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Abstract. We study the stability of self-similar solutions of the binormal flow, which is a model
for the dynamics of vortex filaments in fluids and super-fluids. These particular solutions χa(t, x)
form a family of evolving regular curves in R3 that develop a singularity in finite time, indexed
by a parameter a > 0. We consider curves that are small regular perturbations of χa(t0, x) for a
fixed time t0. In particular, their curvature is not vanishing at infinity, so we are not in the context
of known results of local existence for the binormal flow. Nevertheless, we construct solutions of
the binormal flow with these initial data. Moreover, these solutions become also singular in finite
time. Our approach uses the Hasimoto transform, which leads us to study the long-time behavior of
a 1D cubic NLS equation with time-depending coefficients and small regular perturbations of the
constant solution as initial data. We prove asymptotic completeness for this equation in appropriate
function spaces.

Keywords. Vortex filaments, binormal flow, selfsimilar solutions, Schrödinger equations, scatter-
ing
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1. Introduction

In this work we complete the stability properties obtained in our previous paper [3] of
selfsimilar solutions of the binormal flow of curves

χt = χx ∧ χxx . (1)

Here χ = χ(t, x) ∈ R3, x denotes the arclength parameter and t the time variable. Using
the Frenet frame, the above equation can be written as

χt = cb,

where c is the curvature of the curve and b its binormal. This geometric flow was proposed
by Da Rios in 1906 [7] as an approximation of the evolution of a vortex filament in a 3-D
incompressible inviscid fluid. Simple explicit and relevant examples of solutions of (1) are
the straight lines, that remain stationary, the circles, that move in the orthogonal direction
of the plane where they are contained and with velocity the inverse of the radius, and the
helices that, besides exhibiting the same rigid motion of the circles, rotate with a constant
velocity around their axis as a corkskrew. We refer the reader to [1], [4] and [19] for an
analysis and discussion about the limitations of this model and to [18] for a survey about
Da Rios’ work.

Selfsimilar solutions with respect to scaling of (1) are easily found by first fixing the
ansatz

χ(t, x) =
√
t G(x/

√
t), (2)

and then solving the corresponding ordinary differential equation. In geometric terms the
solutions are determined by a curve with the properties

c(x) = a, τ (x) = x/2,

for a parameter a > 0. Denoting by Ga the corresponding curve and Ta its unit tangent,
it is rather easy to see that Ta(x) has a limit A±a as x goes to ±∞, so that Ga approaches
asymptotically two lines. In the neighborhood of x = 0 the curve is similar to a circle of
radius 1/a and for large s it has a helical shape of increasing pitch. Notice that equation (1)
is reversible in time. So if at time t = 1 the filament is given by χa(1, x) = Ga(x) the
evolution χa(t, x) for 0 < t < 1 is given by (2). From this expression we see that the two
lines at infinity remain fixed. However, the helices transport the “energy” from infinity
towards the origin so that the overall effect is an increase of the curvature, which becomes
a/
√
t . The final configuration at time t = 0 is given by the two lines determined by A±a .

That these two lines are different is not so straightforward. It was proved in [13] that

sin(θ/2) = e−a
2/2,

where θ is the angle between the vectors A+a and −A−a . As a consequence starting
with Ga , a real analytic curve at t = 1, a corner is created at time t = 0. This partic-
ular solution is studied numerically in [9]. One of the conclusions of that paper is that the
process of concentration around the origin is very stable. Moreover the similarity between
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the numerical solutions and those that appear experimentally in a colored fluid traversing
a delta wing is quite remarkable: see Figure 1.1 in [9].

The stability results proved in [3] are based on a transformation due to Hasimoto [14].
He defines the so-called “filament function” ψ of a regular solution of (1) that has strictly
positive curvature at all points. The precise expression is

ψ(t, x) = c(t, x) exp
{
i

∫ x

0
τ(t, x′) dx′

}
.

Then it is proved in [14] that ψ solves the nonlinear Schrödinger equation

iψt + ψxx +
1
2
(|ψ |2 − A(t))ψ = 0, (3)

with

A(t) =

(
±2
cxx − c τ

2

c
+ c2

)
(t, 0).

Notice that in (3), the nonlinear term appears with the focusing sign. The opposite case,
the defocusing one, can be obtained in a similar way by assuming that the tangent vec-
tor χs has a constant hyperbolic length instead of the constant euclidean length as in (1).
The equation has to be changed accordingly; see [3] and [8] for the details.

The particular selfsimilar solution χa(t, x) of (1) has as curvature and torsion

ca(t, x) = a/
√
t, τa(t, x) = x/2t,

so its filament function is
ψa(t, x) = ae

ix2/4t/
√
t .

This function is a solution of (3) if

A(t) = a2/t.

Notice that neitherψa(t) nor any of its derivatives are inL2, and thatψa(0) = aeiπ/4δx=0.
This initial data is too singular for the available theory ([20], [10], [6], [2]). Therefore one
might think that this particular solution is not related to any natural energy. However, this
is not the case, as can be proved by considering the pseudo-conformal transformation.
Given a solution ψ of1

iψt + ψxx ± (|ψ |
2
− a2/t)ψ = 0, (4)

we define a new unknown v as

ψ(t, x) = T v(t, x) =
eix

2/4t
√
t
v(1/t, x/t). (5)

Then v solves
ivt + vxx ±

1
t
(|v|2 − a2)v = 0, (6)

1 For simplicity we omit the 1/2 factor in (3), which can be removed by a scaling argument.
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and va = a is a particular solution corresponding to ψa . A natural quantity associated
to (6) is the normalized energy

E(v)(t) =
1
2

∫
|vx(t)|

2 dx ∓
1
4t

∫
(|v(t)|2 − a2)2 dx.

An immediate calculation gives

∂tE(v)(t)∓
1

4t2

∫
(|v|2 − a2)2 dx = 0,

and in particular E(va) = 0.
The first stability result we give in [3] is the proof of the existence for small a of a

modified wave operator for solutions of (4) that at time t = 1 are close to the constant
va = a. Namely, we prove that if we fix an asymptotic state u+ small in L1

∩ L2, then
there is a a unique solution of (4) for t > 1 that behaves as time approaches infinity as

v1(t, x) = a + e
±ia2 log teit∂

2
xu+(x).

Here eit∂
2
x denotes the free propagator. Therefore the free dynamics has to be modified

by the long-range factor e±ia
2 log t , due to the nonintegrability of the coefficient 1/t that

appears in (6). This is similar to the framework of long range wave operators for cubic 1-d
NLS ([17], [5], [15]). Here the situation is different since the L∞-norm of the functions
we are working with is not decaying as t goes to infinity, being just bounded. A link
could also be made with the asymptotic results for the Gross–Pitaevskii equation around
the constant solution ([11], [12]), but still our situation is not the same, and we treat the
linearized equation in a different way.

The condition u+ ∈ L1 will be relaxed in this article to the weaker one that û+(ξ)
times positive powers of |ξ | is bounded in a neighborhood of the origin. As we shall see,
this latter assumption is the one that naturally appears when proving the asymptotic com-
pleteness of (6). Moreover, we shall prove in Theorem A.1 of Appendix A the existence
of the modified wave operator by assuming this weaker property.

Once the solution v is constructed we recover ψ from (5). The result proved in [3] is
that given u+ as before, there exists a unique solution ψ(t, x) of (4) such that ψ behaves
like ψ1 as t goes to zero, with

ψ1(t, x) = a
eix

2/4t
√
t
+
e±ia

2 log t
√

4πi
û+(−x/2).

The precise statement about the behavior of ψ − ψ1 can be found in Corollary 1.2
of [3]. However, it is important to point out two facts. Firstly, the rate of convergence
is ‖ψ − ψ1‖L2 < Ct1/4. And secondly, although the singular term aeix

2/4t/
√
t has a

limit, the correction does not. As a consequence neither ψ1 nor ψ have a trace at t = 0,
no matter how good u+ is. Notice also that the condition about the boundedness of û+
is understood here as that the perturbation of the singular solution ψa has to be bounded
close to the point where the singularity is created.
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The next result in [3] is the construction of solutions of (1) that are close to χa . This
is done by integrating the Frenet system using the filament function given by ψ . The
role played by the euclidean geometry is crucial at this step, because by construction the
binormal vector has unit euclidean length. Therefore to conclude the existence of a trace
for χ(t) at t = 0 it is enough that the curvature, given by |ψ(t, x)|, is integrable at time
zero. Although this is obtained by quite general u+, even though there is not a trace for
ψ at t = 0 as we already said, the question of the existence of a corner is much more
delicate. In order to get it, it is necessary to improve the rate of convergence of ψ − ψ1.
This is done by assuming that |ξ |−2û+(ξ) is locally in L2 (see Theorem 1.5 in [3]).

Our main result in this paper is the asymptotic completeness for solutions of (6) that
at time t = 1 are close to the constant a. In order to give the precise statement we have to
make several transformations of (6). First of all we write

v = w + a, (7)

so that w has to be a solution of

iwt + wxx = ∓
1
t
(|a + w|2 − a2)(a + w). (8)

The right hand side of the above equation has two linear terms. One is ∓ a
2

t
w that is

resonant, and it is the one that creates the logarithmic correction of the phase. The other
one is similar, but involves w̄ and therefore it is not resonant. Then, we define u as

u(t, x) = w(t, x)e∓ia
2 log t . (9)

As a consequence u has to solve

iut =

(
iwt ±

a2

t
w

)
e∓ia

2 log t
=

(
−wxx ∓

|w|2w + a(w2
+ 2|w|2)

t
∓
a2

t
w

)
e∓ia

2 log t ,

so

iut + uxx ±
a2

t1±2ia2 u+
F(u)

t
= 0, (10)

with F(u) given by

F(u) = F(we∓ia
2 log t ) = ±(|w|2w + a(w2

+ 2|w|2))e∓ia
2 log t . (11)

As we see, F involves just quadratic and cubic terms in u.
Also, we need to introduce some auxiliary function spaces. For fixed γ and t0 we

define the space Xγt0 of functions f (x) such that the norm

‖f ‖Xγt0
=

1

t
1/4
0

‖f ‖L2 +
t
γ

0
√
t0

∥∥|ξ |2γ f̂ (ξ)∥∥
L∞(ξ2≤1) (12)

is finite, and Y γt0 the space of functions g(t, x) such that the norm

‖g‖Y γt0
= sup
t≥t0

(
1

t
1/4
0

‖g(t)‖L2 +

(
t0

t

)a2
t
γ

0
√
t0

∥∥|ξ |2γ ĝ(t, ξ)∥∥
L∞(ξ2≤1)

)
(13)

is finite.
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We have the following result.

Theorem 1.1. Let 0 ≤ γ < 1/4, 0 < a and let u(1) be a function in Xγ1 small with
respect to a. Then there exists a unique global solution u ∈ Zγ = Y γ1 ∩ L

4((1,∞), L∞)
of equation (10) with initial data u(1) at time t = 1, and

‖u‖Zγ ≤ C(a)‖u(1)‖Xγ1 .

Moreover, this solution scatters in L2: there exists f+ ∈ L2 for which

‖u(t)− ei(t−1)∂2
x f+‖L2 ≤

C(a, δ)

t1/4−(γ+δ)
‖u(1)‖Xγ1 −−−→t→∞

0,

for any 0 < δ < 1/4 − γ . Finally, the asymptotic state f+ satisfies for all ξ2
≤ 1 the

estimate
|ξ |2(γ+δ)|f̂+(ξ)| ≤ C(a, δ)‖u(1)‖Xγ1 .

To obtain the theorem, we first study the linearized equation

iut + uxx ±
a2

t1±2ia2 u = 0, (14)

with initial data u(t0, x) at time t0 ≥ 1. We prove that u(t) behaves for large times like a
free Schrödinger evolution. The only difference is that the Fourier zero-mode of u(t) can
become singular. Then, by perturbative methods, we deduce the asymptotic completeness
for the nonlinear equation (10). The main part of our proof uses Fourier analysis and
exploits particularly the nonresonant structure of u in (14). This is done by oscillatory in-
tegral techniques and simple integration by parts arguments (see in particular Lemma 2.5
below).

As we see, even if at time t = 1 we are assuming that û(1) remains bounded in
a neighborhood of the origin, we cannot prove a similar property for the asymptotic
state f+. This is not just a technical question. In Appendix B2 we shall prove that if
xu(1) is in L2, so that

φ(t) =

∫
∞

−∞

u(t, x) dx

is well defined for all t > 1, then under some conditions on u(1),

|φ(t)| ≥ C log t.

This property is rather easy to obtain, at least at a formal level, for the linearized equation

iwt + wxx = ∓
a2

t
(w + w̄). (15)

In fact, set y(t) = <
∫
∞

−∞
w(t, x) dx and z(t) = =

∫
∞

−∞
w(t, x) dx; then

iy′(t)− z′(t) = ∓2
a2

t
y(t).

Hence y(t) = y(1) and z(t) = z(1)± 2a2y(1) log t .



Scattering for 1D cubic NLS and singular vortex dynamics 215

Our next step is to understand the above result in terms of the filament function
ψ(t, x). From (5), (7), and (9) we have, for 0 < t ≤ 1,

ψ(t, x) = a
eix

2/4t
√
t
+ e±ia

2 log t T u(t, x). (16)

Therefore
ψ(1, x) = aeix

2
+ ψ1(x)

with ψ1(x) = eix
2
u(1, x). For simplicity we will impose ψ1 ∈ L

1
∩ L2 to fulfil the

hypothesis |ξ |2γ û(1, ξ) ∈ L∞(ξ2
≤ 1) ∩ L2 needed in Theorem 1.1 with γ = 0. This

will imply the existence of an f+ ∈ L2 such that u(t) behaves like ei(t−1)∂2
x f+. Now,

on the one hand, the pseudo-conformal transform of ei(t−1)∂2
x f+ is the free evolution of

1
√

4πi
êi∂

2
x f+

(
−
·

2

)
. On the other hand, T is an isometry of L2. As a consequence we

obtain from Theorem 1.1 the following scattering result.

Theorem 1.2. Let 0 < a and let ψ1 be a small function in L1
∩ L2 with respect to a.

Then there exists a unique solution ψ of equation (4) for 0 < t ≤ 1 with

ψ(1, x) = aeix
2/4
+ ψ1(x),

such that ψ(t, x) − a e
ix2/4t
√
t
∈ L∞((0, 1), L2) ∩ L4((0, 1), L∞). Moreover, there exists

ψ+ ∈ L
2 such that∥∥∥∥ψ(t, x)− a eix2/4t

√
t
− e±ia

2 log teit∂
2
xψ+(x)

∥∥∥∥
L2
≤ C(a, δ) t1/4−δ‖ψ1‖L1∩L2

for any 0 < δ < 1/4, and for |x| ≤ 2 we have

|x|2δ|ψ+(x)| ≤ C(a, δ) ‖ψ1‖L1∩L2 .

