
DOI 10.4171/JEMS/297

J. Eur. Math. Soc. 14, 107–126 c© European Mathematical Society 2012

Lars Allermann

Tropical intersection products on smooth varieties

Received November 22, 2009 and in revised form March 5, 2010

Abstract. In analogy to [AR07, Chapter 9] we define an intersection product of tropical cycles on
tropical linear spaces Ln

k
, i.e. on tropical fans of the type max{0, x1, . . . , xn}

n−k
· Rn. Afterwards

we use this result to obtain an intersection product of cycles on every smooth tropical variety, i.e.
on every tropical variety that arises from gluing such tropical linear spaces. In contrast to classical
algebraic geometry these products always yield well-defined cycles, not just cycle classes. Using
these intersection products we are able to define the pull-back of a tropical cycle along a morphism
between smooth tropical varieties. In the present article we stick to the definitions, notions and
concepts introduced in [AR07].

1. Intersection products on tropical linear spaces

In this section we will give a proof that tropical linear spaces Lnk admit an intersection
product. Therefore we show at first that the diagonal in the Cartesian product Lnk ×L

n
k of

such a linear space with itself is a sum of products of Cartier divisors. Given two cycles
C and D we can then intersect the diagonal with C ×D and define the product C ·D to
be the projection thereof.

Throughout the section e1, . . . , en will always be the standard basis vectors in Rn and
e0 := −e1 − · · · − en.

We begin the section with our basic definitions:

Definition 1.1 (Tropical linear spaces). For I ( {0, 1, . . . , n} let σI be the cone gen-
erated by the vectors ei , i ∈ I . We denote by Lnk the tropical fan consisting of all
cones σI with I ( {0, 1, . . . , n} and |I | ≤ k, whose maximal cones all have weight
one (cf. [AR07, Example 3.9]). The fan Lnk is a representative of the tropical linear space
max{0, x1, . . . , xn}

n−k
· Rn.

Definition 1.2. Let C ∈ Zk(Rn) be a tropical cycle and let the map i : Rn → Rn × Rn
be given by x 7→ (x, x). Then the push-forward cycle

4C := i∗(C) ∈ Zk(Rn × Rn)

is called the diagonal of C × C.
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In order to express the diagonal in Lnk ×L
n
k by means of Cartier divisors we first have

to refine Lnk × L
n
k in such a way that the diagonal is a subfan of this refinement:

Definition 1.3. Let F nk be the refinement of Lnk×L
n
k that arises recursively from Lnk×L

n
k

as follows: Let M := (Lnk × L
n
k)
(2k) be the set of maximal cones in Lnk × L

n
k . If a cone

σ ∈ M is generated by (
−ei

0

)
,

(
0
−ei

)
, v3, . . . , v2k

for some i and we have

vj ∈

{(
−eµ
−eµ

)
,

(
−eµ

0

)
,

(
0
−eµ

) ∣∣∣∣ µ = 0, . . . , n
}

then replace the cone σ by the two cones spanned by(
−ei
−ei

)
,

(
−ei

0

)
, v3, . . . , v2k

and (
−ei
−ei

)
,

(
0
−ei

)
, v3, . . . , v2k,

respectively. Repeat this process until there are no more cones in M that can be replaced.
The fan F nk is then the set of all faces of all cones in M .

The next lemma provides a technical tool needed in the proofs of the subsequent
theorems:

Lemma 1.4. Let F be a complete and smooth fan in Rn (in the sense of toric geometry)
and let the weight of every maximal cone in F be 1. Moreover, let h1, . . . , hr , r ≤ n, be
rational functions on Rn that are linear on every cone of F . Then the intersection product
h1 · · ·hr · F is given by

h1 · · ·hr · F =
(n−r⋃
i=0

F (i), ωh1···hr

)
with some weight function ωh1···hr on the cones of dimension n− r .

Let τ ∈ F (n−r) be a cone in F such that for all maximal cones σ ∈ F (n) with τ ⊆ σ
there exists some index i ∈ {1, . . . , r} such that hi is identically zero on σ . Then

ωh1···hr (τ ) = 0.

Proof. We prove the claim by induction on r . For r = 1 we are in the situation that h1 is
identically zero on every maximal cone adjacent to τ . Hence ωh1(τ ) = 0. Now let r > 1.
Using the induction hypothesis we can conclude that |h1 · · ·hr−1 · F | ⊆

⋃
σ∈S σ , where

S := {σ ∈ F (n) | none of h1, . . . , hr−1 is identically zero on σ }.

Our assumption above then implies that hr must be identically zero on every cone in

{σ ∈ F (n) | τ ⊆ σ and none of h1, . . . , hr−1 is identically zero on σ }

and thus ωh1···hr (τ ) = 0. ut
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Notation 1.5. Let F be a simplicial fan in Rn and let u be a generator of a ray ru in F .
By abuse of notation we also denote by u the unique rational function on |F | that is linear
on every cone in F , that has value 1 at u and that is identically zero on all rays of F other
than ru.

If not stated otherwise, vectors considered as Cartier divisors will from now on always
denote rational functions on the complete fan F nn .

Notation 1.6. Let C be a tropical cycle and let h1, . . . , hr ∈ Div(C) be Cartier divisors
on C. If

P(x1, . . . , xr) =
∑

i1+···+ir≤d

αi1,...,irx
i1
1 · · · x

ir
r

is a polynomial in variables x1, . . . , xr we denote by P(h1, . . . , hr) · C the intersection
product

P(h1, . . . , hr) · C :=
∑

i1+···+ir≤d

(αi1,...,irh
i1
1 · · ·h

ir
r · C).

In the following theorem we give a description of the diagonal 4Lnn−k by means of
Cartier divisors on our fan F nn :

Theorem 1.7. The fan((
−e1

0

)
+

(
0
−e0

))
· · ·

((
−en

0

)
+

(
0
−e0

))
·

((
−e0

0

)
+

(
−e0
−e0

))k
· F nn

is a representative of the diagonal 4Lnn−k .

