DOI 10.4171/JEMS/302

Péter P. Variú

Expansion in $SL_d(\mathcal{O}_K/I)$, *I* square-free

Received January 21, 2010 and in revised form October 16, 2010

Abstract. Let S be a fixed symmetric finite subset of $SL_d(\mathcal{O}_K)$ that generates a Zariski dense subgroup of $SL_d(\mathcal{O}_K)$ when we consider it as an algebraic group over $\mathbb Q$ by restriction of scalars. We prove that the Cayley graphs of $SL_d(\mathcal{O}_K/I)$ with respect to the projections of S is an expander family if I ranges over square-free ideals of \mathcal{O}_K if $d = 2$ and K is an arbitrary number field, or if $d = 3$ and $K = \mathbb{Q}$.

1. Introduction

Let G be a graph, and for a set of vertices $X \subset V(G)$, denote by ∂X the set of edges that connect a vertex in X to one in $V(G)\backslash X$. Define

$$
c(\mathcal{G}) = \min_{X \subset V(\mathcal{G}), \, |X| \leq |V(\mathcal{G})|/2} \frac{|\partial X|}{|X|},
$$

where $|X|$ denotes the cardinality of the set X. A family of graphs is called a *family of expanders* if $c(G)$ is bounded away from zero for graphs G that belong to the family. Expanders have a wide range of applications in computer science (see e.g. Hoory, Linial and Widgerson [\[23\]](#page-32-1) for a recent survey of expanders and their applications) and recently they found remarkable applications in pure mathematics as well (see Bourgain, Gamburd and Sarnak [\[9\]](#page-31-0) and Long, Lubotzky and Reid [\[25\]](#page-32-2)).

Let G be a group and let $S \subset G$ be a symmetric (i.e. closed for taking inverses) set of generators. The *Cayley graph* $\mathcal{G}(G, S)$ of G with respect to the generating set S is defined to be the graph whose vertex set is G, and in which two vertices $x, y \in G$ are connected exactly if $y \in Sx$. Let K be a number field and denote by \mathcal{O}_K its ring of integers. Let $I \subset \mathcal{O}_K$ be an ideal, and denote by π_I the projection $\mathcal{O}_K \to \mathcal{O}_K/I$. In this paper we study the problem whether the graphs $G(SL_d(O_K/I), \pi_I(S))$ form an expander family, where $S \subset SL_d(\mathcal{O}_K)$ is a fixed symmetric set of matrices and I runs through certain ideals of \mathcal{O}_K . This problem was addressed by Bourgain and Gamburd in a series of papers [\[5\]](#page-31-1)–[\[7\]](#page-31-2), and by them jointly with Sarnak in [\[9\]](#page-31-0). It is solved for $K = \mathbb{Q}$ in the following cases: in [\[5\]](#page-31-1) for $d = 2$ when and $I = (p)$ runs through primes, in [\[9\]](#page-31-0) for $d = 2$

P. P. Varju: Department of Mathematics, Princeton University, Princeton, NJ 08544, USA, and ´ Analysis and Stochastics Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary; e-mail: pvarju@princeton.edu

and $I = (q)$, q square-free, and in [\[6\]](#page-31-3) and [\[7\]](#page-31-2) when $I = (p^n)$, p^n a prime power. (When $d \geq 3$, the prime p has to be kept fixed.) A necessary and sufficient condition in each case for the Cayley graphs to be expanders is that S generates a Zariski dense subgroup $\Gamma < SL_d(\mathbb{C})$. In [\[9\]](#page-31-0) the expander property is used for $K = \mathbb{Q}(\sqrt{-1})$ for sieving in the context of integral Apollonian packings; this is our main motivation for extending the problem to general number fields.

The starting point for our study is the work of Helfgott [\[21\]](#page-32-3), [\[22\]](#page-32-4). He studies the following problem: Let F be a family of finite fields and let $d > 2$ be an integer. Is there a constant $\delta > 0$ such that for any generating set $A \subset SL_d(F)$ with $F \in \mathcal{F}$ we have

$$
|A.A.A| \ge |A| \min(|A|, |SL_d(F)|/|A|)^{\delta}
$$
 (1)

Here and everywhere in what follows, we use the notation $A.B = \{gh \mid g \in A, h \in B\}$ if A and B are subsets of a multiplicative group. Helfgott answers this question in the affirmative when F is the family of prime fields and $d = 2$ [\[21\]](#page-32-3) or $d = 3$ [\[22\]](#page-32-4). In Section [4.1](#page-25-0) we show that [\[21\]](#page-32-3) (i.e. the proof for the case $d = 2$) easily extends to the case of arbitrary finite fields.

Let r be the degree of the number field K, and denote by $\sigma_1, \ldots, \sigma_r$ the embeddings of K into C. Denote by $\hat{\sigma} = \sigma_1 \oplus \cdots \oplus \sigma_r$ the obvious map $K \to \mathbb{C}^r$. This gives rise
to an embedding (which will also be denoted by $\hat{\sigma}$) of $SL_2(\mathcal{O}_X)$ into the direct product to an embedding (which will also be denoted by $\hat{\sigma}$) of $SL_d(\mathcal{O}_K)$ into the direct product $SL_d(\mathbb{C})^r$. Our main result is

Theorem 1. Let $S \subset SL_d(\mathcal{O}_K)$ be symmetric and assume that it generates a subgroup $\Gamma < SL_d(\mathcal{O}_K)$ *such that* $\widehat{\sigma}(\Gamma) \subset SL_d(\mathbb{C})^r$ is Zariski dense. Assume further that [\(1\)](#page-1-0) *holds*
for some constant $\widehat{s} > 0$ if E ranges over the fields \mathcal{O}_N/P where $P \subset \mathcal{O}_N$ is a prime *for some constant* $\delta > 0$ *if* F *ranges over the fields* \mathcal{O}_K/P *, where* $P \subset \mathcal{O}_K$ *is a prime ideal. Then there is an ideal* $J \subset \mathcal{O}_K$ *such that* $\mathcal{G}(SL_d(\mathcal{O}_K/I), \pi_I(S))$ *is a family of expanders where* $I \subset \mathcal{O}_K$ *ranges over square-free ideals prime to J.*

It is part of the claim that $\pi_I(S)$ generates $SL_d(\mathcal{O}_K/I)$ if I is prime to J. In fact, J can be taken to be the product of prime ideals P for which $\pi_P(S)$ does not generate $SL_d(\mathcal{O}_K/P)$; this fact will be proven together with the theorem. We remark that the condition on Zariski density is necessary, otherwise $\pi_{(q)}(S)$ would not generate $SL_d(\mathcal{O}_K/(q))$ for any rational integer q . Note that by the above remarks on Helfgott's work, the theorem is unconditional for $d = 2$ and arbitrary K, and for $d = 3$ and $K = \mathbb{Q}$.

We introduce some notation that will be used throughout the paper. We use Vinogradov's notation $x \ll y$ as a shorthand for $|x| < Cy$ with some constant C. Let G be a discrete group. The unit element of any multiplicatively written group is denoted by 1. For given subsets A and B of G, we denote their product-set by

$$
A.B = \{ gh \mid g \in A, h \in B \},
$$

while the k-fold iterated product-set of A is denoted by $\prod_k A$. We write A for the set of inverses of all elements of A. We say that A is *symmetric* if $A = \tilde{A}$. The number of elements of a set A is denoted by $|A|$. The index of a subgroup H of G is denoted by [G : H] and we write $H_1 \lesssim_L H_2$ if $[H_1 : H_1 \cap H_2] \leq L$ for some subgroups $H_1, H_2 < G$. Occasionally (especially when a ring structure is present) we write groups additively, then we write

$$
A + B = \{g + h \mid g \in A, h \in B\}
$$

for the sum-set of A and B, $\sum_k A$ for the k-fold iterated sum-set of A, and 0 for the zero element.

If μ and ν are complex valued functions on G, we define their convolution by

$$
(\mu * \nu)(g) = \sum_{h \in G} \mu(gh^{-1})\nu(h),
$$

and we define $\tilde{\mu}$ by the formula

$$
\widetilde{\mu}(g) = \mu(g^{-1}).
$$

We write $\mu^{(k)}$ for the k-fold convolution of μ with itself. As measures and functions are essentially the same on discrete sets, we use these notions interchangeably; we will also use the notation

$$
\mu(A) = \sum_{g \in A} \mu(g).
$$

A *probability measure* is a nonnegative measure with total mass 1. Finally, the *normalized counting measure* on a finite set A is the probability measure

$$
\chi_A(B) = |A \cap B|/|A|.
$$

We use the same approach to prove Theorem [1](#page-1-1) as in $[5]-[9]$ $[5]-[9]$ $[5]-[9]$, which goes back to $[31]$; we outline this here only, the details will be given in Section [5.](#page-29-0) Let G be an m-*regular* graph, i.e. each vertex is of degree m . It is easy to see that the largest eigenvalue of the adjacency matrix of G is m, and it is a simple eigenvalue if and only if the graph is connected. Denote by $\lambda_2(G)$ the second largest eigenvalue of the adjacency matrix. It was proven by Dodziuk [\[15\]](#page-31-4), Alon and Milman [\[3\]](#page-31-5) and Alon [\[2\]](#page-31-6) that a family of graphs is an expander family if and only if $m - \lambda_2(G)$ is bounded away from zero (see also [\[23,](#page-32-1) Theorem 2.4]). For a Cayley graph $\mathcal{G}(G, S)$, the adjacency matrix is a constant multiple of convolution with χ_S from the left considered as an operator. Then the multiplicities of the nontrivial eigenvalues are at least the minimum dimension of a nontrivial representation of G. In the case of *SL*^d good bounds are known, hence it is enough to estimate the trace of the operator. More precisely, with the notation of Theorem [1,](#page-1-1) we need to show that for any $\varepsilon > 0$ there is a constant $C = C(\varepsilon, S)$ such that

$$
\|\pi_I[\chi_S^{(C \log N(I))}]\|_2 < |SL_d(\mathcal{O}_K/I)|^{-1/2 + \varepsilon},\tag{2}
$$

where $N(I)$ is the norm of the ideal. In fact, [\(2\)](#page-2-0) means that the random walk on the graph $\mathcal{G}(SL_d(\mathcal{O}_K/I), \pi_I(S))$ is close to equidistribution after C log $N(I)$ steps.

The proof of (2) has two parts; the first is

Theorem 2. Let $S \subset SL_d(\mathcal{O}_K)$ be symmetric, and denote by Γ the subgroup it generates. *Assume that* $\widehat{\sigma}(\Gamma)$ *is Zariski dense in SL_d*(\mathbb{C})^{*r*}. Then there is a constant δ *depending* only on S and there is a commetric set $S' \subset \Gamma$ such that the following holds. For any *only on* S, and there is a symmetric set S' ⊂ Γ such that the following holds. For any *square-free ideal 1, for any proper subgroup* $H < SL_d(\mathcal{O}_K/I)$ *and for any even integer* $l \geq \log N(I)$ *, we have*

$$
\pi_I[\chi_{S'}^{(l)}](H) \ll [SL_d(\mathcal{O}_K/I):H]^{-\delta}.
$$

If we know that $g \in \prod_{c \log N(I)} S$, where c is a small constant depending on S, then $\pi_I(g)$ determines g uniquely. In Section [2,](#page-4-0) using Nori's [\[27\]](#page-32-6) results we give a geometric description of the elements of $\prod_{c \log N(I)} S$ whose projection modulo I belongs to H; this will be a certain subgroup of $SL_d(\mathcal{O}_K)$. Then we will prove that the probability for the random walk on $\mathcal{G}(\Gamma, S)$ to be in this subgroup decays exponentially in the number of steps we take. (Actually, first we need to replace S by another set $S' \subset \Gamma$.) The proof of this is based on a ping-pong argument.

The second part of the proof begins with the following observation. If we apply The-orem [2](#page-2-1) for $H = \{1\}$, then we already get

$$
\|\pi_I[\chi_{S'}^{(\log N(I))}]\| \ll \|SL_d(\mathcal{O}_K/I)\|^{-\delta/2}.
$$
 (3)

Now working on the quotient $SL_d(\mathcal{O}_K/I)$, we can improve on [\(3\)](#page-3-0), if we take the convolution of $\pi_I [\chi_{S'}^{(\log N(I))}]$ $S^{(\log N(1))}$ with itself. More precisely we prove in Section [3](#page-14-0) the following

Theorem 3. *Let* G *be a group satisfying the assumptions* (A0)–(A5) *listed in Section [3.](#page-14-0) Then for any* $\varepsilon > 0$, there is some $\delta > 0$ depending only on ε and the constants appear*ing in assumptions* (A0)–(A5) *such that the following holds. If* μ *and* ν *are probability measures on* G *such that*

$$
\|\mu\|_2 > |G|^{-1/2+\varepsilon} \quad \text{and} \quad \mu(gH) < [G:H]^{-\varepsilon}
$$

for any $g \in G$ *and for any proper subgroup* $H < G$ *, then*

$$
\|\mu * \nu\|_2 < \|\mu\|_2^{1/2+\delta} \|\nu\|_2^{1/2}.
$$

Assumptions (A0)–(A5) are too technical so we do not list them here in the introduction. Among other things, we assume that G is the direct product of quasi-simple groups that also satisfy the conclusion of the theorem. To prove the latter for the groups $SL_d(\mathcal{O}_K/P)$ we need [\(1\)](#page-1-0), and this is the reason why we have Theorem [1](#page-1-1) only in the cases when [\(1\)](#page-1-0) is available. The quasi-simplicity of the factors is a severe restriction, for example it excludes factors of the form $SL_d(\mathcal{O}_K/P^k)$, where P is a prime ideal. Therefore a new idea is needed to prove Theorem [1](#page-1-1) for general ideals.

A similar result for $G = SL_2(\mathbb{Z}/q\mathbb{Z})$, q square-free (under a stronger hypothesis on μ) is given by Bourgain, Gamburd and Sarnak [\[9,](#page-31-0) Proposition 4.3]. They use an argument similar to Helfgott's [\[21\]](#page-32-3) to reduce it to a so-called sum-product theorem for the ring $\mathbb{Z}/q\mathbb{Z}$. Then they prove the latter by reducing it to the case of $\mathbb{Z}/p\mathbb{Z}$, p prime. The difference in our approach is that we use Helfgott's theorem as a black box, and extend it to the case of square-free modulus in a way that very much resembles the proof given in [\[9,](#page-31-0) Section 5] for the sum-product theorem.

2. Escape of mass from subgroups

We prove Theorem [2](#page-2-1) in this section. First we note that we may assume that I is a principal ideal generated by a square-free rational integer q . Indeed, there is always a squarefree rational integer $q \in I$ such that $q \leq N(I)$. Let \widehat{H} be the preimage of H under the projection $SL_d(\mathcal{O}_K/(q)) \to SL_d(\mathcal{O}_K/I)$. Then we have $\log N((q)) > \log N(I) >$ $\log N((q))/r$ and $[\text{SL}_d(\mathcal{O}_K/I) : H] = [\text{SL}_d(\mathcal{O}_K/(q)) : \widehat{H}]$. Hence the claim of the theorem for I and H follows from the claim for (q) and \widehat{H} . In what follows we assume that $I = (q)$ and write $\pi_q = \pi_{(q)}$. Let $q = p_1 \cdots p_n$ be the prime factorization of q and assume without loss of generality that none of the p_i ramify in K .

For $g \in SL_d(\mathbb{C})$ denote by $||g||$ the operator norm of g with respect to the l^2 norm on \mathbb{C}^d . If $||g|| < \sqrt{q}/2$ for some $g \in SL_d(\mathcal{O}_K)$, then clearly $||g'|| > \sqrt{q}/2$ for any other $g' \in SL_d(\mathcal{O}_K)$ with $\pi_q(g) = \pi_q(g')$ since $||g|| \ge \sqrt{q}$ if $\pi_q(g) = 0$ and $g \ne 0$. Hence elements of small norm are uniquely determined by their projections modulo q . The first step towards the proof of Theorem [2](#page-2-1) is to study when the projection of an element of small norm belongs to H , i.e. we study the set

$$
\mathcal{L}_{\delta}(H) := \{ h \in SL_d(\mathcal{O}_K) \mid \pi_q(h) \in H, \|\widehat{\sigma}(h)\| < [SL_d(\mathcal{O}_K/(q)) : H]^{\delta} \}
$$

for $\delta > 0$ and $H < SL_d(\mathcal{O}_K/(q)).$

By Weil restriction of scalars, we consider $SL_d(K)$ as the Q-points of an algebraic group. To fix notation, we describe this process in detail. Let e_1, \ldots, e_r be an integral basis of \mathcal{O}_K . Multiplication by an element $a \in K$ is an endomorphism of the Q-vector space K. This gives rise to an embedding $\alpha : K \to Mat_r(\mathbb{Q})$ onto a subalgebra of $Mat_r(\mathbb{Q})$ which is defined by linear equations over \mathbb{Q} . Thus there is an algebraic subgroup \mathbb{G} of SL_{dr} defined over \mathbb{Q} such that $SL_d(K)$ is isomorphic to $\mathbb{G}(\mathbb{Q})$ as an abstract group; we denote this isomorphism by α as well. Moreover, we have $\alpha(SL_d(\mathcal{O}_K))$ = $\mathbb{G}(\mathbb{Q}) \cap SL_{dr}(\mathbb{Z})$. To shorten notation, we write $\mathbb{G}(\mathbb{Z}) = \mathbb{G}(\mathbb{Q}) \cap SL_{dr}(\mathbb{Z})$. The image of e_1, \ldots, e_r under π_a is a basis of the $\mathbb{Z}/q\mathbb{Z}$ -module $\mathcal{O}_K/(q)$, hence α induces an isomorphism from $SL_d(\mathcal{O}_K/(q))$ to $\mathbb{G}(\mathbb{Z}/q\mathbb{Z})$. Denote by g the Lie algebra of \mathbb{G} . Then $\mathfrak{g}(\mathbb{Q})$ is a subspace of $Mat_{dr}(\mathbb{Q})$ defined by (linear) polynomials $\varphi_1, \ldots, \varphi_{d^2r^2-r(d^2-1)} \in \mathbb{Z}[x]$. If p is a prime which does not ramify in K, then we can write $(p) = P_1 \cdots P_k$ with different prime ideals P_i . Then $\mathbb{G}(\mathbb{Z}/p\mathbb{Z})$ is isomorphic to $SL_d(\mathcal{O}_K/P_1) \times \cdots \times SL_d(\mathcal{O}_K/P_k)$.

