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Abstract. We consider a rational function f which is ‘lacunary’ in the sense that it can be ex-
pressed as the ratio of two polynomials (not necessarily coprime) having each at most a given
number ` of terms. Then we look at the possible decompositions f (x) = g(h(x)), where g, h
are rational functions of degree larger than 1. We prove that, apart from certain exceptional cases
which we completely describe, the degree of g is bounded only in terms of ` (and we provide ex-
plicit bounds). This supports and quantifies the intuitive expectation that rational operations of large
degree tend to destroy lacunarity.

As an application in the context of algebraic dynamics, we show that the minimum number of
terms necessary to express an iterate h◦n of a rational function h tends to infinity with n, provided
h(x) is not of an explicitly described special shape. The conclusions extend some previous results
for the case when f is a Laurent polynomial; the proofs present several features which have not
appeared at all in the special cases treated so far.

1. Introduction and results

In this paper we are concerned with ‘lacunary’ rational functions; by this we mean ex-
pressions f (x) = P(x)/Q(x), where P,Q are polynomials (not necessarily coprime)
having altogether at most a given number ` of terms. We think of the number of terms
as being bounded whereas we allow the degrees of the terms and their coefficients to be
arbitrary.

More specifically, the paper studies the decomposability of such a lacunary function,
namely the equation f (x) = g(h(x)), where g, h are rational functions of degree > 1.

We remark that lacunary polynomials (or rational functions) appear in many math-
ematical investigations: the binomials have an ancient history; reducibility of trinomials
and `-nomials was studied by Selmer, . . . , Schinzel (see e.g. [14, Chs. 5, 6]). Lacunary
polynomials are meaningful also because they appear as expressing restrictions of any
prescribed regular function on Gn

m to varying 1-dimensional algebraic subgroups.
Generally speaking, lacunary polynomials also appear in computational issues since

we may ‘write down’ a formula for a polynomial with a given number of terms, thinking
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of the degrees and coefficients as indeterminates. (For instance lacunary polynomials ap-
pear as one-way functions in cryptography.) We may further quote work in real geometry
(see e.g. the survey [9]) showing that sometimes it is possible to have control on objects
defined by equations with boundedly many terms, even if they have large degree.

And also ‘decomposability’ of a rational function f is relevant in arithmetical and
algebraic questions; it is for instance deeply related to the Galois group of the rational
cover f : P1 → P1, and has impact in Diophantine equations with separated variables
(see e.g. [1, 3]).

The paper [19] studied the decomposability of lacunary polynomials; note that since
the degree of a polynomial with a fixed number of terms may be arbitrarily large, it does
not appear an obvious issue to check whether it is decomposable. It has been proved
therein that if f is a ‘lacunary’ polynomial, say with at most ` non-constant terms, and
if f (x) = g(h(x)) for polynomials g, h of degree larger than 1, then either h(x) has
the special shape axn + b or deg g is bounded in terms of ` only. In other words, roughly
speaking, if g has ‘large’ degree then g(h(x)) has ‘many’ terms (or else h is very special).
So this kind of result supports and quantifies the intuitive expectation that polynomial
operations of large degree tend to destroy lacunarity.

Moreover, this bound led in [20] to a proof of a conjecture of Schinzel, and even to
describe ‘algorithmically’ all the possible decompositions of a polynomial with a given
number of terms.

In [21] a similar bound was extended to Laurent polynomials (with a new unavoid-
able exceptional shape) also with the purpose of application to certain questions studied
by Watt and Zieve on symbolic polynomials [17]. Actually, these last authors would also
require, for further applications, some extension of such bounds to general rational func-
tions, and on the other hand this could also admit applications to a generalization of the
results of [20].

It is the purpose of this paper to carry out this program. We remark at once that
this extension does not appear to follow by a mere straightforward modification of the
methods of [19, 21], as several new crucial obstacles appear. (For the treatment of one
case we have even found it necessary to rely on a paper using the classification of finite
simple groups.)

As a simple immediate application in the context of one-variable dynamics, we shall
also prove a corollary bounding below the number of terms of an n-fold iterate h◦n of a
rational function h. (This was done in [19] for Laurent polynomials.)

Notation.

• We let k be a field of characteristic zero. For the present purposes it causes no loss of
generality to suppose, as we shall do, that k is algebraically closed. As usual we set
k∗ = k\{0}.
• The degree of f ∈ k(x) is defined by deg f = [k(x) : k(f (x))]. In case f (x) =
p(x)/q(x), with p, q ∈ k[x] coprime, deg f is just the maximum of the degrees of p
and q respectively. (We shall also use degrees in function fields other than k(x); see
Section 2.)
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• We denote by PGL2(k) = Aut(P1(k)) the group of linear fractional transformations,
i.e. rational functions of the form (ax + b)/(cx + d) with a, b, c, d ∈ k, ad − bc 6= 0,
and by∞ = (0 : 1) the unique point at infinity of P1(k).
• We say that a rational function f ∈ k(x) is decomposable if there is a non-trivial de-

composition of f as a rational function in k(x), i.e. an equation f (x) = g(h(x)) with
g, h ∈ k(x), deg g, degh > 1. Observe that we can modify such decompositions by
replacing g, h resp. by g ◦ λ−1, λ ◦ h with any λ ∈ PGL2(k). We remark that if f is
a polynomial or a Laurent polynomial, then we can easily normalize g, h correspond-
ingly; see Remark 1.3 below.
Accordingly, we say that f is indecomposable if the equality f (x) = g(h(x)),
g, h ∈ k(x), implies deg g = 1 or degh = 1.
• We denote by Tn the Chebyshev polynomial of degree n; it is uniquely determined by

the equation Tn(x + x−1) = xn + x−n.

We are now ready to formulate the main result.

Main Theorem. Let ` be a positive integer and let f ∈ k(x) be expressible as f (x) =
P(x)/Q(x), where P,Q ∈ k[x] have altogether at most ` terms. Suppose that f (x) =
g(h(x)), where g, h ∈ k(x) and where h(x) is not of the shape λ(axn + bx−n) for any
a, b ∈ k, n ∈ N and λ ∈ PGL2(k). Then

deg g ≤ 2016 · 5`.

Note that in this statement we are not assuming that P,Q are coprime (which would lead
to an easier discussion). We shall refer to the shape λ(axn+bx−n) as the forbidden shape
(for the Main Theorem).

Here is the simple application to iterates alluded to above, where we denote by h◦n

the nth iterate h(h(. . . h(x)) . . .):

Corollary. Let q ∈ k(x) be non-constant and let h ∈ k(x) be of degree d ≥ 3. Suppose
that h(x) is not conjugate (with respect to the group action given by PGL2(k) on k(x)) to
±xd or to ±Td(x). Then, for any integer n ≥ 3, we cannot express h◦n(q(x)) as a ratio
of polynomials having altogether less than 1

log 5 ((n− 2) log d − log 2016) terms.

Note that in the cases h(x) = xd and h(x) = Td(x)we cannot obtain any bound tending to
infinity with d, in view of the equations h◦n(x) = xd

n
in the first case and h◦n(x+x−1) =

xd
n
+x−d

n
in the second case. We have restricted to degh ≥ 3 for simplicity. If degh = 2

we may obtain a similar statement with a slightly more boring proof, or by applying this
one with h(h(x)) in place of h(x). Inspection shows that the proof yields further precision
on the shape of q(x) if the conclusion does not hold.

The Main Theorem takes into account the most general case, but it subdivides into a
number of subcases according to the shape of f and h, where the bound takes different
forms and the proofs can be more or less involved. Therefore we add to this statement
the corresponding statements for the subcases; in turn, the Main Theorem follows easily
from these statements.
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Theorem 1.1 (Polynomial case). Let ` be a positive integer and let f ∈ k[x] be a poly-
nomial with ` non-constant terms. Suppose that f (x) = g(h(x)), where g, h ∈ k[x] and
where h(x) is not of the shape axn + b for a, b ∈ k, n ∈ N. Then

deg f + `− 1 ≤ 2`(`− 1) degh and deg g ≤ 2`(`− 1).

This is [19, Theorem 1]. We remark (as is pointed out in [19]) that the exclusion of
polynomials h of the shape axn + b is really necessary, as is shown by simple examples
like g(x) = g∗(x − b), where g∗ ∈ k[x] has ` non-constant terms.

Theorem 1.2 (Laurent case). Let ` be a positive integer and let f ∈ k[x, x−1]\k[x] be
a Laurent polynomial with ` non-constant terms. Suppose that f (x) = g(h(x)), where
g ∈ k[x], h ∈ k[x, x−1] and where h(x) is not of the shape axn+b+cx−n for a, b, c ∈ k,
n ∈ N. Then

deg f ≤ 2(2`− 1)(`− 1)(degh− 2) and deg g ≤ 2(2`− 1)(`− 1).

This follows at once from [21]. We again remark (as in [21]) that the exclusion of Laurent
polynomials h of the shape as in the theorem cannot be avoided, as follows e.g. from
the example Tn(x + x−1) = xn + x−n. Thus these exceptions also have to be taken into
account in the present Main Theorem.

Remark 1.3. Suppose that f ∈ k[x] is a polynomial which is decomposable as a rational
function: f = g ◦ h, g, h ∈ k(x). Then observe that, by changing h into λ ◦ h for a λ ∈
PGL2(k), and changing g into g ◦ λ−1, which does not change deg g, degh, we may
assume that g, h are polynomials: in fact, the preimage f−1(∞) consists of just∞ (since
f is a polynomial) and, by choosing λ suitably, the same becomes true for g and h. Thus
f is decomposable also as a polynomial.

Similarly for the case when f is a Laurent polynomial, but neither f ∈ k[x] nor
f ∈ k[x−1]: First, the preimage f−1(∞) is {0,∞}. If f = g ◦ h, then g−1(∞) is either
{P } or {P,Q}, P ,Q ∈ P1(k), P 6= Q and we have h−1(P ) = {0,∞} or h−1({P,Q}) =

{0,∞}, respectively. In the first case we may choose λ so that P = ∞ and thus g is a poly-
nomial and h a Laurent polynomial. In the second case, if h−1(P ) = {0}, h−1(Q) = {∞},
we choose λ so as to transform Q into ∞ and P into 0 (this is possible since PGL2(k)

is doubly transitive). Then g becomes a Laurent polynomial and h(x) = cxn becomes of
the forbidden shape.

(In particular, this shows that when h is a (Laurent) polynomial, the exceptional shapes
of the Main Theorem may be reduced to the shapes stated in Theorems 1.1 and 1.2.)

The normalization described in this remark will be used repeatedly in what follows.

These two theorems present the current state of the problem. In the next statements
we give the new results, which together with the stated theorems will yield the Main
Theorem.

With the phrasing ‘(non-)Laurent case’ we refer to the shape of h; however, even when
h is a (Laurent) polynomial, the situation differs from the previous two theorems in that
we compose h with a rational function g (rather than a polynomial).
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Of course it may happen that h /∈ k[x, x−1] but λ ◦ h ∈ k[x, x−1] for a suitable λ ∈
PGL2(k), so that after replacing g, h resp. by g ◦λ−1, λ◦h we are in the Laurent case. To
express rapidly this fact, we have found it convenient to introduce the following simple
definition:

Definition NL. h satisfies NL :⇔ For any λ ∈ PGL2(k): λ ◦ h /∈ k[x, x−1].

Namely, h satisfies NL (Non-Laurent) if h cannot be turned into a Laurent polynomial
by applying a linear fractional transformation on the left.

