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Abstract. We confirm a conjecture of Bernstein–Lunts which predicts that the characteristic va-
riety of a generic polynomial vector field has no homogeneous involutive subvarieties besides the
zero section and subvarieties of fibers over singular points.
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1. Introduction

1.1. Foliations

Let F be a one-dimensional singular holomorphic foliation on a smooth projective vari-
etyX. The characteristic variety ch(F) of F is the irreducible subvariety of E(T ∗X), the
total space of the cotangent bundle of X, with fiber over a non-singular point x ∈ X0 =

X \ sing(F) equal to the 1-forms at x which vanish on TxF . More succinctly, if N∗F is
the conormal sheaf of F then its restriction at X0 is a vector subbundle of T ∗X0 and we
can write

ch(F) = E(N∗F|X0)

where the closure is taken in E(T ∗X) ⊃ E(T ∗X0).
Clearly ch(F) is a hypersurface of E(T ∗X). If ω is the non-degenerate 2-form which

induces the canonical symplectic structure on T ∗X then its restriction to ch(F) induces a
one-dimensional foliation F (1) on (the smooth locus of) ch(F) which will be called the
first prolongation of F .

In this work we are interested in the subvarieties of ch(F) invariant under F (1) when
F is sufficiently general. For no matter which F there is always at least one subvariety of
ch(F) invariant underF (1): the zero section of T ∗X. If the singular set ofF is non-empty
but of dimension zero then the fibers over it, and some subvarieties of these fibers, are also
left invariant by F (1).

J. V. Pereira: IMPA, Estrada Dona Castorina, 110, 22460-320, Rio de Janeiro, RJ, Brazil;
e-mail: jvp@impa.br

Mathematics Subject Classification (2010): Primary 37F75, 16S32; Secondary 37J30, 32C38



308 Jorge Vitório Pereira

We will say that ch(F) is a quasi-minimal characteristic variety if (a) F has isolated
singularities; and (b) every irreducible homogeneous (on the fibers of ch(F)→ X) sub-
variety of ch(F) left invariant by F (1) is either the zero section, or a subvariety of a fiber
over the singular set of F , or the whole ch(F).

Theorem 1. Let X be a smooth projective variety, L an ample line bundle over it, and
k � 0 a sufficiently large integer. If F ∈ PH 0(X, T X ⊗ L⊗k) is a very generic foliation
then ch(F) is a quasi-minimal characteristic variety.

In the statement of the theorem above and throughout, by a very generic point of a given
variety we mean a point outside a countable union of Zariski closed subvarieties. The
expression generic point will be reserved to points outside a finite union of Zariski closed
subvarieties.

Although Theorem 1 can be thought of as a natural development of Jouanolou’s Theo-
rem and its subsequent generalizations (see [6] and references therein), it is motivated by
a problem coming from the representation theory of Weyl algebras that we briefly review
below.

1.2. Weyl algebras

Let An be the n-th Weyl algebra over C, that is, An is the algebra of C-linear differential
operators on the polynomial ring C[x1, . . . , xn]. A basic invariant of an irreducible An-
module M is its Gelfand–Kirillov dimension GK dimM . By Bernstein’s work [2] this
invariant is subject to the inequality GK dimM ≥ n and equality holds true for impor-
tant classes of irreducible An-modules. If GK dimM = n then M is, by definition, a
holonomic An-module.

For some time, some believed that every irreducible An-module M was holonomic.
In 1985 Stafford came up with examples of An-modules of particularly simple form and
having Gelfand–Kirillov dimension equal to 2n−1. His examples are of the formAn/IAn
where I is a principal left ideal generated by an element of the form ξ + f where ξ is a
polynomial vector field and f is a polynomial (see [11]). For those not familiar with the
Gelfand–Kirillov dimension it is useful to remark that when I is a principal maximal left
ideal then GK dimAn/IAn = 2n − 1, and the search for examples of non-holonomic
An-modules can be reduced to searching for principal maximal left ideals of An.