Proposition 4. *There are constants* C *and* δ *depending only on* K *such that the following holds. For any subgroup* $H < SL_d(\mathcal{O}_K/(q))$ *, there are u, v* \in g(\mathbb{C}) *and a subgroup* $H^{\sharp} < H$ with $[H:H^{\sharp}] < C^{n}$ such that if $h \in \mathcal{L}_{\delta}(H^{\sharp})$ then

$$
Tr(\alpha(h)u\alpha(h)^{-1}v) = 0,
$$

but there is some $g_0 \in \mathbb{G}(\mathbb{Q})$ *such that* $\text{Tr}(g_0 u g_0^{-1} v) = 1$ *.*

In what follows we often write \mathbb{F}_{p^m} for the finite field of order p^m . Recall that *n* is the number of prime factors of q and $q = p_1 \cdots p_n$. Then $\mathbb{G}(\mathbb{Z}/q\mathbb{Z}) = \mathbb{G}(\mathbb{F}_{p_1}) \times \cdots \times \mathbb{G}(\mathbb{F}_{p_n})$. For $q_1 | q$, denote by

$$
\pi_{q_1} : \mathbb{G}(\mathbb{Z}/q\mathbb{Z}) \to \underset{p|q_1}{\times} \mathbb{G}(\mathbb{F}_p)
$$

the projection to the product of direct factors corresponding to the prime factors of q_1 . Fix a proper subgroup $H < \mathbb{G}(\mathbb{Z}/q\mathbb{Z})$ and denote by q_1 the product of all primes $p \mid q$ for which $\pi_p(H) = \mathbb{G}(\mathbb{F}_p)$. In the course of the proof we will replace q by q/q_1 and H by $\pi_{q/q_1}(H)$. We need to show that $\left[\mathbb{G}(\mathbb{Z}/(q/q_1)\mathbb{Z}) : \pi_{q/q_1}(H)\right]$ is not much smaller than $[\mathbb{G}(\mathbb{Z}/q\mathbb{Z}) : H]$. For this we first give

Lemma 5. Let p_1 and p_2 be two different primes and assume that $N \lhd H \lhd SL_d(\mathbb{F}_{p_2^{m_1}})$ *are such that H/N is isomorphic to* $PSL_d(\mathbb{F}_{p_1^{m_2}})$ *with some integers* m_1 , m_2 . Then

$$
p_1 \mid \prod_{i=2}^d (p_2^{im_1} - 1);
$$

in particular, for a fixed p₂ the product of all primes which can arise as p₁ <i>is at most $p_2^{d^2m_1}$.

Proof. Since $PSL_d(\mathbb{F}_{p_1^{m_2}})$ has an element of order p_1 and since the order of $SL_d(\mathbb{F}_{p_2^{m_1}})$ is $p_2^{m_1d(d-1)/2}$ $\prod_{i=2}^d (p_2^{i m_1} - 1)$, the assertion is clear. □

Lemma 6. Let *H* be a subgroup of $G = \mathbb{G}(\mathbb{Z}/q\mathbb{Z})$ and denote by q_1 the product of primes $p | q$ *with* $\pi_p(H) = \mathbb{G}(\mathbb{F}_p)$ *and set* $q_2 = q/q_1$ *. There is a subgroup* $H_2 < \mathbb{G}(\mathbb{Z}/q_2\mathbb{Z})$ *of the form* $\times_{p|q_2} H_p$, where each H_p *is a proper subgroup of* $\mathbb{G}(\mathbb{F}_p)$, such that $\pi_{q_2}(H) < H_2$ *and*

$$
[\mathbb{G}(\mathbb{Z}/q_2\mathbb{Z}):H_2] > [G:H]^c
$$

with a constant c *depending only on* d *and* r*.*

Proof. If for some $p | q_1$, $\mathbb{G}(\mathbb{F}_p)$ is a direct factor of H then

$$
[\mathbb{G}(\mathbb{Z}/(q/p)\mathbb{Z}):\pi_{q/p}(H)]=[G:H],
$$

hence we can assume without loss of generality that there is no such prime. We show that for each $p_1 | q_1$, there is some $p_2 | q_2$ such that the conditions of the previous lemma are satisfied. This will yield a bound on q_1 . Set $q' = q/p_1$. By Goursat's Lemma, there is a nontrivial group N and surjective homomorphisms

$$
\varphi: \pi_p(H) = \mathbb{G}(\mathbb{F}_{p_1}) \to N, \quad \psi: \pi_{q'}(H) \to N.
$$

For each factor $p | q'$, ψ gives rise to a surjective homomorphism

$$
\psi_p : \pi_p(H) \to N_p = N / \{ \psi(h) \mid h \in \pi_{q'}(H), \pi_p(h) = 1 \}
$$

in the obvious way. Since the intersection of all the subgroups $\{\psi(h) \mid h \in \pi_{q'}(H),\}$ $\pi_p(h) = 1$ is trivial, there is a prime p_2 for which N_{p_2} is nontrivial. As $\mathbb{G}(\mathbb{F}_{p_1})$ and $\mathbb{G}(\mathbb{F}_{p_2})$ have no nontrivial common factors, $p_2 | q_2$. It is clear that p_1 and p_2 satisfy the conditions of Lemma [5,](#page-5-0) whence $q_1 < q_2^{rd^2}$.

For each $p \mid q_2$ let H_p be a proper subgroup of $\mathbb{G}(\mathbb{F}_p)$ containing $\pi_p(H)$. Since $\mathbb{G}(\mathbb{F}_p)$ is generated by its subgroups isomorphic to $SL_2(\mathbb{F}_p)$, there must be at least one such subgroup which is not contained in H_p . Any proper subgroup of $SL_2(\mathbb{F}_p)$ is of index at least $p + 1$, hence $[\mathbb{G}(\mathbb{F}_p) : H_p] > p$. This shows that for $H_2 = \times_{p \mid q_2} H_p$, we have

$$
[\mathbb{G}(\mathbb{Z}/q_2\mathbb{Z}):H_2] > q_2 > q^{1/(d^2r+1)} > [G:H]^c.
$$

The proof of Proposition [4](#page-4-1) is based on the description of subgroups of $GL_d(\mathbb{F}_p)$ given by Nori [\[27\]](#page-32-6) that we recall now. Let H be a subgroup of $GL_d(\mathbb{F}_p)$ and denote by H^+ the subgroup of H generated by its elements of order p . [\[27,](#page-32-6) Theorem B] states that if p is larger than a constant depending only on d , then there is a connected algebraic subgroup \widetilde{H} of GL_d defined over \mathbb{F}_p such that $H^+ = \widetilde{H}(\mathbb{F}_p)^+$. Denote by h the Lie algebra of \widetilde{H} , and define exp and log by

$$
\exp(z) = \sum_{i=0}^{p-1} \frac{z^i}{i!}
$$
 and $\log(z) = -\sum_{i=1}^{p-1} \frac{(1-z)^i}{i}$

for $z \in Mat_d(\mathbb{F}_p)$. Then for p large enough, exp and log set up a one-to-one correspondence between elements of order p of H^+ and nilpotent elements of $\mathfrak{h}(\mathbb{F}_p)$ by [\[27,](#page-32-6) Theorem A]. Moreover $\mathfrak{h}(\mathbb{F}_p)$ is spanned by its nilpotent elements. To understand subgroups not generated by elements of order p , we will use [\[27,](#page-32-6) Theorem C] which asserts that if $p \ge d$, then there is a commutative subgroup $F < H$ such that FH^+ is a normal subgroup of H and its index $[H : FH^+]$ is bounded in terms of d.

Proof of Proposition [4.](#page-4-1) We follow the argument in [\[7,](#page-31-2) Proposition 4.1]. Recall that H is a subgroup of $SL_d(\mathcal{O}_K/(q))$. Apply Lemma [6](#page-5-1) to $\alpha(H)$ to get a modulus $q_2 | q$ and a subgroup $H_2 < \mathbb{G}(\mathbb{Z}/q_2\mathbb{Z})$. Suppose that the conclusion holds for $\alpha^{-1}(H_2)$ and for an $H_2^{\sharp} < SL_d(\mathcal{O}_K/(q_2))$ with $[H_2 : \alpha(H_2^{\sharp})] < C^n$. Set

$$
H^{\sharp} = \{ h \in H \mid \pi_{q_2}(h) \in H_2^{\sharp} \},\
$$

and observe that $[H: H^{\sharp}] < C^n$ and $\mathcal{L}_{\delta}(H^{\sharp}) \subset \mathcal{L}_{\delta/c}(H_2^{\sharp})$ with the constant c from Lemma [6.](#page-5-1) Therefore, if the conclusion holds for $\alpha^{-1}(H_2)$ and H_2^{\sharp} L_2^{μ} , it also holds for H and H^{\sharp} . We assume in what follows that $\alpha(H) = H_{p_1} \times \cdots \times H_{p_n}$, where $q = p_1 \cdots p_n$ is the prime factorization of q and H_{p_i} is a proper subgroup of $\mathbb{G}(\mathbb{F}_{p_i})$. For each direct factor H_{p_i} , let $H_{p_i}^{\sharp} < H_{p_i}$ be such that $H_{p_i}^{\sharp}/H_{p_i}^+$ is commutative and $[H_{p_i}: H_{p_i}^{\sharp}] < C$ with a constant \ddot{C} depending on r and d ; such a subgroup exists by [\[27,](#page-32-6) Theorem C]. Define $H^{\sharp} = \alpha^{-1}(H_{p_1}^{\sharp} \times \cdots \times H_{p_n}^{\sharp}).$

For each $g \in \mathbb{G}(\mathbb{Z})$ define the polynomial $\eta_g \in \mathbb{Z}[X, Y]$ with $X = (X_{l,k})_{1 \leq l,k \leq dr}$ and $Y = (Y_{l,k})_{1 \leq l,k \leq dr}$ by

$$
\eta_g(X, Y) = \text{Tr}(gXg^{-1}Y).
$$

Let A be a fixed set of generators of $\mathbb{G}(\mathbb{Z})$ and fix an element $g_0 \in A$. Consider the system of equations

$$
\varphi_i(X) = 0, \quad 1 \le i \le r^2 d^2 - r(d^2 - 1),
$$

\n
$$
\varphi_i(Y) = 0, \quad 1 \le i \le r^2 d^2 - r(d^2 - 1),
$$

\n
$$
\eta_{\alpha(h)}(X, Y) = 0 \quad \text{for } h \in \mathcal{L}_{\delta}(H^{\sharp}),
$$

\n
$$
\eta_{g_0}(X, Y) = 1,
$$
\n(4)

where δ is a small constant depending on d and r to be chosen later. Recall that φ_i are the

polynomials defining the Lie algebra g. The assertion follows once we show that [\(4\)](#page-6-0) has a solution $X = u$, $Y = v \in Mat_{rd}(\mathbb{C})$ for an appropriate choice of g_0 .

First we show that for each $p = p_i$, there is at least one $g_0 \in A$ such that [\(4\)](#page-6-0) has a solution in $Mat_{dr}(\mathbb{F}_p)$. We apply the results of [\[27\]](#page-32-6) for $H = H_p$, in particular let H and h be the same as in the discussion preceding the proof. Conjugation by an element $g \in \mathbb{G}(\mathbb{F}_p)$ permutes elements of order p of H_p^+ if and only if it permutes nilpotent elements of $\mathfrak{h}(\mathbb{F}_p)$. Hence $\mathfrak{h}(\mathbb{F}_p)$ is invariant under g in the adjoint representation exactly if g is in the normalizer of H_p^+ . First we consider the case when H_p^+ is not a normal subgroup of $\mathbb{G}(\mathbb{F}_p)$. Then there is at least one element $\pi_p(g_0) \in \pi_p(A)$ whose adjoint action does not leave $\mathfrak{h}(\mathbb{F}_p)$ invariant. Let $u \in \mathfrak{h}(\mathbb{F}_p)$ be such that $\pi_p(g_0)u\pi_p(g_0)^{-1} \notin \mathfrak{h}(\mathbb{F}_p)$ and let $v \in \mathfrak{g}(\mathbb{F}_p)$ be orthogonal to $\mathfrak{h}(\mathbb{F}_p)$ with respect to the nondegenerate bilinear form $\langle x, y \rangle = \text{Tr}(xy)$ and such that $\text{Tr}(\pi_p(g_0)u\pi_p(g_0^{-1})v) = 1$. This settles the claim. Now consider the case when $H_p^+ \lhd \mathbb{G}(\mathbb{F}_p)$. If $(p) = P_1 \cdots P_k$ is the factorization of (p) over K, then $\mathbb{G}(\mathbb{F}_p)$ is isomorphic to $SL_d(\mathcal{O}_K/P_1) \times \cdots \times SL_d(\mathcal{O}_K/P_k)$, and H_p^+ must be the direct product of some of these factors. Consider a direct factor $SL_d(\mathcal{O}_K/P_i)$ which does not appear in H_p^+ and denote by N the projection of H_p^{\sharp} to this factor. There is a Lie subalgebra $\mathfrak{g}_i(\mathbb{F}_p) \subset \mathfrak{g}(\mathbb{F}_p)$ which is isomorphic to $\mathfrak{sl}_d(\mathcal{O}_K/P_i)$, invariant and irreducible in the adjoint representation of $\mathbb{G}(\mathbb{F}_p)$, and the adjoint action of an element $g \in \mathbb{G}(\mathbb{F}_p)$ on $\mathfrak{g}_i(\mathbb{F}_p)$ is determined by its projection to the factor $SL_d(\mathcal{O}_K/P_i)$. If N is nontrivial denote by V the intersection of the \mathcal{O}_K/P_i -linear span of N in $Mat_d(\mathcal{O}_K/P_i)$ and the Lie algebra $\mathfrak{g}_i(\mathbb{F}_p)$. If N is trivial, let V be any proper subspace of $\mathfrak{g}_i(\mathbb{F}_p)$. Then V is again invariant under H_p^{\sharp} in the adjoint representation but not under $\mathbb{G}(\mathbb{F}_p)$ and we can establish the claim the same way as above.

For a particular $g_0 \in A$, denote by q_{g_0} the product of the primes $p | q$ for which [\(4\)](#page-6-0) has a solution over \mathbb{F}_p . As there are only a finite number (and bounded in terms of K) of possibilities for g_0 , there is an appropriate choice such that $q_{g_0} > q^c$. Here and everywhere below, c is a constant depending only on K which need not be the same at different occurrences. Now assume to the contrary that the system (4) has no solution over $\mathbb C$. We can clearly replace the family of polynomials $\eta_{\alpha}(h)$, $h \in \mathcal{L}_{\delta}(H^{\sharp})$, by a linearly independent subset of at most $M \le r^4 d^4$ elements that we denote by η_1, \ldots, η_M . Note that the coeffi-cients of all the polynomials in [\(4\)](#page-6-0) are bounded by $[G : H]^{c\delta} < q^{c'\delta}$. Using the effective Bézout identities proved by Berenstein and Yger [[4,](#page-31-7) Theorem 5.1] we obtain polynomials

$$
\psi_1(X, Y), \dots, \psi_M(X, Y) \in \mathbb{Z}[X, Y],
$$

$$
\psi'_1(X, Y), \dots, \psi'_{r^2 d^2 - r(d^2 - 1)}(X, Y) \in \mathbb{Z}[X, Y],
$$

$$
\psi''_1(X, Y), \dots, \psi''_{r^2 d^2 - r(d^2 - 1)}(X, Y) \in \mathbb{Z}[X, Y],
$$

$$
\psi'''(X, Y) \in \mathbb{Z}[X, Y]
$$

and a positive integer $0 < D < q^{c\delta}$ such that

 \mathbf{v}

$$
D = \sum_{i=1}^{M} \eta_i(X, Y)\psi_i(X, Y) + \sum_{i=1}^{r^2 d^2 - r(d^2 - 1)} \varphi_i(X)\psi_i'(X, Y) + \sum_{i=1}^{r^2 d^2 - r(d^2 - 1)} \varphi_i(Y)\psi_i''(X, Y) + (\eta_{g_0}(X, Y) - 1)\psi'''(X, Y).
$$

Substituting the solution of [\(4\)](#page-6-0) over \mathbb{F}_p for all $p \mid q_{g_0}$, we see that $q_{g_0} \mid D$, a contradiction if δ is small enough.

