DOI 10.4171/JEMS/303

Jorge Vitório Pereira

The characteristic variety of a generic foliation

Received December 9, 2009

Abstract. We confirm a conjecture of Bernstein–Lunts which predicts that the characteristic variety of a generic polynomial vector field has no homogeneous involutive subvarieties besides the zero section and subvarieties of fibers over singular points.

Keywords. Characteristic foliation, invariant variety, D-modules

1. Introduction

1.1. Foliations

Let $\mathcal F$ be a one-dimensional singular holomorphic foliation on a smooth projective variety X. The *characteristic variety* ch(F) of F is the irreducible subvariety of $E(T^*X)$, the total space of the cotangent bundle of X, with fiber over a non-singular point $x \in X_0 =$ X \ sing(F) equal to the 1-forms at x which vanish on $T_x \mathcal{F}$. More succinctly, if $N^* \mathcal{F}$ is the conormal sheaf of $\mathcal F$ then its restriction at X_0 is a vector subbundle of T^*X_0 and we can write

$$
ch(\mathcal{F}) = \overline{E(N^*\mathcal{F}_{|X_0})}
$$

where the closure is taken in $E(T^*X) \supset E(T^*X_0)$.

Clearly ch(F) is a hypersurface of $E(T^*X)$. If ω is the non-degenerate 2-form which induces the canonical symplectic structure on T^*X then its restriction to ch($\mathcal F$) induces a one-dimensional foliation $\mathcal{F}^{(1)}$ on (the smooth locus of) ch(\mathcal{F}) which will be called the *first prolongation* of F.

In this work we are interested in the subvarieties of ch(\mathcal{F}) invariant under $\mathcal{F}^{(1)}$ when $\mathcal F$ is sufficiently general. For no matter which $\mathcal F$ there is always at least one subvariety of ch(\mathcal{F}) invariant under $\mathcal{F}^{(1)}$: the zero section of T^*X . If the singular set of $\mathcal F$ is non-empty but of dimension zero then the fibers over it, and some subvarieties of these fibers, are also left invariant by $\mathcal{F}^{(1)}$.

Mathematics Subject Classification (2010): Primary 37F75, 16S32; Secondary 37J30, 32C38

J. V. Pereira: IMPA, Estrada Dona Castorina, 110, 22460-320, Rio de Janeiro, RJ, Brazil; e-mail: jvp@impa.br

We will say that $ch(\mathcal{F})$ is a *quasi-minimal characteristic variety* if (a) $\mathcal F$ has isolated singularities; and (b) every irreducible homogeneous (on the fibers of ch(\mathcal{F}) $\rightarrow X$) subvariety of ch($\mathcal F$) left invariant by $\mathcal F^{(1)}$ is either the zero section, or a subvariety of a fiber over the singular set of $\mathcal F$, or the whole ch($\mathcal F$).

Theorem 1. *Let* X *be a smooth projective variety,* L *an ample line bundle over it, and* $k \gg 0$ a sufficiently large integer. If $\mathcal{F} \in \mathbb{P} H^0(X, TX \otimes \mathcal{L}^{\otimes \hat{k}})$ is a very generic foliation *then* ch(F) *is a quasi-minimal characteristic variety.*

In the statement of the theorem above and throughout, by a *very generic point* of a given variety we mean a point outside a countable union of Zariski closed subvarieties. The expression *generic point* will be reserved to points outside a finite union of Zariski closed subvarieties.

Although Theorem [1](#page-1-0) can be thought of as a natural development of Jouanolou's Theorem and its subsequent generalizations (see [\[6\]](#page-12-1) and references therein), it is motivated by a problem coming from the representation theory of Weyl algebras that we briefly review below.

1.2. Weyl algebras

Let A_n be the *n*-th Weyl algebra over C, that is, A_n is the algebra of C-linear differential operators on the polynomial ring $\mathbb{C}[x_1, \ldots, x_n]$. A basic invariant of an irreducible A_n module *M* is its Gelfand–Kirillov dimension GK dim *M*. By Bernstein's work [\[2\]](#page-12-2) this invariant is subject to the inequality $GK \dim M \geq n$ and equality holds true for important classes of irreducible A_n -modules. If GK dim $M = n$ then M is, by definition, a *holonomic* An-module.

For some time, some believed that every irreducible A_n -module M was holonomic. In 1985 Stafford came up with examples of A_n -modules of particularly simple form and having Gelfand–Kirillov dimension equal to $2n-1$. His examples are of the form $A_n/I A_n$ where I is a principal left ideal generated by an element of the form $\xi + f$ where ξ is a polynomial vector field and f is a polynomial (see [\[11\]](#page-12-3)). For those not familiar with the Gelfand–Kirillov dimension it is useful to remark that when I is a principal maximal left ideal then GK dim $A_n/I A_n = 2n - 1$, and the search for examples of non-holonomic A_n -modules can be reduced to searching for principal maximal left ideals of A_n .

Stafford's examples are explicit and his arguments are purely algebraic. In [\[3\]](#page-12-4), Bernstein and Lunts present two geometrically oriented approaches to constructing principal maximal left ideals of A_n , and implement them for the second Weyl algebra. In rough terms, their strategy relies on the the study of a natural foliation defined on the characteristic varieties of the module. More specifically, they relate the maximality of the ideal to the non-existence of proper invariant subvarieties of this foliation. To define a characteristic variety for an A_n -module, a filtration of A_n has to be fixed and their two approaches are determined by the choice of two different filtrations.