This definition allows us to reduce more simply the remaining cases to the following
theorems:

Theorem 1.4 (Laurent case for rational functions). Let ` be a positive integer and let
f ∈ k(x) be expressible as f (x) = P(x)/Q(x), where P,Q ∈ k[x] have altogether at
most ` terms. Suppose that f (x) = g(h(x)), where g ∈ k(x), h ∈ k[x, x−1], and where
h(x) 6= axn+b+cx−n for any a, b, c ∈ k, n ∈ N. Then we have the following two cases:

(i) If P,Q are coprime in k[x], then

deg f ≤ 2(2`− 1)(`− 1) degh, deg g ≤ 2(2`− 1)(`− 1).

(ii) In general,

deg f ≤ (2016 · 5`)(degh− 1), deg g ≤ 2016 · 5`.

Note that the inequalities on the right for deg g follow from the respective ones on the left
for deg f , in view of deg f = deg g degh.

We remark that our proof of the last case (ii) in this statement is the most involved step
in the whole paper and requires a result of Müller [11, 12] relying on the classification
of finite simple groups. This is not needed in the case (i), when f is in reduced form,
since we may apply [21, Theorem 2*] to the numerator and the denominator to get the
conclusion; for this case we do not even need the auxiliary results of Section 2 or the
normalizations from Section 3; we give the proof, which is independent of the rest, in
Subsection 5.1.

We also point out that Theorem 1.4(ii) gives a partly new proof for Theorems 1.1, 1.2
(with a worse bound for deg f ).

Theorem 1.5 (Non-Laurent case for rational functions). Let ` be a positive integer and
let f ∈ k(x) be expressible as f (x) = P(x)/Q(x), where P,Q ∈ k[x] have altogether
at most ` terms. Suppose that f (x) = g(h(x)), where g, h ∈ k(x), h satisfies NL and for
every equation h(x) = p(q(x)) either q satisfies NL or q(x) = λ(axn+ bx−n) for a λ ∈
PGL2(k) and some a, b ∈ k, n ∈ N. Then

deg f ≤ (267 · 5`)(degh− 1), deg g ≤ 267 · 5`.

Before we continue with some remarks on the stated results we now give at once the
deduction of the Main Theorem from the other theorems; the proof is almost immediate:
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Deduction of the Main Theorem from Theorems 1.1, 1.2, 1.4 and 1.5. If f is a polyno-
mial or a Laurent polynomial that is decomposable as f (x) = g(h(x)) with h(x) not
of the forbidden shape (of the Main Theorem), then by Remark 1.3 we may change the
decomposition (from f = g ◦ h to f = (g ◦ λ−1) ◦ (λ ◦ h) with λ ∈ PGL2(k)) so that
for the new composition factors we have either g, h ∈ k[x] or g ∈ k[x], h ∈ k[x, x−1];
then the result follows by Theorem 1.1 or Theorem 1.2 respectively (observe that by the
assumptions of the Main Theorem the modified h certainly cannot be of the forbidden
shape of the respective theorem). (We mention that as noted right before Theorem 1.5,
this opening paragraph could be skipped and subsumed in the arguments below.)

Now let f ∈ k(x) and f (x) = g(h(x)) with h(x) not of the forbidden shape (of the
Main Theorem). If h satisfies NL and for every equation h(x) = p(q(x)) either q satisfies
NL or q(x) = λ(axn + bx−n) for a λ ∈ PGL2(k) and some a, b ∈ k, n ∈ N, then the
conclusion follows from Theorem 1.5.

Otherwise we have two cases:
In the first case, h does not satisfy NL, so there is a homography λ ∈ PGL2(k) with

λ ◦ h ∈ k[x, x−1]; now, on replacing g, h resp. by g ◦ λ−1, λ ◦ h, we may assume that
h ∈ k[x, x−1], and the conclusion follows from Theorem 1.4.

In the second case there exists an equation h(x) = p(q(x)) with p, q ∈ k(x) such
that λ∗ ◦ q ∈ k[x, x−1] for a suitable λ∗ ∈ PGL2(k) and q(x) is not of the stated shape
λ(axn + bx−n). In this case, by changing the equation h = p ◦ q into h = (p ◦ (λ∗)−1) ◦

(λ∗ ◦ q), we may again assume that q ∈ k[x, x−1], and a fortiori we have q(x) 6= axn +
b + cx−n for any a, b, c ∈ k, n ∈ N. Also, we now have the decomposition f (x) =
(g ◦p)(q(x)), and we may apply to it Theorem 1.4 with g ◦p in place of g and q in place
of h. Since deg(g ◦ p) ≥ deg g, the result again follows.

Since there are no further cases, the deduction of the Main Theorem is complete. ut

Remark 1.6. (i) We have not made any special effort to derive good numerical con-
stants in the theorems; however, the exponential dependence of the bound on ` can-
not be improved using our way of reasoning. (This step occurs in the subdivision—
introduced below—of the set of exponents appearing in P,Q into ‘large’ and ‘small’
ones; such a subdivision was not necessary and not taken into account in the poly-
nomial and Laurent case treated in previous papers, which explains the better depen-
dence on ` obtained therein.) Also, we do not have lower bounds better than linear in
` and we do not have definite ideas on what could be a best-possible shape for them.

(ii) Note that in the most general case we do not assume that the ‘lacunary’ expression
f (x) = P(x)/Q(x) for f is in reduced form.

(iii) The issue arises if more is true, namely a similar bound on the mere assumption that
the numerator is lacunary. This in turn naturally leads to the following strictly related
question:

Question. Suppose that f is a polynomial with at most ` terms, and that it is di-
visible by g(h(x)) for g, h ∈ k[x], deg g, degh ≥ 2, h(x) not of the form axn + b,
a, b ∈ k, n ∈ N. Is is true that deg g is necessarily bounded in terms of ` only?

We feel that this question might have a positive answer in general, but certainly a
proof would require new methods. Some evidence for a positive answer is provided
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by the case when f has at most two terms; we treat this special case in the appendix
to this paper.

The strategy of our method is very roughly as follows: We choose a conjugate y 6= x
of x over the field k(h), so we have h(x) = h(y). The equation f (x) = g(h(x)) ∈ k(h)
then implies f (x) = f (y). Thus we end up with P(x)Q(y) − P(y)Q(x) = 0. We view
this last equation as an S-unit equation with ‘few’ terms (here we use the lacunarity), and
apply a theorem of Brownawell–Masser (cf. Lemma 2.2) to bound the maximal degree
involved. However, this theorem can be applied directly only to equations in which no
proper subsum vanishes. Hence we are led to study the vanishing subsums of the numer-
ator of f (x)− f (y). If f is a (Laurent) polynomial, this is easier because each vanishing
subsum may then be written as p(x) − q(y) = 0 and has the same ‘separated variables’
structure as the original equation. (This analysis was the one carried out in the previous
papers on this topic.)

On the other hand, if f is not a Laurent polynomial, the vanishing subsums may
have a priori a different structure. To study them we distinguish between ‘large’ and
‘small’ exponents. In order to take advantage of the upper bound alluded to above, we
are led to investigate lower bounds for the degree degK(z) = [K : k(z)] in K = k(x, y)
of expressions of the form z = xmyn with m, n ∈ Z; we need a bound of the shape
degK(z) ≥ εmax{|m|, |n|} degK(x) for some specific number ε > 0, where the depen-
dence on degK(x) is essential in comparison with the upper bound that follows from the
Brownawell–Masser inequality. (This problem reflects another major difference with the
case of Laurent polynomials.)

In order to overcome this issue we use the partition of the exponents mentioned before
and moreover we require detailed information on the irreducible factors of h(Y ) − h(x)
and their associated Puiseux series; in turn, this involves a deep result by Müller in one of
the cases to be considered. We do not enter now in any detail concerning this point; we
shall comment further on this at the end of Section 3.

The paper is organized as follows: In the next section we will collect some auxiliary
results which are all well known and which are needed in our proof. We formulate these
results in a way suitable for our applications. In Section 3 we start with some first reduc-
tions and normalizations and we study lower bounds for the degree of xmyn. In Section 4
we give the proof of a ‘big’ part of our theorem; in other words we prove Theorem 1.5. In
this case a lemma by Hajós (cf. Lemma 2.1) will also be of importance. In Section 5 we
prove the result in the Laurent case for rational functions (that is, Theorem 1.4), and then
in the last section we give the proof of the corollary. Finally, in the appendix we discuss
the aforementioned result concerning the more general question.

2. Auxiliary results

In this section we collect some auxiliary results that we will use in the proof of our
theorems and that already appear in the literature; in general we shall give no proofs.

Lemma 2.1 (Hajós lemma). Let f ∈ k[x] have ` non-constant terms and let β ∈ k∗.
Then ordβ(f (x)− f (β)) ≤ `.
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The proof of this lemma is in fact very easy by calculating the first ` + 1 derivatives
of f (x) − f (β) and then reducing the resulting linear system of equations in the ` + 1
unknown coefficients to a system of Vandermonde type.

Before we state our next lemma we briefly review the theory of valuations/places on
function fields (for which we refer e.g. to [10]).

For each θ ∈ k we have a place of k(x) whose valuation vθ expresses the order of
vanishing at θ , namely is given by vθ (f ) = n if f (x) = (x − θ)ng(x) with g(θ) 6= 0.
Moreover, there is a place∞ whose valuation v∞ is given by v∞(f ) = degQ − degP
for f (x) = P(x)/Q(x) with P,Q ∈ k[x]. As a matter of terminology, if f has a pole
at v, i.e. v(f ) < 0, then the order ord(f ) of v as a pole of f is given by −v(f ) > 0.

In this way all (normalized) valuations of k(x)/k are obtained.
Now, let K be a finite extension of k(x). Each of the places of k(x) can be extended

in at most [K : k(x)] ways to a place on K and in this way all places v on K are obtained
(normalized so that v(K\{0}) = Z). Furthermore, the places of K are in a one-to-one
correspondence with the points over k of a(ny) nonsingular complete curve over k with
function fieldK; in particular, for the rational function field k(x) the places are in one-to-
one correspondence with the points of P1(k).

For an element f ∈ K we define the degree (sometimes also called the height) of f
with respect to K by

degK(f ) =
∑
v

max{0, v(f )} = −
∑
v

min{0, v(f )},

where the sum is taken over all places of K; thus it is just the number of zeros respec-
tively poles of f counted according to multiplicity. Equivalently, degK(f ) = [K : k(f )].
A useful property for us is degK(f )− degK(g) ≤ degK(fg) ≤ degK(f )+ degK(g) for
fg 6= 0.

As in the quoted previous papers on this topic, we shall need the following crucial
result on S-units in function fields.

Lemma 2.2 (Brownawell–Masser). Let K/k be a function field (in one variable), of
genus g, and let z1, . . . , zs ∈ K be not all constant and such that 1+ z1 + · · · + zs = 0.
Suppose also that no proper subsum of the left side vanishes. Then

max{degK(zi)} ≤
(
s

2

)
(2g− 2+ |S|),

where S is any set of places of K containing all zeros and poles of the zi .

We have taken this formulation from [19, 21], but we mention again that it is an immediate
consequence of [4] (or of [18]).

Our next lemma involves permutation groups, so we recall some standard definitions
before giving the statement. Let Sn and An denote the symmetric group and the alternat-
ing group of n elements respectively. Assume that a group G is acting on a set � and let
α ∈ �. The orbit of α under G is defined by Gα = {gα : g ∈ G} and the point stabilizer
of α in G by Gα = {g ∈ G : gα = α}. A group is said to act transitively on � if it has
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only one orbit, i.e. Gα = � for all α ∈ �. Let m be an integer with 1 ≤ m ≤ |�| and
denote by �m the mth cartesian power of �. Then G acts on �m componentwise and the
subset �(m) of unordered m-tuples of distinct points is G-invariant for every choice of G
and m. We say that G is m-transitive if G is transitive on �(m). Finally, let G be a group
acting transitively on a set � with at least two points. We call G primitive if each point
stabilizer Gα is a maximal subgroup of G. For these definitions we refer e.g. to [5].