Stafford’s examples are explicit and his arguments are purely algebraic. In [3], Bern-
stein and Lunts present two geometrically oriented approaches to constructing principal
maximal left ideals of An, and implement them for the second Weyl algebra. In rough
terms, their strategy relies on the the study of a natural foliation defined on the character-
istic varieties of the module. More specifically, they relate the maximality of the ideal to
the non-existence of proper invariant subvarieties of this foliation. To define a character-
istic variety for an An-module, a filtration of An has to be fixed and their two approaches
are determined by the choice of two different filtrations.

In the first approach they look at the Bernstein filtration of An, whose i-th piece Ain
consists of polynomials in {x1, . . . , xn, ∂x1 , . . . , ∂xn} of degree at most i. The correspond-
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ing symbol maps are

σk : Akn→ Akn/A
k−1
n ' Ck[x1, . . . , xn, y1, . . . , yn].

They proved that if n = 2, k ≥ 4 and P ∈ Ck[x1, . . . , xn, y1, . . . , yn] is a very generic
polynomial then each operator d ∈ Akn satisfying σk(d) = P generates a maximal left
ideal of Akn. Still under the assumption that k ≥ 4, Lunts extends the above result to ar-
bitrary n ≥ 2 in [8]. For k = 3 and n ≥ 2 the same has been proved by McCune [9].
All these results, in contrast with Stafford’s, do not exhibit explicit examples of non-
holonomic An-modules but instead prove that they are generic in the above sense. For an
algorithm to produce explicit examples of the above form for n = 2 and its implementa-
tion see [1].

In their second approach, Bernstein and Lunts look at the standard filtration of An.
Now the i-th piece corresponds to differential operators of order ≤ i. If ξ is a polynomial
vector field, f a polynomial and I = 〈ξ + f 〉 then the characteristic variety of An/IAn
coincides with the characteristic variety of the foliation Fξ as defined in the previous sec-
tion. If Fξ has a quasi-minimal characteristic variety then according to [3, Proposition 6]
there exists f ∈ C[x1, . . . , xn] for which I = 〈ξ + f 〉 is maximal. While they do show
that a generic ξ of degree ≥ 2 on C2 has this property, they leave the general case as a
conjecture (see [3, §4.2]).

Conjecture (Bernstein–Lunts). Let n ≥ 2 and ξ be a very generic polynomial vector
field on Cn with coefficients of degree≥ 2. Then ch(Fξ ) is a quasi-minimal characteristic
variety.

The three-dimensional case of the conjecture has been proved recently by Coutinho [5].
In this paper we will settle the general case.

Theorem 2. Bernstein–Lunts’ conjecture holds true.

Even when specialized to n = 3, our proof is very different from the one of Coutinho.

2. Characteristic varieties and prolongations

2.1. Characteristic variety

Let X be a quasi-projective manifold and F be a foliation on X with cotangent bundle L,
that is, F = [ξ ] ∈ PH 0(X, T X ⊗ L) with the representative ξ having no divisorial
components in its singular set. As in the introduction set X0 = X \ sing(F).

Contraction with the twisted vector field ξ determines a morphism of OX-modules

T ∗X→ L

whose kernel isN∗F , the conormal sheaf ofF . At points x ∈ X0 the sheafN∗F is clearly
locally free, but it is not locally free in general. For example it is never locally free at an
isolated singularity of F as one can promptly verify. Nevertheless, the restriction of N∗F
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to X0 determines a subbundle of T ∗X0 of corank one. As mentioned in the introduction,
ch(F) is defined as the closure in E(T ∗X) of E(N∗F|X0). We will use π to denote the
natural projection π : E(T ∗X)→ X as well as its restriction π : ch(F)→ X.

If (x1, . . . , xn) are local coordinates on an open subset U ⊂ X then the vector fields
{∂xi = ∂/∂xi} can be thought of as linear coordinates on T ∗U : the value of ∂xi at a
1-form ω ∈ T ∗U is given by the contraction ω(∂xi ). Thus, if we set yi = ∂xi then
(x1, . . . , xn, y1, . . . , yn) are global coordinate functions for T ∗U . In particular, if ξ =∑
ai∂xi then

ch(F)|π−1(U) =

{∑
aiyi = 0

}
.