In the first approach they look at the Bernstein filtration of A_n , whose *i*-th piece A_n^i consists of polynomials in $\{x_1, \ldots, x_n, \partial_{x_1}, \ldots, \partial_{x_n}\}$ of degree at most *i*. The corresponding symbol maps are

$$
\sigma_k: A_n^k \to A_n^k/A_n^{k-1} \simeq \mathbb{C}_k[x_1,\ldots,x_n,y_1,\ldots,y_n].
$$

They proved that if $n = 2, k \ge 4$ and $P \in \mathbb{C}_k[x_1, \ldots, x_n, y_1, \ldots, y_n]$ is a very generic polynomial then each operator $d \in A_n^k$ satisfying $\sigma_k(d) = P$ generates a maximal left ideal of A_n^k . Still under the assumption that $k \geq 4$, Lunts extends the above result to arbitrary $n \ge 2$ in [\[8\]](#page-12-5). For $k = 3$ and $n \ge 2$ the same has been proved by McCune [\[9\]](#page-12-6). All these results, in contrast with Stafford's, do not exhibit explicit examples of nonholonomic A_n -modules but instead prove that they are generic in the above sense. For an algorithm to produce explicit examples of the above form for $n = 2$ and its implementation see $[1]$.

In their second approach, Bernstein and Lunts look at the standard filtration of A_n . Now the *i*-th piece corresponds to differential operators of order $\leq i$. If ξ is a polynomial vector field, f a polynomial and $I = \langle \xi + f \rangle$ then the characteristic variety of A_n/IA_n coincides with the characteristic variety of the foliation \mathcal{F}_{ξ} as defined in the previous section. If \mathcal{F}_{ξ} has a quasi-minimal characteristic variety then according to [\[3,](#page-12-4) Proposition 6] there exists $f \in \mathbb{C}[x_1, \ldots, x_n]$ for which $I = \langle \xi + f \rangle$ is maximal. While they do show that a generic ξ of degree ≥ 2 on \mathbb{C}^2 has this property, they leave the general case as a conjecture (see [\[3,](#page-12-4) §4.2]).

Conjecture (Bernstein–Lunts). Let $n \geq 2$ and ξ be a very generic polynomial vector field on \mathbb{C}^n with coefficients of degree ≥ 2 . Then $\text{ch}(\mathcal{F}_\xi)$ is a quasi-minimal characteristic *variety.*

The three-dimensional case of the conjecture has been proved recently by Coutinho [\[5\]](#page-12-8). In this paper we will settle the general case.

Theorem 2. *Bernstein–Lunts' conjecture holds true.*

Even when specialized to $n = 3$, our proof is very different from the one of Coutinho.

2. Characteristic varieties and prolongations

2.1. Characteristic variety

Let X be a quasi-projective manifold and $\mathcal F$ be a foliation on X with cotangent bundle $\mathcal L$, that is, $\mathcal{F} = [\xi] \in \mathbb{P}H^0(X, TX \otimes \mathcal{L})$ with the representative ξ having no divisorial components in its singular set. As in the introduction set $X_0 = X \setminus \text{sing}(\mathcal{F})$.

Contraction with the twisted vector field ξ determines a morphism of \mathcal{O}_X -modules

$$
T^*X\to\mathcal{L}
$$

whose kernel is $N^*\mathcal{F}$, the conormal sheaf of \mathcal{F} . At points $x \in X_0$ the sheaf $N^*\mathcal{F}$ is clearly locally free, but it is not locally free in general. For example it is never locally free at an isolated singularity of F as one can promptly verify. Nevertheless, the restriction of $N^*\mathcal{F}$

to X_0 determines a subbundle of T^*X_0 of corank one. As mentioned in the introduction, ch(\mathcal{F}) is defined as the closure in $E(T^*X)$ of $E(N^*\mathcal{F}|_{X_0})$. We will use π to denote the natural projection $\pi : E(T^*X) \to X$ as well as its restriction $\pi : ch(\mathcal{F}) \to X$.

If (x_1, \ldots, x_n) are local coordinates on an open subset $U \subset X$ then the vector fields ${\partial x_i = \partial/\partial x_i}$ can be thought of as linear coordinates on T^*U : the value of ∂x_i at a 1-form $\omega \in T^*U$ is given by the contraction $\omega(\partial_{x_i})$. Thus, if we set $y_i = \partial_{x_i}$ then $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ are global coordinate functions for T^*U . In particular, if $\xi =$ $\sum a_i \partial_{x_i}$ then

$$
ch(\mathcal{F})_{|\pi^{-1}(U)} = \left\{ \sum a_i y_i = 0 \right\}.
$$

The singular set of ch($\mathcal F$) is contained in $\pi^{-1}(\text{sing}(\mathcal F))$ and contains $\pi^{-1}(\text{sing}(\mathcal F))$ $\bigcap X$, where X sits inside $E(T^*X)$ as the zero section. Thus, unless $\mathcal F$ is a smooth foliation, ch($\mathcal F$) is always singular. It follows promptly from the above local expression of ch($\mathcal F$) that its singular points away from the zero section and over a fiber $\pi^{-1}(p)$ are the 1-forms at T_p^*X which annihilate the image of $D\xi(p)$. Thus, if the singular scheme of $\mathcal F$ is reduced and of dimension zero then $ch(\mathcal{F})$ is smooth away from the zero section.