Lemma 2.3 (Müller). Let h be an indecomposable Laurent polynomial, written as h(x)
= p(x)/xe, p ∈ k[x], e ∈ N, and suppose that d = degh = degp > e > 0. Then the
Galois groupG of the equation h(X)−h(x) over k(h(x)), as a permutation group on the
d roots, is primitive and contains an element with exactly two cycles of lengths say n and
d − n; it satisfies at least one of the following:

(i) Ad ⊆ G,
(ii) d = m2 with 1 < m ∈ N, n = ma with gcd(m, a) = 1,G = (Sm × Sm) o Z/(2)

and the stabilizer of a point is conjugate to (Sm−1 × Sm−1)o Z/(2),
(iii) d ≤ 64.

This statement follows immediately from the paper [11] (which in turn is essentially con-
tained in [12, 13]); more precisely it follows from Theorem 4.8, the additional informa-
tion in case (ii) comes from Theorem 3.3 that contains the main classification result for
primitive permutation groups with cyclic two-orbit. The upper bound appearing in case
(iii) could be replaced by an explicit list of sporadic groups, but since this has only a
small impact on the numerical estimates in our theorems, we prefer not to deal with such
exceptional cases of small degree.

We mention that G being 2-transitive amounts to (h(X) − h(Y ))/(X − Y ) being
absolutely irreducible over k. This property (not always satisfied) is important in our
application to the Laurent case for rational functions. (For polynomials the corresponding
classification is due to Fried [7]; the paper of Müller [11] also records precise information
on the Galois group in this case, namely for an indecomposable h ∈ k[x] with d =
degh ≥ 32 the Galois group G of h(X) − h(x) over k(h(x)) is either Z/(p) or the
dihedral group of p elements for some prime p = d or Ad or Sd ; see [11, Theorem 4.9,
p. 63].)

We end this section by collecting some information on the Puiseux series for the
equation h(Y ) = h(x) for an h ∈ k(x).

Lemma 2.4. Let h(x) = xep(x)/q(x) with p, q ∈ k[x] coprime, p(0)q(0) 6= 0, e ∈
Z\{0}. Define s = e + degp − deg q. Assume that h(∞) = ∞, i.e. s > 0. Let y be a
solution of the equation h(Y )− h(x) = 0 in an algebraic closure of k(x).

For e < 0, the dominant terms of the possible Puiseux series for y are as follows: At
x = 0 there are precisely

1. |e| Puiseux series with y = θx + · · · , θ |e| = 1,
2. s Puiseux series with y = θx−|e|/s + · · · , θ s = 1,
3. deg q Puiseux series with y = θ + · · · , where θ ∈ k∗ satisfies q(θ) = 0,

and at x = ∞,
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1. s Puiseux series with y = θx + · · · , θ s = 1,
2. |e| Puiseux series with y = θx−s/|e| + · · · , θ |e| = 1,
3. deg q Puiseux series with y = θ + · · · , where θ ∈ k∗ satisfies q(θ) = 0.

For e > 0, the first terms of the Puiseux series are as follows: At x = 0 there are precisely

1. e Puiseux series with y = θx + · · · , θe = 1,
2. degp Puiseux series with y = θ + · · · , where θ ∈ k∗ satisfies p(θ) = 0,

and at x = ∞,

1. s Puiseux series with y = θx + · · · , θ s = 1,
2. deg q Puiseux series with y = θ + · · · , where θ ∈ k∗ satisfies q(θ) = 0.

We remark that the dots here indicate that the terms which follow have a higher order of
zero than the first one (at the relevant point).

Proof. We start with the case e < 0 and x = 0. Observe that deg h = degp = s + |e| +
deg q > 0. From the definition of y we have

h(x) =
p(x)

x|e|q(x)
=

p(y)

y|e|q(y)
= h(y). (1)

At x = 0 we have h = ∞ and therefore either y = 0 or y = ∞ or y = θ ∈ k∗ with
q(θ) = 0. In the first case, equation (1) implies that the Puiseux expansion at x = 0 of y
satisfies y|e| + · · · = x|e| + · · · and therefore y = θx + · · · for θ an |e|th root of unity.
Clearly, we have |e| series of this type. In the second case, (1) implies the relation

x|e| + · · · =
1
ys
+ · · ·

and therefore y = θx−|e|/s + · · · for θ an sth root of unity. Altogether we have s series
of that type. Finally in the third case, (1) means that we have y = θ + · · · , where θ ∈ k∗

is a root of q. Altogether there are deg q series of this type. Thus we have the result in the
case x = 0.

The Puiseux factorization of h(Y )−h(x) at x = ∞ and the case e > 0 can be obtained
following the same line of arguments. ut

We remark that in all cases when the series looks like y = θ + · · · , the root θ ∈ k∗ of q
respectively p appears as many times as its multiplicity; we shall not need this.

3. Normalizations and preliminaries on degrees

Let ` be a positive integer. The proofs of Theorems 1.4(ii) and 1.5 will be done by induc-
tion on `.

So let f ∈ k(x) with f (x) = P(x)/Q(x) = g(h(x)) ∈ k(x), where g, h ∈ k(x),
deg g, degh > 1, and where P,Q ∈ k[x] are not necessarily coprime; however, we
assume they are not both divisible by x, which we may without affecting their number
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of terms. We assume that the total number of terms appearing in P,Q is `. By the last
normalization it follows that there are exactly `− 1 non-constant terms; in particular, this
implies that ` ≥ 2.

We shall assume throughout that h(x) is not of the forbidden shape λ(axn+bx−n) for
any a, b ∈ k, n ∈ N and λ ∈ PGL2(k). We remark that we may consider the statements
also for degh = 1 in which case they are empty (and so trivially true) since then h(x) has
forbidden shape.

As a second normalization we show that we may reduce to the case when

h(∞) = ∞ and g(∞) = ∞.

Let us first check that we can assume h(∞) = ∞. In fact, suppose first that we are
dealing with Theorem 1.4(ii), i.e. that h is a Laurent polynomial. Then either h(∞) = ∞
or h ∈ k[x−1]. In this last case we just replace x by x−1; observe that we continue to be
in the case of Theorem 1.4(ii) (i.e. the number of terms of f (x−1) = P(x−1)/Q(x−1) =

xdegQ−degP (xdegPP(x−1)/(xdegQQ(x−1)) is the same as that for f and the new h is
also a Laurent polynomial). Suppose now that we are dealing with an h satisfying the
assumptions of Theorem 1.5. In this case we replace g, h resp. by g ◦ λ−1, λ ◦ h for a
suitable λ ∈ PGL2(k), i.e. such that h(∞) = λ−1(∞). Again, we remain in the case of
Theorem 1.5. Note that the modified h continues not to be of the forbidden shape.

Now, acting on the left of g (and thus also of f ) by a suitable element in PGL2(k), we
may further achieve that g(∞) = ∞. This normalization is harmless; it modifies neither
the degree of g, nor the function h, nor the number of terms in a suitable expression for f :
in fact this replaces P,Q by two independent linear forms in them.

In conclusion, from now on we assume that h(∞) = g(∞) = ∞.
Observe also that in proving the theorems we may assume, by a further induction on

degh, that h /∈ k(xn) for any n > 1. The theorems hold for degh = 1 since then the
statements are empty.

For the induction step assume that we have h(x) = h∗(xm) with h∗ ∈ k(x) and
m ∈ N, m > 1. Then f (x) = g(h(x)) = g(h∗(xm)) = f ∗(xm) for f ∗ = g ◦ h∗ ∈ k(x).
By grouping the terms of P,Qwith respect to the residue class modulom of their degrees,
we can write P(x) = P0(x

m) + P1(x
m)x + · · · + Pm−1(x

m)xm−1,Q(x) = Q0(x
m) +

Q1(x
m)x + · · · + Qm−1(x

m)xm−1 with P0, . . . , Pm−1,Q0, . . . ,Qm−1 ∈ k[x]. Since
P(x) = f ∗(xm)Q(x) it follows that Pi(xm) = f ∗(xm)Qi(x

m) for i = 0, 1, . . . , m − 1.
Pick a j ∈ {0, 1, . . . , m− 1} with Qj 6= 0. Then Pj (x) = f ∗(x)Qj (x) and thus

g(h∗(x)) = f ∗(x) =
Pj (x)

Qj (x)
,

where the terms in Pj ,Qj on the right form a subset of the terms of P,Q.
Observe that h ∈ k[x, x−1] if and only if h∗ ∈ k[x, x−1]. Also, if h satisfies NL and

for every equation h(x) = p(q(x)) either q satisfies NL or q(x) = λ(axn + bx−n) for a
λ ∈ PGL2(k), n ∈ N and a, b ∈ k, then the same is true for h∗. In conclusion, if we are in
the cases of Theorems 1.4(ii), 1.5 for h, then we are in the respective cases for h∗.
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Thus each of the statements will follow by induction once we have treated the case
of h not a rational function in xn, for any n > 1, since g has not changed and moreover
h∗(x) cannot be of the forbidden shape for otherwise h(x) would also be.

Next we show that it is sufficient to prove the theorems for h having one of the fol-
lowing two additional properties (which exclude each other):

(H1) h /∈ k(xn) for any n > 1 and h is indecomposable.
(H2) h /∈ k(xn) for any n > 1, h is decomposable as h(x) = h̃(x + ηx−1) where η ∈ k∗,

and moreover every decomposition h(x) = p(q(x)) with degp, deg q > 1 has
q(x) = λ(ax + bx−1) for some a, b ∈ k∗ and a λ ∈ PGL2(k).

As to (H2), note that h(x) = h(ηx−1). If we also have h(x) = h(cx−1) for some c ∈ k∗,
then h(x) = h((c/η)x), whence c/η is a root of unity, say of exact order n, so h(x) =
h∗(xn) for some h∗ ∈ k(x). Since this can happen only for n = 1, we see that c = η, so
in particular η is uniquely determined.

Note also that since h is not of the forbidden shape, under (H2) we necessarily have
deg h̃ > 1.

We prove this reduction to either (H1) or (H2) by induction on degh. We already
noticed that we may suppose h /∈ k(xn), n > 1. Assume now that the theorems are
proved in degrees lower than degh, the case degh = 1 being empty since h is then of the
forbidden shape.

First assume that h is indecomposable. Then it satisfies (H1) and we are done if we
know the result under this assumption.

Let us now assume that h is decomposable. We separately consider the cases of The-
orem 1.4(ii) and Theorem 1.5.

In the case of Theorem 1.4(ii) we know that h ∈ k[x, x−1] and that h(x) is not of
the shape axn + b + cx−n, a, b, c ∈ k, n ∈ N. Suppose that we have a decomposition
h = p◦q. By Remark 1.3 we may further assume (on replacing p, q resp. by p◦λ−1, λ◦q

for a suitable λ ∈ PGL2(k)) that q is a Laurent polynomial.
If in some such decomposition, q(x) is not of the forbidden shape, we may replace

g, h resp. by g ◦p, q, and apply induction on degh. Otherwise (i.e. if we cannot find such
a decomposition) in every decomposition h(x) = p(q(x)) with q ∈ k[x, x−1], the inner
factor q(x) is necessarily of the forbidden shape (with n = 1). This says that either (H1)
or (H2) holds.