Proof. First of all, note that (
−e0

0

)
+

(
−e0
−e0

)
is a representation of the tropical polynomial max{0, x1, . . . , xn}, where x1, . . . , xn are
the coordinates of the first factor of Rn × Rn. Applying [AR07, Lemma 9.6] we obtain[((

−e0
0

)
+

(
−e0
−e0

))k
· F nn

]
= [Lnn−k × Rn].

By [AR07, Lemma 9.4] we conclude that 4Rn · [Lnn−k ×Rn] = i∗([Lnn−k]) = 4Lnn−k and
hence it suffices to show that [X] = 4Rn for

X :=
((
−e1

0

)
+

(
0
−e0

))
· · ·

((
−en

0

)
+

(
0
−e0

))
· F nn .

Therefore, let σ = 〈r1, . . . , rn〉R≥0 ∈ X
(n) be a cone not contained in |4Rn |. We will

show that the weight of σ in X has to be zero. W.l.o.g. we can assume that

r1 6∈ D :=
{(
−e0
−e0

)
, . . . ,

(
−en
−en

)}
.
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Moreover, let

T :=
{(
−e1

0

)
, . . . ,

(
−en

0

)}
and B :=

{(
0
−e1

)
, . . . ,

(
0
−en

)}
.

We distinguish two cases:

Case 1. First, we assume that

ri 6∈

{(
−e0

0

)
,

(
0
−e0

)}
, i = 1, . . . , n.

By adding globally linear functions to the given rational functions we can rewrite the
above intersection product as X = ϕ1 · · ·ϕn · F

n
n , where

ϕi =


(
−ei

0

)
+

(
0
−e0

)
if
(
−ei

0

)
6∈ {r1, . . . , rn}(

0
−ei

)
+

(
−e0

0

)
else.

Now we apply Lemma 1.4: If the weight of σ in X is non-zero there must be at least one
cone

σ̃ = 〈r1, . . . , rn, v1, . . . , vn〉R≥0 ∈ F
n
n

such that all rational functions ϕ1, . . . , ϕn are non-zero on σ̃ . We study three subcases:

(a) There are vectors ri ∈ T and rj ∈ B: Then we need to have both vectors
(
−e0

0

)
and( 0

−e0

)
among the vµ in order that all functions ϕi be non-zero on σ̃ . But there is no

cone in F nn containing these two vectors.
(b) r1 ∈ T (or r1 ∈ B) and rj ∈ D for some j and ri ∈ T ∪ D (or ri ∈ B ∪ D) for

all i: As there is no cone in F containing
(
−ei

0

)
and

( 0
−ei

)
for any i, we need

(
−e0

0

)
among the vµ to have all ϕi non-zero on σ̃ . Moreover, if

(
−ei

0

)
6∈ {r1, . . . , rn} then we

must have
(
−ei

0

)
∈ {v1, . . . , vn}. But there is no cone in F nn containing

(
−e1

0

)
, . . . ,

(
−en

0

)
and

(
−e0

0

)
. (Analogously for B, but with ϕi defined the other way around.)

(c) All vectors ri are contained in T (or inB): In this case we need
( 0
−e1

)
or

(
−e0

0

)
among

the vµ to have all functions ϕi non-zero, but again there is no such cone. (Analogously
for B, but with ϕi defined the other way around.)

Case 2. Now we assume that

r1 =

(
−e0

0

) (
or r1 =

(
0
−e0

))
.

As before we rewrite the intersection product as X = ϕ1 · · ·ϕn · F
n
n with ϕi defined as

above and apply Lemma 1.4: If
(
−ei

0

)
6∈ {r1, . . . , rn} then ϕi =

(
−ei

0

)
+

( 0
−e0

)
and we
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need
(
−ei

0

)
or

( 0
−e0

)
among the vµ to have all ϕi non-zero on σ̃ . But as there is no cone in

F nn containing
( 0
−e0

)
and

(
−e0

0

)
we must have

(
−ei

0

)
∈ {v1, . . . , vn}. Hence all the vectors(

−e1
0

)
, . . . ,

(
−en

0

)
and

(
−e0

0

)
must be contained in {r1, . . . , rn, v1, . . . , vn}; but there is no

such cone in F nn . (Analogously for r1 =
( 0
−e0

)
, but with ϕi defined the other way around.)

So far we have proven that our intersection cycle X is contained in the diagonal 4Rn .
As the diagonal is irreducible we can then conclude by [GKM07, Lemma 2.21] that [X] =
λ · 4Rn for some integer λ. Thus our last step in this proof is to show that λ = 1: Let
ϕ1, . . . , ϕn be the rational functions given above. We obtain the following equality of
cycles in Rn × Rn:

ϕ1 · · ·ϕn · [{0} × Rn] =
((
−e1

0

)
+

(
0
−e0

))
. . .

((
−en

0

)
+

(
0
−e0

))
· [{0} × Rn]

=

(
0
−e0

)n
· [{0} × Rn] = {0} × {0}.

As ϕ1 · · ·ϕn · [Rn×Rn] = λ · 4Rn , by [AR07, Definition 9.3 and Remark 9.9] we obtain
the equality

λ · {0} = λ · ({0} · Rn) = π∗(ϕ1 · · ·ϕn · ({0} × Rn)) = π∗({0} × {0})) = 1 · {0}

of cycles in Rn. This finishes the proof. ut

Our next step is to derive a description of the diagonal 4Lnn−k on Lnn−k × L
n
n−k from our

description on F nn :

Theorem 1.8. The intersection product in Theorem 1.7 can be rewritten as

( r∑
i=1

hi,1 · · ·hi,n−k

)
·

((
0
−e0

)
+

(
−e0
−e0

))k
·

((
−e0

0

)
+

(
−e0
−e0

))k
· F nn

for some Cartier divisors hi,j on F nn .

We prepare the proof of the theorem by the following lemma:

Lemma 1.9. Let C ∈ Zl(Lnn−k) be a subcycle of Lnn−k . Then the following intersection
products are zero:

(a)
(
−e0

0

)
·

(
0
−e0

)
· (C × Rn),

(b) vi1 · · · vin−k+r · (C × Rn),

(c)
(

0
−e0

)
·

(
−e0
−e0

)s
· vi1 · · · vin−k−s+r · (C × Rn),
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where r, s > 0 and the vectors

vij ∈

{(
−e1

0

)
, . . . ,

(
−en

0

)
,

(
−e0
−e0

)}
are pairwise distinct.

