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Abstract. We use the Thom–Whitney construction to show that infinitesimal deformations of a co-
herent sheaf F are controlled by the differential graded Lie algebra of global sections of an acyclic
resolution of the sheaf End∗(E ·), where E · is any locally free resolution of F . In particular, one
recovers the well known fact that the tangent space to DefF is Ext1(F ,F), and obstructions are
contained in Ext2(F ,F). The main tool is the identification of the deformation functor associated
with the Thom–Whitney DGLA of a semicosimplicial DGLA g1, whose cohomology is concen-
trated in nonnegative degrees, with a noncommutative Čech cohomology-type functorH 1

sc(exp g1).
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1. Introduction

The classical approach to deformation theory, starting with Kodaira and Spencer’s stud-
ies on deformations of complex manifolds, consists in deforming the objects locally and
then gluing back together these local deformations. During the last thirty years, another
approach to deformation problems has been developed. The philosophy underlying it, es-
sentially due to Quillen, Deligne, Drinfeld and Kontsevich, is that, in characteristic zero,
every deformation problem is controlled by a differential graded Lie algebra, via solutions
of the Maurer–Cartan equation modulo gauge equivalence. The aim of this paper is to ex-
hibit an explicit equivalence between the two approaches for the problem of infinitesimal
deformations of coherent sheaves.

In the particular case of a locally free sheaf E of OX-modules on a complex mani-
fold X, Kodaira–Spencer’s description of deformations of E is given in terms of the Čech
functorH 1(X; exp End(E)), where End(E) is the sheaf of endomorphisms of E . Indeed, a
locally free sheaf has only trivial local deformations and so a deformation of E is reduced
to a deformation of the gluing data of its local charts, and the compatibility condition
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Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Roma, Italy;
e-mail: fiorenza@mat.uniroma1.it, martinengo@mat.uniroma1.it
D. Iacono: Max-Planck Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany;
e-mail: iacono@mpim-bonn.mpg.de

Mathematics Subject Classification (2010): Primary 13D10; Secondary 17B70, 18G30, 18G50,
18G55



522 Domenico Fiorenza et al.

these gluing data have to satisfy is precisely expressed by the cocycle condition in the
Čech functor. On the other hand, it is well known that deformations of E are controlled
by the DGLA of global sections of an acyclic resolution of End(E), e.g., by the DGLA
A

0,∗
X (End(E)) of (0, ∗)-forms on X with values in the sheaf of endomorphisms of E .

The equivalence between these two descriptions is best understood by moving from
set-valued to groupoid-valued deformation functors; see, e.g., [9, 20]. Associating with
any open set U in X the groupoid DefE |U of infinitesimal deformations of E over U (over
a fixed base SpecA, for some local Artin ring A) defines a stack over TopX; this is just a
one-word way of saying that global deformations of E are the same thing as the descent
data for its local deformations:

DefE ' holim
U∈1U

DefE |U ,

where 1U is the semisimplicial object in TopX associated with an open cover U of X.
Next, one sees that locally the groupoid of deformations of E |U is equivalent to the
Deligne groupoid of End(E)(U); since these equivalences are compatible with restric-
tion maps, one has an equivalence of semicosimplicial groupoids. Finally, the Deligne
groupoid commutes with homotopy limits of DGLA concentrated in nonnegative degree
(see [9]), so that

DefE ' holim
U∈1U

DelEnd(E)(U) ' DelholimEnd(E)(U)
U∈1U

.

This shows that the problem of infinitesimal deformations of E is controlled by the DGLA
holimU∈1U End(E)(U). It is now a simple exercise in homological algebra to show that
there is a quasi-isomorphism of DGLAs

holim
U∈1U

End(E)(U) ' A0,∗
X (End(E)).

The reader who prefers not to leave the peaceful realm of set-valued deformation func-
tors can find a direct (but less enlightening) proof of the equivalence between Kodaira–
Spencer’s and the DGLA approach to infinitesimal deformation of locally free sheaves in
the first arXiv version of [7].

We now turn our attention to deformations of a coherent sheaf F of OX-modules on
a complex manifold or an algebraic variety X. The classical approach to this deformation
problem is based on a locally free resolution E ·→ F ofF ; then, the data of a deformation
of F are the data of local deformations of E · with appropriate gluing conditions. More
precisely, the sheaf of differential graded Lie algebras End∗(E ·) of the endomorphisms
of the resolution E · controls infinitesimal deformations of F via the Čech-type functor
H 1

Ho(X; exp End∗(E ·)); the subscript Ho refers to the fact that cocycle conditions hold
only up to homotopy. The functor H 1

Ho(X; exp End∗(E ·)) is actually independent of the
particular resolution chosen. And again, on the DGLA side, one proves that infinitesimal
deformations of F are controlled by the DGLA of global sections of an acyclic resolution
of End∗(E ·); in particular, one recovers the well known fact that the tangent space to DefF
is Ext1(F ,F), and obstructions are contained in Ext2(F ,F).
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To see why such a result should hold, one has to make a further step and go from
groupoid-valued to ∞-groupoid-valued deformation functors, and to think the whole
problem in terms of ∞-stacks [10, 16, 24]. Indeed, due to the presence of negative de-
gree components in End∗(E ·), the groupoids DefF |U are not equivalent to the Deligne
groupoids DelEnd∗(E ·)(U) anymore; yet from the∞-groupoid point of view it is natural to
expect that the stack DefF is locally homotopy equivalent to the∞-stack MC•(End∗(E ·)).
Then one reasons as in the locally free sheaf case, using the fact that the Kan complexes-
valued functor MC• commutes with homotopy limits of DGLAs whose cohomology is
concentrated in nonnegative degree [8]:

DefF ' holim
U∈1U

DefF |U ' holim
U∈1U

MC•(End∗(E ·)(U)) ' MC•(holim
U∈1U

End∗(E ·)(U)).

As above, the homotopy limit holimU∈1U End∗(E ·)(U) is quasi-isomorphic to the DGLA
of global sections of an acyclic resolution of End∗(E ·), which therefore controls the in-
finitesimal deformations of F .

The aim of this paper is to give a direct proof of this fact at the level of set-valued
deformation functors. The proof closely follows the original argument in [7] and does not
rely on the conjectural homotopy equivalence between DefF |U and MC•(End∗(E ·)(U)).
More precisely, we associate with any semicosimplicial DGLA g1 a set-valued func-
tor of Artin rings Z1

sc(exp g1) together with an equivalence relation ∼ on it, such
that the quotient functor H 1

sc(exp g1) = Z1
sc(exp g1)/∼ is an abstract version of

H 1
Ho(X; exp End∗(E ·)). The latter is obtained, as a particular case, by considering the

Čech semicosimplicial Lie algebra End∗(E ·)(U):∏
i

End∗(E ·)(Ui) // //
∏
i<j

End∗(E ·)(Uij )
//////
∏
i<j<k

End∗(E ·)(Uijk)
//////// · · · .