As we shall see in Corollary 3.5, if u1 is regular in terms of Sobolev spaces, so is the
solution u(t) given in Theorem 1.1. So in particular u(t) is uniformly bounded in terms
of the size of u1. Then from (16) we conclude that if u1 is small enough with respect to
a then a/2

√
t ≤ |ψ(t, x)| ≤ 3a/2

√
t , and therefore |ψ(t, x)| becomes singular as t goes

to zero. Hence we can use the Frenet system to construct a regular solution χ(t, x) of (1)
for 0 < t ≤ 1, and the corresponding Frenet frame, that will also become singular as t
approaches to zero (see for instance [16] or the Appendix of [3]). Notice also that this
argument works in both settings, focusing and defocusing. Moreover, due to the fact that
in the focusing situation the binormal has unit euclidean length, and that the curvature is
integrable in time, we can define χ0(x) as

χ0(x) = χ(1, x)−
∫ 1

0
c(τ, x)b(τ, x) dτ. (17)

As a conclusion we have the following result.
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Theorem 1.3. Let a > 0 and χ1(x) a regular curve with curvature and torsion c1 and τ1.
Define

ψ1(x) = c1(x)e
i
∫ x

0 τ1(x
′) dx′ , u1(x) = e

−ix2/4ψ1(x)− a,

and assume that u1 ∈ L
1
∩ H 3 is small with respect to a. Then there exists a unique

regular solution χ(t, x) of (1) for 0 < t ≤ 1 with χ(1, x) = χ1(x). Moreover, its
curvature and torsion c and τ satisfy∣∣∣∣c(t, x)− a

√
t

∣∣∣∣ ≤ C(u1)
√
t
,

∣∣∣∣τ(t, x)− x

2t

∣∣∣∣ ≤ C(u1)

t
, (18)

and by defining χ0(x) as in (17) we have

|χ(t, x)− χ0(x)| ≤ C(u1)
√
t .

Remark 1.4. The bounds of the curvature and torsion given in (18) follow from their
definition

c(t, x) = |ψ(t, x)|, τ (t, x) = =
∂xψ(t, x)

ψ(t, x),

and from the rate of decay obtained in Corollary 3.5 below. The same calculations can be
found in §3.2 of [3], therefore they will be omitted here.

Remark 1.5. As we said before, by Theorem 1.5 in [3], if a is small enough and if ψ+ is
small and regular enough with |x|−2ψ+ locally integrable, then χ0(x) has a corner at the
origin x = 0.

Remark 1.6. The use of the Frenet frame can be avoided. In fact, once a solution of (4) is
obtained, a slight modification of Theorem 3.1 of [16] can be used to construct a solution
for (1) for 0 < t ≤ 1, with a trace χ0 in the focusing case defined as in (17). This is
because |ψ |2 − a2/t is in L2((ε, 1), L∞) for any positive ε. In this case |ψ | becomes
unbounded in the Strichartz norm L4((0, 1), L∞), and therefore the corresponding frame
will become also singular as t approaches zero, as does the Frenet frame.

The paper is organized as follows. In §2 we study the asymptotic completeness of
the linear equation (14). Then in §3 we deduce Theorem 1.1 by perturbative methods. As
already mentioned, Appendix A contains the proof of a new version of the existence of
the wave operator of (10) that fits better the hypothesis needed to obtain the asymptotic
completeness of Theorem 1.1. Finally in Appendix B we prove the growth of the zero
Fourier mode for the solutions of the linear and the nonlinear equations, (14) and (10),
a property that we think is interesting in itself.

2. Scattering for the linear equation

In this section we consider only the linear equation (14):

iut + uxx ±
a2

t1±2ia2 u = 0,

with initial data u(t0, x) at time t0 ≥ 1. We start in §2.1 with the proof of some a priori
estimates on the Fourier modes of u(t), which will allow us in §2.2 to get a satisfactory
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global existence result. Then in §2.3 we prove the asymptotic completeness for (14), again
with the help of the properties pointed out in §2.1. Finally, in §2.4 we obtain a regularity
result for the asymptotic state and we prove a posteriori that u ∈ L4((t0,∞), L

∞).

2.1. A priori controls

Lemma 2.1. If u solves equation (14) then for 0 < t0 ≤ t ,

|û(t, ξ)| ≤
ta

2

ta
2

0

(|û(t0, ξ)| + |û(t0,−ξ)|). (19)

In particular,

‖u(t)‖Ḣ k ≤
ta

2

ta
2

0

‖u(t0)‖Ḣ k for all k ∈ Z.

Proof. Using the Fourier transform we write equation (14) as

0 = iût (t, ξ)− ξ2û(t, ξ)±
a2

t1±2ia2 û(t, ξ) = iût (t, ξ)− ξ
2û(t, ξ)±

a2

t1±2ia2 û(t,−ξ).

(20)
By multiplying by û(t, ξ) and by taking the imaginary part,

∂t |û(t, ξ)|
2
= ∓2=

a2

t1±2ia2 û(t,−ξ) û(t, ξ).

We obtain

∂t |û(t, ξ)| ≤
a2

t
|û(t,−ξ)|,

therefore

∂t (|û(t, ξ)| + |û(t,−ξ)|) ≤
a2

t
(|û(t, ξ)| + |û(t,−ξ)|),

so the lemma follows. ut

Now we shall improve this control for some small frequencies.

Lemma 2.2. Let δ > 0. If u solves equation (14) then for all ξ 6= 0 and all 0 < t0 ≤ t ,

|û(t, ξ)| ≤

(
C(a)+

C(a, δ)

(ξ2 t0)δ

)
(|û(t0, ξ)| + |û(t0,−ξ)|), (21)

which is a better estimate than the one of Lemma 2.1 in the region 1/ta
2

. ξ2δ .

Proof. We shall work with the solution w(t) = u(t)e±ia
2 log t of (15):

i∂tw + wxx ±
a2

t
(w + w) = 0.
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We have, by taking the Fourier modes of the real and imaginary part of w,

∂t <̂w(t, ξ) = ξ
2
=̂w(t, ξ), (22)

∂t =̂w(t, ξ) = −ξ
2
<̂w(t, ξ)±

2a2

t
<̂w(t, ξ). (23)

We denote
Yξ (t) = <̂w(t/ξ

2, ξ), Zξ (t) = =̂w(t/ξ
2, ξ).

Equations (22) and (23) become

Y ′ξ (t) = Zξ (t), Z′ξ (t) =
1
ξ2 (−ξ

2
+ 2a2ξ2/t) Yξ (t) = (−1+ 2a2/t) Yξ (t). (24)

For simplicity, we consider only the focusing case, which is slightly more complicated.
For 0 < ε ≤ 1 to be chosen later, the function

σξ (t) =
1
ε
|Yξ (t)|

2
+ ε|Zξ (t)|

2

satisfies

σ ′ξ =

(
1
ε
+ ε

(
−1+

2a2

t

))
2<YξZξ ≤

(
1
ε
− ε + ε

2a2

t

)
σξ .

Therefore (
log σξ − t

(
1
ε
− ε

)
− 2a2ε log t

)′
≤ 0,

and finally for all 0 < t̃0 ≤ t ,
σξ (t) ≤ e

8(t)σξ (t̃0),

where

8(t) = (t − t̃0)

(
1
ε
− ε

)
+ 2a2ε(log t − log t̃0).

Case 1: 0 < t̃0 ≤ t ≤ min{a2, 1/e}. In this region

σξ (t) ≤ e
t/ε−2a2ε log t̃0σξ (t̃0) ≤ e

a2/ε+2a2ε|log t̃0|σξ (t̃0).

By choosing ε = 1/
√
|log t̃0|, we get

σξ (t) ≤ e
3a2
√
|log t̃0|σξ (t̃0).

It follows that

|Yξ (t)|
2
≤

(
|Yξ (t̃0)|

2
+
|Zξ (t̃0)|

2

|log t̃0|

)
e3a2
√
|log t̃0|,

|Zξ (t)|
2
≤ (|log t̃0| |Yξ (t0)|2 + |Zξ (t̃0)|2)e3a2

√
|log t̃0|.
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Therefore, for all δ > 0, there exists a constant C(a, δ) such that for all 0 < t̃0 ≤ t ≤

min{a2, 1/e},

|Yξ (t)|
2
+ |Zξ (t)|

2
≤
C(a, δ)

t̃2δ0
(|Yξ (t̃0)|

2
+ |Zξ (t̃0)|

2).

Case 2: min{a2, 1/e} ≤ t̃0 ≤ t ≤ 4a2 (if such a situation exists). In this case, by taking
ε = 1, 8(t) is bounded by a constant depending on a, and we get

|Yξ (t)|
2
+ |Zξ (t)|

2
≤ C(a)(|Yξ (t̃0)|

2
+ |Zξ (t̃0)|

2).

Case 3: 4a2 < t̃0 ≤ t . For this region we shall diagonalize the system

∂t

(
Yξ
Zξ

)
=

(
0 1

−(1− 2a2/t) 0

)(
Yξ
Zξ

)
.

Let

α(t) =

√
1− 2a2/t, P (t) =

(
1 1

iα(t) −iα(t)

)
.

In particular,

1/
√

2 ≤ α(t) ≤ 1, P−1(t) =

(
1/2 −i/2α(t)
1/2 i/2α(t)

)
.

Then (
Ỹξ (t)

Z̃ξ (t)

)
= P−1(t)

(
Yξ (t)

Zξ (t)

)
satisfies

∂t

(
Ỹξ

Z̃ξ

)
= ∂t (P

−1)P

(
Ỹξ

Z̃ξ

)
+

(
iα 0
0 −iα

)(
Ỹξ

Z̃ξ

)
.

Denote

8(t) = t − a2 log t −
∫
∞

t

(
α(s)− 1+

a2

s

)
ds.

Finally, (
Y̊ξ (t)

Z̊ξ (t)

)
=

(
e−i8(t) 0

0 ei8(t)

)(
Ỹξ (t)

Z̃ξ (t)

)
satisfies

∂t

(
Y̊ξ

Z̊ξ

)
= M(t)

(
Y̊ξ

Z̊ξ

)
, (25)

where

M(t) =

(
e−i8(t) 0

0 ei8(t)

)
∂t (P

−1)P

(
ei8(t) 0

0 e−i8(t)

)
=

a2

2t2α2

(
−1 e−2i8(t)

e2i8(t)
−1

)
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Since 1/
√

2 ≤ α(t) ≤ 1, all the entries of M(t) are upper-bounded by Ca2/t2. We infer
that

∂t (|Y̊ξ |
2
+ |Z̊ξ |

2) ≤
Ca2

t2
(|Y̊ξ |

2
+ |Z̊ξ |

2),

so

∂t

(
log(|Y̊ξ |2 + |Z̊ξ |2)+

Ca2

t

)
≤ 0.

We have Ca2/t̃0 ≤ C/4, and we get

|Y̊ξ (t)|
2
+ |Z̊ξ (t)|

2
≤ C(|Y̊ξ (t̃0)|

2
+ |Z̊ξ (t̃0)|

2).

Finally, from the relation

|Y̊ξ (t)|
2
+ |Z̊ξ (t)|

2
=

∣∣∣∣12Yξ − i

2α
Zξ

∣∣∣∣2 + ∣∣∣∣12Yξ + i

2α
Zξ

∣∣∣∣2 = 1
2
|Yξ |

2
+

1
2α2 |Zξ |

2

and from 1/
√

2 ≤ α(t) ≤ 1 it follows that

|Yξ (t)|
2
+ |Zξ (t)|

2
≤ C(|Yξ (t̃0)|

2
+ |Zξ (t̃0)|

2). (26)

Summarizing, we have found that for all δ > 0, there exists a constant C(a, δ) such
that for all 0 < t̃0 ≤ t ,

|Yξ (t)|
2
+ |Zξ (t)|

2
≤

(
C(a)+

C(a, δ)

t̃2δ0

)
(|Yξ (t̃0)|

2
+ |Zξ (t̃0)|

2). (27)

By recovering the first unknowns, for all 0 < t0 ≤ t ,

|<̂w(t, ξ)|2 + |=̂w(t, ξ)|2 ≤

(
C(a)+

C(a, δ)

(ξ2 t0)2δ

)
(|<̂w(t0, ξ)|

2
+ |=̂w(t0, ξ)|

2),

and by using the identity 2(|z1|
2
+ |z2|

2) = |z1 + iz2|
2
+ |z1 − iz2|

2,

|ŵ(t, ξ)|2 + |ŵ(t,−ξ)|2 ≤

(
C(a)+

C(a, δ)

(ξ2 t0)2δ

)
(|ŵ(t0, ξ)|

2
+ |ŵ(t0,−ξ)|

2).

Since w(t) = u(t)e±ia
2 log t the lemma follows.

For further use we want to compute the asymptotic behavior of the solution u of (14).
In view of (25) and (26) of Case 3, we can define, for 4a2

≤ t̃0,(
Y̊+ξ
Z̊+ξ

)
=

(
Y̊ξ (t̃0)

Z̊ξ (t̃0)

)
+

∫
∞

t̃0

M(τ)

(
Y̊ξ (τ )

Z̊ξ (τ )

)
dτ,

so that for 4a2
≤ t̃0 ≤ t ,(

Y̊+ξ
Z̊+ξ

)
=

(
Y̊ξ (t)

Z̊ξ (t)

)
+

∫
∞

t

M(τ)

(
Y̊ξ (τ )

Z̊ξ (τ )

)
dτ, (28)
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and

|Y̊ξ (t)− Y̊
+

ξ | + |Z̊ξ (t)− Z̊
+

ξ | ≤
C(a)

t
(|Yξ (t̃0)| + |Zξ (t̃0)|). (29)

We have

Y̊+ξ = Y̊ξ (t)+

∫
∞

t

a2

2τ 2α2 (−Y̊ξ (τ )+ e
−2i8(τ)Z̊ξ (τ )) dτ

= e−i8(t)Ỹξ (t)+

∫
∞

t

a2e−i8(τ)

2τ 2α2 (−Ỹξ (τ )+ Z̃ξ (τ )) dτ

= e−i8(t)
(

1
2
Yξ (t)−

i

2α
Zξ (t)

)
+

∫
∞

t

a2e−i8(τ)

2τ 2α2
i

α
Zξ (τ ) dτ,

and

Z̊+ξ = Z̊ξ (t)+

∫
∞

t

a2

2τ 2α2 (e
2i8(τ)Y̊ξ (τ )− Z̊ξ (τ )) dτ

= ei8(t)Z̃ξ (t)+

∫
∞

t

a2ei8(τ)

2τ 2α2 (Ỹξ (τ )− Z̃ξ (τ )) dτ

= ei8(t)
(

1
2
Yξ (t)+

i

2α
Zξ (t)

)
−

∫
∞

t

a2ei8(τ)

2τ 2α2
i

α
Zξ (τ ) dτ,

therefore since Yξ = Y−ξ and Zξ = Z−ξ we get the relation

Y̊+ξ = e
i8(t)

(
1
2
Y−ξ (t)+

i

2α
Z−ξ (t)

)
−

∫
∞

t

a2ei8(τ)

2τ 2α2
i

α
Z−ξ (τ ) dτ = Z̊

+

−ξ . (30)

As a conclusion, by (29) and (27) we get, for all 0 < t̃0 and all t ≥ max{t̃0, 4a2
},∣∣∣∣(1

2
Yξ −

i

2α
Zξ

)
− ei8(t)Y̊+ξ

∣∣∣∣+ ∣∣∣∣(1
2
Yξ +

i

2α
Zξ

)
− e−i8(t)Z̊+ξ

∣∣∣∣
=

∣∣∣∣(1
2
Y−ξ +

i

2α
Z−ξ

)
− e−i8(t)Z̊+

−ξ

∣∣∣∣+ ∣∣∣∣(1
2
Yξ +

i

2α
Zξ

)
− e−i8(t)Z̊+ξ

∣∣∣∣
≤

1
t

(
C(a)+

C(a, δ)

t̃0
δ

)
(|Yξ (t̃0)| + |Zξ (t̃0)|). (31)

In particular, in view of the definition of α(t) and of estimate (26), we have∣∣∣∣(1
2
Yξ +

i

2
Zξ

)
− e−i8(t)Z̊+ξ

∣∣∣∣ ≤ 1
t

(
C(a)+

C(a, δ)

t̃δ0

)
(|Yξ (t̃0)| + |Zξ (t̃0)|).