Proof. (a)&(b) In both cases, a cone that can occur in the intersection product with non-
zero weight has to be contained in a cone of F nn that is contained in |Lnn−k ×Rn| and that

contains the vectors
(
−e0

0

)
,
( 0
−e0

)
or vi1 , . . . , vin−k+r , respectively. But there are no such

cones.
(c) By (a) and [AR07, Lemma 9.7] we can rewrite the intersection product as(

0
−e0

)
·

(
−e0
−e0

)s
· vi1 · · · vin−k−s+r · (C × Rn)

=

(
0
−e0

)
·

((
−e0

0

)
+

(
−e0
−e0

))s
· vi1 · · · vin−k−s+r · (C × Rn)

=

(
0
−e0

)
· vi1 · · · vin−k−s+r ·

[((
−e0

0

)
+

(
−e0
−e0

))s
· C

]
× Rn

=

(
0
−e0

)
· vi1 · · · vin−k−s+r · [max{0, x1, . . . , xn}

s
· C]× Rn,

which is zero by (b) as max{0, x1, . . . , xn}
s
· C is contained in Lnn−k−s . ut

Proof of Theorem 1.8. By Theorem 1.7 we have the representation

4Lnn−k
=

((
−e1

0

)
+

(
0
−e0

))
· · ·

((
−en

0

)
+

(
0
−e0

))
·

((
−e0

0

)
+

(
−e0
−e0

))k
· [F nn ]︸ ︷︷ ︸

=[Lnn−k×Rn]

=

((
−e1

0

)
· · ·

(
−en

0

)
+ · · · +

(
0
−e0

)n)
· [Lnn−k × Rn].

By Lemma 1.9(b) all the summands containing
( 0
−e0

)s
with s < k are zero. Hence we can

rewrite the intersection product as

4Lnn−k
=

[(
−e1

0

)
· · ·

(
−en−k

0

)
+ · · · +

(
0
−e0

)n−k
·

((
0
−e0

)
+

(
−e0
−e0

))k
− A

]
· [Lnn−k × Rn],

where A contains all the summands we added too much. Thus all the summands of A are
of the form

α · v1 · · · vn−s−t ·

(
0
−e0

)s
·

(
−e0
−e0

)t
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for some integer α, vectors vi ∈
{(
−e1

0

)
, . . . ,

(
−en

0

)}
and powers 1 ≤ t ≤ k, 0 ≤ s ≤ n.

By Lemma 1.9(b)&(c) such a summand applied to [Lnn−k ×Rn] is zero if s < k and only
those summands remain in A that have t ≥ 1, s ≥ k. Let

S := α · v1 · · · vn−s−t ·

(
0
−e0

)s
·

(
−e0
−e0

)t
be one of the remaining summands. By Lemma 1.9(a) we obtain

α · v1 · · · vn−s−t ·

(
0
−e0

)s
·

(
−e0
−e0

)t
· [Lnn−k × Rn]

=

( t∑
j=0

(
t

j

)
· α · v1 · · · vn−s−t ·

(
0
−e0

)s
·

(
−e0
−e0

)j
·

(
−e0

0

)t−j)
· [Lnn−k × Rn]

=

(
α · v1 · · · vn−s−t ·

(
0
−e0

)s
·

((
−e0

0

)
+

(
−e0
−e0

))t)
· [Lnn−k × Rn]

=

[((
0
−e0

)
+

(
−e0
−e0

))k
·

(
α · v1 · · · vn−s−t ·

(
0
−e0

)s−k
·

((
−e0

0

)
+

(
−e0
−e0

))t)
− BS

]
· [Lnn−k × Rn],

where BS again contains all the summands we added too much. Thus all the summands
of BS are of the form

S′ := β ·
(
t

t ′

)
· v1 · · · vn−s−t ·

(
0
−e0

)s−s′
·

(
−e0
−e0

)s′
·

(
−e0

0

)t ′
·

(
−e0
−e0

)t−t ′
for some integer β and powers 1 ≤ s′ ≤ k, 0 ≤ t ′ ≤ t . If s − s′ < k we group all
corresponding summands together as

β · v1 · · · vn−s−t ·

(
0
−e0

)s−s′
·

(
−e0
−e0

)s′
·

((
−e0

0

)
+

(
−e0
−e0

))t
.

This product applied to [Lnn−k × Rn] is zero by Lemma 1.9(b)&(c). Moreover, all sum-
mands S′ with s − s′ ≥ k and t ′ > 0 yield zero on [Lnn−k × Rn] by Lemma 1.9(a). Thus
only those summands S′ are left in BS that are of the form

S′ = β ′ · v1 · · · vn−s−t ·

(
0
−e0

)s−s′
·

(
−e0
−e0

)t+s′
with s − s′ ≥ k and s′ ≥ 1. Applying this process inductively to all summands with
t = 1, . . . , n − k − 1 in which we could not factor out

(( 0
−e0

)
+

(
−e0
−e0

))k yet, we can
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by and by increase the power of
(
−e0
−e0

)
in all remaining summands until finally only one

summand

γ ·

(
0
−e0

)k
·

(
−e0
−e0

)n−k
is left. But

γ ·

(
0
−e0

)k
·

(
−e0
−e0

)n−k
· [Lnn−k × Rn]

= γ ·

((
0
−e0

)
+

(
−e0
−e0

))k
·

((
−e0

0

)
+

(
−e0
−e0

))n−k
· [Lnn−k × Rn]

as (
0
−e0

)i
·

(
−e0
−e0

)k−i
·

((
−e0

0

)
+

(
−e0
−e0

))n−k
· [Lnn−k × Rn]

=

(
0
−e0

)i
·

(
−e0
−e0

)k−i
· [Ln0 × Rn] = 0

for all i < k by Lemma 1.9(b) and(
0
−e0

)k
·

(
−e0

0

)j
·

(
−e0
−e0

)n−k−j
· [Lnn−k × Rn] = 0

for all j > 0 by Lemma 1.9(a). This proves the claim. ut

Example 1.10. We perform the steps described in the proof of Theorem 1.8 for the case
n = 3, k = 2: By Theorem 1.7 we have the representation