2.2. Prolongation

Recall that T^*X is endowed with a canonical symplectic structure which, in the above local coordinates, is induced by the 2-form

$$
\Omega = \sum dx_i \wedge dy_i.
$$

If F is a holomorphic function on (an open subset of) T^*X then the hamiltonian of F is by definition the vector field ξ_F determined by the formula

$$
dF(\cdot) = \Omega(\xi_F, \cdot).
$$

Notice that the vector field ξ_F is tangent to the hypersurface determined by F since $\xi_F(F) = 0$. Leibniz's rule implies that $\xi_{uF} = u\xi_F + F\xi_u$. Consequently, the restriction of the direction field determined by ξ_F to $\{F = 0\}$ is the same as the one of that determined by ξ_{uF} for an arbitrary unit u. Therefore, the symplectic structure determines a one-dimensional foliation on any reduced and irreducible hypersurface $H \subset T^*X$: one has just to factor out possible divisorial components of the singular set of $\xi_{F|H}$ to end up with a foliation on H, usually called in the literature the *characteristic foliation* of H. When $H = \text{ch}(\mathcal{F}) \subset T^*X$ is the characteristic variety of a foliation \mathcal{F} on X we will denote its characteristic foliation by $\mathcal{F}^{(1)}$ and call it the *first prolongation* of \mathcal{F} .

If $U \subset X$ is an open set with coordinates as in [§2.1](#page-2-0) and $\xi = \sum a_i \partial_{x_i}$ is a vector field inducing F on U then the vector field

$$
\hat{\xi} = \sum_{i=1}^{n} a_i \partial_{x_i} - \sum_{i,j=1}^{n} (\partial_{x_j} a_i) y_i \partial_{y_j}
$$
 (2.1)

is the hamiltonian vector field of $\sum a_i y_i$, and hence defines the prolongation of $\mathcal{F}_{|U}$.

3. Warm-up: Proof of Theorem [1](#page-1-0) in dimension three

In this section we present a proof of Theorem [1](#page-1-0) in dimension three. We believe this will make the general case easier to understand.

3.1. Making sense of the F (1) *-invariance*

We start by clarifying the meaning of $\mathcal{F}^{(1)}$ -invariance. The first result is well-known and holds in arbitrary dimension.

Lemma 3.1. *If* $Y \subset ch(\mathcal{F})$ *is* $\mathcal{F}^{(1)}$ *-invariant then* $\pi(Y)$ *is* \mathcal{F} *-invariant.*

Proof. If p is a smooth point of ch(F) then [\(2.1\)](#page-3-0) makes it clear that π sends $T_p \mathcal{F}^{(1)}$ into $T_{\pi}(p)\mathcal{F}$, and that the restriction of $\mathcal{F}^{(1)}$ to the zero section is nothing other than \mathcal{F} . Together these two facts promptly imply the lemma.

Our next result holds only in dimension three, and it is the lack of a direct analogue in higher dimensions which will make the proof in the general case more involved.

Proposition 3.2. *Suppose* $n = 3$ *and let* $Y \subseteq ch(\mathcal{F})$ *be a homogeneous irreducible subvariety with dominant projection to X. If Y is* $\mathcal{F}^{(1)}$ -invariant then $\mathcal F$ is tangent to a *codimension one web* W_Y *on* X.

Proof. Since we are in dimension three, over the smooth locus of \mathcal{F} , ch(\mathcal{F}) is a rank two vector subbundle of Ω_X^1 . A subvariety Y as in the statement determines k distinct lines on $N^*\mathcal{F}_x$ for generic points $x \in X$. Therefore Y can be seen as the graph of a rational section ϖ of Sym^k Ω_X^1 . Moreover, the foliation $\mathcal F$ is tangent to the multi-distribution determined by ϖ . Notice that so far, we have not used the $\mathcal{F}^{(1)}$ -invariance of Y: we just explored the fact that Y is contained in $ch(\mathcal{F})$.

It remains to prove the integrability of the multi-distribution determined by ϖ . To do so we can place ourselves in a neighborhood of a point $x \in X$ where ϖ is holomorphic and equal to the product of k pairwise distinct 1-forms, say $\omega_1, \ldots, \omega_k$, and F is smooth. Choose a local coordinate system (x_1, \ldots, x_n) where F is induced by the vector field $\xi = \partial_{x_1}$. Hence $\mathcal{F}^{(1)}$ is still induced by ∂_{x_1} now seen as a vector field on the total space of $N^* \mathcal{F}$.

If ω is any of the 1-forms $\{\omega_i\}_{i \in \{1,\dots,k\}}$ then $\omega = adx_2 + bdx_3$ for suitable holomorphic functions a, b. Notice that ω is integrable if and only if the quotient a/b does not depend on x_1 . Finally, the $\mathcal{F}^{(1)}$ -invariance of Y ensures that a/b is constant along the orbits of $\hat{\xi}$ and thus ω is integrable and so is the multi-distribution induced by ϖ .

3.2. Invariant subvarieties from singular points

Proposition 3.3. *Let* F *be a foliation on* X *a smooth projective variety of dimension three. Suppose* F *is tangent to a codimension one web* W. If $p \in \text{sing}(F)$ *is an isolated singularity then there exists an irreducible* $\mathcal{F}-i$ *nvariant subvariety* $Y \subseteq X$ *of positive dimension containing* p*.*

Proof. Suppose W is a k-web with $k \ge 1$. If $k \ge 2$, let $\Delta(W) \subset X$ be the discriminant of the web W. By definition, $\Delta(W)$ is the set where W is not the product of k pairwise transverse foliations. The proof of Proposition [3.2](#page-4-0) tells us that on a neighborhood of a smooth point of F, the web W is induced by a k-symmetric 1-form $\varphi = \sum a_{ij} dx_2^i dx_3^j$. Thus $\Delta(W)$ is defined as the hypersurface cut out by the discriminant of $\overline{\omega}$, seen as a binary form in the variables dx_2 , dx_3 . Notice that $\Delta(W)$ is an $\mathcal{F}\text{-}$ invariant hypersurface.

