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Abstract. The tropical semifield, i.e., the real numbers enhanced by the operations of addition
and maximum, serves as a base of tropical mathematics. Addition is an abelian group operation,
whereas the maximum defines an idempotent semigroup structure. We address the question of the
geometry of idempotent semigroups, in particular, tropical algebraic sets carrying the structure
of a commutative idempotent semigroup. We show that commutative idempotent semigroups are
contractible, that systems of tropical polynomials, formed from univariate monomials, define sub-
semigroups with respect to coordinatewise tropical addition (maximum); and, finally, we prove that
the subsemigroups in Rn which are either tropical hypersurfaces, or tropical curves in the plane or
in the three-space have the above polynomial description.

Keywords. Tropical geometry, polyhedral complexes, tropical polynomials, idempotent semi-
groups, simple polynomials

1. Introduction

Tropical geometry is a geometry over the tropical semifield T = R ∪ {−∞} with the
operations of tropical addition and multiplication

a ⊕ b = max{a, b}, a � b = a + b

(cf. [IMS, M1, M4, RST]). We equip T∗ = R with Euclidean topology, assuming that T
is homeomorphic to [0,∞). In this setting, tropical varieties appear to be certain finite ra-
tional polyhedral complexes. The simplest examples of tropical varieties, R = T∗ and T,
carry algebraic structures: for instance, R is an abelian group with respect to the tropical
multiplication and is a commutative idempotent semigroup with respect to tropical addi-
tion, whereas T is a semigroup with respect to both the operations. Thus, it is natural to
inquire about algebraic and geometric properties of tropical varieties, equipped with one
of these structures.
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Tropical varieties with a group structure have been studied in [G, MZ]. In particular,
tropical abelian varieties, i.e., tropical varieties which are abelian groups whose opera-
tions are regular tropical functions, say, tropical Jacobians, are just real tori (products of
circles and lines).

On the other hand, tropical varieties (and more generally, tropical algebraic sets) en-
hanced with a structure of an idempotent semigroup, have not been considered yet. In
this paper, we focus on the geometric and algebraic properties of such tropical varieties.
After general considerations, resulting in the claim that connected topological idempotent
semigroups with a nontrivial center are contractible (Theorem 2.3), we turn to an inter-
esting particular case of subsemigroups in Rn equipped with the coordinatewise tropi-
cal addition ⊕. Observing that the tropical power induces an endomorphism of (R,⊕),
we conclude that tropical polynomials consisting of only univariate monomials (termed
simple polynomials) define subsemigroups of (Rn,⊕). Yet, not every polyhedral complex
which is a subsemigroup of (Rn,⊕) can be defined by only simple polynomials. However,
we conjecture that such subsemigroups which are also tropical varieties (called additive
tropical varieties) can be defined by simple polynomials, and we prove this conjecture
for additive tropical hypersurfaces of arbitrary dimension (Theorem 5.1) and for additive
tropical curves in the plane and in the three-space (Theorem 6.4). As a consequence, we
show that, for any additive tropical variety, its skeletons support additive tropical subvari-
eties (Theorem 7.1), and thus the connected components of all skeletons are contractible.

2. Topology of idempotent semigroups

A topological semigroup is a pair (U,ψ), where U is a topological space, and ψ :
U2
→ U is continuous and associative, i.e.,

ψ(u,ψ(v,w)) = ψ(ψ(u, v),w), u, v,w ∈ U.

In what follows, we consider only topological semigroups and therefore we will omit
the word “topological” and write semigroups, for short. Moreover, when the operation is
clear from the context, we write U for (U,ψ). Also, we will often write uv instead of
ψ(u, v); no confusion will arise.

The center of a semigroup (U,ψ) is defined to be the set

C(U,ψ) := {u ∈ U : ψ(u, v) = ψ(v, u) for all v ∈ U}.

A semigroup (U,ψ) is called idempotent if ψ(u, u) = u for all u ∈ U .
We start with two simple observations.

Lemma 2.1. Any connected component of an idempotent semigroup is a subsemigroup.

Proof. Let (U,ψ) be an idempotent semigroup with U0 ⊂ U a connected component.
Then ψ(U0 × U0) is connected, and since the diagonal remains in U0, it is contained
in U0. ut
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Lemma 2.2. Any commutative idempotent semigroup U is a directed poset with respect
to the relation

v � u ⇔ v = au for some a ∈ U, (2.1)

which in its turn is compatible with the semigroup operation in the following sense:

v � u ⇒ vw � uw for all w ∈ U.

Proof. Reflexivity and transitivity of relation (2.1) are immediate. Next, if u � v and
v � u, then u = va, v = ub, and we obtain

u = va = uab = uabb = ub = v.

Hence, relation (2.1) defines a partial order. Since u ≺ uv and v ≺ uv for any u, v ∈ U ,
we obtain a directed set. Finally,

v � u ⇒ v = au ⇒ vw = a(uw) ⇒ vw � uw. ut

Our main observation is the following:

Theorem 2.3. Let (U,ψ) be an idempotent semigroup with a nonempty center, and let U
be a connected topological space homotopy equivalent to a CW-complex. Then U is con-
tractible.

Proof. By assumption, there exists u0 ∈ C(U,ψ). We shall show that πk(U, u0) = 0 for
all k ≥ 1. This will yield the contractibility by the classical Whitehead theorem.

Represent the elements of πk(U, u0) by maps γ : I k → U , where I = [0, 1],
γ (∂I k) = u0, taken up to homotopy relative to ∂I k . The operation in πk(U, u0) is then
induced by the composition of γ1, γ2 : I k → U with γ1(∂I

k) = γ2(∂I
k) = u0, defined

as

γ1 ∗ γ2 : I k → U, γ1 ∗ γ2(t1, . . . , tk) =

{
γ1(2t1, t2, . . . , tk), 0 ≤ t1 ≤ 1/2,
γ2(2t1 − 1, t2, . . . , tk), 1/2 ≤ t1 ≤ 1.

For each map γ : I k → U with γ (∂I k) = u0, we have

γ = ψ(γ, γ )
h
∼ ψ(u0 ∗ γ, γ ∗ u0) = ψ(u0, γ ) ∗ ψ(γ, u0) = ψ(u0, γ ) ∗ ψ(u0, γ ),

where
h
∼ stands for homotopy relative to ∂I k , and u0 means the constant map. Further-

more,

ψ(u0, γ )
h
∼ ψ(u0, ψ(u0, γ ) ∗ ψ(u0, γ ))

= ψ(u0, ψ(u0, γ )) ∗ ψ(u0, ψ(u0, γ )) = ψ(u0, γ ) ∗ ψ(u0, γ );

which altogether means that γ
h
∼ u0, and we are done. ut
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Remark 2.4. The hypothesis on the nonemptiness of the center cannot be discarded from
Theorem 2.3, since, for example, in any topological space U one can define the structure
of an idempotent semigroup by letting ψ(u, v) = u for any u, v ∈ U .

A natural question arising from the preceding discussion is:

Question 2.5. Does any contractible topological space admit the structure of an idem-
potent semigroup with a nonempty center?

This is indeed so in the following particular situation.

Proposition 2.6. Any one-dimensional contractible CW-complex admits the structure of
a commutative idempotent semigroup.

Proof. Let U be a 1-dimensional contractible CW-complex and pick a point u0 ∈ U . For
any point u ∈ U there is a unique path γu ⊂ U joining u to u0 that is homeomorphic
either to I = [0, 1], or to a point, according as u 6= u0 or u = u0. The intersection of two
paths γu and γv , u, v ∈ U , is a path γw, for some w ∈ U , and thus, we define

uv = w whenever γu ∩ γv = γw.

It is easy to check that this operation is associative, commutative, and idempotent. ut

Contractible tropical curves are called rational [M3]. Accordingly, our results show that
a tropical curve carries the structure of a commutative idempotent semigroup iff it is
rational. This contrasts with the case of compact tropical curves having the structure of
an abelian group: these are elliptic (or more precisely, homeomorphic to a circle [MZ]).

3. Basic tropical algebraic geometry

For the reader’s convenience we first recall some necessary definitions and facts in tropical
geometry; these can be found in [AR, EKL, G, GKM, IMS, M2, RST]. We also introduce
some new notions to be used throughout the text.

3.1. Tropical polynomials and tropical algebraic sets

A tropical polynomial is an expression of the form

f =
⊕
ω∈�

Aω � λ
ω1
1 � · · · � λ

ωn
n , (3.1)

where � ⊂ Zn is a finite nonempty set of points ω = (ω1, . . . , ωn) with nonnegative co-
ordinates, andAω ∈ R for allω ∈ �; here and throughout, the power am means a repeated
m times, i.e., am = a � · · · � a︸ ︷︷ ︸

m

= ma. We write a polynomial as f =
⊕

ω∈�Aω �3
ω,

where 3ω stands for λω1
1 � · · · � λ

ωn
n , and we denote the semiring of tropical polynomi-

als by T[3]. Abusing notation, we will sometimes write f (λi1 , . . . , λim) for f ∈ T[3],
indicating that f involves only the variables λi1 , . . . , λim .
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Any tropical polynomial f ∈ T[3] \ {−∞} determines a piecewise linear convex
function f : Rn→ R:

f =
⊕
ω∈�

Aω �3
ω
7→ f (u) = max

ω∈�
(〈u, ω〉 + Aω) , (3.2)

where u stands for the n-tuple (u1, . . . , un) ∈ Rn, and 〈∗, ∗〉 is the standard scalar
product. Unlike the classical polynomials over an infinite field, here the map of T[3]
to the space of functions is not injective. Some of the linear functions on the right-hand
side of (3.2) can be omitted without changing the function; we call the corresponding
monomials of f inessential, while the other monomials are called essential.

Remark 3.1. We denote a tropical polynomial and the corresponding function by the
same symbol; no confusion will arise. Whenever we write an expression with formal
variables λi , we assume a polynomial, otherwise we mean a function. The value of the
function corresponding to a polynomial f ∈ T[3] at a point u ∈ Tn is denoted by f (u)
or f (3)|u.

Given a tropical polynomial f , ZT(f ) is defined to be the set of points u ∈ Tn on
which the value f (u) is either equal to −∞, or attained by at least two of the monomials
on the left-hand side of (3.2). When f ∈ T[3] \ {−∞} is nonconstant, the set ZT(f ) is a
proper nonempty subset of Tn, and is called an affine tropical hypersurface. Note that for
the constant polynomial f = −∞ we have ZT(−∞) = Tn.

Letting I = 〈f1, . . . , fs〉 ⊂ T[3] be a finitely generated ideal, the set

ZT(I ) :=
⋂
f∈I

ZT(f ) ⊂ Tn

is called an affine tropical (algebraic) set. Clearly, ZT(I ) = ZT(f1) ∩ · · · ∩ ZT(fs).
Indeed, taking a polynomial f = g1�f1⊕· · ·⊕gs�fs ∈ I and a point u ∈ ZT(f1)∩· · ·∩

ZT(fs), we have f (u) = gi(u) + fi(u) for some i = 1, . . . , s. Suppose f (u) 6= −∞.
Then the value of gi(u) is attained by a monomial Bµ�3µ of gi and the value of fi(u) is
attained by some pair of monomials of fi , say Aω′�3ω

′

and Aω′′�3ω
′′

. Thus, the value
of f (u) is attained by the two monomials Aω′ � Bµ � 3ω

′
+µ and Aω′′ � Bµ � 3ω

′′
+µ

of f ; that is, u ∈ ZT(f ).
It is more convenient (and customary) to consider tropical algebraic sets in Rn ⊂ Tn

(a tropical torus, cf. [M4]). So, for a tropical polynomial f ∈ T[3] \ {−∞}, we let

Z(f ) := ZT(f ) ∩ Rn.