Corollary 7. *There are constants* δ *and* C *depending only on* K *, and for each* H < $SL_d(\mathcal{O}_K/(q))$ there is an $H^{\sharp} < H$ with $[H:H^{\sharp}] < C^n$ such that at least one of the *following holds:*

(i) *There is an embedding* $\sigma : K \to \mathbb{C}$ *and a proper subspace* $V \subset \mathfrak{sl}_d(\mathbb{C})$ *such that if* $h \in \mathcal{L}_{\delta}(H^{\sharp}),\$ then

$$
\sigma(h)V\sigma(h^{-1}) = V.
$$
 (5)

(ii) *There are two embeddings* $\sigma_1, \sigma_2 : K \to \mathbb{C}$ *and an invertible linear transformation* $T : \mathfrak{sl}_d(\mathbb{C}) \to \mathfrak{sl}_d(\mathbb{C})$ *such that*

$$
T(\sigma_1(h)v\sigma_1(h^{-1})) = \sigma_2(h)T(v)\sigma_2(h^{-1})
$$
\n(6)

for any $h \in \mathcal{L}_{\delta}(H^{\sharp})$ *and* $v \in \mathfrak{sl}_d(\mathbb{C})$ *.*

Proof. Choose δ to be $1/r(d^2-1)$ times the δ in Proposition [4.](#page-4-1) Then there are $u, v \in \mathfrak{g}(\mathbb{C})$ and $g_0 \in \mathbb{G}(\mathbb{Q})$ such that $Tr(\alpha(h)u\alpha(h^{-1})v) = 0$ for

$$
h \in \prod_{r(d^2-1)} \mathcal{L}_{\delta}(H^{\sharp}) \subset \mathcal{L}_{\delta r(d^2-1)}(H^{\sharp}),
$$

while $\text{Tr}(g_0 u g_0^{-1} v) = 1$. Let U_l be the linear span of $\{\alpha(g)u\alpha(g^{-1}) \mid g \in \prod_l \mathcal{L}_\delta(H^\sharp)\}\$ in $\mathfrak{g}(\mathbb{C})$. Comparing dimensions, we see that for some $l \le r(d^2 - 1)$ we have $U_l = U_{l+1}$, and then it is invariant under $\alpha(\mathcal{L}_{\delta}(H^{\sharp}))$ in the adjoint representation. Write $U = U_{l}$. Then for any $x \in U$, we have $Tr(xv) = 0$, hence $g_0u g_0^{-1} \notin U$, and U is not invariant under the full group $\mathbb{G}(\mathbb{C})$ in the adjoint representation.

Consider the embedding $\alpha : K \to Mat_r(\mathbb{Q})$. Let $a \in K$ be a generator of K over \mathbb{Q} . Note that the minimal polynomial of a over $\mathbb Q$ is the same as the minimal polynomial of $\alpha(a)$ in *Mat_r*(\mathbb{Q}). This polynomial has r different roots $\sigma_1(a), \ldots, \sigma_r(a)$ in \mathbb{C} , hence there is a basis over $\mathbb C$ in which $\alpha(a)$ is diagonal. Any element $b \in K$ can be expressed as the value at a of a polynomial with rational coefficients. Thus in that basis the matrix of b is diag($\sigma_1(b), \ldots, \sigma_l(b)$). Therefore there is an appropriate basis in which any $g \in \mathbb{G}(\mathbb{C})$ is a block diagonal matrix with $\sigma_1(g), \ldots, \sigma_r(g)$ along the diagonal. This gives rise to an isomorphism $\beta : \mathbb{G}(\mathbb{C}) \to SL_d(\mathbb{C})^r$ such that $\sigma = \beta \circ \alpha$. Moreover β also induces an isomorphism between the Lie algebras $\mathfrak{g}(\mathbb{C})$ and $\mathfrak{sl}_d(\mathbb{C})^r$; denote by W the image of U.

Assume that W is a subspace of minimal dimension which is invariant under $\widehat{\sigma}[\mathcal{L}_{\delta}(H^{\sharp})]$ in the adjoint representation, but not under the whole group $SL_d(\mathbb{C})^r$. Denote by $\mathfrak{g}_1(\mathbb{C}), \ldots, \mathfrak{g}_r(\mathbb{C})$ the r copies of $\mathfrak{sl}_d(\mathbb{C})$ in $\mathfrak{sl}_d(\mathbb{C})^r$ and denote by π_i the projection to $\mathfrak{g}_i(\mathbb{C})$. For $1 \leq i \leq r$, the spaces $\pi_i(W)$ and $W \cap \mathfrak{g}_i(\mathbb{C})$ are invariant under $\sigma_i[\mathcal{L}_\delta(H^\sharp)]$ in the adjoint representation, hence (i) holds if the dimension of any of the above spaces is strictly between 0 and $d^2 - 1$. Suppose that this is not the case. Since W is not the direct sum of some $\mathfrak{g}_i(\mathbb{C})$, we may assume that say $W \cap \mathfrak{g}_1(\mathbb{C}) = \{0\}$ and $\pi_1(W) = \mathfrak{g}_1(\mathbb{C})$. By the minimality of the dimension of W, Ker(π_1) ∩ W must be the direct sum of some $\mathfrak{g}_i(\mathbb{C})$. Since dim $W > \dim \text{Ker}(\pi_1) \cap W$, we can assume that say $\pi_2(\text{Ker}(\pi_1) \cap W) = \{0\}$ and $\pi_2(W) = \mathfrak{g}_2(\mathbb{C})$. Then $T = \pi_2 \circ \pi_1^{-1}$ is well-defined and satisfies (ii).

Recall that we are given a symmetric $S \subset SL_d(\mathcal{O}_K)$ which generates the subgroup Γ . We will choose an appropriate $S' \subset \Gamma$ and study the random walk on $\mathcal{G}(\langle S' \rangle, S')$, where $\langle S' \rangle$ is the subgroup generated by S'. In particular, we prove an exponential decay for the probability that after k steps we are in the subgroup of $SL_d(\mathcal{O}_K)$ whose elements satisfy (5) for some fixed V or in the one whose elements satisfy (6) for some fixed T.

Proposition 8. *Assume that* $\widehat{\sigma}(\Gamma)$ *is Zariski dense in* $SL_d(\mathbb{C})^r$ *. Let* V *be a proper sub-*
space of $\mathfrak{sl}_d(\mathbb{C})$ let $\sigma: K \to \mathbb{C}$ be an embedding and denote by H_U the subgroup of *space of* $\mathfrak{sl}_d(\mathbb{C})$ *, let* $\sigma : K \to \mathbb{C}$ *be an embedding, and denote by* H_V *the subgroup of elements* $h \in SL_d(\mathcal{O}_K)$ *for which* [\(5\)](#page-8-0) *holds. Then*

$$
\chi_S^{(k)}(H_V) \ll c^k
$$

with some constant $c < 1$ *depending only on* S.

Proposition 9. *Assume that* $\widehat{\sigma}(\Gamma)$ *is Zariski dense in* $SL_d(\mathbb{C})^r$ *. Then there is a symmetric set* $S' \subseteq \Gamma$ and a constant $c \leq 1$ denonding only on S such that the following holds. *set* $S' \subset \Gamma$ *and a constant* $c < 1$ *depending only on* S *such that the following holds. Let* σ1, σ² *be two different embeddings of* K *into* C *and let* T *be an invertible linear transformation on* $\mathfrak{sl}_d(\mathbb{C})$ *. Denote by* H_T *the subgroup of elements* $h \in SL_d(\mathcal{O}_K)$ *for which* [\(6\)](#page-8-1) *holds. Then*

$$
\chi_{S'}^{(k)}(H_T) \ll c^k.
$$

Proposition [8](#page-9-0) can be proved as outlined in [\[6,](#page-31-3) Section 9]; we omit the details. A weaker form analogous to Proposition [9,](#page-9-1) which is sufficient for our purposes, can be proved by the same method as we prove Proposition [9](#page-9-1) below.

Let $A \subset \Gamma$ be a subset that freely generates a subgroup. By abuse of notation, by a *word* w over $A\cup A$, we mean a finite sequence $g_1 \cdots g_k$, where $g_1, \ldots, g_k \in A\cup A$. Recall that A is the set of inverses of all elements of A. We will refer to the elements of $A \cup \overline{A}$ as *letters*. We say that w is *reduced* if $g_i g_{i+1} \neq 1$ for any $1 \leq i \leq k$. There is a natural bijection between the set of reduced words and the group $\langle A \rangle$ generated by $A \subset \Gamma$. For the sake of clarity we write $w_1 \cdot w_2$ for concatenation of the sequences w_1 and w_2 and w_1w_2 for the product in Γ , i.e. for concatenation followed by all possible reductions. Denote by B_l the set of reduced words of length l. Note that $|B_l| = 2m(2m - 1)^{l-1}$ for $l \geq 1$.

Lemma 10. Let notation be as above, and suppose that $H \lt \langle A \rangle$ is a subgroup such that *for any* $h \in \langle A \rangle$ *, there is a letter* $g_0 \in A \cup \widetilde{A}$ *such that* $w \notin hHh^{-1}$ *whenever* w *is a reduced word starting with g₀. Then*

$$
|B_l \cap H| \le (2m-1)^{l/2+1} (2m-2)^{l/2-1}.
$$

We remark that the condition for $h = 1$ can be interpreted as follows. We can remove one edge incident to 1 from the Schreier graph of $H\setminus G$ such that we get two connected components and one of these is a tree.

Proof. Let w_0 be the longest word (possibly the empty word 1) such that w_0 is a prefix of all non-unit elements of H. Let w_1 be a reduced word of length at most $\lceil l/2 \rceil - 1$. We want to bound the number of letters $g' \in A \cup \widetilde{A}$ that can be the next letter in a reduced

word of length l which belongs to H. We will show that if $|w_1| > |w_0|$ then there are at most $2l - 2$ such letters. If $|w_1| = |w_0|$, we will see that there are at most $2l - 1$ choices for g', this being trivial if $w_0 \neq 1$. If $|w_1| < |w_0|$ then we always have exactly one choice. Thus if we pick the letters of $w \in S_l \cap H$ one by one, then at the first $\lceil l/2 \rceil$ steps we have at most $2l - 2$ choices with possibly one exception, when we might have $2l - 1$; this gives the claim.

Now assume that $|w_0| < |w_1| < |l/2 - 1$, but if $w_0 = 1$, we allow $w_1 = 1$. Using the assumption for $h = w_1^{-1}$, we get a letter g_0 such that if $g_0.w_2$ is a reduced word (i.e. the first letter of w_2 is not g_0^{-1}), then $g_0 \cdot w_2 \notin w_1^{-1}Hw_1$. We show that the last letter of w_1 is not g_0^{-1} . If w_1 is not the empty word, it is longer than w_0 , hence there is a word $u \in H$ such that w_1 is not a prefix of u. Now if g_0^{-1} were the last letter of w_1 , we would have $w_1^{-1}uw_1 \in w_1^{-1}Hw_1$ which begins with g_0 , a contradiction.

Obviously we cannot continue w_1 with the inverse of its last letter to get a reduced word. We show that we cannot continue it with g_0 either to get one in $B_l \cap H$. Assume to the contrary that for some w_2 , $w_1.g_0.w_2$ is a reduced word in $B_l \cap H$. Then $g_0w_2w_1 \in$ $w_1^{-1}Hw_1$ and the length of w_1 is less than the length of w_2 , hence $g_0w_2w_1$ starts with g_0 , a contradiction. \Box

Let V be a vector space over $\mathbb C$, and denote by $\mathbb P(V)$ the corresponding projective space. For a vector $v \in V$ (resp. a subspace $W \subset V$) denote by \overline{v} (resp. W) its projection to $\mathbb{P}(V)$. Any invertible linear transformation T of V acts naturally on $\mathbb{P}(V)$; this action will be denoted by the same letter. We say that T is *proximal* if V is spanned by an eigenvector z_T and an invariant subspace V_T of T, and the eigenvalue corresponding to z_T is strictly larger than any other eigenvalue of T . In short, T is proximal if it has a unique simple eigenvalue of maximal modulus. It is clear that whenever z_T and V_T exist, V_T is unique and z_T is unique up to a constant multiple. Define the distance on $\mathbb{P}(V)$ by

$$
d(\bar{x}, \bar{y}) = \frac{\|x \wedge y\|}{\|x\| \|y\|},
$$

where $\|\cdot\|$ is the norm coming from the standard Hermitian form. We recall from Tits [\[35\]](#page-32-7) a simple criterion for a transformation T to be proximal. Let $Q \subset \mathbb{P}(V)$ be compact and assume that $T(Q)$ is contained in the interior of Q. Assume further that $d(T(x), T(y))$ < $d(x, y)$ for $x, y \in Q$. Then T is proximal and $\overline{z}_T \in Q$ (see [\[35,](#page-32-7) Lemma 3.8(ii)]).

Let notation be as in Proposition [9.](#page-9-1) For $i \in \{1, 2\}$, denote by ρ_i the representation of $SL_d(\mathcal{O}_K)$ on $\mathfrak{sl}_d(\mathbb{C})$ defined by

$$
\rho_i(h)v = \sigma_i(h)v\sigma_i(h^{-1})
$$
 for $v \in \mathfrak{sl}_d(\mathbb{C})$ and $h \in SL_d(\mathcal{O}_K)$.

We study the action of $SL_d(\mathcal{O}_K)$ on the space $\mathbb{P}(\mathfrak{sl}_d(C)) \times \mathbb{P}(\mathfrak{sl}_d(C))$ via $\rho_1 \oplus \rho_2$. If T is an invertible linear transformation of $\mathfrak{sl}_d(\mathbb{C})$ and $h \in H_T$ is such that $\rho_1(h)$ and $\rho_2(h)$ are both proximal, then clearly

$$
T(\bar{z}_{\rho_1(h)}) = \bar{z}_{\rho_2(h)}.
$$
\n(7)

Our aim is to find a subset $A \subset \Gamma$ such that A freely generates a subgroup of $SL_d(\mathcal{O}_K)$ and for any linear transformation T of $\mathfrak{sl}_d(\mathbb{C})$, there is a letter $g_0 \in A \cup A$ such that [\(7\)](#page-10-0) fails when $h = w$ is a reduced word starting with g_0 . Then Proposition [9](#page-9-1) will follow easily from Lemma [10.](#page-9-2)

We say that $A \subset SL_d(\mathcal{O}_K)$ is *generic* if for any $g \in A \cup \widetilde{A}$, $\rho_1(g)$ and $\rho_2(g)$ are both proximal, and the following hold:

- (i) for every $g_1, g_2 \in A \cup \tilde{A}$ with $g_1 g_2 \neq 1$ and $i \in \{1, 2\}$, we have $z_{\rho_i(g_1)} \notin V_{\rho_i(g_2)}$,
- (ii) for any proper subspace V of $\mathfrak{sl}_d(\mathbb{C})$ of dimension k and $i \in \{1, 2\}$, we have

$$
|\{g \in A \cup \tilde{A} \mid z_{\rho_i(g)} \in V\}| \leq k+1,
$$

(iii) for any linear transformation T on $\mathfrak{sl}_d(\mathbb{C})$, we have

$$
|\{g \in A \cup \widetilde{A} \mid T(\bar{z}_{\rho_1(g)}) = \bar{z}_{\rho_2(g)}\}| \leq d^2 + 1.
$$

Note that $\mathfrak{sl}_d(\mathbb{C})$ is of dimension d^2-1 . Actually the above definition would be more natural if we replaced the right hand sides of the inequalities in (ii) and (iii) by k and d^2 respectively, however doing so would make the next proof slightly more complicated. We prove the existence of generic sets in

Lemma 11. *Assume that* $\widehat{\sigma}(\Gamma)$ *is Zariski dense in* $SL_d(\mathbb{C})^r$ *. Then for m positive integer,* there is a generic set $\Lambda \subset \Gamma$ of cardinality m *there is a generic set* $A_m \subset \Gamma$ *of cardinality m.*

Proof. Goldsheid and Margulis [\[18\]](#page-32-8) prove (see also Sections 3.12–3.14 in Abels, Mar-gulis and Soifert [\[1\]](#page-31-8)) that if a real algebraic subgroup of $GL_d(\mathbb{R})$ is strongly irreducible (i.e. does not leave a finite union of proper subspaces invariant) and contains a proximal element, then a Zariski dense subgroup of it also contains a proximal element. If σ_1 is a real embedding, then it follows from the Zariski density of $\sigma_1(\Gamma)$ in $SL_d(\mathbb{R})$ that there is an element $g_0 \in \Gamma$ such that $\sigma_1(g_0)$ is proximal. If σ_1 is complex, then let $\bar{\sigma}_1$ denote its complex conjugate. Since $(\sigma_1 \oplus \bar{\sigma}_1)(\Gamma)$ is Zariski dense in $SL_d(\mathbb{C}) \times SL_d(\mathbb{C})$, we find that $\sigma_1(\Gamma)$ is Zariski dense in $SL_d(\mathbb{C})$ over the reals as well, i.e. considered as a subgroup of $SL_{2d}(\mathbb{R})$. Consider \mathbb{C}^d as a real vector space, and take the wedge product $\mathbb{C}^d \wedge \mathbb{C}^d$. Denote by U the subspace spanned by the images of complex lines in \mathbb{C}^d ; this is also the subspace fixed by the linear transformation induced by multiplication by i on \mathbb{C}^d . It is clear that $SL_d(\mathbb{C})$ (as a real group) acts on U strongly irreducibly and proximally in the natural way, hence there is an element $g_0 \in \Gamma$ such that $\sigma_1(g_0)$ is proximal on U. This implies in turn that $\sigma_1(g_0)$ is proximal on \mathbb{C}^d now considered as a complex vector space.

