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Abstract. As a generalization of Postnikov’s construction [P], we define a map from the space
of edge weights of a directed network in an annulus into a space of loops in the Grassmannian.
We then show that universal Poisson brackets introduced for the space of edge weights in [GSV3]
induce a family of Poisson structures on rational matrix-valued functions and on the space of loops
in the Grassmannian. In the former case, this family includes, for a particular kind of networks, the
Poisson bracket associated with the trigonometric R-matrix.

1. Introduction

This is the second in a series of four papers initiated by [GSV3] and devoted to geom-
etry behind directed networks on surfaces, with a particular emphasis on their Poisson
properties.

In [GSV3], we concentrated on Postnikov’s construction [P] that uses weighted di-
rected planar graphs to parametrize cells in Grassmannians. We found that the space of
edge weights of networks in a disk can be endowed with a natural family of Poisson
brackets (which we called universal) that “respects” the operation of concatenation of di-
agrams. We have shown that, under Postnikov’s parametrization, these Poisson brackets
induce a two-parameter family of Poisson brackets on the Grassmannian. Every Poisson
bracket in this family is compatible (in the sense of [GSV1, GSV2]) with the cluster al-
gebra on the Grassmannian described in [GSV1, S] and, on the other hand, endows the
Grassmannian with a structure of a Poisson homogeneous space with respect to the natu-
ral action of the general linear group equipped with an R-matrix Poisson–Lie structure.

As was announced in [GSV3], the current paper builds a parallel theory for directed
weighted networks in an annulus (or, equivalently, on a cylinder). First, we have to modify
the definition of the boundary measurement map, whose image now consists of rational
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matrix-valued functions of an auxiliary parameter λ associated with the notion of a cut
(see Section 1). We then show that the analogue of Postnikov’s construction leads to a map
into the space of loops in the Grassmannian. Universal Poisson brackets for networks in
an annulus are defined in exactly the same way as in the case of a disk. We show that
they induce a two-parameter family of Poisson brackets on boundary measurements. In
particular, when all sources are located on one of the boundary circles, and all sinks
on the other, one of the generators of this family coincides with the Sklyanin R-matrix
bracket associated with the trigonometric solution of the classical Yang–Baxter equation
in sl(n). Moreover, we prove that the two-parameter family of Poisson brackets can be
further pushed forward to the space of loops in the Grassmannian. In proving the latter,
we departed from the approach of [GSV3] where a similar result was obtained via a more
or less straightforward calculation. Such an approach would have been too cumbersome
in our current setting. Instead, we found a way to utilize so-called face weights and their
behavior under path-reversal maps.

The third paper in this series [GSV4] focuses on particular graphs in an annulus that
can be used to introduce a cluster algebra structure on the coordinate ring of the space
of normalized rational functions in one variable. This space is birationally equivalent,
via the Moser map [M], to any minimal irreducible coadjoint orbit of the group of upper
triangular matrices associated with a Coxeter element of the permutation group. In this
case, the Poisson bracket compatible with the cluster algebra structure coincides with the
quadratic Poisson bracket studied in [FG1, FG2] in the context of Toda flows on minimal
orbits. We show that cluster transformations serve as Bäcklund–Darboux transformations
between different minimal Toda flows. The fourth paper [GSV5] solves, in the case of
graphs in an annulus, the inverse problem of restoring the weights from the image of the
generalized Postnikov map. In the case of arbitrary planar graphs in a disk, this problem
was completely solved by Postnikov [P] who proved that for a fixed minimal graph, the
space of weights modulo gauge action is birational to its image. In contrast to this case,
already for simplest graphs in an annulus, the corresponding map can only be shown to
be finite, that is, the number of collections of weights that produce the same boundary
measurement for a fixed minimal graph is finite.

The original application of directed weighted planar networks was in the study of
total positivity, both in GLn [KM, B, BFZ, FZ, Fa] and in Grassmannians [P]. We do
not investigate this aspect for networks in an annulus. It has been studied in a recent
preprint [LP].

The paper is organized as follows.
In Section 2, we introduce the notion of a perfect network in an annulus and associate

with every such network a matrix of boundary measurements. Each boundary measure-
ment is shown to be a rational function in edge weights and in an auxiliary parameter λ
(see Corollary 2.3). Moreover, we define the space of face and trail weights, a general-
ization of the space of face weights studied in [GSV3] for the case of networks in a disk,
and provide its cohomological interpretation (see Section 2.3).

In Section 3, we characterize all universal Poisson brackets on the space of edge
weights of a given network that respect the natural operation of concatenation of net-
works (see Proposition 3.1). Furthermore, we establish that the family of universal brack-
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ets induces a linear two-parameter family of Poisson brackets on the space of face and
trail weights (see Theorem 3.2), and hence on boundary measurement matrices (see The-
orem 3.3). This family depends on a relative location of sources and sinks, but not on
the network itself. We provide an explicit description of this family in Propositions 3.4
and 3.6. An important tool in the proof of Theorem 3.3 is the realization theorem (see
Theorem 3.8) that states that any rational matrix function can be realized as the boundary
measurement matrix of a network with a given set of sources and sinks. Finally, if the
sources and the sinks are separated, that is, all sources belong to one of the bounding cir-
cles of the annulus, and all sinks to the other bounding circle, one of the generators of the
two-parameter family can be identified with the R-matrix Sklyanin bracket corresponding
to the trigonometric R-matrix (see Theorem 3.13).

In Section 4, the boundary measurement map defined by a network with k sources,
n − k sinks and n1 ≤ n boundary vertices on the outer boundary circle is extended to
the Grassmannian boundary measurement map into the space LGk(n) of Grassmannian
loops. The Poisson family on boundary measurement matrices allows us to equip LGk(n)
with a two-parameter family of Poisson brackets Pn1

α,β in such a way that for any choice
of a universal Poisson bracket on edge weights there is a unique member of Pn1

α,β that
makes the Grassmannian boundary measurement map Poisson (see Theorem 4.7). This
latter family depends only on the number of sources and sinks and on the distribution of
the boundary vertices between the bounding circles of the annulus. The main tool in the
proof of Theorem 4.7 is the path reversal operation on networks and its properties (see
Theorem 4.1).

2. Perfect planar networks and boundary measurements

2.1. Networks, cuts, paths and weights

Let G = (V ,E) be a directed planar graph drawn inside an annulus with the vertex set V
and the edge set E. Exactly n of its vertices are located on the boundary circles of the
annulus and are called boundary vertices; n1 ≥ 0 of them lie on the outer circle, and
n2 = n− n1 ≥ 0 on the inner circle. The graph is considered up to an isotopy relative to
the boundary (with fixed boundary vertices).

Each boundary vertex is marked as a source or a sink. A source is a vertex with exactly
one outcoming edge and no incoming edges. Sinks are defined in the same way, with the
direction of the single edge reversed. All the internal vertices of G have degree 3 and are
of two types: either they have exactly one incoming edge, or exactly one outcoming edge.
The vertices of the first type are called (and shown in figures) white, those of the second
type, black.

A cut ρ is an oriented non-selfintersecting curve starting at a base point on the inner
circle and ending at a base point on the outer circle considered up to an isotopy relative to
the boundary (with fixed endpoints). We assume that the base points of the cut are distinct
from the boundary vertices of G. For an arbitrary oriented curve γ with endpoints not
lying on the cut ρ we denote by ind(γ ) the algebraic intersection number of γ and ρ.
Recall that each transversal intersection point of γ and ρ contributes 1 to this number if
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the oriented tangents to γ and ρ at this point form a positively oriented basis, and −1
otherwise. Non-transversal intersection points are treated in a similar way.

Let x1, . . . , xd be independent variables. A perfect planar network in an annulusN =
(G, ρ,w) is obtained from a graph G equipped with a cut ρ as above by assigning a
weight we ∈ Z(x1, . . . , xd) to each edge e ∈ E. Below we occasionally write “network”
instead of “perfect planar network in an annulus”. Each network defines a rational map
w : Rd → R|E|; the space of edge weights EN is defined as the intersection of the image
of w with (R \ 0)|E|. In other words, a point in EN is a graph G as above with edges
weighted by non-zero real numbers obtained by specializing the variables x1, . . . , xd in
the expressions for we.

A path P in N is an alternating sequence (v1, e1, v2, . . . , er , vr+1) of vertices and
edges such that ei = (vi, vi+1) for any i ∈ [1, r]. Sometimes we omit the names of the
vertices and write P = (e1, . . . , er). A path is called a cycle if vr+1 = v1, and a simple
cycle if additionally vi 6= vj for any other pair i 6= j .