This set can be viewed as the corner locus of the function f , i.e., the set of points u ∈ Rn
on which f is not differentiable, or equivalently, the set of points u ∈ Rn where the
value f (u) is attained by at least two of the linear functions on the right-hand side of (3.2).
For example, Z(f ) is nonempty as long as f contains at least two monomials. Given a
finitely generated ideal I = 〈f1, . . . , fs〉 ⊂ T[x1, . . . , xn], the set Z(I) := ZT(I ) ∩ Rn
is called a tropical (algebraic) set in Rn.
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3.2. Tropical varieties

A finite polyhedral complex (briefly, FPC) in Rn is a pair (P,P), where P ⊂ Rn and P
is a finite set of distinct convex closed polyhedra in Rn, such that:
• P =

⋃
σ∈P σ ;

• if σ ∈ P , then any proper face of σ also belongs to P;
• if δ, σ ∈ P , then δ ∩ σ is either empty, or is a common face (not necessarily proper) of
δ and σ .

Let dim(P,P) = max{dim(σ ) : σ ∈ P}. An FPC (P,P) is said to be pure-dimensional
if any δ ∈ P is a face of some σ ∈ P with dim(σ ) = dim(P,P). An FPC (P,P) is
called rational if all the linear spaces

Rσ := {u− u′ : u,u′ ∈ σ }, σ ∈ P,
are defined over Q.

It is not difficult to see that tropical sets are rational FPC and vice versa.
An m-dimensional tropical variety in Rn, n > m, is a rational FPC (P,P) of pure

dimension m equipped with the weight function w which is defined on the set of top-
dimensional cells of (P,P), has positive integral values, and satisfies the balancing con-
dition at any cell τ ∈ P of dimension m− 1:∑

w(σ)vτ (σ ) = 0 ∈ Zn/Zτ , (3.3)

where the sum is taken over all m-dimensional σ ∈ P containing τ as a face, Zτ =
Rτ ∩ Zn, and vτ (σ ) is a generator of the lattice Zσ/Zτ oriented inside the cone based
at τ and directed by σ .

In this paper we deal mainly with a weaker notion of tropical variety which we call a
tropical set-variety:

Definition 3.2. Let (P,P, w) be a tropical variety in Rn. We call the set P a tropical
set-variety.

Namely, when working with a tropical set-variety, we get rid of the weight function
and the FPC structure. However, a tropical set-variety can be canonically represented as
a union of convex polyhedra. Given an m-dimensional tropical set-variety P , we denote
by Reg(P ) the set of points of P where P is locally homeomorphic to Rm.

Lemma 3.3. Let P be an m-dimensional tropical set-variety. Then:
• the closures of the connected components of Reg(P ) are rational m-dimensional con-

vex polyhedra;
• ifK1,K2 are two connected components of Reg(P ), and dim(K1∩K2) = m−1, then
σ = K1 ∩K2 is a common face of K1 and K2.

Proof. The case of m = 1 is evident, and we assume that m ≥ 2.
Suppose that the closure K of a connected component K of Reg(X) is not convex,

that is, there are closed convex polyhedra σ, τ, ξ ⊂ ∂K , dim(σ ) = dim(τ ) = m − 1,
dim(ξ) = m − 2, ξ = σ ∩ τ , such that K is not convex in a neighborhood of a point
x ∈ Int(ξ).1 Without loss of generality, we may assume that P is a cone with vertex x

1 By the interior of a convex polyhedron we always mean its relative interior (i.e., in its closure).
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(the weight function and the balancing condition will be naturally inherited by the cone
from any structure of tropical variety on P ).

Take an (n−m+2)-dimensional subspace V of Rn defined over Q, passing through x
and transverse to ξ . It supports a tropical variety with one cell of weight 1 whose intersec-
tion with P is a two-dimensional tropical set-variety (see [AR, GKM] for details) which
possesses a connected component K ∩ V of its regular part with a nonconvex closure
K ∩V ; more precisely, this component is the complement of the convex sector S spanned
by the rays σ ∩ V and τ ∩ V in the two-plane 5 = x+ RK ∩ V .

Let W ⊂ Rn be a hyperplane defined over Q (again a tropical set-variety) containing
the plane 5 and transverse to each one-dimensional cell of P ∩ V which is not parallel
to 5. Then P ∩ V ∩ (a +W), for a small generic vector a ∈ Rn, is a tropical set-curve,
whose projection to 5 (being a plane tropical set-curve, push-forward in the terminology
of [AR, GKM]) is contained in a neighborhood of the sector S, which contradicts the
balancing condition.

Now suppose that, for some two connected components K1,K2 of Reg(P ), their in-
tersection σ = K1 ∩K2 is not a common face and has dimension m− 1. Two situations
are possible: either σ ⊂ ∂K1 ∩ ∂K2, or σ ∩ Int(K1) 6= ∅. They both can be viewed as a
limit case of the preceding considerations when either σ, τ lie in the same (m − 1)-face
of K1, or σ = τ . Then the above argument literally leads either to a plane tropical set-
curve different from a straight line and lying in a half-plane, or to a plane set-curve in a
neighborhood of a ray. Both the cases contradict the balancing condition. ut

Definition 3.4. For an m-dimensional tropical set-variety X (in Rn), denote by X(m−1)

the union of the (m− 1)-dimensional faces of the closures of the connected components
of Reg(X).

Question 3.5. Is X(m−1) a tropical set-variety?

The answer is yes for tropical set-curves (evident), tropical set-hypersurfaces (commented
in the next section), and for additive tropical set-varieties (shown in Section 7).

3.3. Tropical hypersurfaces

An important example of a tropical variety is a tropical hypersurface, i.e., a tropical va-
riety in Rn of dimension n− 1. By [M2, Proposition 2.4, Corollary 2.5], for any tropical
hypersurface (P,P, w) in Rn, there exists a tropical polynomial f (λ1, . . . , λn) which
satisfies P = Z(f ) and possesses a number of properties listed below.

If f is given by (3.1), then the function νf Legendre dual to f is defined on the
Newton polytope1f of f (the convex hull of the set� of (3.1)), is convex and piecewise
linear. The graph of νf can be viewed as the lower part of the convex hull of the set
{(ω,−Aω) ∈ Rn+1 : ω ∈ 1∩Zn}, withAω being the coefficients from formula (3.1). The
maximal linearity domains of νf and their faces (which are all convex lattice polytopes)
define an FPC structure S(f ) on 1f . This structure is dual to the FPC structure 6P on
Rn, given by P and the closures of the connected components of Rn \P . Namely, there is
a one-to-one correspondence between the cells of S(f ) and the cells of 6P which inverts
the incidence relation and is such that:
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• the vertices of S(f ) on ∂1f correspond to the closures of the unbounded components
of Rn\P , and the vertices of S(f ) in Int(1f ) correspond to the closures of the bounded
components of Rn \ P ,
• cells of dimension m > 0 in S(f ) correspond to cells of dimension n − m in P , and

the corresponding cells are orthogonal,
• the weight of an (n − 1)-dimensional cell of P equals the lattice length of the dual

segment of S(f ).

It follows immediately that the vertices of the subdivision S(f ), or equivalently, the com-
ponents of Rn \ P , correspond bijectively to the essential monomials of f ; in particular,
the vertices of 1 always correspond to the essential monomials of f . Another immediate
consequence is that the Newton polytopes of tropical polynomials g such that Z(g) = P
and their FPC structure S(g) have the same combinatorial type so that the corresponding
cells are parallel.

In connection to Question 3.5, we recall the following well-known fact, supplying it
with a simple proof.

Lemma 3.6. The proper faces of the closures of the connected components of the com-
plement in Rn to a tropical set-hypersurface P define a FPC structure P on P , and,
for any k = 0, . . . , n − 2, the set P (k) =

⋃
σ∈P, dim(σ )≤k σ is a k-dimensional tropical

set-variety.

Proof. If k = 0, then P (0) is a finite set which is always a zero-dimensional tropical
set-variety. So, fix 0 < k < n − 1 and let P = Z(f ) for some tropical polynomial f .
Let wk be the weight function wk(σ ) = VolZ(σ ∗), σ ∈ P , dim(σ ) = k, where σ ∗ is the
dual polytope in the subdivision S(f ) of the Newton polytope 1 of f , and VolZ(σ ∗) is
the lattice volume of σ ∗ (i.e., the ratio of the Euclidean k-dimensional volume VolR(σ ∗)
and VolR(1σ ), with 1σ being the minimal lattice simplex in Rσ ).

We will show that P (k) with the FPC structure P(k) = {σ ∈ P : dim(σ ) ≤ k}

and the weight function wk(σ ) is a k-dimensional topical variety. We pick τ ∈ P with
dim(τ ) = k − 1, and prove that∑

σ∈P, dim(σ )=k
τ⊂σ

VolZ(σ ∗) · vτ (σ ) = 0 ∈ Zn/Zτ,

or equivalently, ∑
σ∈P, dim(σ )=k

τ⊂σ

VolZ(σ ∗) · v⊥τ (σ ) = 0, (3.4)

where
vτ (σ ) = v⊥τ (σ )+ v‖τ (σ ), v‖τ (σ ) ∈ Rτ, v⊥τ (σ ) ⊥ Rτ.

Notice that

v⊥τ (σ ) =
VolR(1σ )
kVolR(1τ )

nτ (σ ) ,
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where nτ (σ ) is the unit vector in Rσ orthogonal to Rτ and directed inside σ . Observing
that VolR(1σ ) = VolR(1σ ∗), we rewrite (3.4) as∑

τ⊂σ∈P
dim(σ )=k

VolR(σ ∗) · nτ (σ ) = 0. (3.5)

Finally, observe that nτ (σ ) is the outer normal in Rτ ∗ to the facet σ ∗ of the polytope τ ∗,
and thus (3.5) turns into the polytopal Stokes formula. ut

4. Simple additive tropical sets

Subsemigroups of (Rn,⊕) which are tropical algebraic sets are called additive tropical
sets.

Lemma 4.1. Let u1, . . . , un ∈ R. Then
(⊕n

i=1 ui
)s
=
⊕n

i=1 u
s
i for all n, s ∈ N.

Proof. We apply double induction on s and n. Fixing n = 2, the case s = 1 is evident.
Then the induction step from s − 1 to s (where s ≥ 2) goes as follows:

(u1 ⊕ u2)
s
= (u1 ⊕ u2)� (u1 ⊕ u2)

s−1
= (u1 ⊕ u2)� (u

s−1
1 ⊕ us−1

2 )

= us1 ⊕ u
s−1
1 � u2 ⊕ u1 � u

s−1
2 ⊕ us2.