4L3
1
=

((
−e1

0

)
+

(
0
−e0

))
·

((
−e2

0

)
+

(
0
−e0

))
·

((
−e3

0

)
+

(
0
−e0

))
·

((
−e0

0

)
+

(
−e0
−e0

))2

· [F 3
3 ]︸ ︷︷ ︸

=[L3
1×R3]

=

((
−e1

0

)
·

(
−e2

0

)
·

(
−e3

0

)
︸ ︷︷ ︸

=0 by Lemma 1.9(b)

+

(
−e1

0

)
·

(
−e2

0

)
·

(
0
−e0

)
︸ ︷︷ ︸

=0 by Lemma 1.9(b)

+

(
−e1

0

)
·

(
−e3

0

)
·

(
0
−e0

)
︸ ︷︷ ︸

=0 by Lemma 1.9(b)

+

(
−e2

0

)
·

(
−e3

0

)
·

(
0
−e0

)
︸ ︷︷ ︸

=0 by Lemma 1.9(b)

+

(
−e1

0

)
·

(
0
−e0

)2

+

(
−e2

0

)
·

(
0
−e0

)2

+

(
−e3

0

)
·

(
0
−e0

)2

+

(
0
−e0

)3)
· [L3

1 × R3].
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Now we factor out
(( 0
−e0

)
+

(
−e0
−e0

))2
and subtract all summands we do not need:

4L3
1
=

((
−e1

0

)
+

(
−e2

0

)
+

(
−e3

0

)
+

(
0
−e0

))
·

((
0
−e0

)
+

(
−e0
−e0

))2

· [L3
1×R3]

−

((
−e1

0

)(
−e0
−e0

)2

︸ ︷︷ ︸
=0 by 1.9(b)

+

(
−e2

0

)(
−e0
−e0

)2

︸ ︷︷ ︸
=0 by 1.9(b)

+

(
−e3

0

)(
−e0
−e0

)2

︸ ︷︷ ︸
=0 by 1.9(b)

+

(
0
−e0

)(
−e0
−e0

)2

︸ ︷︷ ︸
=0 by 1.9(c)

+ 2
(
−e1

0

)(
0
−e0

)(
−e0
−e0

)
︸ ︷︷ ︸

=0 by 1.9(b)

+ 2
(
−e2

0

)(
0
−e0

)(
−e0
−e0

)
︸ ︷︷ ︸

=0 by 1.9(b)

+ 2
(
−e3

0

)(
0
−e0

)(
−e0
−e0

)
︸ ︷︷ ︸

=0 by 1.9(b)

+2
(

0
−e0

)2(
−e0
−e0

))
· [L3

1×R3].

But by Lemma 1.9(a)&(b) we have the following equation for the last summand:

−2
(

0
−e0

)2(
−e0
−e0

)
· [L3

1×R3]

= −2
((

0
−e0

)2

+2
(

0
−e0

)(
−e0
−e0

)
+

(
−e0
−e0

)2)
·

((
−e0

0

)
+

(
−e0
−e0

))
· [L3

1×R3].

Hence altogether we obtain

4L3
1
=

((
−e1

0

)
+

(
−e2

0

)
+

(
−e3

0

)
+

(
0
−e0

)
− 2

(
−e0

0

)
− 2

(
−e0
−e0

))
·

((
0
−e0

)
+

(
−e0
−e0

))2

·

((
−e0

0

)
+

(
−e0
−e0

))2

· [R3
× R3].

Corollary 1.11. The Cartier divisors hi,j from Theorem 1.8 provide the following de-
scription of the diagonal 4Lnn−k :

4Lnn−k
=

r∑
i=1

hi,1 · · ·hi,n−k · [Lnn−k × L
n
n−k].

Proof. Let x1, . . . , xn be the coordinates of the first factor and y1, . . . , yn the coordinates
of the second factor of Rn × Rn. Applying [AR07, Lemma 9.6] we conclude that

[((
0
−e0

)
+

(
−e0
−e0

))k
·

((
−e0

0

)
+

(
−e0
−e0

))k
· F nn

]
= [max{0, x1, . . . , xn}

k
·max{0, y1, . . . , yn}

k
· F nn ] = [Lnn−k × L

n
n−k]
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and hence by Theorems 1.7 and 1.8,

r∑
i=1

hi,1 · · ·hi,n−k · [Lnn−k × L
n
n−k] = 4Lnn−k . ut

Remark 1.12. As Lemma 1.9 does not only hold on Lnn−k ×Rn but also on any C ×Rn
with C a subcycle of Lnn−k , the proof of Theorem 1.8 indeed shows that

( r∑
i=1

hi,1 · · ·hi,n−k

)
·

((
0
−e0

)
+

(
−e0
−e0

))k
· (C × Rn)

=

((
−e1

0

)
+

(
0
−e0

))
· · ·

((
−en

0

)
+

(
0
−e0

))
· (C × Rn)

for all cycles C ∈ Zl(Lnn−k). Using [AR07, Corollary 9.8] we conclude that

( r∑
i=1

hi,1 · · ·hi,n−k

)
·

((
0
−e0

)
+

(
−e0
−e0

))k
· (C × Rn) = 4Rn · (C × Rn) = 4C

for all such cycles C.

Corollary 1.13. Let σ ∈ Lnn−k , let x ∈ σ and let U ⊆ Sσ =
⋃
σ ′∈Lnn−k :σ ′⊇σ (σ

′)ri be an
open subset of |Lnn−k| containing x. Moreover, let F be the open fan F := {−x+ σ ∩U |
σ ∈ Lnn−k} and F̃ the associated tropical fan. Then there are Cartier divisors h′i,j on
F̃ × F̃ such that

4[F̃ ] =

r∑
i=1

h′i,1 · · ·h
′

i,n−k · [F̃ × F̃ ].