The singular set of ch(F) is contained in π−1(sing(F)) and contains π−1(sing(F))
∩X, whereX sits insideE(T ∗X) as the zero section. Thus, unlessF is a smooth foliation,
ch(F) is always singular. It follows promptly from the above local expression of ch(F)
that its singular points away from the zero section and over a fiber π−1(p) are the 1-forms
at T ∗pX which annihilate the image ofDξ(p). Thus, if the singular scheme ofF is reduced
and of dimension zero then ch(F) is smooth away from the zero section.

2.2. Prolongation

Recall that T ∗X is endowed with a canonical symplectic structure which, in the above
local coordinates, is induced by the 2-form

� =
∑

dxi ∧ dyi .

If F is a holomorphic function on (an open subset of) T ∗X then the hamiltonian of F is
by definition the vector field ξF determined by the formula

dF(·) = �(ξF , ·).

Notice that the vector field ξF is tangent to the hypersurface determined by F since
ξF (F ) = 0. Leibniz’s rule implies that ξuF = uξF + Fξu. Consequently, the restric-
tion of the direction field determined by ξF to {F = 0} is the same as the one of that
determined by ξuF for an arbitrary unit u. Therefore, the symplectic structure determines
a one-dimensional foliation on any reduced and irreducible hypersurface H ⊂ T ∗X: one
has just to factor out possible divisorial components of the singular set of ξF |H to end
up with a foliation on H , usually called in the literature the characteristic foliation of H .
When H = ch(F) ⊂ T ∗X is the characteristic variety of a foliation F on X we will
denote its characteristic foliation by F (1) and call it the first prolongation of F .

If U ⊂ X is an open set with coordinates as in §2.1 and ξ =
∑
ai∂xi is a vector field

inducing F on U then the vector field

ξ̂ =

n∑
i=1

ai∂xi −

n∑
i,j=1

(∂xj ai)yi∂yj (2.1)

is the hamiltonian vector field of
∑
aiyi , and hence defines the prolongation of F|U .
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3. Warm-up: Proof of Theorem 1 in dimension three

In this section we present a proof of Theorem 1 in dimension three. We believe this will
make the general case easier to understand.

3.1. Making sense of the F (1)-invariance

We start by clarifying the meaning of F (1)-invariance. The first result is well-known and
holds in arbitrary dimension.

Lemma 3.1. If Y ⊂ ch(F) is F (1)-invariant then π(Y ) is F-invariant.

Proof. If p is a smooth point of ch(F) then (2.1) makes it clear that π sends TpF (1)
into Tπ (p)F , and that the restriction of F (1) to the zero section is nothing other than F .
Together these two facts promptly imply the lemma. ut

Our next result holds only in dimension three, and it is the lack of a direct analogue in
higher dimensions which will make the proof in the general case more involved.

Proposition 3.2. Suppose n = 3 and let Y ( ch(F) be a homogeneous irreducible
subvariety with dominant projection to X. If Y is F (1)-invariant then F is tangent to a
codimension one web WY on X.

Proof. Since we are in dimension three, over the smooth locus of F , ch(F) is a rank two
vector subbundle of �1

X. A subvariety Y as in the statement determines k distinct lines
on N∗Fx for generic points x ∈ X. Therefore Y can be seen as the graph of a rational
section $ of Symk �1

X. Moreover, the foliation F is tangent to the multi-distribution
determined by $ . Notice that so far, we have not used the F (1)-invariance of Y : we just
explored the fact that Y is contained in ch(F).

It remains to prove the integrability of the multi-distribution determined by $ . To do
so we can place ourselves in a neighborhood of a point x ∈ X where $ is holomorphic
and equal to the product of k pairwise distinct 1-forms, say ω1, . . . , ωk , and F is smooth.
Choose a local coordinate system (x1, . . . , xn) where F is induced by the vector field
ξ = ∂x1 . Hence F (1) is still induced by ∂x1 now seen as a vector field on the total space
of N∗F .