Namely,
H 1

Ho(X; exp End∗(E ·)) = lim
−→
U
H 1

sc(exp End∗(E ·)(U))

and both sides coincide with H 1
sc(exp End∗(E ·)(U)), for an End∗(E ·)-acyclic cover of X.

Next, we consider the Thom–Whitney model TotTW g1 for holim g1 and show that there
exists a commutative diagram of functors

DGLA1mon
H≥0

TotTW //

H 1
sc(exp−) %%KKKKKKKKKK

DGLA

Maurer–Cartan/gaugezzvvvvvvvvvv

SetArtK

where DGLA1mon
H≥0 is the category of semicosimplicial DGLAs with no negative cohomol-

ogy. From the point of view of∞-groupoids, this can be seen as an explicit description
of the set π≤0(MC•(holim g1)).

We assume the reader is familiar with the language of deformation functors associated
with DGLAs; see [17] for an introduction. Throughout this paper we work on a fixed
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algebraically closed field K of characteristic zero; the symbol ArtK denotes the category
of local Artinian K-algebras (A,mA), with residue field K. For a DGLA L, we denote by
DefL : ArtK→ Set the associated deformation functor.

Most of the proofs in the present paper are completely straightforward, so we only
sketch them; a preliminary version of this paper with fully detailed proofs is available on
arXiv.

While revising this paper, we became aware of [25] where a similar construction is
developed and investigated.

2. Infinitesimal deformations and sheaves of DGLAs

In this section, we study infinitesimal deformations of a coherent sheaf F ofOX-modules
on a smooth projective variety X and explain how these deformations can be naturally
described in terms of a sheaf of differential graded Lie algebras on X.

An infinitesimal deformation of the coherent sheaf ofOX-modules F over A ∈ ArtK
is given by a coherent sheaf FA of OX ⊗ A-modules on X × SpecA, flat over A, with
a morphism of sheaves π : FA → F inducing an isomorphism FA ⊗A K ∼= F . Two
deformations FA,F ′A of the coherent sheaf F over A are isomorphic if there exists an
isomorphism of sheaves f : FA → F ′A, that commutes with the morphisms to F . We
denote by DefF : ArtK→ Set the functor of infinitesimal deformations of the sheaf F .

Since we are interested in flat deformations, one can investigate them by using a
locally free resolution of F (see [1, par. 3], or [23, Theorem A.31] for details of these
correspondences). Let

0→ E−m d
→ · · ·

d
→ E−1 d

→ E0 d
→ F → 0

be a global syzygy for F , and denote by E · the complex of locally free sheaves

(E ·, d) : 0→ E−m d
→ · · ·

d
→ E−1 d

→ E0
→ 0.

Let U = {Ui}i∈I be an affine (or Stein, if we work in the complex analytic category)
open cover of X such that every sheaf of E · is free on each Ui . The Kodaira–Spencer
approach to infinitesimal deformations of F consists in deforming the sheaf F locally
in such a way that local deformations glue together to a global sheaf, or equivalently,
in view of the above discussion of the affine case, in deforming the complex (E ·, d) on
every open set Ui in such a way that these data glue together in cohomology. Following
this approach, let us make explicit the deformation data: the first datum is an element l =
{li}i ∈

∏
i End1(E ·)(Ui)⊗mA defining, on every open setUi , a complex (E ·|Ui⊗A, d+li)

which is a deformation of the complex (E ·|Ui , d). Note that the condition for (E ·|Ui ⊗A,
d + li) to be a complex is the Maurer–Cartan equation:

dli +
1
2 [li, li] = 0 for all i ∈ I.

Also note that, by upper semicontinuity of cohomology, the complex (E ·|Ui ⊗ A, d + li)
is exact except possibly at zero level. To glue together the deformed local complexes
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(E ·|Ui ⊗ A, d + li), we need to specify isomorphisms between the deformed complexes
on the double intersections of open sets of the cover U . Since these isomorphisms will
have to be deformations of the identity, they will be of the form

emij : (E ·|Uij ⊗ A, d + lj )→ (E ·|Uij ⊗ A, d + li),

withm = {mij }i<j ∈
∏
i<j End0(E ·)(Uij )⊗mA. The compatibiliy with the differentials,

i.e., the commutativity of the diagrams

E ·|Uij ⊗ A
e
mij //

d+lj |Uij

��

E ·|Uij ⊗ A

d+li |Uij

��
E ·|Uij ⊗ A

e
mij // E ·|Uij ⊗ A

can be written as d + li |Uij = e
mij (d + lj |Uij )e

−mij , i.e., as

li |Uij = e
mij ∗ lj |Uij for all i < j.

Finally, the above isomorphisms have to satisfy the cocycle condition up to homotopy.
Indeed, in order to obtain a deformation of F , we actually do not want to glue together
the complexes (E ·|Ui ⊗ A, d + li), but rather their cohomology sheaves. In other words,
we require emjke−mikemij to be homotopic to the identity on triple intersections. Taking
logarithms, what we require is that mjk •−mik •mij is homotopy equivalent to zero, i.e.,

mjk|Uijk • −mik|Uijk •mij |Uijk = [d + lj |Uijk , nijk],

for some n = {nijk}ijk ∈
∏
i<j<k End−1(E ·)(Uijk). This homotopy cocycle equation is

conveniently rewritten as

mjk|Uijk • −mik|Uijk •mij |Uijk = dEnd∗(E ·)nijk + [lj |Uijk , nijk].

Next, let us explain how the data introduced above are concretely linked with defor-
mations of the coherent sheaf F over A. As the homotopy cocycle equation is satisfied,
the local A-flat sheaves of OX|Ui ⊗A-modules FA,Ui := H∗(E ·|Ui ⊗A, d + li) glue to-
gether to give a global coherent sheaf FA which is a deformation of F . On the other hand,
every deformation FA of the sheaf F can be obtained in this way. Indeed, the resolution
(E ·, d) locally extends to projective resolutions (E ·|Ui ⊗ A, d + li) of FA|Ui ; these de-
formed local resolutions are linked to each other on double intersections by isomorphisms
of complexes lifting the identity of FA, and the compositions of these isomorphisms on
triple intersections are homotopic to the identity, since they lift the identity of FA and the
liftings are unique up to homotopy.

Let now FA and F ′A be isomorphic deformations of the sheaf F , associated with
deformation data (l, m) and (l′, m′), respectively. The restriction to every open set Ui
of the isomorphism between FA and F ′A lifts to local isomorphisms between the cor-
responding deformed complexes. Since these isomorphisms specialize to identities of
(E ·|Ui , d), they are of the form eai : (E ·|Ui ⊗ A, d + li) → (E ·|Ui ⊗ A, d + l′i), where
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a = {ai}i ∈
∏
i End0(E ·)(Ui)⊗mA. As above, compatibility with the differentials trans-

lates into the equations

eai ∗ li = l
′

i for all i ∈ I.