Proof. To obtain the Cartier divisors h′i,j we just have to restrict the Cartier divisors hi,j
from Corollary 1.11 to the open set U ×U , translate them suitably and extend them from
F × F to the associated tropical fan F̃ × F̃ . ut

Example 1.14. The following figure shows two fans associated to open subsets of L3
2 as

in Corollary 1.13:
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Lemma 1.15. Let C ∈ Zk(Rn) and D ∈ Zl(Rn) be tropical cycles such that there exist
representations of the diagonals 4C and 4D as sums of products of Cartier divisors on
C × C and D × D, respectively. Then there also exists a representation of 4C×D as a
sum of products of Cartier divisors on (C ×D)2.

Proof. Let 4C =
∑r
i=1 ϕi,1 · · ·ϕi,k · (C × C) and 4D =

∑s
i=1 ψi,1 · · ·ψi,l · (D × D).

Moreover, let πx, πy : (Rn)4 → (Rn)2 be given by (x1, y1, x2, y2) 7→ (x1, x2) and
(x1, y1, x2, y2) 7→ (y1, y2), respectively. Then

4C×D =

( r∑
i=1

π∗xϕi,1 · · ·π
∗
xϕi,k

)
·

( s∑
i=1

π∗yψi,1 · · ·π
∗
yψi,l

)
· (C ×D)2. ut

Now we are ready to define intersection products on all spaces on which we can express
the diagonal by means of Cartier divisors:

Definition 1.16 (Intersection products). Let C ∈ Zk(Rn) be a tropical cycle and assume
that there are Cartier divisors ϕi,j on C × C such that

4C =

r∑
i=1

ϕi,1 · · ·ϕi,k · (C × C).

Moreover, let π : C × C → C be the morphism given by (x, y) 7→ x. Then we define
the intersection product of subcycles of C by

Zk−l(C)× Zk−l′(C)→ Zk−l−l′(C),

(D1,D2) 7→ D1 ·D2 := π∗
( r∑
i=1

ϕi,1 · · ·ϕi,k · (D1 ×D2)
)
.

We use the rest of this section to prove that this intersection product is independent
of the representation of the diagonal used and that it has all the properties we expect—at
least for those spaces we are interested in:

Lemma 1.17. Let C ∈ Zk(Rn) be a tropical cycle, D ∈ Zk−l(C), E ∈ Zk−l′(C) be
subcycles, let ϕ ∈ Div(C) be a Cartier divisor and π : C × C → C the morphism given
by (x, y) 7→ x. Then

(ϕ ·D)× E = π∗ϕ · (D × E).

Proof. The proof is exactly the same as for [AR07, Lemma 9.6]. ut

Corollary 1.18. Let C ∈ Zk(Rn) be a tropical cycle that admits an intersection product
as in Definition 1.16, let D ∈ Zk−l(C), E ∈ Zk−l′(C) be subcycles and let ϕ ∈ Div(C)
be a Cartier divisor. Then

(ϕ ·D) · E = ϕ · (D · E).

Proof. The proof is exactly the same as for [AR07, Lemma 9.7]. ut
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Proposition 1.19. Let D ∈ Zl(Lnn−k) be a subcycle. Then

D · [Lnn−k] = [Lnn−k] ·D = D on Lnn−k .

Proof. Let πi : Lnn−k × L
n
n−k → Lnn−k be the morphism given by (x1, x2) 7→ xi . By

Remark 1.12,

D · [Lnn−k] = (π1)∗

( r∑
i=1

hi,1 · · ·hi,n−k · (D × [Lnn−k])
)

= (π1)∗

(( r∑
i=1

hi,1 · · ·hi,n−k

)
·

((
0
−e0

)
+

(
−e0
−e0

))k
· (D × Rn)

)
= (π1)∗(4Rn · (D × Rn)) = (π1)∗(4D) = D.

Furthermore, let φ : Lnk × L
n
k → Lnk × L

n
k be the morphism induced by (x, y) 7→ (y, x).

Obviously,

( r∑
i=1

hi,1 · · ·hi,n−k

)
· [Lnn−k × L

n
n−k] =

( r∑
i=1

φ∗hi,1 · · ·φ
∗hi,n−k

)
· [Lnn−k × L

n
n−k].

If πij : (Lnn−k)
4
→ (Lnn−k)

2 is the morphism given by (x1, x2, x3, x4) 7→ (xi, xj ) and

4 :=
( r∑
i=1

π∗13hi,1 · · ·π
∗

13hi,n−k

)
·

( r∑
i=1

π∗24hi,1 · · ·π
∗

24hi,n−k

)
we conclude by [AR07, Proposition 7.7] and [AR07, Lemma 9.6] that

( r∑
i=1

φ∗hi,1 · · ·φ
∗hi,n−k

)
· (D × [Lnn−k])

=

( r∑
i=1

φ∗hi,1 · · ·φ
∗hi,n−k

)
·
(
(D × [Lnn−k]) · ([L

n
n−k × L

n
n−k])

)
=

( r∑
i=1

φ∗hi,1 · · ·φ
∗hi,n−k

)
· (π12)∗

(
4 · ((D × [Lnn−k])× ([L

n
n−k × L

n
n−k]))

)
=

( r∑
i=1

φ∗hi,1 · · ·φ
∗hi,n−k

)
· (π12)∗(4D×[Lnn−k])

=

( r∑
i=1

φ∗hi,1 · · ·φ
∗hi,n−k

)
· (π34)∗(4D×[Lnn−k])

= (π34)∗

(( r∑
i=1

π∗34φ
∗hi,1 · · ·π

∗

34φ
∗hi,n−k

)
· 4 · ((D × [Lnn−k])× ([L

n
n−k × L

n
n−k]))

)



Tropical intersection products on smooth varieties 119

= (π34)∗

(
4 · (D × [Lnn−k])×

(( r∑
i=1

φ∗hi,1 · · ·φ
∗hi,n−k

)
· [Lnn−k × L

n
n−k]

))
= (π34)∗

(
4 · (D × [Lnn−k])×

(( r∑
i=1

hi,1 · · ·hi,n−k

)
· [Lnn−k × L

n
n−k]

))
=

( r∑
i=1

hi,1 · · ·hi,n−k

)
· (D × [Lnn−k]).