Hence noticing that 8(t) = t − a2 log t +O(1/t) we see that u+ defined by

2Z̊+ξ = e
−ia2 log ξ2

û+(ξ) (32)
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satisfies for all t0 > 0 and all t ≥ max{t0, 4a2/ξ2
} the estimate

|û(t, ξ)− e−itξ
2
û+(ξ)| ≤

1
ξ2 t

(
C(a)+

C(a, δ)

(ξ2 t0)δ

)
(|û(t0, ξ)| + |û(t0,−ξ)|). (33)

By combining this estimate with (21) for t = 4a2/ξ2 and for 0 < t0 ≤ t ≤ 4a2/ξ2, we
see that (33) is valid for all 0 < t0 ≤ t . ut

Remark 2.3. Let us notice that the logarithmic loss is generally unavoidable. Suppose
Yξ (t̃0) = Zξ (t̃0) = 1 and 0 < t̃0 ≤ t ≤ min{a2, 1/e}. Then in view of the system (24),
we have Yξ (t) > 1 and Zξ (t) > 1, and so

Yξ (t) > Yξ (t̃0), Z′ξ (t) > (−1+ 2a2/t)Yξ (t̃0) = −1+ 2a2/t.

Then we get finally the logarithmic lower bound

Zξ (t) ≥ Zξ (t̃0)− 2a2 log(t/t̃0)− (t − t̃0) ≥ C(a)|log t̃0|.

Remark 2.4. In Appendix B.1 we shall see that if û(t0, 0) is defined and if û(t0, 0) 6= 0,
then also for ξ = 0 a logarithmic loss is unavoidable, independently of the size of t0 ≤ t :

û(t, 0) = e±ia
2 log(t0/t)û(t0, 0)± 2ia2e±ia

2 log t0
t <û(t0, 0) log(t/t0). (34)

Moreover, under certain conditions on the initial data, a logarithmic loss will be shown in
Appendix B.2 for the zero-modes of the solutions of the nonlinear equation (10).

We end this subsection with an estimate on the typical Duhamel term associated
to (14).

Lemma 2.5. Let δ > 0. Let u be a solution of equation (14) and let

At1,t2(ξ) = a
2
∫ t2

t1

e−i(t−τ)ξ
2 û(τ,−ξ)

τ 1±2ia2 dτ

be the Fourier transform of the Duhamel term integrated between two arbitrary times
t0 < t1 ≤ t2. Then for ξ 6= 0,

|At1,t2(ξ)| ≤

(
C(a)+

C(a, δ)

(ξ2 t0)δ

)
|û(t0, ξ)| + |û(t0,−ξ)|

ξ2 t1
. (35)

Proof. We perform an integration by parts

At1,t2(ξ) = a
2e−itξ

2
∫ t2

t1

∂τ e
iτ ξ2

iξ2
û(τ,−ξ)

τ 1±2ia2 dτ

=
a2e−i(t−τ)ξ

2

iξ2 τ 1±2ia2 û(τ,−ξ)

∣∣∣∣t2
t1

− a2
∫ t2

t1

e−i(t−τ)ξ
2

iξ2
∂τ û(τ,−ξ)

τ 1±2ia2

−
(1± 2ia2)e−i(t−τ)ξ

2

iξ2 τ 2±2ia2 û(τ,−ξ) dτ.
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From (20) we get

iût (t,−ξ)− ξ
2û(t,−ξ)±

a2

t1±2ia2 û(t, ξ) = 0,

and then

−iût (t,−ξ)− ξ
2û(t,−ξ)±

a2

t1∓2ia2 û(t, ξ) = 0.

Therefore by replacing

∂τ û(τ,−ξ) = iξ
2û(τ,−ξ)∓ i

a2

τ 1∓2ia2 û(τ, ξ)

we recover an At1,t2(ξ) with minus sign, so that

At1,t2(ξ) =
a2e−i(t−τ)ξ

2

2iξ2 τ 1±2ia2 û(τ,−ξ)

∣∣∣∣t2
t1

− a2
∫ t2

t1

e−i(t−τ)ξ
2

2iξ2
∓ia2û(τ, ξ)

τ 2 −
(1± 2ia2)e−i(t−τ)ξ

2

2iξ2 τ 2±2ia2 û(τ,−ξ) dτ.

Then we can upper-bound

|At1,t2(ξ)| ≤
a2

2ξ2 t2
|û(t2,−ξ)| +

a2

2ξ2 t1
|û(t1,−ξ)|

+
a2

2ξ2

∫ t2

t1

(a2
|û(τ, ξ)| + |1+ 2ia2

| |û(τ,−ξ)|)
dτ

τ 2 .

Now Lemma 2.2 allows us to conclude that

|At1,t2(ξ)| ≤ a
2(a2
+ |1+ 2ia2

|)

(
C(a)+

C(a, δ)

(ξ2 t0)δ

)
|û(t0, ξ)| + |û(t0,−ξ)|

2ξ2 t1
,

as desired. ut

2.2. Global solutions

For an initial data in H s we see by Lemma 2.1 that the solution is globally in H s , but
with a growth of ‖u(t)‖H s . To avoid this issue, we shall start with an initial data in a
more restricted space. We recall the spaces defined in the Introduction by (12) and (13).
Let 0 ≤ γ < 1/4 throughout the rest of the paper. For a fixed t0, we define a norm on
functions depending only on the space variable,

‖f ‖Xγt0
=

1

t
1/4
0

‖f ‖L2 +
t
γ

0
√
t0

∥∥|ξ |2γ f̂ (ξ)∥∥
L∞(ξ2≤1),

and a norm on functions depending on both time and space,

‖g‖Y γt0
= sup
t≥t0

(
1

t
1/4
0

‖g(t)‖L2 +

(
t0

t

)a2
t
γ

0
√
t0

∥∥|ξ |2γ ĝ(t, ξ)∥∥
L∞(ξ2≤1)

)
,

and let Xγt0 and Y γt0 be the corresponding spaces.
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Proposition 2.6. Let t0 ≥ 1. Let u(t0) be a function in Xγt0 . Then there exists a unique
global solution u ∈ Y γt0 of equation (14) with initial data u(t0) at time t0, and

‖u‖Y γt0
≤ C(a)‖u(t0)‖Xγt0

.

More precisely,

sup
t≥t0

1

t
1/4
0

‖u(t)‖L2 ≤ C(a)‖u(t0)‖Xγt0
, (36)

sup
t≥t0

(
t0

t

)a2
t
γ

0
√
t0

∥∥|ξ |2γ û(t, ξ)∥∥
L∞(ξ2≤1) ≤ C

t
γ

0
√
t0

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1).

Proof. We first show the proposition with t0 = 1 and then for an arbitrary t0.
We start with u(1) ∈ Xγ1 , which means that u(1) ∈ L2 with |ξ |2γ û(1, ξ) bounded in

the region ξ2
≤ 1. We already know that a global solution u(t) ∈ C((1,∞), L2) exists,

and we want to show that it belongs to Y γ1 . By Lemma 2.1, for all M > 0,

1

ta
2

∥∥|ξ |2γ û(t, ξ)∥∥
L∞(ξ2≤M)

≤ 2
∥∥|ξ |2γ û(1, ξ)∥∥

L∞(ξ2≤M)
, (37)

so the second condition to be in Y γ1 is fulfilled by taking M = 1. To control the L2 norm
we split it into two parts,

‖u(t)‖L2 = ‖û(t)‖L2 = ‖û(t)‖L2(ξ2≤1) + ‖û(t)‖L2(1≤ξ2) = I + J.

For both parts we use Lemma 2.2, with δ < 1/4− γ :

I ≤ C(a)
∥∥|ξ |−2δ

|û(1, ξ)|
∥∥
L2(ξ2≤1)

≤ C(a)
∥∥|ξ |−2(γ+δ)∥∥

L2(ξ2≤1)

∥∥|ξ |2γ û(1, ξ)∥∥
L∞(ξ2≤1),

J ≤ C(a)‖û(1, ξ)‖L2(1≤ξ2) ≤ C(a)‖û(1)‖L2 .

Therefore we have the L2 norm of u(t) bounded in time,

‖u(t)‖L2 ≤ C(a)‖u(1)‖L2 + C(a)
∥∥|ξ |2γ û(1, ξ)∥∥

L∞(ξ2≤1) ≤ C(a)‖u(1)‖Xγ1 ,

and so u is in Y γ1 .
Now we start with u(t0) ∈ X

γ
t0

. We define U(1) by

u(t0, x) = U(1, x/
√
t0).

We have
‖u(t0)‖L2 = t

1/4
0 ‖U(1)‖L2
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and

t
γ

0
√
t0

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1) =
t
γ

0
√
t0

∥∥∥∥|ξ |2γ ∫ eixξU(1, x/
√
t0) dx

∥∥∥∥
L∞(ξ2≤1)

= t
γ

0

∥∥|ξ |2γ Û (1, ξ√t0)∥∥L∞(ξ2≤1)

=
∥∥|ξ |2γ Û (1, ξ)∥∥

L∞(ξ2≤t0)
≥
∥∥|ξ |2γ Û (1, ξ)∥∥

L∞(ξ2≤1).

Hence
‖U(1)‖Xγ1 ≤ ‖u(t0)‖X

γ
t0
,

and U(1) is in Xγ1 . Therefore we can consider the global solution U ∈ Y γ1 of equation
(14) with initial data U(1) at time 1. The function u defined by

u(t, x) = U(t/t0, x/
√
t0)

is the solution of equation (14) with initial data u(t0) at time t0. We shall rewrite the L2

estimate and (37) with M = t0,

sup
t≥1
‖U(t)‖L2 ≤ C(a)‖U(1)‖Xγ1 ,

sup
t≥1

1

ta
2

∥∥|ξ |2γ Û (t, ξ)∥∥
L∞(ξ2≤t0)

≤ 2
∥∥|ξ |2γ Û (1, ξ)∥∥

L∞(ξ2≤t0)
,

in terms of u. We have

sup
t≥1
‖U(t)‖L2 = sup

t≥1
‖u(t t0, x

√
t0)‖L2 = sup

t≥1

1

t
1/4
0

‖u(t t0)‖L2 = sup
t≥t0

1

t
1/4
0

‖u(t)‖L2 ,

and since we have already shown that ‖U(1)‖Xγ1 ≤ ‖u(t0)‖X
γ
t0

, we get the first estimate
of (36). We have also already computed∥∥|ξ |2γ Û (1, ξ)∥∥

L∞(ξ2≤t0)
=

t
γ

0
√
t0

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1),

and we get similarly

sup
t≥1

1

ta
2

∥∥|ξ |2γ Û (t, ξ)∥∥
L∞(ξ2≤t0)

= sup
t≥1

1

ta
2

∥∥∥∥|ξ |2γ ∫ eixξu(t t0, x
√
t0) dx

∥∥∥∥
L∞(ξ2≤t0)

= sup
t≥1

1

ta
2

1
√
t0

∥∥|ξ |2γ û(t t0, ξ/√t0)∥∥L∞(ξ2≤t0)

= sup
t≥t0

(
t0

t

)a2
1
√
t0

∥∥|ξ |2γ û(t, ξ/√t0)∥∥L∞(ξ2≤t0)

= sup
t≥t0

(
t0

t

)a2
t
γ

0
√
t0

∥∥|ξ |2γ û(t, ξ)∥∥
L∞(ξ2≤1),

so we also get the second estimate of (36) and the proof is complete. ut
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Since equation (14) is linear, we can apply Proposition 2.6 to higher order derivatives,
and get the following statement.

Corollary 2.7. Let s ∈ N and t0 ≥ 1. Let u(t0) be a function in Xγt0 such that ∂kxu(t0) ∈
X
γ
t0

for all 0 ≤ k ≤ s. Then there exists a unique global solution u ∈ Y γt0 of equation (14)
with initial data u(t0) at time t0, with ∂kxu ∈ Y

γ
t0

for all 0 ≤ k ≤ s, and

‖∂kxu‖Y γt0
≤ C(a)‖∂kxu(t0)‖Xγt0

.

More precisely,

sup
t≥t0

1

t
1/4
0

‖∂kxu(t)‖L2 ≤ C(a)‖∂
k
xu(t0)‖Xγt0

,

sup
t≥t0

(
t0

t

)a2
t
γ

0
√
t0

∥∥|ξ |2γ ∂̂kxu(t, ξ)∥∥L∞(ξ2≤1) ≤ C(a)
t
γ

0
√
t0

∥∥|ξ |2γ ∂̂kxu(t0, ξ)∥∥L∞(ξ2≤1).

2.3. Asymptotic completeness

Proposition 2.8. Let t0 ≥ 1 and let u(t0) be a function in Xγt0 . Then the unique global
solution u ∈ Y γt0 of equation (14) with initial data u(t0) at time t0 scatters in L2. More
precisely, there exists u+ ∈ L2 such that

‖u(t)− ei(t−t0)∂
2
xu+‖L2 ≤ C(a, δ)

(1+ log t0)t
1/2−(γ+δ)
0

t1/4−(γ+δ)
‖u(t0)‖Xγt0

−−−→
t→∞

0 (38)

for any 0 < δ < 1/4− γ .

Proof. First we shall show that e−i(t−t0)∂
2
x u(t, x) has a limit in L2 as t goes to infinity.