To define the weight of a path we need the following construction. Consider a closed
oriented polygonal plane curve C. Let e′ and e′′ be two consecutive oriented segments
of C, and let v be their common vertex. We assume for simplicity that for any such
pair (e′, e′′), the cone spanned by e′ and e′′ is not a line; in other words, if e′ and e′′

are collinear, then they have the same direction. Observe that since C is not necessarily
simple, there might be other edges of C incident to v. Let l be an arbitrary oriented line.
Define cl(e′, e′′) ∈ Z/2Z in the following way: cl(e′, e′′) = 1 if the directing vector
of l belongs to the interior of the cone spanned by e′ and e′′, and cl(e′, e′′) = 0 otherwise.
Define cl(C) as the sum of cl(e′, e′′) over all pairs of consecutive segments inC. It follows
immediately from Theorem 1 in [GrSh] that cl(C) does not depend on l, provided l is not
collinear to any of the segments in C. The common value of cl(C) for different choices of
l is denoted by c(C) and called the concordance number of C. In fact, c(C) equals mod 2
the rotation number of C; the definition of the latter is similar, but more complicated.

In what follows we assume without loss of generality that N is drawn in such a way
that all its edges and the cut are smooth curves. Moreover, any simple path in N is a
piecewise-smooth curve with no cusps, at any boundary vertex of N the edge and the cir-
cle intersect transversally, and the same holds for the cut at both of its base points. Given a
path P between a source b′ and a sink b′′, we define a closed piecewise-smooth curve CP
in the following way: if both b′ and b′′ belong to the same circle,CP is obtained by adding
to P the path between b′′ and b′ that goes counterclockwise along the boundary of the
corresponding circle. Otherwise, if b′ and b′′ belong to distinct circles, CP is obtained
by adding to P the path that starts at b′′, goes counterclockwise along the corresponding
circle to the base point of the cut, follows the cut to the other base point and then goes
counterclockwise along the other circle up to b′. Clearly, the resulting curve CP does not
have cusps, so its concordance number c(CP ) can be defined in a straightforward manner
via polygonal approximation.

Finally the weight of P is defined as

wP = wP (λ) = (−1)c(CP )−1λind(P )
∏
e∈P

we, (2.1)
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where λ is an auxiliary independent variable. Occasionally, it will be convenient to assume
that the internal vertices of G do not lie on the cut and to rewrite the above formula as

wP = (−1)c(CP )−1
∏
e∈P

w̄e, (2.2)

where w̄e = weλind(e) are modified edge weights. Observe that the weight of a path is a
relative isotopy invariant, while modified edge weights are not. The weight of an arbitrary
cycle in N is defined in the same way via the concordance number of the cycle.

If edges ei and ej in P coincide and i < j , the path P can be decomposed into the
path P ′ = (e1, . . . , ei−1, ei = ej , ej+1, . . . , er) and the cycle C0

= (ei, ei+1, . . . , ej−1).
Clearly, c(CP ) = c(CP ′)+ c(C0), and hence

wP = −wP ′wC0 . (2.3)

An example of a perfect planar network in an annulus is shown in Fig. 2.1 (left). It
has two sources, b on the outer circle and b′′ on the inner circle, and one sink b′ on the
inner circle. Each edge ei is labeled by its weight. The cut is shown by the dashed line.
The same network is shown in Fig. 2.1 (right); it differs from the original picture by an
isotopic deformation of the cut.
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Fig. 2.1. A perfect planar network in an annulus.

Consider the path P1 = (e1, e2, e3, e4) from b to b′. Its algebraic intersection number
with the cut equals 0 (in the left picture, two intersection points contribute 1 each, and two
other intersection points contribute −1 each; in the right picture there are no intersection
points). The concordance number of the corresponding closed curve CP1 equals 1. There-
fore, (2.1) gives wP1 = w1w2w3w4. On the other hand, the modified weights for the left
picture are given by w̄1 = w1, w̄2 = λw2, w̄3 = λ

−1w3, w̄4 = w4, and hence computa-
tion via (2.2) gives wP1 = w̄1w̄2w̄3w̄4 = w1w2w3w4. Finally, the modified weights for
the relevant edges in the right picture coincide with the original weights, and we again get
the same result.

Consider the path P2 = (e7, e8, e3, e4) from b′′ to b′. Its algebraic intersection number
with the cut equals −1, and the concordance number of the corresponding closed curve
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CP2 equals 1. Therefore, wP2 = λ−1w3w4w7w8. The same result can be obtained by
using modified weights.

Finally, consider the path P3 = (e1, e2, e3, e5, e6, e8, e3, e4) from b to b′. Clearly,
wP3 = −λ

−1w1w2w
2
3w4w5w6w8. The path P3 can be decomposed into the path P1

as above and a cycle C0
= (e3, e5, e6, e8) with the weights wP1 = w1w2w3w4 and

wC0 = λ−1w3w5w6w8, hence relation (2.3) yields the same expression forwP3 as before.
Let us see how moving a base point of the cut affects the weights of paths. Let

N = (G, ρ,w) and N ′ = (G, ρ′, w) be two networks with the same graph and the
same weights, and assume that the cuts ρ and ρ′ are not isotopic. More exactly, let us
start moving a base point of the cut in the counterclockwise direction. Assume that b is
the first boundary vertex in the counterclockwise direction from the base point of ρ that is
being moved. Clearly, nothing is changed while the base point and b do not interchange.
Let ρ′ be the cut obtained after the interchange, and assume that no other interchanges
occurred. Then the relation between the weight wP of a path P in N and its weight w′P
in N ′ is given by the following proposition.

Proposition 2.1. For N and N ′ as above,

w′P (λ) = ((−1)α(P )λ)β(b,P )wP ,

where α(P ) equals 0 if the endpoints of P lie on the same circle and 1 otherwise, and

β(b, P ) =


1 if b is the sink of P ,
−1 if b is the source of P ,
0 otherwise.

Proof. The proof is straightforward. ut

For example, consider the networks N and N ′ shown in Fig. 2.2. The base point of
the cut lying on the inner circle interchanges positions with the sink b′. The path P1
from the previous example goes from the outer circle to the inner circle, so α(P1) = 1;
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Fig. 2.2. Moving the base point of the cut.
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moreover, b′ is the sink of P1, so β(b′, P1) = 1. Therefore, by Proposition 2.1, w′P1
=

−λwP1 = −λw1w2w3w4, which coincides with the value obtained via (2.2). The path P2
from the previous example starts and ends at the inner circle, so α(P2) = 0. Moreover,
β(b′, P2) = 1, and hence, by Proposition 2.1, w′P2

= λwP2 = w1w2w3w4; once again,
this coincides with the value obtained via (2.2).

2.2. Boundary measurements

Given a perfect planar network in an annulus as above, we label its boundary vertices
b1, . . . , bn in the following way. The boundary vertices lying on the outer circle are la-
beled b1, . . . , bn1 in the counterclockwise order starting from the first vertex that occurs
after the base point of the cut. The boundary vertices lying on the inner circle are labeled
bn1+1, . . . , bn in the clockwise order starting from the first vertex that occurs after the
base point of the cut. For example, for the network N in Fig. 2.2, the boundary vertices
are labeled b1 = b, b2 = b

′′, b3 = b
′, while for the network N ′, one has b1 = b, b2 = b

′,
b3 = b

′′.
The number of sources lying on the outer circle is denoted by k1, and the correspond-

ing set of indices, by I1 ⊂ [1, n1]; the set of the remainingm1 = n1−k1 indices is denoted
by J1. Similarly, the number of sources lying on the inner circle is denoted by k2, and the
corresponding set of indices, by I2 ⊂ [n1 + 1, n]; the set of the remaining m2 = n2 − k2
indices is denoted by J2. Finally, we denote I = I1∪I2 and J = J1∪J2; the cardinalities
of I and J are denoted k = k1 + k2 and m = m1 +m2.

Given a source bi , i ∈ I , and a sink bj , j ∈ J , we define the boundary measurement
M(i, j) as the sum of the weights of all paths starting at bi and ending at bj . Assume first
that the weights of the paths are calculated via (2.2). The boundary measurement thus
defined is a formal infinite series in variables w̄e, e ∈ E. The following proposition holds
true in Z[[w̄e, e ∈ E]].

Proposition 2.2. Let N be a perfect planar network in an annulus. Then each boundary
measurement in N is a rational function in the modified weights w̄e, e ∈ E.

Proof. The proof by induction on the number of internal vertices literally follows the
proof of the similar statement in [GSV3]. The only changes are that modified weights are
used instead of original weights and that the counterclockwise cyclic order ≺ is replaced
by the cyclic order mod n induced by the labeling. ut

Taking into account the definition of the modified weights, we immediately get the fol-
lowing corollary.