If p belongs to $\Delta(W)$ we are done. Otherwise W, in a neighborhood of p, can be written as the superposition of k foliations, $W = \mathcal{G}_1 \boxtimes \cdots \boxtimes \mathcal{G}_k$. So consider one foliation $\mathcal G$ of codimension one in a neighborhood of p and suppose that $\mathcal F$ is tangent to it.

Let ξ be a holomorphic vector field inducing $\mathcal F$ and ω be a holomorphic 1-form inducing G , both defined on a neighborhood of p and without divisorial components in their zero sets. Since F has an isolated singularity at p, so does ξ. Consequently, $\omega(\xi) = 0$ implies that ω is also singular at p. At this point we can use an argument laid down by Cerveau in [\[4,](#page-12-9) p. 46] that we now recall. As ξ has isolated singularities we can apply the de Rham–Saito Lemma to ensure the existence of another vector field ζ such that $\omega = i_{\xi} i_{\zeta} dx \wedge dy \wedge dz$. Therefore the zero set of ω is formed by the minors of a 3 × 2 matrix and must be of codimension at least two. But if G is one of the foliations G_i then $\text{sing}(\mathcal{G})$ is algebraic, and is the desired $\mathcal{F}\text{-invariant variety.}$

3.3. Conclusion of the proof

To conclude the proof of Theorem [1](#page-1-0) in dimension three we will make use of the following generalization of Jouanolou's Theorem proved in [\[6\]](#page-12-1) (see also [\[8,](#page-12-5) Theorem 2] for the very same statement on projective spaces).

Theorem 3.4. *Let* X *be a smooth projective variety,* L *be an ample line bundle over it,* and $k \gg 0$ be a sufficiently large integer. If $\mathcal{F} \in \mathbb{P}H^0(X, TX \otimes \mathcal{L}^{\otimes k})$ is a very generic *foliation then, besides* X *itself, the only subvarieties left invariant by* F *are its singular points.*

Let $\mathcal{F} \in \mathbb{P}H^0(X, TX \otimes \mathcal{L}^{\otimes k})$ be a very generic foliation without invariant subvarieties. As its singular set has cardinality given by the top Chern class of $TX \otimes \mathcal{L}^{\otimes k}$, and this number is positive for $k \gg 0$, the singular set of F is non-empty. Moreover we can assume the existence of an isolated singularity $p \in \text{sing}(\mathcal{F})$ (see for instance [\[6,](#page-12-1) Proposition 2.4]).

If the characteristic variety of $\mathcal F$ is not quasi-minimal then Proposition [3.2](#page-4-0) implies that $\mathcal F$ is tangent to a codimension one web W. Proposition [3.3](#page-4-1) in its turn implies that F has an invariant subvariety through p. This contradicts Theorem [3.4](#page-5-0) and concludes the proof of Theorem [1](#page-1-0) in dimension three. \Box

3.4. Obstructions to generalize

To generalize the argument above to deal with the general case one has to circumvent the following obstructions:

- (1) Proposition [3.2](#page-4-0) does not generalize because irreducible components of $ch(\mathcal{F})$ which are homogeneous and dominate the base X are no longer graphs of multi-distributions as happens in the three-dimensional case; and
- (2) Proposition [3.3](#page-4-1) does not generalize since (multi)-distributions with infinitesimal automorphisms are not necessarily integrable.

To accomplish that we will take advantage of the structure of generic foliation singularities combined with the following reinterpretation of Theorem [3.4.](#page-5-0)

Theorem 3.5. *Let* X *be a smooth projective variety,* L *an ample line bundle over it, and* $k \gg 0$ a sufficiently large integer. If $\mathcal{F} \in \mathbb{P} H^0(X, TX \otimes \mathcal{L}^{\otimes k})$ is a very generic foliation *then every leaf of* F *is Zariski dense.*

4. Prolongation versus holonomy

In this section $\mathcal F$ will be a *smooth* foliation of dimension one on a complex manifold X.

4.1. Holonomy

To each leaf L of F, once a point $p \in L$ and a germ (Σ, p) of smooth hypersurface transverse to $\mathcal F$ are fixed, one can associate an (anti)-representation

$$
hol(L): \pi_1(L, p) \to Diff(\Sigma, p)
$$

as follows. Given a closed path γ contained in L and centered at p one defines a germ of diffeomorphism $h_{\gamma} \in \text{Diff}(\Sigma, p)$ such that $h_{\gamma}(x)$ is the end point of a lift of γ to the leaf of $\mathcal F$ through x. The result does not depend on the choices involved in the process and is completely determined by the class of γ in $\pi_1(L, p)$. Thus one can set $hol(L)(\gamma) = h_{\gamma}$. It is an anti-representation since $h_{\gamma_1 \cdot \gamma_2} = h_{\gamma_2} \circ h_{\gamma_1}$.

Of course, one can also consider the linear holonomy of L which is just the antirepresentation

$$
Dhol(L): \pi_1(L, p) \to GL(T_p \Sigma), \quad [\gamma] \mapsto Dh_\gamma(p).
$$

Since this is an anti-representation of $\pi_1(L)$ to a general linear group, it is natural to wonder if there is a natural connection on a natural vector bundle over L inducing it. It is indeed the case, and even better, there is a partial connection along the tangent bundle $T\mathcal{F}$ of F on the normal bundle $N\mathcal{F}$ whose monodromy along the leaves of F is equivalent to the linear holonomy.