Hence we deduce that

D · [Lnn−k] = (π1)∗(4D) = (π2)∗(4D) = (π2)∗

(( r∑
i=1

hi,1 · · ·hi,n−k

)
· (D × [Lnn−k])

)
= (π2)∗

(( r∑
i=1

φ∗hi,1 · · ·φ
∗hi,n−k

)
· (D × [Lnn−k])

)
= (π1)∗

(( r∑
i=1

hi,1 · · ·hi,n−k

)
· ([Lnn−k]×D)

)
= [Lnn−k] ·D. ut

Remark 1.20. We can prove in the same way that [Lnn−k × L
m
m−l] · D = D for all

subcyclesD of Lnn−k×L
m
m−l and even that [Ln1

n1−k1
×· · ·×L

nr
nr−kr

] ·D = D for all r ≥ 1
and all subcycles D of Ln1

n1−k1
× · · · × L

nr
nr−kr

. Moreover, restricting the intersection
products to open subsets of |Lnk | or |Ln1

n1−k1
× · · · × L

nr
nr−kr
|, respectively, implies that

X ·D = D for all subcycles D ∈ Zl(X) if X ∈ {[F̃ ], [F̃1 × · · · × F̃r ]} where F̃ , F̃i are
tropical fans associated to open subsets of some |Lnk | as in Corollary 1.13.

Proposition 1.21. Let C ∈ Zk(Rn) be a tropical cycle that admits an intersection prod-
uct as in Definition 1.16 and let D,D′ ∈ Zl(C), E ∈ Zl′(C) be subcycles. Then

(D +D′) · E = D · E +D′ · E.

Proof. The proof is exactly the same as for [AR07, Theorem 9.10(b)]. ut

Proposition 1.22. Let C ∈ Zk(Rn) be a tropical cycle that admits an intersection prod-
uct as in Definition 1.16 and letD ∈ Zl(C) be a subcycle of C. Moreover, let E ∈ Zl′(C)
be a subcycle such that there are Cartier divisors ψi,j ∈ Div(C) with

r∑
i=1

ψi,1 · · ·ψi,k−l′ · C = E.

If additionally C ·D = D then

r∑
i=1

ψi,1 · · ·ψi,k−l′ ·D = E ·D.

Proof. The proof is the same as for [AR07, Corollary 9.8]. ut
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Remark 1.23. The meaning of Proposition 1.22 is the following: If X ∈ Zk(Rn) is a
tropical cycle such that the diagonal 4X can be written as a sum of products of Cartier
divisors as in Definition 1.16 and additionally (X × X) · Y = Y for all subcycles Y of
X × X then we can apply Proposition 1.22 with C := X × X and E := 4X to deduce
that the definition of the intersection product is independent of the choice of the Cartier
divisors describing the diagonal. In particular we have well-defined intersection products
on Lnk , Ln1

k1
× · · · × L

nr
kr

, F̃ and F̃1 × · · · × F̃r for all tropical fans F̃ , F̃i associated to an
open subset of some |Lnk | as in Corollary 1.13.

Theorem 1.24. Let C ∈ Zk(Rn) be a tropical cycle that admits an intersection product
as in Definition 1.16 such that additionally (C×C) ·D = D for all subcyclesD of C×C.
Moreover, let E,E′ ∈ Zl(C), F ∈ Zl′(C) and G ∈ Zl′′(C) be subcycles. Then

(a) E · F = F · E,
(b) (E · F) ·G = E · (F ·G).

Proof. The proof is exactly the same as for [AR07, Theorem 9.10(a)&(c)]. ut

We finish this section with an example showing that even curves intersecting in the ex-
pected dimension can have negative intersections:

Example 1.25. Let C,D ∈ Z1(L
3
2) be the curves shown in the figure. We want to com-

pute the intersection C ·D. By Proposition 1.22 the easiest way to do this is to write one
of the curves as ψ · [L3

2] for some Cartier divisor ψ on L3
2.

C
−1
−1
0



 1
1
0



D

−2
−3
0


 2

2
−1



 0
1
1



Let F be the refinement of L3
2 arising by dividing the cones 〈−e1,−e2〉R≥0 and

〈−e0,−e3〉R≥0 into the cones 〈−e1,−e1− e2〉R≥0 , 〈−e2,−e1− e2〉R≥0 and 〈−e0,−e0−

e3〉R≥0 , 〈−e3,−e0 − e3〉R≥0 , respectively. Then

ψ :=

 1
1
1

−
−1
−1
0


defines a rational function on F . As shown in [AR07, Example 3.10] we haveψ ·[L3

2]=C.
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Hence we calculate

C ·D = ψ ·D =

ψ
−2
−3
0

+ ψ
2

2
1

+ ψ
 0

1
1

− ψ
 0

0
0

 · {0}
= (−2+ 0+ 1− 0) · {0} = −1 · {0}.

Remark 1.26. This result is remarkable for the following reason: Our ambient space L3
2

arises as a so-called modification of R2 (cf. [M06], [M07]). Varieties that are connected by
a series of modifications are called equivalent by G. Mikhalkin and are expected to have
similar properties. But the above example shows that there is a big difference between R2

and L3
2 even though they are equivalent: On R2 there is no negative intersection product

of curves, on L3
2 there is.

2. Intersection products on smooth tropical varieties

In this section we use our results from Section 1 to define an intersection product on
smooth tropical varieties, i.e. on varieties with tropical linear spaces as local building
blocks:

Definition 2.1 (Smooth tropical varieties). An abstract tropical variety C is called a
smooth variety if it has a representative (((X, |X|), ωX), {8σ }) such that all the maps

8σ : Sσ =
⋃

σ ′∈X∗, σ ′⊃σ

(σ ′)ri
∼
−→ |Fσ | ⊆ |F̃σ |

(cf. [AR07, Definition 5.4]) map into tropical fans F̃σ = F̃ σ1 × · · · × F̃
σ
rσ

where the F̃ σi
are tropical fans associated to open subsets of some |Lnσ,ikσ,i

| as in Corollary 1.13.

Remark 2.2. Note that the existence of such a representative (((X, |X|), ωX), {8σ }) for
C implies that all representatives of C have the required property.