Now we come to Theorem 1.5. Clearly, h is not of the forbidden shape since it satis-
fies NL. Let h(x) = p(q(x)) be a decomposition of h; then by the assumption for Theo-
rem 1.5 either q satisfies NL or (again on replacing p, q resp. by p◦λ−1, λ◦q for a suitable
λ ∈ PGL2(k)) we have q(x) = ax+bx−1, a, b ∈ k. (Observe in fact that q does not lie in
k(xn) for any n > 1 because h does not.) If q satisfies NL, then every decomposition of
q has an inner composition factor satisfying NL or being forbidden, because otherwise h
would not have this property; so we can argue by induction as before and replace h by q.
Sooner or later we arrive at a stage where either h is indecomposable or for every such
decomposition of h, we have q(x) of the forbidden shape λ(ax + bx−1), a, b ∈ k, λ ∈

PGL2(k). This means that (H1) or (H2) is satisfied, as desired.
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Altogether it follows that, in proving either Theorem 1.4(ii) or Theorem 1.5, we may
assume that (H1) or (H2) holds.

Hence, let us assume from now on that h is not of the forbidden shape but that it
satisfies either (H1) or (H2).

Furthermore, from now on, if we use the symbols h̃ resp. η, we always refer to the spe-
cial decomposition for h appearing in (H2); in particular, η denotes the (unique) constant
appearing therein.

To go on, we again distinguish two cases, in which we slightly modify the notation of
Lemma 2.4 by changing the sign of e so that it is always positive:

• h(0) = ∞; now we may assume degh > 2 since otherwise h(x) would be of the
forbidden shape. Hence, we may write

h(x) =
p̃(x)

xeq̃(x)

with e > 0, p̃, q̃ ∈ k[x] coprime satisfying p̃(0)q̃(0) 6= 0, d = deg p̃ = degh > 2,
and finally s = d − e − deg q̃ > 0.
• h(0) 6= ∞; by replacing g, h resp. by g ◦ λ−1, λ ◦ h with λ ∈ PGL2(k) defined by
λ(x) = x − h(0), we may assume h(0) = 0 and thus we may write

h(x) =
xep̃(x)

q̃(x)

with e > 0, p̃, q̃ ∈ k[x] coprime satisfying p̃(0)q̃(0) 6= 0, d = e+deg p̃ = degh ≥ 2,
and finally s = deg q̃ − d > 0.

(We point out that throughout the proof the symbols p̃, q̃, e, s and d will only be used to
refer to the quantities related to h that are introduced above.)

In the first case, namely for e < 0 or equivalently h(0) = ∞, we have the following
important lemma that plays a central role in the proofs.

Before stating it, we anticipate a simple remark that will be useful throughout: IfK is
a function field over k containing both x, y, with h(x) = h(y), then

degK(x) = degK(y).

In fact, this follows from the general equality degK(h(u)) = (degh) degK(u) for any
u ∈ K \ k.

Lemma 3.1. Assume that h(0) = ∞ and that either (H1) or (H2) holds. Then there exists
a conjugate y of x over k(h), different from x and also from ηx−1 in case (H2), such that
the following holds, on putting K = k(x, y):

(i) if u ∈ k(x) is such that u(x) = u(y), then u ∈ k(h),
(ii) for all m, n ∈ N we have

degK(x
myn) ≥ 0.12 max{m, n} degK(x).

Moreover, if min{e, s} ≤ 0.75 max{e, s}, then (ii) holds for all m, n ∈ Z.
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We remark that the precise numerical values here are relatively immaterial; for instance,
any larger number in place of 0.75 would lead to a similar statement with 0.12 replaced
by some corresponding positive number. Ultimately, this would only result in different
numerical constants in the Main Theorem. (We only observe that the larger constant we
get in the lower bound (ii), the better numerical constant will appear in the theorems.)

Proof. Let y 6= x be a conjugate of x over k(h), i.e. we have h(x) = h(y). We define
L = {u ∈ k(x) : u(x) = u(y)}. Note that L is a subfield of k(x) and that k(h) ⊆ L ⊆
k(x). Since y is different from x, we have L 6= k(x). By the Lüroth Theorem (cf. [15]) it
follows that L = k(z) for a z ∈ k(x); thus we get h(x) = h∗(z) with h∗ ∈ k(x). Since
L 6= k(x), we have deg z > 1. Now let us distinguish between (H1) and (H2).

We first consider (H1): In this case h is indecomposable, so since deg z > 1, we have
degh∗ = 1, i.e. L = k(h). It clearly follows that requirement (i) is satisfied for any
such y.

Now we turn to (H2): We have h(x) = h̃(q(x)) where q(x) = x + ηx−1 and η 6= 0.
Then h(ηx−1) = h(x) (because q(ηx−1) = q(x)). Hence ηx−1 is a conjugate of x but
we have excluded it too. (In fact recall that working under (H2), we assume y 6= x and
y 6= ηx−1.)

Observe that since h(x) is not of the forbidden shape, we have deg h̃ > 1, so in
particular degh > 2.

Going back to the above decomposition, we assume first that degh∗ > 1. Then h =
h∗ ◦ z with deg z > 1 and degh∗ > 1. By (H2) this implies z(x) = λ(ax + bx−1) for
some a, b ∈ k∗ and λ ∈ PGL2(k). We have already seen (in the discussion below (H2))
that this implies b/a = η. It follows that q(x) = cλ−1(z) for c = 1/a ∈ k, and since
L = k(z), we also have q ∈ L, which means q(x) = q(y). But this is a quadratic equation
in y which has the two roots y = x and y = ηx−1, and we have excluded them from the
beginning. Therefore this case cannot occur.

Thus we have degh∗ = 1. However, this means that L = k(h) and so (i) is satisfied
in this case too.

It follows that, apart from the choice y = x and possibly y = ηx−1 (which may only
occur in case (H2)), any other conjugate y of x over k(h) will automatically satisfy (i).
(Note that such a conjugate certainly exists, because we have degh > 2 since otherwise
h(0) = h(∞) = ∞ implies that h(x) is of the forbidden shape.)

We now turn to (ii) and to the additional statement.
For (ii) let z = xmyn with m, n ∈ N. We shall show that there exists a suitable choice

for the conjugate y (y 6= x and y 6= ηx−1 in case (H2)) so as to satisfy (ii) for all such
m, n; this choice will be made along the proof because we think this leads to better clarity.

However, let us immediately note that if |m− n| ≥ 0.12 max{m, n}, then our inequal-
ity is true for any choice of the conjugate. In fact, taking into account that degK(x) =
degK(y), from the properties of the degree we infer that in this case we have

degK(z) ≥ (max{m, n} −min{m, n}) degK(x) ≥ 0.12 max{m, n} degK(x),

proving (ii).
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Therefore from now on in the proof of (ii), we shall choose the sought-for conjugate
assuming that m ≥ 0.88n > 0.

For a given choice of the conjugate y, we also put δ = δy := [k(x, y) : k(x)], so
degK(x) = degK(y) = δ.

Finally, we put ε = 0.14. We will show that degK(z) ≥ εmδ; this then implies that
degK(z) ≥ 0.88εmax{m, n}δ ≥ 0.12 max{m, n}δ and thus the desired inequality.

We count the zeros of z through the zeros of x. Assume that v is a zero of x, i.e.
v(x) > 0. We have now two possibilities for y:

If v(y) ≥ 0, then v(z) ≥ mv(x) ≥ εmv(x) > 0.
If v(y) < 0, then by Lemma 2.4 (or just by using the equation h(x) = h(y)) we have

−sv(y) = ev(x) and therefore

v(z) =

(
m− n

e

s

)
v(x) = m

(
s

e
−
n

m

)
e

s
v(x).

If
s

e
−
n

m
≥ ε

s

e
, (2)

then we get

degK(z) =
∑
v

max{0, v(z)} ≥
∑
v(x)>0

max{0, v(z)} ≥ εm
∑
v(x)>0

v(x) = εmδ,

because δ = degK(x) =
∑
v(x)>0 v(x).

The same inequality also follows if we assume that, in the irreducible factor of h(Y )−
h(x) defining y, there are at least εδ Puiseux series at x = 0 of type 1 or 3, in the notation
of Lemma 2.4; in fact, in that case we have

degK(z) ≥ m
∑

v(x) ≥ εmδ,

where the sum is taken over all zeros of x, and corresponding to a Puiseux series at x = 0
of type 1 or 3 in Lemma 2.4.

So in proving our conclusion let us assume that (2) is not true and that the number of
Puiseux series at x = 0 of type 1 and 3 is less than εδ.

Now we count the poles of z through the poles of x.
If v(x) < 0, then either v(y) ≤ 0 and therefore v(z) ≤ mv(x) ≤ εmv(x) < 0, or

v(y) > 0. In the last case, again by Lemma 2.4, we have ev(y) = −sv(x), which implies

v(z) = m

(
e

s
−
n

m

)
s

e
v(x).

As before we get degK(z) ≥ εmδ unless

e

s
−
n

m
< ε

e

s

and unless the number of Puiseux series at x = ∞ of type 1 and 3 is less than εδ.
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In the remaining cases we have by the last displayed inequality and by (2) that

(1− ε)
e

s
<
n

m
and (1− ε)

s

e
<
n

m
.

But since m ≥ 0.88n > 0 we get

max{e, s}
min{e, s}

<
n

(1− ε)m
≤

1
0.88(1− ε)

≤
1

0.75
.

It follows that
min{e, s} > 0.75 max{e, s}. (3)

Moreover, we also see that the number of Puiseux series of type 1 and 3 at x = 0 and at
x = ∞ is less than εδ in every irreducible factor defining a y 6= x, ηx−1 over k(h).

The number of Puiseux series at x = 0 of type 1 and 3 in the Puiseux factorization of
the numerator of (h(Y )−h(x))/(Y −x) is e+deg q̃−1 = d− s−1, which follows from
Lemma 2.4. (The subtraction of 1 comes from the factor Y − x which clearly contains
exactly one series of type 1 or 3 at x = 0, whereas the factor xY − η, in case (H2), has no
series of this type at x = 0 at all.)

Since we are in the case where we assume that in each irreducible factor, of degree δ,
of the numerator of (h(Y )− h(x))/(Y − x) there are at most εδ such series, by summing
up the contributions from each factor we conclude that d−s−1 < ε(d−1) and (1−ε)d+
ε − 1 < s. From (3) we get 0.75s < e. Hence, we obtain d − deg q̃ = e + s > 1.75s >
1.75(1−ε)d−1.75(1−ε) and therefore 0 ≤ deg q̃ < (−0.75+1.75ε)d+1.75(1−ε) ≤
3(−0.75+ 1.75ε)+ 1.75(1− ε) = −0.01 < 0. (In fact we have used that by our choice
ε = 0.14 we have −0.75+ 1.75ε < 0 and that d ≥ 3.)

This contradiction implies that in at least one irreducible factor the number of Puiseux
series at x = 0 of type 1 and 3 is ≥ εδ and by choosing y as a root corresponding to such
a factor we deduce the desired inequality. (We could have also argued with the number of
Puiseux series at x = ∞ of type 1 and 3, using the fact that s > 0.75e.)

Finally, we prove the remaining part of the statement. We have already seen that,
if min{e, s} ≤ 0.75 max{e, s}, then we get the desired lower bound for degK(z) for all
positive exponents independently of the choice of the irreducible factor from which we
take y (excluding, as always, y = x and y = ηx−1 in case (H2)). Observe also that the
case of both exponents negative follows trivially from the positive case since degK(z) =
degK(1/z).

Now we consider exponents of opposite sign. Let z = xmyn with m, n ∈ Z and
mn < 0. As above, if

∣∣|m| − |n|∣∣ ≥ 0.12 max{|m|, |n|}, then the desired inequality holds
independently of the choice of the conjugate.

Therefore, and since degK(z) = degK(1/z), we may just consider the cases z =
xmy−n with m ≥ 0.88n > 0. We put ε = 0.14 as before. We will again show
that degK(z) ≥ εmδ, from which it then follows degK(z) ≥ 0.88εmax{m, n}δ ≥
0.12 max{m, n}δ, proving the desired inequality.