4.2. Bott's partial connection

Let $\rho : TX \to N\mathcal{F}$ be the natural projection. Of course ker $\rho = T\mathcal{F}$. Bott's partial connection is defined as follows:

$$
\nabla: T\mathcal{F} \to \text{Hom}(N\mathcal{F}, N\mathcal{F}) \simeq N^* \mathcal{F} \otimes N\mathcal{F}, \quad \xi \mapsto \{\vartheta \mapsto \rho([\hat{\vartheta}, \xi])\},
$$

where $\hat{\vartheta}$ stands for an arbitrary lift of ϑ to TX. The involutiveness of TF implies that $\rho([\hat{\theta}, \xi])$ does not depend on the choice of the lift, and ensures that ∇ is well defined.

Let us now proceed to write explicitly the restriction of ∇ to a leaf L of F. We will work in local coordinates (x_1, \ldots, x_n) and will assume that $L = \{x_2 = \cdots = x_n = 0\}$. Since L is invariant under F, we can write a vector field ξ generating $T\mathcal{F}$ in the form

$$
\xi = a(x)\partial_{x_1} + \sum_{i=2}^n \sum_{j=2}^n a_{ij}(x)x_i \partial_{x_j}.
$$

Notice that the vector fields $\partial_{x_2}, \ldots, \partial_{x_n}$ can be interpreted as a basis of $N\mathcal{F}$. Thus

$$
\nabla(\xi)(\partial_{x_i})=\rho\Big(\partial_{x_i}a(x)\partial_{x_1}+\sum_{i=2}^n\sum_{j=2}^n(\partial_{x_i}a_{ij}(x))x_i\partial_{x_j}+\sum_{j=2}^n a_{ij}(x)\partial_{x_j}\Big).
$$

Hence, the induced connection $\nabla_{|L}: TL \rightarrow N^*L \otimes NL$ is

$$
\nabla_{|L}(\xi) = \sum_{i=1}^{n-1} \sum_{j=2}^{n} a_{ij}(x_1, 0) dx_i \otimes \partial_{x_j}
$$

= $(dx_2, ..., dx_n) \cdot A(x_1, 0) \cdot (\partial_{x_2}, ..., \partial_{x_n})^T$. (4.1)

4.3. Comparison with the prolongation

In order to compare with Bott's connection, let us now write down the restriction to $\pi^{-1}(L)$ of the lift of ξ to $E(N^*\mathcal{F})$. We will use the same system of coordinates used in Section [2.1,](#page-2-0) where $y_i = \partial_{x_i}$. Since in these coordinates $\pi^{-1}(L) = \{y_1 = x_2 = \cdots =$ $x_n = 0$, we can write

$$
\hat{\xi}_{|\pi^{-1}(L)} = a(x_1, 0)\partial_{x_1} - \sum_{i,j=2}^n (a_{ji}(x_1, 0))y_i\partial_{y_j},
$$

which in matrix form is

$$
\hat{\xi}_{|\pi^{-1}(L)} = a(x_1, 0)\partial_{x_1} - (y_2, \dots, y_n) \cdot A^T(x_1, 0) \cdot (\partial_{y_2}, \dots, \partial_{y_n})^T
$$

with $A(x_1, 0)$ being the same matrix as in [\(4.1\)](#page-7-0). It is then clear that in these coordinates, the leaves of $\mathcal{F}^{(1)}$ restricted to $\pi^{-1}(L)$ are flat sections of the connection on N^*L having connection matrix $-A^T$, where A is the connection matrix on $\nabla_{|L}$. We have thus proved the following

Proposition 4.1. *The leaves of* $\mathcal{F}^{(1)}$ *are flat sections of the partial connection dual to Bott's partial connection.*

5. From invariant subvarieties to multi-distributions

5.1. Non-resonant singularities

Let F be a germ of one-dimensional foliation on $(\mathbb{C}^n, 0)$. Suppose that it has an isolated singularity at the origin. Suppose also that the linear part $D\xi(0)$ of a vector field ξ inducing F is invertible and its eigenvalues $\lambda_1, \ldots, \lambda_n$ generate a Z-module of rank n. We will say that a singularity of this form is a *non-resonant singularity*.

Lemma 5.1. *There exist n germs of F-invariant smooth curves* $\gamma_i : (\mathbb{C}, 0) \to (\mathbb{C}^n, 0)$ *with tangents at zero determined by the eigenvectors of* Dξ(0)*.*

Proof. The Hadamard–Perron theorem for holomorphic flows [\[7,](#page-12-10) Chapter 2, Section 7] ensures the existence of a pair of invariant manifolds intersecting transversely at the origin and such that the restriction of the vector field to each of them has a non-resonant singularity in the Poincaré domain (Section 5 loc. cit.). Poincaré's normalization theorem (loc. cit.) implies that the corresponding restrictions of ξ are analytically linearizable. Since separatrices of the restrictions of ξ are also separatrices of ξ , the lemma follows. \square

The linear holonomy along a positive oriented path around the origin contained in $\gamma_i(\mathbb{C}, 0)$ is induced by a linearizable matrix $A_i \in GL(n-1, \mathbb{C})$ with eigenvalues $\{\exp(2\pi i\lambda_j/\lambda_i)\}_{j\neq i}$. Moreover, the Z-independence of the eigenvalues implies that the Zariski closure of the subgroup of $GL(\mathbb{C}^{n-1})$ generated by A_i is a maximal torus $\simeq (\mathbb{C}^*)^{n-1}.$

5.2. Singularities and the holonomy of separatrices

Together with Proposition [6.2,](#page-9-0) the proposition below will replace Proposition [3.2](#page-4-0) in the proof of the general case of Theorem [1.](#page-1-0) It guarantees that invariant subvarieties of $\mathcal{F}^{(1)}$ correspond to multi-distributions tangent to $\mathcal F$ as soon as $\mathcal F$ has non-resonant singularities.