Finally, since the local isomorphisms eai lift a global isomorphism in cohomology, the
diagrams

(E ·|Uij ⊗ A, d + lj |Uij )
e
mij //

e
aj |Uij

��

(E ·|Uij ⊗ A, d + li |Uij )

eai |Uij
��

(E ·|Uij ⊗ A, d + l′j |Uij )
e
m′
ij // (E ·|Uij ⊗ A, d + l′i |Uij )

expressing compatibility with the gluing morphisms, commute in cohomology. Moreover,
since the compositions e−mij e−ai em

′
ij eaj lift the identity of FA on double intersections

and the liftings are unique up to homotopy, these compositions are homotopic to the
identity and, reasoning as above, we find

−mij • −ai |Uij •m
′

ij • aj |Uij = dEnd∗(E ·)bij + [lj |Uij , bij ]

for some b = {bij }i<j ∈
∏
i<j End−1(E ·)(Uij )⊗mA. Conversely, if for the deformation

data (l, m) and (l′, m′) there exist a = {ai}i ∈
∏
i End0(E ·)(Ui)⊗mA and b = {bij }i<j ∈∏

i<j End−1(E ·)(Uij )⊗ mA that satisfy the equations above, the local isomorphisms eai
glue together in cohomology to give a global isomorphism of the corresponding deformed
sheaves FA and F ′A.

Summing up, we have shown that in the Kodaira–Spencer approach, infinitesimal de-
formations of the coherent sheaf F are controlled by the sheaf of DGLAs End∗(E ·), via
the equations above. At the end of Section 4.3, we will apply techniques of semicosim-
plicial DGLAs developed in this paper to recover the classical well known fact that the
functor of infinitesimal deformations of F has Ext1(F ,F) as tangent space and its ob-
structions are contained in Ext2(F ,F).

Remark 2.1. The above description of the functor of infinitesimal deformations of F is
actually independent of the resolution chosen. Indeed, the DGLAs of the endomorphisms
of any two locally free resolutions of F are quasi-isomorphic (see,e.g., [22, Lemma 4.4]).

Remark 2.2. If the sheaf F is locally free, then we can take its trivial resolution 0 →
F → F → 0; thus, we recover the well known fact that the infinitesimal deformations
of F are controlled by the sheaf End(F), via the Čech functor H 1(X, End(F)).

Remark 2.3. Note that the results of this section hold under the hypothesis thatF admits
a resolution E · → F by locally free sheaves of OX-modules. This hypothesis is always
satisfied, but in the general case the resolution is less obvious, it is not of finite length and
the sheaves E−i are not of finite rank; see, e.g., [12, Section 1.5].
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3. The Thom–Whitney DGLA

3.1. Semicosimplicial DGLAs and the functor H 1
sc(exp g1)

A semicosimplicial differential graded Lie algebra is a covariant functor1mon→DGLA,
from the category 1mon, whose objects are finite ordinal sets and whose morphisms are
order-preserving injective maps between them, to the category of DGLAs. Equivalently,
a semicosimplicial DGLA g1 is a diagram

g0
//// g1

////// g2
//////// · · · ,

where each gi is a DGLA, and for each i > 0 there are i + 1 morphisms of DGLAs

∂k,i : gi−1 → gi, k = 0, . . . , i,

such that ∂k+1,i+1∂l,i = ∂l,i+1∂k,i for any k ≥ l.

Definition 3.1. Let g1 be a semicosimplicial DGLA. The functor

Z1
sc(exp g1) : ArtK→ Set

is defined, for all A ∈ ArtK, by

Z1
sc(exp g1)(A)

=

(l, m) ∈ (g1
0 ⊕ g0

1)⊗mA

∣∣∣∣∣∣∣∣
dl + 1

2 [l, l] = 0,
∂1,1l = e

m
∗ ∂0,1l,

∂0,2m • −∂1,2m • ∂2,2m = dn+ [∂2,2∂0,1l, n]
for some n ∈ g−1

2 ⊗mA

 .
Remark 3.2. In DGLA theory, given a DGLA L and a Maurer–Cartan element x in
MCL(A), the set

Stab(x) = {dh+ [x, h] | h ∈ L−1
⊗mA}

is called the irrelevant stabilizer of x. Note that Stab(x) ⊆ stab(x), where stab(x) =
{a ∈ L0

⊗mA | e
a
∗ x = x} is the stabilizer of x under the gauge action of L0

⊗mA on
MCL(A). Also note that, for any a ∈ L0

⊗mA, eaeStab(x)e−a = eStab(y) with y = ea ∗ x.

We now introduce an equivalence relation ∼ on the set Z1
sc(exp g1)(A) as follows:

we say that two elements (l0, m0) and (l1, m1) in Z1
sc(exp g1)(A) are equivalent if and

only if there exist a ∈ g0
0 ⊗mA and b ∈ g−1

1 ⊗mA such that{
ea ∗ l0 = l1,

−m0 • −∂1,1a •m1 • ∂0,1a = db + [∂0,1l0, b].

Definition 3.3. Let g1 be a semicosimplicial DGLA. The functor

H 1
sc(exp g1) : ArtK→ Set

is defined, for all A ∈ ArtK, by H 1
sc(exp g1)(A) = Z1

sc(exp g1)(A)/∼.
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Remark 3.4. If g1 is a semicosimplicial Lie algebra, i.e., if all the DGLAs gi are con-
centrated in degree zero, then H 1

sc(exp g1) reduces to the functor considered in [7].

Remark 3.5. The projection π : Z1
sc(exp g1)→ H 1

sc(exp g1) is a smooth morphism of
functors of Artin rings, i.e., for any surjection β : B → A in ArtK, the map

Z1
sc(exp g1)(B)→ H 1

sc(exp g1)(B)×H 1
sc(exp g1)(A) Z

1
sc(exp g1)(A)

induced by

Z1
sc(exp g1)(B)

β //

π

��

Z1
sc(exp g1)(A)

π

��
H 1

sc(exp g1)(B)
β // H 1

sc(exp g1)(A)

is a surjection of sets. Indeed, let ([(l, m)], (l0, m0)) ∈ H
1
sc(exp g1)(B) ×H 1

sc(exp g1)(A)

Z1
sc(exp g1)(A). Then (βl, βm) and (l0, m0) are gauge equivalent in Z1

sc(exp g1)(A),
i.e., there exists a ∈ g0

0 ⊗ mA such that ea ∗ βl = l0 and −βm • −∂1,1a • m0 • ∂0,1a =

db+ [∂0,1βl, b] for some b ∈ g−1
1 ⊗mA. Let ã ∈ g0

0 ⊗mB and b̃ ∈ g−1
1 ⊗mB be liftings

of a and b, respectively. The element (eã ∗ l, ∂1,1ã • m • (db̃ + [∂0,1l, b̃]) • −∂0,1ã) ∈

Z1
sc(exp g1)(B) is a pre-image of ([(l, m)], (l0, m0)).

