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Abstract. Let S be a fixed symmetric finite subset of SLd (OK ) that generates a Zariski dense
subgroup of SLd (OK ) when we consider it as an algebraic group over Q by restriction of scalars.
We prove that the Cayley graphs of SLd (OK/I) with respect to the projections of S is an expander
family if I ranges over square-free ideals of OK if d = 2 and K is an arbitrary number field, or if
d = 3 and K = Q.

1. Introduction

Let G be a graph, and for a set of vertices X ⊂ V (G), denote by ∂X the set of edges that
connect a vertex in X to one in V (G)\X. Define

c(G) = min
X⊂V (G), |X|≤|V (G)|/2

|∂X|

|X|
,

where |X| denotes the cardinality of the set X. A family of graphs is called a family of
expanders if c(G) is bounded away from zero for graphs G that belong to the family.
Expanders have a wide range of applications in computer science (see e.g. Hoory, Linial
and Widgerson [23] for a recent survey of expanders and their applications) and recently
they found remarkable applications in pure mathematics as well (see Bourgain, Gamburd
and Sarnak [9] and Long, Lubotzky and Reid [25]).

Let G be a group and let S ⊂ G be a symmetric (i.e. closed for taking inverses)
set of generators. The Cayley graph G(G, S) of G with respect to the generating set S
is defined to be the graph whose vertex set is G, and in which two vertices x, y ∈ G
are connected exactly if y ∈ Sx. Let K be a number field and denote by OK its ring of
integers. Let I ⊂ OK be an ideal, and denote by πI the projection OK → OK/I . In this
paper we study the problem whether the graphs G(SLd(OK/I), πI (S)) form an expander
family, where S ⊂ SLd(OK) is a fixed symmetric set of matrices and I runs through
certain ideals of OK . This problem was addressed by Bourgain and Gamburd in a series
of papers [5]–[7], and by them jointly with Sarnak in [9]. It is solved for K = Q in the
following cases: in [5] for d = 2 when and I = (p) runs through primes, in [9] for d = 2
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and I = (q), q square-free, and in [6] and [7] when I = (pn), pn a prime power. (When
d ≥ 3, the prime p has to be kept fixed.) A necessary and sufficient condition in each
case for the Cayley graphs to be expanders is that S generates a Zariski dense subgroup
0 < SLd(C). In [9] the expander property is used for K = Q(

√
−1) for sieving in the

context of integral Apollonian packings; this is our main motivation for extending the
problem to general number fields.

The starting point for our study is the work of Helfgott [21], [22]. He studies the
following problem: Let F be a family of finite fields and let d ≥ 2 be an integer. Is there
a constant δ > 0 such that for any generating set A ⊂ SLd(F ) with F ∈ F we have

|A.A.A| ≥ |A|min(|A|, |SLd(F )|/|A|)δ? (1)

Here and everywhere in what follows, we use the notation A.B = {gh | g ∈ A, h ∈ B}
if A and B are subsets of a multiplicative group. Helfgott answers this question in the
affirmative when F is the family of prime fields and d = 2 [21] or d = 3 [22]. In Section
4.1 we show that [21] (i.e. the proof for the case d = 2) easily extends to the case of
arbitrary finite fields.

Let r be the degree of the number field K , and denote by σ1, . . . , σr the embeddings
of K into C. Denote by σ̂ = σ1 ⊕ · · · ⊕ σr the obvious map K → Cr . This gives rise
to an embedding (which will also be denoted by σ̂ ) of SLd(OK) into the direct product
SLd(C)r . Our main result is

Theorem 1. Let S ⊂ SLd(OK) be symmetric and assume that it generates a subgroup
0 < SLd(OK) such that σ̂ (0) ⊂ SLd(C)r is Zariski dense. Assume further that (1) holds
for some constant δ > 0 if F ranges over the fields OK/P , where P ⊂ OK is a prime
ideal. Then there is an ideal J ⊂ OK such that G(SLd(OK/I), πI (S)) is a family of
expanders where I ⊂ OK ranges over square-free ideals prime to J .

It is part of the claim that πI (S) generates SLd(OK/I) if I is prime to J . In fact, J can be
taken to be the product of prime ideals P for which πP (S) does not generate SLd(OK/P );
this fact will be proven together with the theorem. We remark that the condition on Zariski
density is necessary, otherwise π(q)(S) would not generate SLd(OK/(q)) for any rational
integer q. Note that by the above remarks on Helfgott’s work, the theorem is unconditional
for d = 2 and arbitrary K , and for d = 3 and K = Q.

We introduce some notation that will be used throughout the paper. We use Vino-
gradov’s notation x � y as a shorthand for |x| < Cy with some constant C. Let G be
a discrete group. The unit element of any multiplicatively written group is denoted by 1.
For given subsets A and B of G, we denote their product-set by

A.B = {gh | g ∈ A, h ∈ B},

while the k-fold iterated product-set of A is denoted by
∏
k A. We write Ã for the set

of inverses of all elements of A. We say that A is symmetric if A = Ã. The number
of elements of a set A is denoted by |A|. The index of a subgroup H of G is denoted by
[G : H ] and we writeH1 .L H2 if [H1 : H1∩H2] ≤ L for some subgroupsH1, H2 < G.
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Occasionally (especially when a ring structure is present) we write groups additively, then
we write

A+ B = {g + h | g ∈ A, h ∈ B}

for the sum-set of A and B,
∑
k A for the k-fold iterated sum-set of A, and 0 for the zero

element.
If µ and ν are complex valued functions on G, we define their convolution by

(µ ∗ ν)(g) =
∑
h∈G

µ(gh−1)ν(h),

and we define µ̃ by the formula

µ̃(g) = µ(g−1).

We write µ(k) for the k-fold convolution of µ with itself. As measures and functions are
essentially the same on discrete sets, we use these notions interchangeably; we will also
use the notation

µ(A) =
∑
g∈A

µ(g).

A probability measure is a nonnegative measure with total mass 1. Finally, the normalized
counting measure on a finite set A is the probability measure

χA(B) = |A ∩ B|/|A|.

We use the same approach to prove Theorem 1 as in [5]–[9], which goes back to [31];
we outline this here only, the details will be given in Section 5. Let G be an m-regular
graph, i.e. each vertex is of degree m. It is easy to see that the largest eigenvalue of the
adjacency matrix of G is m, and it is a simple eigenvalue if and only if the graph is
connected. Denote by λ2(G) the second largest eigenvalue of the adjacency matrix. It was
proven by Dodziuk [15], Alon and Milman [3] and Alon [2] that a family of graphs is
an expander family if and only if m − λ2(G) is bounded away from zero (see also [23,
Theorem 2.4]). For a Cayley graph G(G, S), the adjacency matrix is a constant multiple of
convolution with χS from the left considered as an operator. Then the multiplicities of the
nontrivial eigenvalues are at least the minimum dimension of a nontrivial representation
of G. In the case of SLd good bounds are known, hence it is enough to estimate the trace
of the operator. More precisely, with the notation of Theorem 1, we need to show that for
any ε > 0 there is a constant C = C(ε, S) such that

‖πI [χ (C logN(I))
S ]‖2 < |SLd(OK/I)|−1/2+ε, (2)

where N(I) is the norm of the ideal. In fact, (2) means that the random walk on the graph
G(SLd(OK/I), πI (S)) is close to equidistribution after C logN(I) steps.

The proof of (2) has two parts; the first is
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Theorem 2. Let S ⊂ SLd(OK) be symmetric, and denote by 0 the subgroup it generates.
Assume that σ̂ (0) is Zariski dense in SLd(C)r . Then there is a constant δ depending
only on S, and there is a symmetric set S′ ⊂ 0 such that the following holds. For any
square-free ideal I , for any proper subgroup H < SLd(OK/I) and for any even integer
l ≥ logN(I), we have

πI [χ (l)
S′

](H)� [SLd(OK/I) : H ]−δ.

If we know that g ∈
∏
c logN(I) S, where c is a small constant depending on S, then

πI (g) determines g uniquely. In Section 2, using Nori’s [27] results we give a geometric
description of the elements of

∏
c logN(I) S whose projection modulo I belongs toH ; this

will be a certain subgroup of SLd(OK). Then we will prove that the probability for the
random walk on G(0, S) to be in this subgroup decays exponentially in the number of
steps we take. (Actually, first we need to replace S by another set S′ ⊂ 0.) The proof of
this is based on a ping-pong argument.

The second part of the proof begins with the following observation. If we apply The-
orem 2 for H = {1}, then we already get

‖πI [χ (logN(I))
S′

]‖ � ‖SLd(OK/I)‖−δ/2. (3)

Now working on the quotient SLd(OK/I), we can improve on (3), if we take the convo-
lution of πI [χ (logN(I))

S′
] with itself. More precisely we prove in Section 3 the following

Theorem 3. Let G be a group satisfying the assumptions (A0)–(A5) listed in Section 3.
Then for any ε > 0, there is some δ > 0 depending only on ε and the constants appear-
ing in assumptions (A0)–(A5) such that the following holds. If µ and ν are probability
measures on G such that

‖µ‖2 > |G|
−1/2+ε and µ(gH) < [G : H ]−ε

for any g ∈ G and for any proper subgroup H < G, then

‖µ ∗ ν‖2 < ‖µ‖
1/2+δ
2 ‖ν‖

1/2
2 .

Assumptions (A0)–(A5) are too technical so we do not list them here in the introduction.
Among other things, we assume that G is the direct product of quasi-simple groups that
also satisfy the conclusion of the theorem. To prove the latter for the groups SLd(OK/P )
we need (1), and this is the reason why we have Theorem 1 only in the cases when
(1) is available. The quasi-simplicity of the factors is a severe restriction, for example it
excludes factors of the form SLd(OK/P k), where P is a prime ideal. Therefore a new
idea is needed to prove Theorem 1 for general ideals.

A similar result forG = SL2(Z/qZ), q square-free (under a stronger hypothesis onµ)
is given by Bourgain, Gamburd and Sarnak [9, Proposition 4.3]. They use an argument
similar to Helfgott’s [21] to reduce it to a so-called sum-product theorem for the ring
Z/qZ. Then they prove the latter by reducing it to the case of Z/pZ, p prime. The dif-
ference in our approach is that we use Helfgott’s theorem as a black box, and extend it
to the case of square-free modulus in a way that very much resembles the proof given in
[9, Section 5] for the sum-product theorem.
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2. Escape of mass from subgroups

We prove Theorem 2 in this section. First we note that we may assume that I is a princi-
pal ideal generated by a square-free rational integer q. Indeed, there is always a square-
free rational integer q ∈ I such that q ≤ N(I). Let Ĥ be the preimage of H under
the projection SLd(OK/(q)) → SLd(OK/I). Then we have logN((q)) ≥ logN(I) ≥
logN((q))/r and [SLd(OK/I) : H ] = [SLd(OK/(q)) : Ĥ ]. Hence the claim of the
theorem for I and H follows from the claim for (q) and Ĥ . In what follows we assume
that I = (q) and write πq = π(q). Let q = p1 · · ·pn be the prime factorization of q and
assume without loss of generality that none of the pi ramify in K .