Corollary 2.3. Let N be a perfect planar network in an annulus. Then each boundary
measurement in N is a rational function in the parameter λ and in the weights we, e ∈ E.

For example, the boundary measurement M(1, 2) in the network N ′ shown in Fig. 2.2
equals

w1w3w4(w6w8w9 − λw2)

1+ λ−1w3w5w6w8
.
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Boundary measurements can be organized into a k×m boundary measurement matrix
MN exactly as in the case of planar networks in the disk. Let I = {i1 < · · · < ik} and J =
{j1 < · · · < jm}. Then MN = (Mpq), p ∈ [1, k], q ∈ [1, m], where Mpq = M(ip, jq).
Let Ratk,m stand for the space of real rational k × m matrix functions in one variable.
Then each network N defines a map EN → Ratk,m given byMN and called the boundary
measurement map corresponding to N .

The boundary measurement matrix has a block structure

MN =

(
M1 M2
M3 M4

)
,

where M1 is k1 × m1 and M4 is k2 × m2. Moving a base point of the cut changes the
weights of paths as described in Proposition 2.1, which affects MN in the following way.
Define

3+ =


0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
λ−1 0 . . . 0

 , 3− =


0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
−λ−1 0 . . . 0

 .
Then interchanging the base point of the cut with b1 implies the transformation(

M1 M2
M3 M4

)
7→

(
3+M1 3−M2
M3 M4

)
if b1 is a source, and (

M1 M2
M3 M4

)
7→

(
M13

−1
+ M2

M33
−1
− M4

)
if b1 is a sink, while interchanging the base point of the cut with bn yields(

M1 M2
M3 M4

)
7→

(
M1 M2

3T+M3 3T−M4

)
if bn is a source, and (

M1 M2
M3 M4

)
7→

(
M1 M2(3

−1
+ )

T

M3 M4(3
−1
− )

T

)
if b1 is a sink. Note that 3+ and 3− are k1 × k1 in the first case, m1 ×m1 in the second
case, k2 × k2 in the third case and m2 ×m2 in the fourth case.

2.3. The space of face and trail weights

Let N = (G, ρ,w) be a perfect network. Consider the Z-module ZE generated by the
edges of G. Clearly, points of EN can be identified with elements of Hom(ZE,R∗) via
w(
∑
niei) =

∏
w
ni
ei , where R∗ is the abelian multiplicative group R\0. Further, consider
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the Z-module ZV generated by the vertices of G and its Z-submodule ZV0 generated by
the internal vertices. An arbitrary element ϕ ∈ Hom(ZV ,R∗) acts on EN as follows: if
e = (u, v) then

we 7→ we
ϕ(v)

ϕ(u)
.

Therefore, the weight of a path between the boundary vertices bi and bj is multiplied
by ϕ(bj )/ϕ(bi). It follows that the gauge group G, which preserves the weights of all
paths between boundary vertices, consists of all ϕ ∈ Hom(ZV ,R∗) such that ϕ(b) = 1
for any boundary vertex b, and can be identified with Hom(ZV0 ,R∗). Thus, the boundary
measurement map EN → Ratk,m factors through the quotient space FN = EN/G as
follows: MN = M

F
N ◦ y, where y : EN → FN is the projection and MFN is a map FN →

Ratk,m. The space FN is called the space of face and trail weights for the following
reasons.

First, by considering the cochain complex

0→ G→ EN → 0

with the coboundary operator δ : G → EN defined by δ(ϕ)(e) = ϕ(v)/ϕ(u) for e =
(u, v), we can identify FN with the first relative cohomologyH 1(G, ∂G;R∗) of the com-
plex, where ∂G is the set of all boundary vertices of G.

Second, consider a slightly more general situation, when the annulus is replaced by
an arbitrary Riemann surface 6 of genus zero with the boundary ∂6, andG is embedded
into 6 in such a way that all vertices of degree 1 belong to ∂6 (boundary vertices). Then
the exact sequence of relative cohomology with coefficients in R∗ gives

0→ H 0(G ∪ ∂6, ∂6)→ H 0(G ∪ ∂6)→ H 0(∂6)

→ H 1(G ∪ ∂6, ∂6)→ H 1(G ∪ ∂6)→ H 1(∂6)→ 0.

Evidently, H 1(G, ∂G) ' H 1(G∪ ∂6, ∂6). Next, H 0(G∪ ∂6, ∂6) = 0, since each
connected component of G is connected to at least one connected component of ∂6, and
hence

H 1(G, ∂G) ' H 1(G ∪ ∂6)/H 1(∂6)⊕H 0(∂6)/H 0(G ∪ ∂6) = FfN ⊕ F
t
N .

The spaceFfN can be described as follows. The graphG divides6 into a finite number
of connected components called faces. The boundary of each face consists of edges of G
and, possibly, of several arcs of ∂6. A face is called bounded if its boundary contains
only edges of G, and unbounded otherwise.

Given a face f , we define its face weight yf as the function on EN that assigns to the
edge weights we, e ∈ E, the value

yf =
∏
e∈∂f

w
γe
e , (2.4)

where γe = 1 if the direction of e is compatible with the counterclockwise orientation of
the boundary ∂f , and γe = −1 otherwise. It follows immediately from the definition that
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face weights are invariant under the gauge group action, and hence are functions on FfN ,
and moreover form a basis in the space of such functions.

Consider now the space F tN . If 6 is a disk, then F tN = 0, and hence FN and FfN
coincide. This case was studied in [GSV3], and the space FN was called there the space
of face weights. If6 is an annulus, two cases are possible. Indeed, dimH 0(∂6) = 2. The
dimension ofH 0(G∪∂6) is either 2 or 1, depending on the existence of a trail connecting
the components of ∂6. Here a trail is a sequence (v1, . . . , vk+1) of vertices such that
either (vi, vi+1) or (vi+1, vi) is an edge in G for all i ∈ [1, k] and the endpoints v1 and
vk+1 are boundary vertices of G. Given a trail t , the trail weight yt is defined as

yt =

k∏
i=1

w(vi, vi+1),

where

w(vi, vi+1) =

{
we if e = (vi, vi+1) ∈ E,

w−1
e if e = (vi+1, vi) ∈ E.

Clearly, the trail weights are invariant under the action of the gauge group.
If G does not contain a trail connecting the inner and the outer circles, then

dimH 0(G ∪ ∂6) = 2, and hence F tN = 0. Otherwise, dimH 0(G ∪ ∂6) = 1, and
hence dimF tN = 1. The functions on F tN are generated by the weight of any connecting
trail.

3. Poisson properties of the boundary measurement map

3.1. Poisson structures on the spaces EN and FN
The construction of a Poisson structure on the space EN for perfect planar networks in an
annulus is a straightforward extension of the corresponding construction for the case of
the disk studied in [GSV3]. LetG be a directed planar graph in an annulus as described in
Section 2.1. A pair (v, e) is called a flag if v is an endpoint of e. To each internal vertex v
ofGwe assign a 3-dimensional space (R\0)3v with coordinates x1

v , x
2
v , x

3
v . We equip each

(R \ 0)3v with a Poisson bracket {·, ·}v . It is convenient to assume that the flags involving
v are labeled by the coordinates, as shown in Figure 3.1.

2

v

1
x

v

1

v

x

v v

x
v

2

x
v

3

x
v

3

x

Fig. 3.1. Edge labeling for R3
v .

Moreover, to each boundary vertex bj of G we assign a 1-dimensional space (R \ 0)j
with the coordinate x1

j (in accordance with the above convention, this coordinate labels
the unique flag involving bj ). DefineR to be the direct sum of all the above spaces; thus,
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the dimension ofR equals twice the number of edges in G. Note thatR is equipped with
a Poisson bracket {·, ·}R, which is defined as the direct sum of the brackets {·, ·}v; that
is, {x, y}R = 0 whenever x and y are not defined on the same (R \ 0)3v . We say that the
bracket {·, ·}R is universal if each of {·, ·}v depends only on the color of the vertex v.

Define the weights we by

we = x
i
vx
j
u , (3.1)

provided the flag (v, e) is labeled by xiv and the flag (u, e) is labeled by xju . In other words,
the weight of an edge is defined as the product of the weights of the two flags involving
this edge. Therefore, in this case the space of edge weights EN coincides with the entire
(R \ 0)|E|, and the weights define a weight map w: (R \ 0)d → (R \ 0)|E|. We require
the pushforward of {·, ·}R to (R \ 0)|E| by the weight map to be a well defined Poisson
bracket; this can be regarded as an analog of the Poisson–Lie property for groups.

