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Abstract. We consider models of random walk in uniformly elliptic i.i.d. random environment in
dimension greater than or equal to 4, satisfying a condition slightly weaker than the ballisticity
condition (T ′). We show that for every ε > 0 and n large enough, the annealed probability of linear
slowdown is bounded from above by exp(−(log n)d−ε). This bound almost matches the known
lower bound of exp(−C(log n)d ), and significantly improves previously known upper bounds. As
a corollary we provide almost sharp estimates for the quenched probability of slowdown. As a tool,
we show an almost local version of the quenched central limit theorem under the assumption of the
same condition.

1. Introduction

1.1. Background

Let d ≥ 1. A Random Walk in Random Environment (RWRE) on Zd is defined as fol-
lows: Let Md denote the space of all probability measures on {±ei}di=1 and let � =
(Md)Z

d
. An environment is a point ω ∈ �. Let P be a probability measure on �. For the

purposes of this paper, we assume that P is an i.i.d. measure, i.e.

P = QZd

for some distribution Q on Md , and that P is uniformly elliptic, i.e. there exist η > 0
such that for every neighbor v of the origin,

Q({ω : ω(v) < η}) = 0. (1.1)

For an environment ω ∈ �, the Random Walk on ω is a time-homogeneous Markov chain
with transition kernel

Pω(Xn+1 = z+ e | Xn = z) = ω(z, e).

The quenched law P zω is defined to be the law on (Zd)N induced by the kernel Pω and
P zω(X0 = z) = 1. We let Pz = P ⊗ P zω be the joint law of the environment and the walk,
and the annealed law is defined to be its marginal

Pz =
∫
�

P zω dP (ω).

For simplicity, we omit the superscript when the walk starts from zero.
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We use the notations Ezω and Ez for the expectations with respect to the measures P zω
and Pz.

In [11] and [14], Sznitman and Zerner proved that the limiting velocity

= lim
n→∞

Xn

n

exists almost surely. A remaining open problem, which is one of the most important
problems in this field, is whether this limiting velocity is always an almost sure constant.

We now introduce three important definitions:

Definition 1. The RWRE is said to be ballistic if the limiting velocity is a non-zero al-
most sure constant.

Definition 2. The local drift at a point z is defined to be the (quenched) quantity

1ω(z) :=
∑

e∈{±ei }
d
i=1

eω(z, e) = Ezω(X1 − z).

Definition 3. The RWRE is said to be plain nestling if zero is contained in the interior of
the convex hull of the support of the random variable 1ω(0). It is said to be marginally
nestling if zero is on the boundary of the convex hull of the support, and non-nestling if
zero is outside the convex hull of the support.

1.2. Large deviations for RWRE

In [12], Varadhan considered large deviations for the sequence of random variables Xn/n
under the annealed measure P. He showed that a large deviation principle holds with a
rate function F , and identified the zero set of the function F . For the ballistic case with
limiting velocity , Varadhan showed that if the RWRE is non-nestling, then F−1(0) =
{ }, while if the RWRE is plain nestling or marginally nestling, then F−1(0) = A, with
A being the convex hull of 0 and . We note here that recently Yilmaz [13] and Peterson
[7] obtained more information about the structure of the rate function F .

In other words, for every a /∈ A and ε > 0 small enough,

P(‖Xn/n− a‖∞ < ε) (1.2)

decays exponentially with n, and for every a ∈ A, (1.2) decays more slowly than ex-
ponentially. (Note that the choice of the `∞ norm is completely arbitrary, since in our
finite-dimensional space, all norms are equivalent.)

It is therefore natural to ask what the decay rate of (1.2) is for a ∈ A.
In the marginally nestling case, Sznitman [8] showed that there exist C1 and C2 such

that
e−C1n

d/(d+2)
< P(‖Xn/n− a‖∞ < ε) < e−C2n

d/(d+2)
(1.3)

for large enough n. In [8] Sznitman phrased (1.3) in the language of bounds on the dis-
tribution of the first regeneration time. However, the way it is presented here follows
immediately from Sznitman’s result using the appropriate large deviation estimates.
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1.3. Main goal

The purpose of this paper is to provide an estimate for the probability in (1.2) in the plain
nestling case under some additional assumptions which we specify below.

1.4. Ballisticity conditions

In [9, 10] Sznitman introduced two criteria for ballisticity of the RWRE, which he called
conditions (T ) and (T ′). In order to define them, we need some preliminary definitions.

Definition 4. Let ` ∈ Sd−1 be a direction in Rd . Let L > 0. For a sequence {Xn}, we
define

T
(`)
L ({Xn}) = inf{n ≥ 0 : 〈Xn, `〉 ≥ L}.

If no confusion can arise, we may omit ` and {Xn} from this notation.

Equivalently to Definition 4, we also define the first hitting time of a set.

Definition 5. Let A ⊆ Zd . For a sequence {Xn}, we define

TA({Xn}) = inf{n ≥ 0 : Xn ∈ A}.

Again, we may omit {Xn} when no confusion can arise.

We now return to Sznitman’s ballisticity conditions. We start by defining the condition
(Tγ ), 0 < γ ≤ 1, as follows:

Definition 6. We say that P satisfies condition (Tγ ) in direction `0 if for every ` in a
neighborhood of `0 there exists a constant C such that for every L large enough,

P(T (−`)L < T
(`)
L ) < C exp(−Lγ ). (1.4)

Definition 7. We say that P satisfies condition (T ) if it satisfies condition (T1). We say
that it satisfies condition (T ′) if it satisfies condition (Tγ ) for some γ > 1/2.

In [10], it is shown that the conditions (Tγ )1/2<γ<1 are all equivalent.
The connection between the conditions mentioned above and ballisticity lies in the

following theorem and conjecture:

Theorem 1.1 (Sznitman, [10]). If condition (T ′) holds for some `0, then the RWRE is
ballistic, and the limiting velocity satisfies 〈 , `0〉 > 0. Furthermore, in this case (T ′)
holds for all ` satisfying 〈 , `〉 > 0.

Remark. This result was recently improved by Drewitz and Ramı́rez [4].

Conjecture 1.2 (Sznitman). Condition (T ′) is equivalent to ballisticity.
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Fig. 1. A naı̈ve trap. In the shaded ball of radius C log n around the origin all local drifts are
pointing towards the origin, while outside the ball the local drift goes mostly to the right. If C is
appropriately chosen, then this causes a linear slowdown. The probability that such a configuration
exists is exponential in (log n)d .

1.5. Known slowdown results

Let d ≥ 2 and let a 6= be in the convex hull of 0 and . Then for ε > 0 small enough,
the following is known.

Theorem 1.3 (Sznitman, [10]). Assume that P is plain nestling, uniformly elliptic and
satisfies condition (T ′).

(1) There exist C such that for n large enough,

P(‖Xn/n− a‖∞ < ε) > e−C(log n)d . (1.5)

(2) Let α < 2d/(d + 1). There exist C such that for n large enough,

P(‖Xn/n− a‖∞ < ε) < e−C(log n)α . (1.6)

The easy bound in Theorem 1.3 is (1.5), which follows from the analysis of the so called
naı̈ve trap (see Figure 1).

1.6. Ballisticity under (Tγ )

We prove the following result:

Theorem 1.4. Assume that the dimension is at least 4. Fix γ > 0. Under the assumption
of uniform ellipticity, if condition (Tγ ) holds for some `0, then the RWRE is ballistic, and
the limiting velocity satisfies 〈 , `0〉 > 0. Furthermore, in this case (Tγ ) holds for all `
satisfying 〈 , `〉 > 0.
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1.7. Main results

Our main result is the following theorem:

Theorem 1.5. Let d ≥ 4 and γ > 0 and assume that P is uniformly elliptic and satisfies
condition (Tγ ). Let a 6= be in the convex hull of 0 and , and let ε > 0 be small enough
so that is not in the closed ε-neighborhood of a. Let α < d. Then for all n large enough,

P(‖Xn/n− a‖∞ < ε) < e−(log n)α . (1.7)

Comparing Theorem 1.5 and (1.5) shows that the remaining gap between the upper and
the lower bounds is quite small.

Theorem 1.5 deals with the annealed probability of slowdown. However, one can
deduce from it a quenched bound.

Corollary 1.6. With the same assumptions as in Theorem 1.5, for every α < d, almost
every ω and every large enough n,

Pω(‖Xn/n− a‖∞ < ε) < exp
(
−

n

exp((log n)α−1
)

)
. (1.8)

Again, compare (1.8) to the known lower bound

Pω(‖Xn/n− a‖∞ < ε) > exp
(
−

Cn

exp((log n)d−1
)

)
,

which is proven in [8]. Corollary 1.6 follows from Theorem 1.5 using the method devel-
oped by Gantert and Zeitouni [6] to transfer annealed slowdown estimates into quenched
ones. This method was adjusted to the multi-dimensional case by Sznitman [8]. The proof
of Corollary 1.6 is identical to the proof of (5.45) in [8], and is omitted.

1.8. Remark about lower dimensions

In this paper we only prove Theorem 1.5 for dimensions 4 and higher. Here we discuss
the situation in lower dimensions.

For d = 1, the annealed slowdown probability was calculated by Dembo, Peres and
Zeitouni [3] in 1996 and the quenched slowdown probability was calculated by Gantert
and Zeitouni [6] in 1998. These results give bounds that are significantly sharper than the
bounds in Theorem 1.5 and Corollary 1.6. Nevertheless, a comparison between the results
shows that the estimates in the present paper are true for dimension 1.

I conjecture that the results in this paper hold for dimensions 2 and 3. The difficulty
in the proof occurs in Proposition 4.5, which is currently only proved for dimensions 4
and higher. In dimension 3 I expect that a more sophisticated version of the arguments in
this paper should be able to work. In dimension 2, Proposition 4.5(2) does not hold, and
therefore a new idea is needed.
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1.9. Structure of the paper

Section 2 brings the definition of regeneration times as introduced in [11]. We then re-
formulate Theorem 1.5 in the language of regenerations and get Proposition 2.2. Then in
Section 3 we introduce some very useful notation and give some basic definitions. In Sec-
tion 4 we give a number of CLT type results. In particular, we give an almost local version
of the quenched central limit theorem (Proposition 4.5) and a general lemma about sums
of approximately Gaussian variables (Lemma 4.16). In Section 5 we reformulate Theo-
rem 1.5 as a statement about quenched exit properties from a large box. The first half of
this construction is very similar to Sznitman’s construction in [10]. Then in Section 6 we
define an auxiliary walk {Yn} and explore its connection with the original walk {Xn}. In
Section 7 we define an event regarding the walk {Yn}, and in Section 8 we use all that
information in order to prove the main result.

1.10. Remark about the writing style

In order to avoid notational overload, language is abused in three ways in this paper:
(a) the value of a constant C may change from one line to the next, (b) some of the in-
equalities only hold for n large enough, without explicit mention, and (c) for a probability
measure µ on Zd , we use the symbol Eµ for the expectation

∑
x xµ(x).

In addition we use the highly convenient notations from computer scienceO(n), o(n),
�(n) and ξ(n), whose meanings are as described in the table below. Note that computer
scientists write ω rather than ξ . However, due to the use of the letter ω for the environment
in this paper, we use ξ as described below.

Symbol Meaning

k = O(n) as the parameter goes to infinity, lim sup k
n <∞

k = o(n) as the parameter goes to infinity, lim k
n = 0

k = �(n) as the parameter goes to infinity, lim inf kn > 0

k = ξ(n) as the parameter goes to infinity, lim k
n = ∞

For example, if we write f (N) = N−ξ(1), we mean that as N goes to infinity, f (N)
goes to zero faster than any power of N .

Whenever the norm sign ‖·‖ appears without mentioning which norm we are referring
to, we refer to the `∞ norm on Zd .

2. Regeneration times

We first define the notion of a regeneration time. Our definition is slightly different from
that given by Sznitman and Zerner [11]. Nevertheless, all the lemmas that we quote from
[10] and [11] and collect in Theorem 2.1 apply equally well to the definition below.
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Definition 8. Let {Xn} be a nearest-neighbor sequence in Zd , and let ` ∈ Sd−1 be a
direction. We say that t is a regeneration time for {Xn} in direction ` if the following
hold:

(1) 〈Xs, `〉 < 〈Xt , `〉 for every s < t .
(2) 〈Xt+1, `〉 > 〈Xt , `〉.
(3) 〈Xs, `〉 > 〈Xt+1, `〉 for every s > t + 1.

Theorem 2.1 ([11, 10]). Assume that P satisfies condition (Tγ ) in direction `0 for some
γ > 0. Then:

(1) With probability 1, there exist infinitely many regeneration times. We call them τ1 <

τ2 < · · · .

(2) The ensemble
{(τn+1 − τn, Xτn+1 −Xτn)}n≥1

is an i.i.d. ensemble under the annealed measure.
(3) There exists C such that for every n,

P(τ2 − τ1 = n) ≤ CP(τ1 = n),

and for every y ∈ Zd ,

P(Xτ2 −Xτ1 = y) ≤ CP(Xτ1 = y).

(4) There exists C such that for every n,

P(∃k≤τ1 ‖Xk‖ > n) ≤ e−Cn
γ

.

The main technical statement in this paper is the following proposition.

Proposition 2.2. For any γ > 0, if the dimension d is greater than or equal to 4, and P
satisfies condition (Tγ ) in one of the 2d principle directions, then for every α < d and
every u large enough,

P(τ1 > u) ≤ exp(−(log u)α). (2.1)

We now show how to prove Theorem 1.5 assuming Proposition 2.2. The rest of the paper
will be dedicated to the proof of Proposition 2.2.

Proof of Theorem 1.4 assuming Proposition 2.2. Theorem 1.4 follows from Proposition
2.2 exactly the same way ballisticity is proved in [11] and [10]. ut

Proof of Theorem 1.5 assuming Proposition 2.2. Fix α < d. Assume without loss of
generality that 〈 , e1〉 > 0. Note that in this case condition (Tγ ) holds with respect to the
direction e1. For simplicity, in this proof we denote x̄ = 〈x, e1〉 for every x ∈ Rd . Fix a
and ε as in the statement of Theorem 1.5. Let ρ = E(τ2 − τ1) and let β = E(X̄τ2 − X̄τ1).
Let r be such that r < ¯ but r > x̄ for every x in the ε-neighborhood of a. Then it is
sufficient to show that for all n large enough,

P(X̄n < rn) < e−(log n)α . (2.2)
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Choose b so that r/ ¯ < b < 1, and let m = nb/ρ. Then

P(X̄n < rn) ≤ P(τm+1 > n)+ P(X̄τm+1 < rn). (2.3)

Now, remembering that ¯ = β/ρ,

P(X̄τm+1 < rn) ≤ P(X̄τm+1 − X̄τ1 < rn) = P
( m∑
k=1

X̄τk+1 − X̄τk <
r

b
ρm

)
.

Remembering that the sequence {X̄τk+1 − X̄τk } is i.i.d. and that X̄τk+1 − X̄τk is positive
and its expectation β is larger than (r/b)ρ, we get

P(X̄τm+1 < rn) < e−Cn

for some constant C.
We now estimate P(τm+1 > n). Let A be the event that τk+1 − τk < n1/8 for all

k = 1, . . . , m and that τ1 < n1/8. Then

P(τm+1 > n) ≤ P(Ac)+ P(τm+1 > n |A).