When u1 = u2 the required equality is clear: (u1 ⊕ u1)
s
= us1 = u

s
1 ⊕ u

s
1. If u1 > u2,

then us1 > us−1
1 � u2⊕ u1� u

s−1
2 ⊕ us2, and hence (u1⊕ u2)

s
= us1 = u

s
1⊕ u

s
2. The case

of u1 < u2 is treated similarly. The proof is then completed by induction on n. ut

A tropical polynomial f ∈ T[3] is called simple if each of its monomials is univariate,
or a constant.

Corollary 4.2. Any tropical algebraic set Z(I) ⊂ Rn, where the ideal I ⊂ T[3] is
finitely generated by simple polynomials, is additive.

Proof. It is sufficient to prove that, for any simple polynomial f ∈ T[3], the set
Z(f ) ⊂ Rn is closed under the operation ⊕.

Given u,v ∈ Z(f ), by Lemma 4.1, we have

f (u⊕ v) = f (u)⊕ f (v) = max{f (u), f (v)}.

Suppose that f (u⊕ v) = f (u). Since u ∈ Z(f ), we have f (u) = M1(u) = M2(u) for
some two distinct monomials M1 and M2 of f . By our assumption and by Lemma 4.1,

f (u⊕ v) = f (u) = M1(u) = M2(u) ≥ max{M1(v),M2(v)},

and hence Mi(u ⊕ v) = Mi(u) ⊕ Mi(v) = Mi(u) = f (u ⊕ v), i = 1, 2; that is,
u⊕ v ∈ Z(f ). ut

An additive tropical set of the form Z(I) with an ideal I ⊂ T[3] finitely generated by
simple polynomials is called a simple additive tropical set.
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Not all additive tropical sets are simple; for example, the horizontal ray

R = {(t, 0) : t ≥ 0} ⊂ R2

is a tropical algebraic set defined by the ideal

I = 〈λ1 � λ2 ⊕ λ1 ⊕ λ2, λ1 � λ2 ⊕ λ1 ⊕ (−1)� λ2〉 ⊂ T[λ1, λ2],

and it is additive. On the other hand, R is not simple. Indeed, due to the duality described
in Section 3.3, the Newton polygon of a tropical polynomial f ∈ T[λ1, λ2] such that
Z(f ) ⊃ R must have a (vertical) side with the outer normal (1, 0). For a simple polyno-
mial f with two variables, which may contain only monomials of the form A0, Ai � λi1,
or Bj � λ

j

2 , this is possible only when f = f (λ2), i.e., λ1 is not involved in f . But then
Z(f ) must contain the whole straight line through the ray R, and so does Z(I) for I
generated by such simple polynomials.

However, we propose the following converse to Corollary 4.2.

Conjecture 4.3. Any additive tropical set-variety in Rn is simple.

We prove this conjecture for the three particular cases: tropical set-hypersurfaces, affine
subspaces of Rn, and tropical set-curves in R2 and R3.

5. Additive tropical set-hypersurfaces and affine subspaces

Theorem 5.1. A tropical set-hypersurface P ⊂ Rn is additive if and only if P = Z(f )
for some simple tropical polynomial f ∈ T[3].

Proof. It is sufficient to prove the “only if” implication.

Step 1. Let P = Z(f ) be additive. Without loss of generality, since multiplication by
a monomial and removal of inessential monomials does not affect Z(f ) (see details in
Section 3.3), we may assume that f is not divisible by any monomial and it contains only
essential monomials. Then all the monomials of f are encoded by points lying on the
boundary of the Newton polytope 1 of f . Indeed, otherwise we would have an essential
monomial corresponding to a vertex of the subdivision S(f ) in Int(1), and thus this
vertex would be dual to a bounded component of Rn \ Z(f ). But, in view of Theorem
2.3, the latter is impossible, since Z(f ) is contractible while the boundary of a bounded
component of Rn \ P would give a nontrivial (n− 1)-cycle in Z(f ).

Step 2. Since P 6= ∅, f has at least two monomials. Let Aω �3ω and Aτ �3τ be two
monomials of f such that ω 6= τ , where ω, τ ∈ Zn, and the corresponding hyperplane
(cf. (3.2))

〈u, ω〉 + Aω = 〈u, τ 〉 + Aτ (5.1)

contains an (n − 1)-dimensional cell D of P . We claim that the n-tuple ω − τ has at
most two nonzero coordinates, and the product of any pair of coordinates of ω − τ is
nonpositive. Indeed, otherwise, one could write (5.1) as a1λ1 + · · · + anλn = b with
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ai, aj > 0 for some i 6= j , and then one could choose two sufficiently close points
u′ = (u′1, . . . , u

′
n), u′′ = (u′′1, . . . , u

′′
m) in the interior of D for which

u′i > u′′i , u′j < u′′j , u′k = u
′′

k for all k 6= i, j.

But then u′ ⊕ u′′ 6∈ D, since this sum does not satisfy (5.1).

Step 3. Suppose that n = 2, and P = Z(f ) for f ∈ T[λ1, λ2]. Let f contain the
monomials Ai � λi1 and Bj � λ

j

2 with i, j > 0. Assuming that f has an (essential)
monomial Ak` � λk1 � λ

`
2 with some k, ` > 0, and taking into account the conclusions of

Step 1, we obtain the three vertices (i, 0), (0, j), and (k, `) of the subdivision S(f ) lying
on the boundary of the Newton polygon 1. According to the conclusion of Step 2, the
sides of1 cannot be directed by vectors with positive coordinates, and hence the tropical
curve U necessarily has either

• a pair of rays directed by vectors with negative coordinates (see Figure 1(a,b)), or
• a pair of rays directed by vectors with positive coordinates (see Figure 1(c,d)), or
• a pair of non-parallel rays directed by vectors with nonnegative coordinates (see Fig-

ure 1(e,f)).

(The labels e1 and e2 in Figure 1 denote the edges of S(f ) adjacent to the point (k, `),
the symbol 1 designates the part of the plane adjacent to the depicted fragment of the
boundary in which the Newton polygon lies; we also note that in cases (a), (c), (e), and (f),
the rays drawn in bold may merge to the same vertex, this does not affect our argument.)

In all the situations described above, the tropical sums of points lying on such pairs of
rays sweep a two-dimensional domain in R2, contradicting the one-dimensionality of P .

Assume f does not contain a monomial Ai � λi1 with i > 0. Since f is not divisible
by any monomial, it should also contain a constant term A0 ∈ R. This implies that f has
no mixed monomialsAk`�λk1�λ

`
2 with k, ` > 0, since otherwise the Newton polygon1

would have a side with an outer normal whose coordinates are nonzero and have distinct
signs—a contradiction to the conclusion of Step 2. Therefore f is simple.

Step 4. Suppose that n ≥ 3, and P = Z(f ) with f ∈ T[3]. Write f as the sum of
essential monomials: f =

⊕
ω∈�Mω, where � ⊂ Zn is finite. Assume that f has an

essential monomial Mτ , τ ∈ �, depending on at least two variables, say λ1, λ2. By
definition, there are c1, . . . , cn ∈ R for which

Mτ (c1, . . . , cn) > Mω(c1, . . . , cn) for each ω ∈ � \ {τ }. (5.2)

Since a small variation of c1, . . . , cn does not violate (5.2), we can take these numbers
to be generic. The precise requirement is as follows: denoting by pr12 : Zn → Z2 the
projection of Zn to the first two coordinates of Zn, we rewrite f as

f (λ1, . . . , λn) =
⊕

(k1,k2)∈pr12(�)

λ
k1
1 � λ

k2
2 � fk1k2(λ3, . . . , λn),

where
fk1k2(λ3, . . . , λn) =

⊕
(k1,k2,k3,...,kn)∈�

Ak1···kn � λ
k3
3 � · · · � λ

kn
n (5.3)
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Fig. 1. Illustration to the proof of Theorem 5.1.
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for (k1, k2) ∈ pr12(�). Our demand is that, for each polynomial (5.3), the values of
the monomials at (c3, . . . , cn) be distinct. Geometrically, this means that (c3, . . . , cn)

lies outside
⋃
(k1,k2)∈pr12(�)

Z(fk1k2) ⊂ Rn−2, and that such a generic choice is always
possible, since the latter set is a finite polyhedral complex of dimension n− 3 in Rn−2.

Let5 = {λ3 = c3, . . . , λn = cn} ⊂ Rn be a plane in Rn, and let g ∈ T[λ1, λ2] be the
polynomial obtained from f by substituting c3, . . . , cn for λ3, . . . , λn, respectively. We
claim that P2 := P ∩ 5 is the tropical set-curve in 5 given by g. Indeed, if (u1, u2) ∈

Z(g), then

u
k1
1 � u

k2
2 � fk1k2(c3, . . . , cn) = u

`1
1 � u

`2
2 � f`1`2(c3, . . . , cn) (5.4)

for some (k1, k2) 6= (`1, `2) ∈ pr12(�), and thus f has a pair of monomials reaching the
value f (u1, u2, c3, . . . , cn), which, in particular, means that (u1, u2, c3, . . . , cn) ∈ Z(f ).
On the other hand, if (u1, u2, c3, . . . , cn) ∈ Z(f ), then the value f (u1, u2, c3, . . . , cn) is
attained by a pair of monomials Mω′ ,Mω′′ of f , which in addition must satisfy

pr12(ω
′) = (k1, k2) 6= pr12(ω

′′) = (`1, `2)

due to the choice of (c3, . . . , cn). Hence, equality (5.4) is satisfied and thus (u1, u2)

∈ Z(g).
The 2-plane 5 = {λ3 = c3, . . . , λn = cn} is a subsemigroup of (Rn,⊕) isomorphic

to (R2,⊕), and therefore P2 is an additive tropical set-curve in R2.
To summarize, we have pr12(τ ) = (k, `) with k, ` > 0 for the monomial Mτ initially

chosen to be essential. Then, the monomial Nk` = λk1 � λ
`
2 � fk`(c3, . . . , cn) of g is

essential as well, since, due to (5.2), its value at (c1, c2) is greater than that for all the
other monomials of g. As shown in Step 3, the sum ĝ of the essential monomials of g
must be a simple polynomial, possibly multiplied by a monomial. Since Nk` is essential
and depends both on λ1 and λ2, the polynomial ĝ is divisible either by λ1 or by λ2. If ĝ
is divisible by λ1, then so is g. Indeed, otherwise at least one of the monomials of g
depends only on λ2, and would correspond to a vertex of the Newton polygon. Hence it
must be essential (see Section 3.3). Finally, notice that if g is divisible by λ1, then so is f ,
contradicting the assumption of Step 1.

The proof of Theorem 5.1 is complete. ut

Another example of simple additive tropical sets is provided by additive affine subspaces
of Rn. Note that a hyperplane in Rn is a tropical set-hypersurface, since it can be defined
by a tropical binomial. Moreover, any rational affine subspace of Rn is a tropical set-
variety defined by a number of tropical binomials.

Theorem 5.2. An affine subspace P ⊂ Rn, parallel to a linear subspace defined over Q,
is additive if and only if P is simple.