Proposition 3.1. Universal Poisson brackets {·, ·}R such that the weight map w is Pois-
son form a 6-parameter family defined by the relations

{xiv, x
j
v }v = αijx

i
vx
j
v , i, j ∈ [1, 3], i 6= j, (3.2)

at each white vertex v and

{xiv, x
j
v }v = βijx

i
vx
j
v , i, j ∈ [1, 3], i 6= j, (3.3)

at each black vertex v.

Proof. Indeed, let v be a white vertex, and let e = (v, u) and ē = (v, ū) be the two
outcoming edges. By definition, there exist i, j, k, l ∈ [1, 3], i 6= j , such that we = xivx

k
u,

wē = x
j
v x

l
ū. Therefore,

{we, wē}N = {x
i
vx
k
u, x

j
v x

l
ū}R = x

k
ux
l
ū{x

i
v, x

j
v }v,

where {·, ·}N stands for the pushforward of {·, ·}R. Recall that the Poisson bracket in
(R \ 0)3v depends only on x1

v , x2
v and x3

v . Hence the only possibility for the right hand side
of the above relation to be a function of we and wē occurs when {xiv, x

j
v }v = αijx

i
vx
j
v , as

required.
Black vertices are treated in the same way. ut

The 6-parameter family of universal Poisson brackets described in Proposition 3.1
induces a 6-parameter family of Poisson brackets {·, ·}N on EN . Our next goal is to study
the pushforward of this family to FN by the map y.

Theorem 3.2. The 6-parameter family {·, ·}N induces a 2-parameter family of Poisson
brackets {·, ·}FN on FN with parameters α and β given by

α = α23 + α13 − α12, β = β23 + β13 − β12. (3.4)
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Proof. In what follows it will be convenient to assume that boundary vertices are colored
gray. Let e = (u, v) be a directed edge. We say that the flag (u, e) is positive, and the flag
(v, e) is negative. The color of a flag is defined as the color of the vertex participating in
the flag.

Consider first a bracket of two face weights. Let f and f ′ be two faces of N . We say
that a flag (v, e) is common to f and f ′ if both v and e belong to ∂f ∩ ∂f ′. Clearly, the
bracket {yf , yf ′}FN can be calculated as the sum of the contributions of all flags common
to f and f ′.

Assume that (v, e) is a positive white flag common to f and f ′ (see Fig. 3.2). Then

yf =
x3
v

x2
v

ȳf and yf ′ = x
1
vx

2
v ȳf ′ ,

where xiv are the weights of flags involving v and {xiv, ȳf }R = {x
i
v, ȳf ′}R = 0. Therefore,

by (3.2), the contribution of (v, e) equals (α12 − α13 − α23)yf yf ′ , which by (3.4) equals
−αyf yf ′ .

Assume now that (v, e) is a negative white flag common to f and f ′ (see Fig. 3.2). In
this case

yf =
1

x1
vx

3
v

ȳf and yf ′ = x
1
vx

2
v ȳf ′ ,

so the contribution of (v, e) equals (α13 + α23 − α12)yf yf ′ = αyf yf ′ .

f

f

f

f

v

e

a) b)

v

e

Fig. 3.2. Contribution of a white common flag: a) positive flag; b) negative flag.

In a similar way one proves that the contribution of a positive black flag common
to f and f ′ equals −βyf yf ′ , and the contribution of a negative black flag common to f
and f ′ equals βyf yf ′ . Finally, the contributions of positive and negative gray flags are
clearly equal to zero. Therefore, the brackets {yf , yf ′}FN form a 2-parameter family with
parameters α and β defined by (3.4).

The case of a bracket {yf , yt }FN is treated in a similar way. ut

3.2. Induced Poisson structures on Ratk,m

Fix an arbitrary pair of partitions I1 ∪ J1 = [1, n1], I1 ∩ J1 = ∅, I2 ∪ J2 = [n1 + 1, n],
I2 ∩ J2 = ∅, and denote k = |I1| + |I2|, m = n− k = |J1| + |J2|. Let NetI1,J1,I2,J2 stand
for the set of all perfect planar networks in an annulus with the sources bi , i ∈ I1 and
sinks bj , j ∈ J1, on the outer circle, sources bi , i ∈ I2 and sinks bj , j ∈ J2, on the inner
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circle, and edge weights we defined by (3.1). We assume that the space of edge weights
EN = (R \ 0)|E| is equipped with the Poisson bracket {·, ·}N obtained as the pushforward
of the 6-parameter family {·, ·}R described in Proposition 3.1.

Theorem 3.3. There exists a 2-parameter family of Poisson brackets {·, ·}I1,J1,I2,J2 on
Ratk,m with the following property: for any choice of parameters αij , βij in (3.2), (3.3)
this family contains a unique Poisson bracket on Ratk,m such that for any network N ∈
NetI1,J1,I2,J2 the map MN : (R \ 0)|E|→ Ratk,m is Poisson.

Proof. First of all, we use the factorization MN = MFN ◦ y to decrease the number of
parameters. By Theorem 3.2, it suffices to consider the 2-parameter family

{x̄2
v , x̄

3
v }v = αx̄

2
v x̄

3
v , {x̄

1
v , x̄

2
v }v = {x̄

1
v , x̄

3
v }v = 0 (3.5)

and
{x̄2
v , x̄

3
v }v = βx̄

2
v x̄

3
v , {x̄

1
v , x̄

2
v }v = {x̄

1
v , x̄

3
v }v = 0 (3.6)

with α and β defined by (3.4), instead of the 6-parameter family (3.2), (3.3)
The rest of the proof consists of two major steps. First, we compute the induced Pois-

son bracket on the image of the boundary measurement map. More exactly, we show that
the bracket {·, ·}N of any pair of pullbacks of coordinate functions on the image can be ex-
pressed in terms of pullbacks of other coordinate functions, and that for fixed I1, J1, I2, J2
these expressions do not depend on the networkN ∈ NetI1,J1,I2,J2 . Second, we prove that
any rational matrix function belongs to the image of the boundary measurement map (for
a sufficiently large N ∈ NetI1,J1,I2,J2 ), and therefore {·, ·}N induces {·, ·}I1,J1,I2,J2 on
Ratk,m. This approach allows us to circumvent technical difficulties one encounters when
attempting to check the Jacobi identity in the image in a straightforward way.

To compute the induced Poisson bracket on the image of the boundary measurement
map, we consider the coordinate functions valt : f 7→ f (t) that assign to any f ∈ Rat1,1
its value at the point t . Given a pair of two matrix entries, it suffices to calculate the
bracket between an arbitrary pair of functions valt and vals defined on two copies of Rat1,1
representing these entries. Since the pullback of valt is the corresponding component of
MN (t), we have to deal with expressions of the form {Mpq(t),Mp̄q̄(s)}N .

To avoid overcomplicated formulas we consider separately two particular representa-
tives of the family (3.5), (3.6): 1) α = −β = 1, and 2) α = β = 1. Any member of the
family can be represented as a linear combination of the above two.

Denote by {·, ·}1N the member of the 2-parameter family (3.5), (3.6) corresponding to
the case α = −β = 1. Moreover, define σ=(i, j, i′, j ′) = sign(i′ − i) − sign(j ′ − j);
clearly, σ=(i, j, i′, j ′) is closely related to s=(i, j, i′, j ′) defined and studied in [GSV3].
The bracket induced by {·, ·}1N on the image of the boundary measurement map is com-
pletely described by the following statement.

Proposition 3.4. (i) Let ip, ip̄ ∈ [1, n1] and 1 ≤ max{ip, ip̄} < jq̄ < jq ≤ n. Then

{Mpq(t),Mp̄q̄(s)}
1
N = σ=(ip, jq , ip̄, jq̄)Mpq̄(s)Mp̄q(t)−

2
t − s

8
p̄q̄
pq (t, s), (3.7)



554 Michael Gekhtman et al.

where

8
p̄q̄
pq (t, s) =

 (Mpq̄(t)−Mpq̄(s))(sMp̄q(t)− tMp̄q(s)), jq̄ < jq ≤ n1,

sMp̄q(t)(Mpq̄(t)−Mpq̄(s)), jq̄ ≤ n1 < jq ,

s(Mpq̄(t)Mp̄q(s)−Mpq̄(s)Mp̄q(t)), n1 < jq̄ < jq .

(ii) Let jq̄ , jq ∈ [n1 + 1, n] and 1 ≤ ip < ip̄ < min{jq̄ , jq} ≤ n. Then

{Mpq(t),Mp̄q̄(s)}
1
N = σ=(ip, jq , ip̄, jq̄)Mpq̄(t)Mp̄q(s)−

2
t − s

9
p̄q̄
pq (t, s), (3.8)

where

9
p̄q̄
pq (t, s) =

 t (Mpq̄(t)Mp̄q(s)−Mpq̄(s)Mp̄q(t)), ip < ip̄ ≤ n1,

−tMpq̄(t)(Mp̄q(t)−Mp̄q(s)), ip ≤ n1 < ip̄,

−(tMpq̄(t)− sMpq̄(s))(Mp̄q(t)−Mp̄q(s)), n1 < ip < ip̄.