Fix α′ between α and d . Then, by Theorem 2.1(3) and Proposition 2.2, for all n large
enough,

P(Ac) ≤ e−(log n1/8)α
′

+mCe−(log n1/8)α
′

≤
1
2e
−(log n)α .

Conditioned on A, the variables τk+1 − τk are independent, bounded by n1/8 and their
expectation is less than ρ. Then by Azuma’s inequality, for n large enough,

P(τm+1 > n |A) ≤ P(τm+1 − τ1 > n− n1/8
|A) ≤ exp

(
−
(n− n1/8

− ρm)2

2mn1/4

)
≤ exp(−n3/4).

(2.2) follows. ut

3. Preliminaries

We define Rk(N) = [exp((log logN)k+1)] and R(N) = R1(N). Note that R0(N) =

[logN ] and that for all k, M and all large enough N ,

RMk (N) < Rk+1(N) < N. (3.1)

We let
ϑ := lim

n→∞
Xn/‖Xn‖ (3.2)

be the direction of the speed. Note that the existence of ϑ follows from Tγ even without
the ballisticity assumption, and is always non-zero. We assume without loss of generality
that 〈ϑ, e1〉 > 0. Note that, by the results of [9] and [10], (Tγ ) holds both in direction e1
and in direction ϑ .
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Definition 9. For z ∈ Zd and N ∈ N, we define the basic block of size N around z to be

P(z,N) := {x ∈ Zd : |〈x, e1〉 − 〈z, e1〉| < N2 , ‖x − u(z, x)‖∞ < NR5(N)}

where
u(z, x) := z+ ϑ ·

〈x − z, e1〉

〈ϑ, e1〉
. (3.3)

The middle third of P(z,N) is defined to be

P̃(z,N) := {x ∈ Zd : |〈x, e1〉 − 〈z, e1〉| <
1
3N

2, ‖x − u(z, x)‖∞ < 1
3NR5(N)}

We let

∂P(z,N) := {x ∈ Zd \ P(z,N) : ∃y∈P(z,N) ‖x − y‖1 = 1},

∂+P(z,N) := {x ∈ ∂P(z,N) : 〈x, e1〉 − 〈z, e1〉 = N
2
}.

Fig. 2. The basic block P(z,N).

Definition 10. The basic lattice of size N is defined to be

LN := N2Z×
([
NR5(N)

4

]
Z
)d−1

.

The following simple fact will be useful in what follows.

Lemma 3.1. (1) For every x ∈ N2Z×Zd−1 there exists z ∈ LN such that x ∈ P̃(z,N).
(2) LN can be represented as the disjoint union of 9d lattices such that if L is one of

these lattices then for every z1 6= z2 in L,

P(z1, N) ∩ P(z2, N) = ∅.

4. CLT type estimates

In this section we derive two CLT type estimates that will be important for the proof of
the main result. Throughout this section, we assume that our RWRE model satisfies the
following requirements:
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1. There exists γ > 0 such that Tγ holds.
2. The RWRE is uniformly elliptic.
3. The dimension d is at least 4.

We begin with some preliminary estimates in Subsections 4.1 and 4.2, and then prove
CLT type estimates in Subsections 4.3 and 4.4.

4.1. Regeneration radii

We define X∗(1) := max{‖Xt − X0‖ : 0 ≤ t ≤ τ1}, and for n > 1 we let X∗(n) :=
max{‖Xt −Xτn−1‖ : τn−1 ≤ t ≤ τn}. The following lemma appears in [10].

Lemma 4.1. Let γ > 0 and assume that condition (Tγ ) holds. Then there exist C and c
such that for every L and n = 1, 2, . . . ,

P(X∗(n) > L) ≤ Ce−cL
γ

(4.1)

for every n.

We call X∗(n) the radius of the n-th regeneration. Recall that R(N) = R1(N) =

[e(log logN)2 ] = [(logN)log logN ]. Let AN ({Xn}) be the event that the radii of the first N
regenerations are all smaller than R(N), namely

AN ({Xn}) := {∀1≤n≤N , X
∗(n) < R(N)}. (4.2)

Then, by Lemma 4.1,

P(AN ({Xn})) ≥ 1− CNe−cR(N)
γ

= 1−N−ξ(1). (4.3)

4.2. Derivatives of the annealed exit distribution

In this subsection we show the following result on the annealed exit distribution from a
block. The proof is standard and straightforward using regenerations.

Lemma 4.2. Assume the assumptions 1–3 above hold. Fix z ∈ Zd and N , and let z1 ∈

P̃(z,N). Let {Xn} be an RWRE starting at z1, and let u := XT∂P(z,N) . Then, for large
enough N :

(1) Pz1(u /∈ ∂+P(z,N)) ≤ e−R5(N)+P(AcN ) = N
−ξ(1), whereAN is as defined in (4.2).

(2) For every x in ∂+P(z,N),

Pz1(u = x) < CN1−d .

(3) For every x and y in ∂+P(z,N) such that ‖x − y‖1 = 1,

|Pz1(u = x)− Pz1(u = y)| < CN−d .

(4) Let {X′n} be an RWRE starting at z1+ e1, and let u′ := X′T∂P(z,N) . Then for every x in
∂+P(z,N), ∣∣Pz1(u = x)− Pz1+e1(u′ = x)

∣∣ < CN−d .
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(5) For every x, y and w in ∂+P(z,N) such that ‖x − y‖1 = 1 and w − y = y − x,∣∣Pz1(u = x)+ Pz1(u = w)− 2Pz1(u = y)
∣∣ < CN−d−1.

(6) For every x, y and w and o in ∂+P(z,N) such that there exist i 6= j with x − y =
w − v = ei and x − w = y − o = ej ,∣∣Pz1(u = x)+ Pz1(u = o)− Pz1(u = y)− Pz1(u = w)

∣∣ < CN−d−1.

Proof. To prove (1), we need to show that

Pz1(u /∈ ∂+P(z,N) |AN ) ≤ e−R5(N).

To this end, note that conditioned on AN , the regenerations are independent and are
all bounded by R(N). For k = 1, . . . , N we now estimate the difference between
Ez1(Xτk |AN ) and Ez1(Xτk ). Let 4k = Xτk − Xτk−1 with 41 = Xτ1 . Remember that
Pz1(AcN ) = N

−ξ(1). For a given k,

Ez1(‖4k‖ · 1AcN ) ≤ Ez1(‖4k‖ · 1∃j 6=kX?(j)≥R(N))+ Ez1(‖4k‖ · 1X?(k)≥R(N))

≤ Pz1(AcN )E
z1(‖4k‖)+

∑
h>R(N)

hPz1(X?(k) = h)

≤ Pz1(AcN )E
z1(‖4k‖)+

∑
h>R(N)

he−ch
γ

= N−ξ(1).

Therefore, for every k = 1, . . . , N ,

‖Ez1(4k |AN )− Ez1(4k)‖

≤ ‖Ez1(4k · 1AN )− Ez1(4k)‖ + ‖Ez1(4k |AN )− Ez1(4k · 1AN )‖

≤ Ez1(‖4k‖ · 1AcN )+ Ez1(‖4k‖ |AN )Pz1(AcN ) = N
−ξ(1).

Hence ‖Ez1(Xτk |AN )− Ez1(Xτk )‖ = N
−ξ(1), again for every k = 1, . . . , N .

Now, using Azuma’s inequality,

Pz1(u /∈ ∂+P(z,N) |AN ) ≤
N2∑
k=1

Pz1 [‖Xτk − Ez1(Xτk |AN )‖∞ > 1
4NR5(N)]

≤ d

N2∑
k=1

exp

(
−N2R2

5(N)/16
2kR2(N)

)
≤ e−R5(N)

for N large enough.
To prove (2)–(6) we need the following standard claim.

Claim 4.3. Let {Yi}∞i=1 be d-dimensional independent random variables, with joint dis-
tribution P, such that {Yn}n≥2 are identically distributed and such that there exists v ∈ Zd
such that P(Y2 = v) > 0 and P(Y2 = v + ei) > 0 for i = 1, . . . , d . Let Sn =

∑n
i=1 Yi .

Then there exists C <∞ which is determined by the distributions of Y1 and Y2 such that
for every n and every x, y and w with ‖x − y‖1 = 1 and w − y = y − x,

P(Sn = x) ≤ Cn−d/2, (4.4)
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|P(Sn = x)− P(Sn = y)| ≤ Cn(−1−d)/2, (4.5)

|P(Sn = x)+ P(Sn = w)− 2P(Sn = y)| ≤ Cn(−2−d)/2. (4.6)

In addition, for every x, y andw and o such that there exist i 6= j with x−y = w−v = ei
and x − w = y − o = ej ,

|P(Sn = x)+ P(Sn = o)− P(Sn = y)− P(Sn = w)| < Cn(−2−d)/2. (4.7)

We now use Claim 4.3; we will prove it later. For k and l in N, we let B(l, k) be the event
that 〈Xτk , e1〉 = l, we let B(l) =

⋃
k B(l, k) and we let B̂(l) be the event

B̂(l) := B(l) ∩
N2⋂

j=l+1

Bc(j).

In addition, we define Zl = XTl . Then, for x and y such that ‖x − y‖1 = 1 and 〈x, e1〉 =

〈y, e1〉 = l,

Pz1(Zl = x|B̂(l))− Pz1(Zl = y | B̂(l)) = Pz1(Zl = x |B(l))− Pz1(Zl = y |B(l))

=
1

Pz1(B(l))

∑
k

(Pz1(Xτk = x)− Pz1(Xτk = y)).

Let
M =

l

Ez1 [〈Xτ2 −Xτ1 , e1〉]
.

For x and y satisfying 〈x, e1〉 = 〈y, e1〉 = l and ‖x − y‖ = 1, and for k ∈ N, we now
estimate

|Pz1(Xτk = x)− Pz1(Xτk = y)|.

We consider two different cases: k ≥ M and k < M . Assume first that k ≥ M . Then
either 〈Xτ[k/2] , e1〉 ≤ l/2 or 〈Xτk −Xτ[k/2] , e1〉 ≤ l/2. So

|Pz1(Xτk = x)− Pz1(Xτk = y)|

≤ Pz1(Xτk = x; 〈Xτ[k/2] , e1〉 ≤ l/2)− Pz1(Xτk = y; 〈Xτ[k/2] , e1〉 ≤ l/2) (4.8)

+ Pz1(Xτk = x; 〈Xτk −Xτ[k/2] , e1〉 ≤ l/2)

− Pz1(Xτk = y; 〈Xτk −Xτ[k/2] , e1〉 ≤ l/2). (4.9)

We now estimate (4.8) ((4.9) is estimated the same way):

Pz1(Xτk = x; 〈Xτ[k/2] , e1〉 ≤ l/2)− Pz1(Xτk = y; 〈Xτ[k/2] , e1〉 ≤ l/2)

=

∑
w: 〈w,e1〉≤l/2

Pz1(Xτ[k/2] =w)[P
z1(Xτk = x |Xτ[k/2] =w)− Pz1(Xτk = y |Xτ[k/2] =w)]

≤ Ck(−1−d)/2
∑

w: 〈w,e1〉≤l/2

Pz1(Xτ[k/2] = w)

= Ck(−1−d)/2Pz1(〈Xτ[k/2] , e1〉 ≤ l/2) (4.10)

where the inequality follows from (4.5).
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With a similar calculation for k < M , we get

|Pz1(Zl = x | B̂(l))− Pz1(Zl = y | B̂(l))|

≤ C

M∑
k=1

k(−1−d)/2Pz1(〈Xτ[k/2] , e1〉 ≥ l/2)+C
∞∑
k=M

k(−1−d)/2Pz1(〈Xτ[k/2] , e1〉 ≤ l/2).

(4.11)

From Lemma 4.1 we learn that X?(n) has (in particular) a finite 2d moment, and from
standard estimates on sums of i.i.d. variables (namely that the 2d moment of the sum of
k i.i.d. mean zero variables grows like O(kd)), we find that for k < M ,

Pz1(〈Xτ[k/2] , e1〉 ≥ l/2) ≤ min
[

1, C
kd

(M − k)2d

]
,

and for k ≥ M ,

Pz1(〈Xτ[k/2] , e1〉 ≤ l/2) ≤ min
[

1, C
kd

(k −M)2d

]
= min

[
1, C

kd

(M − k)2d

]
.

Combining this with (4.11) we get

|Pz1(Zl = x | B̂(l))− Pz1(Zl = y | B̂(l))|

≤ C

M∑
k=1

k(−1−d)/2 min
[

1, C
kd

(M − k)2d

]
+C

∞∑
k=M

k(−1−d)/2 min
[

1, C
kd

(k −M)2d

]
≤ C

[M/2]∑
k=1

k(−1−d)/2 min
[

1, C
kd

(M − k)2d

]
(4.12)

+C

M−[M1/2]∑
k=[M/2]+1

k(−1−d)/2 min
[

1, C
kd

(M − k)2d

]
(4.13)

+C

M+[M1/2]∑
k=M−[M1/2]+1

k(−1−d)/2 min
[

1, C
kd

(M − k)2d

]
(4.14)

+C

∞∑
k=M+[M1/2]+1

k(−1−d)/2 min
[

1, C
kd

(k −M)2d

]
(4.15)

≤ Cl−d/2. (4.16)

To see the inequality (4.16), we bound each of the four sums (4.12)–(4.15) by Cl−d/2.
For the expression in (4.12), we note that we have O(l) summands, each of which is



140 Noam Berger

bounded by O(l−d), so the sum is bounded by O(l1−d). The expression in (4.13) is (up
to a constant) bounded by∫ M−

√
M

M/2
x(d−1)/2(M − x)−2d dx ≤ M(d−1)/2

∫ M/2

√
M

y−2d dy ≤ CM(d−1)/2
√
M

1−2d

= O(l−d/2).

The expression in (4.14) contains O(
√
l) summands, each of which is O(l(−1−d)/2), so

the sum is O(l−d/2). The expression in (4.15) is taken care of similarly to the one in
(4.13)—it is bounded by a constant times the integral∫

∞

M+
√
M

x(d−1)/2(x −M)−2d dx

=

∫ 2M

M+
√
M

x(d−1)/2(x −M)−2d dx +

∫
∞

2M
x(d−1)/2(x −M)−2d dx

≤ CM(d−1)/2
∫ M

√
M

y−2ddy + C

∫
∞

M

y(d−1)/2−2ddy = O(l−d/2),

where we substituted, for both integrals, y = x −M .
Let Hl = {w : 〈w, e1〉 = l}. Now,

Pz1(u = x) =
∑
l≤N2

Pz1(B̂(l))
∑
w∈Hl

Pz1(XTl = w | B̂(l))P
z1(u = x | B̂(l);XTl = w)

and, using shift invariance and the fact that we condition on the occurrence of a regener-
ation at l, for y = x + ej (j 6= 1),

Pz1(u = y) =
∑
l≤N2

Pz1(B̂(l))
∑
w∈Hl

Pz1(XTl = w + ej | B̂(l))P
z1(u = x | B̂(l);XTl = w).