For g ∈ SLd(C) denote by ‖g‖ the operator norm of g with respect to the l2 norm
on Cd . If ‖g‖ <

√
q/2 for some g ∈ SLd(OK), then clearly ‖g′‖ >

√
q/2 for any other

g′ ∈ SLd(OK) with πq(g) = πq(g
′) since ‖g‖ ≥

√
q if πq(g) = 0 and g 6= 0. Hence

elements of small norm are uniquely determined by their projections modulo q. The first
step towards the proof of Theorem 2 is to study when the projection of an element of
small norm belongs to H , i.e. we study the set

Lδ(H) := {h ∈ SLd(OK) | πq(h) ∈ H, ‖σ̂ (h)‖ < [SLd(OK/(q)) : H ]δ}

for δ > 0 and H < SLd(OK/(q)).
By Weil restriction of scalars, we consider SLd(K) as the Q-points of an algebraic

group. To fix notation, we describe this process in detail. Let e1, . . . , er be an integral
basis of OK . Multiplication by an element a ∈ K is an endomorphism of the Q-vector
space K . This gives rise to an embedding α : K → Matr(Q) onto a subalgebra of
Matr(Q) which is defined by linear equations over Q. Thus there is an algebraic sub-
group G of SLdr defined over Q such that SLd(K) is isomorphic to G(Q) as an abstract
group; we denote this isomorphism by α as well. Moreover, we have α(SLd(OK)) =
G(Q) ∩ SLdr(Z). To shorten notation, we write G(Z) = G(Q) ∩ SLdr(Z). The image of
e1, . . . , er under πq is a basis of the Z/qZ-module OK/(q), hence α induces an isomor-
phism from SLd(OK/(q)) to G(Z/qZ). Denote by g the Lie algebra of G. Then g(Q) is
a subspace of Matdr(Q) defined by (linear) polynomials ϕ1, . . . , ϕd2r2−r(d2−1) ∈ Z[x]. If
p is a prime which does not ramify inK , then we can write (p) = P1 · · ·Pk with different
prime ideals Pi . Then G(Z/pZ) is isomorphic to SLd(OK/P1)× · · · × SLd(OK/Pk).

Proposition 4. There are constants C and δ depending only onK such that the following
holds. For any subgroup H < SLd(OK/(q)), there are u, v ∈ g(C) and a subgroup
H ] < H with [H : H ]] < Cn such that if h ∈ Lδ(H ]) then

Tr(α(h)uα(h)−1v) = 0,

but there is some g0 ∈ G(Q) such that Tr(g0ug
−1
0 v) = 1.

In what follows we often write Fpm for the finite field of order pm. Recall that n is the
number of prime factors of q and q = p1 · · ·pn. Then G(Z/qZ) = G(Fp1)×· · ·×G(Fpn).
For q1 | q, denote by

πq1 : G(Z/qZ)→ ×
p|q1

G(Fp)
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the projection to the product of direct factors corresponding to the prime factors of q1.
Fix a proper subgroupH < G(Z/qZ) and denote by q1 the product of all primes p | q for
which πp(H) = G(Fp). In the course of the proof we will replace q by q/q1 and H by
πq/q1(H). We need to show that [G(Z/(q/q1)Z) : πq/q1(H)] is not much smaller than
[G(Z/qZ) : H ]. For this we first give

Lemma 5. Let p1 and p2 be two different primes and assume that N CH < SLd(Fpm1
2
)

are such that H/N is isomorphic to PSLd(Fpm2
1
) with some integers m1, m2. Then

p1 |

d∏
i=2

(p
im1
2 − 1);

in particular, for a fixed p2 the product of all primes which can arise as p1 is at
most pd

2m1
2 .

Proof. Since PSLd(Fpm2
1
) has an element of order p1 and since the order of SLd(Fpm1

2
) is

p
m1d(d−1)/2
2

∏d
i=2(p

im1
2 − 1), the assertion is clear. ut

Lemma 6. LetH be a subgroup ofG = G(Z/qZ) and denote by q1 the product of primes
p | q with πp(H) = G(Fp) and set q2 = q/q1. There is a subgroup H2 < G(Z/q2Z) of
the form×p|q2 Hp, where eachHp is a proper subgroup of G(Fp), such that πq2(H) < H2
and

[G(Z/q2Z) : H2] > [G : H ]c

with a constant c depending only on d and r .

Proof. If for some p | q1, G(Fp) is a direct factor of H then

[G(Z/(q/p)Z) : πq/p(H)] = [G : H ],

hence we can assume without loss of generality that there is no such prime. We show that
for each p1 | q1, there is some p2 | q2 such that the conditions of the previous lemma are
satisfied. This will yield a bound on q1. Set q ′ = q/p1. By Goursat’s Lemma, there is a
nontrivial group N and surjective homomorphisms

ϕ : πp(H) = G(Fp1)→ N, ψ : πq ′(H)→ N.

For each factor p | q ′, ψ gives rise to a surjective homomorphism

ψp : πp(H)→ Np = N/{ψ(h) | h ∈ πq ′(H), πp(h) = 1}

in the obvious way. Since the intersection of all the subgroups {ψ(h) | h ∈ πq ′(H),
πp(h) = 1} is trivial, there is a prime p2 for which Np2 is nontrivial. As G(Fp1) and
G(Fp2) have no nontrivial common factors, p2 | q2. It is clear that p1 and p2 satisfy the
conditions of Lemma 5, whence q1 < qrd

2

2 .
For each p | q2 letHp be a proper subgroup of G(Fp) containing πp(H). Since G(Fp)

is generated by its subgroups isomorphic to SL2(Fp), there must be at least one such
subgroup which is not contained in Hp. Any proper subgroup of SL2(Fp) is of index at
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least p + 1, hence [G(Fp) : Hp] > p. This shows that for H2 = ×p|q2 Hp, we have

[G(Z/q2Z) : H2] > q2 > q1/(d2r+1) > [G : H ]c. ut

The proof of Proposition 4 is based on the description of subgroups of GLd(Fp) given
by Nori [27] that we recall now. Let H be a subgroup of GLd(Fp) and denote by H+

the subgroup of H generated by its elements of order p. [27, Theorem B] states that
if p is larger than a constant depending only on d, then there is a connected algebraic
subgroup H̃ of GLd defined over Fp such that H+ = H̃ (Fp)+. Denote by h the Lie
algebra of H̃ , and define exp and log by

exp(z) =
p−1∑
i=0

zi

i!
and log(z) = −

p−1∑
i=1

(1− z)i

i

for z ∈ Matd(Fp). Then for p large enough, exp and log set up a one-to-one corre-
spondence between elements of order p of H+ and nilpotent elements of h(Fp) by [27,
Theorem A]. Moreover h(Fp) is spanned by its nilpotent elements. To understand sub-
groups not generated by elements of order p, we will use [27, Theorem C] which asserts
that if p ≥ d , then there is a commutative subgroup F < H such that FH+ is a normal
subgroup of H and its index [H : FH+] is bounded in terms of d .

Proof of Proposition 4. We follow the argument in [7, Proposition 4.1]. Recall that H
is a subgroup of SLd(OK/(q)). Apply Lemma 6 to α(H) to get a modulus q2 | q and a
subgroup H2 < G(Z/q2Z). Suppose that the conclusion holds for α−1(H2) and for an
H
]
2 < SLd(OK/(q2)) with [H2 : α(H ]

2 )] < Cn. Set

H ]
= {h ∈ H | πq2(h) ∈ H

]
2 },

and observe that [H : H ]] < Cn and Lδ(H ]) ⊂ Lδ/c(H ]
2 ) with the constant c from

Lemma 6. Therefore, if the conclusion holds for α−1(H2) and H ]
2 , it also holds for H

and H ]. We assume in what follows that α(H) = Hp1 × · · · ×Hpn , where q = p1 · · ·pn
is the prime factorization of q and Hpi is a proper subgroup of G(Fpi ). For each direct
factor Hpi , let H ]

pi < Hpi be such that H ]
pi/H

+
pi

is commutative and [Hpi : H ]
pi ] < C

with a constant C depending on r and d; such a subgroup exists by [27, Theorem C].
Define H ]

= α−1(H
]
p1 × · · · ×H

]
pn).

For each g ∈ G(Z) define the polynomial ηg ∈ Z[X, Y ] with X = (Xl,k)1≤l,k≤dr and
Y = (Yl,k)1≤l,k≤dr by

ηg(X, Y ) = Tr(gXg−1Y ).

LetA be a fixed set of generators of G(Z) and fix an element g0 ∈ A. Consider the system
of equations

ϕi(X) = 0, 1 ≤ i ≤ r2d2
− r(d2

− 1),

ϕi(Y ) = 0, 1 ≤ i ≤ r2d2
− r(d2

− 1),

ηα(h)(X, Y ) = 0 for h ∈ Lδ(H ]),

ηg0(X, Y ) = 1,

(4)

where δ is a small constant depending on d and r to be chosen later. Recall that ϕi are the



280 Péter P. Varjú

polynomials defining the Lie algebra g. The assertion follows once we show that (4) has
a solution X = u, Y = v ∈ Matrd(C) for an appropriate choice of g0.

First we show that for each p = pi , there is at least one g0 ∈ A such that (4) has a so-
lution in Matdr(Fp). We apply the results of [27] forH = Hp, in particular let H̃ and h be
the same as in the discussion preceding the proof. Conjugation by an element g ∈ G(Fp)
permutes elements of order p ofH+p if and only if it permutes nilpotent elements of h(Fp).
Hence h(Fp) is invariant under g in the adjoint representation exactly if g is in the normal-
izer ofH+p . First we consider the case whenH+p is not a normal subgroup of G(Fp). Then
there is at least one element πp(g0) ∈ πp(A) whose adjoint action does not leave h(Fp)
invariant. Let u ∈ h(Fp) be such that πp(g0)uπp(g0)

−1 /∈ h(Fp) and let v ∈ g(Fp) be
orthogonal to h(Fp) with respect to the nondegenerate bilinear form 〈x, y〉 = Tr(xy) and
such that Tr(πp(g0)uπp(g

−1
0 )v) = 1. This settles the claim. Now consider the case when

H+p CG(Fp). If (p) = P1 · · ·Pk is the factorization of (p) overK , then G(Fp) is isomor-
phic to SLd(OK/P1) × · · · × SLd(OK/Pk), and H+p must be the direct product of some
of these factors. Consider a direct factor SLd(OK/Pi) which does not appear in H+p and
denote byN the projection ofH ]

p to this factor. There is a Lie subalgebra gi(Fp) ⊂ g(Fp)
which is isomorphic to sld(OK/Pi), invariant and irreducible in the adjoint representation
of G(Fp), and the adjoint action of an element g ∈ G(Fp) on gi(Fp) is determined by its
projection to the factor SLd(OK/Pi). If N is nontrivial denote by V the intersection of
the OK/Pi-linear span of N in Matd(OK/Pi) and the Lie algebra gi(Fp). If N is trivial,
let V be any proper subspace of gi(Fp). Then V is again invariant underH ]

p in the adjoint
representation but not under G(Fp) and we can establish the claim the same way as above.