As above, we count the zeros of z through the zeros of x. Let v be a zero of x. If
v(y) ≤ 0, then v(z) ≥ mv(x). Therefore, if there are≥ εδ Puiseux series at x = 0 of type
2 or 3 in at least one irreducible factor, then we can choose it to define y, and the claimed
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inequality follows. Similarly, arguing with the poles of x, it suffices that at least one of
the factors contains ≥ εδ Puiseux series at x = ∞ of type 2 or 3 since then we again get
the claimed inequality for the corresponding y.

We now show that the assumption min{e, s} ≤ 0.75 max{e, s} implies the existence
of such a factor.

Assume that 0.75s ≥ e and that at x = 0 all factors different from Y −x, xY −η have
at most εδ Puiseux series at x = 0 of type 2 or 3. The arguments under (H1) and (H2) are
slightly different; we first consider (H2): Then d − e − 1 = s + deg q̃ − 1 < ε(d − 1)
(now subtraction of 1 comes from the factor xY − η which clearly contains exactly one
series of type 2 or 3 at x = 0, whereas the factor Y − x has no series of this type at x = 0
at all). It follows that d− deg q̃ = e+ s ≤ 1.75s < 1.75ε(d− 1)− 1.75 deg q̃+ 1.75 and
therefore 0 ≤ 0.75 deg q̃ < (1.75ε− 1)d + 1.75(1− ε) ≤ 3(1.75ε− 1)+ 1.75(1− ε) =
3.5ε − 1.25 = −0.76 < 0, a contradiction (by our choice ε = 0.14). In case (H1) the
assumption that at x = 0 all factors different from Y − x (now there is no factor xY − η)
have at most εδ Puiseux series of type 2 or 3 implies d − e = s + deg q̃ < εd , and then
the contradiction follows from 0 ≤ 0.75 deg q̃ < (1.75ε − 1)d < 0 by our choice of ε.

If 0.75e ≥ s one can argue similarly with the Puiseux series at x = ∞ by using the
fact that ε = 0.14. Thus the proof of the statement is complete. ut

In the second case, namely e > 0 or equivalently h(0) = 0, the situation is simpler and
we need less. Here we have the following

Lemma 3.2. Assume that h(0) = 0 and that either (H1) or (H2) holds. Then there exists
a conjugate y of x over k(h), different from x and also from ηx−1 in case (H2), such that
the following holds:

(i) if u(x) = u(y), u ∈ k(x), then u ∈ k(h),
(ii) for all m, n ∈ N we have

degK(x
myn) ≥ max{m, n} degK(x),

where K = k(x, y).

Proof. For (i) we can argue as in the previous lemma; just observe that (H2) is clearly
excluded since we have h(∞) = ∞ and h(0) = 0, hence h(x) cannot be of the shape
h̃(x + ηx−1) with η 6= 0. It follows that for every conjugate y of x over k(h) that is
different from x, condition (i) will be satisfied. Let y be such a conjugate and define
δ = [k(x, y) : k(x)].

Now we prove (ii). Let z = xmyn, m, n ∈ N. We may assume that m ≥ n ≥ 0 since
otherwise we just have to exchange the roles of x and y (observe that here we have already
chosen the conjugate y) in the arguments below. As in the proof of Lemma 3.1 we count
the zeros of z by going through the zeros of x. Assume that v(x) > 0. Clearly, v(y) < 0
is impossible and so we have v(y) ≥ 0. In this case we get v(z) ≥ mv(x). It immediately
follows that

degK(z) ≥ mδ

independently of the factor from which we choose y. This already proves the statement.
ut
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Note that in both cases for h (that is, for both possible values for h(0)) we find, for every
conjugate y of x over k(h), that degK(x) = degK(y) ≤ d − 1 (as follows immediately
from h(x) = h(y)).

Further strategy. Let us emphasize that the lower bounds obtained in the last two lem-
mas work only on additional conditions, namely concerning the ratio s/e or the signs of
m, n. In the non-Laurent case and for h(0) = 0 there are now different devices which
prevent us from the need of more, but in the remaining situations, i.e. in the Laurent case
with h(0) = ∞, we need a bound which does not depend on these issues: Therefore,
to overcome this difficulty, we start there by choosing a factor (or equivalently a conju-
gate y) so that Lemma 3.1(i) holds. Further, if s/e is not near to 1 we can choose it so that
the bound holds for all m, n, whereas if s/e is near to 1, we can only say that the bound
holds for non-negative m, n for an appropriate choice of the factor. Hence, no difficulty
arises if s/e is not near to 1. In the case when s/e is near to 1, we could first choose the
factor so that the bound holds for non-negative m, n, but then the factor is fixed and we
cannot change it anymore. This means that if we want the estimate for all m, n ∈ Z we
need a priori more information on the possible factors, and this is the place where the
result of Müller [11, 12] will play an essential role (see Subsection 5.2 for the precise
statement and the detailed proof of this).

After these remarks we are now ready to prove Theorems 1.4(ii) and 1.5, which we
will do in the following two sections. Before we start we summarize, for the reader’s
convenience, some points of the proof.

We are arguing by induction on ` and, for given `, also by a second induction on
degh.

Further, we recall the normalizations obtained so far: We may assume that P,Q are
not both divisible by x, that g(∞) = h(∞) = ∞, that h(0) ∈ {0,∞} and that h satisfies
(H1) or (H2). (This last reduction has been shown in Section 3, before Lemma 3.1.)

4. The non-Laurent case for rational functions

In this section we prove Theorem 1.5. Let f (x) = g(h(x)) with the notation and normal-
izations just recalled.

Note that the assumption that h satisfies NL implies that deg q̃ ≥ 1 and deg p̃ ≥ 1,
where we refer to the equations h(x) = x±ep̃(x)/q̃(x) displayed just before Lemma 3.1.
(E.g., if p̃ were constant, 1/h would be a Laurent polynomial.)

As before, we shall consider two cases depending on whether h(0) = ∞ or h(0) = 0.

4.1. Proof of Theorem 1.5 in the case h(0) = ∞

First we shall use the lacunarity of f to partition the set 6 of exponents appearing in
P,Q into two groups with a controlled gap. We write

6 = {0 = m1 < m2 < · · · < m`}
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for the set of exponents appearing in P,Q (ordered by size); in particular, we have m` ≥
deg f (with equality if P,Q are coprime). Observe that |6| = ` ≥ 2. We partition (0, m`]
into infinitely many intervals (m`/3, m`], (m`/9, m`/3], . . . . It follows that at least one
interval, say (m`/3l, m`/3l−1] with 2 ≤ l ≤ `, is disjoint from 6. We set

6L = {m ∈ 6 : m > m`/3l−1
}, 6S = {m ∈ 6 : m ≤ m`/3l}.

So 6 = 6L ∪6S and any difference m′ −m with m′ ∈ 6L, m ∈ 6S satisfies

m′ −m > (2/3l)m`.

Moreover, the difference between any two elements in 6S is at most m`/3l .
Let y be the conjugate of x over k(h) from Lemma 3.1. From the equation f (x) =

g(h) ∈ k(h) we deduce f (x) = f (y). Writing f (x) = P(x)/Q(x) we get the equation

P(x)Q(y)− P(y)Q(x) = 0.

This gives a relation involving terms of the form xmyn with m, n ∈ 6 and with at most
`2
− 1 such summands. (Recall in fact that f (∞) = ∞, so m` appears only in P and this

implies that xm`ym` does not occur in the relation above.)
We say that a term of the said form is of type LL if (m, n) ∈ 6L × 6L; similarly

terms of type SL, LS and SS are defined.
We partition the sum on the left of this equation into minimal vanishing subsums,

where no further proper subsum vanishes. (This partition may be done in several ways;
we can choose freely one of them.) Observe that in order to apply Lemma 2.2 to one of
these minimal vanishing subsums we first have to normalize it, dividing by one of the
terms, so that the constant term 1 appears in the sum.

Let us assume that there is such a minimal vanishing subsum containing a term of
type LL and another one of type SS. The ratio z of these terms is of shape xmyn where
m, n ∈ 6L −6S . So m and n are > (2/3l)m`. An application of Lemma 3.1 leads to

degK(z) ≥
2ε
3l
m`δ ≥

2ε
3`
m`δ,

where K = k(x, y), δ = degK(x) = degK(y) = [K : k(x)] and ε = 0.12. Then, by
Lemma 2.2, we get

2ε
3`
m`δ ≤

(
`2
− 2
2

)
(2g− 2+ |S|),

where g is the genus of k(x, y). We have

g ≤ (δ − 1)2

(where we use the fact that δ = degK(x) = degK(y), and therefore the bound follows
from Castelnuovo’s inequality; cf. [15, III.10.3 Theorem]).
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Further, the set S consisting of the zeros and poles of x and y in K satisfies |S| ≤
2(degK(x)+ degK(y)) ≤ 4δ and so 2g− 2+ |S| ≤ 2(δ− 1)2− 2+ 4δ = 2δ2. Therefore
we get

m` ≤
3`

2ε

(
`2
− 2
2

)
2δ ≤

3`

ε

(
`2
− 2
2

)
(d − 1) ≤ (267 · 5`)(d − 1),

where we have used the inequality(
`2
− 2
2

)
=
(`2
− 2)(`2

− 3)
2

≤ 32 ·
(

5
3

)`
. (4)

(Here the constant 32 is obtained by bringing the exponential term to the left and cal-
culating the maximal values of the resulting function in ` by differentiation; this gives a
polynomial equation of degree 4 that has its positive roots at 1.5717 . . . and 8.1381 . . . .)

If there is a minimal vanishing subsum that involves both terms of type LS and of
type SS, then the ratio z is of the shape z = xmyn with m ≥ (2/3l)m` and |n| ≤ m`/3l .
Hence,

degK(z) ≥ |m| degK(x)− |n| degK(y) = (|m| − |n|)δ ≥
1
3`
m`δ,

leading to an even better bound than before. We can argue similarly for subsums involving
terms of type SL and SS.

We may therefore assume that each minimal vanishing subsum involves either just
terms of the type SS or the rest (i.e. (6L ×6S) ∪ (6S ×6L) ∪ (6L ×6L)). Let us then
write

P(x) = a(x)+ A(x), Q(x) = b(x)+ B(x),

where the capitals involve precisely those exponents which lie in 6L. The full relation is

a(x)b(y)− a(y)b(x)+ A(x)B(y)− A(y)B(x)

+ A(x)b(y)− A(y)b(x)+ a(x)B(y)− a(y)B(x) = 0,

and the above shows that we may assume

a(x)b(y) = a(y)b(x).

Now we show that we can also reduce to the assumption a(x)b(x) 6=0. First, a(x) 6=0
since a(x) involves a constant term; this follows from P(0) 6= 0, which in turn is implied
by f (0) = g(h(0)) = g(∞) = ∞. (Recall also that, although P,Q are not supposed
to be coprime, we are working under the harmless normalization that they do not both
vanish at 0.)