Ifω is any of the 1-forms {ωi}i∈{1,...,k} thenω = adx2+bdx3 for suitable holomorphic
functions a, b. Notice that ω is integrable if and only if the quotient a/b does not depend
on x1. Finally, the F (1)-invariance of Y ensures that a/b is constant along the orbits of ξ̂
and thus ω is integrable and so is the multi-distribution induced by $ . ut

3.2. Invariant subvarieties from singular points

Proposition 3.3. Let F be a foliation on X a smooth projective variety of dimension
three. Suppose F is tangent to a codimension one web W . If p ∈ sing(F) is an isolated
singularity then there exists an irreducible F-invariant subvariety Y ( X of positive
dimension containing p.



312 Jorge Vitório Pereira

Proof. Suppose W is a k-web with k ≥ 1. If k ≥ 2, let 1(W) ⊂ X be the discriminant
of the web W . By definition, 1(W) is the set where W is not the product of k pairwise
transverse foliations. The proof of Proposition 3.2 tells us that on a neighborhood of a
smooth point of F , the web W is induced by a k-symmetric 1-form ϕ =

∑
aijdx

i
2dx

j

3 .
Thus 1(W) is defined as the hypersurface cut out by the discriminant of $ , seen as a
binary form in the variables dx2, dx3. Notice that 1(W) is an F-invariant hypersurface.

If p belongs to 1(W) we are done. Otherwise W , in a neighborhood of p, can be
written as the superposition of k foliations,W = G1�· · ·�Gk . So consider one foliation G
of codimension one in a neighborhood of p and suppose that F is tangent to it.

Let ξ be a holomorphic vector field inducing F and ω be a holomorphic 1-form in-
ducing G, both defined on a neighborhood of p and without divisorial components in their
zero sets. Since F has an isolated singularity at p, so does ξ . Consequently, ω(ξ) = 0
implies that ω is also singular at p. At this point we can use an argument laid down by
Cerveau in [4, p. 46] that we now recall. As ξ has isolated singularities we can apply
the de Rham–Saito Lemma to ensure the existence of another vector field ζ such that
ω = iξ iζdx ∧ dy ∧ dz. Therefore the zero set of ω is formed by the minors of a 3 × 2
matrix and must be of codimension at least two. But if G is one of the foliations Gi then
sing(G) is algebraic, and is the desired F-invariant variety. ut

3.3. Conclusion of the proof

To conclude the proof of Theorem 1 in dimension three we will make use of the following
generalization of Jouanolou’s Theorem proved in [6] (see also [8, Theorem 2] for the very
same statement on projective spaces).

Theorem 3.4. Let X be a smooth projective variety, L be an ample line bundle over it,
and k � 0 be a sufficiently large integer. If F ∈ PH 0(X, T X ⊗ L⊗k) is a very generic
foliation then, besides X itself, the only subvarieties left invariant by F are its singular
points.

LetF ∈ PH 0(X, T X⊗L⊗k) be a very generic foliation without invariant subvarieties. As
its singular set has cardinality given by the top Chern class of TX⊗L⊗k , and this number
is positive for k � 0, the singular set of F is non-empty. Moreover we can assume the
existence of an isolated singularity p ∈ sing(F) (see for instance [6, Proposition 2.4]).

If the characteristic variety of F is not quasi-minimal then Proposition 3.2 implies
that F is tangent to a codimension one web W . Proposition 3.3 in its turn implies that
F has an invariant subvariety through p. This contradicts Theorem 3.4 and concludes the
proof of Theorem 1 in dimension three. ut

3.4. Obstructions to generalize

To generalize the argument above to deal with the general case one has to circumvent the
following obstructions:
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(1) Proposition 3.2 does not generalize because irreducible components of ch(F) which
are homogeneous and dominate the baseX are no longer graphs of multi-distributions
as happens in the three-dimensional case; and

(2) Proposition 3.3 does not generalize since (multi)-distributions with infinitesimal au-
tomorphisms are not necessarily integrable.

To accomplish that we will take advantage of the structure of generic foliation singulari-
ties combined with the following reinterpretation of Theorem 3.4.