For a particular g0 ∈ A, denote by qg0 the product of the primes p | q for which (4) has
a solution over Fp. As there are only a finite number (and bounded in terms of K) of pos-
sibilities for g0, there is an appropriate choice such that qg0 > qc. Here and everywhere
below, c is a constant depending only on K which need not be the same at different oc-
currences. Now assume to the contrary that the system (4) has no solution over C. We can
clearly replace the family of polynomials ηα(h), h ∈ Lδ(H ]), by a linearly independent
subset of at mostM ≤ r4d4 elements that we denote by η1, . . . , ηM . Note that the coeffi-
cients of all the polynomials in (4) are bounded by [G : H ]cδ < qc

′δ . Using the effective
Bézout identities proved by Berenstein and Yger [4, Theorem 5.1] we obtain polynomials

ψ1(X, Y ), . . . , ψM(X, Y ) ∈ Z[X, Y ],
ψ ′1(X, Y ), . . . , ψ

′

r2d2−r(d2−1)(X, Y ) ∈ Z[X, Y ],

ψ ′′1 (X, Y ), . . . , ψ
′′

r2d2−r(d2−1)(X, Y ) ∈ Z[X, Y ],

ψ ′′′(X, Y ) ∈ Z[X, Y ]

and a positive integer 0 < D < qcδ such that

D =

M∑
i=1

ηi(X, Y )ψi(X, Y )+

r2d2
−r(d2

−1)∑
i=1

ϕi(X)ψ
′

i(X, Y )

+

r2d2
−r(d2

−1)∑
i=1

ϕi(Y )ψ
′′

i (X, Y )+ (ηg0(X, Y )− 1)ψ ′′′(X, Y ).
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Substituting the solution of (4) over Fp for all p | qg0 , we see that qg0 |D, a contradiction
if δ is small enough. ut

Corollary 7. There are constants δ and C depending only on K , and for each H <

SLd(OK/(q)) there is an H ] < H with [H : H ]] < Cn such that at least one of the
following holds:

(i) There is an embedding σ : K → C and a proper subspace V ⊂ sld(C) such that if
h ∈ Lδ(H ]), then

σ(h)V σ(h−1) = V. (5)

(ii) There are two embeddings σ1, σ2 : K → C and an invertible linear transformation
T : sld(C)→ sld(C) such that

T (σ1(h)vσ1(h
−1)) = σ2(h)T (v)σ2(h

−1) (6)

for any h ∈ Lδ(H ]) and v ∈ sld(C).

Proof. Choose δ to be 1/r(d2
−1) times the δ in Proposition 4. Then there are u, v ∈ g(C)

and g0 ∈ G(Q) such that Tr(α(h)uα(h−1)v) = 0 for

h ∈
∏
r(d2−1) Lδ(H ]) ⊂ Lδr(d2−1)(H

]),

while Tr(g0ug
−1
0 v) = 1. Let Ul be the linear span of {α(g)uα(g−1) | g ∈

∏
l Lδ(H ])} in

g(C). Comparing dimensions, we see that for some l ≤ r(d2
− 1) we have Ul = Ul+1,

and then it is invariant under α(Lδ(H ])) in the adjoint representation. Write U = Ul .
Then for any x ∈ U , we have Tr(xv) = 0, hence g0ug

−1
0 /∈ U , and U is not invariant

under the full group G(C) in the adjoint representation.
Consider the embedding α : K → Matr(Q). Let a ∈ K be a generator of K over Q.

Note that the minimal polynomial of a over Q is the same as the minimal polynomial
of α(a) in Matr(Q). This polynomial has r different roots σ1(a), . . . , σr(a) in C, hence
there is a basis over C in which α(a) is diagonal. Any element b ∈ K can be expressed as
the value at a of a polynomial with rational coefficients. Thus in that basis the matrix of b
is diag(σ1(b), . . . , σl(b)). Therefore there is an appropriate basis in which any g ∈ G(C)
is a block diagonal matrix with σ1(g), . . . , σr(g) along the diagonal. This gives rise to an
isomorphism β : G(C) → SLd(C)r such that σ = β ◦ α. Moreover β also induces an
isomorphism between the Lie algebras g(C) and sld(C)r ; denote by W the image of U .

Assume that W is a subspace of minimal dimension which is invariant under
σ̂ [Lδ(H ])] in the adjoint representation, but not under the whole group SLd(C)r . Denote
by g1(C), . . . , gr(C) the r copies of sld(C) in sld(C)r and denote by πi the projection to
gi(C). For 1 ≤ i ≤ r , the spaces πi(W) andW ∩gi(C) are invariant under σi[Lδ(H ])] in
the adjoint representation, hence (i) holds if the dimension of any of the above spaces is
strictly between 0 and d2

− 1. Suppose that this is not the case. Since W is not the direct
sum of some gi(C), we may assume that say W ∩ g1(C) = {0} and π1(W) = g1(C).
By the minimality of the dimension of W , Ker(π1) ∩W must be the direct sum of some
gi(C). Since dimW > dim Ker(π1)∩W , we can assume that say π2(Ker(π1)∩W) = {0}
and π2(W) = g2(C). Then T = π2 ◦ π

−1
1 is well-defined and satisfies (ii). ut
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Recall that we are given a symmetric S ⊂ SLd(OK) which generates the subgroup 0.
We will choose an appropriate S′ ⊂ 0 and study the random walk on G(〈S′〉, S′), where
〈S′〉 is the subgroup generated by S′. In particular, we prove an exponential decay for
the probability that after k steps we are in the subgroup of SLd(OK) whose elements
satisfy (5) for some fixed V or in the one whose elements satisfy (6) for some fixed T .

Proposition 8. Assume that σ̂ (0) is Zariski dense in SLd(C)r . Let V be a proper sub-
space of sld(C), let σ : K → C be an embedding, and denote by HV the subgroup of
elements h ∈ SLd(OK) for which (5) holds. Then

χ
(k)
S (HV )� ck

with some constant c < 1 depending only on S.

Proposition 9. Assume that σ̂ (0) is Zariski dense in SLd(C)r . Then there is a symmetric
set S′ ⊂ 0 and a constant c < 1 depending only on S such that the following holds.
Let σ1, σ2 be two different embeddings of K into C and let T be an invertible linear
transformation on sld(C). Denote by HT the subgroup of elements h ∈ SLd(OK) for
which (6) holds. Then

χ
(k)

S′
(HT )� ck.

Proposition 8 can be proved as outlined in [6, Section 9]; we omit the details. A weaker
form analogous to Proposition 9, which is sufficient for our purposes, can be proved by
the same method as we prove Proposition 9 below.

Let A ⊂ 0 be a subset that freely generates a subgroup. By abuse of notation, by a
wordw overA∪Ã, we mean a finite sequence g1 · · · gk , where g1, . . . , gk ∈ A∪Ã. Recall
that Ã is the set of inverses of all elements of A. We will refer to the elements of A ∪ Ã
as letters. We say that w is reduced if gigi+1 6= 1 for any 1 ≤ i < k. There is a natural
bijection between the set of reduced words and the group 〈A〉 generated by A ⊂ 0. For
the sake of clarity we write w1.w2 for concatenation of the sequences w1 and w2 and
w1w2 for the product in 0, i.e. for concatenation followed by all possible reductions.
Denote by Bl the set of reduced words of length l. Note that |Bl | = 2m(2m − 1)l−1 for
l ≥ 1.

Lemma 10. Let notation be as above, and suppose thatH < 〈A〉 is a subgroup such that
for any h ∈ 〈A〉, there is a letter g0 ∈ A ∪ Ã such that w /∈ hHh−1 whenever w is a
reduced word starting with g0. Then

|Bl ∩H | ≤ (2m− 1)l/2+1(2m− 2)l/2−1.

We remark that the condition for h = 1 can be interpreted as follows. We can remove
one edge incident to 1 from the Schreier graph of H\G such that we get two connected
components and one of these is a tree.

Proof. Let w0 be the longest word (possibly the empty word 1) such that w0 is a prefix
of all non-unit elements of H . Let w1 be a reduced word of length at most dl/2e − 1. We
want to bound the number of letters g′ ∈ A ∪ Ã that can be the next letter in a reduced
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word of length l which belongs to H . We will show that if |w1| > |w0| then there are at
most 2l − 2 such letters. If |w1| = |w0|, we will see that there are at most 2l − 1 choices
for g′, this being trivial ifw0 6= 1. If |w1| < |w0| then we always have exactly one choice.
Thus if we pick the letters of w ∈ Sl ∩H one by one, then at the first dl/2e steps we have
at most 2l−2 choices with possibly one exception, when we might have 2l−1; this gives
the claim.

Now assume that |w0| < |w1| ≤ dl/2e − 1, but if w0 = 1, we allow w1 = 1. Using
the assumption for h = w−1

1 , we get a letter g0 such that if g0.w2 is a reduced word (i.e.
the first letter of w2 is not g−1

0 ), then g0.w2 /∈ w
−1
1 Hw1. We show that the last letter of

w1 is not g−1
0 . If w1 is not the empty word, it is longer than w0, hence there is a word

u ∈ H such that w1 is not a prefix of u. Now if g−1
0 were the last letter of w1, we would

have w−1
1 uw1 ∈ w

−1
1 Hw1 which begins with g0, a contradiction.

Obviously we cannot continue w1 with the inverse of its last letter to get a reduced
word. We show that we cannot continue it with g0 either to get one in Bl ∩H . Assume to
the contrary that for some w2, w1.g0.w2 is a reduced word in Bl ∩ H . Then g0w2w1 ∈

w−1
1 Hw1 and the length of w1 is less than the length of w2, hence g0w2w1 starts with g0,

a contradiction. ut

Let V be a vector space over C, and denote by P(V ) the corresponding projective space.
For a vector v ∈ V (resp. a subspace W ⊂ V ) denote by v̄ (resp. W ) its projection to
P(V ). Any invertible linear transformation T of V acts naturally on P(V ); this action will
be denoted by the same letter. We say that T is proximal if V is spanned by an eigenvector
zT and an invariant subspace VT of T , and the eigenvalue corresponding to zT is strictly
larger than any other eigenvalue of T . In short, T is proximal if it has a unique simple
eigenvalue of maximal modulus. It is clear that whenever zT and VT exist, VT is unique
and zT is unique up to a constant multiple. Define the distance on P(V ) by

d(x̄, ȳ) =
‖x ∧ y‖

‖x‖ ‖y‖
,

where ‖·‖ is the norm coming from the standard Hermitian form. We recall from Tits [35]
a simple criterion for a transformation T to be proximal. Let Q ⊂ P(V ) be compact and
assume that T (Q) is contained in the interior ofQ. Assume further that d(T (x), T (y)) <
d(x, y) for x, y ∈ Q. Then T is proximal and z̄T ∈ Q (see [35, Lemma 3.8(ii)]).

Let notation be as in Proposition 9. For i ∈ {1, 2}, denote by ρi the representation of
SLd(OK) on sld(C) defined by

ρi(h)v = σi(h)vσi(h
−1) for v ∈ sld(C) and h ∈ SLd(OK).

We study the action of SLd(OK) on the space P(sld(C))× P(sld(C)) via ρ1⊕ ρ2. If T is
an invertible linear transformation of sld(C) and h ∈ HT is such that ρ1(h) and ρ2(h) are
both proximal, then clearly

T (z̄ρ1(h)) = z̄ρ2(h). (7)

Our aim is to find a subset A ⊂ 0 such that A freely generates a subgroup of SLd(OK)
and for any linear transformation T of sld(C), there is a letter g0 ∈ A ∪ Ã such that (7)
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fails when h = w is a reduced word starting with g0. Then Proposition 9 will follow
easily from Lemma 10.