This is equivalent to

‖e−it2∂
2
x u(t2, x)− e

−it1∂
2
x u(t1, x)‖L2 −−−−−→

t1,t2→∞
0,

and to
‖eit2ξ

2
û(t2, ξ)− e

it2ξ
2
û(t1, ξ)‖L2 = ‖At1,t2(ξ)‖L2 −−−−−→

t1,t2→∞
0.

For 1/t0 ≤ ξ2, Lemma 2.5 gives

‖At1,t2(ξ)‖L2(1/t0≤ξ2) ≤ C(a)
t0

t1
‖u(t0)‖L2 .

In the region ξ2
≤ 1/t2 ≤ 1/t0 we use Lemma 2.2:

|At1,t2(ξ)| ≤ a
2
∫ t2

t1

|û(τ,−ξ)|

τ
dτ ≤ C(a, δ)

|û(t0,−ξ)| + |û(t0, ξ)|

(ξ2 t0)δ
log t2,
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so for 0 < δ < 1/4− γ ,

‖At1,t2‖L2(ξ2≤1/t2) ≤ C(a, δ)

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1)

tδ0

∥∥∥∥ log ξ2

ξ2(γ+δ)

∥∥∥∥
L2(ξ2≤1/t2)

≤ C(a, δ)
1+ log t2

tδ0 t
1/4−(γ+δ)
2

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1).

In the region 1/t2 ≤ ξ2
≤ 1/t1 ≤ 1/t0, we split

At1,t2 = At1,1/ξ2 + A1/ξ2,t2
= I + J.

For I we use again Lemma 2.2 to obtain

|I | ≤ a2
∫ 1/ξ2

t1

|û(τ,−ξ)|

τ
dτ ≤ C(a, δ)

|û(t0, ξ)| + |û(t0,−ξ)|

(ξ2 t0)δ
|log ξ2

|,

and for J we use Lemma 2.5:

|J | ≤
C(a, δ)

(ξ2t0)δ
|û(t0, ξ)| + |û(t0,−ξ)|

ξ2 1
ξ2

= C(a, δ)
|û(t0, ξ)| + |û(t0,−ξ)|

(ξ2 t0)δ
.

Then for 0 < δ < 1/4− γ ,

‖At1,t2‖L2(1/t2≤ξ2≤1/t1) ≤ C(a, δ)

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1/t1)

tδ0

∥∥∥∥ log ξ2

ξ2(γ+δ)

∥∥∥∥
L2(ξ2≤1)

≤ C(a, δ)
1+ log t1

tδ0 t
1/4−(γ+δ)
1

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1).

In the last region 1/t1 ≤ ξ2
≤ 1/t0 we use Lemma 2.5:

‖At1,t2‖L2(1/t1≤ξ2≤1/t0) ≤ C(a, δ)
1
t1

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1)

tδ0

∥∥∥∥ 1
ξ2+2(γ+δ)

∥∥∥∥
L2(1/t1≤ξ2≤1)

≤ C(a, δ)

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1)

t1 t
δ
0

t
3/4+(γ+δ)
1

= C(a, δ)
1

tδ0 t
1/4−(γ+δ)
1

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1).

In conclusion, we have obtained

‖At1,t2‖L2 ≤ C(a)
t0

t1
‖u(t0)‖L2 + C(a, δ)

1+ log t1

tδ0 t
1/4−(γ+δ)
1

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1)

≤ C(a, δ)

(
t
1/4
0
t0

t1
+

√
t0 (1+ log t1)

t
γ+δ

0 t
1/4−(γ+δ)
1

)
‖u(t0)‖Xγt0

. (39)
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Therefore we have a limit u+ ∈ L2 of e−i(t−t0)∂
2
x u(t, x) as t goes to infinity. To get the

decay rate (38) we fix t1 = t and t2 = ∞, and obtain

‖u+ − e
−i(t−t0)∂

2
x u(t, x)‖L2 = ‖At,∞‖L2 ≤ C(a, δ) t

1/2−(γ+δ)
0

1+ log t
t1/4−(γ+δ)

‖u(t0)‖Xγt0
,

for any 0 < δ < 1/4− γ , and since t0 ≥ 1 the proposition follows. ut

In this proof we have used Lemmas 2.1, 2.2 and 2.5, which are pointwise estimates in
Fourier variables, so they apply to higher order derivatives. If ∂kxu(t0) ∈ X(t0)

γ for 0 ≤
k ≤ s, we then get similar estimates to (39),

‖∂kx At1,t2‖L2 ≤ C(a, δ)
(1+ log t0)t

1/2−(γ+δ)
0

t
1/4−(γ+δ)
1

‖∂kx u(t0)‖Xγt0
.

Therefore we get a limit u+ ∈ H s of e−i(t−t0)∂
2
x u(t, x) as t goes to infinity and

‖u+−e
−i(t−t0)∂

2
xu(t, x)‖Ḣ k = ‖∂

k
xAt,∞‖L2 ≤ C(a, δ)

(1+log t0)t
1/2−(γ+δ)
0

t1/4−(γ+δ)
‖∂kxu(t0)‖Xγt0

.

Let us state this result.

Corollary 2.9. Let s ∈ N and t0 ≥ 1. Let u(t0) be a function in Xγt0 such that ∂kxu(t0) ∈
X
γ
t0

for all 0 ≤ k ≤ s. Then the unique global solution u ∈ Y γt0 of equation (14) with
initial data u(t0) at time t0, with ∂kxu ∈ Y

γ
t0

for all 0 ≤ k ≤ s, scatters in H s . More
precisely, there exists u+ ∈ H s such that

‖u(t)− ei(t−t0)∂
2
xu+‖Ḣ k ≤ C(a, δ)

(1+ log t0)t
1/2−(γ+δ)
0

t1/4−(γ+δ)
‖∂kxu(t0)‖Xγt0

−−−→
t→∞

0 (40)

for any 0 < δ < 1/4− γ .

2.4. A posteriori estimates

In this subsection we give some extra estimates first on the asymptotic state u+, and then
on u(t), the solution of (14) with initial condition u(t0) ∈ Xt0 and t0 ≥ 1. By Proposition
2.8 we already know that u+ ∈ L2 with

‖u+‖L2 ≤ ‖u(t)‖L2 + C(a, δ),
(1+ log t0)t

1/2−(γ+δ)
0

t1/4−(γ+δ)
‖u(t0)‖Xγt0

for all t ≥ t0 ≥ 1, and by using (36) we obtain the bound

‖u+‖L2 ≤ C(a)t
1/4
0 ‖u(t0)‖Xγt0

. (41)

Next we shall derive a control of the asymptotic state u+ in the spirit of the one in Lemma
2.2 on the solution u(t).
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Lemma 2.10. Let δ > 0. The function u+ satisfies for all ξ 6= 0 the estimate

|û+(ξ)| ≤

(
C(a)+ C(a, δ)

1+
∣∣log |ξ |

∣∣
(ξ2 t0)δ

)(
|û(t0, ξ)| + |û(t0,−ξ)|

)
. (42)

Proof. We have in L2 and pointwise in Fourier variables,

u+(x) = u(t0, x)+ ia
2
∫
∞

t0

e−iτ∂
2
x
u(τ, x)

τ 1±2ia2 dτ, (43)

so û+(ξ) = û(t0, ξ)+ eitξ
2
At0,∞(ξ) and

|û+(ξ)| ≤ |û(t0, ξ)| + |At0,∞(ξ)|.

For the region 1/t0 ≤ ξ2 the conclusion follows immediately from Lemma 2.5. For
ξ2
≤ 1/t0 we have shown in the proof of Proposition 2.8 that

|At0,∞(ξ)| ≤ C(a, δ)
|û(t0,−ξ)| + |û(t0, ξ)|

(ξ2 t0)δ
|log ξ2

| + C(a, δ)
|û(t0, ξ)| + |û(t0,−ξ)|

(ξ2 t0)δ
,

and the lemma follows. ut

In particular, for all ξ2
≤ 1/t0 we have

|ξ |2(γ+δ)

1+
∣∣log |ξ |

∣∣ |û+(ξ)| ≤ C(a, δ) t1/2−(γ+δ)0 ‖u(t0)‖Xγt0

for any δ > 0. So, if t0 = 1, we get, for all ξ2
≤ 1 and for any δ > 0,

|ξ |2(γ+δ)|û+(ξ)| ≤ C(a, δ) ‖u(1)‖Xγ1 . (44)

We end this section with a regularity property of the solutions of (14).

Proposition 2.11. Under the assumptions of Proposition 2.8, the solution u(t) belongs
to L4((t0,∞), L

∞) with the bound

‖u‖L4((t0,∞),L∞)
≤ C(a)t

1/4
0 (1+ log2 t0)‖u(t0)‖Xγt0

,

and so does also u(t)− ei(t−t0)∂
2
xu+.

Proof. We use the Duhamel formulae

u(t) = ei(t−t0)∂
2
xu(t0)+ ia

2
∫ t

t0

ei(t−τ)∂
2
x
u(τ)

τ 1±2ia2 dτ

= ei(t−t0)∂
2
xu(t0)+ ia

2
∫ t

t0

ei(t−τ)∂
2
x
u(τ)− ei(τ−t0)∂

2
xu+

τ 1±2ia2 dτ

+ ia2
∫ t

t0

ei(t−2τ)∂2
x
eit0∂

2
xu+

τ 1±2ia2 dτ.
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Since (4,∞) is a Strichartz 1-d admissible couple, we can upper-bound the
L4((t0,∞), L

∞) norm of the first and of the second term by

M = C‖u(t0)‖L2 + a
2
∫
∞

t0

‖u(τ)− ei(τ−t0)∂
2
xu+‖L2

τ
dτ,

and by using the rate of decay of Proposition 2.8, for some 0 < δ < 1/4− γ ,

M ≤ C‖u(t0)‖L2 + C(a)(1+ log t0)t
1/2−(γ+δ)
0 ‖u(t0)‖Xt0

∫
∞

t0

dτ

τ 5/4−(γ+δ)

≤ C(a)(1+ log t0)t
1/4
0 ‖u(t0)‖Xγt0

.

Therefore we only need to estimate the last term in L4((t0,∞), L
∞). Let θ(x) be a cut-

off function with θ(x) = 0 for |x| < 1/2 and θ(x) = 1 for |x| > 1. We decompose as
usual the domain of the Fourier variable into three regions, ξ2 . 1/t , 1/t ≤ ξ2

≤ 1/t0
and 1/t0 ≤ ξ2,∫ t

t0

ei(t−2τ)∂2
x
eit0∂

2
xu+

τ 1±2ia2 dτ =

∫
eixξ e−itξ

2
e−it0ξ

2
û+(−ξ)

∫ t

t0

ei2τξ
2

τ 1±2ia2 dτ dξ

=

∫
(1− θ)(tξ2)+

∫
θ(tξ2)(1− θ)(t0ξ2)+

∫
θ(tξ2) θ(t0ξ

2) = I + J +K.

For I we integrate directly in τ ,

|I (t)| ≤

∫
ξ2≤1/t

|û+(−ξ)| log t dξ,

and we apply Lemma 2.10, for some 0 < δ < 1/4− γ , to obtain

|I (t)| ≤ C(a)
log t
tδ0

∫
ξ2≤1/t

1+
∣∣log |ξ |

∣∣
ξ2δ (|û(t0, ξ)| + |û(t0,−ξ)|) dξ

≤ C(a)

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1)

tδ0

log2 t

t1/2−(γ+δ)
.

Then

‖I‖L4((t0,∞),L∞)
≤ C(a)

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1)

tδ0

1+ log2 t0

t
1/4−(γ+δ)
0

≤ C(a)t
1/4
0 (1+ log2 t0)‖u(t0)‖Xγt0

.

To treat J we first split the integral in τ into two parts:

J =

∫
eixξ e−itξ

2
θ(tξ2) (1− θ)(t0ξ2)e−it0ξ

2
û+(−ξ)

∫ 1/ξ2

t0

ei2τξ
2

τ
dτ dξ

+

∫
eixξ e−itξ

2
θ(tξ2)(1− θ)(t0ξ2)e−it0ξ

2
û+(−ξ)

∫ t

1/ξ2

ei2τξ
2

τ
dτ dξ = J1 + J2.
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We need the following lemma.

Lemma 2.12. Define Utf as Ûtf (ξ) = φ(
√
|t |ξ)e−itξ

2
f̂ (ξ), with ‖φ‖L∞ + ‖φ′‖L1

≤ C. Then
‖Utf ‖L4

t L
∞
x
≤ C‖f ‖L2 .

Proof. The lemma follows from the usual T T ∗ argument and the elementary inequality∫
e−itξ

2
+ix ξφ(

√
|t |ξ) dξ ≤

C
√
|t |
(‖φ‖L∞ + ‖φ

′
‖L1). ut

Therefore we get the following estimate for J1:

‖J1‖L4((t0,∞),L∞)
≤ C

∥∥∥∥(1− θ)(t0 ξ2) û+(−ξ)

∫ 1/ξ2

t0

ei2τξ
2

τ
dτ

∥∥∥∥
L2

≤ C
∥∥û+(−ξ) log |ξ |

∥∥
L2(ξ2≤1/t0)

.

Now we use Lemma 2.10 to get

‖J1‖L4((t0,∞),L∞)
≤ C(a)

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1)

tδ0

∥∥∥∥1+ log2
|ξ |

ξ2(γ+δ)

∥∥∥∥
L2(ξ2≤1/t0)

≤ C(a)
1+ log2 t0

t
1/4−γ
0

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1) ≤ C(a)t
1/4
0 (1+ log2 t0) ‖u(t0)‖Xγt0

.

For J2 we perform first the integration by parts∫ t

1/ξ2

ei2τξ
2

τ
dτ =

ei2τξ
2

2iξ2τ

∣∣∣∣t
1/ξ2
+

∫ t

1/ξ2

ei2τξ
2

2iξ2τ 2 dτ =
ei2tξ

2

2iξ2t
−
ei2

2i
+

∫ tξ2

1

ei2τ

2iτ 2 dτ

=
ei2tξ

2

2iξ2t
−

∫
∞

tξ2

ei2τ

2iτ 2 dτ −
ei2

2i
+

∫
∞

1

ei2τ

2iτ 2 dτ.

Therefore

|J2(t)| ≤
C

t

∫
1/2t≤ξ2≤1/t0

|û+(−ξ)|

ξ2 dξ

+ C

∣∣∣∣∫ eixξ e−itξ
2
θ(tξ2)(1− θ)(t0ξ2)e−it0ξ

2
û+(−ξ) dξ

∣∣∣∣.
For the first term we use again Lemma 2.10 to get

C

t

∫
1/2t≤ξ2≤1/t0

|û+(−ξ)|

ξ2 dξ

≤ C(a)

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1)

t tδ0

∥∥∥∥1+
∣∣log |ξ |

∣∣
ξ2+2(γ+δ)

∥∥∥∥
L1(1/2t≤ξ2≤1/t0)

≤ C(a)
1+ log t
t1/2−(γ+δ)

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1)

tδ0
.
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The second term of J2 is similar to a linear evolution as J1. We obtain

‖J2‖L4((t0,∞),L∞)
≤ C(a)

1+ log2 t0

t
1/4−γ
0

∥∥|ξ |2γ û(t0, ξ)∥∥L∞(ξ2≤1),

so
‖J‖L4((t0,∞),L∞)

≤ C(a)t
1/4
0 (1+ log2 t0)‖u(t0)‖Xγt0

.