Theorem 3.5. Let X be a smooth projective variety, L an ample line bundle over it, and
k � 0 a sufficiently large integer. If F ∈ PH 0(X, T X ⊗ L⊗k) is a very generic foliation
then every leaf of F is Zariski dense.

4. Prolongation versus holonomy

In this section F will be a smooth foliation of dimension one on a complex manifold X.

4.1. Holonomy

To each leaf L of F , once a point p ∈ L and a germ (6, p) of smooth hypersurface
transverse to F are fixed, one can associate an (anti)-representation

hol(L) : π1(L, p)→ Diff(6, p)

as follows. Given a closed path γ contained in L and centered at p one defines a germ of
diffeomorphism hγ ∈ Diff(6, p) such that hγ (x) is the end point of a lift of γ to the leaf
of F through x. The result does not depend on the choices involved in the process and is
completely determined by the class of γ in π1(L, p). Thus one can set hol(L)(γ ) = hγ .
It is an anti-representation since hγ1·γ2 = hγ2 ◦ hγ1 .

Of course, one can also consider the linear holonomy of L which is just the anti-
representation

Dhol(L) : π1(L, p)→ GL(Tp6), [γ ] 7→ Dhγ (p).

Since this is an anti-representation of π1(L) to a general linear group, it is natural to
wonder if there is a natural connection on a natural vector bundle over L inducing it. It is
indeed the case, and even better, there is a partial connection along the tangent bundle TF
of F on the normal bundle NF whose monodromy along the leaves of F is equivalent to
the linear holonomy.

4.2. Bott’s partial connection

Let ρ : TX → NF be the natural projection. Of course ker ρ = TF . Bott’s partial
connection is defined as follows:

∇ : TF → Hom(NF , NF) ' N∗F ⊗NF , ξ 7→ {ϑ 7→ ρ([ϑ̂, ξ ])},

where ϑ̂ stands for an arbitrary lift of ϑ to TX. The involutiveness of TF implies that
ρ([ϑ̂, ξ ]) does not depend on the choice of the lift, and ensures that ∇ is well defined.
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Let us now proceed to write explicitly the restriction of ∇ to a leaf L of F . We will
work in local coordinates (x1, . . . , xn) and will assume that L = {x2 = · · · = xn = 0}.
Since L is invariant under F , we can write a vector field ξ generating TF in the form

ξ = a(x)∂x1 +

n∑
i=2

n∑
j=2

aij (x)xi∂xj .

Notice that the vector fields ∂x2 , . . . , ∂xn can be interpreted as a basis of NF . Thus

∇(ξ)(∂xi ) = ρ
(
∂xia(x)∂x1 +

n∑
i=2

n∑
j=2

(∂xiaij (x))xi∂xj +

n∑
j=2

aij (x)∂xj

)
.

Hence, the induced connection ∇|L : T L→ N∗L⊗NL is

∇|L(ξ) =

n−1∑
i=1

n∑
j=2

aij (x1, 0)dxi ⊗ ∂xj

= (dx2, . . . , dxn) · A(x1, 0) · (∂x2 , . . . , ∂xn)
T . (4.1)

4.3. Comparison with the prolongation

In order to compare with Bott’s connection, let us now write down the restriction to
π−1(L) of the lift of ξ to E(N∗F). We will use the same system of coordinates used
in Section 2.1, where yi = ∂xi . Since in these coordinates π−1(L) = {y1 = x2 = · · · =

xn = 0}, we can write

ξ̂|π−1(L) = a(x1, 0)∂x1 −

n∑
i,j=2

(aji(x1, 0))yi∂yj ,

which in matrix form is

ξ̂|π−1(L) = a(x1, 0)∂x1 − (y2, . . . , yn) · A
T (x1, 0) · (∂y2 , . . . , ∂yn)

T

with A(x1, 0) being the same matrix as in (4.1). It is then clear that in these coordinates,
the leaves of F (1) restricted to π−1(L) are flat sections of the connection on N∗L having
connection matrix −AT , where A is the connection matrix on ∇|L. We have thus proved
the following

Proposition 4.1. The leaves of F (1) are flat sections of the partial connection dual to
Bott’s partial connection.