So far we saw that we can find proximal elements in $\sigma_1(\Gamma)$ (σ_1 real or complex) and this follows for σ_2 in a similar fashion. Now we show that there is an element which is proximal for both σ_1 and σ_2 and this is also true for its inverse. Denote by σ_i' (for $i \in \{1, 2\}$) the representation of Γ which assigns the transpose inverse of the matrix assigned by σ_i . Applying [\[1,](#page-31-8) Lemma 5.15] for the representation $\sigma_1 \oplus \sigma'_1 \oplus \sigma_2 \oplus \sigma'_2$, we get an element $g_0 \in \Gamma$ such that $\sigma_1(g_0)$, $\sigma_1(g_0^{-1})$, $\sigma_2(g_0)$ and $\sigma_2(g_0^{-1})$ are proximal simultaneously. This implies in turn that $\rho_1(g_0)$, $\rho_1(g_0^{-1})$, $\rho_2(g_0)$ and $\rho_2(g_0^{-1})$ are also proximal.

We can set $A_1 = \{g_0\}$ and get the claim for $m = 1$. Proceeding by induction, assume that we can construct A_m for some $m \geq 1$. We try to find an element $h \in \Gamma$ such that

 $A_{m+1} := A_m \cup \{hg_0h^{-1}\}\$ is generic. Clearly $\overline{z}_{\rho_1(hg_0h^{-1})} = \rho_1(h)\overline{z}_{\rho_1(g_0)}$. One condition h needs to satisfy is that neither $\rho_1(h)z_{\rho_1(g_0)}$ nor $\rho_1(h)z_{\rho_1(g_0^{-1})}$ should belong to those proper subspaces V of $\mathfrak{sl}_d(\mathbb{C})$ for which

$$
|\{g \in A_m \cup A_m \mid z_{\rho_1(g)} \in V\}| \ge \dim V.
$$

There are a finite number of such subspaces, hence this is a Zariski open condition on $\sigma_1(h)$. It can be seen in a similar fashion that A_{m+1} is generic if $(\sigma_1(h), \sigma_2(h))$ belongs to a certain Zariski dense open subset of $SL_d(\mathbb{C}) \times SL_d(\mathbb{C})$, and the lemma follows by \Box induction. \Box

We remark that it is easy to see from the proof that A_m can be chosen in such a way that it is generic with respect to any pair of embeddings σ_1 and σ_2 .

Lemma 12. Let $A ⊂ Γ$ be a generic set of cardinality at least $(d² + 2)/2$ *. Then for* $\text{each } g \in A \cup \widetilde{A} \text{ and } i \in \{1, 2\},\text{ there is a neighborhood } U_g^{(i)} \subset \mathbb{P}(\mathfrak{sl}_d(\mathbb{C})) \text{ of } \overline{z}_{\rho_i(g)} \text{ with }$ *the following property. For any invertible linear transformation* T *on* $\mathfrak{sl}_d(\mathbb{C})$ *there is a* $g \in A \cup \widetilde{A}$ such that $T(U_g^{(1)}) \cap U_g^{(2)} = \emptyset$.

First we recall [\[13,](#page-31-9) Proposition 2.1]. Let T_1, T_2, \ldots be a sequence of invertible linear transformations on $\mathfrak{sl}_d(\mathbb{C})$. There is a not necessarily invertible linear transformation $T \neq 0$ and a subsequence of T_1, T_2, \ldots that considered as maps on $\mathbb{P}(\mathfrak{sl}_d(\mathbb{C}))$ converge uniformly to T on compact subsets of $\mathbb{P}(\mathfrak{sl}_d(\mathbb{C})) \setminus \overline{\text{Ker}(T)}$.

Proof of Lemma [12.](#page-12-0) Assume to the contrary that the claim is false. Then there is a sequence $\{T_k\}$ of linear transformations such that for any choice of the neighborhoods $U_g^{(i)}$ $(i \in \{1, 2\} \text{ and } g \in A \cup \widetilde{A})$, we have $T_k(U_g^{(1)}) \cap U_g^{(2)} \neq \emptyset$ for k large enough. By the aforementioned result, we may assume that $\{T_k\}$ converges uniformly to a linear transformation T on compact subsets of $\mathbb{P}(\mathfrak{sl}_d(\mathbb{C}))\setminus\overline{\text{Ker}(T)}$. This implies that if $z_{\rho_1(g)}\notin\text{Ker}(T)$, then $T(\bar{z}_{\rho_1(g)}) = \bar{z}_{\rho_2(g)}$. When T is invertible, this violates (iii) in the definition of generic sets. If T is not invertible, we get a contradiction with (ii) of that definition, either for $V = \text{Ker}(T)$ or for $V = \text{Im}(T)$, and the lemma follows.

Lemma 13. Let $A \subset \Gamma$ be generic, and for each $g \in A \cup \widetilde{A}$ and $i \in \{1, 2\}$ let $U_g^{(i)} \subset \mathbb{R}^d$. $\mathbb{P}(\mathfrak{sl}_d(\mathbb{C}))$ *be a sufficiently small neighborhood of* $\overline{z}_{\rho_i(g)}$ *. Then there is a positive integer M* such that $\{g^M \mid g \in A\}$ *freely generates a subgroup of* Γ *and if* $h = g_1^M \cdots g_k^M$ *is a reduced word, then* $\rho_1(h)$ *and* $\rho_2(h)$ *are proximal with* $\bar{z}_{\rho_i(h)} \in U_{g_1}^{(i)}$.

Proof. To simplify the notation we omit those subscripts and superscripts that indicate which of the representations ρ_1 or ρ_2 the object in question is related to. If U_g are sufficiently small, then there are compact sets $Q_g \subset \mathbb{P}(\mathfrak{sl}_d(\mathbb{C})) \setminus \overline{V_{\rho(g)}}$ for $g \in A \cup \widetilde{A}$ and an integer M such that

$$
d(\rho(g^M)\bar{x}, \rho(g^M)\bar{y}) < d(\bar{x}, \bar{y}) \quad \text{for } x, y \in Q_g
$$

and

$$
U_{g'} \subset Q_g \quad \text{if } gg' \neq 1.
$$

Here we have used property (i) of generic sets. If M is large enough we clearly also have $\rho(g^M)Q_g \subset U_g$. By induction, we see that if $h = g_1^M \cdots g_k^M$ is a reduced word then $\rho(h)Q_{g_k} \subset U_{g_1}$, and $d(\rho(h)\bar{x}, \rho(h)\bar{y}) < d(\bar{x}, \bar{y})$ for $\bar{x}, \bar{y} \in Q_{g_k}$. If $g_1g_k \neq 1$, then $U_{g_1} \subset Q_{g_k}$ and the claim follows for h by the aforementioned lemma of Tits [\[35,](#page-32-7) Lemma 3.8(ii)]. If $g_1g_k = 1$, then write $h = g_1^M h' g_1^{-M}$. If h' is proximal with $\bar{z}_{\rho(h')} \in U_{g_2}$, then h is also proximal with $\bar{z}_{\rho(h)} = \rho(g_1)\bar{z}_{\rho(h')}$, and the claim follows by induction. Now { g^M | $g \in A$ } generates freely a group since the identity is not proximal. □

Proof of Proposition [9.](#page-9-1) Let A be a generic set of cardinality $m \ge (d^2 + 2)/2$, and set $S' = \{g^M \mid g \in A \cup \tilde{A}\}\)$, where M is as in Lemma [13.](#page-12-1) For $g \in S'$ and $i \in \{1, 2\}$ let $U_g^{(i)}$ be a neighborhood of $\bar{z}_{\rho_i(g)}$ which is sufficiently small for Lemmata [12](#page-12-0) and [13.](#page-12-1) Then there is an element $g_0 \in S'$ such that $T(U_{g_0}^{(1)}) \cap U_{g_0}^{(2)} = \emptyset$. For $h \in H_T$ we clearly have $T\bar{z}_{\rho_1(h)} = \bar{z}_{\rho_2(h)}$, so if h is a reduced word of the form $g_1 \cdots g_k$ with $g_i \in S'$, then $g_1 \neq g_0$ by Lemma [13.](#page-12-1) If $h \in SL_d(\mathcal{O}_K)$, a similar result holds for $hH_Th^{-1} = H_{\rho_2(h)T\rho_1(h^{-1})}$. Therefore by Lemma [10,](#page-9-2) we have

$$
|B_l \cap H_T| \le (2m-1)^{l/2+1} (2m-2)^{l/2-1},
$$

where B_l is the set of reduced words of length l over the alphabet S'.

Set $P_k(l) = \chi_{S'}^{(2k)}$ $S'_{S'}^{(2k)}(w)$, where $w \in B_l$. Since $|B_l| = 2m(2m-1)^{l-1}$ for $l \ge 1$,

$$
1 = P_k(0) + \sum_{l \ge 1} 2m(2m - 1)^{l-1} P_k(l).
$$
 (8)

By a result of Kesten [\[24,](#page-32-9) Theorem 3.], we have

$$
\limsup_{k \to \infty} (P_k(0))^{1/k} = (2m - 1)/m^2.
$$

From general properties of Markov chains (see [\[36,](#page-32-10) Lemma 1.9]) it follows that

$$
P_k(0) \le \left(\frac{2m-1}{m^2}\right)^k.
$$

Since $\chi_{S'}^{(2k)}$ S' is symmetric, we have $P_k(0) = \sum_g \chi_{S'}^{(k)}$ $S^{(k)}(g)^2$, hence $P_k(l) \leq P_k(0)$ for all l by the Cauchy–Schwarz inequality. Now we can write

$$
\chi_{S'}^{(2k)}(H_T) = \sum_{l} |B_l \cap H_T| P_k(l) \le \sum_{l} (2m - 1)^{l/2+1} (2m - 2)^{l/2-1} P_k(l)
$$

$$
\le \sum_{l \le k/10} (2m - 1)^{l/2+1} (2m - 2)^{l/2-1} \left(\frac{2m - 1}{m^2}\right)^k
$$

$$
+ \left(\frac{2m - 1}{2m}\right)^{k/20} \sum_{l \ge k/10} 2m (2m - 1)^{l-1} P_k(l)
$$

$$
< \left(\frac{2m - 1}{2m}\right)^{k/2} + \left(\frac{2m - 1}{2m}\right)^{k/20},
$$

which was to be proven. The inequality between the third and fourth lines follows from (8) .

Proof of Theorem [2.](#page-2-1) Let S' be as in Proposition [9](#page-9-1) and let C and δ be as in Corollary [7.](#page-8-2) As we remarked after Lemma [11,](#page-11-0) we can choose S' in such a way that it works for any pair of embeddings σ_1 and σ_2 . There is a constant c depending on the set S' such that $\log \|\widehat{\sigma}(g)\| \leq cl$ for $g \in \prod_l S'$. Then for $l = \delta \log \left[SL_d(\mathcal{O}_k/(q)) \right]$: H^{\sharp}]/c, we have

$$
\pi_q[\chi_{S'}^{(l)}](H^{\sharp}) = \chi_{S'}^{(l)}(\mathcal{L}_{\delta}(H^{\sharp})).
$$

Combining Corollary [7](#page-8-2) with either Proposition [8](#page-9-0) or Proposition [9](#page-9-1) we get

$$
\chi_{S'}^{(l)}(\mathcal{L}_\delta(H^\sharp))\ll [SL_d(\mathcal{O}_k/(q)):H^\sharp]^{-\delta c'}
$$

with some $c' > 0$. If *l* is even, then by the symmetry of S',

$$
(\pi_q[\chi^{(l/2)}_{S'}](gH^\sharp))^2\leq \pi_q[\chi^{(l)}_{S'}](H^\sharp)
$$

for any coset gH^{\sharp} , and from $[H:H^{\sharp}] < C^{n}$ we then have

$$
\pi_q[\chi_{S'}^{(l/2)}](H) \leq C^n (\pi_q[\chi_{S'}^{(l)}](H^{\sharp}))^{1/2}.
$$

If $l_1 < l_2$, then clearly

$$
\pi_q[\chi_{S'}^{(l_2)}](H) \le \max_g \pi_q[\chi_{S'}^{(l_1)}](gH).
$$

Now it is straightforward to get the theorem by putting together the above inequalities.

 \Box

3. A product theorem

Recall that $H_1 \lesssim_L H_2$ is shorthand for $[H_1 : H_1 \cap H_2] \leq L$. We denote by $Z(G)$ the center of the group G, by $\mathcal{C}(g)$ the centralizer of the element $g \in G$ and by $\mathcal{N}_G(H)$ the normalizer of the subgroup $H < G$. In this section, K is not a number field; it usually stands for a large positive real number. We begin by listing the assumptions already mentioned in Theorem [3.](#page-3-1) When we say that something depends on the constants appearing in the assumptions (A1)–(A5) we mean L and the function $\delta(\varepsilon)$ for which (A4) holds.

- (A0) $G = G_1 \times \cdots \times G_n$ is a direct product, and the collection of the factors satisfy $(A1)$ – $(A5)$ for some sufficiently large constant L.
- $(A1)$ There are at most L isomorphic copies of the same group in the collection.
- (A2) Each G_i is quasi-simple and $|Z(G_i)| < L$.
- (A3) Any nontrivial representation of G_i is of dimension at least $|G_i|^{1/L}$.

(A4) For any $\varepsilon > 0$, there is a $\delta > 0$ such that the following holds. If μ and ν are probability measures on G_i with

$$
\|\mu\|_2 > |G_i|^{-1/2+\varepsilon}
$$
 and $\mu(gH) < |G_i|^{-\varepsilon}$

for any $g \in G_i$ and for any proper $H < G_i$, then

$$
\|\mu * \nu\|_2 \ll \|\mu\|_2^{1/2+\delta} \|\nu\|_2^{1/2}.
$$
 (9)

- (A5) For some $m < L$, there are classes $\mathcal{H}_0, \mathcal{H}_1, \ldots, \mathcal{H}_m$ of subgroups of G_i having the following properties.
	- (i) $H_0 = \{Z(G)\}.$
	- (ii) Each \mathcal{H}_i is a set of proper subgroups of G_i and this collection is closed under conjugation by elements of G_i .
	- (iii) For each proper $H < G_i$ there is an $H^{\sharp} \in \mathcal{H}_j$ for some j with $H \lesssim_L H^{\sharp}$.
	- (iv) For every pair of subgroups $H_1, H_2 \in \mathcal{H}_j$, $H_1 \neq H_2$, there is some $j' < j$ and $H^{\sharp} \in \mathcal{H}_{j'}$ for which $H_1 \cap H_2 \lesssim_L H^{\sharp}$.

We remark that by considering the induced representation, (A3) implies that for any proper subgroup $H < G_i$ we have

$$
[G_i : H] > |G_i|^{1/L}.
$$
 (10)

One may think about (A5) that there is a notion of dimension for the subgroups of G_i .

In the next section we show that Theorem 3 is a simple corollary of the following seemingly weaker result.

Proposition 14. *Let* G *be a group satisfying* (A0)–(A5)*. For any* $\varepsilon > 0$ *there is a* $\delta > 0$ *depending only on* ε *and on the constants in the assumptions such that the following holds. If* $S \subset G$ *is symmetric such that*

$$
|S| < |G|^{1-\varepsilon} \quad \text{and} \quad \chi_S(gH) < [G:H]^{-\varepsilon} |G|^{\delta}
$$

for any $g \in G$ *and any proper* $H < G$ *, then* $|\prod_{3} S | \gg |S|^{1+\delta}$ *.*

3.1. Proof of Theorem [3](#page-3-1) using Proposition [14](#page-15-0)

We make use of the following result which appeared first implicitly in the proof of Proposition 2 in Bourgain and Gamburd [\[5\]](#page-31-1).