For K we use again the integration by parts∫ t

t0

ei2τξ
2

τ
dτ =

ei2tξ
2

2iξ2t
−

∫
∞

tξ2

ei2τ

2iτ 2 dτ −
ei2t0ξ

2

2iξ2t0
+

∫
∞

t0

ei2τξ
2

2iξ2τ 2 dτ,

hence

|K(t)| ≤
C

t

∫
1/2t0≤ξ2

|û+(−ξ)|

ξ2 dξ

+

∣∣∣∣∫ eixξ e−itξ
2
θ(tξ2)θ(t0ξ

2)e−it0ξ
2
û+(−ξ)

(
−
ei2t0ξ

2

2iξ2t0
+

∫
∞

t0

ei2τξ
2

2iξ2τ 2 dτ

)
dξ

∣∣∣∣.
By Cauchy–Schwarz’s inequality, the first term is upper-bounded by C t

3/4
0
t
‖u+‖L2 . By

(41) this in turn is smaller than C(a) t0
t
‖u(t0)‖Xγ0

. We get again, as for J2,

‖K‖L4((t0,∞),L∞)
≤ C(a)t

1/4
0 (1+ log2 t0)‖u(t0)‖Xγt0

.

Summarizing, we have obtained the desired estimate

‖u‖L4((t0,∞),L∞)
≤ C(a)t

1/4
0 (1+ log2 t0)‖u(t0)‖Xγt0

.

The Strichartz inequalities for a free evolution together with (41) give

‖ei(t−t0)∂
2
xu+‖L4((t0,∞),L∞)

≤ C‖u+‖L2 ≤ C(a)t
1/4
0 ‖u(t0)‖Xγt0

,

so we also have

‖u(t)− ei(t−t0)∂
2
xu+‖L4((t0,∞),L∞)

≤ C(a)t
1/4
0 (1+ log2 t0)‖u(t0)‖Xγt0

. ut

Lemma 2.10 is a pointwise estimate for Fourier transforms, so it fits for higher order
derivatives. Again by linearity we have the results of Proposition 2.11 at higher Sobolev
order, if ∂kxu(t0) ∈ X(t0): ∂

k
xu(t) belongs to L4((t0,∞), L

∞) with the bound

‖∂kxu‖L4((t0,∞),L∞)
≤ C(a)t

1/4
0 (1+ log2 t0) ‖∂

k
xu(t0)‖Xγt0

.
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3. Scattering for the nonlinear equation

In this section we prove Theorem 1.1. By using the results on the linear equation (14)
obtained in the previous section, we first infer in §3.1 a global existence result for the
nonlinear equation (10). Then we prove in §3.2 asymptotic completeness for these solu-
tions. In the last subsection we give new information about the regularity of the asymptotic
state, which completes the proof of Theorem 1.1.

We start by writing the nonlinear solutions of (10) in terms of solutions of the lin-
ear equation (14). Let us notice that the estimates obtained in the previous section are
independent of the sign in (14), so in what follows we shall consider only one of the
signs—the other case can be treated the same way. We denote by S(t, t0)f the solution
of (14) with a plus sign,

iut + uxx +
a2

t1+2ia2 u = 0,

with initial data f at time t0 ≥ 1. With this notation, for t0 ≤ t we have the estimates (36)
of Proposition 2.6,

‖S(t, t0)f ‖L2 ≤ C(a)t
1/4
0 ‖f ‖Xγt0

, (45)

and ∥∥|ξ |2γ ̂S(t, t0)f (ξ)
∥∥
L∞(ξ2≤1) ≤ C(t/t0)

a2∥∥|ξ |2γ f̂ (ξ)∥∥
L∞(ξ2≤1), (46)

and the one of Proposition 2.11,

‖S(·, t0)f ‖L4((t0,∞),L∞)
≤ C(a)t

1/4
0 (1+ log2 t0)‖f ‖Xγt0

, (47)

as well as all their equivalents for higher order derivatives, if ∂kxf ∈ X
γ
t0

.
Now the solution of

ut = i

(
uxx +

a2

t1+2ia2 u+
F

t

)
with initial data u(1) at time t = 1 reads

u(t, x) = S(t, 1)u(1)+
∫ t

1
S(t, τ )

iF (τ)

τ
dτ. (48)

It is enough to verify this formula for u(1) = 0. Indeed,

∂tu = ∂t

∫ t

1
S(t, τ )

iF (τ)

τ
dτ

= i
F

t
+

∫ t

1
i

(
∂xxS(t, τ )

iF (τ)

τ
+

a2

t1+2ia2 S(t, τ )
iF (τ)

τ

)
dτ

= i

(
F

t
+ uxx +

a2

t1+2ia2 u

)
.

In our case of (10), F is composed of cubic and quadratic powers of u.
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3.1. Global existence

Let us recall again the definitions of the norms of Xγ1 and Y γ1 , for 0 ≤ γ < 1/4:

‖f ‖Xγ1
= ‖f ‖L2 +

∥∥|ξ |2γ f̂ (ξ)∥∥
L∞(ξ2≤1),

‖g‖Y γ1
= sup

t≥1

(
‖g(t)‖L2 +

1

ta
2

∥∥|ξ |2γ ĝ(t, ξ)∥∥
L∞(ξ2≤1)

)
.

We have the following global existence result on the nonlinear equation (10).

Proposition 3.1. Let u(1) be a function in Xγ1 small with respect to a. Then there exists
a unique global solution u ∈ Zγ = Y γ1 ∩ L

4((1,∞), L∞) of equation (10) with initial
data u(1) at time t = 1, and

‖u‖Zγ ≤ C(a)‖u(1)‖Xγ1 .

Proof. In view of (48) we shall prove the proposition by a fixed point argument in Zγ for
the operator

8(u)(t) = S(t, 1)u(1)+
∫ t

1
S(t, τ )

iF (u(τ))

τ
dτ.

The estimates (45)–(47) ensure that

‖S(t, 1)u(1)‖Zγ ≤ C(a)‖u(1)‖Xγ1 .

We start with a property that we shall frequently use in the following.

Lemma 3.2. Let u ∈ Zγ and α < 1/2− γ . Then for 1 ≤ t1 ≤ t2,∫ t2

t1

τα
‖F(u(τ))‖Xγτ

τ
dτ ≤ C

∑
j∈{1,2}(a‖u‖

2
L
pj ((t1,t2),L

qj )
+ ‖u‖3

L
pj ((t1,t2),L

qj )
)

t
1/2−α−γ
1

≤ C
a‖u‖2Zγ + ‖u‖

3
Zγ

t
1/2−α−γ
1

,

where (p1, q1) = (∞, 2) and (p2, q2) = (4,∞).

Proof. By definition (12) of Xγτ , and since |f̂ (ξ)| ≤ ‖f ‖L1 , we get∫ t2

t1

τα
‖F(u(τ))‖Xγτ

τ
dτ

=

∫ t2

t1

(
1
τ 1/4 ‖F(u(τ))‖L2 +

τ γ
√
τ

∥∥|ξ |2γ F̂ (u(τ ))∥∥
L∞(ξ2≤1)

)
dτ

τ 1−α

≤ ca

∫ t2

t1

‖u(τ)‖2
L4

dτ

τ 5/4−α + ca

∫ t2

t1

‖u(τ)‖2
L2

dτ

τ 3/2−α−γ

+ c

∫ t2

t1

‖u(τ)‖3
L6

dτ

τ 5/4−α + c

∫ t2

t1

‖u(τ)‖3
L3

dτ

τ 3/2−α−γ .
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We apply Hölder’s inequality L4-L4/3 in the first and the last integral, and Cauchy–
Schwarz’s inequality for the third one, to obtain

∫ t2

t1

τα
‖F(u(τ))‖Xγτ

τ
dτ

≤ ca‖u‖2
L8((t1,t2),L4)

∥∥∥∥ 1
τ 5/4−α

∥∥∥∥
L4/3(t1,t2)

+ ca‖u‖2
L∞((1,∞),L2)

∫ t2

t1

dτ

τ 3/2−α−γ

+ c‖u‖3
L6((t1,t2),L6)

∥∥∥∥ 1
τ 5/4−α

∥∥∥∥
L2(t1,t2)

+ c‖u‖3
L12((t1,t2),L3)

∥∥∥∥ 1
τ 3/2−α−γ

∥∥∥∥
L4/3(t1,t2)

.

The spaces L8L4, L6L6 and L12L3 are interpolation spaces between L∞L2 and L4L∞,
therefore the lemma follows. ut

Let u ∈ Zγ . The L4L∞ norm of the integral in 8(u) can be bounded by∥∥∥∥a ∫ t

1
S(t, τ )

iF (u(τ))

τ
dτ

∥∥∥∥
L4((1,∞),L∞)

≤ a

∫
∞

1

∥∥∥∥S(t, τ ) iF (u(τ))τ

∥∥∥∥
L4((τ,∞),L∞)

dτ.

By using (47),∥∥∥∥a ∫ t

1
S(t, τ )

iF (u(τ))

τ
dτ

∥∥∥∥
L4((1,∞),L∞)

≤ C(a)

∫
∞

1
τ 1/4(1+ log2 τ)

‖F(u(τ))‖Xγτ

τ
dτ,

so Lemma 3.2 with α = (1/4)+ gives us∥∥∥∥a ∫ t

1
S(t, τ )

iF (u(τ))

τ
dτ

∥∥∥∥
L4((1,∞),L∞)

≤ C(a)(‖u‖2Zγ + ‖u‖
3
Zγ ).

Next we upper-bound the L∞L2 norm:∥∥∥∥a ∫ t

1
S(t, τ )

iF (u(τ))

τ
dτ

∥∥∥∥
L2
≤ a

∫
∞

1

∥∥∥∥S(t, τ ) iF (u(τ))τ

∥∥∥∥
L2
dτ,

and by using (45),∥∥∥∥a ∫ t

1
S(t, τ )

iF (u(τ))

τ
dτ

∥∥∥∥
L2
≤ C(a)

∫ t

1
τ 1/4 ‖F(u(τ))‖X

γ
τ

τ
dτ.

Again, Lemma 3.2 with α = 1/4 gives us∥∥∥∥a ∫ t

1
S(t, τ )

iF (u(τ))

τ
dτ

∥∥∥∥
L2
≤ C(a)(‖u‖2Zγ + c ‖u‖

3
Zγ ).
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Finally, we compute (the contribution of the other quadratic term |u|2 can be treated the
same)

1

ta
2

∥∥∥∥|ξ |2γF(a ∫ t

1
S(t, τ )

iu2(τ )

τ 1−ia2 dτ

)∥∥∥∥
L∞(ξ2≤1)

≤
a

ta
2

∫ t

1

∥∥∥∥|ξ |2γF(S(t, τ ) iu2(τ )

τ 1−ia2

)∥∥∥∥
L∞(ξ2≤1)

dτ,

and by (46)

1

ta
2

∥∥∥∥|ξ |2γF(a ∫ t

1
S(t, τ )

iu2(τ )

τ 1−ia2 dτ

)∥∥∥∥
L∞(ξ2≤1)

≤
Ca

ta
2

∫ t

1

(
t

τ

)a2∥∥|ξ |2γ û2(τ, ξ)
∥∥
L∞(ξ2≤1)

dτ

τ

≤ Ca‖u‖2
L∞((1,∞),L2)

∫
∞

1

dτ

τ 1+a2 ≤
C

a
‖u‖2Zγ .

Also, by (46) and by Hölder’s inequality,

1

ta
2

∥∥∥∥|ξ |2γF(∫ t

1
S(t, τ )

i|u|2u(τ)

τ
dτ

)∥∥∥∥
L∞(ξ2≤1)

≤
C

ta
2

∫ t

1

∥∥∥∥|ξ |2γF(S(t, τ ) i|u|2u(τ)τ

)∥∥∥∥
L∞(ξ2≤1)

dτ

≤
C

ta
2

∫ t

1

(
t

τ

)a2∥∥|ξ |2γ |̂u|2u(τ, ξ)∥∥
L∞(ξ2≤1)

dτ

τ
≤ C

∫
∞

1
‖u(τ)‖3

L3
dτ

τ 1+a2

≤ C‖u‖3
L12((1,∞),L3)

.

So we have shown that the contribution of the quadratic and cubic term is in Zγ ,∥∥∥∥∫ t

1
S(t, τ )

iF (u(τ))

τ
dτ

∥∥∥∥
Zγ
≤ C(a)(‖u‖2Zγ + ‖u‖

3
Zγ ).

Summarizing, we have

‖8(u)‖Zγ ≤ C(a)(‖u(1)‖Xγ1 + ‖u‖
2
Zγ + ‖u‖

3
Zγ ),

so for u(1) ∈ Xγ1 small with respect to a, by the fixed point argument we get a global
solution u ∈ Zγ of (10) with norm bounded by

‖u‖Zγ ≤ C(a)‖u(1)‖Xγ1 . ut

We now state the result in Sobolev spaces. This is a direct corollary of Proposition 3.1, by
using the Leibniz rule and the fact that estimating the Fourier norm in Zγ on derivative
terms creates powers of ξ which are bounded by 1.
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Corollary 3.3. Let s ∈ N. Let ∂kxu(1) be a function in Xγ1 small with respect to a, for all
0 ≤ k ≤ s. Then there exists a unique global solution u ∈ Zγ = Y γ1 ∩ L

4((1,∞), L∞),
with ∂kxu ∈ Z

γ , of equation (10) with initial data u(1) at time t = 1, and∑
0≤k≤s

‖∂kxu‖Zγ ≤ C(a)
∑

0≤k≤s

‖∂kxu(1)‖Xγ1 .

3.2. Asymptotic completeness

Now we prove the second part of Theorem 1.1, namely the asymptotic completeness of
the global solutions obtained by Proposition 3.1.

Proposition 3.4. Let u(1) be a function in Xγ1 small with respect to a. Then the unique
global solution u ∈ Zγ = Y γ1 ∩ L

4((1,∞), L∞) of equation (10) with initial data u(1)
at time t = 1 scatters in L2. More precisely, there exists f+ ∈ L2 for which

‖u(t)− ei(t−1)∂2
x f+‖L2 ≤

C(a, δ)

t1/4−(γ+δ)
‖u(1)‖Xγ1 −−−→t→∞

0 (49)

for any 0 < δ < 1/4− γ .

Proof. The nonlinear solution reads

u(t) = S(t, 1)u(1)+
∫ t

1
S(t, τ )

iF (u(τ))

τ
dτ.