Proof. As before, given an additive affine subspace P ⊂ Rn, the task is to find simple
tropical binomials that define P . In view of Theorem 5.1, we may assume that k =
dim(P ) ≤ n− 2. Choose a base v1, . . . ,vk of the linear space parallel to P and, without
loss of generality, assume that the first k×k minor of the coordinate matrix of v1, . . . ,vk
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is nonsingular. Then P projects onto a hyperplane Pi in the coordinate (k + 1)-plane
5i = {λj = 0, k < j ≤ n, j 6= i}, i = k+ 1, . . . , n. Using Theorem 5.1 again, we have
Pi = Z(fi) ∩ 5i , where fi is a simple binomial for each i = k + 1, . . . , n, and hence
P =

⋂n
i=k+1 Z(fi) = Z(fk+1, . . . , fn). ut

6. Additive tropical set-curves

The treatment of additive tropical set-curves appears to be more involved and delicate than
one may expect. Our exposition appeals to the natural idea of considering the projections
of a given curve to the coordinate planes and taking the intersection of the cylinders built
over all these projections. This intersection can be greater than the original curve, and the
central problem is then to remove unnecessary pieces; this is what we are doing below. So,
we proceed as follows: first, we clarify several geometric properties of additive tropical
set-curves, later we construct some auxiliary additive tropical sets, and finally we prove
that additive tropical set-curves are simple.

6.1. Geometry of additive tropical set-curves

Let U ⊂ Rn (n ≥ 2) be an additive tropical set-curve. Without loss of generality, we may
assume that U does not lie entirely in any hyperplane λj = const, 1 ≤ j ≤ n.

We denote by U0 and U1 the sets of vertices and of edges of U respectively. Let us
outline some useful geometric properties of additive tropical set-curves.

(i) The directing vectors of the edges of U cannot have a pair of coordinates having
distinct signs, since otherwise, by the arguments of Steps 2 and 3 in the proof of Theorem
5.1, the sums of points on such an edge would fill a two-dimensional domain.

We shall equip all the edges e ofU with an orientation, taking their (integral primitive)
directing vectors a(e) to have only nonnegative coordinates. Note that this orientation
agrees with the order given by (2.1). In addition, this orientation defines a partial order
in U1 by letting e � e′ when e and e′ have a common vertex u, e′ coming to u, and e
emanating from u. The poset U1 has a unique maximal element, which is a ray pointing
to Rn

≥0 := {x1 ≥ 0, . . . , xn ≥ 0}. Indeed, if one had two rays pointing to Rn
≥0, then, as

was shown in Step 3 of the proof of Theorem 5.1, the sums of points on such two edges
would sweep a two-dimensional domain.

(ii) Let u ∈ U0 and C1
u = {e ∈ U

1 : u ∈ e}. As pointed out above, in the notation of
Section 3.2, we have

au(e) ∈ Rn
≥0 ∪ Rn

≤0 for all e ∈ U1
u,

where Rn
≤0 := {x1 ≤ 0, . . . , xn ≤ 0}. Furthermore, due to (3.3), U1

u must contain at least
one edge e with au(e) ∈ Rn

≥0 and at least one edge e′ with au(e
′) ∈ Rn

≤0. We also claim
that U1

u contains precisely one edge e with au(e) ∈ Rn
≥0. Indeed, otherwise, the sums of

points on such two edges would sweep a two-dimensional domain. We denote this edge
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by eu. A similar reasoning shows that there is at most one edge e′ with au(e
′) ∈ Rn<0 :=

{x1 < 0, . . . , xn < 0}.

(iii) Next, we notice that if au(eu) ∈ {xi = 0}, then au(e
′) ∈ {xi = 0} for all e′ ∈ U1

u.
Indeed, if au(e

′) has a nonzero i-th coordinate for some e′ ∈ U1
u, then, due to (3.3), there

should be some au(e
′′), e′′ ∈ U1

u, with a positive i-th coordinate, contrary to au(e
′′) ∈

Rn
≤0 for all e′′ ∈ C1

u \ {eu}.

(iv) Let U+ denote the union of those edges e ∈ U1 whose directing vectors satisfy

a(e) ∈ Rn>0 := {x1 > 0, . . . , xn > 0}.

We point out that U+ 6= ∅, since it contains the maximal edge-ray e ∈ U1. Indeed,
otherwise, by (iii) the whole tropical set-curve U would lie in a hyperplane xi = const,
contrary to the initial assumption. Furthermore, due to (ii), U+ must be connected and
homeomorphic either to [0,∞) or to R. We call U+ the spine of the additive tropical
set-curve U .

(v) Let U0
+ = U+ ∩ U

0 := {u1, . . . ,um} be the set of vertices of U that lie on U+.
Pick i ∈ {1, . . . , m}, and to each edge e ∈ U1

ui such that aui (e) ∈ Rn
≤0 associate the

set J (e) ⊂ {1, . . . , n} consisting of the indices for which the coordinates of aui (e) are
negative. The additivity condition implies that

• the map e 7→ J (e) restricted to U1
ui is injective,

• if e1, e2∈U
1
ui emanate from ui in nonpositive directions, then either J (e1)∩J (e2)=∅,

or there is an edge e ∈ U1
ui with aui (e) ∈ Rn

≤0 such that J (e) = J (e1) ∩ J (e2).

(vi) Let Ui = {u ∈ U : u ≺ ui}. This is the part of the curve U that lies in the shifted
orthant ui + Rn

≤0. Since this orthant is a subsemigroup of Rn, Ui is an additive tropical
set.

6.2. Auxiliary additive tropical sets

Introducing the cone

60 := Rn
≤0 \ Rn<0 = {(u1, . . . , un) ∈ Rn

≤0 : u1, . . . , un = 0},

and denoting by 6u the shift of 60 to the cone with vertex at u ∈ Rn, and by the results
of Section 6.1, we have

U ⊂ Ũ := U+ ∪
⋃

u∈U0
+

6u.

The cone 6u divides Rn into two components which we denote by

Int(6u) = u+ Rn<0 and Ext(6u) = Rn \ (6u ∪ Int(6u)).

The cone 60 (and each 6ui , i = 1, . . . , m) splits naturally into the disjoint union of
open cells, labeled by subsets J ( {1, . . . , n}, and defined by

60(J ) := {(u1, . . . , un) ∈ 60 : uj < 0 for j ∈ J, uj = 0 for j 6∈ J }.
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Observing that

60(J ) =
⋃
K⊂J

60(K),

we let

Ji(U) = {J ( {1, . . . , n} : 6ui (J ) ∩ U 6= ∅} and 6Uui =
⋃

J∈Ji (U)
6ui (J ),

for each i = 1, . . . , m, and define

Ũred := U+ ∪
⋃

u∈U0
+

6Uu .

Note that U ⊂ Ũred ⊂ Ũ , and U = Ũred for n = 2.

Lemma 6.1. Ũ and Ũred are simple additive tropical sets.

Proof. We shall define Ũ and Ũred by simple tropical polynomials.

(1) We first consider Ũ , and organize our argument in a few steps.

Step 1. Assume that U+ is homeomorphic to R. We intend to determine a (finite) set 8
consisting of simple tropical polynomials in n variables such that

⋂
f∈8 Z(f ) = Ũ . In

this step we show that
⋂
f∈8 Z(f ) ⊃ Ũ .

Let

U0
+ = {u1, . . . ,um}, ui = (ui1, . . . , uin), i = 1, . . . , m,

with uij < ukj for all 1 ≤ i < k ≤ m, j = 1, . . . , n. The set U+ containsm+ 1 edges, in
order e0 ≺ e1 = [u1,u2] ≺ · · · ≺ em−1 = [um−1,um] ≺ em, where e0 and em are rays,
whose primitive integral directing vectors are

a(ei) = (ai1, . . . , ain) ∈ Rn>0, i = 0, . . . , m.

In particular, ui+1,s−uis = aisµi for some µi > 0 for each 1 ≤ i < m and s = 1, . . . , n.
Let p0, . . . , pm and b(i, j), i = 0, . . . , m, j = 1, . . . , n, be positive integers such

that

(P1) pi is divisible by 2ai1 · · · ain, i = 0, . . . , m;
(P2) b(0, j) � n and b(i, j) − b(i − 1, j) � n for all i = 1, . . . , m, j = 1, . . . , n,

where b(i, j) := pi/aij .

By definition

aikb(i, k) = ai`b(i, `) for all k, ` = 1, . . . , n, i = 1, . . . , m− 1. (6.1)
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Now we introduce the set 8 ⊂ T[3] of n(n − 1)/2 simple tropical polynomials fk`,
1 ≤ k < ` ≤ n, given by

fk` =
( m⊕
i=0

(
Ak`ik � λ

b(i,k)
k ⊕ Ak`i` � λ

b(i,`)
`

))
⊕

(m−1⊕
i=0

⊕
1≤j≤n
j 6=k,`

(
Bk`i+1,j � λ

b(i+1,j)−j
j ⊕ Ck`ij � λ

b(i,j)+j
j

))
, (6.2)

whose coefficients A∗∗ are as specified below. The monomials of fk` correspond to the
following integral points:

1. m+ 1 points Pki = b(i, k)εk , i = 0, . . . , m, on the k-th axis;
2. m+ 1 points P`i = b(i, `)ε`, i = 0, . . . , m, on the `-th axis;
3. 2m points P+ji = (b(i, j) + j)εj , i = 0, . . . , m − 1, and P−ji = (b(i, j) − j)εj ,
i = 1, . . . , m, on the j -th axis for all 1 ≤ j ≤ n, j 6= k, ` (here εj denotes the unit
vector of the j -th coordinate axis).