The geometric application to have in mind is the following: given a sheafL of DGLAs
on a topological space X, and an open cover U of X, one has the Čech cosimplicial
DGLA L(U),∏

i

L(Ui) // //
∏
i<j

L(Uij )
//////
∏
i<j<k

L(Uijk)
//////// · · · ,

where the morphisms ∂k,i are the restriction maps. The functor H 1
sc(expL(U)) depends

on the cover U , but the limit over open covers is a well defined functor:

H 1
Ho(X; expL) = lim

−→
U
H 1

sc(expL(U)) : ArtK→ Set.

Indeed, let U = {Uα}α∈I and U ′ = {U ′α}α∈I ′ be open covers of X with U ′ a refine-
ment of U and φ,ψ : I ′ → I two refinement maps. Both φ and ψ induce, for all
A ∈ ArtK, a morphism Z1

sc(expL(U))(A) → Z1
sc(expL(U ′))(A), defined by sending

(li, mij ) to ρφ(li, mij ) = (lφα|U ′α , mφα,φβ |U ′αβ ) and ρψ (li, mij ) = (lψα|U ′α , mψα,ψβ |U ′αβ ),

respectively. Choosing aα := mψα,φα|U ′α ∈ L
0(U ′α)⊗mA for all α in I ′, we have{

eaα ∗ lφα|U ′α = lψα|U ′α ,

−mφα,φβ |U ′αβ
• −aα|U ′αβ

•mψα,ψβ |U ′αβ
• aβ |U ′αβ

∈ Stab(lφβ |U ′αβ ).

Therefore, ρφ(li, mij ) ∼ ρψ (li, mij ), for all (li, mij ) ∈ Z1
sc(expL(U))(A), and so the

induced morphisms ρφ, ρψ : H 1
sc(expL(U))→ H 1

sc(expL(U ′)) coincide.
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Remark 3.6. Having introduced the limit H 1
Ho(expL), for a sheaf of DGLAs L on a

topological space X, the results of Section 2 can be restated as follows: the functor of
infinitesimal deformations of a coherent sheaf F on a projective manifold X is

DefF ∼= H 1
Ho(X; exp End∗(E ·)),

where E · is a locally free resolution of F .

The example of coherent sheaves on projective manifolds together with the DGLA
approach to deformation theory suggests that the functors of Artin rings H 1

sc(exp g1)
could actually be isomorphic to functors DefL(g1) for some DGLA L(g1) canonically
associated with g1. We are going to show that, under the cohomological hypothesis
H−1(g2)=0, this is indeed so. More precisely, we are going to prove that, ifH−1(g2)=0,
then the functor of Artin rings H 1

sc(exp g1) is isomorphic to the deformation functor as-
sociated with the Thom–Whitney DGLA of the truncation g1[0,2] .

3.2. The Thom–Whitney DGLA TotTW(g
1)

Let g1 be a semicosimplicial DGLA. The maps

∂i = ∂0,i − ∂1,i + · · · + (−1)i∂i,i

endow the vector space
⊕

i gi with the structure of a differential complex. Moreover,
being a DGLA, each gi is in particular a differential complex

gi =
⊕
j

g
j
i , di : g

j
i → g

j+1
i ,

and since the maps ∂k,i are morphisms of DGLAs, the space g•• =
⊕

i,j g
j
i has a natural

bicomplex structure. The associated total complex

(Tot(g1), dTot) where Tot(g1) =
⊕
i

gi[−i], dTot =
∑
i,j

∂i + (−1)jdj

has no natural DGLA structure. Yet there is another bicomplex naturally associated with
a semicosimplicial DGLA, whose total complex is naturally a DGLA.

For every n ≥ 0, denote by �n the differential graded commutative algebra of poly-
nomial differential forms on the standard n-simplex 1n:

�n =
K[t0, . . . , tn, dt0, . . . , dtn]

(
∑
ti − 1,

∑
dti)

.

Denote by δk,n : �n → �n−1, k = 0, . . . , n, the face maps; then one has natural mor-
phisms of bigraded DGLAs

δk,n : �n ⊗ gn→ �n−1 ⊗ gn, ∂k,n : �n−1 ⊗ gn−1 → �n−1 ⊗ gn,

for every 0 ≤ k ≤ n.
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The Thom–Whitney bicomplex is defined as

C
i,j
TW(g

1) =
{
(xn)n∈N ∈

∏
n

�in ⊗ g
j
n

∣∣∣ δk,nxn = ∂k,nxn−1 ∀0 ≤ k ≤ n
}
,

where �in denotes the degree i component of �n. Its total complex is a DGLA, called the
Thom–Whitney DGLA, and it is denoted by TotTW(g

1); denote by dTW the differential of
the Thom–Whitney DGLA. It is a remarkable fact that the integration maps∫

1n
⊗ Id : �n ⊗ gn→ K[n]⊗ gn = gn[n]

give a quasi-isomorphism of differential complexes I : TotTW(g
1)→ Tot(g1). In partic-

ular, the tangent space to DefTotTW (g1) is

T DefTotTW (g1)
∼= H

1(TotTW(g
1)) ∼= H

1(Tot(g1))

and obstructions live in

H 2(TotTW(g
1)) ∼= H

2(Tot(g1)).

Moreover, Dupont has described in [3, 4] an explicit morphism of differential complexes
E : Tot(g1)→ TotTW(g

1) and an explicit homotopy h : TotTW(g
1)→ TotTW(g

1)[−1]
such that IE = IdTot(g1) and EI − IdTotTW (g1) = [h, dTW ]. We also refer to the papers [2,
8, 19] for the explicit description of E, h and for the proof of the above identities. Here,
we point out that the construction of TotTW(g

1), Tot(g1), I , E and h is functorial in the
category DGLA1mon of semicosimplicial DGLAs.

In geometric applications, if L → A is an acyclic resolution, i.e., a quasi-isomorph-
ism of sheaves of DGLAs such that Ak is an acyclic sheaf of OX-modules for every k,
then one can use the augmentationH 0(X;A)→ A(U) to link the Thom–Whitney DGLA
of L(U) with the DGLA of global sections of A.