For the reduction to the crucial fact that b(x) 6= 0 we will use that we are in the
non-Laurent case (in fact we only need deg q̃ ≥ 1, which is implied by NL). We start by
writing

f (x) =
P(x)

Q(x)
=

P(x)

xEQ̃(x)
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with E > 0, P(0)Q̃(0) 6= 0. (Observe again that f (0) = g(h(0)) = g(∞) = ∞.)
Moreover, P(x) and xEQ̃(x) have `− 1 non-constant terms altogether. We write

g(x) = axord∞(g) + · · ·

up to terms of smaller order at x = ∞, where a ∈ k∗. Recall that h satisfies NL, so q̃
is not constant and we may pick a root θ ∈ k∗ of q̃, say of multiplicity µ ≥ 1. Then at
x = θ we have

g(h(x)) =
b

(x − θ)µ ord∞(g)
+ · · ·

for some b ∈ k∗. This implies that Q̃(x) has θ as a root with multiplicity ≥ µ ord∞(g).
So with Lemma 2.1 we get ord∞(g) ≤ µ ord∞(g) ≤ ordθ (Q̃) ≤ `− 1. It follows that

E = ord0(f ) = e ord∞(g) ≤ (`− 1)e ≤ (`− 1)(d − 1) (5)

and thus Q(x) involves the term xE with E ≤ (`− 1)(d − 1).
If E ∈ 6L, then

m` ≤ (`− 1)3`−1(d − 1) ≤ 5`(d − 1)

and we are done (here we can e.g. use the fact that the real function x
√
x takes its maximum

at x = exp(1) = 2.7182 . . . ).
Hence, we may assume that E ∈ 6S , implying b(x) 6= 0. Now this gives

a(x)

b(x)
=
a(y)

b(y)

and by the property of y expressed in Lemma 3.1(i) we deduce

a(x)

b(x)
= ϕ(h)

where ϕ ∈ k(x). Let xM be the largest power of x dividing both A(x) and B(x). Write
A(x) = xM Ã(x), B(x) = xM B̃(x). Since M ∈ 6L, we note

M > m`/3l−1. (6)

Furthermore, we have

f (x) =
a(x)+ xM Ã(x)

b(x)+ xM B̃(x)
= g(h).

Define ψ(x) := g(x)− ϕ(x), so

ψ(h) = g(h)− ϕ(h) = f (x)−
a(x)

b(x)
= xM

Ã(x)b(x)− a(x)B̃(x)

b(x)Q(x)
.

Now, by a Hajós argument similar to the one before, we first have

v0(ψ(h)) ≥ M − v0(b)− v0(Q) ≥ M − 2E ≥ M − 2(`− 1)(d − 1),
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where we have used (5) again. We may assume that M − 2(` − 1)(d − 1) > 0 since
otherwise

m` < 2(`− 1)3`−1(d − 1) ≤ (2 · 5`)(d − 1)

and we are done. It follows that v0(ψ(h)) = ord0(h)v∞(ψ) = ev∞(ψ) > 0, and there-
fore v∞(ψ) > 0 since we have e > 0; in particular, we get ψ(∞) = 0 and

e v∞(ψ) = v0(ψ(h)) ≥ M − 2(`− 1)(d − 1). (7)

Now pick as before a θ ∈ k∗ with q̃(θ) = 0, so h(θ) = ∞ and

vθ (ψ(h)) = vθ (q̃)v∞(ψ) > 0.

Therefore Ã(x)b(x)− a(x)B̃(x) vanishes at θ of order at least v∞(ψ) > 0.
Now, if Ã(x)b(x) 6= a(x)B̃(x), the difference has ≤ `2 terms (in fact every term has

a degree of the form m+m′ −M with m,m′ ∈ 6). So by Lemma 2.1 again

v∞(ψ) ≤ vθ (Ãb − aB̃) ≤ `
2,

whence by (7) it follows thatM ≤ `2e+ 2(`− 1)(d − 1) ≤ `(`+ 2)(d − 1) and by using
(6) we get

m` < `(`+ 2)3`−1(d − 1) ≤ (2 · 5`)(d − 1)

and we are done. (The second inequality is obtained as in (4).)
On the other hand, suppose Ã(x)b(x) = a(x)B̃(x). Since Ã(x) 6= 0 (otherwise 6L

would be empty), we get B̃(x) 6= 0 and so

Ã(x)

B̃(x)
=
a(x)

b(x)
= ϕ(h) = f (x)

and we have expressed f with a proper subset of6. In this case we can argue by induction
on `, the case ` = 2 being trivial (e.g. we can repeat all arguments of this proof and
observe that b(x) 6= 0 is impossible since then 6 contains at least the three elements
0, E,m`). Therefore degϕ ≤ 267 · 5`−1 and thus deg f = degϕ · d ≤ (267 · 5`)(d − 1).

Summing up we have proved that in all cases

deg f ≤ m` ≤ (267 · 5`)(d − 1),

which is the desired inequality. ut
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4.2. Proof of Theorem 1.5 in the case h(0) = 0

Recall that both p̃, q̃ are non-constant; in fact here we will only use the assumption
deg p̃ ≥ 1. We start by observing that we may also assume, on subtracting a constant
from both g, f , that

g(0) ∈ {0,∞}.

This is like saying that v0(g) 6= 0 and it implies f (0) = g(h(0)) = g(0) ∈ {0,∞}.
As before we partition the set 6 consisting of the terms contained in the numerator

and denominator of f into the two disjoint sets 6S and 6L. We investigate the equation
f (x) − f (y) = 0, where y is the conjugate obtained in Lemma 3.2, and partition the
terms in P(x)Q(y)− P(y)Q(x) into minimal sets with vanishing sum.

For each monomial z = xmyn that appears as a ratio of a monomial of type LL, or
LS, or SL and a monomial of type SS in a minimal vanishing subsum, we get

degK(z) ≥
1
3l
m`δ ≥

1
3`
m`δ,

where δ = degK(x). Thus, by Lemma 2.2,

1
3`
m`δ ≤

(
`2
− 2
2

)
(2g− 2+ |S|).

We have |S| ≤ 4δ and thus 2g− 2+ |S| ≤ 2(δ − 1)2 − 2+ 4δ = 2δ2. Therefore we get

m` ≤ 3`
(
`2
− 2
2

)
2δ ≤ (64 · 5`)(d − 1)

by using the inequality (4).
Otherwise we have again a(x)b(y)− a(y)b(x) = 0. Since g(0) ∈ {0,∞}, we get

g(x) = cxv0(g) + · · · ,

where c ∈ k∗. Now as before we write

f (x) =
P(x)

Q(x)
= xE

P̃ (x)

Q̃(x)

withE ∈ Z\{0}, P̃ (0)Q̃(0) 6= 0. (Observe that f (0) ∈ {0,∞}.) Moreover, xmax{0,E}P̃ (x)

and x−min{0,E}Q̃(x) have ` − 1 non-constant terms altogether. Since p̃ is not constant,
we let θ ∈ k∗ be a root of p̃ of multiplicity µ ≥ 1. We have vθ (g(h)) = µv0(g) and thus
either P̃ (x) or Q̃(x) has θ as a root with multiplicity ≥ µ|v0(g)|. By Lemma 2.1 we get
µ|v0(g)| ≤ `− 1. Finally, we obtain

|E| = e|v0(g)| ≤ e(`− 1) ≤ (`− 1)(d − 1).

We may assume that |E| ∈ 6S (otherwise we are done), whence both a(x) and b(x)
are non-zero since now one of the two contains the constant term and the other one x|E|,
and thus we infer that

a(x)

b(x)
= ϕ(h)
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and

ψ(h) = f (x)− ϕ(h) = xM
Ã(x)b(x)− a(x)B̃(x)

b(x)Q(x)
,

where xM is the largest power of x dividing both A(x) and B(x). In particular, M ∈ 6L,
i.e. M > m`/3l−1 (that is, (6) in the previous case). Now the factor x|E| may appear in
the numerator or the denominator of the second factor. In any case

v0(ψ(h)) ≥ M − 2|E| ≥ M − 2(`− 1)(d − 1).

We may again assume that M − 2(` − 1)(d − 1) > 0 (otherwise we get the asserted
inequality) and thus v0(ψ) > 0; in particular, ψ(0) = 0. Hence, we get

ev0(ψ) = v0(ψ(h)) ≥ M − 2(`− 1)(d − 1).

Again if p̃(θ) = 0 for θ ∈ k∗, then h(θ) = 0 and this gives

vθ (ψ(h)) = ordθ (p̃)v0(ψ) ≥ v0(ψ) ≥
1

d − 1
(M − 2(`− 1)(d − 1)).

If Ã(x)b(x)−a(x)B̃(x) 6= 0, then by Lemma 2.1 the left hand side of the above inequality
is ≤ ordθ (Ãb − aB̃) ≤ `2 and we get the desired bound as before. Otherwise, the result
follows by induction on `.

Putting all the upper bounds for m` together we get

deg f ≤ m` ≤ (267 · 5`)(d − 1),

which is what we want. ut

5. The Laurent case for rational functions

In this section we prove Theorem 1.4. We start with the case when f (x) = P(x)/Q(x) is
in reduced form, i.e. with P,Q ∈ k[x] coprime; here we do not need any of the normal-
izations from Section 3.

5.1. Proof of Theorem 1.4 for reduced f

We write g(x) = g1(x)/g2(x) with g1, g2 ∈ k[x] coprime and thus we get

P(x)

Q(x)
=
g1(h(x))

g2(h(x))
.

Since the quotient on the left side is reduced and g1, g2 are coprime, it follows that
P(x)P1(x) = g1(h(x)), Q(x)Q1(x) = g2(h(x)) with P1,Q1 units in k[x, x−1], i.e. of
the form x±n with n ∈ N. Now since PP1 has the same number of terms as P , and QQ1
has the same number of terms asQ, the result follows at once from [21, Theorem 2*]. ut

We are left with the general case in which P,Q may not be coprime.
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Now we argue by induction on ` and we remind the reader that, by a further induction
on degh, we have reduced to the case when either (H1) or (H2) holds. (We recall that this
reduction has been shown in Section 3, before Lemma 3.1.)

Let f (x) = g(h(x))with h ∈ k[x, x−1] and with h(x) not of the shape ax+b+cx−1,
a, b, c ∈ k, where we again use the notation and normalizations described in Section 3.
Therefore, we may now write

h(x) = x±ep̃(x), p̃(0) 6= 0,

and we again have to consider the cases h(0) = ∞ or h(0) = 0 (i.e. minus or plus sign
respectively). Observe that deg p̃ ≥ 1 since otherwise h would be of the forbidden shape.

5.2. Proof of Theorem 1.4 in the case h(0) = ∞

We start by proving that there is a conjugate y of x over k(h) satisfying (i) of Lemma 3.1
and

degK(z) ≥
1
63

max{|m|, |n|} degK(x) (8)

for all z = xmyn with m, n ∈ Z. We set δ = degK(x) = degK(y) as usual.
We first show this property whenever y 6= x, ηx−1 and degK(y) ≤ 63. Note that this

last inequality holds, in particular, for all h with degh ≤ 64.
Observe that for every conjugate y of x over k(h) different from both x and ηx−1,

condition (i) is fulfilled; this follows as in the proof of Lemma 3.1. Since degh > 2 such
a conjugate certainly exists and we go on to show that it necessarily satisfies also (8) for
the relevant values of m, n.

To show (8), note that the divisors of x, y (in the function field K = k(x, y)) are not
proportional (otherwise xy±1

∈ k∗, but in the opening arguments for Lemma 3.1 we have
already seen that only Y − x, xY − η would be admissible, and we have excluded these
possibilities).

Assume first that m ≥ n ≥ 0. If there is a valuation v with v(x) > 0 and v(y) ≥ 0,
then v(z) = mv(x)+ nv(y) ≥ m ≥ m degK(x)/63 and we are done.

Otherwise for every v with v(x) > 0 we have v(y) < 0; it follows that there is
one such v with v(x) 6= |v(y)| (here we use the assumption that the divisors are not
proportional), and since degK(x) = degK(y), there exists a v with v(x) > |v(y)| ≥ 1.
Thus v(z) = mv(x)−n|v(y)| ≥ m+(m−n)|v(y)| ≥ m. Now assume thatm ≥ −n > 0.
If there is a v with v(x) > 0, v(y) ≤ 0, then v(z) ≥ m; otherwise we have v(y) > 0 for
all v with v(x) > 0 and as above there is such a v with v(x) > v(y), which then implies
v(z) = m+ (m+ n)v(y) ≥ m. It follows that

degK(z) ≥ max{|m|, |n|} ≥
1

63
max{|m|, |n|}δ.