We say that A ⊂ SLd(OK) is generic if for any g ∈ A ∪ Ã, ρ1(g) and ρ2(g) are both
proximal, and the following hold:

(i) for every g1, g2 ∈ A ∪ Ã with g1g2 6= 1 and i ∈ {1, 2}, we have zρi (g1) /∈ Vρi (g2),
(ii) for any proper subspace V of sld(C) of dimension k and i ∈ {1, 2}, we have

|{g ∈ A ∪ Ã | zρi (g) ∈ V }| ≤ k + 1,

(iii) for any linear transformation T on sld(C), we have

|{g ∈ A ∪ Ã | T (z̄ρ1(g)) = z̄ρ2(g)}| ≤ d
2
+ 1.

Note that sld(C) is of dimension d2
− 1. Actually the above definition would be more

natural if we replaced the right hand sides of the inequalities in (ii) and (iii) by k and d2

respectively, however doing so would make the next proof slightly more complicated. We
prove the existence of generic sets in

Lemma 11. Assume that σ̂ (0) is Zariski dense in SLd(C)r . Then for m positive integer,
there is a generic set Am ⊂ 0 of cardinality m.

Proof. Goldsheid and Margulis [18] prove (see also Sections 3.12–3.14 in Abels, Mar-
gulis and Soifert [1]) that if a real algebraic subgroup of GLd(R) is strongly irreducible
(i.e. does not leave a finite union of proper subspaces invariant) and contains a proximal
element, then a Zariski dense subgroup of it also contains a proximal element. If σ1 is a
real embedding, then it follows from the Zariski density of σ1(0) in SLd(R) that there is
an element g0 ∈ 0 such that σ1(g0) is proximal. If σ1 is complex, then let σ̄1 denote its
complex conjugate. Since (σ1 ⊕ σ̄1)(0) is Zariski dense in SLd(C) × SLd(C), we find
that σ1(0) is Zariski dense in SLd(C) over the reals as well, i.e. considered as a subgroup
of SL2d(R). Consider Cd as a real vector space, and take the wedge product Cd ∧ Cd .
Denote by U the subspace spanned by the images of complex lines in Cd ; this is also the
subspace fixed by the linear transformation induced by multiplication by i on Cd . It is
clear that SLd(C) (as a real group) acts on U strongly irreducibly and proximally in the
natural way, hence there is an element g0 ∈ 0 such that σ1(g0) is proximal on U . This
implies in turn that σ1(g0) is proximal on Cd now considered as a complex vector space.

So far we saw that we can find proximal elements in σ1(0) (σ1 real or complex) and
this follows for σ2 in a similar fashion. Now we show that there is an element which
is proximal for both σ1 and σ2 and this is also true for its inverse. Denote by σ ′i (for
i ∈ {1, 2}) the representation of 0 which assigns the transpose inverse of the matrix
assigned by σi . Applying [1, Lemma 5.15] for the representation σ1 ⊕ σ

′

1 ⊕ σ2 ⊕ σ
′

2,
we get an element g0 ∈ 0 such that σ1(g0), σ1(g

−1
0 ), σ2(g0) and σ2(g

−1
0 ) are proximal

simultaneously. This implies in turn that ρ1(g0), ρ1(g
−1
0 ), ρ2(g0) and ρ2(g

−1
0 ) are also

proximal.
We can set A1 = {g0} and get the claim for m = 1. Proceeding by induction, assume

that we can construct Am for some m ≥ 1. We try to find an element h ∈ 0 such that
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Am+1 := Am ∪ {hg0h
−1
} is generic. Clearly z̄ρ1(hg0h−1) = ρ1(h)z̄ρ1(g0). One condition

h needs to satisfy is that neither ρ1(h)zρ1(g0) nor ρ1(h)zρ1(g
−1
0 )

should belong to those
proper subspaces V of sld(C) for which

|{g ∈ Am ∪ Ãm | zρ1(g) ∈ V }| ≥ dimV.

There are a finite number of such subspaces, hence this is a Zariski open condition on
σ1(h). It can be seen in a similar fashion that Am+1 is generic if (σ1(h), σ2(h)) belongs
to a certain Zariski dense open subset of SLd(C) × SLd(C), and the lemma follows by
induction. ut

We remark that it is easy to see from the proof that Am can be chosen in such a way that
it is generic with respect to any pair of embeddings σ1 and σ2.

Lemma 12. Let A ⊂ 0 be a generic set of cardinality at least (d2
+ 2)/2. Then for

each g ∈ A ∪ Ã and i ∈ {1, 2}, there is a neighborhood U (i)g ⊂ P(sld(C)) of z̄ρi (g) with
the following property. For any invertible linear transformation T on sld(C) there is a
g ∈ A ∪ Ã such that T (U (1)g ) ∩ U

(2)
g = ∅.

First we recall [13, Proposition 2.1]. Let T1, T2, . . . be a sequence of invertible linear
transformations on sld(C). There is a not necessarily invertible linear transformation
T 6= 0 and a subsequence of T1, T2, . . . that considered as maps on P(sld(C)) converge
uniformly to T on compact subsets of P(sld(C)) \ Ker(T ).

Proof of Lemma 12. Assume to the contrary that the claim is false. Then there is a se-
quence {Tk} of linear transformations such that for any choice of the neighborhoods U (i)g
(i ∈ {1, 2} and g ∈ A ∪ Ã), we have Tk(U

(1)
g ) ∩ U

(2)
g 6= ∅ for k large enough. By the

aforementioned result, we may assume that {Tk} converges uniformly to a linear transfor-
mation T on compact subsets of P(sld(C))\Ker(T ). This implies that if zρ1(g) /∈ Ker(T ),
then T (z̄ρ1(g)) = z̄ρ2(g). When T is invertible, this violates (iii) in the definition of generic
sets. If T is not invertible, we get a contradiction with (ii) of that definition, either for
V = Ker(T ) or for V = Im(T ), and the lemma follows. ut

Lemma 13. Let A ⊂ 0 be generic, and for each g ∈ A ∪ Ã and i ∈ {1, 2} let U (i)g ⊂
P(sld(C)) be a sufficiently small neighborhood of z̄ρi (g). Then there is a positive integer
M such that {gM | g ∈ A} freely generates a subgroup of 0 and if h = gM1 · · · g

M
k is a

reduced word, then ρ1(h) and ρ2(h) are proximal with z̄ρi (h) ∈ U
(i)
g1 .

Proof. To simplify the notation we omit those subscripts and superscripts that indicate
which of the representations ρ1 or ρ2 the object in question is related to. If Ug are suffi-
ciently small, then there are compact sets Qg ⊂ P(sld(C)) \ Vρ(g) for g ∈ A ∪ Ã and an
integer M such that

d(ρ(gM)x̄, ρ(gM)ȳ) < d(x̄, ȳ) for x, y ∈ Qg

and
Ug′ ⊂ Qg if gg′ 6= 1.
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Here we have used property (i) of generic sets. If M is large enough we clearly also have
ρ(gM)Qg ⊂ Ug . By induction, we see that if h = gM1 · · · g

M
k is a reduced word then

ρ(h)Qgk ⊂ Ug1 , and d(ρ(h)x̄, ρ(h)ȳ) < d(x̄, ȳ) for x̄, ȳ ∈ Qgk . If g1gk 6= 1, then
Ug1 ⊂ Qgk and the claim follows for h by the aforementioned lemma of Tits [35, Lemma
3.8(ii)]. If g1gk = 1, then write h = gM1 h

′g−M1 . If h′ is proximal with z̄ρ(h′) ∈ Ug2 , then
h is also proximal with z̄ρ(h) = ρ(g1)z̄ρ(h′), and the claim follows by induction. Now
{gM | g ∈ A} generates freely a group since the identity is not proximal. ut

Proof of Proposition 9. Let A be a generic set of cardinality m ≥ (d2
+ 2)/2, and set

S′ = {gM | g ∈ A ∪ Ã}, where M is as in Lemma 13. For g ∈ S′ and i ∈ {1, 2} let
U
(i)
g be a neighborhood of z̄ρi (g) which is sufficiently small for Lemmata 12 and 13. Then

there is an element g0 ∈ S
′ such that T (U (1)g0 ) ∩ U

(2)
g0 = ∅. For h ∈ HT we clearly have

T z̄ρ1(h) = z̄ρ2(h), so if h is a reduced word of the form g1 · · · gk with gi ∈ S′, then g1 6= g0
by Lemma 13. If h ∈ SLd(OK), a similar result holds for hHT h−1

= Hρ2(h)Tρ1(h−1).
Therefore by Lemma 10, we have

|Bl ∩HT | ≤ (2m− 1)l/2+1(2m− 2)l/2−1,

where Bl is the set of reduced words of length l over the alphabet S′.
Set Pk(l) = χ

(2k)
S′

(w), where w ∈ Bl . Since |Bl | = 2m(2m− 1)l−1 for l ≥ 1,

1 = Pk(0)+
∑
l≥1

2m(2m− 1)l−1Pk(l). (8)

By a result of Kesten [24, Theorem 3.], we have

lim sup
k→∞

(Pk(0))1/k = (2m− 1)/m2.

From general properties of Markov chains (see [36, Lemma 1.9]) it follows that

Pk(0) ≤
(

2m− 1
m2

)k
.

Since χ (2k)
S′

is symmetric, we have Pk(0) =
∑
g χ

(k)

S′
(g)2, hence Pk(l) ≤ Pk(0) for all l

by the Cauchy–Schwarz inequality. Now we can write

χ
(2k)
S′

(HT ) =
∑
l

|Bl ∩HT |Pk(l) ≤
∑
l

(2m− 1)l/2+1(2m− 2)l/2−1Pk(l)

≤

∑
l≤k/10

(2m− 1)l/2+1(2m− 2)l/2−1
(

2m− 1
m2

)k
+

(
2m− 1

2m

)k/20 ∑
l≥k/10

2m(2m− 1)l−1Pk(l)

<

(
2m− 1

2m

)k/2
+

(
2m− 1

2m

)k/20

,
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which was to be proven. The inequality between the third and fourth lines follows
from (8). ut

Proof of Theorem 2. Let S′ be as in Proposition 9 and let C and δ be as in Corollary 7.
As we remarked after Lemma 11, we can choose S′ in such a way that it works for any
pair of embeddings σ1 and σ2. There is a constant c depending on the set S′ such that
log ‖σ̂ (g)‖ ≤ cl for g ∈

∏
l S
′. Then for l = δ log[SLd(Ok/(q)) : H ]]/c, we have

πq [χ (l)
S′

](H ]) = χ
(l)

S′
(Lδ(H ])).

Combining Corollary 7 with either Proposition 8 or Proposition 9 we get

χ
(l)

S′
(Lδ(H ]))� [SLd(Ok/(q)) : H ]]−δc

′

with some c′ > 0. If l is even, then by the symmetry of S′,

(πq [χ (l/2)
S′

](gH ]))2 ≤ πq [χ (l)
S′

](H ])

for any coset gH ], and from [H : H ]] < Cn we then have

πq [χ (l/2)
S′

](H) ≤ Cn(πq [χ (l)
S′

](H ]))1/2.

If l1 ≤ l2, then clearly

πq [χ (l2)
S′

](H) ≤ max
g
πq [χ (l1)

S′
](gH).