Theorem 3.7. Let X be a paracompact Hausdorff topological space, L a sheaf of dif-
ferential graded Lie algebras on X, and L → A an acyclic resolution. Then, if U is an
open cover of X which is acyclic with respect to both L and A, the DGLA TotTW(L(U))
is naturally quasi-isomorphic to the DGLA H 0(X;A).
Proof. We recall that an augmented semicosimplicial differential graded Lie algebra is
a diagram g−1 → g1, where g1 is a semicosimplicial DGLA and ∂0,0 : g−1 → g0 is a
DGLA morphism such that ∂0,1∂0,0 = ∂1,1∂0,0. There is a morphism of DGLAs

g−1 → TotTW(g
1),

x 7→ (∂0,0x, ∂1,1∂0,0x, ∂2,2∂1,1∂0,0x, . . . ),

induced by the natural morphism lim g1 → holim g1. Since A is an acyclic resolu-
tion of L, by a standard argument in homological algebra we have a chain of quasi-
isomorphisms of DGLAs

H 0(X;A) ∼−→ TotTW(A(U))
∼
←− TotTW(L(U)). ut
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3.3. Truncations

Let g1 be a semicosimplicial DGLA, and let m1 ∈ N and m2 ∈ N ∪ {∞} with m1 ≤ m2.
We denote by g1[m1,m2] the semicosimplicial DGLA truncated between levels m1 and m2
defined by

(g1[m1,m2])n =

{
gn for m1 ≤ n ≤ m2,

0 otherwise,

with the obvious maps ∂ [m1,m2]
k,i = ∂k,i form1 < i ≤ m2, and ∂ [m1,m2]

k,i = 0, otherwise. For
any nonnegative integersm1, m2, r1, r2 such that ri ≤ mi , the map Id[m1,r2] : g1[m1,m2] →

g1[r1,r2] given by

Id[m1,r2] |(g1[m1,m2] )n
=

{
Idgn if m1 ≤ n ≤ r2,

0 otherwise,

is a morphism of semicosimplicial DGLAs; it induces the natural morphism of com-
plexes φ : Tot(g1[m1,m2]) → Tot(g1[r1,r2]) and the natural morphism of DGLAs ψ :
TotTW(g

1[m1,m2]) → TotTW(g
1[r1,r2]). Note that we have a homotopy commutative dia-

gram of complexes

Tot(g1[m1,m2])

E

��

φ // Tot(g1[r1,r2])

E

��
TotTW(g

1[m1,m2])
ψ //

I

OO

TotTW(g
1[r1,r2])

I

OO

Proposition 3.8. Let g1 be a semicosimplicial DGLA such thatH j (gi) = 0 for all i ≥ 0
and j < 0. Then the morphism Id[0,2] induces a natural isomorphism of functors

DefTotTW (g1)
∼
−→ DefTotTW (g

1[0,2] )
.

Proof. It is a well known fact (see, e.g., [17] for a proof) that a DGLA morphism which is
surjective on H 0, bijective on H 1 and injective on H 2 induces an isomorphism between
the associated deformation functors. Since the above homotopy commutative diagram
identifies H ∗(ψ) with H ∗(φ), it is enough to prove that H 0(φ) is surjective, H 1(φ) is bi-
jective andH 2(φ) is injective. This is easily checked by looking at the spectral sequences
associated with double complexes of g1 and g1[0,2] . ut

Remark 3.9. Observe that, for any semicosimplicial DGLA g1, we have Z1
sc(exp g1) =

Z1
sc(exp g1[0,2]) andH 1

sc(exp g1) = H 1
sc(exp g1[0,2]). Moreover, the inclusion Z1

sc(exp g1)
↪→ Z1

sc(exp g1[0,1]) induces an injective map H 1
sc(exp g1) ↪→ H 1

sc(exp g1[0,1]).

Remark 3.10. By the definition of H 1
sc(exp g1) it follows that, if H−1(g2) = 0, then

TH 1
sc(exp g1) = H 1(Tot(g1[0,2])).

Hence, the two functors of Artin rings H 1
sc(exp g1) and DefTotTW (g

1[0,2] )
have naturally

isomorphic tangent spaces when H−1(g2) = 0. We will show in Section 4.3 that in this
case these two functors are actually isomorphic.
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4. An isomorphism of deformation functors

4.1. A lemma on Maurer–Cartan elements

We will now give an explicit description of the solutions of the Maurer–Cartan equation
for the DGLAs TotTW(g

1[0,1]) and TotTW(g
1[0,2]).

Proposition 4.1. Let g1 be a semicosimplicial DGLA. Then, for every A ∈ ArtK, the
solutions of the Maurer–Cartan equation for the Thom–Whitney DGLA TotTW(g

1[0,1])⊗

mA are of the form (x, ep(t) ∗ ∂0,1x), where x ∈ MCg0(A) and p(t) ∈ (g0
1[t] · t) ⊗ mA.

The elements x, p are uniquely determined, and they satisfy

∂1,1x = e
p(1)
∗ ∂0,1x. (4.1)

The solutions of the Maurer–Cartan equation for the Thom–Whitney DGLA TotTW(g
1[0,2])

⊗mA are of the form

(x, ep(t) ∗ ∂0,1x, e
q(s0,s1)+r(s0,s1,ds0,ds1) ∗ ∂0,2∂0,1x),

where x ∈ MCg0(A), p(t) ∈ (g
0
1[t] · t)⊗mA, q(s0, s1) ∈ (g0

2[s0, s1] · s0 + g0
2[s0, s1] · s1)

⊗ mA and r(s0, s1, ds0, ds1) ∈ (g−1
2 [s0, s1] · s0ds1) ⊗ mA. The elements x, p, q, r are

uniquely determined, and they satisfy
∂1,1x = e

p(1)
∗ ∂0,1x,

∂0,2p(t) = q(0, t),
∂1,2p(t) = q(t, 0),
e(−∂2,2p(t))•(q(t,1−t)+r(t,1−t,dt))•(−q(0,1)) ∗ ∂2,2∂0,1x = ∂2,2∂0,1x.

(4.2)

Proof. We recall [6, Proposition 7.2] that, if (L, d, [ , ]) is a differential graded Lie
algebra such that L = M ⊕ C ⊕D as graded vector spaces, with M a differential graded
subalgebra of L, and with d : C → D[1] an isomorphism of graded vector spaces, then,
for every A ∈ ArtK there exists a bijection

α : MCM(A)× (C0
⊗mA)

∼
−→ MCL(A), (x, c) 7→ ec ∗ x.

To prove (4.1), notice that TotTW(g
1[0,1]) is a sub-DGLA of g0 ⊕ �1 ⊗ g1 and use the

decomposition of �1 ⊗ g1 given by

M = g1, C = g1[t] · t, D = dC.