The scattering result of Proposition 2.8 guarantees the existence of u+ ∈ L2 such that

‖S(t, 1) u(1)− ei(t−1)∂2
xu+‖L2 ≤

C(a, δ̃)

t1/4−(γ+δ̃)
‖u(1)‖Xγ1 ,

for some δ̃ to be chosen later. Since u ∈ Zγ we have F(u(τ)) ∈ Xγτ a.e. and we can again
apply Proposition 2.8. There exists u+(τ ) ∈ L2 such that

‖S(t, τ )iF (u(τ))− ei(t−τ)∂
2
x iu+(τ )‖L2 ≤ C(a, δ̃)

(1+ log τ)τ 1/2−(γ+δ̃)

t1/4−(γ+δ̃)
‖F(u(τ))‖Xγτ .

In view of (43) the expression of u+(τ ) is

u+(τ ) = F(u(τ))+ a
2
∫
∞

τ

e−is∂
2
x
S(s, τ )iF (u(τ))

s1+2ia2 ds. (50)

We define

f+ = u+ + i

∫
∞

1
e−i(τ−1)∂2

xu+(τ )
dτ

τ
(51)
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and we have

u(t)− ei(t−1)∂2
x f+

= S(t, 1)u(1)− ei(t−1)∂2
xu+ +

∫ t

1
S(t, τ )iF (u(τ))

dτ

τ
− i

∫
∞

1
ei(t−τ)∂

2
xu+(τ )

dτ

τ

= S(t, 1) u(1)− ei(t−1)∂2
xu+ +

∫ t

1

(
S(t, τ )iF (u(τ))− ei(t−τ)∂

2
x iu+(τ )

) dτ
τ

− i

∫
∞

t

ei(t−τ)∂
2
xu+(τ )

dτ

τ
.

The first term has the right decay in L2, and the second is upper-bounded by∥∥∥∥∫ t

1

(
S(t, τ )iF (u(τ))− ei(t−τ)∂

2
x iu+(τ )

) dτ
τ

∥∥∥∥
L2

≤ C(a, δ̃)

∫ t

1

(1+ log τ)τ 1/2−(γ+δ̃)

t1/4−(γ+δ̃)
‖F(u(τ))‖Xγτ

dτ

τ
,

so we can use Lemma 3.2 with α = 1/2− (γ + δ̃),∥∥∥∥∫ t

1

(
S(t, τ )iF (u(τ))− ei(t−τ)∂

2
x iu+(τ )

) dτ
τ

∥∥∥∥
L2
≤ C(a, δ̃)

1+ log t

t1/4−(γ+δ̃)
(‖u‖2Zγ +‖u‖

3
Zγ ).

For the last term we use (41),∥∥∥∥∫ ∞
t

ei(t−τ)∂
2
xu+(τ )

dτ

τ

∥∥∥∥
L2
≤

∫
∞

t

‖u+(τ )‖L2
dτ

τ
≤ C(a)

∫
∞

t

τ 1/4
‖F(u(τ))‖Xγτ

dτ

τ
,

and again Lemma 3.2 with α = 1/4,∥∥∥∥∫ ∞
t

ei(t−τ)∂
2
xu+(τ )

dτ

τ

∥∥∥∥
L2
≤ C(a)

‖u‖2Zγ + ‖u‖
3
Zγ

t1/4−γ
.

In conclusion we have

‖u(t)− ei(t−1)∂2
x f+‖L2 ≤ C(a, δ̃)

1+ log t

t1/4−(γ+δ̃)
(‖u(1)‖Xγ1 + ‖u‖

2
Zγ + ‖u‖

3
Zγ )

≤ C(a, δ̃)
1+ log t

t1/4−(γ+δ̃)
(‖u(1)‖Xγ1 + ‖u(1)‖

2
X
γ

1
+ ‖u(1)‖3

X
γ

1
)

≤ C(a, δ̃)
1+ log t

t1/4−(γ+δ̃)
‖u(1)‖Xγ1 ,

and the proposition follows by choosing 0 < δ̃ < δ < 1/4− γ . ut

Similarly we also get the statement for Sobolev spaces.
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Corollary 3.5. Let s ∈ N. Let u(1) be a function in Xγ1 such that ∂kxu(1) ∈ X
γ

1 for all
0 ≤ k ≤ s, small with respect to a. Then the unique global solution u ∈ Y γ1 of equation
(14) with initial data u(1) at time t = 1, with ∂kxu ∈ Y

γ

1 for all 0 ≤ k ≤ s, scatters in H s .
More precisely, there exists f+ ∈ H s such that

‖u(t)− ei(t−1)∂2
xf+‖H s ≤

C(a, δ)

t1/4−(γ+δ)

∑
0≤k≤s

‖∂kxu(1)‖Xγ1 −−−→t→∞
0 (52)

for any 0 < δ < 1/4− γ .

3.3. Regularity of the asymptotic state

As an extra information on f+, we have the following result, in the spirit of (44). It
completes the proof of Theorem 1.1.

Proposition 3.6. If ‖u(1)‖Xγ1 is small enough with respect to a, the function f+ satisfies,

for all ξ2
≤ 1 and 0 < δ < 1/4− γ ,

|ξ |2(γ+δ)|f̂+(ξ)| ≤ C(a, δ)‖u(1)‖Xγ1 .

Proof. By the definition (51) of f+, we have

|ξ |2(γ+δ)f̂+(ξ)

= |ξ |2(γ+δ)
(
û+(ξ)+ i

∫ 1/ξ2

1
ei(τ−1)ξ2

û+(τ, ξ)
dτ

τ
+ i

∫
∞

1/ξ2
ei(τ−1)ξ2

û+(τ, ξ)
dτ

τ

)
,

so on ξ2
≤ 1 the estimate (44) ensures that the first term is upper-bounded by

C(a, δ)‖u(1)‖Xγ1 .
By Lemma 2.10 and (50) we can treat the first integral:∫ 1/ξ2

1
|ξ |2(γ+δ)|û+(τ, ξ)|

dτ

τ

≤

∫ 1/ξ2

1

C(a, δ)

τ δ
|ξ |2γ

(
1+

∣∣log |ξ |
∣∣)(|F̂ (u(τ ))(ξ)| + |F̂ (u(τ ))(−ξ)|) dτ

τ

≤ C(a, δ)

∫ 1/ξ2

1
(‖u(τ)‖2

L2 + ‖u(τ)‖
3
L3)

1+ log τ
τ 1+γ+δ dτ.

As usual, we use Hölder’s inequality for the second term to get∫ 1/ξ2

1
|ξ |2(γ+δ)|û+(τ, ξ)|

dτ

τ
≤ C(a, δ)‖u‖2

L∞((1,∞),L2)

∫ 1/ξ2

1

1+ log τ
τ 1+γ+δ dτ

+ C(a, δ)‖u‖3
L12((1,∞),L3)

∥∥∥∥1+ log τ
τ 1+γ+δ

∥∥∥∥
L4/3(1,1/ξ2)

≤ C(a, δ)(‖u‖2Zγ + ‖u‖
3
Zγ ) ≤ C(a, δ)‖u(1)‖Xγ1 .
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It remains to estimate the last integral which, in view of (50), is

|ξ |2(γ+δ)
∫
∞

1/ξ2
ei(τ−1)ξ2

û+(τ, ξ)
dτ

τ

= |ξ |2(γ+δ)e−iξ
2
∫
∞

1/ξ2
eiτ ξ

2
(
F̂ (u(τ ))(ξ)+ a2

∫
∞

τ

eisξ
2

̂
S(s, τ )iF (u(τ))(ξ)

s1+2ia2 ds

)
dτ

τ

= I1(ξ)+ I2(ξ)+ I3(ξ), (53)

where we denote by I1 the cubic contributions of F̂ (u(τ )), by I2 the quadratic ones, and
by I3 the double integral. By Lemma 2.5 applied for some δ̃ > 0, since ξ2

≤ 1,

|I3(ξ)| ≤ |ξ |
2(γ+δ)

∫
∞

1/ξ2
C(a)
|F̂ (u(τ ))(ξ)|+|F̂ (u(τ ))(−ξ)|

ξ2τ

dτ

τ

≤ C(a)
|ξ |2(γ+δ)

ξ2

∫
∞

1/ξ2
(‖u(τ)‖2

L2+‖u(τ)‖
3
L3)

dτ

τ 2

≤ C(a)
|ξ |2(γ+δ)

ξ2

(
‖u‖2

L∞((1,∞),L2)

∫
∞

1/ξ2

dτ

τ 2 +‖u‖
3
L12((1,∞),L3)

∥∥∥∥ 1
τ 2

∥∥∥∥
L4/3(1/ξ2,∞)

)
≤ C(a)‖u(1)‖Xγ1 .

On ξ2
≤ 1 we have

|I1(ξ)| ≤

∫
∞

1
‖u(τ)‖3

L3
dτ

τ
≤ C‖u‖3

L12((1,∞),L3)
≤ C(a)‖u‖3Zγ ≤ C(a)‖u(1)‖Xγ1 .

For the quadratic terms I2 we first notice that quadratic powers of u(τ) can be replaced
by the quadratic powers of ei(τ−1)∂2

x f+, because, in view of Proposition 3.4,

a

∣∣∣∣∫ t2

t1

eiτ ξ
2(
Fu2(τ, ξ)−F(ei(τ−1)∂2

x f+)
2(ξ)

) dτ

τ 1−ia2

∣∣∣∣
≤ a

∫ t2

t1

‖u2(τ )−(ei(τ−1)∂2
x f+)

2
‖L1

dτ

τ
≤

C(a, δ)

t
1/4−(γ+δ)
1

‖u(1)‖Xγ1 .

Therefore we have obtained, for ξ2
≤ 1,

|ξ |2(γ+δ)|f̂+(ξ)| ≤ C(a, δ)‖u(1)‖Xγ1

+ a|ξ |2(γ+δ)
∣∣∣∣∫ ∞

1/ξ2
eiτ ξ

2 F(ei(τ−1)∂2
x f+)

2(ξ)+2F |ei(τ−1)∂2
x f+|

2(ξ)

τ 1−ia2 dτ

∣∣∣∣.
By writing explicitly the Fourier transforms, we get

|ξ |2(γ+δ)|f̂+(ξ)| ≤ C(a, δ)‖u(1)‖Xγ1

+

∑
j∈{1,2}

a|ξ |2(γ+δ)
∫
|f̂+(η)| |f̂+(ξ−η)|

∣∣∣∣∫ ∞
1/ξ2

eiτhj (ξ,η)
dτ

τ 1−ia2

∣∣∣∣ dη, (54)
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where
h1(ξ, η) = 2η(ξ−η), h2(ξ, η) = 2ξ(ξ−η).

By integrating by parts, for η 6= ξ , η 6= 0,∫
∞

1/ξ2
eiτhj (ξ,η)

dτ

τ 1−ia2 =
eiτhj (ξ,η)

ihj (ξ, η)τ 1−ia2

∣∣∣∣∞
1/ξ2
+(1− ia2)

∫
∞

1/ξ2

eiτhj (ξ,η)

ihj (ξ, η)

dτ

τ 2−ia2 .

On one hand, if |hj (ξ, η)| ≥ cξ2 for some positive constant c, we get the uniform estimate∣∣∣∣∫ ∞
1/ξ2

eiτhj (ξ,η)
dτ

τ 1−ia2

∣∣∣∣ ≤ C(a).
On the other hand, in the region |hj (ξ, η)| ≤ cξ2, the integral from 1/(ξ2

|hj (ξ, η)|) to
infinity can be treated the same way. Finally, since∣∣∣∣∫ 1/(ξ2

|hj (ξ,η)|)

1/ξ2
eiτhj (ξ,η)

dτ

τ 1−ia2

∣∣∣∣ ≤ ∣∣log |hj (ξ, η)|
∣∣,

we get ∣∣∣∣∫ ∞
1/ξ2

eiτhj (ξ,η)
dτ

τ 1−ia2

∣∣∣∣ ≤ C(a)+ ∣∣log |hj (ξ, η)|
∣∣I|hj (ξ,η)|≤c|ξ |2 .

Summarizing, we have obtained

|ξ |2(γ+δ)|f̂+(ξ)| ≤ C(a, δ)‖u(1)‖Xγ1

+
(
C(a)+

∣∣log |ξ |
∣∣)|ξ |2(γ+δ) ∫ |f̂+(η)| |f̂+(ξ−η)| dη

+2a|ξ |2(γ+δ)
∫
|η|<C

|f̂+(η)| |f̂+(ξ−η)|
∣∣log |η|

∣∣ dη. (55)

We have also used here the fact that since |ξ | < 1, both |η| and |η−ξ | are bounded in the
regions |hj (ξ, η)| ≤ c|ξ |2.

The function f+ is in L2 with norm bounded by ‖u(1)‖Xγ1 , so Cauchy–Schwarz’s
inequality yields

|ξ |2(γ+δ)|f̂+(ξ)| ≤ C(a, δ)‖u(1)‖Xγ1

+C(a)|ξ |2(γ+δ)
∫
|η|<C

|f̂+(η)| |f̂+(ξ−η)|
∣∣log |η|

∣∣ dη. (56)

On the region {|η| < C}∩{|ξ |/2 < |η|} we can upper-bound
∣∣log |η|

∣∣ ≤ |log(|ξ |/2)| and
treat this term as before, to finally get

|ξ |2(γ+δ)|f̂+(ξ)| ≤ C(a, δ)‖u(1)‖Xγ1

+C(a)|ξ |2(γ+δ)
∫
|η|≤|ξ |/2

|f̂+(η)| |f̂+(ξ−η)|
∣∣log |η|

∣∣ dη. (57)
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By Cauchy–Schwarz’s inequality we obtain

|f̂+(ξ)|
2
≤ C(a, δ)

1
|ξ |4(γ+δ)

‖u(1)‖2
X
γ

1

+C(a)‖u(1)‖Xγ1

∫
|η|≤|ξ |/2

|f̂+(ξ−η)|
2 log2

|η| dη.

For 0 < r < |ξ | we then get(
|f̂+|

2 ?
1
2r

I[−r,r]

)
(ξ) ≤ ‖u(1)‖Xγ1

(
C(a, δ)

2r

∫
|ξ ′|≤r

dξ ′

|ξ−ξ ′|4(γ+δ)
+C(a)Ir(ξ)

)
,

where

Ir(ξ) =
1
2r

∫
|ξ ′|≤r

∫
|η|≤|ξ−ξ ′|/2

|f̂+(ξ−ξ
′
−η)|2 log2

|η| dη dξ ′.

Since δ < 1/4−γ , we have

1
2r

∫
|ξ ′|≤r

dξ ′

|ξ−ξ ′|4(γ+δ)
≤ C
|ξ+r|1−4(γ+δ)

−|ξ−r|1−4(γ+δ)

2r
.

