Since Iéz) is
multiplicity-free (Propositior6.5), the image of generate$,£2) as anSy-module. Hence

the simple binomial relations Spdléz). Since every simple binomial relation is a linear
combination of simplest binomial relations (Propositihg@), Theoren9.1follows. O
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