The key point in this argument is that degh is absolutely bounded, and hence the same
holds for δ ≤ degh − 1. So we do not have to worry about the dependence of the lower
bound on δ. In turn, this implies that we have a lower bound for degK(z) without using
Lemma 3.1.
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From now on we therefore assume that δ ≥ 64.
Now if 0.75 max{e, s} ≥ min{e, s}, the inequality (8) follows immediately from the

additional statement in Lemma 3.1. We therefore assume that 0.75 max{e, s} < min{e, s}
or equivalently 0.75e < s < e/0.75.

If h satisfies (H1), then h is indecomposable and we apply Müller’s theorem (cf.
Lemma 2.3). Clearly, the sporadic cases are covered (by the condition δ ≥ 64). Thus let
us now only look at infinite families and assume that δ ≥ 64.

If we are in case (i) of Lemma 2.3, i.e. if G ⊇ Ad , then (h(Y ) − h(x))/(Y − x)
is absolutely irreducible and thus we take it as the defining polynomial for y. We have
δ = d − 1 and clearly y 6= x, ηx−1, which implies (i) of Lemma 3.1. Here it follows, by
using s = d − e > d − (s/0.75) and e = d − s > d − (e/0.75) (observe that deg q̃ = 0
and therefore there are no Puiseux series of type 3 in Lemma 2.4), that there are at least

s >
d

2.34
≥

δ

62

Puiseux series at x = 0 of type 2 and at least

e − 1 >
d

2.34
− 1 ≥

δ

62

Puiseux series at x = 0 of type 1 in Lemma 2.4 in the factor defining y. Then the lower
bound for degK(z) follows by the same arguments as used in the proof of Lemma 3.1:
Let z = xmyn with m, n ∈ Z. If

∣∣|m| − |n|∣∣ ≥ (1/63)max{|m|, |n|}, then we are done by
properties of the degree, and if this is not the case, then it is enough to consider z = xmyn

with m ∈ N, n ∈ Z and m ≥ (62/63)|n| > 0. Since we have already proved that there
are ≥ (1/62)δ Puiseux series at x = 0 of type 1 and 2 in Lemma 2.4, it follows that
degK(z) ≥ (1/62)mδ ≥ (1/63)max{m, |n|}δ. (This is obtained, as before, by counting
the zeros of z by going through the zeros of x and using the fact that in both cases n ≥ 0
resp. n < 0 there are ≥ (1/62)δ places that contribute at least m to the lower bound.) So
we are done again.

Otherwise we are in case (ii) of Lemma 2.3. It follows that d = m2 with m ≥ 8 and
G = (Sm × Sm) o Z/(2). The orders of the distinct orbits induced by the action of G
(that are the degrees in Y of the irreducible factors of h(Y )− h(x)) are (m− 1)2, 2m− 2
and 1. Let y be defined by the factor corresponding to (m−1)2. Clearly, (i) of Lemma 3.1
is satisfied. Since we are assuming that 0.75e < s < e/0.75, which implies s > m2/2.34
and e > m2/2.34, similarly to the above we find that there are at least

e − 2m+ 1 >
m2

2.34
− 2m+ 1 ≥

1
62
(m− 1)2

Puiseux series at x = 0 of type 1 and at least

s − 2m+ 1 >
1
62
(m− 1)2

Puiseux series at x = 0 of type 2 in the defining equation of y (with δ = (m− 1)2). This
again implies the asserted lower bound for degK(z).
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Finally assume that h satisfies (H2), so h(x) = h̃(x+ηx−1), η ∈ k∗. After rescaling x
we may assume that η = 1, i.e. h(x) = h̃(x + x−1). Observe that d = 2 deg h̃; we set
n := deg h̃ = d/2 ≥ 32.

Since h is a Laurent polynomial, it follows that h̃ ∈ k[x] (otherwise h would have a
pole outside {0,∞}) and since every decomposition h = p ◦ q has q(x) = λ(ax+ bx−1)

for a, b ∈ k, λ ∈ PGL2(k), it also follows that h̃ is indecomposable.
So we have (e.g. by [14, Theorem 10, p. 52]) three cases: Either h̃ is related to a

cyclic or a Chebyshev polynomial (i.e. h(x) = c1(x + x
−1
+ c2)

n
+ c3 or h(x) =

c1Tn(c2(x+x
−1)+c3)+c4, c1, c2, c3, c4 ∈ k), orH(U, V ) := (h̃(U)− h̃(V ))/(U −V )

is absolutely irreducible.
In the first two cases H(U, V ) splits into factors of degree 1 or, by [14, Lemma 1,

p. 52], into factors of degree 2 and therefore δ ≤ 4. Thus we can forget about these cases
since we are assuming here that δ ≥ 64.

Hence, in the following we assume that we fall into the third case, i.e.H is absolutely
irreducible. We now apply a result analogous to Müller’s quoted above, but for the simpler
case of polynomials (instead of Laurent polynomials); it appears in Müller’s paper [11,
Theorem 4.9, p. 63] (but is proved elsewhere). We may already forget about the sporadic
cases and thus consider only the infinite families (given at the beginning of the cited
statement). The first cases (a), (b) correspond to the cyclic and Chebyshev case (in fact
now the Galois group structure says that H is not absolutely irreducible). Hence these
cases have already been taken into account.

Therefore we concentrate on case (c), namely we assume that the Galois group G of
the equation h̃(U)− h̃ over k(h̃) is eitherAn or Sn (remember that now n = deg h̃); recall
moreover that n ≥ 32. We denote by L the splitting field of this equation over k(h̃). We
let u, v ∈ L be distinct solutions to this equation, so u 6= v and h̃ = h̃(u) = h̃(v).

We have the field inclusions k(h̃) ⊆ k(u) ⊆ k(u, v) ⊆ L. The Galois group of
L/k(u) corresponds to the stabilizer inG of 1, say, whereas the Galois group ofL/k(u, v)
corresponds to the stabilizer of both 1 and 2. These two subgroups in turn correspond to
natural inclusions, eitherAn−2 ⊆ An−1 or Sn−2 ⊆ Sn−1 (depending on whether G isAn
or Sn).

Suppose now that there is a field F , quadratic over k(u) and with k(u) ⊆ F ⊆ k(u, v).
This would correspond to a group 0 of index 2 either in An−1 or in Sn−1, and with either
An−2 ⊆ 0 ⊆ An−1 or Sn−2 ⊆ 0 ⊆ Sn−1 in the respective situations for G. Say that
G = An: since n ≥ 32, An−1 is simple, so we cannot have [An−1 : 0] = 2. Similarly
if G = Sn: we would have 0 = An−1, contrary to Sn−2 ⊆ 0. We conclude that such a
quadratic extension does not exist.

Let us now define x as a solution of X + X−1
= u, in an algebraic closure of k(u)

containing L; so x + x−1
= u. The other solution is x−1, so k(x) is independent of the

solution, and k(x)/k(u) is quadratic. Hence, k(x) is not included in k(u, v), and therefore
x has degree 2 over k(u, v).

Similarly, we may define y as a solution of Y+Y−1
= v in the same algebraic closure,

and then y also has degree 2 over k(u, v).
Note that h̃(u) = h(x), h̃(v) = h(y), and y is a conjugate of x over k(h).
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Now, k(x, y) has either degree 4 or degree 2 over k(u, v). We get the tower of fields
k(u) ⊆ k(x) ⊆ k(x, y) = K given by the defining equations x + x−1

= u and h(x) −
h(y) = 0 with the respective degrees [k(x) : k(u)] = 2 and [K : k(x)] = δ = degK(x).
Also we have k(u) ⊆ k(u, v) ⊆ K; the first extension is given by H(u, v) = 0 and has
therefore degree [k(u, v) : k(u)] equal to n − 1 = d/2 − 1, and the second is given by
x + x−1

= u, y + y−1
= v.

If [K : k(u, v)] = 4, then a comparison of the degree [K : k(u)] obtained from the
two towers gives δ = d − 2. Hence the numerator of

h(Y )− h(X)

(Y −X)(YX − 1)

is absolutely irreducible and is therefore the only choice as defining polynomial for y. As
before we can use 0.75e < s < e/0.75, and the fact that there are s − 1 Puiseux series of
type 2 and e−1 Puiseux series of type 1 at x = 0 in this irreducible factor of h(X)−h(Y )
to get the desired lower bound for degK(z).

We are left with the case when [K : k(u, v)] = 2, and we proceed to prove that this
case cannot occur at all. Note that k(x) = k(u,

√
u2 − 4) and k(y) = k(v,

√
v2 − 4).

Hence, K = k(x, y) = k(u, v)(
√
u2 − 4,

√
v2 − 4). Since none of the fields k(x), k(y)

is included in k(u, v), we infer that none of u2
− 4, v2

− 4 is a square in k(u, v) but the
ratio (v2

− 4)/(u2
− 4) is a square in k(u, v).

We distinguish between two further cases.

• h̃(2) 6= h̃(−2): Since (v2
− 4)/(u2

− 4) is a square in k(u, v), the function u − 2
must have even order at all the places of k(u, v) lying above the place u = 2 of k(u),
except possibly for the places with v = 2 (v = −2 does not lie above u = 2 because
h̃(2) 6= h̃(−2)). Since H(U, V ) is absolutely irreducible, the places of k(u, v) above
u = 2 correspond to the Puiseux series of h̃(Z) − h̃(u), as series Z = Z(u) centered
at u = 2, where we disregard the ‘trivial’ series Z = u = 2+ (u− 2).
It is very easy to determine some features of these series: Let z = ξ be a root of
multiplicity µξ of the equation h̃(z) − h̃(2) = 0; then the ramification index at v = ξ
above u = 2 is µξ/gcd(µξ , µ2) (see e.g. [8]). Since (v2

− 4)/(u2
− 4) has even order

at all places, this index has to be even for ξ 6= 2 (note that in the present case the value
ξ = −2 does not appear). Hence in particular µξ is even for ξ 6= 2. Note that µ2

cannot be even, for otherwise h̃(Z)− h̃(2) would be a square, and H(U, V ) would be
reducible, a contradiction. Similarly at u = −2. We deduce that

h̃(Z)− h̃(±2) = (Z ∓ 2)Q2
±(Z)

for a suitable Q± ∈ k[Z]. By [14, Lemma 4, p. 27] (applied with q1 = ξ1 = 2,
q2 = ξ2 = −2), we have h̃(Z) = ±Tn(Z) where Tn is the nth Chebyshev polynomial.
But then again H(U, V ) would be reducible, which is not the case.
• h̃(2) = h̃(−2): Now the same argument as above shows again that µξ is an even

integer for ξ2
6= 4. Also, putting µ2 = α+ρ, µ−2 = α−ρ, where ρ = gcd(µ2, µ−2), it

is easy to see, by looking at Puiseux series, that the ramification index of any place in
k(u, v)/k(u) with v = −2 above u = 2 is α−, and the order of (v2

− 4)/(u2
− 4) at
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such a place is α−((µ2/µ−2)− 1) = α+ − α−. Hence the present assumption implies
that α− and α+ are odd and µ2 − µ−2 is even.
Hence h̃(u)− h̃(2) = (u2

− 4)mR2(u) for a polynomial R ∈ k[u] and an integer m ∈
{0, 1}, whence h(x)−h(1) = (x−x−1)2mR2(x+x−1) is a squareQ2(x) in k(x). This
however contradicts condition (H2), because we would have the decomposition h(x) =
p(q(x)) with p(x) = x2

+ h(1), q(x) = Q(x). (Note that degQ = degh/2 ≥ 32.)

In conclusion, in the cases under consideration the degree [K : k(u, v)] cannot be 2 but
must be 4, and we are done as remarked above.