Proposition 5.2. Let $\mathcal F$ be a foliation on a smooth projective variety X and let $Y \subseteq$ ch(F) *be an irreducible subvariety with dominant projection to* X *distinct from the zero section. Suppose* F *has non-resonant singularity* p *and that at least one of its separatrices is Zariski dense. If* Y *is* $\mathcal{F}^{(1)}$ -invariant then the fiber of Y *over a generic point of* X *is a finite union of linear spaces of the same dimension. Consequently,* F *is tangent to a multi-distribution of codimension* $q = \dim Y - \dim X \le \dim X - 2$.

Proof. First consider a point $p_0 \in X$ in the Zariski dense separatrix through p, and let L be the leaf of F through it. The fiber V of $E(N^*\mathcal{F}) \simeq ch(\mathcal{F}) \rightarrow X$ over p is a vector space of dimension $n - 1$. The intersection of Y with V is a subvariety of V invariant under the image $G \subset GL(V)$ of the representation $\pi_1(L) \to GL(V)$ dual to the linear holonomy of L. Since $V \cap Y$ is algebraic, not only G but also its Zariski closure leaves *V*∩*Y* invariant. By hypothesis, $\overline{G} \cong (\mathbb{C}^*)^{n-1}$ is a maximal torus in $GL(V)$. Consequently, $V \cap Y$ is a finite union of linear spaces for an arbitrary $p \in L$. To be a finite union of linear subspaces is clearly a Zariski closed condition. Thus the same will hold true for the fibers of Y over points in the Zariski closure of L which is, by assumption, equal to X. \Box

6. From multi-distributions to invariant subvarieties

We now proceed to establish the result which will replace Proposition [3.3.](#page-4-1) We start with a simple lemma.

Lemma 6.1. *Let* $\omega \in \Omega^q = \Omega^q(\mathbb{C}^n) \otimes \mathbb{C}[[x_1, \ldots, x_n]]$ *be a formal q-form. If* ω *is invariant under the natural* (\mathbb{C}^*)^{*n*}-action on \mathbb{C}^n then

$$
\omega = f \cdot \left(\sum_{I \in \{1, \dots, n\}^q} \lambda_I \frac{dx_I}{x_I} \right) \tag{6.1}
$$

where $f \in \mathbb{C}[[x_1, \ldots, x_n]], \lambda_I \in \mathbb{C}$ *and* $\frac{dx_I}{x_I} = \frac{dx_{i_I}}{x_{i_I}}$ $\frac{dx_{i_1}}{x_{i_1}} \wedge \cdots \wedge \frac{dx_{i_q}}{x_{i_q}}$ $rac{ix_{iq}}{x_{iq}}$.

Proof. Write $\omega = \sum_{i=0}^{\infty} \omega_i$, where the coefficients of ω_i are polynomials of degree i and $\omega_{i_0} \neq 0$. If $\varphi_t(x) = t \cdot x$ then

$$
\frac{(\varphi_t)^*\omega}{t^{i_0+q}} = \omega_{i_0} + \sum_{i=i_0+1}^{\infty} t^{i-t_0+q} \omega_i.
$$

Since for arbitrary t, $\varphi_t^* \omega$ must be a multiple of ω , after dividing by a suitable formal function we can assume that ω is homogeneous.

Let $x^J dx_I$ be a monomial appearing in ω . Suppose $x_1^{j_1}$ divides x^J but $x_1^{j_1+1}$ does not. Consider the automorphism $\varphi_t(x_1, x_2, \dots, x_n) = (tx_1, x_2, \dots, x_n)$. Then $\varphi_t^*(x^J dx_I) =$ $t^{j_1+\epsilon}x^J dx_I$, where $\epsilon = 0$ if dx_I does not appear in dx_I , and $\epsilon = 1$ otherwise. If $j_1 + \epsilon \ge 2$ then x_1 divides all the other monomials appearing in ω . Thus after division we can assume $j_1 + \epsilon = 1$ and the same will hold true for any other monomial appearing in ω . Repeating the argument for the other coordinate functions clearly yields the assertion of the lemma. \Box

Proposition 6.2. Let ξ be a germ of holomorphic vector field on $(\mathbb{C}^n, 0)$ with a non*resonant singularity at the origin. Suppose* ξ *is an infinitesimal automorphism of a distribution* D *of codimension* $q \leq n - 2$ *. Then* D *is integrable and the singular set of* D *has positive dimension.*

Proof. Let ω be a germ of holomorphic q-form, $q = n - p$, defining D, that is, $D =$ ${v \in T(\mathbb{C}^n, 0) \mid \omega(v) = 0}$. For further use let us recall that a q-form ω defines a codimension q distribution if and only if

$$
(i_v \omega) \wedge \omega = 0 \quad \text{for every } v \in \bigwedge^{q-1} \mathbb{C}^n,
$$

and this distribution is integrable if and only if

$$
(i_v \omega) \wedge \omega = (i_v \omega) \wedge d\omega = 0 \quad \text{for every } v \in \bigwedge^{q-1} \mathbb{C}^n
$$

(see [\[10\]](#page-12-11)). It follows that integrability is a formal condition, and as such can be verified in an arbitrary formal coordinate system.

Since the origin is a non-resonant singularity for ξ , we can choose formal coordinates such that

$$
\xi = \sum_{i=1}^n \lambda_i x_i \partial_{x_i}
$$

where $\lambda_i \in \mathbb{C}$ are complex numbers. However, we can no longer assume that ω is a holomorphic q -form, but it is certainly a formal q -form.