Lemma 15 (Bourgain and Gamburd). *Let* µ *and* ν *be two probability measures on an arbitrary group* G *and let* K > 2 *be a number. If*

$$
\|\mu * \nu\|_2 > \frac{\|\mu\|_2^{1/2} \|\nu\|_2^{1/2}}{K}
$$

then there is a symmetric set $S \subset G$ *with*

$$
\frac{1}{K^R \|\mu\|_2^2} \ll |S| \ll \frac{K^R}{\|\mu\|_2^2}, \quad |\prod_3 S| \ll K^R |S|, \quad \min_{g \in S} (\widetilde{\mu} * \mu)(g) \gg \frac{1}{K^R |S|},
$$

where R *and the implied constants are absolute.*

Proof. We include the proof only for the sake of completeness; the argument is essentially the same as in the proof of [\[5,](#page-31-1) Proposition 2].

First we note that by Young's inequality $\|\mu * \nu\|_2 \le \|\mu\|_2$ and hence $\|\nu\|_2 < K^2 \|\mu\|_2$ and similarly $\|\mu\|_2 < K^2 \|\nu\|_2$. Let λ be a nonnegative measure with $\|\lambda\| \leq 1$ and $\|\lambda\|_2^2 < c$. Observe that if $\lambda(g) \geq K'c$ for some K' for every $g \in \text{supp }\lambda$, then $\|\lambda\|_2^2 \geq$ $K'c \|\lambda\|_1$, hence $\|\lambda\|_1 < 1/K'$. Similarly, if $\lambda(g) \le c/K'$ for all g, then $\|\lambda\|_2^2 < c/K'$. Now define the sets

$$
A_i = \{ g \in G \mid 2^{i-1} ||\mu||_2^2 < \mu(g) \le 2^i ||\mu||_2^2 \},
$$

\n
$$
B_i = \{ g \in G \mid 2^{i-1} ||\nu||_2^2 < \nu(g) \le 2^i ||\nu||_2^2 \}
$$

for $|i| < 10 \log K$. By Young's inequality,

$$
\|\mu * \nu\|_2 \leq \sum_{|i|,|j| \leq 10 \log K} 2^{i+j} \|\mu\|_2^2 \|\nu\|_2^2 |A_i| \|B_j\| \|\chi_{A_i} * \chi_{B_j}\|_2 + K^{-5} (\|\mu\|_2 + \|\nu\|_2),
$$

hence there must be a pair of indices i, j such that

$$
2^{i+j} \|\mu\|_2^2 \|\nu\|_2^2 |A_i| |B_j| \|\chi_{A_i} * \chi_{B_j}\|_2 \gg \frac{\|\mu\|_2^{1/2} \|\nu\|_2^{1/2}}{K \log^2 K}.
$$
 (11)

.

By construction, for $g \in A_i$ we have

$$
2^{i} \|\mu\|_{2}^{2} \gg \mu(g) \gg 2^{i} \|\mu\|_{2}^{2},
$$

and by [\(11\)](#page-16-0) and Young's inequality, $1 \ge \mu(A_i) \gg 1/K^R$. Here and throughout, R denotes an absolute constant which need not be the same at different occurrences. These together give

$$
\frac{K^R}{\|\mu\|_2^2} \gg |A_i| \gg \frac{1}{K^R \|\mu\|_2^2}
$$

We may get the analogous inequalities

$$
\frac{K^R}{\|\mu\|_2^2} \gg |B_j| \gg \frac{1}{K^R \|\mu\|_2^2}
$$

in a similar way and using the relations between $\|\mu\|_2$ and $\|\nu\|_2$. Applying our inequalities to (11) (11) (11) , we get

$$
\|\chi_{A_i} * \chi_{B_j}\|_2^2 \gg \frac{1}{K^R |A_i|^{1/2} |B_j|^{1/2}}.
$$

We invoke the noncommutative version of the Balog–Szemerédi–Gowers theorem proven by Tao [\[32,](#page-32-11) Theorem 5.2] (note that we use a different normalization). This gives subsets $A \subset A_i$ and $B \subset B_i$ with $|A| \gg |A_i|/K^R$ and $|A.B| \ll K^R |A|^{1/2} |B|^{1/2}$. Ruzsa's triangle inequality [\[32,](#page-32-11) Lemma 3.2] for the sets A and \widetilde{B} gives $|A.\widetilde{A}| \ll K^R|A|$. Using [\[32,](#page-32-11) Proposition 4.5] with $n = 3$, we get a symmetric set S with $|S| > |A|/K^R$ and

$$
|\prod_3 S| \ll K^R |A| \ll K^{R'} |S|.
$$

In the proof of Proposition 4.5 of $[32]$ the set S is defined by

$$
\{g \in G \mid |A \cap (A.\{g\})| > |A|/C\}
$$

with $C = 2|A.\widetilde{A}|/|A|$. For $g \in S$, we have

$$
(\widetilde{\mu} * \mu)(g) \ge 2^{2i-2} \|\mu\|_2^4 |A \cap (A.\{g\})| \gg \frac{1}{K^R |S|}.
$$

The expression in the middle is bounded below by $\|\mu\|_2^2/K^R$ also, which gives the required upper bound for |S|, since $\|\widetilde{\mu} * \mu\|_1 = 1$.

Proof of Theorem [3.](#page-3-1) Assume that the conclusion of the theorem fails, i.e. there is an ε such that for any δ there are probability measures μ and ν with

$$
\|\mu\|_2 > |G|^{-1/2+\varepsilon}
$$
 and $\mu(gH) < [G:H]^{-\varepsilon}$

for any $g \in G$ and for any proper $H < G$, and yet

$$
\|\mu * \nu\|_2 \ge \|\mu\|_2^{1/2+\delta} \|\nu\|_2^{1/2}.
$$

Take $K = ||\mu||_2^{-\delta}$ in Lemma [15.](#page-15-1) Note that by the third property of the set S we have

$$
\chi_S(gH) \ll K^R \widetilde{\mu} * \mu(gH) \leq K^R \max_{h \in G} \mu(hH) \ll |G|^{R\delta/2} [G:H]^{-\varepsilon}.
$$

Now $|\prod_{3} S| \ll K^{R} |S|$ contradicts Proposition [14](#page-15-0) if δ is small enough.

3.2. Proof of Proposition [14](#page-15-0)

Throughout Sections [3.2](#page-17-0)[–3.4,](#page-23-0) we assume that $G = G_1 \times \cdots \times G_n$ satisfies (A0)–(A5) with some L. Moreover ε and S are as in Proposition [14,](#page-15-0) and we fix a sufficiently small δ . By sufficiently small, we mean that we are free to use inequalities $\delta < \delta'$, where δ' is any function of ε and the constants in (A1)–(A5). We use $c, \delta', \delta'', Q, Q'$, etc. to denote positive constants that may depend only on ε and the constants in (A1)–(A5). These need not be the same at different occurrences. We will also use inequalities of the form

$$
Q \log |G_i| < |G_i|^{\delta \delta'}.\tag{12}
$$

Let N be the product of those factors G_i for which such an inequality fails. Since the same group appears at most L times among the G_i , the size of N is bounded. Replace G by G/N . For any $H < G/N$, we have $[G/N : H] = [G : HN]$ and if \overline{S} denotes the projection of S in G/N , then we have $|\prod_{i=3}^5 S| \geq |\prod_{i=3}^5 S|$ and $|S| \leq |\bar{S}| |N|$. Hence the proposition for the group G/N implies the proposition for G with a larger implied constant. Thus we can use [\(12\)](#page-17-1) without loss of generality.

In a similar fashion we may replace each G_i by $G_i/Z(G_i)$, hence from now on, we assume that all the G_i are simple. This may introduce a factor of size at most L^n which is $\ll |G|^{\delta}$ for any $\delta > 0$.

We follow the argument of Bourgain, Gamburd and Sarnak [\[9,](#page-31-0) Section 5]. First we introduce some notation. Denote by π_i for $1 \le i \le n$ the projection from G to G_i . Set $G_{\leq i} = \times_{j \leq i} G_i$ and denote by $\pi_{\leq i}$ the projection from G to $G_{\leq i}$. To the set S, we associate a tree of $n + 1$ levels. Level 0 consists of a single vertex, while for $i > 0$ the vertices of level *i* are the elements of the set $\pi_{\leq i}(S)$, and a vertex g on level $i - 1$ is connected to those vertices on level i which are of the form (g, h) with some $h \in G_i$. By removing some vertices, we can get a regular tree, that is, a tree which has vertices of equal degree on each level. More precisely, using [\[9,](#page-31-0) Lemma 5.2] we obtain a subset $A \subset S$ and a sequence $\{D_i\}_{1 \le i \le n}$ of positive integers with $D_i \ge |G_i|^\delta$ or $D_i = 1$ such that for any $g \in \pi_{\leq i-1}A$, we have

$$
|\{h \in G_i \mid (g, h) \in \pi_{\leq i}(A)\}| = D_i,
$$

and

$$
|A| > \left[\prod_{i=1}^{n} (|G_i|^{\delta} \log |G_i|) \right]^{-1} |S| > |G|^{-2\delta} |S|.
$$
 (13)

The second inequality in (13) is of type (12) .

We briefly outline the proof. Consider the set $\prod_k A$ for some integer k and the tree associated to it in the way described above. If $g \in \pi_{\leq i-1}(\prod_k A)$ is a vertex on level $i-1$ and $g = g_1 \cdots g_k$ with $g_l \in \pi_{\leq i-1}(A)$, then (g, h) is connected to g for every h in the product-set

$$
\{h_1 \mid (g_1, h_1) \in \pi_{\leq i}(A)\} \cdots \{h_k \mid (g_k, h_k) \in \pi_{\leq i}(A)\}.
$$

Let I_s be the set of indices $1 \le i \le n$ for which $D_i < |G_i|^{1-1/3L}$ (i.e. indices corresponding to small degrees); for such an index, there is hope that we can apply $(A4)$ for G_i and deduce that the above product-set is of size $D_i^{1+\delta'}$ $i^{1+\delta'}$ for some $\delta' > 0$. We make this speculation precise in Section [3.3.](#page-18-1) Set $I_l = \{1, \ldots, n\} \setminus I_s$ (indices corresponding to large degrees), $G_s = \times_{i \in I_s} G_i$ and $G_l = \times_{i \in I_l} G_i$, and denote by π_s and π_l the projections from $G = G_s \times G_l$ to G_s and G_l respectively. We infer from a result of Gowers [\[19\]](#page-32-12) that $\pi_l(S.S.S) = G_l$. In Subsection [3.4,](#page-23-0) we prove using a result of Farah [\[16\]](#page-31-10) on approximate homomorphisms that $\pi_l^{-1}(1) \cap \prod_9 S$ contains an element g whose centralizer $C(g)$ is of large index. Then S will contain elements from at least $[G : \mathcal{C}(g)]^{\varepsilon} |G|^{-\delta}$ cosets of $\mathcal{C}(g)$, hence there are many $h \in \prod_{1} S$ with $\pi_l(h) = 1$, and $\prod_{12} S$ is much larger than G_l .

Finally, we mention that there is a useful result of Helfgott [\[21,](#page-32-3) Lemma 2.2] that allows us to bound $|S.S.S|$ in terms of larger iterated product-sets. He proves that if S is a symmetric subset of an arbitrary group G and $k \geq 3$ is an integer, then

$$
\frac{|\prod_{k} S|}{|S|} \le \left(\frac{|S.S.S|}{|S|}\right)^{k-2}.\tag{14}
$$

3.3. The case of many small degrees

In this section we prove

Proposition 16. *There are positive constants* δ ⁰ *and* Q*, depending only on* ε *and the constants in the assumptions, such that*

$$
|\prod_{2^{m+1}}S|>|S||G|^{-Q\delta}\prod_{i\in I_s}D_i^{\delta'},
$$

where m *is as in* (A5).

The biggest issue here is that beside its size, we have no information about a set of the form $\{b \mid (a, b) \in \pi_{\leq i}(A)\}\$. A large part of it might be contained in a coset of a proper subgroup and then $(A4)$ does not apply with μ being the normalized counting measure on that set. To resolve this problem, we multiply sets of this form together with random elements of G_i . We need to construct a probability distribution supported on S whose projection to most factors G_i is well-behaved in the following sense.

Lemma 17. *There is a subset* $B \subset S$ *, and there is a partition of the indices* 1, ..., *n into two parts* J_g *and* J_b *, such that*

$$
\prod_{i \in J_b} |G_i| \le |G|^{\delta/\delta'},\tag{15}
$$

and for any $i \in J_g$ *and for any proper coset* $gH ⊂ G_i$ *, we have*

$$
\chi_B(\{x \in G \mid \pi_i(x) \in gH\}) \le |G_i|^{-\delta'},\tag{16}
$$

where $\delta' > 0$ *is a constant depending on* ε *and on* L *.*

Proof. We obtain the set B by the following algorithm. First set $B = S$ and $J_g =$ $\{1, \ldots, n\}$. Then iterate the following step as long as possible. If there is an index $i \in J_g$ and a coset $gH \subset G_i$ such that [\(16\)](#page-19-0) fails, then replace B by

$$
\{x \in B \mid \pi_i(x) \in gH\}
$$

and put *i* into J_b . It is clear that [\(16\)](#page-19-0) holds when this process terminates. As for [\(15\)](#page-19-1), note that

$$
\chi_S(B) \ge \prod_{i \in J_b} |G_i|^{-\delta'}
$$

and B is contained in a coset of a subgroup of index at least $\prod_{i \in J_b} |G_i|^{1/L}$ by [\(10\)](#page-15-2). Together with the assumption of Proposition [14](#page-15-0) on S, this implies

$$
\prod_{i\in J_b}|G_i|^{-\delta'}<\left(\prod_{i\in J_b}|G_i|^{1/L}\right)^{-\varepsilon}|G|^{\delta},
$$

and [\(15\)](#page-19-1) follows easily if we set $\delta' = \varepsilon/2L$.

Now assume that $i \in J_g$. Then, starting from arbitrary sets $A_1, \ldots, A_{2^m} \subset G_i$ of the same size $|G_i|^{\delta} < D < |G_i|^{1-1/3L}$, we construct a measure λ_m for which (A4) is applicable.

Choose the elements x_j for $1 \le j \le 2^m - 1$ independently at random according to the distribution χ_B . Set $y_j = \pi_i(x_j)$. For $0 \le k \le m$ define

$$
\lambda_k = \chi_{A_1} * 1_{y_1} * \chi_{A_2} * 1_{y_2} * \cdots * 1_{y_{2^k-1}} * \chi_{A_{2^k}},
$$

where 1_y denotes the unit mass measure at y.

Lemma 18. If $i \in J_g$, then there is a constant δ' depending only on ε and L such that *the probability of the event that*

$$
\lambda_k(gH) < D^{-\delta'/10^k} \tag{17}
$$

holds for any proper coset $gH < G_i$ *with* $H \in H_i$ *for some* $l \leq k$ *is at least*

$$
1 - (2^k - 1)|G_i|^{-\delta'}.
$$
 (18)

Proof. Let δ' be twice the δ' of the previous lemma. For $k = 0$, the claim follows from $L/D < D^{-\delta'}$, which is an inequality of form [\(12\)](#page-17-1). We assume that $k > 0$ and that the claim holds for $k - 1$. Set

$$
\eta_{k-1} = \chi_{A_{2^{k-1}+1}} * 1_{y_{2^{k-1}+1}} * \chi_{A_{2^{k-1}+2}} * 1_{y_{2^{k-1}+2}} * \cdots * 1_{y_{2^{k}-1}} * \chi_{A_{2^{k}}}
$$

and assume that $y_1, \ldots, y_{2^{k-1}-1}$ and $y_{2^{k-1}+1}, \ldots, y_{2^k-1}$ are chosen in such a way that λ_{k-1} and η_{k-1} satisfy

$$
\lambda_{k-1}(gH) < D^{-\delta'/10^{k-1}} \quad \text{and} \quad \eta_{k-1}(gH) < D^{-\delta'/10^{k-1}}
$$

for subgroups $H \in \mathcal{H}_{k-1}$. By the induction hypothesis, the probability of such a choice is at least $1 - (2^k - 2)|G_i|^{-\delta'}$. Now assume that $\lambda_k = \lambda_{k-1} * 1_{y_{2^{k-1}}} * \eta_{k-1}$ violates [\(17\)](#page-20-0) for some $g \in G_i$ and $H \in H_k$. To shorten the notation write $y = y_{2^{k-1}}$. We prove that y is in a set of $\pi_i(\chi_B)$ measure at most $|G_i|^{-\delta'}$, and this set will depend only on λ_{k-1} and η_{k-1} , in particular it will be independent of the choice of H and g. Let $\{h_i\}$ be a left transversal for H (i.e. a system of representatives for left H -cosets). Then it is easy to see that $\{gh_j^{-1}\}\$ is a right transversal for gHg^{-1} , hence

$$
\lambda_k(gH) = \sum_j \lambda_{k-1}(gHg^{-1}gh_j^{-1})\eta_{k-1}(y^{-1}h_jH).
$$

We claim that for some index j , we have

$$
\lambda_{k-1}(B_j) \ge D^{-\delta'/10^k}/2 \quad \text{and} \quad \eta_{k-1}(C_j) \ge D^{-\delta'/10^k}/2,\tag{19}
$$

where $B_j = g H h_j^{-1}$ and $C_j = y^{-1} h_j H$. Assume to the contrary that this fails. Then

$$
\sum_{j} \lambda_{k-1}(B_j) \eta_{k-1}(C_j) = \sum_{j: \lambda_{k-1}(B_j) < D^{-\delta'/10^k}/2} \lambda_{k-1}(B_j) \eta_{k-1}(C_j) \\
+ \sum_{j: \eta_{k-1}(C_j) < D^{-\delta'/10^k}/2} \lambda_{k-1}(B_j) \eta_{k-1}(C_j) \\
< D^{-\delta'/10^k},
$$

a contradiction.