Now it is straightforward to get the theorem by putting together the above inequalities.
ut

3. A product theorem

Recall that H1 .L H2 is shorthand for [H1 : H1 ∩ H2] ≤ L. We denote by Z(G) the
center of the group G, by C(g) the centralizer of the element g ∈ G and by NG(H) the
normalizer of the subgroup H < G. In this section, K is not a number field; it usually
stands for a large positive real number. We begin by listing the assumptions already men-
tioned in Theorem 3. When we say that something depends on the constants appearing in
the assumptions (A1)–(A5) we mean L and the function δ(ε) for which (A4) holds.

(A0) G = G1 × · · · × Gn is a direct product, and the collection of the factors satisfy
(A1)–(A5) for some sufficiently large constant L.

(A1) There are at most L isomorphic copies of the same group in the collection.
(A2) Each Gi is quasi-simple and |Z(Gi)| < L.
(A3) Any nontrivial representation of Gi is of dimension at least |Gi |1/L.
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(A4) For any ε > 0, there is a δ > 0 such that the following holds. If µ and ν are
probability measures on Gi with

‖µ‖2 > |Gi |
−1/2+ε and µ(gH) < |Gi |

−ε

for any g ∈ Gi and for any proper H < Gi , then

‖µ ∗ ν‖2 � ‖µ‖
1/2+δ
2 ‖ν‖

1/2
2 . (9)

(A5) For some m < L, there are classesH0,H1, . . . ,Hm of subgroups of Gi having the
following properties.

(i) H0 = {Z(G)}.
(ii) Each Hj is a set of proper subgroups of Gi and this collection is closed under

conjugation by elements of Gi .
(iii) For each proper H < Gi there is an H ]

∈ Hj for some j with H .L H
].

(iv) For every pair of subgroups H1, H2 ∈ Hj , H1 6= H2, there is some j ′ < j and
H ]
∈ Hj ′ for which H1 ∩H2 .L H

].

We remark that by considering the induced representation, (A3) implies that for any
proper subgroup H < Gi we have

[Gi : H ] > |Gi |1/L. (10)

One may think about (A5) that there is a notion of dimension for the subgroups of Gi .
In the next section we show that Theorem 3 is a simple corollary of the following

seemingly weaker result.

Proposition 14. Let G be a group satisfying (A0)–(A5). For any ε > 0 there is a δ > 0
depending only on ε and on the constants in the assumptions such that the following
holds. If S ⊂ G is symmetric such that

|S| < |G|1−ε and χS(gH) < [G : H ]−ε|G|δ

for any g ∈ G and any proper H < G, then |
∏

3 S| � |S|
1+δ .

3.1. Proof of Theorem 3 using Proposition 14

We make use of the following result which appeared first implicitly in the proof of Propo-
sition 2 in Bourgain and Gamburd [5].

Lemma 15 (Bourgain and Gamburd). Let µ and ν be two probability measures on an
arbitrary group G and let K > 2 be a number. If

‖µ ∗ ν‖2 >
‖µ‖

1/2
2 ‖ν‖

1/2
2

K

then there is a symmetric set S ⊂ G with

1
KR‖µ‖22

� |S| �
KR

‖µ‖22
, |

∏
3 S| � KR

|S|, min
g∈S

(µ̃ ∗ µ)(g)�
1

KR|S|
,

where R and the implied constants are absolute.
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Proof. We include the proof only for the sake of completeness; the argument is essentially
the same as in the proof of [5, Proposition 2].

First we note that by Young’s inequality ‖µ∗ν‖2 ≤ ‖µ‖2 and hence ‖ν‖2 < K2
‖µ‖2

and similarly ‖µ‖2 < K2
‖ν‖2. Let λ be a nonnegative measure with ‖λ‖ ≤ 1 and

‖λ‖22 < c. Observe that if λ(g) ≥ K ′c for some K ′ for every g ∈ supp λ, then ‖λ‖22 ≥
K ′c‖λ‖1, hence ‖λ‖1 < 1/K ′. Similarly, if λ(g) ≤ c/K ′ for all g, then ‖λ‖22 < c/K ′.
Now define the sets

Ai = {g ∈ G | 2i−1
‖µ‖22 < µ(g) ≤ 2i‖µ‖22},

Bi = {g ∈ G | 2i−1
‖ν‖22 < ν(g) ≤ 2i‖ν‖22}

for |i| < 10 logK . By Young’s inequality,

‖µ ∗ ν‖2 ≤
∑

|i|,|j |≤10 logK

2i+j‖µ‖22‖ν‖
2
2|Ai | |Bj | ‖χAi ∗ χBj ‖2 +K

−5(‖µ‖2 + ‖ν‖2),

hence there must be a pair of indices i, j such that

2i+j‖µ‖22‖ν‖
2
2 |Ai | |Bj | ‖χAi ∗ χBj ‖2 �

‖µ‖
1/2
2 ‖ν‖

1/2
2

K log2K
. (11)

By construction, for g ∈ Ai we have

2i‖µ‖22 � µ(g)� 2i‖µ‖22,

and by (11) and Young’s inequality, 1 ≥ µ(Ai)� 1/KR . Here and throughout,R denotes
an absolute constant which need not be the same at different occurrences. These together
give

KR

‖µ‖22
� |Ai | �

1
KR‖µ‖22

.

We may get the analogous inequalities

KR

‖µ‖22
� |Bj | �

1
KR‖µ‖22

in a similar way and using the relations between ‖µ‖2 and ‖ν‖2. Applying our inequalities
to (11), we get

‖χAi ∗ χBj ‖
2
2 �

1
KR|Ai |1/2|Bj |1/2

.

We invoke the noncommutative version of the Balog–Szemerédi–Gowers theorem proven
by Tao [32, Theorem 5.2] (note that we use a different normalization). This gives subsets
A ⊂ Ai and B ⊂ Bi with |A| � |Ai |/KR and |A.B| � KR

|A|1/2|B|1/2. Ruzsa’s
triangle inequality [32, Lemma 3.2] for the sets A and B̃ gives |A.Ã| � KR

|A|. Using
[32, Proposition 4.5] with n = 3, we get a symmetric set S with |S| > |A|/KR and

|
∏

3 S| � KR
|A| � KR′

|S|.

In the proof of Proposition 4.5 of [32] the set S is defined by

{g ∈ G | |A ∩ (A.{g})| > |A|/C}
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with C = 2|A.Ã|/|A|. For g ∈ S, we have

(µ̃ ∗ µ)(g) ≥ 22i−2
‖µ‖42|A ∩ (A.{g})| �

1
KR|S|

.

The expression in the middle is bounded below by ‖µ‖22/K
R also, which gives the re-

quired upper bound for |S|, since ‖µ̃ ∗ µ‖1 = 1. ut

Proof of Theorem 3. Assume that the conclusion of the theorem fails, i.e. there is an ε
such that for any δ there are probability measures µ and ν with

‖µ‖2 > |G|
−1/2+ε and µ(gH) < [G : H ]−ε

for any g ∈ G and for any proper H < G, and yet

‖µ ∗ ν‖2 ≥ ‖µ‖
1/2+δ
2 ‖ν‖

1/2
2 .

Take K = ‖µ‖−δ2 in Lemma 15. Note that by the third property of the set S we have

χS(gH)� KRµ̃ ∗ µ(gH) ≤ KR max
h∈G

µ(hH)� |G|Rδ/2[G : H ]−ε.

Now |
∏

3 S| � KR
|S| contradicts Proposition 14 if δ is small enough. ut

3.2. Proof of Proposition 14

Throughout Sections 3.2–3.4, we assume that G = G1 × · · · × Gn satisfies (A0)–(A5)
with some L. Moreover ε and S are as in Proposition 14, and we fix a sufficiently small δ.
By sufficiently small, we mean that we are free to use inequalities δ < δ′, where δ′ is
any function of ε and the constants in (A1)–(A5). We use c, δ′, δ′′,Q,Q′, etc. to denote
positive constants that may depend only on ε and the constants in (A1)–(A5). These need
not be the same at different occurrences. We will also use inequalities of the form

Q log |Gi | < |Gi |δδ
′

. (12)

Let N be the product of those factors Gi for which such an inequality fails. Since the
same group appears at most L times among the Gi , the size of N is bounded. Replace
G by G/N . For any H < G/N , we have [G/N : H ] = [G : HN ] and if S̄ denotes
the projection of S in G/N , then we have |

∏
3 S| ≥ |

∏
3 S̄| and |S| ≤ |S̄| |N |. Hence

the proposition for the group G/N implies the proposition for G with a larger implied
constant. Thus we can use (12) without loss of generality.

In a similar fashion we may replace each Gi by Gi/Z(Gi), hence from now on, we
assume that all the Gi are simple. This may introduce a factor of size at most Ln which
is� |G|δ for any δ > 0.

We follow the argument of Bourgain, Gamburd and Sarnak [9, Section 5]. First we
introduce some notation. Denote by πi for 1 ≤ i ≤ n the projection from G to Gi .
Set G≤i = ×j≤i Gi and denote by π≤i the projection from G to G≤i . To the set S, we
associate a tree of n + 1 levels. Level 0 consists of a single vertex, while for i > 0 the
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vertices of level i are the elements of the set π≤i(S), and a vertex g on level i − 1 is
connected to those vertices on level i which are of the form (g, h) with some h ∈ Gi .
By removing some vertices, we can get a regular tree, that is, a tree which has vertices
of equal degree on each level. More precisely, using [9, Lemma 5.2] we obtain a subset
A ⊂ S and a sequence {Di}1≤i≤n of positive integers with Di ≥ |Gi |δ or Di = 1 such
that for any g ∈ π≤i−1A, we have

|{h ∈ Gi | (g, h) ∈ π≤i(A)}| = Di,

and

|A| >
[ n∏
i=1

(|Gi |
δ log |Gi |)

]−1
|S| > |G|−2δ

|S|. (13)

The second inequality in (13) is of type (12).
We briefly outline the proof. Consider the set

∏
k A for some integer k and the tree

associated to it in the way described above. If g ∈ π≤i−1(
∏
k A) is a vertex on level i − 1

and g = g1 · · · gk with gl ∈ π≤i−1(A), then (g, h) is connected to g for every h in the
product-set

{h1 | (g1, h1) ∈ π≤i(A)} · · · {hk | (gk, hk) ∈ π≤i(A)}.

Let Is be the set of indices 1 ≤ i ≤ n for which Di < |Gi |1−1/3L (i.e. indices corre-
sponding to small degrees); for such an index, there is hope that we can apply (A4) forGi
and deduce that the above product-set is of size D1+δ′

i for some δ′ > 0. We make this
speculation precise in Section 3.3. Set Il = {1, . . . , n}\Is (indices corresponding to large
degrees), Gs = ×i∈Is Gi and Gl = ×i∈Il Gi , and denote by πs and πl the projections
fromG = Gs ×Gl to Gs andGl respectively. We infer from a result of Gowers [19] that
πl(S.S.S) = Gl . In Subsection 3.4, we prove using a result of Farah [16] on approximate
homomorphisms that π−1

l (1) ∩
∏

9 S contains an element g whose centralizer C(g) is of
large index. Then S will contain elements from at least [G : C(g)]ε|G|−δ cosets of C(g),
hence there are many h ∈

∏
11 S with πl(h) = 1, and

∏
12 S is much larger than Gl .