Noting that due to shift invariance,∑
w∈Hl

Pz1(u = x | B̂(l);XTl = w) = 1,

we get

|Pz1(u = x)− Pz1(u = y)|

≤

∑
l≤N2

Pz1(B̂(l)) max
w∈Hl

∣∣Pz1(XTl = w + ej | B̂(l))− Pz1(XTl = w | B̂(l))
∣∣

and breaking the last sum into l ≤ N2/2 and l > N2/2, then controlling the former using
Lemma 4.1 and the latter using (4.16), we get part (3) of the lemma. Part (2) follows
from the exact same calculations using (4.4). Part (4) follows from (4.5) similarly. To
see (5) and (6), we run the same calculation with one main difference: When we do the
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calculation equivalent to (4.10), instead of (4.5), we use (4.6) (for (5)) or (4.7) (for (6)).
We then get a factor of k(−2−d)/2 instead of k(−1−d)/2 (this is because the inequalities
(4.6) and (4.7) give an extra factor of

√
k), and we continue to carry this factor of

√
k all

the way through. ut

Proof of Claim 4.3. The proof is a standard Fourier calculation, and therefore we do
not give complete details. By the assumptions, the characteristic function χ of Y2 has
period 2π in every coordinate. In addition, since P(Y2 = v) > 0 and P(Y2 = v + ei) > 0
for i = 1, . . . , d , there exist D > 0 and δ > 0 such that

• |χ(x)| < 1−D for every x ∈ [−π, π]d such that ‖x‖ ≥ δ, and
• |χ(x)| < 1−D‖x‖2 for every x such that ‖x‖ < δ.

Let S′ =
∑n
k=2 Yk and let A = {x : ‖x‖ < δ}. Now, to see (4.4), we note that

P(S′ = z) =
1

(2π)d

∫
[−π,π ]d

e−i〈x,z〉χ(x)n−1 dx

≤

∫
[−π,π ]d

|χ(x)|n−1 dx ≤ (1−D)n−1
+

∫
A

(1−D‖x‖2)n−1 dx ≤ Cn−d/2,

and convolution with the distribution of Y1 only decreases the supremum.
To see (4.5), we see that

|P(S′ = z)− P(S′ = z+ ei)| =
1

(2π)d

∣∣∣∣∫
[−π,π ]d

(e−i〈x,z〉 − e−i〈x,z+ei 〉)χ(x)n−1 dx

∣∣∣∣
≤

1
(2π)d

∫
[−π,π ]d

|e−i〈x,z〉 − e−i〈x,z+ei 〉| |χ(x)|n−1 dx.

Note that |e−i〈x,z〉 − e−i〈x,z+ei 〉| ≤ |〈x, ei〉|. Therefore,

|P(S′ = z+ e1)− P(S′ = z)| ≤
1

(2π)d

∫
[−π,π ]d

|χ(x)|n−1
〈x, e1〉 dx

≤ (1−D)n−1
+ C

∫
A

e−Dn‖x‖
2
〈x, e1〉 dx,

and substituting y = x
√
n we get dx = n−d/2dy and 〈x, e1〉 = n

−1/2
〈y, e1〉, so the last

integral is bounded by

Cn−d/2−1/2
∫
√
nA

e−D‖y‖
2
〈y, e1〉 dy ≤ Cn

−d/2−1/2
∫

Rd
e−D‖y‖

2
〈y, e1〉 dy

= O(n(−d−1)/2).

To see (4.6), we note that
∣∣e−i〈x,z+e1〉 + e−i〈x,z−e1〉 − 2e−i〈x,z〉

∣∣ ≤ 〈x, e1〉
2 for every

z ∈ Zd . Then,

|P(S′ = z+ e1)+ P(S′ = z− e1)− 2P(S′ = z)|

≤
1

(2π)d

∫
[−π.π ]d

|χ(x)|n−1
〈x, e1〉

2 dx ≤ (1−D)n−1
+ C

∫
A

e−Dn‖x‖
2
〈x, e1〉

2 dx,
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and again substituting y = x
√
n, we still get dx = n−d/2dy but this time 〈x, e1〉

2
=

n−1
〈y, e1〉

2. Therefore, this time the last integral is bounded by

Cn−d/2−1
∫
√
nA

e−D‖y‖
2
〈y, e1〉

2 dy ≤ Cn−d/2−1
∫

Rd
e−D‖y‖

2
〈y, e1〉

2 dy

= O(n(−d−2)/2).

The way to see (4.7) is similar—this time what we need to notice is that |e−i〈x,z〉 −
e−i〈x,z+e1〉 − e−i〈x,z+e2〉 + e−i〈x,z+e1+e2〉| ≤ 〈x, e1〉 · 〈x, e2〉 and that when we substitute
y =
√
nx we get 〈x, e1〉 · 〈x, e2〉 = n

−1
〈y, e1〉 · 〈y, e2〉. ut

Lemma 4.4. Assume the assumptions 1–3 from page 136. Let {Xn} be a RWRE starting
at the origin. Let σ 2 be the (annealed) covariance matrix of Xτ2 −Xτ1 , and let U be the
expectation of Xτ2 − Xτ1 . Let 6 be the inverse matrix of σ 2. Let Ū = E(XT∂P(0,N)). Fix
a > 0. There exists a constant c such that for every x ∈ ∂+P(0, N), if

(x − Ū )T6(x − Ū ) < a ·
N2

〈U, e1〉
,

then
P(XT∂P(0,N) = x) > cN1−de−3a .

Proof. The proof is very similar to that of Lemma 4.2, but slightly simpler. We continue
to use the notations B(l, k), B(l) and B̂(l). Let δ = δ(a) be a small number. By the local
limit theorem (see e.g. [5]), for l > N2/2 and every y ∈ P(0, N) such that 〈y, e1〉 = l,

P(Zl = y;B(l, k)) ≥ (2πβ)−1/2k−d/2(e−(y−Uk)
T6(y−Uk)/2k

− δ) (4.17)

where β is the determinant of σ 2.
Fix l = N2 and let M = N2/〈U, e1〉. Then, using (4.17), for x ∈ ∂+P(0, N),

P(ZN2 = x) ≥ P(ZN2 = x;B(N
2)) ≥

dM+
√
Me∑

k=dM−
√
Me

P(ZN2 = x;B(N
2, k))

≥ (πβ)−1/2M−d/2
dM+

√
Me∑

k=dM−
√
Me

(
e
−
(x−Uk)T 6(x−Uk)

M−
√
M − δ

)
≥ (πβ)−1/2M−(d−1)/2(e− (x−Ū )T 6(x−Ū )M−

√
M

−
(
√
MU)T 6(

√
MU)

M−
√
M − δ

)
≥ cN1−de−3a . ut

4.3. Quenched exit estimates

In this subsection we show that with very high probability the quenched exit distribution
from a basic block is similar to the annealed one. This is the only part of the paper that
requires the high dimension assumption.
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The goal of this subsection is the following proposition:

Proposition 4.5. Assume the assumptions 1–3 from page 136. Fix 0 < θ ≤ 1. There
exists an event G(N) = G(θ,N) ⊆ � such that P(G(N)) = 1 − N−ξ(1) and such that
for all ω ∈ G(N):

(1) For every z ∈ P̃(0, N),

P zω(T∂P(0,N) 6= T∂+P(0,N)) = N
−ξ(1).

(2) For every z ∈ P̃(0, N),

‖Ezω[XT∂P(0,N) ]− Ez[XT∂P(0,N) ]‖ ≤ R3(N). (4.18)

(3) For every z ∈ P̃(0, N) and every (d − 1-dimensional) cube Q ⊆ ∂+P(0, N) of side
length [Nθ ],

|P zω[XT∂P(0,N) ∈ Q]− Pz[XT∂P(0,N) ∈ Q]| < N (θ−1)(d−1)−θ d−1
d+1 . (4.19)

From Proposition 4.5 we get the following corollary:

Corollary 4.6. Assume the assumptions 1–3 from page 136. Fix θ < 1/2 and let G(N)
be as in Proposition 4.5. Let ω ∈ G(N) and z ∈ P̃(0, N). Let D = D(ω, z) be the
quenched exit distribution from P(0, N), and let D̄ = D̄(ω, z) be D conditioned on
∂+P(0, N). Let D = D(z) be the annealed exit distribution, and D̄ the annealed exit
distribution conditioned on ∂+P(0, N). Then:

(1) D(∂+P(0, N)) = 1−N−ξ(1).
(2) If X ∼ D̄, then X can be written as X = Y + Z, where ‖Z‖ ≤ (d + 1)Nθ a.s. and

Y ∼ D̄+D2, where D2 is a signed measure such that:

(a) ‖D2‖ :=
∑
x |D2(x)| ≤ λ = N

−θ(d−1)/2(d+1).
(b)

∑
x D2(x) = 0.

(c)
∑
x xD2(x) = 0.

(d)
∑
x |D2(x)| ‖x − ED̄‖

2
1 ≤ λN

2, where ED̄, a vector in Rd , is the expectation of
the probability distribution D̄.

Proof. Part (1) is trivial, and therefore we will prove (2). Partition ∂+P(0, N) into dis-
joint cubesQ1, . . . ,Qn of side lengthNθ . We get n = R5(N)

d−1N (d−1)(1−θ) such cubes.
For every 1 ≤ k ≤ n,

|D̄(Qk)− D̄(Qk)| ≤ N
(θ−1)(d−1)−θ d−1

d+1 .

We define Y ′ as follows: For every k, we take Y ′ to be in Qk whenever X ∈ Qk . Condi-
tioned on the event Y ′ ∈ Qk , we take Y ′ to be independent of X, with

P(Y ′ = x |Y ′ ∈ Qk) = D̄(x)/D̄(Qk)

for every x ∈ Qk . Then clearly ‖X − Y ′‖ < dNθ . Therefore, ‖E(Y ′)− E(X)‖ < dN θ .
By (4.18), ‖E(X) − ED̄‖ ≤ R3(N) and thus ‖E(Y ′) − ED̄‖ < (d + 1)Nθ . Then there
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exists a variable U , independent of Y ′ and X, such that ‖U‖ < (d + 1)Nθ
+ 1 and

E(Y ′ + U) = ED̄. Define Y = Y ′ + U . Then (2)(b) and (2)(c) are immediate.
To see (2)(a), we first note that

P(Y = x) =
∑

u: ‖u‖<(d+1)Nθ+1

P(U = u)P(Y ′ = x − u).

Therefore,∑
x

|P(Y = x)− D̄(x)|

≤

∑
u: ‖u‖<(d+1)Nθ+1

P(U = u)
∑
x

|P(Y ′ = x − u)− D̄(x)|. (4.20)

By Lemma 4.2(3), for all x and u such that ‖u‖ < (d + 1)Nθ
+ 1,

|D̄(x − u)− D̄(x)| ≤ C(d + 1)Nθ
·N−d = C(d + 1)Nθ−d .

Therefore, with D2 as defined in (2),∑
x

|D2(x)| =
∑
x

|P(Y = x)− D̄(x)| ≤
∑
x

(|P(Y ′ = x)− D̄(x)| + C(d + 1)Nθ−d)

=

( n∑
k=1

|D̄(Qk)− D̄(Qk)|
)
+ R5(N)

d−1Nd−1
· C(d + 1)Nθ−d

≤ C(d + 1)R5(N)
d−1Nθ−1

+ R5(N)
d−1N (d−1)(1−θ)

·N (θ−1)(d−1)−θ d−1
d+1

= R5(N)
d−1(C(d + 1)Nθ−1

+N−θ
d−1
d+1 ) ≤ R6(N)N

−θ d−1
d+1 < λ.

To see (2)(d), note that ‖x − ED̄‖1 ≤ dNR5(N) for every x in the support of D2.
Therefore, ∑

x

|D2(x)| ‖x − ED̄‖
2
1 ≤ d

2R5(N)
2N2

∑
x

|D2(x)|

≤ d2R5(N)
2N2
· R6(N)N

−θ d−1
d+1 ≤ λN2. ut

Corollary 4.6 can be formulated slightly differently in the language of couplings. We need
a definition.

Definition 11. For two probability measures µ1 and µ2 on Zd , and for λ < 1 and k ∈ N,
we say that µ2 is (λ, k)-close to µ1 if there exists a joint distribution (“coupling”) µ of
three random variables Z1, Z2 and Z0 such that:

(1) Z1 ∼ µ1 and Z2 ∼ µ2.
(2) µ(Z1 6= Z0) ≤ λ.
(3) µ(‖Z0 − Z2‖ < k) = 1.
(4)

∑
x x[µ(Z1 = x)− µ(Z0 = x)] = Eµ(Z1)− Eµ(Z0) = 0.

(5)
∑
x |µ(Z1 = x)− µ(Z0 = x)| ‖x − Eµ(Z1)‖

2
1 ≤ λvar(Z1).
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Using Definition 11, Corollary 4.6(2) can be formulated as saying that if ω ∈ G(N),
then D̄ is (N−θ(d−1)/2(d+1), (d+1)Nθ )-close to D̄. (We need to see that the variance of a
D̄ distributed variable is at least at the order of magnitude of N2. This follows, e.g., from
the annealed lower bound in Lemma 4.4.)

The following claim is immediate and useful.

Claim 4.7. In the language of Definition 11, the distribution of Z0 is (λ, 0)-close to µ1.

We now proceed to proving Proposition 4.5. We start with a version of Azuma’s inequal-
ity. Let {Mk}

n
k=1 be a zero mean martingale with respect to a filtration {Fk}nk=1 on the

sample space �. For simplicity we denote M0 = 0 and F0 = {∅, �}. For k = 1, . . . , n,
let Dk = Mk −Mk−1. Set

Uk = ess sup(|Dk| |Fk−1) = lim
p→∞

[E(|Dk|p |Fk−1)]1/p

and define the essential variance of the martingale to be

U := ess sup
( n∑
k=1

U2
k

)
.

Lemma 4.8. For every K ,

P(|Mn| > K) ≤ 2e−K
2/2U .

Proof. The proof is similar to that of Azuma’s inequality: First we show that for every k,

E(e
∑n
j=k Dj |Fk−1) ≤ e

1
2 ess sup(

∑n
j=k U

2
j |Fk−1). (4.21)

Indeed, (4.21) is clear for k = n, and assuming it holds for k + 1, we get

E(e
∑n
j=k Dj |Fk−1) = E(eDkE(e

∑n
j=k+1 Dj |Fk) |Fk−1)

≤ E(eDke
1
2 ess sup(

∑n
j=k+1 U

2
j |Fk) |Fk−1) ≤ E(eDke

1
2 ess sup(

∑n
j=k+1 U

2
j |Fk−1)

|Fk−1)

= e
1
2 ess sup(

∑n
j=k+1 U

2
j |Fk−1)E(eDk |Fk−1) ≤ e

1
2 ess sup(

∑n
j=k+1 U

2
j |Fk−1)e

1
2U

2
k

= e
1
2 ess sup(

∑n
j=k U

2
j |Fk−1).