Let *j* be such that [\(19\)](#page-20-1) holds. Define $H_1 = h_j H h_j^{-1}$ and $H_2 = y^{-1} H_1 y$. Notice that $\widetilde{B}_i \cdot B_i \subset H_1$ and $C_i \cdot \widetilde{C}_j \subset H_2$. This shows that there are subgroups $H_1, H_2 \in \mathcal{H}_k$ such that

$$
(\widetilde{\lambda}_{k-1} * \lambda_{k-1})(H_1) \ge D^{-2\delta'/10^k} / 4 \quad \text{and} \quad (\eta_{k-1} * \widetilde{\eta}_{k-1})(H_2) \ge D^{-2\delta'/10^k} / 4 \tag{20}
$$

and $H_1 = yH_2y^{-1}$. For fixed H_1 and H_2 , this restricts y to a single $\mathcal{N}(H_2)$ -coset. By Lemma [17,](#page-19-2) this is a set of χ_B measure at most $|G_i|^{3'/2}$. The final step is to show that the number of possible pairs H_1 , H_2 such that [\(20\)](#page-21-0) holds is at most $|G_i|^{\delta'/2}$.

Suppose that we have M distinct subgroups $H_1 \in \mathcal{H}_k$ such that

$$
\widetilde{\lambda}_{k-1} * \lambda_{k-1}(H_1) \ge D^{-2\delta'/10^k}/4.
$$

If H_1 and H'_1 are two such subgroups, then $H_1 \cap H'_1 \lesssim_L H^{\sharp}$ for some $H^{\sharp} \in \mathcal{H}_{k-1}$. By the induction hypothesis, we have $\widetilde{\lambda}_{k-1} * \lambda_{k-1}(H^{\sharp}) \le D^{-\delta'/10^{k-1}}$, hence $\widetilde{\lambda}_{k-1} * \lambda_{k-1}(H_1 \cap H_2)$ $\leq L D^{-\delta'/10^{\bar{k}-1}}$. By the inclusion-exclusion principle, we have

$$
MD^{-2\delta'/10^k}/4 - M^2LD^{-\delta'/10^{k-1}} \le 1.
$$

This is violated if $M = D^{\delta'/4 \cdot 10^{k-1}}$, in fact we need $D^{\delta'/2 \cdot 10^k} > 4(1 + L)$, which is an inequality of form [\(12\)](#page-17-1). Thus $M < D^{\delta'/4 \cdot 10^{k-1}}$, and as the case of H_2 is similar, the proof is complete. \Box

Using property (A4), we get the following simple

Corollary 19. Assume that $|G_i|^{\delta} < D < |G_i|^{1-1/3L}$, and let $A' \subset G_i$ be any set of *cardinality* D*. There is a positive number* δ ⁰ *depending only on* ε *and the constants in* (A1)–(A5) *such that for the above defined* λ_m *, we have*

$$
\|\lambda_m*\chi_{A'}\|_2\ll D^{-1/2-\delta'}
$$

with probability at least 1/2*.*

Proof. By Lemma [18](#page-19-3) (and using [\(12\)](#page-17-1)), with probability at least $1/2$ we have $\lambda_m(gH)$ < $LD^{-\delta''}$ with some $\delta'' > 0$ for every proper coset gH. By [\(12\)](#page-17-1), we have $L < D^{-\delta''/2}$. If say $\|\lambda_m\|_2 > |G_i|^{-1/2+1/12L}$, then we get

$$
\|\lambda_m*\chi_{A'}\|_2\leq \|\lambda_m\|_2^{1/2+\delta'}\|\chi_A'\|_2^{1/2}
$$

by (A4) with $\mu = \lambda_m$ and $\nu = \chi_{A'}$. Otherwise the claim is trivial by Young's inequality. \Box

In what follows, we need some basic facts about entropy. Let μ be a probability measure on G , and let A be a partition of G . The *entropy* of A is defined by

$$
H_{\mu}(\mathcal{A}) = \sum_{A \in \mathcal{A}} -\mu(A) \log(\mu(A)),
$$

with the convention $0 \cdot \log 0 = 0$. We also use the notation H_{μ} for the entropy of the partition consisting of one-element sets. The inequalities

$$
|\text{supp }\mu| \geq e^{H_{\mu}} \geq 1/\|\mu\|_2^2
$$

are well-known. If $B \subset G$, we write $\mu|_B(A) = \mu(A \cap B)/\mu(B)$, and if B is another partition, we define the *conditional entropy* by

$$
H_{\mu}(\mathcal{A} \mid \mathcal{B}) = \sum_{B \in \mathcal{B}} H_{\mu|_{B}}(\mathcal{A}) \mu(B).
$$

It is easy to see that

$$
H_{\mu}(\mathcal{A}\vee\mathcal{B})=H_{\mu}(\mathcal{A}\,|\,\mathcal{B})+H_{\mu}(\mathcal{B}),
$$

where $A \vee B$ denotes the coarsest partition that is finer than both A and B. On finite sets, partitions and σ -algebras are essentially the same, hence we make no distinction.

Proof of Proposition [16.](#page-18-2) First we introduce a couple of σ-algebras (partitions) on the set $A^{\times (2^m+1)}$, the $2^m + 1$ -fold Cartesian product of A. Let \mathcal{A}_i be the coarsest σ -algebra for which the projection map

$$
\pi_{\leq i}: A^{\times (2^m+1)} \to G_{\leq i}^{\times (2^m+1)}
$$

is measurable. Furthermore, let β be the coarsest σ -algebra for which the map

$$
(a_1,\ldots,a_{2^m},a_{2^m+1})\mapsto a_1x_1a_2x_2\cdots x_{2^m-1}a_{2^m}a_{2^m+1}
$$

is measurable, where the elements x_1, \ldots, x_{2^m-1} are chosen independently at random according to the distribution χ_B , hence the partition B is random. Denote by μ the measure $\chi_A^{\otimes (2^m+1)}$ $A^{(2^m+1)}$ on $A^{\times (2^m+1)}$. It follows from the definition that the entropy of the measure

$$
\chi_A * 1_{x_1} * \chi_A * 1_{x_2} * \cdots * 1_{x_{2^m-1}} * \chi_A * \chi_A
$$

equals $H_{\mu}(\mathcal{B})$. We write for the expectation of $H_{\mu}(\mathcal{B})$:

$$
\mathbf{E}[H_{\mu}(\mathcal{B})] \geq \sum_{i=1}^{n} \mathbf{E}[H_{\mu}(\mathcal{B} \wedge \mathcal{A}_i | \mathcal{A}_{i-1})]
$$

\n
$$
\geq \sum_{i \in I_s \cap J_g} \left(\frac{\log D_i}{2} + \frac{(1+2\delta') \log D_i}{2} - \log c \right) + \sum_{i \notin I_s \cap J_g} \log D_i
$$

\n
$$
\geq \log |A| + \sum_{i \in I_s \cap J_g} \delta' \log D_i - n \log c.
$$

The second inequality follows from Corollary 19 and c is the implied constant there; and $A \wedge B$ denotes the finest partition that is coarser than both A and B. This implies in turn that for some choices of x_1, \ldots, x_{2^m-1} , we have

$$
|A.x_1.A.x_2 ... x_{2^m-1}.A.A| \ge c^{-n} |A| |G|^{-\delta} \prod_{i \in I_s} D_i^{\delta'},
$$

where we have also used [\(15\)](#page-19-1). Note that we can assume $c^n < |G|^{\delta}$ by [\(12\)](#page-17-1), and recall that $|A| > |S| |G|^{-2\delta}$ by [\(13\)](#page-18-0), hence Proposition [16](#page-18-2) follows.

3.4. The case of many large degrees

This section is devoted to the proof of

Proposition 20. *There is a positive constant* δ 0 *, depending only on* ε *and* L*, such that*

$$
|\prod_{12} S| \geq |G|^{\delta'-\delta} \prod_{i \in I_l} D_i.
$$

Recall that $G_s = \times_{i \in I_s} G_i$, $G_l = \times_{i \in I_l} G_i$ and π_s and π_l are the projections to these subgroups respectively.

By (A3), any nontrivial representation of G_i is of dimension at least $|G_i|^{1/L}$. It was pointed out by Nikolov and Pyber [\[26,](#page-32-13) Corollary 1] that a result of Gowers [\[19,](#page-32-12) Theorem 3.3] implies that if A, B, C $\subset G_i$ are subsets such that $|A||B||C| > |G_i|^{3-1/L}$ then $A.B.C = G_i.$

Let $i_1 \leq \cdots \leq i_{n'}$ be the indices in I_l and for $1 \leq n'' \leq n'$ set $G_{\{i_1,\ldots,i_{n''}\}} =$ $G_{i_1} \times \cdots \times G_{i_{n''}}$ and denote by $\pi_{\{i_1,\ldots,i_{n''}\}}$ the projection to this subgroup. We prove by induction that

$$
\pi_{\{i_1,\ldots,i_{n''}\}}(A.A.A) = G_{\{i_1,\ldots,i_{n''}\}}.
$$

For $n'' = 1$, this follows directly from [\[26,](#page-32-13) Corollary 1] and from $\pi_{i_1}(A) \ge D_{i_1} \ge$ $|G_i|^{1-1/3L}$. Now assume that the claim holds for some n'' and take an arbitrary element $g \in G_{\{i_1,\dots,i_{n''+1}\}}$. By the induction hypothesis there are elements $h_1, h_2, h_3 \in A$ such that

$$
\pi_{\{i_1,\ldots,i_{n''}\}}(h_1h_2h_3)=\pi_{\{i_1,\ldots,i_{n''}\}}(g).
$$

Define the sets

$$
B_i = \{x \in A \mid \pi_{\{i_1, \dots, i_{n''}\}}(x) = \pi_{\{i_1, \dots, i_{n''}\}}(h_i)\}
$$

and note that

$$
\pi_{i_{n''+1}}(B_i) \supset \pi_{i_{n''+1}}(\{x \in A \mid \pi_{\leq i_{n''+1}-1}(x) = \pi_{\leq i_{n''+1}-1}(h_i)\}),
$$

hence $|\pi_{i_{n''+1}}(B_i)| \ge D_{i_{n''+1}} \ge |G_{i_{n''+1}}|^{1-1/3L}$. Now an application of [\[26,](#page-32-13) Corollary 1] to the sets $\pi_{i_{n''+1}}(B_i)$ gives that $g \in \pi_{\{i_1,\ldots,i_{n''+1}\}}(A.A.A)$, whence the claim follows.

Define the distance of two elements $g, h \in G_s$ by

$$
d(g, h) = \sum_{i \in I_s: \pi_i(g) \neq \pi_i(h)} \log |G_i|.
$$

Lemma 21. *If* $|S.S.S| \leq |G|^{1-\epsilon+\delta}$ *then there is an element* $g \in \prod_{9} S$ *such that*

$$
\pi_l(g) = 1 \quad \text{and} \quad d(\pi_s(g), 1) > \delta' \log |G|,
$$

where $\delta' > 0$ *is a constant depending only on* ε *and* L *.*

Following Farah [\[16\]](#page-31-10), we say that a map $\psi : G_l \to G_s$ is a δ' -*approximate homomorphism* if

$$
d(\psi(g)\psi(h), \psi(gh)) \le \delta'
$$
 and $d(\psi(g), (\psi(g^{-1}))^{-1}) \le \delta'$

for all $g, h \in G_l$. Note that in [\[16\]](#page-31-10), such a ψ is called an *approximate homomorphism of type II*. We recall a result of Farah [\[16,](#page-31-10) Theorem 2.1] that will be crucial in the proof. Let ψ : $G_l \rightarrow G_s$ be a δ' -approximate homomorphism. Then there is a homomorphism $\varphi: G_l \to G_s$ such that

$$
d(\psi(g), \varphi(g)) \le 24\delta' \quad \text{for all } g \in G_l.
$$

Proof of Lemma [21.](#page-23-1) Assume to the contrary that for any $g \in \prod_9 S$ with $\pi_l(g) = 1$, we have $d(\pi_s(g), 1) \leq \delta' \log |G|$. For each $g \in G_l$, pick an element $h \in S.S.S$ with $\pi_l(h) = g$ and set $\psi(g) = \pi_s(h)$. This gives rise to a map $\psi : G_l \to G_s$, which of course depends on our choices for h. It follows in turn that for any $g \in G_l$ and $h \in$ S.S.S with $\pi_l(h) = g$, we have $d(\pi_s(h), \psi(g)) < \delta' \log |G|$ and that ψ is a $\delta' \log |G|$ -approximate homomorphism. By [\[16,](#page-31-10) Theorem 2.1], there is a homomorphism φ with $d(\psi(g), \varphi(g)) \leq 24\delta' \log |G|$ for any $g \in G_l$. The elements $g \in G$ satisfying

$$
\pi_s(g) = \varphi(\pi_l(g))
$$

constitute a subgroup $H < G$ of index $|G_s|$, since the cosets of H are represented by the elements g with $\pi_l(g) = 1$. For $h_1 \in S.S.S$, the coset h_1H is represented by the element g₁ with $\pi_l(g_1) = 1$ and $\pi_s(g_1) = \pi_s(h_1)\varphi(\pi_l(h_1))^{-1}$. Since

$$
d(\pi_s(h_1), \varphi(\pi_l(h_1))) \leq d(\pi_s(h_1), \psi(\pi_l(h_1))) + d(\psi(\pi_l(h_1)), \varphi(\pi_l(h_1))) < 25\delta' \log |G|,
$$

there is an index set $I \subset I_s$ with $\prod_{i \in I} |G_i| < |G|^{25\delta'}$ such that $\pi_i(g_1) \neq 1$ exactly if $i \in I$. If I is given, there are at most $|G|^{25\delta'}$ choices for g_1 . Thus S.S.S is contained in $2^{n}|G|^{25\delta'} < |G|^{26\delta'}$ cosets of H. This is a contradiction if

$$
|G_s|^{-\varepsilon}|G|^{26\delta'+\delta}<1.
$$

Since $|G_l| \leq |S.S.S| \leq |G|^{1-\epsilon+\delta}$, we have $|G_s| \geq |G|^{\epsilon-\delta}$. Now, if δ is small enough (e.g. $\delta < \varepsilon^2/10$) we can get the desired contradiction by an appropriate choice of δ' . *Proof of Proposition* [20.](#page-23-2) First we calculate the index of the centralizer $C(g)$ of g, the element constructed in Lemma [21.](#page-23-1) An element h commutes with g if and only if $\pi_i(h) \in$ $\mathcal{C}(\pi_i(g))$ for all indices i for which $\pi_i(g) \neq 1$. For such an i, $[G_i : \mathcal{C}(\pi_i(g))] > |G_i|^{1/L}$. Recall that we assume that all the G_i are simple, in particular their centers are trivial. Now we see that $[G : \mathcal{C}(g)] > |G|^{3'/L}$ with the δ' of Lemma [21.](#page-23-1) Then S contains elements from at least $|G|^{(\varepsilon\delta')/L-\delta}$ cosets of $\mathcal{C}(g)$. Thus the set

$$
\{sgs^{-1} \mid s \in S\} \subset \prod_{11} S
$$

contains at least $|G|^{s\delta'/L-\delta}$ different elements h with $\pi_l(h) = 1$, whence

$$
|\prod_{12} S| \geq |G|^{\varepsilon \delta'/L - \delta} \prod_{i \in I_l} D_i,
$$

which was to be proven. \Box

Proof of Proposition [14.](#page-15-0) By Propositions [16](#page-18-2) and [20,](#page-23-2) we have

$$
|\prod_{2^{m+1}} S| > |S||G|^{-Q\delta} \prod_{i \in I_s} D_i^{\delta'_1} \text{ and } |\prod_{12} S| > |G|^{\delta'_2 - \delta} \prod_{i \in I_l} D_i
$$

with some constants δ'_1 , δ'_2 and Q. Multiply the first inequality with the δ'_1 th power of the second one, and use $|G| \geq |S|$ and $\prod D_i = |A| \geq |S| |G|^{-2\delta}$ to get

$$
|\prod_{2^m+1} S| |\prod_{12} S|^{\delta_1'}| > |S|^{1+\delta_1'+\delta_1'\delta_2'} |G|^{-Q'\delta}.
$$

By the hypothesis on the set S for $H = \{1\}$, we get $|S| > |G|^{s-\delta}$. Therefore [\(14\)](#page-18-3) gives the claim if δ is sufficiently small.