Example 2.3. The following figures show two examples of smooth tropical varieties:
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Definition 2.4. Let C be an abstract tropical cycle,D a subcycle of C with representative
X andU ⊆ |C| an open subset. We denote byX∩U the open tropical polyhedral complex

X ∩ U := ({σ ∩ U | σ ∈ X}, |X| ∩ U)

and by [X ∩ U ] its equivalence class modulo refinements. As this class only depends on
the class of X we can define D ∩ U := [X ∩ U ].

Remark 2.5. If we are given an open covering {U1, . . . , Ur} of C and open tropical
polyhedral complexesD1 ∩U1, . . . , Dr ∩Ur such thatDi ∩Ui ∩Uj = Dj ∩Ui ∩Uj we
can glue D1 ∩ U1, . . . , Dr ∩ Ur to obtain a cycle D ∈ Z∗(C).

Definition 2.6 (Intersection products). Let C be a smooth tropical variety and let
(((X, |X|), ωX), {8σ }) be a representative of C as in Definition 2.1. Moreover, let D,E
be subcycles of C. We construct local intersection products as follows: For every σ ∈ X
we can regard (D ∩ Sσ ) and (E ∩ Sσ ) as open tropical cycles in F̃σ via the map 8σ . Let
D̃ ∩ Sσ and Ẽ ∩ Sσ be any tropical cycles in F̃σ restricting toD ∩ Sσ and E ∩ Sσ . As we
have an intersection product on F̃σ by Remark 1.23 we can define the intersection

(D ·σ E) ∩ Sσ :=
(
(D̃ ∩ Sσ ) · (Ẽ ∩ Sσ )

)
∩ Sσ .

Note that (D ·σ E)∩ Sσ does not depend on the choice of the cycles D̃ ∩ Sσ and Ẽ ∩ Sσ .
Since {Sσ | σ ∈ X} is an open covering of |C| and the local intersection products
(D ·σ E)∩ Sσ , σ ∈ X, are compatible by the lemma below, we can glue them to obtain a
global intersection cycle D · E ∈ Z∗(C).

Lemma 2.7. For the local intersection products in Definition 2.6 we have

(D ·σ E) ∩ Sσ ∩ Sσ ′ = (D ·σ ′ E) ∩ Sσ ∩ Sσ ′ .

Proof. By definition we have an integer linear map

|F̃1| ⊇ 8σ (Sσ ∩ Sσ ′)
f
→ 8σ ′(Sσ ∩ Sσ ′) ⊆ |F̃2|

with integer linear inverse f−1, where F̃1, F̃2 are the tropical fans generated by
8σ (Sσ ∩ Sσ ′) and 8σ ′(Sσ ∩ Sσ ′), respectively. Let C1, C2 be subcycles of F̃1. We have
to show that

C1 · C2 = (f
−1)∗(f∗(C1) · f∗(C2)).

If π is the respective projection on the first factor we obtain, by Proposition 1.22 and
Remark 1.23,

(f−1)∗(f∗(C1) · f∗(C2)) = (f
−1)∗

(
π∗
(
4F̃2
· (f∗(C1)× f∗(C2))

))
= π∗

(
(f−1

× f−1)∗
(
4F̃2
· (f∗(C1)× f∗(C2))

))
= π∗

(
(f−1

× f−1)∗
(
(f × f )∗(4F̃1

) · (f × f )∗(C1 × C2)
))

= π∗(4F̃1
· C1 × C2) = C1 · C2. ut
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Remark 2.8. Lemma 2.7 also implies that further refinements of the representative
(((X, |X|), ωX), {8σ }) ofC do not change the resultD·E. Hence the intersection product
is well-defined.

Our last step consists in proving basic properties of our intersection product:

Theorem 2.9. Let C be a smooth tropical variety, let D,D′ ∈ Zl(C), E ∈ Zl′(C) and
F ∈ Zl′′(C) be subcycles and let ϕ ∈ Div(C) be a Cartier divisor on C. Then the
following equalities hold in Z∗(C):

(a) C ·D = D,
(b) D · E = E ·D,
(c) (D +D′) · E = D · E +D′ · E,
(d) (D · E) · F = D · (E · F),
(e) ϕ · (D · E) = (ϕ ·D) · E.

If moreover D = (
∑r
i=1 ϕi,1 · · ·ϕi,l) · C for some Cartier divisors ϕi,j ∈ Div(C) then

D · E =

r∑
i=1

ϕi,1 · · ·ϕi,l · E.

Proof. The statements follow immediately from the definition of the intersection product
and the corresponding statements in Section 1. ut

3. Pull-backs of cycles on smooth varieties

We will now use the intersection product defined in Section 2 to introduce pull-backs of
tropical cycles along morphisms between smooth tropical varieties.

Definition 3.1 (Pull-back). Let X and Y be smooth tropical varieties of dimension m
and n, respectively, and let f : X → Y be a morphism of tropical cycles. Moreover, let
π : X × Y → X be the projection onto the first factor and let γf : X → X × Y be the
morphism given by x 7→ (x, f (x)). We denote by 0f := (γf )∗X the graph of f . For a
cycle C ∈ Zn−k(Y ) we define its pull-back f ∗C ∈ Zm−k(X) to be

f ∗C := π∗(0f · (X × C)).

The easiest non-trivial, but nevertheless important example of a pull-back is the fol-
lowing:

Example 3.2. Let C and D be smooth tropical cycles and let p : C × D → D be
the projection on the second factor. We want to calculate the pull-back p∗E for a cycle
E ∈ Zk(D): The map γp from Definition 3.1 is then just given by γp : C × D →
C × D × D : (x, y) 7→ (x, y, y) and the map π : C × D × D → C × D is the
projection to the first two factors. Hence we can conclude that 0p = C ×4D . Moreover,



124 Lars Allermann

let π1 : C ×D ×D→ C be the projection to the first factor and π2 : C ×D ×D→ D

be the projection to the second factor. We obtain, by Definition 3.1,

p∗E = π∗(0p · (C ×D × E)) = π∗((C ×4D) · (C ×D × E))

= π1
∗ (C · C)× π

2
∗ (4D · (D × E)) = C × E.