Finally, we mention that there is a useful result of Helfgott [21, Lemma 2.2] that
allows us to bound |S.S.S| in terms of larger iterated product-sets. He proves that if S is
a symmetric subset of an arbitrary group G and k ≥ 3 is an integer, then

|
∏
kS|

|S|
≤

(
|S.S.S|

|S|

)k−2

. (14)

3.3. The case of many small degrees

In this section we prove

Proposition 16. There are positive constants δ′ and Q, depending only on ε and the
constants in the assumptions, such that

|
∏

2m+1 S| > |S| |G|
−Qδ

∏
i∈Is

Dδ
′

i ,

where m is as in (A5).
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The biggest issue here is that beside its size, we have no information about a set of the
form {b | (a, b) ∈ π≤i(A)}. A large part of it might be contained in a coset of a proper
subgroup and then (A4) does not apply with µ being the normalized counting measure
on that set. To resolve this problem, we multiply sets of this form together with random
elements of Gi . We need to construct a probability distribution supported on S whose
projection to most factors Gi is well-behaved in the following sense.

Lemma 17. There is a subset B ⊂ S, and there is a partition of the indices 1, . . . , n into
two parts Jg and Jb, such that ∏

i∈Jb

|Gi | ≤ |G|
δ/δ′ , (15)

and for any i ∈ Jg and for any proper coset gH ⊂ Gi , we have

χB({x ∈ G | πi(x) ∈ gH }) ≤ |Gi |
−δ′ , (16)

where δ′ > 0 is a constant depending on ε and on L.

Proof. We obtain the set B by the following algorithm. First set B = S and Jg =
{1, . . . , n}. Then iterate the following step as long as possible. If there is an index i ∈ Jg
and a coset gH ⊂ Gi such that (16) fails, then replace B by

{x ∈ B | πi(x) ∈ gH }

and put i into Jb. It is clear that (16) holds when this process terminates. As for (15), note
that

χS(B) ≥
∏
i∈Jb

|Gi |
−δ′

and B is contained in a coset of a subgroup of index at least
∏
i∈Jb
|Gi |

1/L by (10).
Together with the assumption of Proposition 14 on S, this implies∏

i∈Jb

|Gi |
−δ′ <

(∏
i∈Jb

|Gi |
1/L
)−ε
|G|δ,

and (15) follows easily if we set δ′ = ε/2L. ut

Now assume that i ∈ Jg . Then, starting from arbitrary setsA1, . . . , A2m ⊂ Gi of the same
size |Gi |δ < D < |Gi |

1−1/3L, we construct a measure λm for which (A4) is applicable.
Choose the elements xj for 1 ≤ j ≤ 2m − 1 independently at random according to

the distribution χB . Set yj = πi(xj ). For 0 ≤ k ≤ m define

λk = χA1 ∗ 1y1 ∗ χA2 ∗ 1y2 ∗ · · · ∗ 1y2k−1
∗ χA2k

,

where 1y denotes the unit mass measure at y.
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Lemma 18. If i ∈ Jg , then there is a constant δ′ depending only on ε and L such that
the probability of the event that

λk(gH) < D−δ
′/10k (17)

holds for any proper coset gH < Gi with H ∈ Hl for some l ≤ k is at least

1− (2k − 1)|Gi |−δ
′

. (18)

Proof. Let δ′ be twice the δ′ of the previous lemma. For k = 0, the claim follows from
L/D < D−δ

′

, which is an inequality of form (12). We assume that k > 0 and that the
claim holds for k − 1. Set

ηk−1 = χA2k−1+1
∗ 1y2k−1+1

∗ χA2k−1+2
∗ 1y2k−1+2

∗ · · · ∗ 1y2k−1
∗ χA2k

and assume that y1, . . . , y2k−1−1 and y2k−1+1, . . . , y2k−1 are chosen in such a way that
λk−1 and ηk−1 satisfy

λk−1(gH) < D−δ
′/10k−1

and ηk−1(gH) < D−δ
′/10k−1

for subgroups H ∈ Hk−1. By the induction hypothesis, the probability of such a choice
is at least 1− (2k − 2)|Gi |−δ

′

. Now assume that λk = λk−1 ∗ 1y2k−1 ∗ ηk−1 violates (17)
for some g ∈ Gi and H ∈ Hk . To shorten the notation write y = y2k−1 . We prove that
y is in a set of πi(χB) measure at most |Gi |−δ

′

, and this set will depend only on λk−1
and ηk−1, in particular it will be independent of the choice of H and g. Let {hj } be a left
transversal forH (i.e. a system of representatives for leftH -cosets). Then it is easy to see
that {gh−1

j } is a right transversal for gHg−1, hence

λk(gH) =
∑
j

λk−1(gHg
−1gh−1

j )ηk−1(y
−1hjH).

We claim that for some index j , we have

λk−1(Bj ) ≥ D
−δ′/10k/2 and ηk−1(Cj ) ≥ D

−δ′/10k/2, (19)

where Bj = gHh−1
j and Cj = y−1hjH . Assume to the contrary that this fails. Then∑

j

λk−1(Bj )ηk−1(Cj ) =
∑

j : λk−1(Bj )<D−δ
′/10k /2

λk−1(Bj )ηk−1(Cj )

+

∑
j : ηk−1(Cj )<D−δ

′/10k /2

λk−1(Bj )ηk−1(Cj )

< D−δ
′/10k ,

a contradiction.
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Let j be such that (19) holds. Define H1 = hjHh
−1
j and H2 = y

−1H1y. Notice that
B̃j .Bj ⊂ H1 and Cj .C̃j ⊂ H2. This shows that there are subgroups H1, H2 ∈ Hk such
that

(̃λk−1 ∗ λk−1)(H1) ≥ D
−2δ′/10k/4 and (ηk−1 ∗ η̃k−1)(H2) ≥ D

−2δ′/10k/4 (20)

and H1 = yH2y
−1. For fixed H1 and H2, this restricts y to a single N (H2)-coset. By

Lemma 17, this is a set of χB measure at most |Gi |δ
′/2. The final step is to show that the

number of possible pairs H1, H2 such that (20) holds is at most |Gi |δ
′/2.

Suppose that we have M distinct subgroups H1 ∈ Hk such that

λ̃k−1 ∗ λk−1(H1) ≥ D
−2δ′/10k/4.

IfH1 andH ′1 are two such subgroups, thenH1∩H
′

1 .L H
] for someH ]

∈ Hk−1. By the
induction hypothesis, we have λ̃k−1∗λk−1(H

]) ≤ D−δ
′/10k−1

, hence λ̃k−1∗λk−1(H1∩H2)

≤ LD−δ
′/10k−1

. By the inclusion-exclusion principle, we have

MD−2δ′/10k/4−M2LD−δ
′/10k−1

≤ 1.

This is violated if M = Dδ
′/4·10k−1

, in fact we need Dδ
′/2·10k > 4(1 + L), which is an

inequality of form (12). Thus M < Dδ
′/4·10k−1

, and as the case of H2 is similar, the proof
is complete. ut

Using property (A4), we get the following simple

Corollary 19. Assume that |Gi |δ < D < |Gi |
1−1/3L, and let A′ ⊂ Gi be any set of

cardinality D. There is a positive number δ′ depending only on ε and the constants in
(A1)–(A5) such that for the above defined λm, we have

‖λm ∗ χA′‖2 � D−1/2−δ′

with probability at least 1/2.

Proof. By Lemma 18 (and using (12)), with probability at least 1/2 we have λm(gH) <
LD−δ

′′

with some δ′′ > 0 for every proper coset gH . By (12), we have L < D−δ
′′/2. If

say ‖λm‖2 > |Gi |−1/2+1/12L, then we get

‖λm ∗ χA′‖2 ≤ ‖λm‖
1/2+δ′
2 ‖χ ′A‖

1/2
2

by (A4) with µ = λm and ν = χA′ . Otherwise the claim is trivial by Young’s inequality.
ut

In what follows, we need some basic facts about entropy. Let µ be a probability measure
on G, and let A be a partition of G. The entropy of A is defined by

Hµ(A) =
∑
A∈A
−µ(A) log(µ(A)),
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with the convention 0 · log 0 = 0. We also use the notation Hµ for the entropy of the
partition consisting of one-element sets. The inequalities

|suppµ| ≥ eHµ ≥ 1/‖µ‖22
are well-known. If B ⊂ G, we write µ|B(A) = µ(A ∩ B)/µ(B), and if B is another
partition, we define the conditional entropy by

Hµ(A |B) =
∑
B∈B

Hµ|B (A)µ(B).

It is easy to see that
Hµ(A ∨ B) = Hµ(A |B)+Hµ(B),

where A∨B denotes the coarsest partition that is finer than both A and B. On finite sets,
partitions and σ -algebras are essentially the same, hence we make no distinction.

Proof of Proposition 16. First we introduce a couple of σ -algebras (partitions) on the set
A×(2

m
+1), the 2m + 1-fold Cartesian product of A. Let Ai be the coarsest σ -algebra for

which the projection map

π≤i : A×(2
m
+1)
→ G

×(2m+1)
≤i

is measurable. Furthermore, let B be the coarsest σ -algebra for which the map

(a1, . . . , a2m , a2m+1) 7→ a1x1a2x2 · · · x2m−1a2ma2m+1

is measurable, where the elements x1, . . . , x2m−1 are chosen independently at random ac-
cording to the distribution χB , hence the partition B is random. Denote by µ the measure
χ
⊗(2m+1)
A on A×(2

m
+1). It follows from the definition that the entropy of the measure

χA ∗ 1x1 ∗ χA ∗ 1x2 ∗ · · · ∗ 1x2m−1 ∗ χA ∗ χA

equals Hµ(B). We write for the expectation of Hµ(B):

E[Hµ(B)] ≥
n∑
i=1

E[Hµ(B ∧Ai |Ai−1)]

≥

∑
i∈Is∩Jg

(
logDi

2
+
(1+ 2δ′) logDi

2
− log c

)
+

∑
i /∈Is∩Jg

logDi

≥ log |A| +
∑

i∈Is∩Jg

δ′ logDi − n log c.

The second inequality follows from Corollary 19 and c is the implied constant there; and
A ∧ B denotes the finest partition that is coarser than both A and B. This implies in turn
that for some choices of x1, . . . , x2m−1, we have

|A.x1.A.x2 . . . x2m−1.A.A| ≥ c
−n
|A| |G|−δ

∏
i∈Is

Dδ
′

i ,

where we have also used (15). Note that we can assume cn < |G|δ by (12), and recall that
|A| > |S| |G|−2δ by (13), hence Proposition 16 follows. ut
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3.4. The case of many large degrees

This section is devoted to the proof of

Proposition 20. There is a positive constant δ′, depending only on ε and L, such that

|
∏

12 S| ≥ |G|
δ′−δ

∏
i∈Il

Di .

Recall that Gs = ×i∈Is Gi , Gl = ×i∈Il Gi and πs and πl are the projections to these
subgroups respectively.

By (A3), any nontrivial representation of Gi is of dimension at least |Gi |1/L. It was
pointed out by Nikolov and Pyber [26, Corollary 1] that a result of Gowers [19, Theorem
3.3] implies that if A,B,C ⊂ Gi are subsets such that |A| |B| |C| > |Gi |3−1/L then
A.B.C = Gi .

Let i1 ≤ · · · ≤ in′ be the indices in Il and for 1 ≤ n′′ ≤ n′ set G{i1,...,in′′ } =
Gi1 × · · · × Gin′′ and denote by π{i1,...,in′′ } the projection to this subgroup. We prove by
induction that

π{i1,...,in′′ }(A.A.A) = G{i1,...,in′′ }.