The Newton polytope of fk` naturally splits into the subpolytopes

5ik` = conv{Pk,i−1, Pki, P`,i−1, P`i, P
+

j,i−1, P
−

ji , j 6= k, `}, i = 1, . . . , m. (6.3)

Now we impose conditions on the coefficients of fk`:(
Ak`i−1,k � λ

b(i−1,k)
k

)∣∣
ui
=
(
Ak`i−1,` � λ

b(i−1,`)
`

)∣∣
ui
=
(
Ak`ik � λ

b(i,k)
k

)∣∣
ui

=
(
Ak`i` � λ

b(i,`)
`

)∣∣
ui

=
(
Bk`ij � λ

b(i,j)−j
j

)∣∣
ui

=
(
Ck`i−1,j � λ

b(i−1,j)+j
j

)∣∣
ui
, (6.4)

for all i = 1, . . . , m, 1 ≤ k < ` ≤ n, 1 ≤ j ≤ n, j 6= k, `. We should check the consis-
tency of system (6.4), since each of the coefficients Ak`ik , Ak`i` , i = 1, . . . , m − 1, enters
two equations in this system. The verification goes as follows: the restriction of (6.4) to
the variables A∗∗ reads

Ak`i−1,k + uikb(i − 1, k) = Ak`i−1,` + ui`b(i − 1, `) = Ak`ik + uikb(i, k)

= Ak`i` + ui`b(i, `) (6.5)

for 1 ≤ i ≤ m; hence we have to show that

Ak`ik + uikb(i, k) = A
k`
i` + ui`b(i, `) ⇒ Ak`ik + ui+1,kb(i, k) = A

k`
i` + ui+1,`b(i, `)

for all 1 ≤ i < m, or equivalently, that

(ui+1,k − uik)b(i, k) = (ui+1,` − ui`)b(i, `), 1 ≤ i < m,

which finally reduces to assumption (6.1). The solutions to system (6.4) form a one-
parameter family, and we pick one of these solutions.
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Consider now the truncation of fk` to one variable (i.e., the sum of monomials only
containing the chosen variable). From (6.5) and property (P2) above, we derive

Ak`i+1,k + αi+1,kb(i + 1, k) = Ak`ik + αi+1,kb(i, k)

⇒ Ak`i+1,k + αikb(i + 1, k) < Ak`ik + αikb(i, k) = A
k`
i−1,k + αikb(i − 1, k),

which immediately generalizes to{(
Ak`ik � λ

b(i,k)
k

)∣∣
ui
>
(
Ak`sk � λ

b(s,k)
k

)∣∣
ui(

Ak`i` � λ
b(i,`)
`

)∣∣
ui
>
(
Ak`s` � λ

b(s,`)
`

)∣∣
ui

when |i − s| ≥ 2. (6.6)

Similarly, we have{(
Bk`i+1,j � λ

b(i+1,j)−j
j

)∣∣
ui
>
(
Bk`s+1,j � λ

b(s+1,j)−j
j

)∣∣
ui(

Ck`ij � λ
b(i,j)+j
j

)∣∣
ui
>
(
Ck`sj � λ

b(s,j)+j
j

)∣∣
ui

when i 6= s. (6.7)

Altogether, this means that all the monomials of the truncation are essential.
The latter property and condition (6.4) imply that the subdivision S(fk`) of the New-

ton polytope1(fk`) contains the polytopes5ik`, i = 1, . . . , m, defined by (6.3). Further-
more, each polytope 5ik` is dual to the vertex ui (in the sense of Section 3.3), and the
polytope’s edges lying on the coordinate axes are dual to the facets of the cone 6ui .

Next, the edge [Pki, P`i] of the subdivision S(fk`) is dual to a convex (n − 1)-
dimensional polyhedron in Z(fk`) that contains either the point u1 if i = 0, or the points
ui−1 and ui if 1 ≤ i < m, or the point um if i = m. In the case of 1 ≤ i < m, due to
convexity, the relevant polyhedron contains the whole edge ei of U+. In the case when
i = 0 or m, due to the orthogonality of [Pki, P`i] to this polyhedron and to the edge ei
(the latter orthogonality comes from (6.1)), the hyperplane spanned by the polyhedron
contains the edge ei . Moreover, the following comparison of monomials says that the
polyhedron itself contains ei : due to (6.1) and (6.4), for u = u1 − ta(e0) ∈ e0, t > 0,
and any j 6= k, `, 1 ≤ j ≤ n, one has(

Ck`0j � λ
b(0,j)+j
j

)∣∣
u =

(
Ck`0j � λ

b(0,j)+j
j

)∣∣
u1
− tb(0, j)a0j − tja0j

=
(
Ak`0k � λ

b(0,k)
j

)∣∣
u1
− tb(0, k)a0k − tja0j

=
(
Ak`0k � λ

b(0,k)
j

)∣∣
u − tja0j <

(
Ak`0k � λ

b(0,k)
j

)∣∣
u ,

and similarly, for u = um + ta(em) ∈ em, t > 0,(
Bk`mj � λ

b(m,j)−j
j

)∣∣
u <

(
Ak`mk � λ

b(m,k)
k

)∣∣
u.

Thus,
⋂
k,` Z(fk`) ⊃ Ũ .

Step 2. Let us prove the inverse relation
⋂
k,` Z(fk`) ⊂ Ũ . More precisely, we have to

show that outside the cones 6u, u ∈ U0
+, the ideal generated by the polynomials fk`,

1 ≤ k < ` ≤ n, defines a subset of U+.
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First, we introduce extra notation referring to the splitting of each polynomial fk`,
1 ≤ k < ` ≤ n, into the following (tropical) sum:

fk` = f
(0)
k` ⊕ f

(1)
k` ⊕ · · · ⊕ f

(m)
k` ,

f
(0)
k` = A

0k
k` � λ

b(0,k)
k ⊕ A0`

k` � λ
b(0,`)
` ⊕

⊕
j 6=k,`

C
0j
k` � λ

b(0,j)+j
j ,

f
(m)
k` = A

mk
k` � λ

b(m,k)
k ⊕ Am`k` � λ

b(m,`)
` ⊕

⊕
j 6=k,`

B
mj
k` � λ

b(m,j)−j
j ,

f
(i)
k` = A

ik
k` � λ

b(i,k)
k ⊕ Ai`k` � λ

b(i,`)
` ⊕

⊕
j 6=k,`

(
B
ij
k` � λ

b(i,j)−j
j ⊕ C

ij
k` � λ

b(i,j)+j
j

)
,

1 ≤ i < m.

Let u′ = (u′1, . . . , u
′
n) ∈

⋂
k,` Z(fk`) ∩ Ext(6um). Without loss of generality, we

may assume that um = 0 and fk`(um) = 0 for all 1 ≤ k < ` ≤ n. Then, in particular,

f
(m)
k` = λ

b(m,k)
k ⊕ λ

b(m,`)
` ⊕

⊕
j 6=k,`

λ
b(m,j)−j
j ,

and the point u is such that u′i > 0 if i belongs to a nonempty subset J ⊂ {1, . . . , n},
and u′j ≤ 0 if j 6∈ J . It follows immediately from (6.4), (6.6), and (6.7) that, for any fixed
1 ≤ k < ` ≤ n, the top degree monomials of fk` in the variables λi , i ∈ J , take positive
values at u′. These values are greater than the values taken by the other monomials in
λi , i ∈ J , at u′. Similarly, the monomials in λj , j 6∈ J , take negative values at u′.
This means that the geometry of Z(fk`) in Ext(6um) is determined by the top degree
monomials of fk`, i.e., by f (m)k` .

Next, we have

max
r=1,...,n

λb(m,r)r

∣∣
u′r
= λ

b(m,i)
i

∣∣
u′i
> λ

b(m,j)
j

∣∣
u′j
, i ∈ J ′, j 6∈ J ′,

for some set J ′ ⊂ J . Assuming that J ′ ( {1, . . . , n}, we pick k ∈ J ′ and ` ∈ {1, . . . , n} \
J ′, and obtain the following:

λ
b(m,k)
k

∣∣
u′k
= λ

b(m,i)
i

∣∣
u′i
> λ

b(m,i)−i
i

∣∣
u′i

for all i ∈ J ′ \ {k},

λ
b(m,k)
k

∣∣
u′k
> λ

b(m,i)
i

∣∣
u′i

for all i ∈ J \ J ′, and

λ
b(m,k)
k

∣∣
u′k
> 0 ≥ λb(m,i)−ii

∣∣
u′i

for all i 6∈ J ;

this means that the value f (m)k` (u
′) is attained by a unique monomial, i.e., u′ 6∈ Z(fk`).

Hence, J ′ = {1, . . . , n}, which, due to (6.1), implies that u′ = µa(em) with µ > 0; that
is, u′ ∈ U+.

Let u′ ∈
⋂
k,` Z(fk`) ∩ Ext(6um−1) ∩ Int(6um), that is, u′ = (u′1, . . . , u

′
n) with

0 > u′i > um−1,i for i ∈ J and 0 > um−1,j ≥ u
′

j for j 6∈ J , where J ⊂ {1, . . . , n} is
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some nonempty set. These relations, together with equalities (6.4) and inequalities (6.6),
(6.7), yield

f
(m−1)
k` (u′) > max{f (0)k` (u

′), . . . , f
(m−2)
k` (u′), f

(m)
k` (u

′)}, 1 ≤ k < ` ≤ n;

nevertheless the value f (m−1)
k` (u′) can be attained only by monomials which depend on

λj , j ∈ J .
In view of um = 0, fk`(um) = 0, and equalities (6.4) for i = m, we then get

f
(m−1)
k` = λ

b(m−1,k)
k ⊕ λ

b(m−1,`)
` ⊕

⊕
j 6=k,`

(
B
m−1,j
k` � λ

b(m−1,j)−j
j ⊕ λ

b(m−1,j)+j
j

)
.

Furthermore, due to equalities (6.4) for i = m− 1 and inequalities (6.6), (6.7), we have

λ
b(m−1,i)
i

∣∣
u′i
> λ

b(m−1,i)
i

∣∣
um−1,i

= fij (um−1) for all i ∈ J, j 6= i,

λ
b(m−1,j)
j

∣∣
u′j
≤ λ

b(m−1,j)
j

∣∣
um−1,j

= fij (um−1) for all j 6∈ J, i 6= j.

Hence,

max
r=1,...,n

λb(m−1,r)
r

∣∣
u′r
= λ

b(m−1,i)
i

∣∣
u′i
> λ

b(m−1,j)
j

∣∣
u′j

if i ∈ J ′, j 6∈ J ′ (6.8)

for some nonempty set J ′ ⊂ J . Suppose that J ′ ( {1, . . . , n}, and pick k ∈ J ′, ` 6∈ J ′.
Then

(6.8) ⇒ λ
b(m−1,k)
k

∣∣
u′k
> λ

b(m−1,`)
`

∣∣
u′`
, (6.9)

(6.8) & u′i < 0 ⇒ λ
b(m−1,k)
k

∣∣
u′k
≥ λ

b(m−1,i)
i

∣∣
u′i
> λ

b(m−1,i)+i
i

∣∣
u′i
, i 6= k, `, (6.10)

(6.4) & i ∈ J \ {k} ⇒

λ
b(m−1,k)
k

∣∣
u′k
−
(
B
m−1,i
k` � λ

b(m−1,i)−i
i

)∣∣
u′i

= u′kb(m− 1, k)− (Bm−1,i
k` + u′i(b(m− 1, i)− i))

= (u′k − um−1,k)b(m− 1, k)− (u′i − um−1,i)(b(m− 1, i)− i)

+
(
um−1,kb(m− 1, k)− (Bm−1,i

k` + um−1,i(b(m− 1, i)− i))
)

= (u′k − um−1,k)b(m− 1, k)− (u′i − um−1,i)(b(m− 1, i)− i)

+
(
λ
b(m−1,k)
k

∣∣
um−1,k

−
(
B
m−1,i
k` � λ

b(m−1,i)−i
i

)∣∣
um−1,i

)
(6.4)
= (u′k − um−1,k)b(m− 1, k)− (u′i − um−1,i)(b(m− 1, i)− i)
> (u′k − um−1,k)b(m− 1, k)− (u′i − um−1,i)b(m− 1, i)

=
(
λ
b(m−1,k)
k

∣∣
u′k
− λ

b(m−1,i)
i

∣∣
u′i

)
+
(
λ
b(m−1,k)
k

∣∣
um−1,k

− λ
b(m−1,i)
i

∣∣
um−1,i

)
.
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In view of k ∈ J ′ and (6.8), the former expression on the last line is nonnegative. In its
turn, the latter expression vanishes; this follows from (6.4) and (6.5) (cf. the verification
of the consistency of system (6.4) performed in Step 1). Hence,

λ
b(m−1,k)
k

∣∣
u′k
>
(
B
m−1,i
k` � λ

b(m−1,i)−i)
i

)∣∣
u′i
, i ∈ J \ {k}. (6.11)

Finally, for i 6∈ J and i 6= `, one has

λ
b(m−1,k)
k

∣∣
u′k
> λ

b(m−1,k)
k

∣∣
um−1,k

= fk`(um−1) =
(
B
m−1,i
k` � λ

b(m−1,i)−i)
i

)∣∣
um−1,k

≥
(
B
m−1,i
k` � λ

b(m−1,i)−i)
i

)∣∣
u′i
. (6.12)

Thus, the assumption J ′ ( {1, . . . , n} together with (6.9)–(6.12) has led to the fact that
the value fk`(u′) is attained by the unique monomial λb(m−1,k)

k , namely u′ 6∈ Z(fk`)—
a contradiction. Hence, J ′ = {1, . . . , n}, which, due to (6.1), implies u′ − um−1 =

λa(em−1), that is, u′ ∈ em−1 ⊂ U+ ⊂ Ũ .
In the same manner we proceed further showing that if u′ ∈

⋂
k,` Z(fk`)∩Ext(6ur−1)

∩ Int(6ur ), then u′ ∈ er−1 ⊂ Ũ , r < m, which allows us to derive the required relation⋂
k,` Z(fk`) ⊂ Ũ .