For |ξ |/2 < r < |ξ | we immediately get the upper bound C/|ξ |4δ , while for 0 < r <

|ξ |/2 we get the same upper bound by noticing that |ξ |/2 < |ξ−ξ ′| < 3|ξ |/2. As a
consequence, for 0 < r < |ξ | and ξ2

≤ 1,(
|f̂+|

2 ?
1
2r

I[−r,r]

)
(ξ) ≤ ‖u(1)‖Xγ1

(
C(a, δ)

|ξ |4(γ+δ)
+C(a)Ir(ξ)

)
. (58)

We define, for ξ 6= 0 and h ∈ L1,

Mh(ξ) = sup
0<r<|ξ |

(
h?

1
2r

I[−r,r]

)
(ξ) = sup

0<r<|ξ |

1
2r

∫
|ξ ′|≤r

h(ξ−ξ ′) dξ ′.

We find that Mh(ξ) is well defined almost everywhere in ξ : for r large we use h ∈ L1,
and for r→0 we get h(ξ) <∞ a.e. in ξ . As a property of this operator we have, for h ≥ 0
and for φ even and decreasing,

∫
|η|≤|ξ |

h(ξ−η)φ(η) dη =

+∞∑
j=0

∫
|ξ |/2j+1≤|η|≤|ξ |/2j

h(ξ−η)φ(η) dη

≤

+∞∑
j=0

|ξ |

2j−1φ

(
|ξ |

2j+1

)
2j−1

|ξ |

∫
|ξ |/2j+1≤|η|≤|ξ |/2j

h(ξ−η) dη

≤ 2Mh(ξ)
∫
|η|≤|ξ |

φ(η) dη. (59)

We have the following lemma.
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Lemma 3.7. For 0 < r < |ξ | ≤ 1,

Ir(ξ) ≤ C(a)(1+ log2
|ξ |)‖u(1)‖2

X
γ

1
+C|ξ |(1+ log2

|ξ |)M|f̂+|
2(ξ).

Proof. First, for |ξ |/4 < r < |ξ |, we make the change of variable η = η′−ξ ′, so

Ir(ξ) =
1
2r

∫
|ξ ′|≤r

∫
|η′−ξ ′|≤|ξ−ξ ′|/2

|f̂+(ξ−η
′)|2 log2

|η′−ξ ′| dη′ dξ ′.

In particular, |η′| ≤ |ξ |/2+3r/2 ≤ 2|ξ |, and

Ir(ξ) ≤

∫
|η′|≤2|ξ |

|f̂+(ξ−η
′)|2

1
2r

∫
|ξ ′|≤r

log2
|η′−ξ ′| dξ ′ dη′

≤ C

∫
|η′|≤2|ξ |

|f̂+(ξ−η
′)|2

(|η′|+r) log2(|η|′+r)

2r
dη′

≤ C
|ξ |(1+ log2

|ξ |)

r
‖f+‖

2
L2 ,

so for |ξ |/4 < r < |ξ | we have the upper bound C(1+ log2
|ξ |)‖f+‖

2
L2 .

For 0 < r < |ξ |/4 we perform the same change of variable, and get |η′| ≤ |ξ |/2+
3r/2 ≤ |ξ |, so

Ir(ξ) ≤

∫
|η′|≤|ξ |

|f̂+(ξ−η
′)|2

1
2r

∫
|ξ ′|≤r

log2
|η′−ξ ′| dξ ′ dη′.

In the region |η′| ≥ 2r we have |ξ ′| ≤ |η′|/2, so |η′−ξ ′| ≥ η′/2, and by using (59), we
get the desired upper bound∫

|η′|≤|ξ |

|f̂+(ξ−η
′)|2 log2 |η

′
|

2
dη′ ≤ 2M|f̂+|2(ξ)

∫
|η′|≤|ξ |

log2 |η
′
|

2
dη′

≤ C|ξ |(1+ log2
|ξ |)M|f̂+|

2(ξ).

In the remaining region |η′| ≤ 2r we decompose the integral in η′ into three parts:

∫
|η′|≤min{|ξ |,2r}

|f̂+(ξ−η
′)|2

1
2r

(∫
|ξ ′|≤|η′|/2

+

∫
|η′|/2≤|ξ ′|≤3|η′|/2

+

∫
3
2 |η
′|≤|ξ ′|≤r

)
dη′

= I 1
r (ξ)+I

2
r (ξ)+I

3
r (ξ).

In the first one, |η′−ξ ′| ≥ |η′|/2, so

I 1
r (ξ) ≤ C

∫
|η′|≤min{|ξ |,2r}

|f̂+(ξ−η
′)|2 log2 |η

′
|

2
dη′,
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so as before we recover the upper bound C|ξ |(1+ log2
|ξ |)M|f̂+|

2(ξ). In the second re-
gion we integrate in ξ ′, and since ξ ′ is of the size of η′, we end up as before:

I 2
r (ξ) ≤ C

∫
|η′|≤min{|ξ |,2r}

|f̂+(ξ−η
′)|2
|η′| log2

|η′|

2r
dη′

≤ C

∫
|η′|≤min{|ξ |,2r}

|f̂+(ξ−η
′)|2 log2

|η′| dη′.

In the last region |η′−ξ ′| ≥ |η′|/2, so we get again

I 3
r (ξ) ≤ C

∫
|η′|≤min{|ξ |,2r}

|f̂+(ξ−η
′)|2 log2 |η

′
|

2
dη′.

In conclusion for |ξ |/4 < r < |ξ | we get the upper bound C(1+ log2
|ξ |)‖f+‖

2
L2 and

for 0 < r < |ξ |/4 we get the upper bound C|ξ |(1+ log2
|ξ |)M|f̂+|

2(ξ), so the lemma
follows. ut

By using this lemma, estimate (58) gives us, for 0 < r < |ξ |,(
|f̂+|

2 ?
1
2r

I[−r,r]

)
(ξ)

≤ ‖u(1)‖Xγ1

(
C(a, δ)

|ξ |4(γ+δ)
+C(a)(1+log2

|ξ |)‖u(1)‖2
X
γ

1
+C(a)|ξ |(1+log2

|ξ |)M|f̂+|
2(ξ)

)
.

The constant is independent of r , so by taking the supremum in 0 < r < |ξ | we obtain,
for ξ2

≤ 1,

M|f̂+|
2(ξ) ≤

‖u(1)‖Xγ1

(
C(a, δ)

|ξ |4(γ+δ)
+C(a)(1+ log2

|ξ |)‖u(1)‖2
X
γ

1
+C(a)|ξ |(1+ log2

|ξ |)M|f̂+|
2(ξ)

)
.

(60)

Since M|f̂+|2(ξ) < ∞ almost everywhere in ξ , for ‖u(1)‖Xγ1 C(a)|ξ |(1+ log2
|ξ |) <

1/2, so for C(a)‖u(1)‖Xγ1 < 1/2, we get the estimate

M|f̂+|
2(ξ) ≤

C(a, δ)

|ξ |4(γ+δ)
‖u(1)‖Xγ1 +C(a)(1+ log2

|ξ |)‖u(1)‖3
X
γ

1
≤

C(a, δ)

|ξ |4(γ+δ)
‖u(1)‖Xγ1 .

Then

|f̂+|
2(ξ) = lim

r→0

(
|f̂+|

2 ?
1
2r

I[−r,r]

)
(ξ) ≤ M|f̂+|

2(ξ) ≤
C(a, δ)

|ξ |4(γ+δ)
‖u(1)‖Xγ1 ,

and the proposition follows. ut



Scattering for 1D cubic NLS and singular vortex dynamics 245

Appendix A. Wave operators

In this section we prove the existence of wave operators for the nonlinear equation (10).
The difference with respect to the wave operators constructed in [3] is that here we shall
weaken the conditions on the final data by working in spaces that fit the conditions of
Theorem 1.1.

We first study the existence of the wave operators for the linearized equation (14).

Proposition A.1. Let 0 ≤ γ < 1/4, ν > 0, and let u+ ∈ X
γ−ν

1 . Then the equation (14)
has a unique solution u ∈ Zγ satisfying, as t goes to infinity,

‖u(t)− eit∂
2
xu+‖L2 ≤

C(a, ν, δ)

t1/4−(γ+δ)
‖u+‖Xγ−ν1

for any 0 < δ < 1/4− γ . In particular, u(1) ∈ Xγ1 , with norm bounded by ‖u+‖Xγ−µ1
.

Proof. We are going to use similar arguments to those in Lemma 2.2. We define, as in
(32),

2Z̊+ξ = e
−ia2 log ξ2

û+(ξ), Y̊+ξ = Z̊
+

−ξ .

We define for 0 ≤ t̃ ≤ 1/4a2 the solutions (ẙξ , z̊ξ )(t̃) of(
ẙξ (t̃)

z̊ξ (t̃)

)
=

(
Y̊+ξ
Z̊+ξ

)
+

∫ t̃

0
M

(
1
τ

)(
ẙξ (τ )

z̊ξ (τ )

)(
−

1
τ 2

)
dτ.

Then

sup
0≤t̃≤1/4a2

(|ẙξ (t̃)| + |z̊ξ (t̃)|)

≤ (|Y̊+ξ | + |Z̊
+

ξ |)+

∫ 1/4a2

0

a2

α2(1/τ)
dτ sup

0≤t̃≤1/4a2
(|ẙξ (t̃)| + |z̊ξ (t̃)|),

and as α(1/τ) =
√

1− 2a2τ , we get

sup
0≤t̃≤1/4a2

(|ẙξ (t̃)| + |z̊ξ (t̃)|) ≤ 2(|Y̊+ξ | + |Z̊
+

ξ |).

Now, for 4a2
≤ t <∞, the functions (Y̊ξ (t), Z̊ξ (t)) = (ẙξ (1/t), z̊ξ (1/t)) solve (28) and

|Y̊ξ (t)|
2
+ |Z̊ξ (t)|

2
≤ C(|Y̊+ξ |

2
+ |Z̊+ξ |

2) = C(|û+(ξ)|
2
+ |û+(−ξ)|

2).

In particular,

∂t

(
Y̊ξ

Z̊ξ

)
= M(t)

(
Y̊ξ

Z̊ξ

)
=

a2

2t2α2(t)

(
−1 e−2i8(t)

e2i8(t)
−1

)(
Y̊ξ

Z̊ξ

)
.

Since Y̊+ξ = Z̊
+

−ξ and

∂t

(
Y̊ξ − Z̊−ξ

Z̊ξ − Y̊−ξ

)
= M(t)

(
Y̊ξ − Z̊−ξ

Z̊ξ − Y̊−ξ

)
,
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we obtain Y̊ξ (t) = Z̊−ξ (t). Therefore, with the notation of Lemma 2.2, we can define, for
4a2
≤ t <∞,(

Yξ (t)

Zξ (t)

)
=P(t)

(
ei8(t) 0

0 e−i8(t)

)(
Y̊ξ (t)

Z̊ξ (t)

)
=

(
ei8(t)Y̊ξ (t)+ e

−i8(t)Z̊ξ (t)

iα(t)ei8(t)Y̊ξ (t)− iα(t)e
−i8(t)Z̊ξ (t)

)
,

a solution of (24):

∂t

(
Yξ
Zξ

)
=

(
0 1

−(1− 2a2/t) 0

)(
Yξ
Zξ

)
,

which satisfies Yξ (t) = Y−ξ (t) and Zξ (t) = Z−ξ (t). Moreover, since

|Y̊ξ (t)|
2
+ |Z̊ξ (t)|

2
=

∣∣∣∣12Yξ (t)− i

2α(t)
Zξ (t)

∣∣∣∣2 + ∣∣∣∣12Yξ (t)+ i

2α(t)
Zξ (t)

∣∣∣∣2
=
|Yξ (t)|

2

2
+
|Zξ (t)|

2

2α2(t)
,

and 1/
√

2 ≤ α(t) ≤ 1, it follows that

|Yξ (t)|
2
+ |Zξ (t)|

2
≤ C(|û+(ξ)|

2
+ |û+(−ξ)|

2). (61)

We continue the definition of (Yξ (t), Zξ (t)) for the remaining 0 < t <∞ as the solution
of (24). It follows that u(t, x) defined by u(t, x) = w(t, x)e−ia

2 log t , where

Yξ (t) = <̂w(t/ξ
2, ξ), Zξ (t) = =̂w(t/ξ

2, ξ),

is a solution of (14). In particular, (61) is satisfied for all 1 ≤ t < ∞, so for large
frequencies ξ2

≥ 1/t we get

|û(t, ξ)|2 + |û(t,−ξ)|2 ≤ C(a)(|û+(ξ)|
2
+ |û+(−ξ)|

2). (62)

We next define
yξ (t) = Yξ (1/t), zξ (t) = Zξ (1/t),

a solution for 1 ≤ t <∞ of

y′ξ = −
1
t2
zξ , z′ξ =

(
1
t2
−

2a2

t

)
yξ ,

with initial data (yξ (1), zξ (1)) = (Yξ (1), Zξ (1)). We take σε = y2
ξ /ε + εz

2
ξ and proceed-

ing as in Lemma 2.2, for all t > 1, we obtain

σε(t) ≤ e
1/ε+ε+2a2ε log tσε(1).

By choosing ε = 1/
√

log t for t > 3/2 and ε = 1 for 1 ≤ t ≤ 3/2, we get for all t ≥ 1
the estimate

|yξ (t)|
2
+ |zξ (t)|

2
≤ C(1+ log t)e2+2a2

√
log t (|yξ (1)|2 + |zξ (1)|2)

≤ C(a)(1+ log t)e2+2a2
√

log t (|û+(ξ)|
2
+ |û+(−ξ)|

2).
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So we finally get the estimates for low frequencies ξ2
≤ 1/t of the solution u of (14),

|û(t, ξ)|2 + |û(t,−ξ)|2 ≤ C(a)(1+ |log tξ2
|)e2+2a2

√
|log tξ2|(|û+(ξ)|

2
+ |û+(−ξ)|

2).

(63)

Therefore setting f+(x) = u(1, x) we see by (62) and (63) that f+ ∈ X
γ

1 with norm
bounded by ‖u+‖Xγ−µ1

. From Propositions 2.6, 2.8, and (32), (33) it follows that u =
S(t, 1)f+ ∈ Zγ and for all 0 < δ < 1/4− γ ,

‖S(t, 1)f+ − ei(t−1)∂2
xu+‖L2 ≤

C(a, ν, δ)

t1/4−(γ+δ)

(
‖u+‖L2 +

∥∥|ξ |2(γ−ν)û+(ξ)∥∥L∞(|ξ |≤1)

)
. ut

Remark A.2. Let us notice that (62) together with (63) imply that for t1, δ1 > 0,

|û(t1, ξ)| ≤

(
C(a)+

C(a, δ1)

(t1ξ2)δ1

)
(|û+(ξ)| + |û+(−ξ)|).