For n′′ = 1, this follows directly from [26, Corollary 1] and from πi1(A) ≥ Di1 ≥

|Gi |
1−1/3L. Now assume that the claim holds for some n′′ and take an arbitrary element

g ∈ G{i1,...,in′′+1}
. By the induction hypothesis there are elements h1, h2, h3 ∈ A such that

π{i1,...,in′′ }(h1h2h3) = π{i1,...,in′′ }(g).

Define the sets

Bi = {x ∈ A | π{i1,...,in′′ }(x) = π{i1,...,in′′ }(hi)}

and note that

πin′′+1
(Bi) ⊃ πin′′+1

({x ∈ A | π≤in′′+1−1(x) = π≤in′′+1−1(hi)}),

hence |πin′′+1
(Bi)| ≥ Din′′+1

≥ |Gin′′+1
|
1−1/3L. Now an application of [26, Corollary 1]

to the sets πin′′+1
(Bi) gives that g ∈ π{i1,...,in′′+1}

(A.A.A), whence the claim follows.
Define the distance of two elements g, h ∈ Gs by

d(g, h) =
∑

i∈Is :πi (g)6=πi (h)

log |Gi |.

Lemma 21. If |S.S.S| ≤ |G|1−ε+δ then there is an element g ∈
∏

9 S such that

πl(g) = 1 and d(πs(g), 1) > δ′ log |G|,

where δ′ > 0 is a constant depending only on ε and L.
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Following Farah [16], we say that a map ψ : Gl → Gs is a δ′-approximate homomor-
phism if

d(ψ(g)ψ(h), ψ(gh)) ≤ δ′ and d(ψ(g), (ψ(g−1))−1) ≤ δ′

for all g, h ∈ Gl . Note that in [16], such a ψ is called an approximate homomorphism
of type II. We recall a result of Farah [16, Theorem 2.1] that will be crucial in the proof.
Let ψ : Gl → Gs be a δ′-approximate homomorphism. Then there is a homomorphism
ϕ : Gl → Gs such that

d(ψ(g), ϕ(g)) ≤ 24δ′ for all g ∈ Gl .
Proof of Lemma 21. Assume to the contrary that for any g ∈

∏
9 S with πl(g) = 1,

we have d(πs(g), 1) ≤ δ′ log |G|. For each g ∈ Gl , pick an element h ∈ S.S.S with
πl(h) = g and set ψ(g) = πs(h). This gives rise to a map ψ : Gl → Gs , which of
course depends on our choices for h. It follows in turn that for any g ∈ Gl and h ∈
S.S.S with πl(h) = g, we have d(πs(h), ψ(g)) < δ′ log |G| and that ψ is a δ′ log |G|-
approximate homomorphism. By [16, Theorem 2.1], there is a homomorphism ϕ with
d(ψ(g), ϕ(g)) ≤ 24δ′ log |G| for any g ∈ Gl . The elements g ∈ G satisfying

πs(g) = ϕ(πl(g))

constitute a subgroup H < G of index |Gs |, since the cosets of H are represented by the
elements g with πl(g) = 1. For h1 ∈ S.S.S, the coset h1H is represented by the element
g1 with πl(g1) = 1 and πs(g1) = πs(h1)ϕ(πl(h1))

−1. Since

d(πs(h1), ϕ(πl(h1))) ≤ d(πs(h1), ψ(πl(h1)))+ d(ψ(πl(h1)), ϕ(πl(h1)))

< 25δ′ log |G|,

there is an index set I ⊂ Is with
∏
i∈I |Gi | < |G|

25δ′ such that πi(g1) 6= 1 exactly if
i ∈ I . If I is given, there are at most |G|25δ′ choices for g1. Thus S.S.S is contained in
2n|G|25δ′ < |G|26δ′ cosets of H . This is a contradiction if

|Gs |
−ε
|G|26δ′+δ < 1.

Since |Gl | ≤ |S.S.S| ≤ |G|1−ε+δ , we have |Gs | ≥ |G|ε−δ . Now, if δ is small enough
(e.g. δ < ε2/10) we can get the desired contradiction by an appropriate choice of δ′. ut

Proof of Proposition 20. First we calculate the index of the centralizer C(g) of g, the
element constructed in Lemma 21. An element h commutes with g if and only if πi(h) ∈
C(πi(g)) for all indices i for which πi(g) 6= 1. For such an i, [Gi : C(πi(g))] > |Gi |1/L.
Recall that we assume that all theGi are simple, in particular their centers are trivial. Now
we see that [G : C(g)] > |G|δ′/L with the δ′ of Lemma 21. Then S contains elements
from at least |G|εδ

′/L−δ cosets of C(g). Thus the set

{sgs−1
| s ∈ S} ⊂

∏
11 S

contains at least |G|εδ
′/L−δ different elements h with πl(h) = 1, whence

|
∏

12 S| ≥ |G|
εδ′/L−δ

∏
i∈Il

Di,

which was to be proven. ut
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Proof of Proposition 14. By Propositions 16 and 20, we have

|
∏

2m+1 S| > |S||G|
−Qδ

∏
i∈Is

D
δ′1
i and |

∏
12 S| > |G|

δ′2−δ
∏
i∈Il

Di

with some constants δ′1, δ
′

2 and Q. Multiply the first inequality with the δ′1th power of the
second one, and use |G| ≥ |S| and

∏
Di = |A| ≥ |S| |G|

−2δ to get

|
∏

2m+1 S| |
∏

12 S|
δ′1 > |S|1+δ

′

1+δ
′

1δ
′

2 |G|−Q
′δ.

By the hypothesis on the set S for H = {1}, we get |S| > |G|ε−δ . Therefore (14) gives
the claim if δ is sufficiently small. ut

4. (A1)–(A5) for Gi = SLd(Fpk )

Let K be a number field and let I ⊂ OK be a square-free ideal. Then I = P1 · · ·Pn for
some prime ideals, and G = SLd(OK/I) = SLd(OK/P1) × · · · × SLd(OK/Pn). The
last ingredient we need for the proof of Theorem 1 is that the groups Gi = SLd(OK/P1)

satisfy the assumptions (A1)–(A5). We write Fpk for the finite field of order pk .
(A1) is immediate, and (A2) is a classical result of Jordan. Regarding (A3), Harris

and Hering [20] proved that any nontrivial representation of SLd(Fq) is of dimension at
least qd−1

−1 or (q−1)/2 when d = 2 and q is odd. In fact for our purposes it is enough
to note that any such representation restricted to an appropriate subgroup isomorphic to
SL2(Fp) gives rise to a nontrivial representation, which is of dimension at least (p− 1)/2
by a classical result of Frobenius [17].

We study (A4) and (A5) in the next two sections.

4.1. Assumption (A4)

We recall some results of Helfgott. Let G = SLd(Fp), and let S ⊂ G be a set which
is not contained in any proper subgroup. Suppose further that |S| < |G|1−ε for some
ε > 0. Then if d = 2 [21, Key Proposition] or if d = 3 [22, Main Theorem], there
is a δ > 0 depending only on ε such that |S.S.S| � |S|1+δ . These results imply (A4)
for Gi = SLd(Fpi ) if d = 2 or d = 3 the same way as we proved Theorem 3 using
Proposition 14. We show below that the argument in [21] extends easily to groups G =
SL2(Fpk ). After the circulation of an early version of this paper I have learnt that this
extension of Helfgott’s theorem was recently proven by Oren Dinai in his PhD thesis [14].

Let3 be a subset of the multiplicative group F∗
pk

. Denote by3r the set of rth powers
of the elements of 3 and set

w(3) = {w(a) | a ∈ 3}, where w(a) = a + a−1.

The only notable change needed to extend Helfgott’s argument to the case k > 1 is to
replace [21, Proposition 3.3] by the following



Expansion in SLd (OK/I), I square-free 299

Proposition 22. Let 3 ⊂ F∗
pk

be a set which contains 1 and is closed under taking
multiplicative inverses. Let a1, a2 ∈ F∗

pk
, and assume that if w(32) is contained in a

proper subfield F of Fpk , then a1/a2 /∈ F . Now if |3| < p(1−δ)k , then

|{a1w(bc)+ a2w(bc
−1) | b, c ∈

∏
43}| � |3|

1+ε

with a constant ε depending only on δ.

The proof follows the same lines as that of [21, Proposition 3.3].

Proof. Set 31 = 3
2.32. Using the substitution b = b̄c̄ and c = b̄c̄−1, we see that

a1w(31)+ a2w(31) = {a1w(b̄
2)+ a2w(c̄

2) | b̄, c̄ ∈ 3.3}

⊂ {a1w(bc)+ a2w(bc
−1) | b, c ∈

∏
43}.

If w(32) is contained in a subfield F , then a1/a2 /∈ F by assumption, and then trivially

|a1w(31)+ a2w(31)| ≥ |w(3
2)|2 ≥

1
16
|3|2,

and the claim follows.
Therefore we will assume now that w(32) generates Fpk . Assume that

|(a1/a2)w(31)+ w(31)| ≤ K|3| (21)

for some constant K . By the Ruzsa–Plünnecke inequalities [30] (see also [34, Corol-
lary 6.9])

|w(31)+ w(31)− w(31)− w(31)| � K4
|3|.

Note that w(a)w(b) = w(ab)+ w(ab−1), hence

w(32).w(32) ⊂ w(31)+ w(31)

and
|w(32).w(32)− w(32).w(32)| � K4

|3|.

This would contradict the sum-product theorem if K = |3|ε with ε small enough. The
most convenient reference for us is [33, Theorem 1.5] that we can apply with A = w(32)

and a = w(1) = 2. However the contradiction could also be deduced from the results
of [11] or [10]. ut

To use this proposition we need to replace [21, Corollary 4.5] by

Lemma 23. Let S ⊂ SL2(Fpk ) be symmetric containing 1, and assume that it is not
contained in any proper subgroup. Let F be a proper subfield of Fpk . Then there is an
absolute constant R such that there is a matrix

x =

(
a b

c d

)
∈
∏
R S

with abcd 6= 0 and ad/bc /∈ F .
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Proof. In this proof the value of R may be different at different occurrences. First note
that for any matrix x with entries as above, ad + bc = 1 ∈ F and hence

bc =
1

ad/bc − 1
,

so x satisfies the requirements of the lemma exactly if bc /∈ F . If x does not satisfy
this, look at x2 and notice that the product of the off-diagonal entries is bc(Tr x)2, hence
it remains to show that

∏
N S contains an element with nonzero off-diagonals and with

(Tr x)2 /∈ F .
Note that if span(

∏
l S) = span(

∏
l+1 S), where span(X) denotes Fpk -linear span in

Mat2(Fpk ), then span(
∏
m S) = span(

∏
l S) for anym > l. From this we conclude that as

S is not contained in a proper subgroup,
∏

4 S must span Mat2(Fpk ). Let y1, y2, y3, y4 ∈∏
4 S be a basis of Mat2(Fpk ) and let z1, z2, z3, z4 be the dual basis with respect to the

nondegenerate form Tr(yz). Denote by ω an element of Fpk which is not in F but ω2
∈ F .