Step 3. In the remaining situation, when U+ is homeomorphic to [0,∞), we modify
the preceding construction in order to exclude any ray e0 attached to the vertex u1 and
directed to the negative infinity. Namely, in formula (6.2) for fk`, we replace all the terms
having exponents b(0, j), j = 1, . . . , n, by a constant Ak`0 which satisfies condition (6.4)
for i = 0. The equality

⋂
k,` Z(fk`) = Ũ is then obtained in the same way as in Steps 1

and 2 for the case U+ ' R.

(2) To prove that Ũred is simple, we extend the ideal I := 〈fk` : 1 ≤ k < ` ≤ n〉,
defining Ũ , with the extra simple tropical polynomials constructed below.

We assume that U+ is homeomorphic to R. As in the preceding situation, in order to
cover the case of U+ homeomorphic to [0,∞), the forthcoming construction should be
slightly modified; however, we skip this case.

Fix some i = 1, . . . , m, and choose a set K ( {1, . . . , n} such that 6ui (K) 6⊂ Ũred
(or equivalently, 6ui (K)∩ Ũred = ∅). Then, we shall construct a simple polynomial fi,K
such that the set Z(fi,K) contains the following:

• the spine U+,
• all the cones 6uk for 1 ≤ k ≤ m, k 6= i, and
• all the orthants 6ui (J ) such that 6ui (J ) ⊂ Ũred, but Z(fi,K) ∩6ui (K) = ∅.

Taking an appropriate K ( {1, . . . , n} and adding such simple polynomials for all i =
1, . . . , m, we obtain the required ideal.

Further, the required polynomial fi,K will be defined by an explicit formula. Aiming
to obtain uniform expressions, we (formally) pick two extra vertices in U+: a point u0 ∈

e0 \ {u1} and a point um+1 ∈ em \ {um}. Accordingly, we add two more elements

b(m+ 1, j) := 2b(m, j), b(−1, j) := b(0, j)/2, j = 1, . . . , n,

to the sequence b(k, j), 0 ≤ k ≤ m, 1 ≤ j ≤ n, defined in (P2).
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To make clearer the construction and properties of fi,K , we start with an auxiliary
polynomial which can be viewed as a simplified version of the polynomial fk`, as intro-
duced in the preceding step,

f =
∑

−1≤k≤m+1
1≤j≤n

Ak,j � λ
b(k,j)
j , (6.13)

where, for all k = 0, . . . , m+ 1,(
Ak−1,j � λ

(k−1,j)
j

)∣∣
uk
=
(
Ak,l � λ

(k,`)
j

)∣∣
uk
, j, ` = 1, . . . , n.

The argument of Step 1 implies immediately that: the conditions imposed on the coef-
ficients Akj are consistent; all the monomials of f are essential; and the subdivision S(f )
of 1(f ) consists of the polytopes (cf. (6.3))

5k = conv{Pjk, P`,k−1, j, ` = 1, . . . , n}, k = 0, . . . , m+ 1 , (6.14)

which are dual to the vertices u0, . . . ,um+1 (here Pkj = b(k, j)εk are the vertices of the
polytopes (6.3)). In addition, we obtain Z(f ) ⊃ Ũ .

Next we modify formula (6.13). Pick an element j0 ∈ {1, . . . , n} \ K and define the
desired polynomial fi,K to be

fi,K =
∑

−1≤k≤m+1
1≤j≤n

Âk,j � λ
b̂(k,j)
j ,

where b̂(k, j) = b(k, j) for all k = −1, . . . , m+ 1, j = 1, . . . , n, except for the cases

b̂(i, j) = b(i, j)+ 1, j 6∈ K, b̂(i − 1, j) = b(i − 1, j)− 1, j 6∈ K ∪ {j0},

while, for all k = 0, . . . , m+ 1, k 6= i, the coefficients Âkj satisfy the condition(
Ak−1,j � λ

(k−1,j)
j

)∣∣
uk
=
(
Ak,l � λ

(k,`)
j

)∣∣
uk
, j, ` = 1, . . . , n , (6.15)

and the new condition(
Ai−1,j � λ

(i−1,j)
j

)∣∣
ui
=
(
Ai,` � λ

(i,`)
j

)∣∣
ui
, j ∈ K ∪ {j0}, ` ∈ K. (6.16)

Again, as in Step 1, from (6.1), we derive the consistence of conditions (6.15)
and (6.16), as well as the inequalities(

Âis � λ
b(i,s)+1
s

)∣∣
ui
<
(
Âij � λ

b(i,j)
j

)∣∣
ui
, j ∈ K, s 6∈ K,(

Âi−1,` � λ
b(i−1,`)−1
`

)∣∣
ui
<
(
Âi−1,s � λ

b(i−1,s)
s

)∣∣
ui
, s ∈ K ∪ {j0}, ` 6∈ K ∪ {j0}.

These inequalities imply that all the monomials of fi,K are essential, and that the subdi-
vision S(fi,K) of the Newton polytope 1(fi,K) contains the n-dimensional polytopes

5̂k = conv{P̂jk, P̂`,k−1, j, ` = 1, . . . , n}, k = 0, . . . , m+1, k 6= i, P̂jk = b(k, j)εj
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(Pjk = b(k, j)εj being the vertices of the polytopes (6.3)), and the polytope

5̂i = conv{P̂j,i−1, P̂`i, j ∈ K ∪ {j0}, ` ∈ K}.

Further, the above polytopes 5̂k , k = 0, . . . i−1, i+1, . . . , m+1, are dual to the vertices
u0, . . . ,ui−1,ui+1, . . . ,um+1 of U+, and the polytope 5̂i is dual to a face of Z(fi,K)
which passes through ui .

So, we immediately deduce that Z(fi,K) contains: the part of U+ preceding the vertex
ui−1, the part of U+ following the vertex ui+1, and all the cones 6uk , k = 0, . . . , m+ 1,
k 6= i. Now, we observe that K contains at least two elements. Indeed, otherwise, if K =
{j1}, then the vectors aui (e), with e ∈ U1

ui
, oriented to Rn

≤0, would lie in the same hyper-
plane {λj1 = uij1}, and thus could not be balanced by a vector aui (eui ) ∈ Rn>0, which
contradicts (3.3). So, if j1, j2 ∈ K , then the (n − 1)-face of Z(fi,K), dual to the edge
[Pj1,i−1, Pj2,i−1], contains the points ui−1 and ui , and hence also contains the edge ei
of U+. Similarly, the (n − 1)-face of Z(fi,K), dual to the edge [Pj1i, Pj2i], contains the
points ui and ui+1, and hence also contains the edge ei+1 of U+. That is, U+ ⊂ Z(fi,K).

Next we verify that 6ui (J ) ⊂ Ũred implies 6ui (J ) ⊂ Z(fi,K). Indeed, if 6ui (J ) ⊂
6Uui , then by construction J 6⊃ K . Hence, there exists s ∈ K \ J , and thus the value

fi,K(ui) is attained (among others) by the two monomials Âis � λ
b(i,s)
s and Âi−1,s �

λ
b(i−1,s)
s . Then, the (n− 1)-dimensional orthant

{λs = uis, λj ≤ uij , 1 ≤ j ≤ n, j 6= s},

having the vertex ui , is contained in Z(fi,K), and in its turn contains 6ui (J ).
The last task is to check that 6ui (K) ∩ Z(fi,K) = ∅. To show this, we note that the

polynomial fi,K is constant along

6ui (K) = {λj = αij , j 6∈ K, λl < ui`, ` ∈ K}

and its value is attained only by the monomial Âij0 � λ
b(i,j0)
j0

.
This completes the proof of Lemma 6.1. ut

The construction of the ideals defining Ũ and Ũred depends on the choice of the param-
eters p0, . . . , pm. Next we define these parameters so that Proposition 6.2 below holds
true.

Given two strictly increasing sequences ξ = {ξ1, . . . , ξr} and η = {η1, . . . , ηr} of real
numbers, we say that η is ξ -convex if

ηk − ηk−1

ξk − ξk−1
<
ηk+1 − ηk

ξk+1 − ξk
for all k = 2, . . . , r − 1. (6.17)

Proposition 6.2. In the above notation, let ξ (k) = {ξ (k)1 , . . . , ξ
(k)
m }, k = 1, . . . , s, be an

arbitrary strictly increasing sequence of real numbers. Then there are integersp0, . . . , pm,
satisfying conditions (P1), (P2) from the first part of the proof of Lemma 6.1, such that,
for each generator f of the defining ideal of Ũred and for every k = 1, . . . , s, the (strictly
increasing) sequence f (u1), . . . , f (um) is ξ (k)-convex.

We leave the proof of this elementary statement to the reader, remarking only that one
should choose the sequence p0, . . . , pm which grows sufficiently quickly.
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6.3. Remark on plane additive tropical set-curves

The above geometric treatment, as well as the algebraic one, becomes quite transparent
in the case of additive tropical plane set-curves.

Geometrically, one obtains an additive tropical set-curve U ⊂ R2 from its spine U+
by attaching to each vertex ui , 1 ≤ i ≤ m, one or two negatively directed horizontal and
vertical rays. Furthermore, if u1 is the minimal point of the spine U+ (i.e., U+ ' [0,∞)),
then we call u1 a terminal vertex of U . In particular, if u1 is terminal, then it is a common
vertex of a horizontal and a vertical negatively directed rays of U .