(iii) Let 1 ≤ ip = ip̄ < jq = jq̄ ≤ n. Then

{Mpq(t),Mpq(s)}
1
N

=

{
−

2
t−s
(Mpq(t)−Mpq(s))(sMpq(t)− tMpq(s)), ip < jq ≤ n1,

0, ip ≤ n1 < jq .
(3.9)

(iv) Let 1 ≤ ip < min{ip̄, jq , jq̄}. Then

{Mpq(t),Mp̄q̄(s)}
1
N

=


2t
t−s
(Mpq̄(t)−Mpq̄(s))(Mp̄q(t)−Mp̄q(s)), jq̄ < ip̄ < jq ≤ n1,

−
2t
t−s
(Mpq̄(t)Mp̄q(t)−Mpq̄(s)Mp̄q(s)), jq ≤ n1 < ip̄ < jq̄ ,

0, jq̄ ≤ n1 < ip̄ < jq .

(3.10)

Proof. Let us first make sure that relations (3.7)–(3.10) indeed allow one to compute
{Mpq(t),Mp̄q̄(s)}

1
N for any p, p̄ ∈ [1, k] and q, q̄ ∈ [1, m]. This is done by employing

the following three techniques:

• moving a base point of the cut;
• reversing the direction of the cut;
• reversing the orientation of boundary circles.

The first of the above techniques has been described in detail in Section 2.1. For example,
let 1 ≤ jq < ip < ip̄ < jq̄ ≤ n1. This case is not covered explicitly by (3.7)–(3.10).
Consider the network N ′ obtained from N by moving the base point of the cut on the
outer circle counterclockwise and interchanging it with jq . In this new network one has
1 ≤ ip′ < ip̄′ < jq̄ ′ < j ′q = n1, so the conditions of Proposition 3.4(i) are satisfied
and (3.7) yields

{Mp′q ′(t),Mp̄′q̄ ′(s)}
1
N ′ = 2Mp′q̄ ′(s)Mp̄′q ′(t)

−
2

t − s
(Mp′q̄ ′(t)−Mp′q̄ ′(s))(sMp̄′q ′(t)− tMp̄′q ′(s)).
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By Lemma 2.1,

Mp′q ′(t) = tMpq(t), Mp̄′q̄ ′(t) = Mp̄q̄(t), Mp′q̄ ′(t) = Mpq̄(t), Mp̄′q ′(t) = tMp̄′q ′(t).

Finally, {·, ·}N = {·, ·}N ′ for any pair of edge weights, so we get

{Mpq(t),Mp̄q̄(s)}
1
N = 2Mpq̄(s)Mp̄q(t)−

2s
t − s

(Mpq̄(t)−Mpq̄(s))(Mp̄q(t)−Mp̄q(s)).

Reversing the direction of the cut transforms the initial network N to a new net-
work N ′; the graph G remains the same, while the labeling of its boundary vertices
is changed. Namely, the n′1 = n2 boundary vertices lying on the inner circle are la-
beled b1, . . . , bn′1

in the clockwise order starting from the first vertex that occurs after
the base point of the cut. The boundary vertices lying on the outer circle are labeled
bn′1+1, . . . , bn in the counterclockwise order starting from the first vertex that occurs after
the base point of the cut. The transformation N 7→ N ′ is better visualized if the net-
work is drawn on a cylinder, instead of an annulus. The boundary circles of a cylinder
are identical, and reversing the direction of the cut simply interchanges them. Clearly,
the boundary measurements in N and N ′ are related by Mr ′s′(t) = Mrs(1/t) for any
ir ∈ I , js ∈ J . Moreover, {·, ·}N = {·, ·}N ′ for any pair of edge weights. Therefore,
an expression for {Mpq(t),Mp̄q̄(s)}

1
N via Mpq̄(t), Mpq̄(s), Mp̄q(t), Mp̄q(s) is trans-

formed to the expression for {Mp′q ′(t),Mp̄′q̄ ′(s)}
1
N ′

via Mp′q̄ ′(t), Mp′q̄ ′(s), Mp̄′q ′(t),
Mp̄′q ′(s) by the substitution t 7→ 1/t and s 7→ 1/s in the coefficients. For example,
let 1 ≤ ip̄ < jq < jq̄ ≤ n1 < ip ≤ n. This case is not covered explicitly by (3.7)–
(3.10). Consider the network N ′ obtained from N by reversing the direction of the cut.
In this new network one has 1 ≤ ip′ ≤ n′1 < ip̄′ < jq < jq̄ ′ ≤ n, so the conditions of
Proposition 3.4(ii) are satisfied and (3.8) yields

{Mp′q ′(t),Mp̄′q̄ ′(s)}
1
N ′ = −2Mp′q̄ ′(t)Mp̄′q ′(s)+

2t
t − s

Mp′q̄ ′(t)(Mp̄′q ′(t)−Mp̄′q ′(s)).

Applying the above described rule one gets

{Mpq(t),Mp̄q̄(s)}
1
N = −2Mpq̄(t)Mp̄q(s)+

2t−1

t−1 − s−1Mpq̄(t)(Mp̄q(t)−Mp̄q(s))

= −2Mpq̄(t)Mp̄q(s)−
2s
t − s

Mpq̄(t)(Mp̄q(t)−Mp̄q(s)).

Finally, reversing the orientation of boundary circles also retains the graph G and
changes the labeling of its boundary vertices. Namely, the n1 boundary vertices of N ′

lying on the outer circle are labeled b1, . . . , bn1 in the clockwise order starting from the
first vertex that occurs after the base point of the cut. The boundary vertices lying on
the inner circle are labeled bn1+1, . . . , bn in the counterclockwise order starting from
the first vertex that occurs after the base point of the cut. The transformation N 7→ N ′

may be visualized as a mirror reflection. Clearly, the boundary measurements in N and
N ′ are related by Mr ′s′(t) = Mrs(1/t) for any ir ∈ I , js ∈ J . Moreover, {·, ·}N =
−{·, ·}N ′ for any pair of edge weights. Therefore, the transformation of the expressions
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for the brackets differs from the one for the case of cut reversal by a factor of −1. For
example, let 1 ≤ jq < ip < ip̄ < jq̄ ≤ n1. This case is not covered explicitly by (3.7)–
(3.10). Consider the networkN ′ obtained fromN by reversing the orientation of boundary
circles. In this new network one has 1 ≤ ip′ < jq̄ ′ < ip̄′ < jq ≤ n1, so the conditions of
Proposition 3.4(iv) are satisfied and (3.10) yields

{Mp′q ′(t),Mp̄′q̄ ′(s)}
1
N ′ =

2t
t − s

(Mp′q̄ ′(t)−Mp′q̄ ′(s))(Mp̄′q ′(t)−Mp̄′q ′(s)).

Applying the above described rule one gets

{Mpq(t),Mp̄q̄(s)}
1
N = −

2t−1

t−1 − s−1 (Mpq̄(t)−Mpq̄(s))(Mp̄q(t)−Mp̄q(s))

=
2s
t − s

(Mpq̄(t)−Mpq̄(s))(Mp̄q(t)−Mp̄q(s)).

Elementary, though tedious, consideration of all possible cases reveals that indeed any
quadruple (ip, jq , ip̄, jq̄) can be reduced by the above three transformations to one of the
quadruples mentioned in the statement of Proposition 3.4.

It is worth noting that cases (i) and (ii) are not independent. First, they both apply if
1 ≤ ip < ip̄ ≤ n1 < jq̄ < jq ≤ n; the expressions prescribed by (3.7) and (3.8) are
distinct, but yield the same result:

2Mpq̄(s)Mp̄q(t)−
2s
t − s

(Mpq̄(t)Mp̄q(s)−Mpq̄(s)Mp̄q(t))

= 2Mpq̄(t)Mp̄q(s)−
2t
t − s

(Mpq̄(t)Mp̄q(s)−Mpq̄(s)Mp̄q(t)).

Moreover, the expression for n1 < ip < ip̄ < jq̄ < jq ≤ n in case (ii) can be obtained
from the expressions for 1 ≤ ip < ip̄ < jq̄ < jq ≤ n1 in case (i) by reversing the
direction of the cut. However, we think that the above presentation, though redundant,
better emphasizes the underlying symmetries of the expressions obtained.

The proof of relations (3.7)–(3.10) is similar to the proof of Theorem 3.3 in [GSV3]
and is done by induction on the number of internal vertices in N . The key ingredient of
the proof is the following straightforward analog of Lemma 3.5 from [GSV3].