5. From invariant subvarieties to multi-distributions

5.1. Non-resonant singularities

Let F be a germ of one-dimensional foliation on (Cn, 0). Suppose that it has an isolated
singularity at the origin. Suppose also that the linear part Dξ(0) of a vector field ξ induc-
ing F is invertible and its eigenvalues λ1, . . . , λn generate a Z-module of rank n. We will
say that a singularity of this form is a non-resonant singularity.
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Lemma 5.1. There exist n germs of F-invariant smooth curves γi : (C, 0) → (Cn, 0)
with tangents at zero determined by the eigenvectors of Dξ(0).

Proof. The Hadamard–Perron theorem for holomorphic flows [7, Chapter 2, Section 7]
ensures the existence of a pair of invariant manifolds intersecting transversely at the origin
and such that the restriction of the vector field to each of them has a non-resonant singu-
larity in the Poincaré domain (Section 5 loc. cit.). Poincaré’s normalization theorem (loc.
cit.) implies that the corresponding restrictions of ξ are analytically linearizable. Since
separatrices of the restrictions of ξ are also separatrices of ξ , the lemma follows. ut

The linear holonomy along a positive oriented path around the origin contained in
γi(C, 0) is induced by a linearizable matrix Ai ∈ GL(n − 1,C) with eigenvalues
{exp(2πiλj/λi)}j 6=i . Moreover, the Z-independence of the eigenvalues implies that the
Zariski closure of the subgroup of GL(Cn−1) generated by Ai is a maximal torus
' (C∗)n−1.

5.2. Singularities and the holonomy of separatrices

Together with Proposition 6.2, the proposition below will replace Proposition 3.2 in the
proof of the general case of Theorem 1. It guarantees that invariant subvarieties of F (1)
correspond to multi-distributions tangent to F as soon as F has non-resonant singulari-
ties.

Proposition 5.2. Let F be a foliation on a smooth projective variety X and let Y (
ch(F) be an irreducible subvariety with dominant projection to X distinct from the zero
section. SupposeF has non-resonant singularity p and that at least one of its separatrices
is Zariski dense. If Y is F (1)-invariant then the fiber of Y over a generic point of X is
a finite union of linear spaces of the same dimension. Consequently, F is tangent to a
multi-distribution of codimension q = dimY − dimX ≤ dimX − 2.

Proof. First consider a point p0 ∈ X in the Zariski dense separatrix through p, and let L
be the leaf of F through it. The fiber V of E(N∗F) ' ch(F) → X over p is a vector
space of dimension n − 1. The intersection of Y with V is a subvariety of V invariant
under the image G ⊂ GL(V ) of the representation π1(L) → GL(V ) dual to the linear
holonomy of L. Since V ∩ Y is algebraic, not only G but also its Zariski closure leaves
V ∩Y invariant. By hypothesis,G ' (C∗)n−1 is a maximal torus in GL(V ). Consequently,
V ∩Y is a finite union of linear spaces for an arbitrary p ∈ L. To be a finite union of linear
subspaces is clearly a Zariski closed condition. Thus the same will hold true for the fibers
of Y over points in the Zariski closure of L which is, by assumption, equal to X. ut

6. From multi-distributions to invariant subvarieties

We now proceed to establish the result which will replace Proposition 3.3. We start with
a simple lemma.
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Lemma 6.1. Let ω ∈ �q = �q(Cn) ⊗ C[[x1, . . . , xn]] be a formal q-form. If ω is
invariant under the natural (C∗)n-action on Cn then

ω = f ·

( ∑
I∈{1,...,n}q

λI
dxI

xI

)
(6.1)

where f ∈ C[[x1, . . . , xn]], λI ∈ C and dxI
xI
=

dxi1
xi1
∧ · · · ∧

dxiq
xiq
.