After all of this work we have merely achieved (8); however with this tool we are ready
to give the proof of the statement in question. We study the equation f (x)−f (y) = 0 and
take the same partition coming from 6 = 6L ∪ 6S as before. Suppose that a vanishing
minimal subsum of f (x)−f (y) contains terms of type LL and LS, say xmyn and xm

′

yn
′

.

Then the ratio is z = xm−m
′

yn−n
′

, where |n− n′| > (2/3l)m`, and hence

degK(z) ≥
2

63 · 3`
m`δ,

where we have used (8). So by Lemma 2.2 and by using 2g − 2 + |S| ≤ 2δ2 and the
inequality (4) we get

deg f ≤ m` ≤
63 · 3`

2

(
`2
− 2
2

)
2δ ≤ (2016 · 5`)(d − 1),

and similarly if two of the four sets contain terms from some minimal subsum. Hence, we
may assume that each of the four sets is a union of vanishing subsums, so

a(x)b(y) = a(y)b(x),

A(x)B(y) = A(y)B(x),

A(x)b(y) = B(x)a(y),

a(x)B(y) = b(x)A(y).

Suppose that some among a(x), A(x), b(x), B(x) vanish. We know A(x) 6= 0 (it con-
tains the term xm` with the maximal degree) and also a(x) 6= 0 (it contains the constant
term). If b(x) = 0, we have B(x)a(y) = A(x)b(y) = 0, so B(x) = 0, which is impos-
sible. If B(x) = 0, then we similarly conclude b(x) = 0, which is again impossible. So
a(x)A(x)b(x)B(x) 6= 0. We find

a(x)

b(x)
=
a(y)

b(y)
=
A(x)

B(x)
=
A(y)

B(y)
= ϕ(h)

for some ϕ ∈ k(x). Thus a(x) = ϕ(h)b(x), A(x) = ϕ(h)B(x) and therefore a(x) +
A(x) = ϕ(h)(b(x)+ B(x)), implying

f (x) =
a(x)+ A(x)

b(x)+ B(x)
= ϕ(h) =

a(x)

b(x)
.
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By induction on `we get degϕ≤2016·5`−1 and so deg f =degϕ ·d ≤ (2016·5`)(d−1).
(The case ` = 2 again follows, e.g. by following the arguments above and observing
that the last case is impossible since 6 then contains at least three elements.) Thus the
statement is proved. ut

5.3. Proof of Theorem 1.4 in the case h(0) = 0

This last part of the proof is exactly like the one for the non-Laurent case in Subsection 4.2
above: We just have to observe that h(x) = xep̃(x), where p̃ is a non-constant polyno-
mial, not vanishing at 0. The arguments therein do not require any modification. ut

6. Proof of the Corollary

In this section we give the proof of the Corollary. We argue similarly to [6, Lemma 2]
or [19].

Suppose that one among q(x), h(q(x)), h(h(q(x))) is not of the forbidden shape (of
the Main Theorem). Then we may apply the theorem with h◦(n−i) in place of g (with
suitable i ≤ 2) and h◦i ◦ q in place of h. If h◦n(q(x)) = P(x)/Q(x), where P,Q are
polynomials having altogether at most ` terms, then the conclusion of the Main Theorem
gives 2016 · 5` ≥ deg g = (degh)n−i = dn−i ≥ dn−2, whence

` ≥
1

log 5
((n− 2) log d − log 2016),

proving the conclusion.
So let us assume that each among q(x), h(q(x)), h(h(q(x))) is of the forbidden shape,

i.e. λ(axn + bx−n), a, b ∈ k, n ∈ N, λ ∈ PGL2(k).
Take this expression for q(x) and assume first that ab 6= 0. On rescaling x, setting x in

place of a suitable power of it, and changing h to λ−1
◦h◦λ, we may write q(x) = x+x−1.

(Note that these substitutions do not affect the conclusions.)
Then we have h(x + x−1) = λ1(a1x

r
+ b1x

−r) for a1, b1 ∈ k, λ1 ∈ PGL2(k) and
some r > 0. Since the left side is invariant under x 7→ x−1, we must have a1 = b1 6= 0,
and then r = d = degh. Recall now that Td(x + x−1) = xd + x−d for the Chebyshev
polynomial Td of degree d , so h(x) = λ1(a1Td(x)) = (λ

∗

1 ◦ Td)(x) for a λ∗1 ∈ PGL2(k).
Further, we have h(h(q(x))) = λ2(a2x

m
+ b2x

−m) for a2, b2 ∈ k, λ2 ∈ PGL2(k),
m ∈ N. Again, a2 = b2, and d is a divisor of m: m = ld for a positive integer l. The
above equation yields h(λ∗1(Td)) = λ

∗

2(Tm) = λ
∗

2(Tld) = λ
∗

2(Tl(Td))) for suitable λ∗2 ∈
PGL2(k), where we have used the composition property Trs = Tr ◦Ts for positive integers
r, s. Then h ◦ λ∗1 = λ

∗

2 ◦ Tl , whence l = d and, on taking λ3 = (λ
∗

1)
−1
◦ λ∗2 ∈ PGL2(k),

we get
Td ◦ λ

∗

1 = λ3 ◦ Td .

Now, Td is a polynomial of degree d. Since d ≥ 3, ∞ is the unique totally ramified
point of the map x 7→ Td(x) and it follows that λ∗1, λ3 must fix∞. We therefore invoke
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[14, Lemma 5, p. 28] to conclude that λ∗1(x) = ±x, λ3(x) = (±1)dx. This implies
λ∗2(x) = (±1)d+1x and also h(x) = (±1)dTd(x).

Consider now the case when ab = 0 in the expression for q. Up to conjugation by an
element in PGL2(k) and on setting x in place of a suitable power of it we may now assume
that q(x) = x. Write then as above h(x) = λ1(a1x

d
+ b1x

−d) with (new) a1, b1 ∈ k and
λ1 ∈ PGL2(k). If a1b1 6= 0, the arguments are as before. Then assume a1b1 = 0, so
h(x) = λ∗1(x

d) for a λ∗1 ∈ PGL2(k). Similarly to the case treated above, we also obtain
λ∗1(x)

d
= λ3(x

d), and the conclusion easily follows. ut

7. Appendix: Composite factors of binomials

We prove here that the question posed at the end of the introduction (see Remark 1.6(iii))
has an affirmative answer in the special case of binomials. To recall this, let us assume
that a binomial xm

′

(xm + a) with 0 ≤ m′ < m, m,m′ ∈ N, a ∈ k, is divisible by the
composite g(h(x)) of two polynomials g, h ∈ k[x], where as usual deg g, degh ≥ 2 and
h(x) is not of the shape bxn + c, b, c ∈ k, n ∈ N. We thus have the equation

xm
′

(xm + a) = q(x)g(h(x)), q(x) ∈ k[x]. (9)

We prove

Theorem 7.1. Equation (9) implies deg g ≤ 24.

Proof. If a = 0, then g(h(x)) is a power of x. Hence, for every root ξ of g we have
h(x) − ξ = bxd , where b and d are the leading coefficient and degree of h respectively.
Hence, h is of the exceptional shape. Let us then assume that a 6= 0. By rescaling we may
further assume a = −1, so the equation becomes

xm
′

(xm − 1) = q(x)g(h(x)).

We note at once that we may reduce to the case h 6∈ k[xs] for any s > 1. To prove
this reduction we argue by induction on degh, similarly to what we did in connection
with the previous results. Assuming h(x) = h∗(xs) for a polynomial h∗ ∈ k[x], we write
q(x) = q0(x

s)+ xq1(x
s)+ · · ·+ xs−1qs−1(x

s) for polynomials q0, q1, . . . , qs−1 ∈ k[x].
Note that xm

′

(xm − 1) =
∑s−1
i=0 x

iqi(x
s)g(h∗(xs)), where all the terms in the summand

indexed by i on the right have degree ≡ i (mod s).
If m 6≡ 0 (mod s), then we conclude that xm

′

is of the shape xiqi(xs)g(h(x)), so
we fall in a case just excluded in the opening argument. Therefore we have m ≡ 0
(mod s), and for some i, xm

′

(xm − 1) = xiqi(xs)g(h(x)). Hence, x(m
′
−i)/s(xm/s − 1) =

qi(x)g(h
∗(x)); this is an equation of the same type as before, with the same g but lowered

degrees. So eventually we reach a situation when h 6∈ k(xs) for any s > 1, which we shall
assume from now on.

For each root ξ of g, all the roots of h(x)−ξ are either 0 or roots of unity. Here 0 may
appear at most for one ξ , and the other roots are simple. Also, for all ξ the set of non-zero
roots, denoted by Sξ , is non-empty. We have the equation

h(θ)− h(ζ ) = 0

for all θ, ζ ∈ Sξ .
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Now, by a theorem of Beukers and Smyth [2] (see also [16] for the main argument of
their proof), the number of pairs (θ, ζ ) of roots of unity which lie on an irreducible curve
f (θ, ζ ) = 0, when f is not of the special shape bxnyn

′

+ c or bxn + cyn
′

, is bounded by
11(deg f )2.

Let us detect the special factors dividing h(x)− h(y). One factor is x − y. If another
factor is of the above shape, we have h(xn) = h(cxn

′

) for some constant c ∈ k∗ and
coprime exponents n, n′ ∈ Z. Necessarily n = n′, so we may assume h(x) = h(cx).
Then c is a root of unity and h(x) = h∗(xe) for h∗ ∈ k[x] and an e > 1, a case which has
been excluded above.

So there are no other such special factors, whence

|{(θ, ζ ) : θ 6= ζ, h(θ) = h(ζ ), θ, ζ roots of unity}| ≤ 11(degh)2.

Hence, ∑
g(ξ)=0

|Sξ |(|Sξ | − 1) ≤ 11(degh)2.

On the other hand, since |Sξ | = degh for all but possibly one ξ , in which case |Sξ | ≥ 1,
we have ∑

g(ξ)=0

|Sξ | ≥ deg g degh− degh+ 1 = degh(deg g − 1)+ 1.

Using the Cauchy–Schwarz inequality we get

σ 2 :=
( ∑
g(ξ)=0

|Sξ |
)2
≤ deg g

∑
g(ξ)=0

|Sξ |
2,

and thus

11(degh)2 ≥
∑
g(ξ)=0

|Sξ |(|Sξ | − 1) ≥
σ 2

deg g
− σ = σ

(
σ

deg g
− 1

)
.

Furthermore, this implies

11(degh)2 ≥ degh(deg g − 1)
(

degh(deg g − 1)
deg g

+
1

deg g
− 1

)
.

Dividing by (degh)2 and using deg g, degh ≥ 2, it follows that

11 ≥ (deg g − 1)
(

deg g − 1
deg g

−
1

degh
+

1
degh deg g

)
≥
(deg g − 1)2

2 deg g
≥

deg g
2
− 1,

and finally deg g ≤ 24. ut
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Remark 7.2. We remark that there are certainly non-trivial (that is, with deg g > 1)
solutions to (9). For instance, observe that

xn(n−1)+1
− x = (x − 1)2h(x)(h(x)− 1) = (x − 1)2g(h(x)),

with

h(x) =
xn − 1
x − 1

, g(x) = x(x − 1).

This provides an example with deg g = 2.
Most probably, however, the estimate deg g ≤ 24 may be sharpened, possibly to

deg g ≤ 2, which would then be best possible. It is also possible that there are no solutions
in which deg g ≥ 2 and m′ = 0.

These questions amount to certain systems of equations to be solved in roots of unity.
We plan to return to them in a future paper.

On the other hand, the general question of divisibility of an `-nomial by a composite
factor g(h(x)) appears to be difficult and not in the range of the methods of the present
paper.
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