For k = 0 this gives E(eMn) ≤ e
1
2U , and for every λ,

E(eλMn) ≤ e
1
2λ

2U .

Using Markov’s inequality once with λ = K/U and once with λ = −K/U gives the
desired result. ut

Next we discuss the intersection structure of two independent walks in the same environ-
ment.
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Lemma 4.9. Assume the assumptions 1–3 from page 136. Let X(1) := {X(1)n } and X(2)

:= {X(2)n } be two independent random walks running in the same environment ω. Let
[X(i)] be the set of points visited by {X(i)n }. Then there exists C such that for every n,

E
[
Pω,ω

(
{|[X(1)] ∩ [X(2)] ∩ P(0, N)| > nR1(N)

d
} ∩ AN (X

(1)) ∩ AN (X
(2))
)]
< e−Cn.

Proof. Let k ≥ 0 be such that k+R1(N) < N . Then from the definition of the event AN ,
for a random walk X = {Xn},

1AN (X) · |{x : x ∈ [X], k < 〈x, e1〉 < k + R1(N)}| < 2dR1(N)
d . (4.22)

For every k, let Q−k = P(0, N) ∩ {x : 〈x, e1〉 < kR1(N)} and Q+k = P(0, N) ∩ {x :
〈x, e1〉 ≥ kR1(N)}. In addition, let ÂN = AN (X(1))∩AN (X(2)). Using Propositions 3.1,
3.4 and 3.7 of [1], as well as uniform ellipticity, and again recalling the definition of AN ,
we see that there exists ρ > 0 such that for every k,

E
[
Pω,ω({[X(1)] ∩ [X(2)] ∩Q+k+1 = ∅}|ÂN ; [X

(1)] ∩Q−k ; [X
(2)] ∩Q−k )

]
> ρ. (4.23)

Remark. As stated in [1], Propositions 3.1, 3.4 and 3.7 of [1] require moment assump-
tions on the regeneration times. However, examining their proofs shows that all they need
are moment assumptions on the number of sites visited before τ1, and these are satisfied
by Lemma 4.1.

Now, let

J (even)
= {k : k is even and [X(1)] ∩ [X(2)] ∩Q+k ∩Q

−

k+1 6= ∅},

J (odd)
= {k : k is odd and [X(1)] ∩ [X(2)] ∩Q+k ∩Q

−

k+1 6= ∅}.

Then, by (4.23), conditioned on ÂN , both J (even) and J (odd) are dominated by a geometric
variable with parameter ρ. The lemma now follows when we remember that by (4.22),

1
ÂN
· |[X(1)] ∩ [X(2)] ∩ P(0, N)| ≤ 2dR1(N)

d(J (even)
+ J (odd)). ut

As a corollary we get the following estimate:

Lemma 4.10. Assume the assumptions 1–3 from page 136. With the same notation as in
Lemma 4.9,

P
[
ω : Eω,ω(|[X(1)]∩[X(2)]∩P(0, N)|·1AN (X(1))∩AN (X(2))) ≥ R2(N)

]
= N−ξ(1). (4.24)

Let J (N) ⊆ � be the event that for every starting point z in the middle third of the block,

Ez,zω,ω(|[X
(1)] ∩ [X(2)] ∩ P(0, N)| · 1AN (X(1))∩AN (X(2))) ≤ R2(N).

Then, by Lemma 4.10, P(J (N)) = 1−N−ξ(1).
Fix z ∈ P̃(0, N). For every ω and x ∈ P(0, N), we let

H z(ω, x) := P zω(x ∈ [X] and AN ({Xn}))

be the hitting probability of x. Then for ω ∈ J (N),∑
x∈P(0,N)

(H z(ω, x))2 ≤ R2(N). (4.25)
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Lemma 4.11. Assume the assumptions 1–3 from page 136. There exists an event K(N)
⊆ � such that P(K(N)) = 1−N−ξ(1) and for every ω ∈ K(N) and z ∈ P̃(0, N),

‖Ezω[XT∂P(0,N) ]− Ez[XT∂P(0,N) ]‖ ≤ R3(N). (4.26)

Proof. Define

U(ω, z) := ‖Ezω[XT∂P(0,N) · 1AN · 1T∂P(0,N)=T∂+P(0,N) ]

− Ez[XT∂P(0,N) · 1AN · 1T∂P(0,N)=T∂+P(0,N) | J (N)]‖.

It is sufficient to show that for a large enough set of ω’s,

U(ω, z) ≤ R2(N)
2d+2. (4.27)

(4.27) is sufficient, because for a setM of environments of measure 1−N−ξ(1), for every
ω ∈ M we have P zω(T∂P(0,N) = T∂+P(0,N))) = N

−ξ(1). Since ‖XT∂P(0,N)‖∞ < CN2, on
every ω ∈ M the contribution of the event {T∂P(0,N) 6= T∂+P(0,N))} to the expectation of
XT∂P(0,N) is bounded by 1.

To show (4.27), we order the vertices in P(0, N) lexicographically, x1, x2, . . . , with
the first coordinate being the most significant. Let Fn be the σ -algebra on the sample
space (J (N) ⊆ �,P (· | J (N))) which is determined by ω|x1,...,xn and let {Mk} be the
martingale

Mk := E
[
Eω[XT∂P(0,N) · 1AN · 1T∂P(0,N)=T∂+P(0,N) ]

∣∣Fk].
Next we calculate ess sup(Mk −Mk−1 |Fk−1). The argument is similar to the one used
in [1], which is based on ideas from [2]. Let

B(x) := {y : 〈y, e1〉 = 〈x, e1〉 − 1 and ‖y − x‖ ≤ R1(N)
2
}.

Note that if x is visited and AN holds, then the first visit to the layer

H(x) := {y : 〈y, e1〉 = 〈x, e1〉 − 1}

is in B(x). Therefore,

Uk = ess sup(Mk −Mk−1 |Fk−1) ≤ R(N)
2P(xk ∈ [X] |Fk−1)

≤ R(N)2
∑

y∈B(xk)

P(XTH(xk) = y |Fk−1) = R(N)
2
∑

y∈B(xk)

Pω(XTH(xk)
= y)

≤ R(N)2
∑

y∈B(xk)

Pω(y ∈ [X]), (4.28)

where the first inequality follows from the fact that the regeneration containing xk is of
size no more than R(N)2, and after this regeneration the distribution of the walk is the
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annealed distribution. Remembering that |B(xk)| ≤ 2dR2(N)
d and that every y is in B(x)

for at most 2dR2(N)
d points x, we have

n∑
k=1

U2
k ≤

n∑
k=1

R(N)4
[ ∑
y∈B(xk)

Pω(y ∈ [X])
]2

≤ 2dR2(N)
dR(N)4

n∑
k=1

∑
y∈B(xk)

Pω(y ∈ [X])2

≤ 22dR2(N)
2dR(N)4

∑
y∈P(0,N)

H 2(ω, y) ≤ 22dR2(N)
2dR(N)4 · R2(N)

≤ R2(N)
2d+2. (4.29)

Therefore, by Lemma 4.8,

P(ω : U(ω) > R2(N)
2d+2
| J (N)) < 2e

−
R2(N)

4d+4

2R2(N)
2d+2
= N−ξ(1).

(4.27) follows. ut

We now estimate the quenched exit distribution from P(0, N). Fix a starting point for the
walk z ∈ P̃(0, N). We start with the following lemma. Recall that for every k, we define
Hk to be the hyperplane Hk = {v ∈ Zd : 〈v, e1〉 = k}.

Lemma 4.12. Assume the assumptions 1–3 from page 136. Fix 0 < θ ≤ 1. Let Bθ (N) ⊆
� be the event that for every 2

5N
2
≤ M ≤ N2 and every (d − 1-dimensional) cube Q of

side length Nθ which is contained in HM ,

|P zω(XTM ∈ Q;AN )− Pz(XTM ∈ Q;AN )| ≤ N
(θ−1)(d−1).

Then for θ > (d − 1)/d ,
P(Bθ (N)) = 1−N−ξ(1).

Proof. Fix θ , and let (d − 1)/d < θ ′ < θ . Let

V = [N2θ ′ ].

Fix 2
5N

2
≤ M ≤ N2. Let v ∈ HM+V , and let G be the σ -algebra that is determined by

the configuration on

PM(0, N) = P(0, N) ∩ {x : 〈x, e1〉 ≤ M}.

We are interested in the quantity

J (M)(v) = E[Pω(XTM+V = v;AN ) |G].

Similar to the proof of Lemma 4.11, we let {xi}ni=1 be a lexicographic ordering of
the vertices in PM(0, N), and let {Fi} be the σ -algebra on J (N) which is determined by
ω|x1,...,xi .
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Fig. 3. The quantity J (M)(v) is the probability of hitting the point v, conditioned on the environ-
ment in the shaded area, and averaged over the environment elsewhere.

We consider the martingale Mi = E[Pω(XTM+V = v;AN ) |Fi]. In order to use
Lemma 4.8, we will need to bound Ui = ess sup(Mi −Mi−1 |Fi−1). Remember that xi
is the vertex such that ωxi is measurable with respect to Fi but not with respect to Fi−1.
Then we claim that

Ui ≤ CR(N)E[Pω(xi is hit) |Fi−1]V −d/2. (4.30)

We now show the main estimate (4.30). Let ω′ be an environment that agrees with ω
everywhere except possibly at xi . We let P be the distribution of a walk that follows the
law ω on {xk : k ≤ i} and the annealed distribution on Zd \ {xk : k ≤ i}. Equivalently, let
P′ be the distribution of a walk that follows the law ω′ on {xk : k ≤ i} and the annealed
distribution on Zd \ {xk : k ≤ i}. More precisely, for an event B ⊆ (Zd)N on the space of
possible paths for the walk,

P(B) = P(B ×� |ωx1 , . . . , ωxi ;AN ),

and equivalently for P′. Then

Ui ≤ sup
ω′
|P′(XTM+V = v)− P(XTM+V = v)|, (4.31)

where the supremum is taken over all environments ω′ that agree with ω on Zd \ {xi}.
Note that conditioned on the event that xi is not visited, the distributions P and P′ are the
same. Now, for both measures P and P′, condition on the event that xi is visited. Let u be
the first regeneration point after xi . Then P and P′ a.s, ‖u− xi‖1 < dR(N). This follows
from the conditioning on AN . Therefore, from Lemma 4.2(3)&(4) we get

|P(XTM+V = v | xi is visited)− Pxi (XTM+V = v)| < CR(N)V −d/2,

|P′(XTM+V = v | xi is visited)− Pxi (XTM+V = v)| < CR(N)V −d/2.

Hence
Ui ≤ CR(N)V

−d/2P(xi is visited),

and (4.30) follows.
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Using (4.30), conditioned on J (N), and based on the same calculation as in (4.28)
and (4.29), we get

U = ess sup
( n∑
i=1

U2
i

)
≤ R(N)6V −d .

Therefore, by Lemma 4.8, for every v ∈ HM+V and every number δ,

P(|E[Pω(XTM+V = v);AN |G]− P(XTM+V = v;AN )| > δ)

≤ 2P(J (N)c)+ 2e
−

δ2

2R(N)6V−d

In particular, if δ = 1
4N

1−d
=

1
4V
−d/2V η, with η = d+(1−d)/θ ′

2 > 0, then we get

P
(
|E[Pω(XTM+V = v;AN ) |G]− P(XTM+V = v;AN )| >

1
4N

1−d)
= N−ξ(1)

and

P
(
|E[Pω(XTM+V = v) |G]− P(XTM+V = v)| >

1
2N

1−d)
≤ P(ω : Pω(AcN ) ≥

1
4N

1−d)

+ P
(
|E[Pω(XTM+V = v;AN ) |G]− P(XTM+V = v;AN )| >

1
4N

1−d)
= N−ξ(1).

Let T (N) be the event that

|E[Pω(XTM+V = v) |G]− P(XTM+V = v)| ≤
1
2N

1−d

for every 2
5N

2
≤ M ≤ N2 and every v ∈ HM+V ∩ P(0, 2N). Then P(T (N)) = 1 −

N−ξ(1). Now consider ω ∈ T (N), and fix 2
5N

2
≤ M ≤ N2 and a cube Q of side length

Nθ which is contained in HM . We want to estimate

L(Q) = |P zω(XTM ∈ Q;AN )− Pz(XTM ∈ Q;AN )|. (4.32)

Let c(Q) be the center of the cube Q, and let c′(Q) = c(Q)+ Vϑ/〈ϑ, e1〉. Define

Q(1)
= {v ∈ HV+M : ‖v − c′(Q)‖∞ < 1

2 (0.9)
1/dNθ

},

Q(2)
= {v ∈ HV+M : ‖v − c′(Q)‖∞ < 1

2 (1.1)
1/dNθ

}.

Then by simple annealed estimates,

Pz(XTV+M ∈ Q
(1)) < Pz(XTM ∈ Q)+N

−ξ(1), (4.33)

Pz(XTV+M ∈ Q
(2)) > Pz(XTM ∈ Q)−N

−ξ(1), (4.34)

E[P zω(XTV+M ∈ Q
(1)) |G] < P zω(XTM ∈ Q)+N

−ξ(1), (4.35)

E[P zω(XTV+M ∈ Q
(2)) |G] > P zω(XTM ∈ Q)−N

−ξ(1). (4.36)

From the definition of T (N) and (4.33)–(4.36), it follows that T (N) ⊆ Bθ (N). Therefore,
P(Bθ (N)) ≥ P(T (N)) = 1−N−ξ(1). ut

Using Lemma 4.12 as a building block, we can get a similar yet weaker result for every
choice of θ .
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Lemma 4.13. Assume the assumptions 1–3 from page 136. For every 0 < θ ≤ 1 and h
let B̄(θ,h)(N) be the event that for every z ∈ P̃(0, N), every 1

2N
2
≤ M ≤ N2 and every

cube Q of side length Nθ which is contained in HM ,

P zω(XTM ∈ Q;AN ) ≤ Rh(N)N
(θ−1)(d−1). (4.37)

Then for every 0 < θ ≤ 1 there exists h = h(θ) such that P(B̄(θ,h)(N)) = 1−N−ξ(1).
Proof. We argue by descending induction on θ . From Lemma 4.12, P(B̄(θ,1)(N)) =
1 − N−ξ(1) for every 1 ≥ θ > (d − 1)/d. For the induction step, fix θ and assume that
the statement of the lemma holds for some θ ′ such that θ > d−1

d
θ ′, and let h′ = h(θ ′).

We write ρ = θ/θ ′. Let σ be the natural shift of Zd . Let

L = B̄(ρ,1)(N) ∩
⋂

z∈P(0,2N)
σz(B̄

(θ ′,h′)([Nρ])) ∩ T (N, ρ),

where

T (N, ρ) = {ω ∈ � : ∀v∈P(0,N), P vω(XT∂P(v,[Nρ ]) /∈ ∂
+P(v, [Nρ])) < e−R1(N)}.

Clearly, P(L) = 1−N−ξ(1). Therefore, all we need to show is that for some h and all N
large enough, we have L ⊆ B̄(θ,h)(N). To this end we fix ω ∈ L, z, 1

2N
2
≤ M ≤ N2 and

a cubeQ of side lengthNθ in P(0, N)∩HM . Let x be the center ofQ, and let V = [Nρ]2

and x′ = x − Vϑ/〈ϑ, e1〉.