4. (A1)–(A5) for $G_i = SL_d(\mathbb{F}_{n^k})$

Let K be a number field and let $I \subset \mathcal{O}_K$ be a square-free ideal. Then $I = P_1 \cdots P_n$ for some prime ideals, and $G = SL_d(\mathcal{O}_K/I) = SL_d(\mathcal{O}_K/P_1) \times \cdots \times SL_d(\mathcal{O}_K/P_n)$. The last ingredient we need for the proof of Theorem [1](#page-1-1) is that the groups $G_i = SL_d(\mathcal{O}_K/P_1)$ satisfy the assumptions (A1)–(A5). We write \mathbb{F}_{p^k} for the finite field of order p^k .

(A1) is immediate, and (A2) is a classical result of Jordan. Regarding (A3), Harris and Hering [\[20\]](#page-32-14) proved that any nontrivial representation of $SL_d(\mathbb{F}_q)$ is of dimension at least $q^{d-1} - 1$ or $(q - 1)/2$ when $d = 2$ and q is odd. In fact for our purposes it is enough to note that any such representation restricted to an appropriate subgroup isomorphic to $SL_2(\mathbb{F}_p)$ gives rise to a nontrivial representation, which is of dimension at least $(p-1)/2$ by a classical result of Frobenius [\[17\]](#page-32-15).

We study (A4) and (A5) in the next two sections.

4.1. Assumption (A4)

We recall some results of Helfgott. Let $G = SL_d(\mathbb{F}_p)$, and let $S \subset G$ be a set which is not contained in any proper subgroup. Suppose further that $|S| < |G|^{1-\varepsilon}$ for some $\varepsilon > 0$. Then if $d = 2$ [\[21,](#page-32-3) Key Proposition] or if $d = 3$ [\[22,](#page-32-4) Main Theorem], there is a $\delta > 0$ depending only on ε such that $|S.S.S| \gg |S|^{1+\delta}$. These results imply (A4) for $G_i = SL_d(\mathbb{F}_{p_i})$ if $d = 2$ or $d = 3$ $d = 3$ the same way as we proved Theorem 3 using Proposition [14.](#page-15-0) We show below that the argument in [\[21\]](#page-32-3) extends easily to groups $G =$ $SL_2(\mathbb{F}_{p^k})$. After the circulation of an early version of this paper I have learnt that this extension of Helfgott's theorem was recently proven by Oren Dinai in his PhD thesis [\[14\]](#page-31-11).

Let Λ be a subset of the multiplicative group $\mathbb{F}_{p^k}^*$. Denote by Λ^r the set of rth powers of the elements of Λ and set

$$
w(\Lambda) = \{w(a) | a \in \Lambda\}
$$
, where $w(a) = a + a^{-1}$.

The only notable change needed to extend Helfgott's argument to the case $k > 1$ is to replace [\[21,](#page-32-3) Proposition 3.3] by the following

Proposition 22. Let $\Lambda \subset \mathbb{F}_{p^k}^*$ be a set which contains 1 and is closed under taking *multiplicative inverses. Let* $a_1^p, a_2 \in \mathbb{F}_{p^k}^*$, and assume that if $w(\Lambda^2)$ is contained in a *proper subfield* F *of* \mathbb{F}_{p^k} *, then* $a_1/a_2 \notin F$ *. Now if* $|\Lambda| < p^{(1-\delta)k}$ *, then*

$$
|\{a_1w(bc)+a_2w(bc^{-1})\mid b,c\in \prod_4\Lambda\}|\gg |\Lambda|^{1+\varepsilon}
$$

with a constant ε *depending only on* δ*.*

The proof follows the same lines as that of $[21,$ Proposition 3.3].

Proof. Set $\Lambda_1 = \Lambda^2 \cdot \Lambda^2$. Using the substitution $b = \overline{b}\overline{c}$ and $c = \overline{b}\overline{c}^{-1}$, we see that

$$
a_1 w(\Lambda_1) + a_2 w(\Lambda_1) = \{a_1 w(\bar{b}^2) + a_2 w(\bar{c}^2) \mid \bar{b}, \bar{c} \in \Lambda.\Lambda\}
$$

$$
\subset \{a_1 w(bc) + a_2 w(bc^{-1}) \mid b, c \in \prod_4 \Lambda\}.
$$

If $w(\Lambda^2)$ is contained in a subfield F, then $a_1/a_2 \notin F$ by assumption, and then trivially

$$
|a_1 w(\Lambda_1) + a_2 w(\Lambda_1)| \ge |w(\Lambda^2)|^2 \ge \frac{1}{16} |\Lambda|^2,
$$

and the claim follows.

Therefore we will assume now that $w(\Lambda^2)$ generates \mathbb{F}_{p^k} . Assume that

$$
|(a_1/a_2)w(\Lambda_1) + w(\Lambda_1)| \le K|\Lambda| \tag{21}
$$

for some constant K. By the Ruzsa–Plünnecke inequalities $[30]$ $[30]$ (see also $[34,$ Corollary 6.9])

$$
|w(\Lambda_1)+w(\Lambda_1)-w(\Lambda_1)-w(\Lambda_1)| \ll K^4|\Lambda|.
$$

Note that $w(a)w(b) = w(ab) + w(ab^{-1})$, hence

$$
w(\Lambda^2).w(\Lambda^2) \subset w(\Lambda_1) + w(\Lambda_1)
$$

and

$$
|w(\Lambda^2) \cdot w(\Lambda^2) - w(\Lambda^2) \cdot w(\Lambda^2)| \ll K^4 |\Lambda|.
$$

This would contradict the sum-product theorem if $K = |\Lambda|^{\varepsilon}$ with ε small enough. The most convenient reference for us is [\[33,](#page-32-18) Theorem 1.5] that we can apply with $A = w(\Lambda^2)$ and $a = w(1) = 2$. However the contradiction could also be deduced from the results of $[11]$ or $[10]$.

To use this proposition we need to replace [\[21,](#page-32-3) Corollary 4.5] by

Lemma 23. Let $S \subset SL_2(\mathbb{F}_{p^k})$ be symmetric containing 1, and assume that it is not *contained in any proper subgroup. Let* F *be a proper subfield of* \mathbb{F}_{p^k} *. Then there is an absolute constant* R *such that there is a matrix*

$$
x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \prod_R S
$$

with abcd \neq 0 *and ad* /*bc* \notin *F*.

Proof. In this proof the value of R may be different at different occurrences. First note that for any matrix x with entries as above, $ad + bc = 1 \in F$ and hence

$$
bc = \frac{1}{ad/bc - 1},
$$

so x satisfies the requirements of the lemma exactly if $bc \notin F$. If x does not satisfy this, look at x^2 and notice that the product of the off-diagonal entries is $bc(Trx)^2$, hence it remains to show that $\prod_N S$ contains an element with nonzero off-diagonals and with $({\rm Tr} x)^2 \notin F$.

Note that if span($\prod_l S$) = span($\prod_{l+1} S$), where span(X) denotes \mathbb{F}_{p^k} -linear span in $Mat_2(\mathbb{F}_{p^k})$, then span($\prod_{m=1}^{k} S$) = span($\prod_{l=1}^{k} S$) for any $m > l$. From this we conclude that as S is not contained in a proper subgroup, $\prod_4 S$ must span $Mat_2(\mathbb{F}_{p^k})$. Let $y_1, y_2, y_3, y_4 \in$ $\prod_4 S$ be a basis of $Mat_2(\mathbb{F}_{p^k})$ and let z_1, z_2, z_3, z_4 be the dual basis with respect to the nondegenerate form Tr(yz). Denote by ω an element of \mathbb{F}_{p^k} which is not in F but $\omega^2 \in F$. If there is no such element, the rest of the proof is even simpler. Consider the 16 F-vector spaces

$$
\omega^{\alpha_1} F \cdot z_1 + \omega^{\alpha_2} F \cdot z_2 + \omega^{\alpha_3} F \cdot z_1 + \omega^{\alpha_4} F \cdot z_1,
$$

where the α_i takes the values 0 and 1 independently. Now we invoke Lemma 4.4 from Helfgott [\[21\]](#page-32-3), which shows that there is a matrix $\bar{x} \in \prod_R S$ which is not contained in any of the above subspaces if R is large enough. By definition, there is an index i such that $(Tr(y_i \bar{x}))^2 \notin F$. It may happen that one or both off-diagonal entries are zero. Using [\[21,](#page-32-3) Lemma 4.4] now for the representation of $SL_2(\mathbb{F}_{p^k})$ acting on $Mat_2(\mathbb{F}_{p^k})$ by conjugations, we see that $wy_i\bar{x}w^{-1}$ has no zero entries for some $w \in \prod_R S$. This proves the claim. \Box

We remark that in the way $[21, \text{Lemma } 4.4]$ $[21, \text{Lemma } 4.4]$ is stated, it gives an R which depends on the dimension of $Mat(\mathbb{F}_{p^k})$ over F, however it is easily seen by a careful analysis of the proof in [\[21\]](#page-32-3) that the dependence is only on the dimension of the subspaces we want to avoid.

Extending [\[21,](#page-32-3) Key Proposition] to arbitrary finite fields. The proof on pp. 616 of [\[21\]](#page-32-3) is given for arbitrary finite fields up to the point when the set V is constructed, except that we get $|V| < p^{k(1-\delta/3)}$ not $|V| < p^{1-\delta/3}$. If $w(V)$ is contained in a proper subfield of \mathbb{F}_{p^k} then denote this subfield by F, and instead of [\[21,](#page-32-3) Corollary 4.5] use Lemma [23](#page-26-0) to construct the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. In what follows simply use Proposition [22](#page-25-1) instead of [\[21,](#page-32-3) Proposition 3.3]. \Box

4.2. Assumption (A5)

We prove that $SL_d(\mathbb{F}_{p^k})$ satisfies (A5) with L depending on d and k. Note that we can embed $SL_d(\mathbb{F}_{p^k})$ into $GL_{kd}(\mathbb{F}_p)$ by Weil restriction. We again rely on the description of the subgroup structure of $GL_d(\mathbb{F}_p)$ given by Nori [\[27\]](#page-32-6). Recall that for a group $H < GL_d(\mathbb{F}_p)$, H^+ denotes the subgroup generated by elements of order p. By [\[27,](#page-32-6) Theorem B] there is a connected algebraic subgroup $\widetilde{H} < GL_d$ such that $\widetilde{H}(\mathbb{F}_p)^+ = H^+$. By [\[27,](#page-32-6) Theorem C] there is a commutative $F < H$ such that $p \nmid |F|$ and $H \leq_{L_1} F H^+$ with a constant L_1

depending only on d. Moreover, it follows from the proof there that if P is any p -Sylow subgroup of H^+ , then F can be chosen to satisfy

$$
F < \mathcal{N}_H(P), \quad F \cap P = \emptyset \quad \text{and} \quad [\mathcal{N}_H(P) : FP] < L_1. \tag{22}
$$

The choice of F is not unique, even for a fixed Sylow subgroup P , however the following is true. Let $K < \mathcal{N}_H(P)/P$ be a group whose order is prime to P. Then there is an $F < \mathcal{N}_H(P)$ with $K = FP/P$ by [\[29,](#page-32-19) Theorem 7.41] and all such subgroups F are conjugates of each other by elements of P (see Rotman [\[29,](#page-32-19) Theorem 7.42]).

Proposition 24. Let G be a quasi-simple subgroup of $GL_d(\mathbb{F}_p)$ such that $G = G^+$. *There are classes* $\mathcal{H}_0, \ldots, \mathcal{H}_m$ *of subgroups of G such that the following hold with some constants* L, m *depending only on* d*:*

- (i) $H_0 = \{Z(G)\},\$
- (ii) *each* Hⁱ *is a set of proper subgroups of* G*, closed under conjugation by elements of* G*,*
- (iii) *for every proper subgroup* $H < G$ *there is some i and a subgroup* $H^{\sharp} \in H$ *i such that* $H \lesssim_L H^{\sharp}$,
- (iv) for every pair of subgroups $H_1, H_2 \in \mathcal{H}_i$, $H_1 \neq H_2$, there is some i' < i and $H^{\sharp} \in \mathcal{H}_{i'}$ such that $H_1 \cap H_2 \lesssim_L H^{\sharp}$.

Proof. In each subgroup $H < G$ which is generated by elements of order p, distinguish a p -Sylow subgroup P . This can be arbitrary, but should be fixed throughout the proof. For integers i and j we define classes $\mathcal{H}_{i,j}$. A proper subgroup $H < G$ belongs to $\mathcal{H}_{i,j}$ precisely if $Z(G) < H$, dim $\widetilde{H} = i$ and j is the least integer for which the following hold. There is a commutative subgroup $F < \mathcal{N}_H(P)$ such that

$$
Z(G) < F, \quad H = FH^+, \quad F \cap P = \emptyset,\tag{23}
$$

$$
[\mathcal{N}_{H^+}(P) : (F \cap H^+)P] < L_1^{2^{d-j}},\tag{24}
$$

and there is a *j*-dimensional subspace V of $Mat_d(\mathbb{F}_p)$ such that

$$
F = V \cap \mathcal{N}_G(P) \cap \mathcal{N}_G(H^+). \tag{25}
$$

Order the nonempty classes $\mathcal{H}_{i,j}$ in such a way that $\mathcal{H}_{i,j}$ precedes $\mathcal{H}_{i',j'}$ if $i < i'$ or $i = i'$ and $j < j'$. Condition [\(24\)](#page-28-0) may look artificial, but it plays an important role in the proof of (iv). Up to that point it can be safely ignored.

The first nonempty class is $\mathcal{H}_{0,j} = \{Z(G)\}\$ for some j. Indeed, if two matrices belong to the center of G , then any linear combination of them is central, too, provided it belongs to the group. Furthermore, if $Z(G) \neq H < G$ belongs to $\mathcal{H}_{0,j'}$ for some j', then by [\(23\)](#page-28-1), the linear span of H contains the span of $Z(G)$, so $j' > j$. Hence (i) follows.

Since conjugation is a linear transformation on $Mat_d(\mathbb{F}_p)$, (ii) is clear.

Let $H < G$ be a proper subgroup, and replace it by $Z(G)H$ if necessary, to ensure that $Z(G) < H$. Let F be a subgroup of $\mathcal{N}_H(P)$ that satisfies [\(22\)](#page-28-2). Without loss of generality, we can assume that $Z(G) < F$. Set

$$
F^{\sharp} = \text{span}(F) \cap \mathcal{N}_G(P) \cap \mathcal{N}_G(H^+),
$$

where span(F) is the linear span of F in the vector space $Mat_d(\mathbb{F}_p)$. First we remark that F^{\sharp} does not contain an element of order p, in fact its elements can be mutually diagonalized over an appropriate extension field. This implies that $F^{\sharp} \cap P = \emptyset$. Since $F^{\sharp} \subset \mathcal{N}_G(H^+)$, we can define the subgroup $H^{\sharp} = F^{\sharp}H^{\sharp}$, and we have $(H^{\sharp})^+ = H^{\sharp}$. Since $[H : FH^+] < L_1$ and $FH^+ < H^{\sharp}$, for (iii) we only need to show that $H^{\sharp} \in \mathcal{H}_{i,j}$ for some *i* and *j*. First we remark that H^{\sharp} is a proper subgroup, since $(H^{\sharp})^+ = H^+$. (Note that G is generated by elements of order p, hence $H^+ < G^+ = G$.) Second, [\(23\)](#page-28-1) and [\(25\)](#page-28-3) hold with $i = \dim \widetilde{H}$ and with F^{\sharp} and $V = \text{span}(F^{\sharp})$. For [\(24\)](#page-28-0), we can write

$$
[\mathcal{N}_{H^+}(P): (F^{\sharp} \cap H^+)P] \leq [\mathcal{N}_{H^+}(P): (F \cap H^+)P] = [\mathcal{N}_{FH^+}(P): FP] \leq L_1.
$$

Here the equality in the middle follows from the fact $\mathcal{N}_{FH+}(P) = F\mathcal{N}_{H+}(P)$, while the last inequality is contained in [\(22\)](#page-28-2).