If there is no such element, the rest of the proof is even simpler. Consider the 16 F -vector
spaces

ωα1F · z1 + ω
α2F · z2 + ω

α3F · z1 + ω
α4F · z1,

where the αi takes the values 0 and 1 independently. Now we invoke Lemma 4.4 from
Helfgott [21], which shows that there is a matrix x̄ ∈

∏
R S which is not contained in any

of the above subspaces if R is large enough. By definition, there is an index i such that
(Tr(yi x̄))2 /∈ F . It may happen that one or both off-diagonal entries are zero. Using [21,
Lemma 4.4] now for the representation of SL2(Fpk ) acting on Mat2(Fpk ) by conjugations,
we see that wyi x̄w−1 has no zero entries for some w ∈

∏
R S. This proves the claim. ut

We remark that in the way [21, Lemma 4.4] is stated, it gives an R which depends on the
dimension of Mat(Fpk ) over F , however it is easily seen by a careful analysis of the proof
in [21] that the dependence is only on the dimension of the subspaces we want to avoid.

Extending [21, Key Proposition] to arbitrary finite fields. The proof on pp. 616 of [21]
is given for arbitrary finite fields up to the point when the set V is constructed, except
that we get |V | < pk(1−δ/3) not |V | < p1−δ/3. If w(V ) is contained in a proper subfield
of Fpk then denote this subfield by F , and instead of [21, Corollary 4.5] use Lemma 23
to construct the matrix

(
a b
c d

)
. In what follows simply use Proposition 22 instead of [21,

Proposition 3.3]. ut

4.2. Assumption (A5)

We prove that SLd(Fpk ) satisfies (A5) with L depending on d and k. Note that we can em-
bed SLd(Fpk ) into GLkd(Fp) by Weil restriction. We again rely on the description of the
subgroup structure of GLd(Fp) given by Nori [27]. Recall that for a groupH < GLd(Fp),
H+ denotes the subgroup generated by elements of order p. By [27, Theorem B] there is
a connected algebraic subgroup H̃ < GLd such that H̃ (Fp)+ = H+. By [27, Theorem C]
there is a commutative F < H such that p - |F | and H .L1 FH

+ with a constant L1
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depending only on d. Moreover, it follows from the proof there that if P is any p-Sylow
subgroup of H+, then F can be chosen to satisfy

F < NH (P ), F ∩ P = ∅ and [NH (P ) : FP ] < L1. (22)

The choice of F is not unique, even for a fixed Sylow subgroup P , however the following
is true. Let K < NH (P )/P be a group whose order is prime to P . Then there is an
F < NH (P ) with K = FP/P by [29, Theorem 7.41] and all such subgroups F are
conjugates of each other by elements of P (see Rotman [29, Theorem 7.42]).

Proposition 24. Let G be a quasi-simple subgroup of GLd(Fp) such that G = G+.
There are classes H0, . . . ,Hm of subgroups of G such that the following hold with some
constants L,m depending only on d:

(i) H0 = {Z(G)},
(ii) each Hi is a set of proper subgroups of G, closed under conjugation by elements

of G,
(iii) for every proper subgroup H < G there is some i and a subgroup H ]

∈ Hi such
that H .L H

],
(iv) for every pair of subgroups H1, H2 ∈ Hi , H1 6= H2, there is some i′ < i and

H ]
∈ Hi′ such that H1 ∩H2 .L H

].

Proof. In each subgroup H < G which is generated by elements of order p, distinguish
a p-Sylow subgroup P . This can be arbitrary, but should be fixed throughout the proof.
For integers i and j we define classes Hi,j . A proper subgroup H < G belongs to Hi,j
precisely if Z(G) < H , dim H̃ = i and j is the least integer for which the following
hold. There is a commutative subgroup F < NH (P ) such that

Z(G) < F, H = FH+, F ∩ P = ∅, (23)

[NH+(P ) : (F ∩H+)P ] < L2d−j
1 , (24)

and there is a j -dimensional subspace V of Matd(Fp) such that

F = V ∩NG(P ) ∩NG(H+). (25)

Order the nonempty classesHi,j in such a way thatHi,j precedesHi′,j ′ if i < i′ or i = i′

and j < j ′. Condition (24) may look artificial, but it plays an important role in the proof
of (iv). Up to that point it can be safely ignored.

The first nonempty class isH0,j = {Z(G)} for some j . Indeed, if two matrices belong
to the center ofG, then any linear combination of them is central, too, provided it belongs
to the group. Furthermore, if Z(G) 6= H < G belongs toH0,j ′ for some j ′, then by (23),
the linear span of H contains the span of Z(G), so j ′ > j . Hence (i) follows.

Since conjugation is a linear transformation on Matd(Fp), (ii) is clear.
LetH < G be a proper subgroup, and replace it byZ(G)H if necessary, to ensure that

Z(G) < H . Let F be a subgroup ofNH (P ) that satisfies (22). Without loss of generality,
we can assume that Z(G) < F . Set

F ] = span(F ) ∩NG(P ) ∩NG(H+),
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where span(F ) is the linear span of F in the vector space Matd(Fp). First we remark
that F ] does not contain an element of order p, in fact its elements can be mutually
diagonalized over an appropriate extension field. This implies that F ] ∩ P = ∅. Since
F ] ⊂ NG(H+), we can define the subgroup H ]

= F ]H+, and we have (H ])+ = H+.
Since [H : FH+] < L1 and FH+ < H ], for (iii) we only need to show that H ]

∈ Hi,j
for some i and j . First we remark that H ] is a proper subgroup, since (H ])+ = H+.
(Note that G is generated by elements of order p, hence H+ < G+ = G.) Second, (23)
and (25) hold with i = dim H̃ and with F ] and V = span(F ]). For (24), we can write

[NH+(P ) : (F ] ∩H+)P ] ≤ [NH+(P ) : (F ∩H+)P ] = [NFH+(P ) : FP ] ≤ L1.

Here the equality in the middle follows from the fact NFH+(P ) = FNH+(P ), while the
last inequality is contained in (22).

It remains to show (iv). Let H1 and H2 be two different groups in Hi,j . If H̃1 6= H̃2,
then

dim(H̃1 ∩ H̃2) ≤ dim H̃1 ∩H2 < i

and (H1∩H2)
]
∈ Hi′,j ′ with some i′ < i, as we saw in the previous paragraph. Therefore

we may assume H̃1 = H̃2 and hence H+1 = H+2 . Let P be the distinguished p-Sylow
subgroup and denote by Fl < NHl (P ) and Vl (l = 1, 2) the subgroups and subspaces
for which (23)–(25) hold. We show that there is an H ∈ Hi,j ′ for some j ′ < j such that
H1 ∩H2 .

L2d−j+1
1

H . We have [NHl (P ) : FlP ] < L2d−j
1 for l = 1, 2, hence

[NH1∩H2(P ) : F1P ∩ F2P ] < L2d−j+1

1 . (26)

Now let F < F1 be such that FP = F1P ∩ F2P , and define H = FH+. Then H1 ∩H2
.
L2d−j+1

1
H by (26). By [29, Theorem 7.42] (as mentioned before the statement of the

proposition), there is an element g ∈ P such that gFg−1 < F2. Then F = F1 ∩ g
−1F2g.

Now (23) follows by construction. For (25), we have

F = V1 ∩ g
−1V2g ∩NG(P ) ∩NG(H+)

and dim(V1 ∩ g
−1V2g) < j since H1 6= H2. Finally for (24), we can write

[NH+(P ) : (F∩H+)P ] ≤ [NH+(P ) : (F1∩H
+)P ]·[NH+(P ) : (g−1F2g∩H

+)P ]. ut

5. Proof of Theorem 1

First we note that by [23, Claim 11.19], it is enough to prove that G(SLd(OK/I), πI (S′))
form a family of expanders with some S′ ⊂ 0, hence we can assume without loss of
generality that Theorem 2 holds with S = S′. If H < SLd(OK/I) and πI (S) ⊂ H ,
then by Theorem 2, [SLd(OK/I) : H ] < C for some constant C which depends on
the δ and the implied constant of that theorem. Let J be a square-free ideal for whose
prime factors P , πP (S) does not generate SLd(OK/P ). Since each proper subgroup in
SLd(OK/P ) is of index at least N(P )δ

′

for some δ′ > 0, we get N(J ) < Cδ
′

. Here and
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below, δ′ is a constant which may depend on S and which need not be the same at different
occurrences. Thus there are at most a finite number of prime ideals P such that πP (S) is
not generating, and from now on, we denote by J the product of those prime ideals.

Let I be an ideal which is prime to J and write G = SLd(OK/I), and S = πI (S).
Denote by l2(G) the vector space of complex valued functions onG. Consider the opera-
tor on l2(G) which is convolution with χS from the left. Denote its matrix in the standard
basis by M . It is plain that |S|M is the adjacency matrix of the graph G(G, S). In light
of the results of Dodziuk [15], Alon and Milman [3] and Alon [2] already mentioned in
the introduction, we have to give an upper bound on the second largest eigenvalue of M
independently of I . For g ∈ G, denote by α(g) left translation by g on l2(G). Then α is
called the regular representation of G, and it is well known that l2(G) decomposes as a
direct sum V0 ⊕ V1 ⊕ · · · ⊕ Vm such that each α|Vi is irreducible and the multiplicity of
every irreducible representation of G in this decomposition is the same as its dimension.
Therefore it remains to show that if β is a nontrivial irreducible representation of G, and
λ is an eigenvalue of the operator

1
|S|

∑
g∈S

β(s),

then λ < c < 1 for some constant c independent of I . Replacing I by a larger ideal
if necessary, we may assume that the representation is faithful. Faithful representations
of G are tensor products of nontrivial representations of the direct factors, hence they
are of dimension at least |G|δ

′

as we noted at the beginning of Section 4. Hence λ is an
eigenvalue of M with multiplicity at least |G|δ

′

.
Denote by (M)i,j the i, j entry of M and notice that for an integer k, the rows of Mk

are translates of χ (k)
S

. Then

Tr(M2k) =
∑

i,j≤|G|

(Mk)2i,j = |G| ‖χ
(k)

S
‖

2
2,

whence
λ2k
≤ |G|1−δ

′

‖χk
S
‖

2
2. (27)

If the index of a subgroup H < SLd(OK/I) is large, then we can cancel the implied
constant in Theorem 2 by making δ smaller. If the index is small, then we can get a
nontrivial bound χ (k)

S
(H) < c < 1, since we assumed that S generates the group. Thus

if I is restricted to ideals prime to J , Theorem 2 holds with the implied constant set to 1.
Now apply it for H = {1} to get

‖χ
(logN(I))
S

‖
2
2 < |G|

−δ′ .

We saw in Section 4 thatG satisfies (A0)–(A3) and (A5). It also satisfies (A4) if d = 2 or
if d = 3 andK = Q or if we assume that (1) holds when F ranges over the fieldsOK/P ,
P prime. Therefore we can apply Theorem 3 repeatedly to get

‖χ
(C log(N(I)))
S

‖
2
2 < |G|

−1+ε
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for arbitrary ε > 0 with some constant C depending on ε. If ε is less than the δ′ in (27),
the theorem follows.
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Note added in proof. Soon after the submission of this paper, equation (1) was proven indepen-
dently by Breuillard, Green and Tao [12] and Pyber and Szabó [28], even in the more general context
of finite simple groups of Lie type. Those results imply that Theorem 1 holds unconditionally for
arbitrary d and K .
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