Proof. Write ω =
∑
∞

i=i0
ωi , where the coefficients of ωi are polynomials of degree i and

ωi0 6= 0. If ϕt (x) = t · x then

(ϕt )
∗ω

t i0+q
= ωi0 +

∞∑
i=i0+1

t i−t0+qωi .

Since for arbitrary t , ϕ∗t ω must be a multiple of ω, after dividing by a suitable formal
function we can assume that ω is homogeneous.

Let xJ dxI be a monomial appearing in ω. Suppose xj1
1 divides xJ but xj1+1

1 does not.
Consider the automorphism ϕt (x1, x2, . . . , xn) = (tx1, x2, . . . , xn). Then ϕ∗t (x

J dxI ) =

tj1+εxJ dxI , where ε = 0 if dx1 does not appear in dxI , and ε = 1 otherwise. If j1+ε ≥ 2
then x1 divides all the other monomials appearing in ω. Thus after division we can assume
j1+ ε = 1 and the same will hold true for any other monomial appearing in ω. Repeating
the argument for the other coordinate functions clearly yields the assertion of the lemma.

ut

Proposition 6.2. Let ξ be a germ of holomorphic vector field on (Cn, 0) with a non-
resonant singularity at the origin. Suppose ξ is an infinitesimal automorphism of a distri-
bution D of codimension q ≤ n − 2. Then D is integrable and the singular set of D has
positive dimension.

Proof. Let ω be a germ of holomorphic q-form, q = n − p, defining D, that is, D =
{v ∈ T (Cn, 0) | ω(v) = 0}. For further use let us recall that a q-form ω defines a
codimension q distribution if and only if

(ivω) ∧ ω = 0 for every v ∈
∧q−1 Cn,

and this distribution is integrable if and only if

(ivω) ∧ ω = (ivω) ∧ dω = 0 for every v ∈
∧q−1 Cn

(see [10]). It follows that integrability is a formal condition, and as such can be verified
in an arbitrary formal coordinate system.

Since the origin is a non-resonant singularity for ξ , we can choose formal coordinates
such that

ξ =

n∑
i=1

λixi∂xi

where λi ∈ C are complex numbers. However, we can no longer assume that ω is a
holomorphic q-form, but it is certainly a formal q-form.
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Since ξ is an infinitesimal automorphism of D, its flow ϕt : (Cn, 0) → (Cn, 0)
preserves ω. More precisely,

ϕ∗t ω = f (t, x)ω

for a suitable formal function f ∈ C[[t, x1, . . . , xn]].
Consider now the subgroup G ⊂ (C∗)n ⊂ GL(Cn) defined as

G = {A ∈ (C∗)n |A∗ω ∧ ω = 0 in
∧2

�q ⊗ C[[x1, . . . , xn]]},

where (C∗)n acts on (Cn, 0) through a diagonal linear map. The flow of ξ determines a
non-closed one-parameter subgroup ofH ⊂ G. SinceG is clearly an algebraic subgroup,
it follows that the Zariski closure of H is also contained in G. But the dimension of
the Zariski closure of H is nothing other than the rank of the Z-module generated by
λ1, . . . , λn. It follows that H = G = (C∗)n.

On the one hand, since ω induces a distribution, ivω ∧ ω = 0. On the other hand,
Lemma 6.1 implies that ω is a multiple of a closed q-form, and consequently ivω ∧ dω
= 0. This shows that D is integrable.

It remains to prove that the singular set of D has positive dimension. Looking at the
expression (6.1) we realize that it must have at least two non-trivial summands. Indeed, if
not, D would be a smooth foliation tangent to ξ , which is clearly impossible. Therefore,
if k is the cardinality of the set I =

⋃
λI 6=0 I , where the complex numbers λI are defined

by (6.1), then k > q. Clearly, the coordinate hyperplanes with index in I are invariant
underD. Consequently, the intersection of any q+1 of these hyperplanes is also invariant
under D. Since D has codimension q, this intersection must be contained in the singular
locus of D. ut

Remark 6.3. Proposition 6.2 will be in the proof of the general case of Theorem 1 what
Proposition 3.2 is in the proof of the three-dimensional case. The analogy is not perfect
as we do not prove here the integrability of multi-distributions as we did there. Anyway,
with some extra effort one can also prove the integrability of the multi-distribution. We
will not pursue this here as the result above is sufficient for our purposes.