Since
ω ∈

⋂
z∈P(0,2N)

σz(B̄
(θ ′,h′)([Nρ])),

we find that for every v ∈ HM−V ,

P vω(XTM ∈ Q) < Rh′(N)N
ρ(θ ′−1)(d−1)

= Rh′(N)N
(θ−ρ)(d−1). (4.38)

We remember that by the Markov property and the fact that ω ∈ T (N, ρ),

P zω(XTM ∈ Q) =
∑

v∈HM−V ∩P(x′,[Nρ ])

P zω(XTM−V = v)P
v
ω(XTM ∈ Q)+N

−ξ(1). (4.39)

Now, HM−V ∩ P(x′, [Nρ]) is the union of 2d−1R5(N)
d−1 < R6(N) cubes of side

length Nρ .
Sinceω ∈ B̄(ρ,1)(N), for every cubeQ′ of side lengthNρ that is contained inHM−V∩

P(0, N) we get
P zω(XTM−V ∈ Q

′) < R1(N)N
(ρ−1)(d−1). (4.40)

Combining (4.38)–(4.40), we get

P zω(XTM ∈ Q) ≤ R6(N)Rh′(N)N
(θ−ρ)(d−1)

· R1(N)N
(ρ−1)(d−1)

+N−ξ(1)

≤ Rh(N)N
(θ−1)(d−1)

for h = max(6, h′)+ 1. ut

Next we prove a lemma which significantly strengthens the previous one. For its proof
we will use Lemma 4.13 and a more careful treatment of the proof technique of Lemma
4.12. We start with the following preliminary lemma:
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Lemma 4.14. Assume the assumptions 1–3 from page 136. Let G be the σ -algebra gen-
erated by {ω(z) : 〈z, e1〉 ≤ N

2
}. Let η > 0, V = [Nη] and let B(N, V ) be the event that

for all z ∈ P̃(0, N) and all v ∈ HN2+V ,∣∣E[P zω(XTN2+V
= v) |G]− Pz[XT

N2+V
= v]

∣∣ ≤ N1−dV (1−d)/6.

Then P(B(N, V )) = 1−N−ξ(1).

Proof. Let v ∈ HN2+V and let θ > 0 be such that θ < 1
20η. LetK be an integer such that

2−KN2 > V ≥ 2−K−1N2, and for 1 ≤ k < K define

P(k) = P(0, N) ∩ {x : 2−k−1N2
≤ N2

− 〈x, e1〉 < 2−kN2
}.

In addition we take

P(K) = P(0, N) ∩ {x : 0 ≤ N2
− 〈x, e1〉 < 2−KN2

},

P(0) = P(0, N) ∩ {x : N2/2 ≤ N2
− 〈x, e1〉}.

Moreover, we define

F(v) = {x ∈ P(0, N) : ‖x − u(v, x)‖ ≤ |〈v − x, e1〉|
1/2R2(N)},

where u(v, x) is as in (3.3). Then, for 0 ≤ k ≤ K , we define

P(k)(v) = P(k) ∩ F(v), P̂(k)(v) = {y : ∃x∈P(k)(v) ‖x − y‖ < R2(N)}.

Note that P(k)(v) ⊆ P̂(k)(v).

Fig. 4. The darker areas are P(k)(v) for different values of k. The environment in the light-gray
area has negligible influence on the probability of hitting v.

Condition on the event B̄(θ,h), with h such that, by Lemma 4.13, P(B̄(θ,h)) =
1−N ξ(1).

For 0 ≤ k ≤ K and ω ∈ B̄(θ,h), we want to estimate

V (k) = Eω,ω
[
[X(1)] ∩ [X(2)] ∩ P(k)(v)

]
.

For k = 0,
V (0) ≤ Eω,ω

[
[X(1)] ∩ [X(2)] ∩ P(0, N)

]
≤ R2(N).
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For k > 0,

V (k) =
∑

x∈P(k)(v)
[P zω(x is visited)]2

≤

∑
x∈P(k)(v)

[ ∑
y: ‖y−x‖<R(N)

P zω(XT〈y,e1〉
= y)

]2
+N−ξ(1)

≤ R(N)2d
∑

y∈P̂(k)(v)

[P zω(XT〈y,e1〉 = y)]
2
+N−ξ(1)

≤ R2(N)
∑

y∈P̂(k)(v)

Rh(N)N
2(1−θ)(1−d) (4.41)

≤ Rh+1(N)N
2((d+1)/2+(1−θ)(1−d))2−k[(d+1)/2]

where the inequality (4.41) follows from the fact that ω ∈ B̄(θ,h)(N).
As before, we now use the same filtration {Fi} as in the proof of Lemma 4.11, and

consider the martingale Mi = E[P zω(XTN2+V
= v;AN ) |Fi]. Again, in order to use

Lemma 4.8, we need to bound Ui = ess sup(|Mi − Mi−1| |Fi−1). Let x be such that
ωx is measurable with respect to Fi but not with respect to Fi−1. Then Ui = N−ξ(1) if
x /∈ F(v), while if x ∈ F(v), then

Ui ≤ R(n)E[P zω(x is hit) |Fi−1]D(N2
+ V − 〈x, e1〉)

where D(n) is the maximal first derivative of the annealed distribution at distance n. By
Lemma 4.2, D(N2

+ V − 〈x, e1〉) ≤ CN
−d2kd/2 for x ∈ P(k)(v). Therefore,

U = ess sup
(∑

i

U2
i

)
≤ C

K∑
k=0

V (K)N−2d2kd+N−ξ(1)

≤ CRh+1(N)N
−2d
+CRh+1(N)N

2((d+1)/2+(1−θ)(1−d))−2d
K∑
k=1

2kd−k(d+1)/2
+N−ξ(1)

≤ CRh+1(N)(N
−2d
+N3−3d+2(d−1)θ2K(d−1)/2)

≤ CRh+1(N)(N
−2d
+N2−2d+2(d−1)θV −(d−1)/2) ≤ CN2−2dV −(d−1)/6+ε

for small enough ε.
Therefore, using Lemma 4.8, with probability 1−N−ξ(1),∣∣E[P zω(XTN2+V

= v;AN ) |G]− P[XT
N2+V
= v;AN ]

∣∣ ≤ N1−dV (1−d)/6.

A simple union bound coupled with the fact that P(AN ) = N−ξ(1) completes the proof
of the lemma. ut

Lemma 4.15. Assume the assumptions 1–3 from page 136. For every 0 < θ ≤ 1 let
D(θ)(N) ⊆ � be the event that for every z ∈ P̃(0, N) and every cube Q of side length
Nθ which is contained in ∂+P(0, N),

|P zω(XT∂P(0,N) ∈ Q )− Pz(XT∂P(0,N) ∈ Q )| ≤ N (θ−1)(d−1)−θ d−1
d+1 . (4.42)

Then P(D(θ)(N)) = 1−N−ξ(1).
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Proof. Take 3
4θ < θ ′ < θ and V = [N8θ ′/(d+1)]. Then by Lemma 4.14 we know that

P(B(N, V )) = 1− N−ξ(1). As before, all we need to show is that B(N, V ) ⊆ D(θ)(N).
The way we do this will be completely identical to the last step of the proof of Lemma
4.12. Let ω ∈ B(N, V ), and let Q be a cube of side length Nθ which is contained in
∂+P(0, N). Let x be the center of Q, and let x′ = x + Vϑ/〈ϑ, e1〉.

Let Q(1) and Q(2) be d − 1-dimensional cubes that are contained in HN2+V and
centered at x′, of side length Nθ

− R3(N)
√
V and Nθ

+ R3(N)
√
V respectively. Then,

on B(N, V ), for i = 1, 2,

|E[P zω(XTN2+V
∈ Q(i)) |G]− P[XT

N2+V
∈ Q(i)]| ≤ |Q(i)

|N1−dV (1−d)/6. (4.43)

In addition, exactly as in the proof of Lemma 4.12,

Pz(XT
V+N2 ∈ Q

(1)) < Pz(XT
N2 ∈ Q)+N

−ξ(1), (4.44)

Pz(XT
V+N2 ∈ Q

(2)) > Pz(XT
N2 ∈ Q)−N

−ξ(1), (4.45)

E[P zω(XTV+N2 ∈ Q
(1)) |G] < P zω(XTN2 ∈ Q)+N

−ξ(1), (4.46)

E[P zω(XTV+N2 ∈ Q
(2)) |G] > P zω(XTN2 ∈ Q)−N

−ξ(1). (4.47)

Therefore, for ω ∈ B(N, V ),

|P zω(XT∂P(0,N) ∈ Q )− Pz(XT∂P(0,N) ∈ Q )|

≤ (|Q(1)
| + |Q(2)

|)N1−dV (1−d)/6 + C(|Q(2)
| − |Q(1)

|)N1−d
+N−ξ(1)

≤ C(N (1−θ)(1−d)V (1−d)/6 + R3(N)N
(1−d)+(d−2)θ

√
V ).

The lemma follows from the choice of V . ut

Proof of Proposition 4.5. The proposition follows from Lemmas 4.11 and 4.15. ut

4.4. Sums of approximate gaussians

The purpose of this subsection is to prove Lemma 4.16 below. Let D(N) be the annealed
distribution starting from zero of XT∂P(0,N) conditioned on ∂+P(0, N).

Lemma 4.16. Assume the assumptions 1–3 from page 136. Let 0 < λ < 1 and n be so
that n < λ−1. Let K be so that N > K ≥ 1. Let h ≥ 5. Assume further that N > K4

and N > λ−4, and that λN > 2KnRh+1(N). Let {Xi}ni=1 be random variables such
that for every i, conditioned on X1, . . . , Xi−1, the distribution of Xi is (λ,K)-close to
D(N). Let S =

∑n
i=1Xi . Then the distribution of S is (λRh+1(N), 2nKRh+1(N))-close

to D(N
√
n).

Remark. We need the assumptions 1–3 because they give us some control over the dis-
tribution D(N).

We use the following simple fact, which follows from the decomposition of the an-
nealed RWRE into regenerations.
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Claim 4.17. Assume the assumptions 1–3 from page 136. For j > 1, let D̂(j) be the
convolution of D(N) and D(N

√
j − 1). Let U ∼ D̂(j). Then U can be represented as

U = Û + U ′ with Û ∼ D(N
√
j) and for every k,

P(‖U ′‖ > k) < Ce−ck
γ

+N−ξ(1) (4.48)

for some constants C and c. In particular, there exists some constant C, independent ofN
and j , such that

‖E(U ′)‖ ≤ E(‖U ′‖) < C. (4.49)

Proof. (4.49) follows immediately from (4.48) (in order to handle the N−ξ(1) error, note
that U ′ is bounded by 3NR5(N)), and therefore we shall only prove (4.48).

We will define a coupling between a random variable U which is approximately D̂(j)
distributed and a random variable Û which is approximately D(N

√
j) distributed such

that
P(‖U − Û‖ > k) < Ce−ck

γ

+N−ξ(1).

To construct the coupling, we define an ensemble L = {U,T} where U is a positive
integer, and T is a nearest neighbor path of length U, taking values in Zd and starting at 0.

Let {Ln = {Un,Tn}}∞n=1 be i.i.d. ensembles such that U1 is sampled according to the
annealed distribution of τ2 − τ1, and the path T1 is distributed according to the annealed
distribution of Xτ1+· −Xτ1 , run up to time τ2 − τ1 and conditioned on τ2 − τ1 = U1.

Additionally, define L̂1 = {Û1, T̂1} and L̂2 = {Û2, T̂2} to be two i.i.d. ensembles such
that Û1 is sampled according to the annealed distribution of τ1 and T̂1 is distributed ac-
cording to the annealed distribution of X., run up to time τ1 and conditioned on τ1 = U1.
In addition, we require independence of L̂1 and L̂2 and {Ln}∞n=1.

In other words, L̂1 and L̂2 are distributed according to the annealed distribution of the
first regeneration slab, and {Ln} are distributed according to the annealed distribution of
regeneration slabs that are not the first one.

We now construct paths from the ensembles we defined. The choice of the distribution
of the ensembles will guarantee that the paths are distributed according to the annealed
RWRE distribution. The variables U and Û will be taken to be certain hitting locations of
these paths, and the fact that U and Û will be built from the same ensembles will make it
easy for us to estimate the difference U − Û .

Let 0n = T̂1(Û1)+
∑n
k=1 Tk(Uk), and let T1 = max(h : 〈e1, 0h〉 < N2j). We take

Û = 0T1 + TT1+1(min(i : 〈e1,TT1+1(i)+ 0T1〉 = N
2j)).

Let T2 = max(h : 〈e1, 0h〉 < N2(j − 1)), and

V1 = 0T2 + TT2+1
(
min(i : 〈e1,TT2+1(i)+ 0T2〉 = N

2(j − 1))
)
.

Let 0′n = T̂2(Û2)+ 0T2+n − 0T2 . Let T3 = max(h : 〈e1, 0
′

h〉 < N2), and

V2 = 0
′

T3
+ TT2+T3+1(min(i : 〈e1,TT2+T3+1(i)+ 0T2+T3〉 = N

2)).

We now take U = V1 + V2.
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By Lemmas 4.1 and 4.2(1), up to an error of N−ξ(1), the variables U and Û are
distributed (respectively) according to D̂(j) and D(N

√
j).

The difference U − Û is bounded by the sums of the radii of the regeneration slabs
L̂2, LT2 , and Lh for h between T2 + T3 and T1. Lemma 4.1 now gives us the desired
bound. ut

We also use the following lemma, which is nothing but a second order Taylor expansion.

Lemma 4.18. Let µ be a finite signed measure on Zd , and let f : Zd → R. Assume that
m, k, J , L in N and % ∈ Zd are such that:

(1) For every x, y such that x − y ∈ {±ei}di=1, we have |f (x)− f (y)| < m.
(2) For every x, y, z, w and 1 ≤ i, j ≤ d such that x − y = z − w = ei and x − z =

y − w = ej , we have |f (x) + f (w) − f (y) − f (z)| < k (note that if i = j then
this is the discrete pure second derivative, and if i 6= j it is the discrete mixed second
derivative).

(3)
∑
x µ(x) = 0.

(4)
∥∥∑

x xµ(x)
∥∥

1 < L.
(5)

∑
x ‖x − %‖

2
1|µ(x)| < J .

Then ∣∣∣∑
x

µ(x)f (x)

∣∣∣ ≤ Lm+ 1
2
Jk.

Proof. Since
∑
x µ(x) = 0 we have

∑
x µ(x)f (x) =

∑
x µ(x)(f (x) + c) for every c.

Therefore, without loss of generality we may assume that f (%) = 0. Let g : Rd → R be
the affine function such that g(%) = f (%) = 0 and g(%+ei) = f (%+ei) for i = 1, . . . , d .
Then |f (x) − g(x)| < 1

2k‖x − %‖
2
1 for x ∈ Zd . Note also that since

∑
x µ(x) = 0, we

get
∑
x(x − %)µ(x) =

∑
x xµ(x) and thus ‖

∑
x(x − %)µ(x)‖ < L. Therefore,∣∣∣∑

x

µ(x)f (x)−
∑
x

µ(x)g(x)

∣∣∣ ≤∑
x

|µ(x)| |f (x)− g(x)| ≤ 1
2Jk.