This, combined with Lemma 2.10, yields, for any times t1, t2 ≥ 1 and for any positive
δ1, δ2,

|û(t1, ξ)| ≤

(
C(a)+

C(a, δ1)

(t1ξ2)δ1

)(
C(a)+

C(a, δ2)

(t2ξ2)δ2

)
(|û(t2, ξ)| + |û(t2,−ξ)|). (64)

It follows that for 1 ≤ t1 ≤ t2 and γ + δ1 + δ2 < 1/4,

‖u(t1)‖L2 ≤ ‖u(t2)‖L2

(
C(a)+ C(a, δ1)

t
δ1
2

t
δ1
1

)

+ C(a, δ2)

∥∥|ξ |2γ û(t2, ξ)∥∥L∞(ξ2≤1/t2)

t
δ1
1 t

δ2
2

∥∥∥∥ 1
ξ2γ+2(δ1+δ2)

∥∥∥∥
L2(ξ2≤1/t2)

≤ C(a, δ1, δ2)
t
1/4+δ1
2

t
δ1
1

‖u(t2)‖Xγt2
. (65)

Now we show the existence of wave operators for the nonlinear equation (10) with
respect to the linear solutions of (14).

Proposition A.3. Let 0 ≤ γ < 1/4. For all f+ ∈ X
γ

1 small with respect to a, equation
(10) has a unique solution u ∈ L∞((1,∞), L2(R)) ∩ L4((1,∞), L∞(R)) satisfying, as
t goes to infinity,

‖u(t)− S(t, 1)f+‖L2 + ‖u(τ)− S(τ, 1)f+‖L4((t,∞),L∞) ≤
C(a, δ)

t1/4−(γ+δ)
‖f+‖Xγ1

for any 0 < δ < 1/4− γ .
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Proof. We shall perform a fixed point argument for the operator

Bu = S(t, 1)f+ +
∫
∞

t

S(t, τ )
iF (u(τ))

τ
dτ

in the closed ball AR = {u | ‖u‖A ≤ R}, where

‖u‖A = sup
t∈[1,∞)

t1/4−(γ+δ)(‖u(t)− S(t, 1)f+‖L2 + ‖u(·)− S(·, 1)f+‖L4((t,∞),L∞)),

with R to be specified later.
Let u ∈ AR . In particular for all admissible couples (p, q), interpolated between

(∞, 2) and (4,∞), we have

sup
t∈[1,∞)

t1/4−(γ+δ) ‖u(·)− S(·, 1)f+‖Lp((t,∞),Lq ) ≤ CR,

and therefore, by the estimates (45) and (47),

‖u‖Lp((t,∞),Lq ) ≤ C‖S(·, 1)f+‖Lp((1,∞),Lq ) + C‖u‖A ≤ C‖f+‖Xγ1 + C‖u‖A. (66)

We want to estimate

Bu− S(t, 1)f+ =
∫
∞

t

S(t, τ )
iF (u(τ))

τ
dτ = J (t).

We have

‖J (t)‖L2 + ‖J‖L4((t,∞),L∞) ≤

∫
∞

t

‖S(t, τ )iF (u(τ))‖L2
dτ

τ

+

∫
∞

t

‖S(·, τ )iF (u(τ))‖L4((τ,∞),L∞)

dτ

τ

+

∫
∞

t

‖S(·, τ )iF (u(τ))‖L4((t,τ ),L∞)

dτ

τ
.

We upper-bound the first term by using the backwards estimates (65) with (t1, t2) = (t, τ )
and δ1 = δ ∈ (0, 1/4− γ ),∫

∞

t

‖S(t, τ )iF (u(τ))‖L2
dτ

τ
≤ C(a, δ)

∫
∞

t

τ 1/4+δ

tδ
‖F(u(τ))‖Xγτ

dτ

τ
.

For the second we use the forward estimate (47),∫
∞

t

‖S(·, τ )iF (u(τ))‖L4((τ,∞),L∞)

dτ

τ
≤ C(a)

∫
∞

t

τ 1/4(1+ log2 τ)‖F(u(τ))‖Xγτ
dτ

τ
.

We write the third term as∫
∞

t

‖S(·, τ )iF (u(τ))‖L4((t,τ ),L∞)

dτ

τ

=

∫
∞

t

∥∥∥∥ei(s−τ)∂2
xF(u(τ))− ia2

∫ τ

s

ei(τ−r)∂
2
x
S(r, τ )iF (u(τ))

r1+2ia2 dr

∥∥∥∥
L4((t,τ ),L∞)

dτ

τ
.
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We use the Strichartz estimates and the backwards estimates (65) to get∫
∞

t

‖S(·, τ )iF (u(τ))‖L4((t,τ ),L∞)

dτ

τ

≤ C(a)

∫
∞

t

(
‖F(u(τ))‖L2 +

∥∥∥∥S(r, τ )iF (u(τ))r

∥∥∥∥
L1((t,τ ),L2)

)
dτ

τ

≤

∫
∞

t

‖F(u(τ))‖Xγτ

(
Cτ 1/4

+ C(a)

∥∥∥∥τ 1/4+δ

r1+δ

∥∥∥∥
L1(t,τ )

)
dτ

τ

≤ C(a)

∫
∞

t

τ 1/4+δ

tδ
‖F(u(τ))‖Xγτ

dτ

τ
.

Summarizing, we have obtained

‖J (t)‖L2 + ‖J‖L4((t,∞),L∞) ≤ C(a, δ)

∫
∞

t

τ 1/4+δ
‖F(u(τ))‖Xγτ

dτ

τ
.

Now Lemma 3.2 with (t1, t2) = (t,∞) and α = 1/4+ δ gives

‖J (t)‖L2+‖J‖L4((t,∞),L∞) ≤
C(a, δ)

t1/4−(γ+δ)

∑
j∈{1,2}

(a‖u‖2
L
pj ((t,∞),L

qj )
+‖u‖3

L
pj ((t,∞),L

qj )
),

where (p1, q1) = (∞, 2) and (p2, q2) = (4,∞). Therefore, in view of (66),

‖J‖A ≤ Ca‖f+‖
2
X
γ

1
+ Ca‖u‖2A + C‖f+‖

3
X
γ

1
+ C‖u‖3A.

For all f+ ∈ X
γ

1 small with respect to a, there exists R small with respect to a such that
the operator B is a contraction on AR , and the proposition follows. ut

The last two propositions imply the following result.

Theorem A.4. Let 0 ≤ γ < 1/4, ν > 0 and u+ ∈ X
γ−ν

1 with norm small with re-
spect to a. Then the equation (10) has a unique solution u ∈ L∞((1,∞), L2(R)) ∩
L4((1,∞), L∞(R)) satisfying, as t goes to infinity,

‖u(t)− ei(t−1)∂2
xu+‖L2 ≤

C(a, ν, δ)

t1/4−(γ+δ)
‖u+‖Xγ−ν1

for any 0 < δ < 1/4− γ .

Appendix B. Remarks on the growth of the zero-Fourier modes

B.1. Growth of the zero-Fourier modes for the linear equation

Let u be the global H 2 solution of (14) obtained as a consequence of Lemma 2.1. We
shall get here some extra information on u(t), via estimates done directly on w(t) =
u(t)e±ia

2 log t , the solution of (15):

i∂tw + wxx ±
a2

t
(w + w) = 0.
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We shall use the fact that w ∈ H 2 to get proper integration by parts at the level of the
Laplacian.

Let us notice that since u is a solution of the linear equation (14), if û(t0) is continuous,
so will be û(t). In this case, by integrating in space, we get the law of evolution of the
zero-Fourier modes,

i∂t

∫
w = ∓

a2

t

∫
<w,

so

∂t

∫
<w = 0, ∂t

∫
=w = ±

a2

t

∫
<w = ±

a2

t

∫
<w(t0).

Therefore ∫
=w(t) =

∫
=w(t0)± 2a2

∫
<w(t0) log

t

t0
.

In conclusion, if the zero-mode
∫
w(t0) is null, then it will be the same for all times,∫

w(t) = 0. Furthermore, if the real part of the zero-modes <
∫
w(t0) is not null, then

we have a logarithmic growth of the zero-modes
∫
w(t), independently of the size of t0,

which cannot be avoided:∫
w(t) =

∫
w(t0)± 2ia2

∫
<w(t0) log

t

t0
. (67)

Recovering the expression of u, we obtain (34).

B.2. Growth of the Fourier modes for the nonlinear equation

Let u be the global H 1 solution of (10) obtained by Corollary 3.3. In particular,∑
0≤k≤1

‖∂kxu‖Z ≤ C(a)
∑

0≤k≤1

‖∂kxu(1)‖X1 ≤ C(a, u(1)).

For the computations on Fourier modes in this subsection, the existence of û(t, 0) has to
be justified. We have the following control.

Lemma B.1. If xu(1) ∈ L2, then

‖xu(t)‖L2 ≤ C(a, u(1))t C̃(a,u(1)).

Proof. Let ϕ be a positive radial cut-off function, equal to x2 on B(0, 1), such that
(∂xϕ)

2
≤ Cϕ. For R > 0 we define

ϕR(x) = R
2ϕ(x/R).
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We multiply equation (10) by ϕRu and integrate the imaginary part to get

∂t

∫
ϕR|u(t)|

2
= −=

∫
uxxϕRu∓ =

∫
a2

t1±2ia2 ϕRu u− =

∫
F(u)

t
ϕRu

= =

∫
ux∂xϕRu∓ =

∫
a2

t1±2ia2 ϕRu u− =

∫
F(u)

t
ϕRu

≤ ‖∂xu‖L2

(∫
(∂xϕR)

2
|u(t)|2

)1/2

+
a2

t

∫
ϕR|u(t)|

2
+
‖u‖L∞ + ‖u‖

2
L∞

t

∫
ϕR|u(t)|

2.

Therefore, by using (∂xϕ)2 ≤ Cϕ and Sobolev embeddings,

∂t

(∫
ϕR|u(t)|

2
)1/2

≤ C(a, u(1))+
C(a, u(1))

t

(∫
ϕR|u(t)|

2
)1/2

,

so (∫
ϕR|u(t)|

2
)1/2

≤ C(a, u(1))t C̃(a,u(1)).

The estimate is uniform in R, and the lemma follows by letting R go to infinity. ut

In particular, the lemma ensures that û(t) ∈ H 1, so in particular û(t) is continuous and the
existence of û(t, 0) is justified. Now we shall get information on the zero-mode of u(t),
via estimates on the solution w of (8):

iwt + wxx = ∓
1
t
(|a + w|2 − a2)(a + w).

We shall use the following conservation law:

∂t

∫
(|w + a|2 − a2) = 0, (68)

obtained by multiplying (8) by w + a and by taking the imaginary part. We integrate (8)
in space to get

i∂t

∫
w ±

∫
1
t
(|w + a|2 − a2)(w + a) = 0.

By using (68) we get the evolution of the zero-modes:∫
w(t)−

∫
w(t0) = ±i

∫ t

t0

∫
(|w(τ)+ a|2 − a2)(w(τ)+ a) dx

dτ

τ

= ±ia

∫
(|w(t0)+ a|

2
− a2) dx log

t

t0
± i

∫ t

t0

∫
(|w(τ)|2 + 2a<w(τ))w(τ) dx

dτ

τ
.
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The Strichartz estimates imply that the part coming from the cubic power ofw is bounded
in time, so we can bound the second term:∣∣∣∣∫ t

t0

∫
(|w(τ)|2+ 2a<w(τ))w(τ) dx

dτ

τ

∣∣∣∣ ≤ C(a)‖u(t0)‖Xt0 + 2a‖w‖2
L∞((t0,t),L2)

log
t

t0

≤ C(a)‖u(t0)‖Xt0 + C(a)‖u(t0)‖
2
Xt0

log
t

t0
.

Therefore we get a logarithmic upper bound for
∫
w(t), and implicitly for û(t, 0). This

growth is sharp provided that

C(a)‖w(t0)‖
2
Xt0
= C(a, t0)(‖w(t0)‖

2
L2 + ‖ŵ(t0)‖

2
L∞(ξ2≤1/t0)

)

< a

∣∣∣∣∫ (|w(t0)+ a|2 − a2) dx

∣∣∣∣,
for which a sufficient condition is

C(a, t0)(‖w(t0)‖
2
L2 + ‖ŵ(t0)‖

2
L∞(ξ2≤1/t0)

) <

∣∣∣∣∫ <w(t0) dx∣∣∣∣.
We also get a logarithmic growth for =

∫
w(t), provided that

∫
(|w(t0)+a|

2
−a2) dx > 0.
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MR 2436789

[3] Banica, V., Vega, L.: On the stability of a singular vortex dynamics. Comm. Math. Phys. 286,
593–627 (2009) Zbl 1183.35029 MR 2472037

[4] Batchelor, G. K.: An Introduction to Fluid Dynamics. Cambridge Univ. Press, Cambridge
(1967) Zbl 0152.44402 MR 1744638

[5] Carles, R.: Geometric optics and long range scattering for one-dimensional nonlin-
ear Schrödinger equations. Comm. Math. Phys. 220, 41–67 (2001) Zbl 1029.35211
MR 1882399

[6] Christ, M.: Power series solution of a nonlinear Schrödinger equation. In: Mathematical As-
pects of Nonlinear Dispersive Equations, Ann. of Math. Stud. 163, Princeton Univ. Press,
Princeton, NJ, 131–155 (2007) Zbl 1142.35084 MR 2333210

[7] Da Rios, L. S.: On the motion of an unbounded fluid with a vortex filament of any shape.
Rend. Circ. Mat. Palermo 22, 117–135 (1906) (in Italian) JFM 37.0764.01

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1132.76001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2398034
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1147.35092&format=complete
http://www.ams.org/mathscinet-getitem?mr=2436789
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1183.35029&format=complete
http://www.ams.org/mathscinet-getitem?mr=2472037
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0152.44402&format=complete
http://www.ams.org/mathscinet-getitem?mr=1744638
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1029.35211&format=complete
http://www.ams.org/mathscinet-getitem?mr=1882399
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1142.35084&format=complete
http://www.ams.org/mathscinet-getitem?mr=2333210
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=37.0764.01&format=complete


Scattering for 1D cubic NLS and singular vortex dynamics 253

[8] de la Hoz, F.: Self-similar solutions for the 1-D Schrödinger map on the hyperbolic plane.
Math. Z. 257, 61–80 (2007) Zbl 1128.35099 MR 2318570

[9] de la Hoz, F., Garcı́a-Cervera, C., Vega, L.: A numerical study of the self-similar solutions
of the Schrödinger map. SIAM J. Appl. Math. 70, 1047–1077 (2009) Zbl 1219.65139
MR 2546352

[10] Grünrock, A.: Bi- and trilinear Schrödinger estimates in one space dimension with ap-
plications to cubic NLS and DNLS. Int. Math. Res. Notices 2005, no. 41, 2525–2558
Zbl 1088.35063 MR 2181058

[11] Gustafson, S., Nakanishi, K., Tsai, T.-P.: Global dispersive solutions for the Gross–
Pitaevskii equation in two and three dimensions. Ann. Henri Poincaré 8, 1303–1331 (2007)
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