To prove (4.2), use the decomposition of �2 ⊗ g2 given by

M = g2, C = g2[s0, s1] · s0 + g2[s0, s1] · s1 + g2[s0, s1] · s0ds1, D = dC. ut



Infinitesimal deformations of coherent sheaves 533

4.2. The isomorphism H 1
sc(exp g1[0,1]) ∼= DefTotTW (g

1[0,1] )

Proposition 4.2. Let g1 be a semicosimplicial DGLA. The map

8[0,1] : MCTotTW (g
1[0,1] )

(A)→ (g1
0 ⊕ g0

1)⊗mA

given by (x, ep(t) ∗ ∂0,1x) 7→ (x, p(1)) induces a natural transformation of functors of
Artin rings DefTotTW (g

1[0,1] )
→ H 1

sc(exp g1[0,1]).

Proof. Clearly, if (x, ep(t)∗∂0,1x)∈MCTotTW (g
1[0,1] )

(A), then (x, p(1))∈Z1
sc(exp g1[0,1]).

We have to show that if two elements η0 = (x0, e
p0(t) ∗ ∂0,1x0) and η1 = (x1, e

p1(t) ∗

∂0,1x1) in MCTotTW (g
1[0,1] )

(A) are homotopy equivalent, then 8[0,1](η0) ∼ 8[0,1](η1) in

Z1
sc(exp g1[0,1]). Let z(ξ, dξ) be a homotopy between η0 and η1. Therefore, z(ξ, dξ) is

a Maurer–Cartan element for TotTW(g
1[0,1])[ξ, dξ ] and so, reasoning as in the proof of

Proposition 4.1, we find

z(ξ, dξ) = (eT (ξ) ∗ u, eU(t,dt;ξ) ∗ v),

with T (0) = U(t, dt; 0) = 0. Since z(0) = η0, we get

z(ξ, dξ) = (eT (ξ) ∗ x0, e
U(t,dt;ξ)

∗ ep0(t) ∗ ∂0,1x0).

The face conditions for z(ξ, dξ) and uniqueness imply U(0; ξ) = ∂0,1T (ξ) and U(1; ξ)
= ∂1,1T (ξ). Moreover, z(1) = η1, and so

(eT (1) ∗ x0, e
U(t,dt;1)

∗ ep0(t) ∗ ∂0,1x0) = (x1, e
p1(t) ∗ ∂0,1x1);

by uniqueness again, we have eT (1) ∗ x0 = x1. Furthermore, eU(t,dt;1) ∗ ep0(t) ∗ ∂0,1x0 =

ep1(t) ∗ ∂0,1x1, so, using the face conditions for η0 and η1, we obtain

∂0,1x0 = e
−p0(t)•−U(t,dt;1)•p1(t)•∂0,1T (1) ∗ ∂0,1x0.

Next, we recall [11, Lemma 6.15] that if L is a DGLA and x(t, dt) is a Maurer–Cartan
element for L[t, dt] and µ(t, dt) ∈ L[t, dt]0 is such that eµ(t,dt) ∗ x(t, dt) = x(t, dt),
then µ(1) is an element of the irrelevant stabilizer of x(1). Therefore, in our case we get

−p0(1) • −∂1,1T (1) • p1(1) • ∂0,1T (1) ∈ Stab(∂0,1x0). ut

Proposition 4.3. Let g1 be a semicosimplicial DGLA. The map

8[0,1] : DefTotTW (g
1[0,1] )

→ H 1
sc(exp g1[0,1])

is an isomorphism of functors of Artin rings. In particular, H 1
sc(exp g1[0,1]) is a deforma-

tion functor.
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Proof. Let 9[0,1] : Z1
sc(exp g1[0,1])(A) → TotTW(g

1[0,1]) ⊗ mA be the map given by
(l, m) 7→ (l, etm ∗ ∂0,1l); it is immediate to check that 8[0,1] actually takes its values in
MCTotTW (g

1[0,1] )
(A). Moreover, 9[0,1] induces a map

H 1
sc(exp g1[0,1])(A)→ DefTotTW (g

1[0,1] )
(A),

which is the inverse of 8[0,1]. Indeed, if (l0, m0) ∼ (l1, m1) in Z1
sc(exp g1[0,1])(A), then

there exist elements a ∈ g0
0 ⊗mA and b ∈ g−1

1 ⊗mA such that{
ea ∗ l0 = l1,

−m0 • −∂1,1a •m1 • ∂0,1a = db + [∂0,1l0, b].

Therefore, the images (l0, etm0 ∗ ∂0,1l0) and (l1, etm1 ∗ ∂0,1l1) are homotopic via the ele-
ment

z(ξ, dξ) = (eξa ∗ l0, e
t (∂1,1(ξa)•m0•(d(ξb)+[∂0,1l0,ξb])•−∂0,1(ξa))•∂0,1(ξa) ∗ ∂0,1l0).

The composition 8[0,1] ◦9[0,1] : Z1
sc(exp g1[0,1])(A)→ Z1

sc(exp g1[0,1])(A) is clearly the
identity, whereas 9[0,1] ◦ 8[0,1] : MCTotTW (g

1[0,1] )
(A) → MCTotTW (g

1[0,1] )
(A) is homo-

topic to the identity. Indeed, (x, ep(t) ∗ ∂0,1x) and (x, etp(1) ∗ ∂0,1x) are homotopic in
MCTotTW (g

1[0,1] )
(A) via the element z(ξ, dξ) = (x, eξ tp(1)+(1−ξ)p(t) ∗ ∂0,1x). ut

Remark 4.4. A particular case of Proposition 4.3, with an almost identical proof, has
been considered by one of the authors in [11]. Namely, given three DGLAs L,M and N
and two DGLA morphisms h : L → M and g : N → M , one can consider the semi-
cosimplicial DGLA

L⊕N
(0,g) //
(h,0)

// M
////// 0

//////// · · ·

to recover [11, Theorem 6.17].

4.3. Proof of the main theorem

In this section, we prove the existence of a natural isomorphism of functors of Artin rings
H 1

sc(exp g1) ∼= DefTotTW (g
1[0,2] )

for any semicosimplicial DGLA g1 such that H−1(g2)

= 0. As an immediate consequence we obtain a natural isomorphism of deformation func-
tors H 1

sc(exp g1) ∼= DefTotTW (g1) for any semicosimplicial DGLA g1 such that H j (gi)
= 0 for i ≥ 0 and j < 0.