In addition, ∣∣∣∑
x

µ(x)g(x)

∣∣∣ = ∣∣∣g(∑
x

(x − %)µ(x)
)∣∣∣ ≤ Lm.

The lemma follows. ut

Proof of Lemma 4.16. For k = 1, . . . , n, conditioned on X1, . . . , Xk−1, the distribution
of Xk is (λ,K)-close to D(N). Therefore there exist variables {Yk}nk=1, playing the role
of Z0 in Definition 11, such that for every k, conditioned on X1, Y1, . . . , Xk−1, Yk−1, the
following hold:

•
∑
x |P(Yk = x)−D(N)(x)| ≤ λ.

• P(‖Yk −Xk‖ < K) = 1.
• E(Yk) = ED(N).
•
∑
x |P(Yk = x)−D(N)(x)| ‖x − ED(N)‖21 ≤ λN

2.
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What we need to show is that there exists a random variable Y ′ such that:

(1)
∑
x |P(Y

′
= x)−D(

√
nN)(x)| ≤ λRh+1(N).

(2) P(‖Y ′ − S‖ < 2nKRh+1(N)) = 1.
(3) E(Y ′) = ED(√nN).
(4)

∑
x |P(Y

′
= x)−D(

√
nN)(x)| ‖x − ED(

√
nN)‖

2
1 ≤ λnN

2Rh+1(N).

To this end, we let

S(j) =

n∑
k=j

Yk.

First we will show, using descending induction, that conditioned on X1, . . . , Xj−1,
we can represent S(j) as S(j) = Y (j) + Z(j) such that ‖Z(j)‖ ≤ (n − j)Rh(N) a.s. and
Y (j) ∼ D(N

√
n− j + 1)+D(j)2 whereD(j)2 is a signed measure such that ‖D(j)2 ‖ ≤ λ

(j)

with λ(n) = λ and λ(j) ≤ λ(j+1)
+

2
n−j

λR5(N) for j < n.
For j = n the statement clearly holds, with Z(n) = 0. We now assume that the

statement holds for j + 1, and prove it for j .
Let P be the joint distribution of Yj and Y (j+1) conditioned on X1, . . . , Xj−1. Let

H = Yj + Y
(j+1). For each z,

P(H = z) =
∑
x

P(Yj = x)P(Y (j+1)
= z− x |Yj = x).

Let D(j) be the convolution of D(N
√
n− j) and the P distribution of Yj . Then∑

z

|P(H = z)−D(j)(z)|

≤

∑
z

∑
x

P(Yj = x)
∣∣P(Y (j+1)

= z− x |Yj = x)−D(N
√
n− j)(z− x)

∣∣
=

∑
x,y

P(Yj = x)
∣∣P(Y (j+1)

= y |Yj = x)−D(N
√
n− j)(y)

∣∣
≤ ess sup ‖D(j+1)

2 ‖. (4.50)

As in Claim 4.17 let D̂(j) be the convolution ofD(N) andD(N
√
n− j). Then for given z,

by Lemmas 4.18 and 4.2(5)&(6),

|D̂(j)(z)−D(j)(z)| =
∑
x

D(N
√
n− j)(x)(P(Yj = z− x)−D(N)(z− x))

≤ λN2
·N−d−1(n− j)(−d−1)/2

= λN1−d(n− j)(−d−1)/2. (4.51)

Note that for z such that ‖z − ED̂(j)‖1 > R5(N)N(n − j)
1/2, both D̂(j)(z) and D(j)(z)

are bounded by

exp
(
−

(
‖z− ED̂(j)‖1

R1(N)

)2/
N2(d−1)(n− j)d−1

)
≤ e−R4(N). (4.52)
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From (4.50)–(4.52), we deduce that the distribution of H can be represented as D̂(j) +
D̄
(j)

2 with
‖D̄

(j)

2 ‖ ≤ ‖D
(j+1)
2 ‖ + λ(N)R5(N)(n− j)

−1.

By Claim 4.17, and again conditioned on X1, Y1, . . . , Xj−1, Yj−1, there exists Z′(j)
such that P(Z′(j)) > Rh(N)) < exp(−Rh−1(N)), and the distribution of H + Z′(j)
is D(N

√
n− j + 1)(j) + D̄(j)2 .

Let
H̄ (j) = H + Z′(j) · 1‖Z′(j)‖<Rh(N).

Then the distribution of H̄ (j) is D(N
√
n− j + 1)(j) + D̂(j)2 with

‖D̂
(j)

2 ‖ ≤ ‖D̄
(j)

2 ‖ + exp(−Rh−1(N)) ≤ ‖D
(j+1)
2 ‖ + 2λ(N)R5(N)(n− j)

−1.

We let
Z(j) = Z(j+1)

+ Z′(j) · 1‖Z′(j)‖<Rh(N)
and Y (j) = S(j) − Z(j). Then ‖Z(j)‖ ≤ (n − j)Rh(N) and the distribution of Y (j) is
D(N
√
n− j + 1)+D(j)2 ) where D(j)2 is a signed measure such that ‖D(j)2 ‖ ≤ λ

(j) with

λ(j) ≤ λ(j+1)
+

2R5(N)

n− j
λ.

We calculate the expectation of Y (1):

E(Y (1)) = E(S(1))− E(Z(1)) = nE(Y1)− E(Z
(1)) = nED(N) − E(Z

(1)).

Therefore, again by Claim 4.17,

‖E(Y (1))− ED(
√
nN)‖ ≤ Cn+ nRh(N) < nRh+1(N).

As in the proof of Corollary 4.6, we can find a variable U which is independent of all
of the variables we have seen so far, such that ‖U‖ ≤ nRh+1(N) + 1 almost surely and
E(U) = ED(

√
nN) − E(Y

(1)).

We define Y ′ = Y (1)+U . By the same calculation as in (4.20), we find that Y ′ satisfies
(1)–(3).

Thus, all that is left is to show that Y ′ also satisfies (4). To this end, let D2 be the
signed measure such that Y ′ ∼ D(

√
nN)+D2. We are interested in∑

x

|D2(x)| ‖x − ED(
√
nN)‖

2
1.

As a first step, we estimate

var(D2, i) :=
∑
z

〈z, ei〉
2D2(z)

for a unit vector ei with i 6= 1.
For x, y, z ∈ Zd , we write x̂, ŷ, ẑ for their projections on the ei axis.
Let W be a random variable distributed according to D(

√
nN). By Claim 4.17, there

exists another random variable W ′ such that W ′ ∼ D(N)?n (the n-fold convolution of
D(N)) and P(‖W −W ′‖ > nk) < Cn exp(−ck−γ ) for every k.
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By the definition of Y ′, we know that U ′ = Y ′ − S(1) satisfies ‖U ′‖ ≤ 2nRh+1(N).
In addition note that cov(Yj , Yk) = 0 for j 6= k, and for every j ,

|var(〈Yj , ei〉)− varD(N)(x̂)| =
∑
x

(x̂ − ED(N)(ẑ))
2(P(Yj = x)−D(N)(x))

≤

∑
x

(x̂ − ED(N)(ẑ))
2
|P(Yj = x)−D(N)(x)| ≤ λN2.

Therefore,

|var(〈S(1), ei〉)− var(〈W
′, ei〉)| = |E(〈S

(1), ei〉
2)− E(〈W ′, ei〉

2)|

≤

n∑
j=1

|var(〈Yj , ei〉)− varD(N)(x̂)| ≤ λnN
2. (4.53)

Now,

|var(〈Y ′, ei〉)− var(〈S
(1), ei〉)| = |var〈S

(1)
+ U ′, ei〉 − var〈S

(1), ei〉|

≤ 2 ess sup(‖U ′‖)
√
var(S(1))+ ess sup(‖U ′‖)2

≤ 2Cn3/2Rh+1(N)N + n
2Rh+1(N)

2
≤ 3Cn3/2Rh+1(N)N, (4.54)

and

|var(〈W, ei〉)− var(〈W
′, ei〉)|

≤ N2n2P(‖W −W ′‖ > nR5(N))+ 2nR5(N)
√
var(W ′)+ 2n2R5(N)

2

≤ Cn3/2R5(N)N. (4.55)

From (4.53)–(4.55) and the fact that E(Y ′) = E(W), we get

|var(D2, i)| =

∣∣∣∑
x

〈x, ei〉
2(D(
√
nN)(x)− P(Y ′ = x))

∣∣∣
= |E(〈W, ei〉

2)− E(〈Y ′, ei〉
2)| = |var(〈W, ei〉)− var(〈Y

′, ei〉)|

≤ λnN2
+ 4Cn3/2Rh(N)N ≤ 2λnN2. (4.56)

We now decompose the measure D2 into its positive and negative parts, D+2 and D−2 .
We need to bound∑

x

(x̂ − ED(
√
nN))

2
|D2| =

∑
x

(x̂ − ED(
√
nN))

2D+2 +
∑
x

(x̂ − ED(
√
nN))

2D−2 .

We know that∣∣∣∑
x

(x̂ − ED(
√
nN))

2D+2 (x)−
∑
x

(x̂ − ED(
√
nN))

2D−2 (x)

∣∣∣
=

∣∣∣∑
x

x̂2D+2 (x)−
∑
x

x̂2D−2 (x)

∣∣∣ = |var(D2, i)| ≤ 2λnN2. (4.57)

In addition, note that D−2 (x) ≤ D(
√
nN)(x) for all x, and therefore

D−2,n(x) < e
−(x−ED(

√
nN))

2/CnN2R1(N).
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Combining this with the fact that ‖D−2 ‖ ≤ ‖D2‖ ≤ λRh(N), we get∑
x

(x̂ − ED(
√
nN))

2D−2 ≤ R2(N)Rh(N)λnN
2. (4.58)

Thus, by (4.57) and (4.58),∑
x

(x̂ − ED(
√
nN))

2D+2 +
∑
x

(x̂ − ED(
√
nN))

2D−2

≤ 2
∑
x

(x̂ − ED(
√
nN))

2D−2 +

∣∣∣∑
x

(x̂ − ED(
√
nN))

2D+2 −
∑
x

(x̂ − ED(
√
nN))

2D−2

∣∣∣
≤ CRhR2(N)(N)λnN

2.

Therefore,∑
x

‖x − ED(
√
nN)‖

2
1|D2(x)| ≤ (d − 1)

∑
x

‖x − ED(
√
nN)‖

2
2|D2(x)|

= (d − 1)
d∑
i=2

∑
x

〈x − ED(
√
nN), ei〉

2
|D2(x)| ≤ (d − 1)2Rh(N)R2(N)λnN

2

≤ Rh+1(N)λnN
2,

proving (4). ut

5. Reduction to quenched return probabilities

5.1. Basic calculations

In this subsection we repeat a calculation from [9]. Our main goal is to control the prob-
ability of the event τ1 > u. To this end, we take L = d(log u)d/γ e and notice that

P(τ1 > u) ≤ P(τ1 > TL)+ P(TL > u) ≤ e−(log u)d
+ P(TL > u),

where the last inequality follows from (4.1). Let BL := [−L,L]× [−L2, L2]d−1. Then,
again by (4.1), P(TL 6= T∂BL) ≤ e−(log u)d , and thus it is sufficient to show that

P(T∂BL > u) < Ce−c(log u)α

for appropriate constants C and c.
On the event {T∂BL > u}, there exists a point x ∈ BL that is visited more than u/|BL|

times before the walk leaves BL. Therefore, it is sufficient to show that

P(∃x∈BL T
u/|BL|
x < T∂BL) < Ce−c(log u)α , (5.1)

where T kx is defined to be the kth hitting time of x. Let G ⊆ � be an event. Then

P(∃x∈BL T
u/|BL|
x < T∂BL) ≤ P(G

c)+ sup
ω∈G

Pω(∃x∈BL T
u/|BL|
x < T∂BL),
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and

Pω(∃x∈BL T
u/|BL|
x < T∂BL) ≤

∑
x∈BL

P 0
ω(T

u/|BL|
x < T∂BL)

=

∑
x∈BL

P 0
ω(Tx < T∂BL)P

x
ω (T

u/|BL|−1
x < T∂BL) ≤

∑
x∈BL

P xω (T
u/|BL|−1
x < T∂BL).

Note that due to the strong Markov property,

P xω (T
u/|BL|−1
x < T∂BL) = [P xω (Tx < T∂BL)]

u/|BL|−1,

and therefore (5.1) will follow if we find an event G such that P(Gc) < 1
2e
−(log u)α and

for some ε > 0, every ω ∈ G and every x,

P xω (T∂BL < Tx) > uε−1. (5.2)

In turn, we may replace (5.2) by

P xω (T∂B2L(x) < Tx) > uε−1, (5.3)

where B2L(x) is the cube of the same dimensions as B2L, centered at x. The cube B2L(x)

is slightly more convenient than BL because now the condition is translation invariant
with respect to the choice of x.

5.2. Definition of the event G

We now define the event G, and show that P(Gc) < 1
2e
−(log u)α . In Sections 6–8 we will

show that (5.3) holds for every ω ∈ G.
Let ε > 0 be such that

2dε < d − α. (5.4)

Fix ψ > 0 such that
ψ ≤

γ ε

30d
(5.5)

and χ > 0 such that

χ <
ψ2

2
·
d − 1

2(d + 1)
. (5.6)

We say that a basic block P(z,N) is good with respect to the environment ω if the as-
sertion of Proposition 4.5 holds for every block of size at least Nχ that is contained in
P(z,N), with θ = ψ/2. Otherwise, we say that P(z,N) is bad. We define our scales
N1, . . . , Nι as follows:

(1) N1 := dLψe.
(2) ρk := χ/2+ χ/2k .
(3) Nk+1 := Nk · dLρke.
(4) ι is defined to be the largest k such that N2

k < 2L.
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For every k = 1, . . . , ι, we let B2L(k) be the set of all z ∈ LNk such that P(z,Nk) ∩ B2L
6= ∅. We now define the event G: We say that an environment ω is in G if for every
k = 1, . . . , ι,

|{z ∈ B2L(k) : P(z,Nk) is not good with respect to ω}| < (log u)α+ε . (5.7)

Lemma 5.1. For u large enough, P(G) ≥ 1− 1
2e
−(log u)α .

Proof. Let

Jk := |{z ∈ B2L(k) : P(z,Nk) is not good with respect to ω}|.

First we note that

P(Gc) ≤

ι∑
k=1

P [Jk ≥ (log u)α+ε],

and ι is bounded. Now by Proposition 4.5 and Corollary 4.6, for given k and z ∈ B2L(k),

pk := P(P(z,Nk) is not good) = N−ξ(1)k = o(|B2L|
−1).

By Lemma 3.1, we can represent Jk as Jk = J
(1)
k + · · · + J

(9d )
k , and

J
(h)
k ∼ Bin(pk,Dk)

with Dk < |B2L|. Thus for u large enough, J (h)k is binomial with expected value less
than 1. Therefore, again assuming that u is large enough,

P

[
J
(h)
k >

(log u)α+ε

9d

]
< exp

(
−
(log u)α+ε

9d

)
.