By Theorem 5.1, such a set-curve U can be defined by one simple tropical polyno-
mial. Furthermore, Lemma 6.1 provides a family of such polynomials with parameters
p0, . . . , pm subject to conditions (P1), (P2). Keeping the property declared in Proposi-
tion 6.2, we claim that one can vary these parameters and get the following additional
property:

Proposition 6.3. In the above notation, assume that the point um ∈ U0
+ is a com-

mon vertex of a horizontal and a vertical negatively directed rays. Then, for any poly-
nomial f (λ1, λ2) constructed for U as in the proof of Lemma 6.1, keeping the values
f (u1), . . . , f (um) and the set Z(f ) unchanged, one can make

pm � pk and p0 � pk for all k = 1, . . . , m− 1. (6.18)

Again, the proof is an easy exercise left to the reader. We only observe that if u1 is
not terminal then p0 = 0 satisfies the requirements of the proposition. Also, in such a
variation of p0 and pm, the convexity property required in Proposition 6.2 persists, since
it depends only on f (u1), . . . , f (um).

6.4. Simplicity of spatial additive tropical set-curves

Theorem 6.4. A tropical set-curve U ⊂ Rn, where n = 2 or 3, is additive if and only if
it is simple.

Proof. In view of Corollary 4.2 and Theorem 5.1, it remains to prove that an additive
tropical set-curve U ⊂ R3 is simple.

Pick i = 1, . . . , m and J ∈ Ji(U), and consider the set Ui,J = U ∩ 6ui (J ). We
intend to construct a pair of simple polynomials, denoted F and F ′, for which

Z(F) ∩ Z(F ′) ⊃ U and Z(F) ∩ Z(F ′) ∩6ui (J ) = Ui,J . (6.19)

Then, varying i = 1, . . . , m and J ∈ Ji(U), and adding all the newly acquired polyno-
mials to the ideal of Ũred, we obtain the desired simple ideal defining U .

The case of #J = 1 is easy. Indeed,Ui,J is just the ray parallel to one of the coordinate
axes, say the λ1-axis, emanating from ui , and pointing to −∞. We project U to the
(λ1, λ2)-plane and obtain an additive tropical plane curve V , which is defined by a simple
polynomial F(λ1, λ2). It is then clear that Z(F) ∩6ui (J ) = Ui,J .

So, it remains to consider the case when #J = 2; thus, from now on we assume
J = {1, 2}. We identify R2 with the plane {λ3 = 0} ⊂ R3 and introduce the natural
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projection π : R3
→ R2. Our strategy is to construct the polynomials F and F ′ to

be of the form f (λ1, λ2) ⊕ g(λ3), where f (λ1, λ2) is a simple polynomial defining a
certain modification of the projection π(U) in R2, and g(λ3) provides a correction of the
intersections of Z(f ) with the quadrants 6uk (J ), k = 1, . . . , m.

We proceed further in several steps.

Step 1. In general, π(6ui (J ))∩ π(U) is greater than π(6ui (J ))∩ π(Ui,J ). In this step,
we shall decide which parts of U contribute to π(6ui (J )) ∩ π(U) beyond π(Ui,J ), and
which do not.

The set Vi,J = π(Ui,J ) is an additive tropical plane set, which can be extended to an
additive tropical set-curve V̂i,J by attaching a ray with vertex π(ui) directed to R2

>0. If
V̂i,J has a terminal vertex v = (v1, v2) (which must then differ from ui , since 6ui (J )

∩ U 6= ∅), we let

Qi,J := {(x1, x2) ∈ R2 : max
j=1,2

(xj − uij ) ≤ 0 ≤ max
j=1,2

(xj − vj )},

and otherwise we set

Qi,J := {(x1, x2) ∈ R2 : max
j=1,2

(xj − uij ) ≤ 0}.

Geometrically, in the latter case, Qi,J is just a shifted negative quadrant, while in the
former case, Qi,J is the closed difference of two such quadrants, one lying in the interior
of the other. Moreover, Vi,J ⊂ Qi,J , and Qi,J is the minimal figure of the given shape,
containing Vi,J .

We claim that:

• for each k > i and K ⊂ {1, 2, 3} such that K 6⊃ J , one has π(Uk,K) ∩Qi,J = ∅,
• π(Ui) ∩Qi,J = Vi,J , where Ui = {u ∈ U : u ≺ ui}.

The first relation is easy: if ` ∈ J \ K , then any point of Uk,K has the `-th coordinate
uk` > ui`, and hence its π -projection lies outside Qi,J . To prove the second relation, we
note that for any point u = (u1, u2, u3) ∈ Ui for which π(u) ∈ Qi,J , one has u3 ≤ ui3,
and there always exists a point v = (u′1, u

′

2, ui3) ∈ Vi,J such that u′1 ≤ u1 and u′2 ≤ u2

(the latter property is evident if V̂i,J has no terminal vertex, and it follows from (vii) in
Section 6.1 if V̂i,J has a terminal vertex). Then,

u⊕ v = (u1, u2, ui3) ∈ Vi,J ,

which, in particular, yields π(u) = π(u⊕ v).
Thus, the only parts of U whose π -projections may contribute to π(U)∩Qi,J beyond

π(Ui,J ) are Uk,J with k > i.

Step 2. Assume that V̂i,J has a terminal vertex v1 as in Step 1. In this situation we
shall construct just one required polynomial F = F ′; we start by constructing the part
f (λ1, λ2) of F .
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Pick a point um+1 = (um+1,1, um+1,2, um+1,3) on the ray em ⊂ U , and attach to it
the three rays parallel to the coordinate axes and pointing to−∞. The newly obtained set
Û is again a tropical additive curve. Now, let

Wi,J = Û ∪
⋃
k>i

6uk (J ) \
⋃
k>i

6uk (J ).

Geometrically, Wi,J is obtained from Û as follows: for each vertex uk with k > i, we
delete the part of U attached to uk and contained in the quadrant Qk,J and, instead, we
add two negatively directed rays emanating from uk and parallel to the λ1-axis and to
the λ2-axis, respectively. It is easy to see that Wi,J is an additive tropical curve. Hence,
π(Wi,J ) ⊂ R2 is an additive tropical plane curve. The results of Step 1 imply that

π(Wi,J ) ∩Qi,J = Ui,J . (6.20)

Note that the points π(v1) and π(u1), . . . , π(um), π(um+1) belong to the spine of
π(Wi,J ). Let them be ordered (cf. (2.1)) as follows:

π(u1) ≺ · · · ≺ π(us) ≺ π(v1) ≺ π(ui+1) ≺ · · · ≺ π(um+1),

where 0 ≤ s < i and s is the maximal possible index satisfying this ordering with
π(us) 6= π(v1). Due to Propositions 6.2 and 6.3, we may assume that π(Wi,J ) is defined
by a simple polynomial f (λ1, λ2) satisfying the following condition: the sequence

f (u1) < · · · < f (us) < f (v1) < f (ui+1) < · · · < f (um+1)

is convex with respect to the sequence u13 < · · · < us3 < ui3 < · · · < um3 < um+1,3,
and relation (6.18) holds true as well.

Step 3. Now, we define the polynomial

F(λ1, λ2, λ3) = f (λ1, λ2)⊕ g(λ3) with g(λ3) =

m+1⊕
k=0

Ak � λ
ck
3 , (6.21)

whose parameters Ak and ck , k = 0, . . . , m+ 1, satisfy the following conditions:

(a) cm+1 = cm + 1;
(b) for i < k ≤ m,

ck =
f (uk+1)− f (uk)

uk+1,3 − uk3
, (Ak � λ

ck
3 )|uk+1 = (Ak+1 � λ

ck+1
3 )|uk+1 = f (uk+1);

(c) for the i-th monomial,

ci =
f (ui+1)− f (v1)

ui+1,3 − ui3
, (Ai � λ

ci
3 )|ui+1 = (Ai+1 � λ

ci+1
3 )|ui+1 = f (ui+1),

(Ai � λ
ci
3 )|ui = f (v1);
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(d) ci−1 = ci − 1, and (Ai−1 � λ
ci−1
3 )λ3=ui3−ε = (Ai � λ

ci
3 )λ3=ui3−ε, where ε > 0 is

small (we specify this later);
(e) for s < k < i − 1,

ck = ck+1 − 1, (Ak � λ
ck
3 )|uk+1 = (Ak+1 � λ

ck+1
3 )|uk+1;

(f) (As � λ
cs
3 )|us+1 = (As+1 � λ

cs+1
3 )|us+1 ;

(g) for 0 ≤ k < s,

(Ak � λ
ck
3 )|uk+1 = (Ak+1 � λ

ck+1
3 )|uk+1 = f (uk+1);

(h) c0 = c1 − 1.

We observe that these relations uniquely determine the values of the parameters Ak and
ck , k = 0, . . . , m+ 1, out of the values f (u1), . . . , f (um+1), f (v1). Multiplying the pa-
rameters p0, . . . , pm in the construction of the polynomial f by a suitable natural number,
we multiply the values of f by that number, and thus we can achieve the integrality of the
exponents ck in the above definition.

Due to the assumed convexity property of the values of f , each monomial of g is
essential (here we specify the value of ε, taking into account that for ε = 0 all the mono-
mials of g are essential).

Let us verify that Z(F) ⊃ U . Observing that

Z(F) = {f = g} ∪ (Z(f ) ∩ {f ≥ g}) ∪ (Z(g) ∩ {f ≤ g}),

we note that, for any point u ∈ {f = g}, the set {f ≥ g} contains the negative ray with
vertex u, parallel to the λ3-axis, and that the set {f ≤ g} contains the negative quadrant
with vertex u, parallel to the (λ1, λ2)-plane. Notice also that Wi,J ⊂ Z(f ). Then:

1. For any k > i, due to relations (b), (c), and the construction in the proof of Lemma
6.1, the value F(uk) is attained by the pair of monomials Ak−1 � λ

ck−1
3 and Ak � λ

ck
3

of g(λ3); the same value F(uk) is also attained by some four monomials of f (λ1, λ2),
since by construction the plane tropical curve π(Wi,J ) has four edges incident to its
vertex π(uk), two of them with positive slopes, and the other two being negatively
directed vertical and horizontal rays. It is then easy to derive that Z(F) ⊃ 6uk .

2. Since f (um+1) = g(um+1) and pm+1 � max` f (u`) (cf. Proposition 6.3 and relation
(a) above), and since the polynomial g is linear in the half-space {λ3 ≥ um+1,3}, we
derive that f (u) ≥ g(u) along the ray eum+1 , and hence eum+1 ⊂ Z(F). Similarly,
f (u1) = g(u1) and p0 � min` f (u`) (cf. Proposition 6.3 and relation (h) above), and
hence the ray of Û , emanating from u1 and proceeding to Rn<0, is contained in Z(F).

3. By construction, for k > i, the values f (uk) and f (uk+1) are attained by the same
monomial, and the same also holds for g. Hence, due to the linearity of f and g along
the segment [uk,uk+1], this segment is contained in Z(F). In the same way, when
1 ≤ k < s we have [uk,uk+1] ⊂ Z(F).

4. Since g(ui+1) = f (ui+1) and g(ui) = f (v1) < f (ui), we derive that the segment
[ui,ui+1] lies in the domain {f ≥ g}, and hence is contained in Z(F).
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5. We have g(us) = f (us) and g(uk) < g(ui) = f (v1) ≤ f (uk) for all s < k < i,
since v1 ≺ π(uk) on π(Wi,J ). Hence, the segments [ul,ul+1], s ≤ l < i, lie in the
domain {f ≥ g}, and thus are contained in Z(F).