It remains to show (iv). Let H_1 and H_2 be two different groups in $\mathcal{H}_{i,j}$. If $\widetilde{H}_1 \neq \widetilde{H}_2$, then

$$
\dim(\widetilde{H}_1 \cap \widetilde{H}_2) \le \dim \widetilde{H_1 \cap H_2} < i
$$

and $(H_1 \cap H_2)^{\sharp} \in \mathcal{H}_{i',j'}$ with some $i' < i$, as we saw in the previous paragraph. Therefore we may assume $\widetilde{H}_1 = \widetilde{H}_2$ and hence $H_1^+ = H_2^+$ n_2^+ . Let P be the distinguished p-Sylow subgroup and denote by $F_l \ll \mathcal{N}_{H_l}(P)$ and V_l $(l = 1, 2)$ the subgroups and subspaces for which [\(23\)](#page-28-1)–[\(25\)](#page-28-3) hold. We show that there is an $H \in \mathcal{H}_{i,j'}$ for some $j' < j$ such that $H_1 \cap H_2 \lesssim_{L_1^{2^{d-j+1}}} H$. We have $[\mathcal{N}_{H_l}(P) : F_l P] < L_1^{2^{d-j}}$ $\int_{1}^{2^{a-j}}$ for $l = 1, 2$, hence

$$
[\mathcal{N}_{H_1 \cap H_2}(P) : F_1 P \cap F_2 P] < L_1^{2^{d-j+1}}.\tag{26}
$$

Now let $F < F_1$ be such that $FP = F_1P \cap F_2P$, and define $H = FH^+$. Then $H_1 \cap H_2$ $\lesssim_{L_1^{2d-j+1}} H$ by [\(26\)](#page-29-1). By [\[29,](#page-32-19) Theorem 7.42] (as mentioned before the statement of the proposition), there is an element $g \in P$ such that $gFg^{-1} < F_2$. Then $F = F_1 \cap g^{-1}F_2g$. Now (23) follows by construction. For (25) , we have

$$
F = V_1 \cap g^{-1} V_2 g \cap \mathcal{N}_G(P) \cap \mathcal{N}_G(H^+)
$$

and dim($V_1 \cap g^{-1}V_2g$) < j since $H_1 \neq H_2$. Finally for [\(24\)](#page-28-0), we can write

$$
[\mathcal{N}_{H^+}(P): (F \cap H^+)P] \leq [\mathcal{N}_{H^+}(P): (F_1 \cap H^+)P] \cdot [\mathcal{N}_{H^+}(P): (g^{-1}F_2g \cap H^+)P]. \square
$$

5. Proof of Theorem [1](#page-1-1)

First we note that by [\[23,](#page-32-1) Claim 11.19], it is enough to prove that $\mathcal{G}(SL_d(\mathcal{O}_K/I), \pi_I(S'))$ form a family of expanders with some $S' \subset \Gamma$, hence we can assume without loss of generality that Theorem [2](#page-2-1) holds with $S = S'$. If $H < SL_d(\mathcal{O}_K/I)$ and $\pi_I(S) \subset H$, then by Theorem [2,](#page-2-1) $[SL_d(\mathcal{O}_K/I) : H] < C$ for some constant C which depends on the δ and the implied constant of that theorem. Let J be a square-free ideal for whose prime factors P, $\pi_P(S)$ does not generate $SL_d(\mathcal{O}_K/P)$. Since each proper subgroup in $SL_d(\mathcal{O}_K/P)$ is of index at least $N(P)^{\delta'}$ for some $\delta' > 0$, we get $N(J) < C^{\delta'}$. Here and

below, δ' is a constant which may depend on S and which need not be the same at different occurrences. Thus there are at most a finite number of prime ideals P such that $\pi_P(S)$ is not generating, and from now on, we denote by J the product of those prime ideals.

Let I be an ideal which is prime to J and write $G = SL_d(\mathcal{O}_K/I)$, and $S = \pi_I(S)$. Denote by $l^2(G)$ the vector space of complex valued functions on G. Consider the operator on $l^2(G)$ which is convolution with $\chi_{\overline{S}}$ from the left. Denote its matrix in the standard basis by M. It is plain that $|S|M$ is the adjacency matrix of the graph $\mathcal{G}(G, \overline{S})$. In light of the results of Dodziuk [\[15\]](#page-31-4), Alon and Milman [\[3\]](#page-31-5) and Alon [\[2\]](#page-31-6) already mentioned in the introduction, we have to give an upper bound on the second largest eigenvalue of M independently of *I*. For $g \in G$, denote by $\alpha(g)$ left translation by g on $l^2(G)$. Then α is called the *regular representation* of G, and it is well known that $l^2(G)$ decomposes as a direct sum $V_0 \oplus V_1 \oplus \cdots \oplus V_m$ such that each $\alpha|_{V_i}$ is irreducible and the multiplicity of every irreducible representation of G in this decomposition is the same as its dimension. Therefore it remains to show that if β is a nontrivial irreducible representation of G, and λ is an eigenvalue of the operator

$$
\frac{1}{|S|} \sum_{g \in \overline{S}} \beta(s),
$$

then $\lambda < c < 1$ for some constant c independent of I. Replacing I by a larger ideal if necessary, we may assume that the representation is faithful. Faithful representations of G are tensor products of nontrivial representations of the direct factors, hence they are of dimension at least $|G|^{s'}$ as we noted at the beginning of Section [4.](#page-25-2) Hence λ is an eigenvalue of M with multiplicity at least $|G|^{s'}$.

Denote by $(M)_{i,j}$ the i, j entry of M and notice that for an integer k, the rows of M^k are translates of $\chi_{\overline{s}}^{(k)}$ $rac{\kappa}{s}$. Then

$$
\operatorname{Tr}(M^{2k}) = \sum_{i,j \leq |G|} (M^k)_{i,j}^2 = |G| \|\chi_{\overline{S}}^{(k)}\|_2^2,
$$

whence

$$
\lambda^{2k} \le |G|^{1-\delta'} \| \chi_{\overline{S}}^k \|_2^2. \tag{27}
$$

If the index of a subgroup $H < SL_d(\mathcal{O}_K/I)$ is large, then we can cancel the implied constant in Theorem [2](#page-2-1) by making δ smaller. If the index is small, then we can get a nontrivial bound $\chi_{\overline{S}}^{(k)}$ $\frac{\sqrt{N}}{S}$ (H) < c < 1, since we assumed that S generates the group. Thus if I is restricted to ideals prime to J, Theorem [2](#page-2-1) holds with the implied constant set to 1. Now apply it for $H = \{1\}$ to get

$$
\|\chi_{\overline{S}}^{(\log N(I))}\|_2^2 < |G|^{-\delta'}.
$$

We saw in Section [4](#page-25-2) that G satisfies (A0)–(A3) and (A5). It also satisfies (A4) if $d = 2$ or if $d = 3$ and $K = \mathbb{Q}$ or if we assume that [\(1\)](#page-1-0) holds when F ranges over the fields \mathcal{O}_K/P , P prime. Therefore we can apply Theorem [3](#page-3-1) repeatedly to get

$$
\|\chi_{\overline{S}}^{(C\log(N(I)))}\|_2^2 < |G|^{-1+\varepsilon}
$$

for arbitrary $\varepsilon > 0$ with some constant C depending on ε . If ε is less than the δ' in [\(27\)](#page-30-0), the theorem follows.

Acknowledgments. I am grateful to my advisor Jean Bourgain for suggesting this problem and for guiding me during my research. I also had very useful discussions with Elon Lindenstrauss, Alireza Salehi Golsefidy and Peter Sarnak; I thank them for their interest and valuable remarks.

While writing this paper, I was supported by a Fulbright Science and Technology Award, grant no. 15073240.

Note added in proof. Soon after the submission of this paper, equation (1) was proven indepen-dently by Breuillard, Green and Tao [\[12\]](#page-31-14) and Pyber and Szabó [[28\]](#page-32-20), even in the more general context of finite simple groups of Lie type. Those results imply that Theorem [1](#page-1-1) holds unconditionally for arbitrary d and K .

References

- [1] Abels, H., Margulis, G. A., Soifer, G. A.: Semigroups containing proximal linear maps. Israel J. Math. 91, 1–30 (1995) [Zbl 0845.22004](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0845.22004&format=complete) [MR 1348303](http://www.ams.org/mathscinet-getitem?mr=1348303)
- [2] Alon, N.: Eigenvalues and expanders. Combinatorica 6, 83–96 (1986) [Zbl 0661.05053](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0661.05053&format=complete) [MR 0875835](http://www.ams.org/mathscinet-getitem?mr=0875835)
- [3] Alon, N., D. Milman, V.: λ_1 , isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B 38, 73–88 (1985) [Zbl 0549.05051](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0549.05051&format=complete) [MR 0782626](http://www.ams.org/mathscinet-getitem?mr=0782626)
- [4] Berenstein, C. A., Yger, A.: Effective Bezout identities in $\mathbb{Q}[z_1, \ldots, z_n]$. Acta Math. 166, 69–120 (1991) [Zbl 0724.32002](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0724.32002&format=complete) [MR 1088983](http://www.ams.org/mathscinet-getitem?mr=1088983)
- [5] Bourgain, J., Gamburd, A.: Uniform expansion bounds for Cayley graphs of $SL_2(\mathbb{F}_p)$, Ann. of Math. 167, 625–642 (2008) [Zbl 1216.20042](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1216.20042&format=complete) [MR 2415383](http://www.ams.org/mathscinet-getitem?mr=2415383)
- [6] Bourgain, J., Gamburd, A.: Expansion and random walks in $SL_d(\mathbb{Z}/p^n\mathbb{Z})$: I. J. Eur. Math. Soc. 10, 987–1011 (2008) [Zbl 1193.20059](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1193.20059&format=complete) [MR 2443926](http://www.ams.org/mathscinet-getitem?mr=2443926)
- [7] Bourgain, J., Gamburd, A.: Expansion and random walks in $SL_d(\mathbb{Z}/p^n\mathbb{Z})$: II. With an appendix by J. Bourgain. J. Eur. Math. Soc. 11, 1057–1103 (2009) [Zbl 1193.20060](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1193.20060&format=complete) [MR 2538500](http://www.ams.org/mathscinet-getitem?mr=2538500)
- [8] Bourgain, J., Gamburd, A., Sarnak, P.: Sieving and expanders. C. R. Math. Acad. Sci. Paris 343, 155–159 (2006) [Zbl 1217.11081](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1217.11081&format=complete) [MR 2246331](http://www.ams.org/mathscinet-getitem?mr=2246331)
- [9] Bourgain, J., Gamburd, A., Sarnak, P.: Affine linear sieve, expanders, and sum-product. Invent. Math. 179, 559–644 (2010) [Zbl pre05675041](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05675041&format=complete) [MR 2587341](http://www.ams.org/mathscinet-getitem?mr=2587341)
- [10] Bourgain, J., Glibichuk, A. A., Konyagin, S. V.: Estimates for the number of sums and products and for exponential sums in fields of prime order. J. London Math. Soc. 73, 380–398 (2006) [Zbl 1093.11057](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1093.11057&format=complete) [MR 2225493](http://www.ams.org/mathscinet-getitem?mr=2225493)
- [11] Bourgain, J., Katz, N., Tao, T.: A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14, 27–57 (2004) [Zbl 1145.11306](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1145.11306&format=complete) [MR 2053599](http://www.ams.org/mathscinet-getitem?mr=2053599)
- [12] Breuillard, E., Green, B., Tao, T.: Approximate subgroups of linear groups. Geom. Funct. Anal. 21, 774–819 (2011) [Zbl pre05950685](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05950685&format=complete)
- [13] Cano, A., Seade, J.: On the equicontinuity region of discrete subgroups of $PU(1, n)$. J. Geom. Anal. 20, 291–305 (2010) [Zbl 1218.37059](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1218.37059&format=complete) [MR 2579511](http://www.ams.org/mathscinet-getitem?mr=2579511)
- [14] Dinai, O.: Expansion properties of finite simple groups. PhD thesis, Hebrew Univ. (2009)
- [15] Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Amer. Math. Soc. 284, 787–794 (1984) [Zbl 0512.39001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0512.39001&format=complete) [MR 0743744](http://www.ams.org/mathscinet-getitem?mr=0743744)
- [16] Farah, I.: Approximate homomorphisms II: group homomorphisms. Combinatorica 20, 47–60 (2000) [Zbl 1008.28004](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1008.28004&format=complete) [MR 1770537](http://www.ams.org/mathscinet-getitem?mr=1770537)
- [17] Frobenius, G.: Ueber Gruppencharaktere. Sitzungsber. Koniglich Preuß. Akad. Wiss. Berlin ¨ 1896, 985–1021 [JFM 27.0092.01](http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=27.0092.01&format=complete)
- [18] Goldsheid, I. Ya., Margulis, G. A.: Lyapunov exponents of a product of random matrices. Uspekhi Mat. Nauk 44, no. 5, 13–60 (1989) (in Russian); English transl.: Russian Math. Surveys 44, no. 5, 11–71 (1989) [Zbl 0705.60012](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0705.60012&format=complete) [MR 1040268](http://www.ams.org/mathscinet-getitem?mr=1040268)
- [19] Gowers, W. T.: Quasirandom groups. Combin. Probab. Comput. 17, 363–387 (2008) [Zbl 1191.20016](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1191.20016&format=complete) [MR 2410393](http://www.ams.org/mathscinet-getitem?mr=2410393)
- [20] Harris, M. E., Hering, C.: On the smallest degrees of projective representations of the groups *PSL*(n, q). Canad. J. Math. 23, 90–102 (1971) [Zbl 0221.20009](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0221.20009&format=complete) [MR 0272917](http://www.ams.org/mathscinet-getitem?mr=0272917)
- [21] Helfgott, H. A., Growth and generation in $SL_2(\mathbb{Z}/p\mathbb{Z})$. Ann. of Math. **167**, 601–623 (2008) [Zbl 1213.20045](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1213.20045&format=complete) [MR 2415382](http://www.ams.org/mathscinet-getitem?mr=2415382)
- [22] Helfgott, H. A.: Growth in *SL*3(Z/pZ). J. Eur. Math. Soc. 13, 761–851 (2011) [Zbl pre05873844](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05873844&format=complete) [MR 2781932](http://www.ams.org/mathscinet-getitem?mr=2781932)
- [23] Hoory, S., Linial, N., Widgerson, A.: Expander graphs and their applications. Bull. Amer. Math. Soc. 43, 439-561 (2006) [Zbl 1147.68608](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1147.68608&format=complete) [MR 2247919](http://www.ams.org/mathscinet-getitem?mr=2247919)
- [24] Kesten, H.: Symmetric random walks on groups. Trans. Amer. Math. Soc. 92, 336–354 (1959) [Zbl 0092.33503](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0092.33503&format=complete) [MR 0109367](http://www.ams.org/mathscinet-getitem?mr=0109367)
- [25] Long, D. D., Lubotzky, A., Reid, A. W.: Heegaard genus and property τ for hyperbolic 3manifolds. J. Topol. 1, 152–158 (2008) [Zbl 1158.57018](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1158.57018&format=complete) [MR 2365655](http://www.ams.org/mathscinet-getitem?mr=2365655)
- [26] Nikolov, N., Pyber, L.: Product decompositions of quasirandom groups and a Jordan type theorem. J. Eur. Math. Soc. 13, 1063–1077 (2011) [Zbl pre05919471](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05919471&format=complete) [MR 2800484](http://www.ams.org/mathscinet-getitem?mr=2800484)
- [27] Nori, M. V.: On subgroups of $GL_n(\mathbb{F}_p)$. Invent. Math. **88**, 257–275 (1987) [Zbl 0632.20030](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0632.20030&format=complete) [MR 0880952](http://www.ams.org/mathscinet-getitem?mr=0880952)
- [28] Pyber, L., Szabó, E.: Growth in finite simple groups of Lie type of bounded rank. <http://arxiv.org/abs/1005.1858>
- [29] Rotman, J. J.: An Introduction to the Theory of Groups. 4rth ed., Grad. Texts in Math. 148, Springer, New York (1995) [Zbl 0810.20001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0810.20001&format=complete) [MR 1307623](http://www.ams.org/mathscinet-getitem?mr=1307623)
- [30] Ruzsa, I. Z.: An application of graph theory to additive number theory. Sci. Ser. A Math. Sci. (N.S.) 3, 97–109 (1989) [Zbl 0743.05052](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0743.05052&format=complete) [MR 2314377](http://www.ams.org/mathscinet-getitem?mr=2314377)
- [31] Sarnak, P., Xue, X. X.: Bounds for multiplicities of automorphic representations. Duke Math. J. 64, 207–227 (1991) [Zbl 0741.22010](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0741.22010&format=complete) [MR 1131400](http://www.ams.org/mathscinet-getitem?mr=1131400)
- [32] Tao, T.: Product set estimates for non-commutative groups. Combinatorica 28, 547–594 (2008) [Zbl pre05494691](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05494691&format=complete) [MR 2501249](http://www.ams.org/mathscinet-getitem?mr=2501249)
- [33] Tao, T.: The sum-product phenomenon in arbitrary rings. Contrib. Discrete Math. 4, 59–82 (2009) [Zbl pre05704242](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05704242&format=complete) [MR 2592424](http://www.ams.org/mathscinet-getitem?mr=2592424)
- [34] Tao, T., Vu, V. H.: Additive Combinatorics. Cambridge Univ. Press, Cambridge (2006) [Zbl 1127.11002](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1127.11002&format=complete) [MR 2289012](http://www.ams.org/mathscinet-getitem?mr=2289012)
- [35] Tits, J.: Free subgroups in linear groups. J. Algebra **20**, 250–270 (1972) [Zbl 0236.20032](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0236.20032&format=complete) [MR 0286898](http://www.ams.org/mathscinet-getitem?mr=0286898)
- [36] Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Math. 138, Cambridge Univ. Press, Cambridge (2000) [Zbl 0951.60002](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0951.60002&format=complete) [MR 1743100](http://www.ams.org/mathscinet-getitem?mr=1743100)