Hence,

P(Gc) ≤ P
( ι⋃
k=1

9d⋃
h=1

J
(h)
k

)
≤ 9d ι exp

(
−
(log u)α+ε

9d

)
≤

1
2e
−(log u)α . ut

6. The auxiliary walk

Fix an environment ω ∈ G. In this section we define a new random walk {Yn} on the
environment ω, whose law is different from that of the quenched random walk {Xn} on ω.
However, we show an obvious relation between the laws of {Yn} and {Xn} that we will
exploit in Sections 7 and 8 in order to prove (5.3).

We first give an informal description of {Yn} in Subsection 6.1, then define it properly
in Subsection 6.2, and finally collect some useful facts about it in Subsection 6.3.
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6.1. Informal description of {Yn}

{Yn} is a quenched random walk on ω, which is forced to “behave well” in a number of
different ways, which we list below.

(1) Once the walk {Yn} reaches the center of certain basic blocks, it is only allowed to
exit them through their right boundaries.

(2) If the walk is in a bad block, then once it exists in the block, it is forced to make
a number of steps on the right boundary of the block that will force the eventual
exit distribution to be similar to the annealed distribution. We use Lemma 4.16 to
control the number of forced steps needed. When the walk exits a good basic block,
no such correction is necessary, because the distribution is already close enough to
the annealed one.

(3) Upon leaving the origin the walk is forced to make a number of steps to the right.
This together with (1) ensures that {Yn} leaves B2L before returning to the origin.

The resulting {Yn} is a random walk that, most of the time, behaves locally similarly to
the quenched random walk, but behaves globally similarly to the annealed random walk.
We will quantify and then use those similarities in order to control the behavior of the
quenched walk.

6.2. Definition of {Yn}

The process {Yn} is a nearest neighbor random walk, which starts at 0 and stops when it
reaches ∂+B2L. Below we describe its law.

We first need some preliminary definitions. For all j = 1, 2, . . . and k = 1, . . . , ι, we
let Uk(j) be the layer

Uk(j) = HjN2
k
= {x : 〈x, e1〉 = jN

2
k }.

We define T Yk (j) = inf{n : Yn ∈ Uk(j)}.
For all x ∈ B2L and k, we define z(x, k) as follows: if 〈x, e1〉 is divisible by N2

k , then
z(x, k) is a point z ∈ LNk such that 〈x, e1〉 = 〈z, e1〉 and x ∈ P̃(z,Nk). If more than one
such point exist, then we choose one according to some arbitrary rule. If 〈x, e1〉 is not
divisible by N2

k , then we take z(x, k) to be 0.
For all x ∈ B2L and k, we define P(k)(x) = P(z(x, k),Nk).
For every x ∈ B2L, we define

k(x) = max{k ≤ ι : 〈x, e1〉 = 〈z(x, k), e1〉 and P(z(x, k),Nk) is good}, (6.1)

and k(x) = 0 if no such k exists.
In addition, for a random variable X, a distribution D and a number λ < 1, we define

a (λ,D)-companion of X as follows: Let ν be the distribution of X, and let K be the
smallest number such that ν is (λ,K)-close to D. Let µ be an arbitrarily chosen coupling
of three variables Z0, Z1, Z2 demonstrating, as in Definition 11, that ν is (λ, k)-close
to D. The roles of the variables Z0, Z1, Z2 are exactly as in Definition 11. In particular,
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Z1 ∼ D and Z2 ∼ ν. We say that a variable Y is a (λ,D)-companion of X if the joint
distribution of X and Y is the same as the µ-joint distribution of Z2 and Z0. For all X,
λ and D we can construct such a companion: For every x, on the event {X = x}, we
sample Y according to the µ-distribution of Z0 conditioned on the event {Z2 = x}. Simi-
larly, we can define the (λ,D)-companion of X conditioned on a σ -algebra F : We work
with the conditional distribution of X given F instead of the (unconditional) distribution,
and proceed as before. Note that ‖Y −X‖ < K and that by Claim 4.7 the distribution of
Y is (λ, 0)-close to D.

We now simultaneously define the walk {Yn}, its accompanying sequence of times
{ζm}, and random variables βk,j . The precise definition of the latter is postponed to the
end of the subsection. However, we make the following comment on {βk,j } at this point:
For every j and k, a.s. 〈βk,j , e1〉 = 0.

For j ≤ N2
1 , we define Yj = je1. In addition, ζ0 = 0 and ζ1 = N

2
1 .

Given ζ0, . . . , ζn and {Y` : ` = 0, . . . , ζn}, we define x′ = Yζn . Let k′ be the largest k
such that x′ ∈ Uk(j) for some j . Then we let x = x′ +

∑k′

k=1 βk,j (k), where j (k) is the
value of j such that x′ ∈ Uk(j). We let κ = ‖x′−x‖1+2 and choose {Yζn , . . . , Yζn+κ−2}

to be a shortest path from x′ to x. We then take Yζn+κ−1 = x + e1 and Yζn+κ = x. Let
ζ ′n = ζn + κ .

Let k = k(x). If k(x) > 0 then {Y` : ` = ζ ′n, . . . , T∂P(k)(x)} is chosen to be
a random walk starting at x on the random environment ω conditioned on the event
{T∂P(k)(x) = T∂+P(k)(x)} and ζn+1 = T∂+P(k)(x). Conditioned on ω, ζ ′n and x, the path
{Y` : ` = ζ ′n, . . . , T∂P(k)(x)} is chosen independently of the path prior to ζ ′n and of
{βk,j (k) : k and j are such that jN2

k ≤ 〈x, e1〉}. If k = 0 then ζn+1 = ζ ′n + N
2
1 and

for ζ ′n < j ≤ ζn+1, we take Yj = x + (j − ζ ′n)e1.
We define x′n = Yζn and xn = Yζ ′n . Note that for every n, both 〈xn, e1〉 and 〈x′n, e1〉

are divisible by N2
1 (remember that 〈βk,j , e1〉 = 0).

All that is now left is to define βk,j . First β1,1 is simply defined to be the (0,D(N1))-
companion of the (deterministic) variable YN2

1
.

For other values of k and j , we first list two conditions under which βk,j is zero.

• If there exist no n such that ζn = T Yk (j − 1) then βk,j = 0.
• Otherwise, let n be such that ζn = T Yk (j − 1), and let x = Yζ ′n . If P(k)(x) is good, then
βk,j = 0.

Now assume that neither of these conditions holds. For k = 1, . . . , ι let λk =
L−χR5+k(L).

We define βk,j recursively—we use the values of {βk′,j ′ : k′ < k, j ′ = jN2
k /N

2
k′
} in

the definition of βk,j .
Let x = Yζ ′n , where as before n is such that ζn = T Yk (j − 1), and for k′ < k let j (k′)

be the unique value satisfying Uk′(j (k′)) = Uk(j). Let

X = YT Yk (j)
− x +

k−1∑
k′=1

βk′,j (k′).
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Recall the definition ofD(N) from page 154. ThenD(Nk) is the annealed distribution
of XTk(j) − x for a walk starting at x, conditioned on exiting P(x,Nk) through the front.

We now take Ẑ to be an (arbitrarily chosen) (λk,D(Nk))-companion of X, condi-
tioned on {Y` : ` = 1, . . . , ζ ′n} and ω, and let βk,j = Ẑ −X.

Thus we have defined the process {Yn}.

Remark 1. Note that in our definition, if βk,j 6= 0 then the distribution of Ẑ = X+ βk,j
is (λk, 0)-close to D(Nk).

6.3. Basic properties of {Yn}

We prove a few facts regarding the process {Yn} which we will use in Sections 7 and 8.

Lemma 6.1. {Yn} reaches ∂BL before returning to the origin.

Proof. By the definition, U1(1) is reached before returning to the origin. Then for all n, if
x = Yζn , then P(k(x))(x) is contained in the positive half-space, and {Yn} exits P(k(x))(x)
through ∂+P(k)(x). Therefore {Yn} cannot return to the origin. ut

Lemma 6.2. For every k and j , with probability 1,

βk,j < L4ψ . (6.2)

Proof. For k = 1, the size of the block P(0, N1) is less than L4ψ , and therefore for
every j , we have β1,j < L4ψ .

Now assume that k ≥ 1. In this case, we assume that there exists n such that ζn =
T Yk (j − 1), because otherwise βk,j = 0. Let i be such that Uk(j − 1) = Uk−1(i).

Let x = Yζ ′n . If P(k)(x) is good, then βk,j = 0. Therefore we may assume that
P(k)(x) is not good. In this case there exist n0 = n, n1, . . . , nm such that m satisfies
Uk(j) = Uk−1(i +m) and for h = 0, 1, . . . , m, we have ζnh = T

Y
k−1(i + h).

For 1 ≤ h < m, let Xh = Yζ ′nh − Yζ
′
nh−1

, and let Xm = Yζ ′nm − Yζ ′nm−1
− βk,j . We now

claim that for every 1 ≤ h ≤ m, conditioned on X1, . . . , Xh−1, the distribution of Xh is
(λk−1, N

ψ/2
k−1)-close toD(Nk−1). Indeed, ifP(k−1)(Yζ ′nh−1

) is good, then this claim follows
from Corollary 4.6. Otherwise, as in Remark 1, the distribution of Xh is (λk−1, 0)-close
to D(Nk−1) (and in particular (λk−1, N

ψ/2
k−1)-close to D(Nk−1)).

Therefore, by Lemma 4.16, the distribution of

YT Yk (j)
− x +

k−1∑
k′=1

βk′,j (k′) =

m∑
h=1

Xh

is (λk, Rk+6(L)N
ψ/2
k−1N

2
k /N

2
k−1)-close to D(Nk). Hence, with probability 1,

βk,j ≤ N
ψ/2
k−1 ·

Rk+6(L)N
2
k

N2
k−1

≤ L4ψ . ut
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Lemma 6.3. For j and k, if there exists n such that xn ∈ Uk(j), then at least one of the
following holds:

(1) There exists j ′ such that Uk(j) = Uι(j ′).
(2) There exist k′ and j ′ such that Uk(j) = Uk′(j ′) and xn−1 ∈ Uk′(j

′
− 1) and xn−1 is

contained in a block P(z,Nk′+1) such that z ∈ LNk′+1
and P(z,Nk′+1) is not good.

(3) j ≤ (Nk+1/Nk)
2.

Proof. Assume that xn ∈ Uk(j). Let k′ = k(xn−1). If k′ = 0 then case (2) holds. Assume
k′ > 0. Then the intersection of Uk(j) and ∂+P(k′)(xn−1) is not empty. Therefore, by the
definition of k(x), there is some j ′ such that Uk(j) = Uk′(j ′) and xn−1 ∈ Uk′(j

′
− 1),

and one of the following occurs:

• k′ = ι.
• There exists z ∈ LNk′+1

such that 〈z, e1〉 = 〈xn−1, e1〉, and P(k′+1)(xn−1) is not good.
• No z ∈ LNk′+1

exists with 〈z, e1〉 = 〈xn−1, e1〉.

In the first two cases, the lemma holds. Thus we assume that the last case holds.
Then there exists n′ < n − 1 such that 〈xn′ , e1〉 = N2

k′+1b〈xn−1, e1〉/N
2
k′+1c. Now,

xn−1 is in P(k′+1)(xn′). If P(k′+1)(xn′) is not good, then xn−1 is contained in a block
P(z,Nk′+1) such that z ∈ LNk′+1

and P(z,Nk′+1) is not good. If P(k′+1)(xn′) is good and
〈xn′ , e1〉 6= 0 then ζn′+1 is the exit time from P(k′+1)(xn′), contradicting the assumptions.
If 〈xn′ , e1〉 = 0, then j ≤ (Nk+1/Nk)

2. ut

We now let M be the number of stopping times ζn in the definition of {Yn}.

Lemma 6.4. Let [Y ] be the set of points visited by {Yn}. For every k = 1, . . . , ι, let

Qk({Yn}) = #{z ∈ LNk : [Y ] ∩ P(z,Nk) 6= ∅ and P(z,Nk) is bad}.

Then

M ≤
2L
N2
ι

+ L2χ
ι∑

k=1

Qk({Yn})+ ιL
2χ
≤ L2χ

·

(
ι+ 2+

ι∑
k=1

Qk({Yn})
)
.

Proof. This follows from Lemma 6.3. There are at most 2L/N2
ι stopping times that are

caused by reaching the end of an Nι block, ιL2χ stopping times that are caused by the
beginning and at most L2χ∑ι

k=1Qk({Yn}) stopping times that are caused by visiting
blocks that are not good. ut

We now draw a connection between the walks {Yn} and {Xn}.

Lemma 6.5. Let υ = (v1, . . . , vNυ ) (Nυ is the length of the path υ) be a nearest-
neighbor path starting at the origin, never returning to the origin, and ending at ∂+BL.
For every k = 1, . . . , ι, let

Qk(υ) = #{z ∈ LNk : υ ∩ P(z,Nk) 6= ∅ and P(z,Nk) is bad},
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and let Q(υ) = L2χ
· (ι+ 2+

∑ι
k=1Qk(υ)). Then

Pω(Xj = vj for all j < Nυ)

Pω(Yj = vj for all j < Nυ)
≥

1
2
ηQ(υ)·(L

4ψ
+2), (6.3)

where η is the ellipticity constant, as in (1.1).

Proof. First note that due to uniform ellipticity,

Pω(Xj = vj for all j < Nυ) > 0

for every υ. Therefore without loss of generality we can restrict ourselves to considering
only υ’s such that

Pω(Yj = vj for all j < Nυ) > 0.

For such υ, we define the sequences of times ζn and ζ ′n in a fashion very similar to the def-
inition in the construction of the Y -process: ζ0 = ζ

′

0 = 0 and ζ1 = N
2
1 . Given ζ0, . . . , ζn

and ζ ′0, . . . , ζ
′

n−1, let x′n = υζn . Let ζ ′n be the smallest ` > ζn such that 〈υ`−1, e1〉 >

〈x′n, e1〉, and let xn = υζ ′n . Let k = k(xn). If k > 0, then we let ζn+1 = T∂+P(k)(xn)(υ).
Otherwise, ζn+1 = ζ

′
n +N

2
1 . Then

Pω(Yj = vj for all j < Nυ)

≤

∏
n: k(xn)>0

P xnω (X` = ν`+ζ ′n; ` = 1, . . . , ζn+1 − ζ
′
n | T∂P(k)(xn) = T∂+P(k)(xn)),

and

Pω(Xj = vj for all j < Nυ)

≥

∏
n: k(xn)>0

P xnω (X` = ν`+ζ ′n; ` = 1, . . . , ζn+1 − ζ
′
n | T∂P(k)(xn) = T∂+P(k)(xn))

·

∏
n: k(xn)>0

P xnω (T∂P(k)(x) = T∂+P(k)(xn)) (6.4)

·

∏
n

η‖x
′
n−xn‖1+2

·

∏
n: k(xn)=0

ηL
2ψ
. (6.5)

The first inequality follows from the fact that inside the good blocks, {Yn} performs
quenched random walk on the environment ω. For the second inequality, the first term
and (6.4) count the probability of all steps in the good blocks. In addition, at each stop-
ping time, the process {Xn} has to walk from x′n to xn, and when k(xn) = 0 it also needs
to traverse through an N1 block. In (6.5) we bound the probability of all of these steps by
ellipticity.