Since ξ is an infinitesimal automorphism of D, its flow $\varphi_t : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ preserves ω . More precisely,

$$
\varphi_t^* \omega = f(t, x)\omega
$$

for a suitable formal function $f \in \mathbb{C}[[t, x_1, \ldots, x_n]].$

Consider now the subgroup $G \subset (\mathbb{C}^*)^n \subset GL(\mathbb{C}^n)$ defined as

$$
G = \{ A \in (\mathbb{C}^*)^n \mid A^* \omega \wedge \omega = 0 \text{ in } \bigwedge^2 \Omega^q \otimes \mathbb{C}[[x_1, \dots, x_n]] \},
$$

where $(\mathbb{C}^*)^n$ acts on $(\mathbb{C}^n, 0)$ through a diagonal linear map. The flow of ξ determines a non-closed one-parameter subgroup of $H \subset G$. Since G is clearly an algebraic subgroup, it follows that the Zariski closure of H is also contained in G . But the dimension of the Zariski closure of H is nothing other than the rank of the \mathbb{Z} -module generated by $\lambda_1, \ldots, \lambda_n$. It follows that $\overline{H} = G = (\mathbb{C}^*)^n$.

On the one hand, since ω induces a distribution, $i_v \omega \wedge \omega = 0$. On the other hand, Lemma [6.1](#page-8-0) implies that ω is a multiple of a closed q-form, and consequently $i_v \omega \wedge d\omega$ $= 0$. This shows that $\mathcal D$ is integrable.

It remains to prove that the singular set of D has positive dimension. Looking at the expression (6.1) we realize that it must have at least two non-trivial summands. Indeed, if not, D would be a smooth foliation tangent to ξ , which is clearly impossible. Therefore, if k is the cardinality of the set $\overline{I} = \bigcup_{\lambda_I \neq 0} I$, where the complex numbers λ_I are defined by [\(6.1\)](#page-9-1), then $k > q$. Clearly, the coordinate hyperplanes with index in \overline{I} are invariant under D. Consequently, the intersection of any $q + 1$ of these hyperplanes is also invariant under D . Since D has codimension q , this intersection must be contained in the singular \Box locus of D. \Box

Remark 6.3. Proposition [6.2](#page-9-0) will be in the proof of the general case of Theorem [1](#page-1-0) what Proposition [3.2](#page-4-0) is in the proof of the three-dimensional case. The analogy is not perfect as we do not prove here the integrability of multi-distributions as we did there. Anyway, with some extra effort one can also prove the integrability of the multi-distribution. We will not pursue this here as the result above is sufficient for our purposes.

7. Proof of Theorem [1](#page-1-0)

Let $\mathcal{F} \in \mathbb{P}H^0(X, TX \otimes \mathcal{L}^{\otimes k})$ be a very generic foliation. We can assume, thanks to Theorem [3.5,](#page-6-0) that $\mathcal F$ has isolated singularities, at least one non-resonant singularity, and every leaf of F is Zariski dense.

Proposition [5.2](#page-8-1) implies that F is tangent to a multi-distribution D . We can assume D is irreducible without loss of generality.

If D is locally decomposable around p then Proposition [6.2](#page-9-0) implies the existence of a positive-dimensional irreducible component Z of the singular set of D through p. This set is clearly algebraic and invariant under $\mathcal F$ since sections of $T\mathcal F$ are infinitesimal automorphisms of D . If D is not locally decomposable at p then there exists a subvariety $Z \subseteq X$ where D is not locally decomposable. As above, we conclude that Z is invariant under F.

In both cases, we arrive at a contradiction with Theorem 3.5 .

8. Bernstein–Lunts Conjecture

Theorem [1](#page-1-0) implies the existence of foliations, on arbitrary projective varieties, with quasiminimal characteristic variety. Moreover, as the conclusion of Theorem [3.5](#page-6-0) holds true for any foliation with ample cotangent bundle on \mathbb{P}^n , the existential part of the Bernstein– Lunts Conjecture is settled. Nevertheless, there is still a detail to be dealt with in order to prove that a *very generic* polynomial vector field of degree $d \geq 2$ has quasi-minimal characteristic variety.

8.1. Projective versus affine degree

The (projective) degree of a holomorphic foliation $\mathcal F$ on $\mathbb P^n$ is defined as the degree of the tangency divisor of F with a generic hyperplane H. If $\mathcal{F} \in \mathbb{P}H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(k))$ then the degree of $\mathcal F$ is equal to $k + 1$.

If one starts with a polynomial vector field ξ of degree d on \mathbb{C}^n then it is natural to extend it to a holomorphic foliation \mathcal{F}_{ξ} on \mathbb{P}^n such that H is not contained in the singular set of \mathcal{F}_{ξ} . We set the degree of $\xi = \sum a_i \partial_i$ as the maximal degree of its coefficients a_i . In general the (projective) degree of \mathcal{F}_{ξ} is at most the (affine) degree of ξ . Moreover precisely,

$$
\deg(\mathcal{F}_{\xi}) = \begin{cases} \deg(\xi) & \text{if } H \text{ is invariant under } \mathcal{F}_{\xi}, \\ \deg(\xi) - 1 & \text{if } H \text{ is not invariant under } \mathcal{F}_{\xi}. \end{cases}
$$

If $\mathcal{D}(n, d)$ is the set of polynomial vector fields of degree at most d then the generic element in it extends to a foliation of \mathbb{P}^n with singularities of codimension at least two which leaves the hyperplane at infinity invariant (see [\[12\]](#page-12-12) for a through discussion). In more intrinsic terms, if $T\mathbb{P}^n(-\log H)$ denotes the subsheaf of $T\mathbb{P}^n$ constituted by germs of vector fields tangent to H then $\mathcal{D}(n, d)$ can be identified with $H^0(\mathbb{P}^n, T\mathbb{P}^n(-\log H) \otimes$ $\mathcal{O}_{\mathbb{P}^{n}}(d-1)$). Under this identification the extensions which do not leave the hyperplane at infinity invariant will appear with a divisorial component in their singular set supported there.