Consider an arbitrary boundary vertex bi (without loss of generality we may assume
that bi lies on the outer circle of the annulus) and suppose that the neighbor of bi is a
black vertex u. Denote by u+ the unique vertex in G such that (u, u+) ∈ E, and by u−
the neighbor of u distinct from u+ and bi . Create a new network N̂ by deleting bi and the
edge e0 = (bi, u) fromG, splitting u into one new source biu and one new sink bju placed
on the outer circle (so that either i − 1 < iu < ju < i + 1 or i − 1 < ju < iu < i + 1)
and replacing the edges e+ = (u, u+) and e− = (u−, u) by new edges ê+ = (biu , u+)

and ê− = (u−, bju) (see Figure 3.3). We may assume without loss of generality that the
cut ρ in N does not intersect the edge e0, and hence ρ remains a valid cut in N̂ .
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bi

bi−1

bi+1

bi−1

bi+1

bi

bi−1

bi+1

bi−1

bi+1

N

N

bju

bju

u+

u+

u−u−

u+

u+

e−

e+

e+

e−
u− u−

N

u

N

u

bi u

bi u

Fig. 3.3. Splitting a black vertex: cases i− 1 < iu < ju < i+ 1 (top) and i− 1 < ju < iu < i+ 1
(bottom).

Lemma 3.5. Boundary measurements in the networks N and N̂ are related by

M(ip, j) =
we0we+M̂(iu, j)

1+ we−we+M̂(iu, ju)
,

M(ip̄, j) = M̂(ip̄, j)±
we−we+M̂(ip̄, ju)M̂(iu, j)

1+ we−we+M̂(iu, ju)
, p̄ 6= p;

in the second formula above, the + sign corresponds to the cases

ip − 1 ≺ ju ≺ iu ≺ ip + 1 � j ≺ ip̄ or ip̄ ≺ j � ip − 1 ≺ iu ≺ ju ≺ ip + 1,

and the − sign corresponds to the cases

ip − 1 ≺ iu ≺ ju ≺ ip + 1 � j ≺ ip̄ or ip̄ ≺ j � ip − 1 ≺ ju ≺ iu ≺ ip + 1,

where ≺ is the cyclic order mod n.

We leave the details of the proof to the interested reader.
Denote by {·, ·}2N the member of the 2-parameter family (3.5), (3.6) corresponding to

the case α = β = 1. Moreover, define σ×(i, j, i′, j ′) = sign(i′−i)+sign(j ′−j); clearly,
σ×(i, j, i

′, j ′) is closely related to s×(i, j, i′, j ′) defined and studied in [GSV3]. The
bracket induced by {·, ·}2N on the image of the boundary measurement map is completely
described by the following statement.
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Proposition 3.6. (i) Let 1 ≤ max{ip, ip̄} < jq̄ < jq ≤ n. Then

{Mpq(t),Mp̄q̄(s)}
2
N = σ×(ip, jq , ip̄, jq̄)Mpq(t)Mp̄q̄(s)− 20p̄q̄pq (t, s), (3.11)

where

0
p̄q̄
pq (t, s) =


0, jq ≤ n1,

−sMpq(t)M
′

p̄q̄(s), jq̄ ≤ n1 < jq ,

tM ′pq(t)Mp̄q̄(s)− sMpq(t)M
′

p̄q̄(s), max{ip, ip̄} ≤ n1 < jq̄ ,

tM ′pq(t)Mp̄q̄(s), ip ≤ n1 < ip̄,

and M ′pq , M ′p̄q̄ are the derivatives of Mpq and Mp̄q̄ .
(ii) Let 1 ≤ ip < jq̄ < ip̄ < jq ≤ n and either jq̄ ≤ n1 < ip̄ or jq ≤ n1. Then

{Mpq(t),Mp̄q̄(s)}
2
N = 0. (3.12)

(iii) Let 1 ≤ ip < jq < ip̄ < jq̄ ≤ n and either jq ≤ n1 < ip̄ or jq̄ ≤ n1. Then

{Mpq(t),Mp̄q̄(s)}
2
N = 0. (3.13)

Proof. The proof is similar to the proof of Proposition 3.4. We leave the details to the
interested reader. ut

Remark 3.7. It is worth mentioning that the bracket induced on k × m matrices via
perfect planar networks in a disk, which was studied in [GSV3], can be considered as a
particular case of (3.7)–(3.10) (for α = −β = 1) or (3.11)–(3.13) (for α = β = 1). To
see this it suffices to consider only networks without edges that intersect the cut ρ, and to
cut the annulus along ρ in order to get a disk.

3.3. Realization theorem

To conclude the proof of Theorem 3.3 we need the following statement. We say that
F ∈ Ratk,m is represented by a network N if F belongs to the image of MN .

Theorem 3.8. For any F ∈ Ratk,m there exists a network N ∈ NetI1,J1,I2,J2 such that F
is represented by N .

Proof. We first prove the following simple observation concerning perfect planar net-
works in a disk.

Lemma 3.9. Let n = 4, I = {1, 2}, J = {3, 4}. There exists a network Nid ∈ NetI,J
such that the 2× 2 identity matrix is represented by Nid.

Proof. The proof is furnished by the network depicted in Fig. 3.4. The corresponding
boundary measurement matrix is given by(

w1w8(w3w11(w2 + w6w9w10)+ w6w7w9) w1w3w4(w2 + w6w9w10)

w1w6w8(w7 + w3w10w11) w3w4w5w6w10

)
,

which yields the identity matrix for w5 = w10 = −1 and wi = 1 for i 6= 5, 10. ut
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Fig. 3.4. The network Nid.

Effectively, Lemma 3.9 says that the planarity restriction can be omitted in the proof of
Theorem 3.8. Indeed, if F ∈ Ratk,m is represented by a non-planar perfect network in
an annulus, one can turn it into a planar perfect network in an annulus by replacing each
intersection by a copy of Nid.

In what follows we make use of the concatenation of planar networks in an annulus.
Similarly to the case of networks in a disk, the most important particular case of concate-
nation arises when the sources and the sinks are separated, that is, all sources lie on the
outer circle, and all sinks lie on the inner circle. We can concatenate two networks of this
kind, one with k sources and m sinks and another with m sources and l sinks, by gluing
the sinks of the former to the sources of the latter. More exactly, we glue together the
inner circle of the former network and the outer circle of the latter in such a way that the
corresponding base points of the cuts are identified, and the ith sink of the former net-
work is identified with the (m+ 1− i)th source of the latter. The erasure of the common
boundary and the identification of edges are performed exactly as in the case of a disk.

Let us start by representing any rational function F ∈ Rat1,1 by a network with the
only source on the outer circle and the only sink on the inner circle.

Lemma 3.10. Any rational function F ∈ Rat1,1 can be represented by a network N ∈
Net1,∅,∅,2.

Proof. First, if networks N1, N2 ∈ Net1,∅,∅,2 represent functions F1 and F2 respectively,
their concatenation N1 ◦N2 ∈ Net1,∅,∅,2 represents F1F2.

Second, define the direct sum N1 ⊕ N2 ∈ Net[1,2],∅,∅,[3,4] as shown in Fig. 3.5 (left).
The shadowed annuli contain networks N1 and N2. The intersections of the dashed parts
of additional edges with the edges of N1 and N2 are resolved with the help of Nid (not
shown). Note that this direct sum operation is not commutative. Clearly, N1 ⊕ N2 repre-
sents the 2 × 2 matrix

( 0 F1
F2 0

)
. The direct sum of networks is used to represent the sum

F1 + F2 as shown in Fig. 3.5 (right).
Third, if N ∈ Net1,∅,∅,2 represents F , the network shown in Fig. 3.6 represents the

function F/(1+ F), and, with a simple adjustment of weights, can also be used to repre-
sent −F/(1+ F). Taking the direct sum with the trivial network representing 1, we get a
representation for 1/(1+ F).
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Fig. 3.5. The direct sum of two networks (left) and a network representing the sum of two functions
(right).
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Fig. 3.6. Representing F/(1+ F).

Finally, the functions aλk for any integer k can be represented by networks in
Net1,∅,∅,2. The cases k = 2 and k = −2 are shown in Fig. 3.7. Other values of k are
obtained in the same way.

We now have all the ingredients for the proof of the lemma. Any rational function F
can be represented as F(λ) =

∑r
i=0 aiλ

d+i/Q(λ), where d is an integer and Q is a
polynomial satisfyingQ(0) = 1. Therefore, it suffices to represent each of the summands,
and to use the direct sum construction. Each summand, in its turn, is represented by
the concatenation of a network representing aiλd+i with a network representing 1/Q =
1/(1 + (Q − 1)). The latter network is obtained as explained above from a network
representing Q− 1 =

∑p

j=1 bjλ
j via the direct sum construction. ut

To get an analog of Lemma 3.10 for networks with the only source and the only sink on
the outer circle, one has to use Lemma 3.9 once again.
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b

1b

2b

1b

2

Fig. 3.7. Representing aλk for k = 2 (left) and k = −2 (right).