By Proposition 4.5, the product in (6.4) is no less than 1/2. By the definitions of k(x)
and βk,j , by Lemma 6.2, and by uniform ellipticity with constant η, the product in (6.5)
is bounded below by ηQ(υ)·(L

4ψ
+2). Therefore,

Pω(Xj = vj for all j < Nυ)

Pω(Yj = vj for all j < Nυ)
≥

1
2
ηQ(υ)·(L

4ψ
+2). ut
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For any k and j , we define T ′Yk (j) as follows: If there exists n such that ζn = T Yk (j), then
T ′Yk (j) = ζ

′
n. Otherwise, T ′Yk (j) = T

Y
k (j).

Lemma 6.6. Conditioned on {Y` : ` ≤ T ′Yk (j − 1)}, the distribution of YT ′Yk (j) −

YT ′Yk (j−1) is (λι, 2L4ψ )-close to D(Nk).

Proof. We look at two different cases: If P(k)(YT ′Yk (j−1)) is good, then the conclusion
follows from Corollary 4.6. Otherwise, it follows from the definition of βk,j . ut

From Lemma 6.6, we get the following useful corollary.

Corollary 6.7. Assume that u is large enough. Condition on {Y` : ` ≤ T ′Yk (j − 1)}, and
let Ȳ = YT ′Yk (j−1) + E(XT

N2
k

). For every x ∈ Uk(j) such that ‖x − Ȳ‖ < 4Nk ,

Pω(‖YT ′Yk (j) − x‖ < Nk |Y`, ` ≤ T
′Y
k (j − 1)) > ρ (6.6)

for some constant ρ > 0.

Proof. By Lemma 6.6, the quenched distribution of YT ′Yk (j) − YT ′Yk (j−1) conditioned on

the history of the walk is (λι, 2L4ψ )-close to the annealed distribution D(Nk). Therefore,

Pω(‖YT ′Yk (j) − x‖ < Nk |Y`, ` ≤ T
′Y
k (j − 1)) > D(Nk)(y : ‖y − x‖ < Nk/2)− λι.

By Lemma 4.4, D(Nk)(y : ‖y − x‖ < Nk/2) is bounded away from zero. On the other
hand, λι goes to zero as L goes to infinity. The corollary follows. ut

Lemma 6.8. Conditioned on {Y` : ` ≤ T ′Yk (j − 1)}, the (quenched) probability that
{Y`}`≥T ′Yk (j−1) exits P(k)(YT ′Yk (j−1)) through ∂+P(k)(YT ′Yk (j−1)) is 1− L−ξ(1).

Proof. We denote by E the event whose probability we are trying to estimate. If
P(k)(YT ′Yk (j−1)) is good, then the conclusion follows by the definition of a good block.

Therefore we may assume that P(k)(YT ′Yk (j−1)) is a bad block. In this case we use in-
duction on k. For k = 1 the conclusion follows immediately from the definition of the
auxiliary walk on bad N1 blocks.

Now assume k > 1. We assume that the conclusion holds for YT ′Y
k−1(h)

for every h (if

the block P(k−1)(YT ′Y
k−1(h−1)) is good, then we already proved it; if the block is bad then

this is the induction hypothesis).
Let l be such that lN2

k−1 = (j − 1)N2
k , and let m be such that (l + m)N2

k−1 = jN
2
k

For h = 1, . . . , m, let
Ih = YT ′Y

k−1(l+h)
− YT ′Y

k−1(l+h−1).

Let A be the event that for every h = 1, . . . , m, the walk {Y`} leaves P(k−1)(YT ′Y
k−1(j−1))

through its front. Then by the induction hypothesis, Pω(A |Y`, ` = 1, . . . , T ′Yk (j−1)) =
1− L−ξ(1).
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Now,

Pω(E
c
|Y`, ` = 1, . . . , T ′Yk (j − 1))

≤ Pω(A
c
|Y`, ` = 1, . . . , T ′Yk (j − 1))+ Pω(Ec |A;Y`, ` = 1, . . . , T ′Yk (j − 1)),

and

Pω

(
Ec
∣∣∣∣ A,

Y`, ` = 1, . . . , T ′Yk (j − 1)

)
≤ Pω

(
∃1≤h≤m

∥∥∥∥ h∑
i=1

Ii − hN
2
k−1

ϑ

〈ϑ, e1〉

∥∥∥∥ > 1
2
NkR5(Nk)

∣∣∣∣ A,

Y`, ` = 1, . . . , T ′Yk (j − 1)

)

≤

m∑
h=1

Pω

(∥∥∥∥ h∑
i=1

Ii − hN
2
k−1

ϑ

〈ϑ, e1〉

∥∥∥∥ > 1
2NkR5(Nk)

∣∣∣∣ A,

Y`, ` = 1, . . . , T ′Yk (j − 1)

)
.

(6.7)

It is sufficient to show that for every h, the probability in (6.7) is L−ξ(1).
Fix h. Conditioned on A, the variable Ji = Ii − N

2
k−1ϑ/〈ϑ, e1〉 is bounded by

2Nk−1R5(Nk−1). Furthermore, the quenched expectation of Ji conditioned onA, J1, . . . ,

Ji−1 and Y`, ` = 1, . . . , T ′Yk (j − 1), is bounded by Nψ/2
k−1 (see (5.5)).

Therefore, using the Azuma–Höffding inequality, we get

Pω

(
Ec
∣∣∣∣ A,

Y`, ` = 1, . . . , T ′Yk (j − 1)

)
≤ C exp

(
−N2

kR5(Nk)
2

8N2
k−1R5(Nk−1)2 · (Nk/Nk − 1)2

)
= C exp

(
−R5(Nk)

2

8R5(Nk−1)2

)
≤ C1 exp

(
−C2 exp([log(ρ1 + · · · + ρk−1 + ρk)− log(ρ1 + · · · + ρk−1)][log logL]5)

)
= L−ξ(1),

where the last inequality follows from the definition of Nk , the definition of Rk(N), and
a first order Taylor approximation. ut

7. The random direction event

In this section we consider an eventW (w) which we call the random direction event. First
we construct it, and then show that the probability that W (w) occurs is more than uε−1/2.
Next we show some estimates on the hitting probabilities of the walk conditioned on the
occurrence of W (w). In the next section we will show that these estimates are sufficient
for proving (5.3), and thus Theorem 1.5.

7.1. Definition of W (w)

Let M = [(log u)1−ε], and for k = 1, . . . , ι let Ek = E0(XT∂P(0,Nk)
| T∂P(0,Nk) =

T∂+P(0,Nk)) be the annealed expectation of the point of exit of P(0, Nk). Let A1 = 1,
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and for every k > 1, let Ak be the smallest integer such that AkN2
k > (M + Ak−1)N

2
k−1.

Note that Ak ≤ M .
For k = 1, . . . , ι and j > Ak , we define Bk(j) to be the event that {Yn} leaves

P(k)(YT ′Yk (j−1)) through ∂+P(k)(YT ′Yk (j−1)).

Fix w ∈ [−1, 1]d−1. For j > Ak we define the event W (w)
k (j) as follows:

W
(w)
k (j) = {‖YT ′Yk (j) − YT ′Yk (Ak)

− (j − Ak)Ek − w(j − Ak)Nk‖ < Nk}.

Then

W
(w)
k =

Ak+M⋂
j=Ak+1

[W (w)
k (j) ∩ Bk(j)],

and W (w) is defined to be the intersection

W (w)
=

ι⋂
k=1

W
(w)
k .

7.2. The probability of W (w)

In this subsection we bound from below the probability of the event W (w).

Lemma 7.1. (1) There exists some ρ > 0 such that for 1 ≤ k ≤ ι andAk < j ≤ Ak+M ,

Pω(W
(w)
k (j) |W

(w)
1 , . . . ,W

(w)
k−1,W

(w)
k (Ak + 1), . . . ,

W
(w)
k (j − 1),Bk(Ak + 1), . . . ,Bk(j − 1)) > ρ.

(2) For 1 ≤ k ≤ ι and Ak < j ≤ Ak +M ,

Pω(Bk(j) |W (w)
1 , . . . ,W

(w)
k−1,W

(w)
k (Ak + 1), . . . ,

W
(w)
k (j − 1),Bk(Ak + 1), . . . ,Bk(j − 1)) = 1− o(1).

Proof. For (1), conditioned onW (w)
1 ∩ · · · ∩W

(w)
k−1 ∩W

(w)
k (Ak + 1)∩ · · · ∩W (w)

k (j − 1),
Bk(Ak + 1), . . . ,Bk(j − 1), we get

‖YT ′Yk (j−1) − YT ′Yk (Ak)
− (j − 1)Ek − w(j − 1)Nk‖ < Nk.

Therefore,
‖YT ′Yk (Ak)

+ jEk + wjNk − (YT ′Yk (j−1) + Ek)‖ < 4Nk.

By Corollary 6.7 and the definition of Wk(j), we get the conclusion of (1).
Part (2) follows from Lemma 6.8. ut

As a consequence of Lemma 7.1 and the choice of M , we get the following lemma:

Lemma 7.2. The probability of W (w) is bounded from below by uε−1/2.
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7.3. Hitting probability estimates

In this subsection we bound from above the probability, conditioned on W (w), of a block
to be hit. We begin with a simple claim.

Claim 7.3. Fix k between 1 and ι, and let

Ak +M ≤ j ≤

(
Nk+1

Nk

)2

(Ak+1 +M).

Let z ∈ LNk ∩ Uk(j). Then∫
[−1,1]d−1

Pω({Yn} ∩ P(z,Nk) 6= ∅ |W (w)) dw ≤ (log u)(1−d)(1−2ε). (7.1)

Proof. First note that there exist Ak+1 < j ′ ≤ Ak+1 +M and z′ ∈ LNk+1 ∩ Uk+1(j
′)

such that P(z,Nk) ⊆ P(z′, Nk+1). Then by the definition of W (w) (and using the fact
that W (w) implies Bk+1(j

′)), the probability

Pω({Yn} ∩ P(z,Nk) 6= ∅ |W (w))

is positive only if

‖z′ −MEk − j ′Ek+1 −MwNk − j
′wNk+1‖ < Nk+1R5(Nk+1)

and in particular w needs to be in an area of side length which is no more than
Nk+1R5(Nk+1)/MNk ≤ M−1Lχ and thus the integral in (7.1) is bounded by
(log u)(1−d)(1−2ε). ut

Lemma 7.4. Fix k between 1 and ι, and let j > Ak +M . Let z ∈ LNk ∩ Uk(j). Then∫
[−1,1]d−1

Pω({Yn} ∩ P(z,Nk) 6= ∅ |W (w)) dw ≤ (log u)(1−d)(1−2ε).

Proof. For j < (Nk+1/Nk)
2(Ak+1 + M), the conclusion follows from Claim 7.3. If

j ≥ (Nk+1/Nk)
2(Ak+1+M), then there exist k′ > k and z′ ∈ LNk′ such that z′ ∈ Uk′(j ′)

with

Ak′ +M ≤ j
′
≤

(
Nk′+1

Nk

)2

(Ak′+1 +M)

and P(z,Nk) ⊆ P(z′, Nk′). Then by Claim 7.3 applied to k′ we get∫
[−1,1]d−1

Pω({Yn} ∩ P(z,Nk) 6= ∅ |W (w)) dw

≤

∫
[−1,1]d−1

Pω({Yn} ∩ P(z′, Nk′) 6= ∅ |W (w)) dw ≤ (log u)(1−d)(1−2ε). ut
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7.4. Expected number of bad blocks that are visited

Fix k. Let

D(k) = {z ∈ Lk ∩ B2L |P(z,Nk) is not good},
B(k) = #{z ∈ D(k) | {Y`} ∩ P(z,Nk) 6= ∅}.

We are interested in the distribution of the variable B(k).

Lemma 7.5. Fix k and ω ∈ G. Then∫
[−1,1]d−1

Eω(B(k) |W (w)) dw ≤ 3(log u)1−ε .

Proof. Let

D(1)(k) = D(k) ∩ {z : 〈z, e1〉 ≤ N
2
k (Ak +M)},

D(2)(k) = D(k) ∩ {z : 〈z, e1〉 > N2
k (Ak +M)},

and for i = 1, 2 let

B(i)(k) = |{z ∈ D(i)(k) : {Y`} ∩ P(z,Nk) 6= ∅}|.

Then {Y`} visits no more thanAk+M elements ofD(1)(k), and thus B(1)(k) ≤ Ak+M ≤
2(log u)1−ε

Let z ∈ D(2)(k). Then by Lemma 7.4,∫
[−1,1]d−1

Pω({Yn} ∩ P(z,Nk) 6= ∅ |W (w)) dw ≤ (log u)(1−d)(1−2ε).

Therefore, using (5.7) and (5.4), we get∫
[−1,1]d−1

Eω(B(2)(k) |W (w)) dw ≤ (log u)α+ε+(1−d)(1−2ε)

= (log u)α−d+1+(2d−1)ε
≤ (log u)1−ε .

Altogether, we get∫
[−1,1]d−1

Eω(B(k) |W (w)) dw ≤

∫
[−1,1]d−1

Eω(B(1)(k) |W (w)) dw

+

∫
[−1,1]d−1

Eω(B(2)(k) |W (w)) dw

≤ 3(log u)1−ε . ut

8. Proof of main result

In this section we prove Theorem 1.5.
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Proof of Theorem 1.5. By Lemma 7.5,∫
[−1,1]d−1

Eω

( ι∑
k=1

B(k)
∣∣∣ W (w)

)
dw ≤ 3ι(log u)1−ε .

Therefore, there exists w such that

Eω

( ι∑
k=1

B(k)
∣∣∣ W (w)

)
≤ 3ι(log u)1−ε .

We now fix w to be such a value. Let

W̄ = W (w)
∩

{ ι∑
k=1

B(k) ≤ 6ι(log u)1−ε
}
. (8.1)

Then by Markov’s inequality, Pω(W̄ ) ≥ 0.5Pω(W (w)) ≥ 1
2u
ε−1/2. Note that there is a set

V of paths such that
W̄ = {{Yn} ∈ V },

and for every υ ∈ V , by Lemma 6.5 and by (8.1) and the choice of χ and ψ ((5.5), (5.6)),

Pω(Xj = vj for all j < Nυ)

Pω(Yj = vj for all j < Nυ)
≥

1
2
η(ι+2+6ι(log u)1−ε)L3χ+4ψ

≥ uε−1/2.

Therefore,
Pω({Xn} ∈ V ) ≥ u

ε−1/2Pω({Yn} ∈ V ) ≥ u
ε−1.

Every path in V reaches ∂+B2L before returning to 0, and therefore we get (5.3), from
which we deduce Proposition 2.2 and Theorem 1.5. ut
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