The proof is considerably harder than in the case g1[0,1] considered in the previous
section. Indeed, we are still able to define a map 8 : MCTotTW (g

1[0,2] )
→ Z1

sc(exp g1)

inducing a natural transformation DefTotTW (g
1[0,2] )

→ H 1
sc(exp g1), but we will not be

able to explicitly define a homotopy inverse to 8, so we will have to directly check that
the map DefTotTW (g

1[0,2] )
→ H 1

sc(exp g1) is an isomorphism.
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Proposition 4.5. Let g1 be a semicosimplicial DGLA. The map

8 : MCTotTW (g
1[0,2] )

(A)→ (g1
0 ⊕ g0

1)⊗mA

given by

(x, ep(t) ∗ ∂0,1x, e
q(s0,s1)+r(s0,s1,ds1,ds1) ∗ ∂0,2∂0,1x) 7→ (x, p(1))

induces a natural transformation of functors of Artin rings

DefTotTW (g
1[0,2] )

→ H 1
sc(exp g1).

Proof. First we check that8 takes its values inZ1
sc(exp g1)(A). The only nontrivial point

consists in showing that −∂2,2p(1) • ∂1,2p(1) • −∂0,2p(1) is an element of the irrelevant
stabilizer of ∂2,2∂0,1x. This follows by the face condition

e(−∂2,2p(t))•(q(t,1−t)+r(t,1−t,dt))•(−q(0,1)) ∗ ∂2,2∂0,1x = ∂2,2∂0,1x,

applying [11, Lemma 6.15] once again. Next, we notice that the equivalence relation ∼
on Z1

sc(exp g1)(A) only involves the DGLAs g0 and g1; hence, we can conclude by fol-
lowing verbatim the proof of Proposition 4.2. ut

Proposition 4.6. The map 8 : DefTotTW (g
1[0,2] )

(A) → H 1
sc(exp g1)(A) is surjective for

any A ∈ ArtK.

Proof. Let (l, m) ∈ Z1
sc(exp g1)(A) and n ∈ g−1

2 ⊗mA be such that ∂0,2m•−∂1,2m•∂2,2m

= dn + 1
2 [∂2,2∂0,1l, n]. Consider the element w(t) = d(tn) + 1

2 [∂2,2∂0,1l, tn] in the
irrelevant stabilizer of ∂2,2∂0,1l and

R(s0, s1) = s0s1
s0∂2,2m • −w(s0) • s0∂0,2m • −s0∂1,2m

s0(1− s0)
• s0∂1,2m • s1∂0,2m.

Then
(l, etm ∗ ∂0,1l, e

R(s0,s1) ∗ ∂0,2∂0,1l)

is an element in MCTotTW (g
1[0,2] )

(A) in the fiber of 8 over (l, m). ut

We will prove that the map8 : DefTotTW (g
1[0,2] )

(A)→ H 1
sc(exp g1)(A) is injective, under

the hypothesis H−1(g2) = 0. For this we need two remarks.

Remark 4.7. Let (L, d, [ , ]) be a DGLA, A ∈ ArtK and x ∈ L1
⊗ mA. The linear

endomorphism dx = d + [x, ] of L ⊗ mA is a differential if and only if x ∈ MCL(A),
and in this case (L ⊗ mA, dx, [ , ]) is a DGLA. So, we can define the set of Maurer–
Cartan elements MCxL(A) and the gauge action of (L0

⊗ mA, dx, [ , ]) on it. We denote
by DefxL(A) the quotient of MCxL(A) with respect to the gauge action. The affine map

L⊗mA→ L⊗mA, v 7→ v − x,

induces an isomorphism DefL(A) ∼= DefxL(A) with obvious inverse v 7→ v + x.
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Next, let M ⊆ L be a sub-DGLA and let x ∈ MCL(A). If M ⊗ mA is closed under
the differential dx , then we can consider the set of Maurer–Cartan elements MCxM(A),
and its quotient DefxM(A). The tangent space to DefxM(A) is H 1(M ⊗ mA, dx); so, by
upper semicontinuity of cohomology, H 1(M, d) = 0 implies that DefxM(A) is trivial for
all x ∈ MCL(A) such that dx(M ⊗mA) ⊆ M ⊗mA.

Remark 4.8. For any semicosimplicial DGLA g1, the truncation morphism

Tot0TW(g
1[0,2])→ Tot0TW(g

1[0,1])

is surjective, i.e., for any (a0, a1) ∈ Tot0TW(g
1[0,1]) there exists a2 ∈ (g2 ⊗�2)

0 such that
(a0, a1, a2) ∈ Tot0TW(g

1[0,2]).

Proposition 4.9. Let g1 be a semicosimplicial DGLA such that H−1(g2) = 0. Then the
map 8 : DefTotTW (g

1[0,2] )
(A)→ H 1

sc(exp g1)(A) is injective for any A ∈ ArtK .

Proof. Consider the commutative diagram

DefTotTW (g
1[0,2] )

(A)
Id[0,1] //

8

��

DefTotTW (g
1[0,1] )

(A)

∼= 8[0,1]

��
H 1

sc(exp g1)(A)
i // H 1

sc(exp g1[0,1])(A)

Since the map 8[0,1] is an isomorphism by Proposition 4.3, it is sufficient to prove that
Id[0,1] is injective. Let (x0, x1, x2) and (x′0, x

′

1, x
′

2) be two Maurer–Cartan elements for
TotTW(g

1[0,2]) such that (x0, x1) and (x′0, x
′

1) are gauge equivalent Maurer–Cartan ele-
ments for TotTW(g

1[0,1]). Let (a0, a1) ∈ Tot0TW(g
1[0,1]) ⊗ mA be an element realizing

the gauge equivalence between (x′0, x
′

1) and (x0, x1), and let (a0, a1, a2) be a lift of
(a0, a1) in Tot0TW(g

1[0,2]) ⊗ mA (see Remark 4.8). Then (x′0, x
′

1, x
′

2) is gauge equivalent
via (a0, a1, a2) to the Maurer–Cartan element (x0, x1, e

a2 ∗ x′2) and it remains to prove
that (x0, x1, e

a2 ∗ x′2) is gauge equivalent to (x0, x1, x2).
To see this, consider the DGLA TotTW(g

1[0,2])⊗ mA and modify its differential with
the Maurer–Cartan element (x0, x1, x2), as in Remark 4.7. Translation by (x0, x1, x2)

gives an isomorphism

DefTotTW (g
1[0,2] )

(A) ∼= Def(x0,x1,x2)

TotTW (g
1[0,2] )

(A);

hence (x0, x1, x2) and (x0, x1, e
a2 ∗ x′2) will be gauge equivalent in MCTotTW (g

1[0,2] )
(A) if

and only if (0, 0, 0) and (0, 0, ea2 ∗ x′2 − x2) are gauge equivalent in MC(x0,x1,x2)

TotTW (g
1[0,2] )

(A).