7. Proof of Theorem 1

Let F ∈ PH 0(X, T X ⊗ L⊗k) be a very generic foliation. We can assume, thanks to
Theorem 3.5, that F has isolated singularities, at least one non-resonant singularity, and
every leaf of F is Zariski dense.

Proposition 5.2 implies that F is tangent to a multi-distribution D. We can assume D
is irreducible without loss of generality.

If D is locally decomposable around p then Proposition 6.2 implies the existence
of a positive-dimensional irreducible component Z of the singular set of D through p.
This set is clearly algebraic and invariant under F since sections of TF are infinitesimal
automorphisms of D. If D is not locally decomposable at p then there exists a subvariety
Z ( X where D is not locally decomposable. As above, we conclude that Z is invariant
under F .

In both cases, we arrive at a contradiction with Theorem 3.5. ut
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8. Bernstein–Lunts Conjecture

Theorem 1 implies the existence of foliations, on arbitrary projective varieties, with quasi-
minimal characteristic variety. Moreover, as the conclusion of Theorem 3.5 holds true for
any foliation with ample cotangent bundle on Pn, the existential part of the Bernstein–
Lunts Conjecture is settled. Nevertheless, there is still a detail to be dealt with in order
to prove that a very generic polynomial vector field of degree d ≥ 2 has quasi-minimal
characteristic variety.

8.1. Projective versus affine degree

The (projective) degree of a holomorphic foliation F on Pn is defined as the degree of the
tangency divisor of F with a generic hyperplane H . If F ∈ PH 0(Pn,OPn(k)) then the
degree of F is equal to k + 1.

If one starts with a polynomial vector field ξ of degree d on Cn then it is natural to
extend it to a holomorphic foliation Fξ on Pn such that H is not contained in the singular
set of Fξ . We set the degree of ξ =

∑
ai∂i as the maximal degree of its coefficients ai .

In general the (projective) degree of Fξ is at most the (affine) degree of ξ . Moreover
precisely,

deg(Fξ ) =
{

deg(ξ) if H is invariant under Fξ ,
deg(ξ)− 1 if H is not invariant under Fξ .

If D(n, d) is the set of polynomial vector fields of degree at most d then the generic
element in it extends to a foliation of Pn with singularities of codimension at least two
which leaves the hyperplane at infinity invariant (see [12] for a through discussion). In
more intrinsic terms, if T Pn(− logH) denotes the subsheaf of T Pn constituted by germs
of vector fields tangent toH thenD(n, d) can be identified withH 0(Pn, T Pn(− logH)⊗
OPn(d − 1)). Under this identification the extensions which do not leave the hyperplane
at infinity invariant will appear with a divisorial component in their singular set supported
there.

8.2. Relative version of Theorem 3.5

The proof of Theorem 3.5 can be adapted to prove the following

Theorem 8.1. Let X be a smooth projective variety and H ⊂ X a smooth hypersurface.
Let also L be an ample line bundle over X, and k � 0 a sufficiently large integer. If
F ∈ PH 0(X, T X(− logH) ⊗ L⊗k) is a very generic foliation then every leaf of F not
contained in H is Zariski dense.

We will not detail its proof as the case of projective spaces (the one used in the proof of
Theorem 2 below) is Theorem 4.2 of [5]. Moreover, there it is proved that it suffices to
take k ≥ 1 when X = Pn and L = OPn(1).
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8.3. Proof of Theorem 2

According to Theorem 8.1 the leaves of a very generic vector field of degree d ≥ 2 are
Zariski dense. Also a very generic vector field has at least one non-resonant singularity.
Thus we can apply Propositions 5.2 and 6.2 to conclude that the characteristic variety of
Fξ is quasi-minimal. ut

Acknowledgments. I am grateful to S. C. Countinho for, since 2003, bringing periodically the
Bernstein–Lunts conjecture to my attention.
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