The pull-back has the following basic properties:

Theorem 3.3. Let X, Y and Z be smooth tropical varieties and let f : X → Y and g :
Y → Z be morphisms of tropical cycles. Moreover, let C,C′ ∈ Z∗(Y ) and D ∈ Z∗(X)
be subcycles. Then

(a) f ∗Y = X,
(b) id∗Y C = C,
(c) if C = ϕ1 · · ·ϕr · Y then f ∗C = f ∗ϕ1 · · · f

∗ϕr ·X,
(d) C · f∗D = f∗(f ∗C ·D),
(e) (g ◦ f )∗C = f ∗g∗C,
(f) f ∗(C · C′) = f ∗C · f ∗C′.

Proof. Throughout the proof, let πX, πX, π1, π1, π
Y , πY , π

2, π2, π
X,Y , πX,Y , π

1,2,

π1,2 and so forth be the projections to the respective factors.
(a)&(b) By the definition of pull-back

f ∗Y = πX∗ (0f · (X × Y )) = π
X
∗ (0f ) = X

and
id∗Y C = π

1
∗ (0idY · (Y × C)) = π

1
∗ (4Y · (Y × C)) = Y · C = C.

(c) We have

f ∗C = πX∗ (0f · (X × (ϕ1 · · ·ϕr · Y ))) = π
X
∗ (π

∗

2ϕ1 · · ·π
∗

2ϕr · 0f · (X × Y ))

= πX∗ (π
∗

2ϕ1 · · ·π
∗

2ϕr · 0f ).

By the definition of intersection product (see [AR07, Definitions 3.4 and 6.5]) this last
line is equal to

f ∗ϕ1 · · · f
∗ϕr ·X.

(d) Let πX : X × Y → X be the projection on X. By Example 3.2 we know that
π∗XD = D × Y . As the diagonal 4X can locally be expressed by Cartier divisors we can
apply [AR07, Proposition 7.7] and statement (c) locally to deduce that for all subcycles
E of X × Y ,

D · πX∗ E = π
1
∗ (4X · (D × π

X
∗ E)) = π

1
∗ (4X · (id×π

X)∗(D × E))

= π1
∗ ((id×π

X)∗((id×πX)∗4X · (D × E)))

= π1
∗ ((id×π

X)∗((4X × Y ) · (D × E)))

= π1
∗ (π

1,2
∗ ((4X × Y ) · (D × E)))

= π1
∗ (π

1,2
∗ (4X×Y · (D × Y × E))) = π

1
∗ ((D × Y ) · E) = π

X
∗ (π

∗

XD · E).
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This implies that

f ∗C ·D = D · πX∗ (0f · (X × C)) = π
X
∗ (π

∗

XD · 0f · (X × C))

= πX∗ ((D × Y ) · 0f · (X × C)) = π
X
∗ (0f · (D × C)).

Moreover, it is easy to check that (f × id)∗4Y = 0f . As above we conclude that

C · f∗D = π
1
∗ (4Y · (C × f∗D)) = π

1
∗

(
(id×f )∗((id×f )∗4Y · (C ×D))

)
= f∗

(
πX∗ ((id×f )

∗
4Y · (C ×D))

)
= f∗

(
πX∗ ((f × id)∗4Y · (D × C))

)
= f∗

(
πX∗ (0f · (D × C))

)
= f∗(f

∗C ·D).

(e) Let8 : X→ X×Y×Z be given by x 7→ (x, f (x), g(f (x))). An easy calculation
shows that (0f × Z) · (X × 0g) = 8∗X. Hence we conclude by (d) that

f ∗g∗C = πX∗
(
0f ·

(
X × πY∗ (0g · (Y × C))

))
= πX∗

(
πX,Y∗ ((0f × Z) · (X × 0g) · (X × Y × C))

)
= πX∗ ((0f × Z) · (X × 0g) · (X × Y × C))

= πX∗ (8∗X · (X × Y × C)) = π
X
∗ (0g◦f · (X × C)) = (g ◦ f )

∗C.

(f) Let 8 : X → X × Y × Y be given by x 7→ (x, f (x), f (x)) and let π1,2, π1,3 :
X × Y × Y → X × Y be the projections to the respective factors. An easy calculation
shows that

(0f × Y ) · (X × 0idY ) = 8∗X = π
∗

1,20f · π
∗

1,30f .

Hence we deduce that

f ∗(C · C′) = πX∗
(
0f · (X × (C · C

′))
)
= πX∗

(
0f · (X × π

1
∗ (0idY · C × C

′))
)

= πX∗
(
0f · π

1,2
∗ ((X × 0idY ) · (X × C × C

′))
)

= πX∗
(
π1,2
∗ ((0f × Y ) · (X × 0idY ) · (X × C × C

′))
)

= πX∗
(
π1,3
∗ ((0f × Y ) · (X × 0idY ) · (X × C × C

′))
)

= πX∗
(
π1,3
∗ (π∗1,20f · π

∗

1,30f · (X × C × C
′))
)

= πX∗
(
0f · π

1,3
∗ ((0f × Y ) · (X × C × C

′))
)

= πX∗
(
0f · (π

X
∗ (0f · (X × C))× C

′)
)

= πX∗ (0f · (f
∗C × C′)) = f ∗C · f ∗C′. ut

We finish the section with another important example:

Example 3.4. LetD be a smooth tropical variety and letC ∈ Zk(D) be a smooth tropical
subvariety. Moreover, let ι : C → D be the inclusion map. We want to calculate the pull-
back ι∗E for a cycle E ∈ Zl(D): Let πC : C × D → C and πD : C × D → D be the
projections to the first and second factor and let γι : C → C×D be given by x 7→ (x, x).
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Hence, 0ι = (γι)∗C = 4C and by Example 3.2, (πD)∗E = C × E. Thus by Theorem
3.3(d)

ι∗E = πC∗ (0ι · (C × E)) = π
C
∗ (4C · (C × E)) = π

D
∗ (4C · (C × E))

= πD∗ (4C · (π
D)∗E) = πD∗ (4C) · E = C · E,

where C · E is the intersection product on D.
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