Next, observe that the sub-DGLA TotTW(g
1[2,2])⊗ mA of TotTW(g

1[0,2])⊗ mA is closed
under the modified differential d(x0,x1,x2), so we can consider the deformation functor
Def(x0,x1,x2)

TotTW (g
1[2,2] )

(A). Since H 1(TotTW(g
1[2,2])) = H 1(Tot(g1[2,2])) = H−1(g2) = 0, this

deformation functor is trivial (see Remark 4.7). Therefore (0, 0, ea2 ∗ x′2 − x2) is gauge
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equivalent to (0, 0, 0) as an element of MC(x0,x1,x2)

TotTW (g
1[2,2] )

(A), and so, a fortiori, as an ele-

ment of MC(x0,x1,x2)

TotTW (g
1[0,2] )

(A). ut

Summing up, and recalling Proposition 3.8, we have proved:

Theorem 4.10. Let g1 be a semicosimplicial DGLA with H−1(g2) = 0. Then there is a
natural isomorphism of functors DefTotTW (g

1[0,2] )
∼= H 1

sc(exp g1). If moreoverH j (gi) = 0
for all i ≥ 0 and j < 0, then there is a natural isomorphism of functors DefTotTW (g1)

∼=

H 1
sc(exp g1). In particular, in this case, the tangent space to H 1

sc(exp g1) is H 1(Tot(g1))
and obstructions are contained in H 2(Tot(g1)).

As an immediate geometric application, we obtain:

Theorem 4.11. Let X be a paracompact Hausdorff topological space, and let L be a
sheaf of differential graded Lie algebras on X such that the DGLAs L(Ui0...ik ) have no
negative cohomology. Then every refinement U ′ ≥ U of open covers of X induces a nat-
ural morphism of deformation functors DefTotTW (L(U)) → DefTotTW (L(U ′)). In particular,
the direct limit

Def[L] = lim
−→
U

DefTotTW (L(U))

is well defined and there is a natural isomorphism of functors of Artin rings

H 1
Ho(X; expL) ∼= Def[L] .

Moreover, if acyclic open covers for L are cofinal in the directed family of all open covers
of X, then

H 1
Ho(X; expL) ∼= H 1

sc(expL(U)) and Def[L] ∼= DefTotTW (L(U))

for every L-acyclic open cover U of X.

Proof. Let U ′ ≥ U be a refinement of open covers of X, and let τ be a refinement func-
tion; it induces a natural morphism of semicosimplicial Lie algebras L(U)→ L(U ′) and
so a commutative diagram of natural transformations

DefTotTW (L(U))

��

∼ // H 1
sc(expL(U))

��
DefTotTW (L(U ′))

∼ // H 1
sc(expL(U ′))

Horizontal arrows are isomorphisms by Theorem 4.10, and the right vertical arrow is
independent of the refinement function τ , as observed at the end of Section 3.1. Hence,
the left morphism is also independent of τ , so the direct limit

Def[L] = lim
−→
U

DefTotTW (L(U))
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is well defined and we have a natural isomorphism Def[L] ∼= H 1
Ho(X; expL). Assume

now that acyclic open covers for L are cofinal in the family of all open covers ofX. Then,
for any refinement U ′ ≥ U of acyclic open covers, the DGLA-morphism TotTW(L(U))→
TotTW(L(U ′)) is a quasi-isomorphism by Leray’s theorem. Therefore, the left vertical
arrow in the above diagram is an isomorphism and hence so is the right vertical one.
Taking the direct limit over L-acyclic covers, we conclude that, if U is an L-acyclic open
cover of X, then H 1

Ho(X; expL) ∼= H 1
sc(expL(U)) and Def[L] ∼= DefTotTW (L(U)). ut

5. Conclusions and further developments

We can now sum up our results to obtain a DGLA description of infinitesimal deforma-
tions of a coherent sheaf. In Section 2, we analysed infinitesimal deformations of a coher-
ent sheaf F of OX-modules on a ringed space (X,OX). If E · → F → 0 is a locally free
resolution of F on X, we showed how infinitesimal deformations of F can be expressed
in terms of the sheaf of DGLAs End∗(E ·). More precisely, in Section 3.1, we showed that
the functor of infinitesimal deformations of F is isomorphic to H 1

Ho(X; exp End∗(E ·)).
Since negative Ext-groups between coherent sheaves are always trivial, all terms in the

semicosimplicial DGLA End∗(E ·)(U) have zero negative cohomology. Therefore, Theo-
rem 4.10 applies and we deduce that the functor of infinitesimal deformations of F is
isomorphic to Def[End∗(E ·)]; in particular, we recover the well known fact that the tangent
space to DefF is Ext1(F ,F) and that its obstructions are contained in Ext2(F ,F).

Moreover, if X is a smooth complex variety, then the DGLA controlling infinites-
imal deformations of F turns out to be not at all mysterious. Indeed, let End∗(E ·) →
A0,∗
X (End∗(E ·)) be the Dolbeault resolution of End∗(E ·). Since this resolution is fine,

by Theorem 3.7 the functor of infinitesimal deformations of F is isomorphic to the
deformation functor associated with the DGLA A

0,∗
X (End∗(E ·)) of global sections of

A0,∗
X (End∗(E ·)). We can also give an explicit description of this isomorphism of deforma-

tion functors. Indeed, a natural isomorphism

Def
A

0,∗
X (End∗(E ·))(B)→ DefF (B) for B ∈ ArtK

is defined by associating with every Maurer–Cartan element ξ of the DGLA
A

0,∗
X (End∗(E ·)) the cohomology sheaf of (A0,∗

X (E ·) ⊗ B, ∂ + dE · + ξ). Note that, by
semicontinuity, this cohomology sheaf is concentrated in degree zero.

The techniques developed in this paper apply to a wide range of other geometric
examples. More explicitly, we can use them in all cases when local deformations admit
a simple DGLA description in terms of a resolution of the object to be deformed, for
instance, in the case of infinitesimal deformations of a singular variety. Namely, let X be
a singular variety, OX the sheaf of regular function of X, and R·→ OX its standard free
resolution [12, Section 1.5]. Then the deformation functor of infinitesimal deformations
of X is isomorphic to H 1

Ho(X; expDer∗(R·)); see [5] for details. From this, we also
recover the classical result that the tangent space to deformations of X is Ext1(LX,OX),
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and that obstructions are contained in Ext2(LX,OX), where LX is the cotangent complex
of X.
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Univ. de Montréal, Montreal (1971) Zbl 0382.32014

[16] Lurie, J.: Higher Topos Theory. Ann. of Math. Stud. 170, Princeton Univ. Press, Princeton,
NJ (2009) Zbl 1175.18001 MR 2522659

[17] Manetti, M.: Deformation Theory via Differential Graded Lie Algebras. Seminari di Geome-
tria Algebrica 1998-1999, Scuola Normale Superiore (1999) MR 1754793

[18] Manetti, M.: Extended deformation functors. Int. Math. Res. Notices 2002, no. 14, 719–756
Zbl 1063.58007 MR 1891232
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