Lemma 3.11. Any rational function F ∈ Rat1,1 can be represented by a network N ∈
Net1,2,∅,∅.

Proof. Such a representation is obtained from the one constructed in the proof of Lem-
ma 3.10 by replacing the edge incident to the sink with a new edge sharing the same
tail. The arising intersections, if any, are resolved with the help of Nid. For example,
representation of a(1+ bλ)−1 obtained this way is shown in Fig. 3.8 (right). It makes use
of the networkNid described in Lemma 3.9; the latter is shown in thin lines inside a dashed
circle. Note that the network on the left, which represents a(1 + bλ)−1 in Net1,∅,∅,2, is
not the one built in the proof of Lemma 3.10. ut

b

2b

2b

1b1

Fig. 3.8. Representing a(1+ bλ)−1 by a network in Net1,∅,∅,2 (left) and Net1,2,∅,∅ (right).

Representation of rational functions by networks in Net2,1,∅,∅ and Net∅,1,2,∅ is obtained
in a similar way. In the latter case one has to replace also the edge incident to the source
with a new one sharing the head.

The next step is to prove Theorem 3.8 in the case when all sources lie on the outer
circle and all sinks lie on the inner circle.
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Lemma 3.12. For any rational matrix F ∈ Ratk,m there exists a network N ∈

Net[1,k],∅,∅,[k+1,k+m] such that F is represented by N .

Proof. First of all, we represent F as F = AF̃B, where A = {aij } is the k× km constant
matrix given by

aij =

{
1 if (k − i)m < j ≤ (k − i + 1)m,
0 otherwise,

F̃ is the km× km diagonal matrix

F̃ = diag{Fkm, Fk,m−1, . . . , Fk1, Fk−1,m, . . . , F11},

and B is the km×m constant matrix

B =

W0
...

W0


withW0 = (δi,m+1−j )

m
i,j=1. Similarly to the case of networks in a disk, the concatenation

of networks representing matrices F1 and F2 produces a network representing F1W0F2.
Therefore, in order to get F as above, we have to represent the matricesA,W0F̃ andW0B.

The first representation is achieved trivially as the disjoint union of networks repre-
senting the 1×m matrix (1 1 . . . 1); in fact, since A is constant, it can be represented by
a network in a disk. The second representation is obtained as the direct sum of networks
representing each Fij . Finally, the third representation can also be achieved by a network
in a disk, via a repeated use of the network Nid.

Observe that in order to represent a k×mmatrix we have to use intermediate matrices
of a larger size. ut

To complete the proof of Theorem 3.8 we rely on Lemma 3.12 and use the same idea of
replacing edges incident to boundary vertices as in the proof of Lemma 3.11.

So, Theorem 3.8 has been proved, and hence the proof of Theorem 3.3 is completed.
ut

As we already mentioned in the proof, the 2-parameter family of Poisson brackets on
Ratk,m induced by (α − β){·, ·}1N + (α + β){·, ·}

2
N , where {·, ·}1n and {·, ·}2n are described

in Propositions 3.4 and 3.6, respectively, is denoted {·, ·}I1,J1,I2,J2 .

3.4. Recovering the trigonometric R-matrix bracket on Ratk,k

As an application of the results obtained in Section 3.2, consider the set N[1,k],∅,∅,[k+1,2k]
of perfect networks with k sources on the outer circle and k sinks on the inner circle.
Clearly, in this case the boundary measurement map takes EN to Ratk,k . Just as we did in
the proof of Theorem 3.8, we can replace MN with AN = MNW0 and observe that the
concatenation N of networks N1, N2 ∈ N[1,k],∅,∅,[k+1,2k] leads to AN = AN1AN2 . We
would like to take a closer look at the bracket {·, ·}1N in this case.
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First, recall (see, e.g., [FT]) that the space Ratk,k can be equipped with an R-matrix
(Sklyanin) Poisson bracket

{A(t), A(s)} = [R(t, s), A(s)⊗ A(t)] , (3.14)

where the left-hand side should be understood as

{A(t), A(s)}
qq̄
pp̄ = {apq(t), ap̄q̄(s)}

and the R-matrix R(t, s) is an operator acting in Rk ⊗Rk that depends on parameters t, s
and solves the classical Yang–Baxter equation. Of interest to us is a bracket (3.14) that
corresponds to the so-called trigonometric R-matrix [BD]

R(t, s) =
t + s

s − t

k∑
i=1

Eii ⊗ Eii +
2

s − t

∑
1≤l<m≤k

(tElm ⊗ Eml + sEml ⊗ Elm) . (3.15)

The bracket (3.14), (3.15) can be rewritten in terms of the matrix entries of A(t) as
follows (we only list non-zero brackets): for p < p̄ and q < q̄,

{apq(t), ap̄q̄(s)} = 2
tapq̄(s)ap̄q(t)− sapq̄(t)ap̄q(s)

t − s
. (3.16)

{apq̄(t), ap̄q(s)} = 2t
apq(s)ap̄q̄(t)− apq(t)ap̄q̄(s)

t − s
. (3.17)

{apq(t), apq̄(s)} =
(t + s)apq̄(s)apq(t)− 2sapq̄(t)apq(s)

t − s
. (3.18)

{apq(t), ap̄q(s)} =
2tapq(s)ap̄q(t)− (t + s)apq(t)ap̄q(s)

t − s
. (3.19)

It is now straightforward to check that for N ∈ N[1,k],∅,∅,[k+1,2k], the Poisson algebra
satisfied by the entries of AN coincides with that of the Sklyanin bracket (3.14), (3.15).
More exactly, relations (3.16) and (3.18) are equivalent to (3.7) with 8p̄q̄pq (t, s) calculated
according to the third case, while (3.17) and (3.19) are equivalent to (3.8) with 9p̄q̄pq (t, s)
calculated according to the first case. Finally, the brackets that vanish identically, cor-
respond exactly to the situations listed in the second case in (3.9) and in the third case
in (3.10).

To summarize, we have obtained the following statement.

Theorem 3.13. For any N ∈ N[1,k],∅,∅,[k+1,2k] and any choice of parameters αij , βij
in (3.2), (3.3) such that α = 1 and β = −1 in (3.4), the map AN : (R \ 0)|E|→ Ratk,k is
Poisson with respect to the Sklyanin bracket (3.14) associated with the R-matrix (3.15).

Remark 3.14. Equations (3.16)–(3.19) can also be used to define a Poisson bracket in
the “rectangular” case of Ratk1,k2 . In this case, a concise description (3.14) of the bracket
should be modified as follows:

{A(t), A(s)} = Rk1(t, s)(A(t)⊗ A(s))− (A(t)⊗ A(s))Rk2(t, s),

where Rki (t, s) denotes the R-matrix (3.15) acting in Rki ⊗ Rki .
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4. Poisson properties of the Grassmannian boundary measurement map

4.1. Grassmannian boundary measurement map and path reversal

LetN ∈ NetI1,J1,I2,J2 be a perfect planar network in an annulus. Similarly to the case of a
disk, we are going to provide a Grassmannian interpretation of the boundary measurement
map defined byN . To this end, we extend the boundary measurement matrixMN to a k×n
matrix X̄N as follows:

(i) the k×k submatrix of X̄N formed by k columns indexed by I = I1∪I2 is the identity
matrix 1k;

(ii) for p ∈ [1, k] and j = jq ∈ J , the (p, j)-entry of X̄N is mIpj = (−1)s(p,j)Mpq ,
where s(p, j) is the number of elements in I lying strictly between min{ip, j} and
max{ip, j} in the linear ordering; note that the sign is selected in such a way that the

minor (X̄N )
I (ip→j)

[1,k] coincides with Mpq , where I (ip → j) = (I \ ip) ∪ j .

We will view X̄N as a matrix representative of an elementXN in the space LGk(n) of
rational functions X: R → Gk(n). The latter space is called the space of Grassmannian
loops, and the corresponding rational map XN : EN → LGk(n) is called the Grassman-
nian boundary measurement map.

Given a network N and a simple path P from a source bi to a sink bj in N , we define
the reversal of P as follows: for every edge e ∈ P , change its direction and replace its
weight we by 1/we; equivalently, the modified weight w̄e is replaced by 1/w̄e. Clearly,
after the reversal of P all vertices preserve their color.