6. If U ∩6uk (K) 6= ∅ for some k = 1, . . . , i and K = {1, 3}, then π(Wi,J ) contains the
negatively directed ray starting at π(uk) and parallel to the λ1-axis. Hence, the value
f (uk) is attained by at least two monomials involving λ2, which keep their value along
the negatively directed ray starting at uk and parallel to the λ1-axis. As we have seen
earlier, f (uk) ≥ g(uk), and thus the latter ray lies entirely in the domain {f ≥ g}.
Hence, 6uk (K) ⊂ Z(F). The case of K = {2, 3} is treated in the same way.

7. For each k = 1, . . . , i − 1, the value of g along 6uk (J ) is attained by two monomials
of g, and thus

6uk (J )∩Z(F) = (6uk (J )∩{g ≥ f })∪ (6uk (J )∩{f ≥ g}∩Z(f )) ⊃ 6uk (J )∩U.

8. Finally, the value of g along 6ui (J ) is attained exactly by one monomial of g, and
hence

6uk (J ) ∩ Z(F) = (6uk (J ) \ {g > f }) ∩ {f ≥ g} ∩ Z(f ).

Recall that U contains two negatively directed rays, starting at v1 and parallel to the
λ1-axis and to the λ2-axis, respectively, as in Section 6.3. Now, since the value g(ui) =
f (v1) is attained by four monomials of f , two in λ1 and two in λ2, we conclude that

π(6uk (J ) \ {g > f }) = Qi,J

(see the definition at the beginning of Step 2).
Summarizing, we have shown that Z(F) ⊃ U for all suitable generators f of the

simple ideal of π(Wi,J ), and thus, due to (6.20), that⋂
f

Z(f ) ∩6ui (J ) = Ui,J .

Step 4. In the case when V̂i,J has no terminal vertex we shall suitably modify the preced-
ing construction of the polynomials f (λ1, λ2) and g(λ3), constituting F , and at the end
we shall append an additional simple polynomial F ′ meeting requirements (6.19).

Consider the additive tropical plane curve π(U) ⊂ R2 and denote the minimal vertex
of (π(U))+ by w = (w1, w2). Note that w ≺ π(uk) for all k = 1, . . . , m+ 1, and

π(U) ∩ {λ1 < w1, λ2 < w2} = Vi,J ∩ {λ1 < w1, λ2 < w2} (6.22)

(this is just an open ray).
Again, using Propositions 6.2 and 6.3, we can choose a simple polynomial f (λ1, λ2)

defining π(Wi,J ) and satisfying the following conditions: the sequence

f (w) < f (ui+1) < · · · < f (um+1)

is convex with respect to the sequence ui3 < ui+1,3 < · · · < um3 < um+1,3, and
relation (6.18) holds true as well. Then, we define the polynomial F as in formula (6.21),
where the parameters Ak and ck , 0 ≤ k ≤ m+1, are determined by conditions (a) and (b)
in Step 3 and by the following requirements:
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(c′) for the i-th monomial,

ci =
f (ui+1)− f (w1)

ui+1,3 − ui3
, (Ai � λ

ci
3 )|ui+1 = (Ai+1 � λ

ci+1
3 )

∣∣
ui+1
= f (ui+1),

(Ai � λ
ci
3 )|ui = f (w);

(d′) for 0 ≤ k < i,

ck = ck+1 − 1, (Ak � λ
ck
3 )|uk+1 = (Ak+1 � λ

ck+1
3 )|uk+1 .

Conditions (a), (b), (c′), and (d′) uniquely determine the values of the parameters Ak
and ck , 0 ≤ k ≤ m+ 1, out of the values f (w), f (u1), . . . , f (um+1).

Using the argument of Step 3, where w plays the role of v1, we show that Z(F) ⊃ U .
However, in the quadrant 6ui (J ) we obtain

Z(F) ∩6ui (J ) = (6ui (J ) ∩ {g ≥ f }) ∪ (6ui (J ) ∩ Z(f )),

since the value g(ui) = f (w) is attained by two monomials of g. Here, {g ≥ f } cuts off
the quadrant Q = {λ1 ≤ w1, λ2 ≤ w2, λ3 = ui3} from the set 6ui (J ), and Z(f ) cuts
off the set (6ui (J ) \Q) ∩ Ui,J from the set 6ui (J ) \Q. Hence,

6ui (J ) ∩
⋂
f

Z(f ) ∩ Z(F ′) = Ui,J

as required, where F ′(λ1, λ2) is a simple polynomial defining the tropical set-curve π(U).
The proof of Theorem 6.4 is complete. ut

7. Additive tropical subvarieties of additive tropical varieties

Theorem 7.1. Let P ⊂ Rn be an m-dimensional additive tropical set-variety. Then

• the faces of the closures of the connected components of Reg(P ) define an FPC struc-
ture P on P ;
• for any k = 0, . . . , m − 1, the k-skeleton P (k) =

⋃
σ∈P, dim(σ )≤k σ and each of its

connected components are additive tropical set-varieties.

Proof. LetK1, . . . , KN be all the connected components of Reg(P ). We extend the result
of Lemma 3.3 by showing that

K i ∩Kj ⊂ ∂K i ∩ ∂Kj for every 1 ≤ i < j ≤ N.

Arguing towards a contradiction, in view of Lemma 3.3, we assume that

τ = Int(K i) ∩
⋃
j 6=i

Kj 6= ∅, dim(τ ) = k < m− 1,

for some i 6= j . Let x ∈ τ be a generic point. Then there is an (n− k)-plane

5 = {xi1 = · · · = xik = 0} ⊂ Rn
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which is transverse to Rτ . This (n−k)-plane is an additive tropical set-variety, and hence
so is P ′ = P ∩ (x+5).

Let K ′i be the germ of Int(K i) ∩ 5 at x, which is the germ of an affine space of
dimensionm− k ≥ 2, and letK ′′i be the germ of5∩

⋃
j 6=i Kj at x such that dim(K ′′i ) =

m− k ≥ 2. Furthermore, we may assume that K ′i is the whole affine (m− k)-space, and
K ′′i is a cone with vertex x.

Given a neighborhood of x, P ′ is the union of the germ K ′i at x and of the germ K ′′i
at x such that K ′i ∩ K

′′

i = x. Clearly there is u ∈ K ′i \ {x} such that x ⊕ u 6= x. Then
x 6∈ u⊕ (K ′i ∪K

′′

i ), and, due to u⊕ u = u ∈ K ′i , we conclude that u⊕ (K ′i ∪K
′′

i ) ⊂

K ′i \ {x}. By the same token, we see that x⊕K ′′i = x, or equivalently, K ′′i ⊂ x+ Rn
≤0,

which in turn contradicts the fact that K ′′i is a tropical set-variety. (Clearly, K ′i does not
affect the balancing condition for cells of K ′′i .)

Now we show that P (m−1) (see Definition 3.4) is an additive tropical set-variety. Pick
a set I ⊂ {1, . . . , n}, |I | = m+ 1, and introduce the projection

πI : Rn→ RI = {xi = 0, i 6∈ I }.

If, for some j = 1, . . . , N , dim(πI (Kj )) = m, then πI (P ) is an m-dimensional tropical
set-hypersurface in RI (i.e., push-forward, as defined in [AR]), which is additive, since πI
is a semigroup homomorphism. Furthermore, QI = π

−1
I (πI (P )) is an additive tropical

set-hypersurface in Rn (i.e., pull-back, as defined in [AR]) which can be viewed as the
union of the (n − 1)-dimensional polyhedra K i + VI , where dim(πI (K i)) = m and
VI = {xj = 0, j ∈ I }.

Observe that the two (n − 1)-dimensional polyhedra K i + VI and Kj + VI cannot
intersect so that

dim(Int(K i + VI ) ∩ Int(Kj + VI )) = n− 2.

Indeed, otherwise the (n−2)-cell (K i +VI )∩ (Kj +VI ) ofQI would be dual to a paral-
lelogram in the subdivision S(f ) of the Newton polytope of a simple tropical polynomial
f with Z(f ) = QI (see Theorem 5.1), and thus we reach a contradiction, since no four
distinct points on coordinate axes span a parallelogram.

Consider now the intersection RI,t = P ∩ (at +QI ) for a generic vector a ∈ Rn and
a small positive parameter t . This intersection is transversal and makes RI,t an additive
tropical set-variety of dimension m − 1. The top dimensional cells of RI,t appear as the
intersections K i ∩ (at + Kj + VI ), i 6= j , where K i and Kj + VI are transverse and
intersect along their interiors. As t → 0, such an intersection either contracts or converges
to an (m− 1)-dimensional polyhedron in P . Two situations may occur:

• If K i ∩ Kj is a common (m − 1)-dimensional face σ , then K i ∩ (at + Kj + VI )

converges to σ as t → 0.
• If dim(K i ∩ Kj ) < m − 1, but dim(K i ∩ (at + Kj + VI )) = m − 1, we necessarily

obtain that K i + VI and Kj + VI intersect transversally along their interior, which is
not possible as observed in the preceding paragraph.

Thus, we see that the limit RI of RI,t as t → 0 is an additive tropical set-variety which
is the union of some (m − 1)-faces of K i , i = 1, . . . , N . Noticing that R =

⋃
I RI =
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P (m−1), where I runs over all (m+ 1)-subsets of {1, . . . , n}, we prove that P (m−1) is an
additive tropical set-variety.

The rest of the proof goes by induction on descending dimension. ut

Corollary 7.2. Given an additive tropical set-variety, the connected components of its
skeletons are contractible.

We finish by describing additive tropical set-varieties having a disconnected skeleton of a
positive dimension:

Lemma 7.3. If a connected additive m-dimensional tropical set-variety P in Rn has a
disconnected skeleton P (d), 0 < d < m, then there are additive transversal linear sub-
spaces U,V ⊂ Rn of dimension d and n − d respectively such that P = U + Q, with
Q = P ∩ V being an additive (m− d)-dimensional tropical set-variety.

Proof. We use the following fact which we leave to the reader as an elementary exercise:
if the union of the d-dimensional faces of an m-dimensional convex polyhedron σ in Rn
(n > m > d) is not connected, then there are transversal linear subspaces U ′, V ′ ⊂ Rn
of dimension d and n− d respectively, such that σ = U ′ + τ , with τ = σ ∩ V ′ being an
(m− d)-dimensional convex polyhedron.

We can assume that P (d+1) is connected. Let σ be a (d + 1)-cell of P (d+1) joining
two connected components of X(d). As noticed above, σ = U + τ with τ a segment.
Then ∂σ is the union of two affine spaces a+U , b+U , a, b ∈ Rn. By Theorem 7.1, P (d)

is a tropical set-variety, and hence, due to the balancing condition, a + U , b + U must
be separate connected components of P (d). This immediately implies that P (d) is the
union of several affine spaces a + U . Since each of them is additive (Theorem 7.1), U is
additive. Again the above observation on polyhedra with a disconnected d-skeleton shows
that each cell σ of P of dimension > d is represented as U + τ , and hence P = U +Q,
whereQ can be obtained as intersection of P with an additive (n−d)-dimensional linear
subspace V ⊂ Rn transversal to U . ut
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