8.2. Relative version of Theorem [3.5](#page-6-0)

The proof of Theorem [3.5](#page-6-0) can be adapted to prove the following

Theorem 8.1. *Let X be a smooth projective variety and* $H \subset X$ *a smooth hypersurface. Let also L be an ample line bundle over* X, and $k \gg 0$ a sufficiently large integer. If $\mathcal{F} \in \mathbb{P}H^0(X, TX(-\log H) \otimes \mathcal{L}^{\otimes k})$ is a very generic foliation then every leaf of $\mathcal F$ not *contained in* H *is Zariski dense.*

We will not detail its proof as the case of projective spaces (the one used in the proof of Theorem [2](#page-2-1) below) is Theorem 4.2 of [\[5\]](#page-12-8). Moreover, there it is proved that it suffices to take $k \ge 1$ when $X = \mathbb{P}^n$ and $\mathcal{L} = \mathcal{O}_{\mathbb{P}^n}(1)$.

8.3. Proof of Theorem [2](#page-2-1)

According to Theorem [8.1](#page-11-0) the leaves of a very generic vector field of degree $d \geq 2$ are Zariski dense. Also a very generic vector field has at least one non-resonant singularity. Thus we can apply Propositions [5.2](#page-8-1) and [6.2](#page-9-0) to conclude that the characteristic variety of \mathcal{F}_{ξ} is quasi-minimal.

Acknowledgments. I am grateful to S. C. Countinho for, since 2003, bringing periodically the Bernstein–Lunts conjecture to my attention.

References

- [1] Almeida, L. C. O., Coutinho, S. C.: On homogeneous minimal involutive varieties. LMS J. Comput. Math. 8, 301–315 (2005) [Zbl 1111.32031](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1111.32031&format=complete) [MR 2193215](http://www.ams.org/mathscinet-getitem?mr=2193215)
- [2] Bernstein, J.: Analytic continuation of generalized functions with respect to a parameter. Funktsional. Anal. i Prilozhen. 6, no. 4, 26–40 (1972) (in Russian) [Zbl 0282.46038](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0282.46038&format=complete) [MR 0320735](http://www.ams.org/mathscinet-getitem?mr=0320735)
- [3] Bernstein, J., Lunts, V.: On nonholonomic irreducible D-modules. Invent. Math. 94, 223–243 (1988) [Zbl 0658.32009](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0658.32009&format=complete) [MR 0958832](http://www.ams.org/mathscinet-getitem?mr=0958832)
- [4] Cerveau, D.: Feuilletages holomorphes de codimension 1. Réduction des singularités en petites dimensions et applications. In: Dynamique et géométrie complexes, Panor. Synthèses 8, Soc. Math. France, Paris, 11–47 (1999) [Zbl 1029.32015](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1029.32015&format=complete) [MR 1760842](http://www.ams.org/mathscinet-getitem?mr=1760842)
- [5] Coutinho, S. C.: Foliations of multiprojective spaces and a conjecture of Bernstein and Lunts. Trans. Amer. Math. Soc. 363, 2125–2142 (2011) [Zbl pre05885463](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05885463&format=complete) [MR 2746677](http://www.ams.org/mathscinet-getitem?mr=2746677)
- [6] Coutinho, S. C., Pereira, J. V.: On the density of algebraic foliations without algebraic invariant sets. J. Reine Angew. Math. 594, 117–135 (2006) [Zbl 1116.32023](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1116.32023&format=complete) [MR 2248154](http://www.ams.org/mathscinet-getitem?mr=2248154)
- [7] Ilyashenko, Y., Yakovenko, S.: Lectures on Analytic Differential Equations. Grad. Stud. Math. 86, Amer. Math. Soc., Providence, RI (2008) [Zbl 1186.34001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1186.34001&format=complete) [MR 2363178](http://www.ams.org/mathscinet-getitem?mr=2363178)
- [8] Lunts, V.: Algebraic varieties preserved by generic flows. Duke Math. J. 58, 531–554 (1989) [Zbl 0696.14009](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0696.14009&format=complete) [MR 1016433](http://www.ams.org/mathscinet-getitem?mr=1016433)
- [9] McCune, T. C.: A generic cubic surface contains no involutive curve. J. Algebra 235, 36–44 (2001) [Zbl 1060.14522](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1060.14522&format=complete) [MR 1807653](http://www.ams.org/mathscinet-getitem?mr=1807653)
- [10] de Medeiros, A. S.: Singular foliations and differential p-forms. Ann. Fac. Sci. Toulouse Math. (6) 9, 451–466 (2000) [Zbl 0997.58001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0997.58001&format=complete) [MR 1842027](http://www.ams.org/mathscinet-getitem?mr=1842027)
- [11] Stafford, J. T.: Nonholonomic modules over Weyl algebras and enveloping algebras. Invent. Math. 79, 619–638 (1985) [Zbl 0558.17011](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0558.17011&format=complete) [MR 0782240](http://www.ams.org/mathscinet-getitem?mr=0782240)
- [12] Zakeri, S.: Dynamics of singular holomorphic foliations on the complex projective plane. In: Laminations and Foliations in Dynamics, Geometry and Topology, Contemp. Math. 269, Amer. Math. Soc., Providence, RI, 179–233 (2001) [Zbl 1193.37066](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1193.37066&format=complete) [MR 1810540](http://www.ams.org/mathscinet-getitem?mr=1810540)