Denote by NP the network obtained from N by the reversal of P , and by RP the
corresponding path reversal map EN → ENP . Moreover, put tP = 1 if both endpoints
of P belong to the same boundary circle, and tP = −1 otherwise. Define two maps from
LGk(n) to itself: S1 is the identity map, while S−1 takes any X(t) ∈ LGk(n) to X(−t).
Our next goal is to prove that the path reversal map for paths not intersecting the cut
commutes with the Grassmannian boundary measurement map up to StP .

Theorem 4.1. Let P be a simple path from a source bi to a sink bj inN such thatM(i, j)
does not vanish identically and P does not intersect the cut. Then

StP ◦XN = XNP ◦ R
P .

Proof. Let I be the index set of the sources in N . The statement of the theorem is equiv-
alent to the equality StP (xK)x

P
I = x

P
K for any subset K ⊂ [1, n] of size k. Here and in

what follows the superscript P means that the corresponding value is related to the net-
work NP . The signs of the elements mIpj are chosen in such a way that xPI = M

P (j, i),
so we have to prove

StP (xK)M
P (j, i) = xPK . (4.1)

The proof of (4.1) is by induction on the number of inner vertices in N .
Let us start with the case when N does not have inner vertices. In this case it suffices

to prove (4.1) with K = I (ir → l) for all edges e = (bir , bl). Assume first that the
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intersection index of each edge with the cut ρ equals ±1 or 0; consequently, after a suit-
able isotopy, each edge either intersects ρ exactly once, or does not intersect it at all. Let
e∗ = (bi, bj ) be the edge to be reversed, and hence ind(e∗) = 0. If both bi and bj belong
to the same boundary circle, then exactly the following two cases are prohibited:

min{ir , l} < min{i, j} < max{ir , l} < max{i, j},
min{i, j} < min{ir , l} < max{i, j} < max{ir , l}.

Consequently, reversing e∗ does not change (−1)s(r,l), which corresponds to the map S1.
If bi and bj belong to distinct boundary circles, then the above two cases are prohibited
whenever e does not intersect the cut. If e intersects the cut then the above two cases
are the only possibilities. Consequently, reversing e∗ does not change (−1)s(r,l) for the
edges not intersecting the cut and reverses it for the edges intersecting the cut, which
corresponds to the map S−1.

It remains to lift the restriction on the intersection index of edges with ρ. If there ex-
ists an edge e′ such that |ind(e′)| > 1 then the endpoints of e′ belong to distinct boundary
circles, and for any other edge with the endpoints on distinct boundary circles, the inter-
section index with ρ does not vanish. Consequently, only edges with the endpoints on the
same boundary circle can be reversed, and the above reasoning applies, which leads to S1.

Let now N have inner vertices, and assume that the first inner vertex v on P is white.
Denote by e and e′ the first two edges of P , and by e′′ the third edge incident to v. In
what follows we assume without loss of generality that the cut in N does not intersect e.
To find MP (j, i) consider the network N̂P that is related to NP exactly in the same way
as the network N̂ defined immediately before Lemma 3.5 is related to N . Similarly to the
first relation in Lemma 3.5, we find

MP (j, i) =
wPe w

P
e′
M̂P (j, jv)

1+ wP
e′
wP
e′′
M̂P (iv, jv)

.

Taking into account that wPe = 1/we, wPe′ = 1/we′ , wPe′′ = we′′ , we finally get

MP (j, i) =
M̂P (j, jv)

wewe′ + wewe′′M̂
P (iv, jv)

. (4.2)

To find xPK we proceed as follows.

Lemma 4.2. Let the first inner vertex v of P be white. Then

xPK =


we′(x̂

P )K∪iv + we′′(x̂
P )K∪jv

we′ + we′′M̂
P (iv, jv)

if i /∈ K ,

(x̂P )K(i→jv)∪iv

wewe′ + wewe′′M̂
P (iv, jv)

if i ∈ K.

Proof. The proof utilizes explicit formulas (similar to those provided by Lemma 3.5) that
relate boundary measurements in the networks NP and N̂P . What is important, the ±
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sign in the second formula in Lemma 3.5 and the sign (−1)s(p,j) defined at the beginning
of this section interplay in such a way that any submatrix of X̄NP is the sum of the
corresponding submatrix of X̄

N̂P
and a submatrix of the rank 1 matrix that is equal to the

tensor product of the ith column of X̄NP and the jvth row of X̄
N̂P

. ut

To find xK , create a new network Ñ by deleting bi and the edge e fromG, splitting v into
two sources bi′v , bi′′v (so that either i−1 < i′v < i′′v < i+1 or i−1 < i′′v < i′v < i+1) and
replacing the edges e′ = (v, v′) and e′′ = (v, v′′) by (bi′v , v

′) and (bi′′v , v
′′), respectively.

Lemma 4.3. Let the first inner vertex v of P be white. Then

xK =

{
wewe′ x̃K∪i′′v + wewe′′ x̃K∪i′v if i /∈ K,
x̃K(i→i′v)∪i′′v if i ∈ K.

Proof. The proof is a straightforward computation. ut

By (4.2) and Lemmas 4.2 and 4.3, relation (4.1) boils down to

StP (we′ x̃K∪i′′v + we′′ x̃K∪i′v )M̂
P (j, jv) = we′(x̂

P )K∪iv + we′′(x̂
P )K∪jv

for i /∈ K , and
StP (̃xK(i→i′v)∪i′′v )M̂

P (j, jv) = (x̂P )K(i→jv)∪iv

for i ∈ K . To prove these two equalities, we identify bi′v with bjv and bi′′v with biv . Under

this identification we have Ñ P̃
= N̂P , where P̃ is the path from bi′v to bj in Ñ induced

by P . Observe that Ñ has fewer inner vertices thanN , and that the index set of the sources
in Ñ is I (i → i′v) ∪ i

′′
v . Therefore, by the induction hypothesis,

S
t P̃
(̃xK̃ )̃x

P̃
I (i→i′v)∪i

′′
v
= x̃P̃

K̃
(4.3)

for any K̃ of size k + 1. Moreover, x̃P̃
I (i→i′v)∪i

′′
v
= M̃ P̃ (j, i′v) = M̂

P (j, jv) and tP = t P̃ .

Therefore, using (4.3) for K̃ = K ∪ i′v = K ∪ jv , K̃ = K ∪ i′′v = K ∪ iv and K̃ =
K(i → i′v) ∪ i

′′
v = K(i → jv) ∪ iv we get both equalities above.

Assume now that the first inner vertex v on P is black. Denote by e and e′ the first
two edges of P , and by e′′ the third edge incident to v. To find MP (j, i), consider the
network ÑP similar to the one defined immediately before Lemma 4.3, the difference
being that the two new boundary vertices j ′v and j ′′v are sinks rather than sources. Clearly,

MP (j, i) =
1

wewe′

(
M̃P (j, j ′v)+ we′′we′M̃

P (j, j ′′v )
)
. (4.4)

To find xPK we proceed as follows.

Lemma 4.4. Let the first inner vertex v of P be black. Then

xPK =


(x̃P )K if i /∈ K,

1
wewe′

(
(x̃P )K(i→j ′v) + we′′we′(x̃

P )K(i→j ′′v )
)

if i ∈ K.

Proof. The proof is a straightforward computation. ut
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To find xK we consider the network N̂ defined immediately before Lemma 3.5.

Lemma 4.5. Let the first inner vertex v of P be black. Then

xK =


wewe′ x̂K

1+ we′′we′M̂(iv, jv)
if i /∈ K,

x̂K(i→iv) + we′′we′ x̂K(i→jv)

1+ we′′we′M̂(iv, jv)
if i ∈ K.

Proof. The proof is similar to the proof of Lemma 4.2. ut

By (4.4) and Lemmas 4.4 and 4.5, relation (4.1) boils down to

StP (̂xK)M̃
P (j, j ′v)

(
1+ we′′we′

M̃P (j, j ′′v )

M̃P (j, j ′v)

)
= (x̃P )KStP (1+ we′′we′M̂(iv, jv))

for i /∈ K , and

StP (̂xK(i→iv) + we′′we′ x̂K(i→jv))M̃
P (j, j ′v)

(
1+ we′′we′

M̃P (j, j ′′v )

M̃P (j, j ′v)

)
=
(
(x̃P )K(i→j ′v) + we′′we′(x̃

P )K(i→j ′′v )
)
StP (1+ we′′we′M̂(iv, jv))

for i ∈ K . To prove these two equalities, we identify bj ′v with biv and bj ′′v with bjv . Under

this identification we have N̂ P̂
= ÑP , where P̂ is the path from biv to bj in N̂ induced

by P . Observe that N̂ has fewer inner vertices thanN , and that the index set of the sources
in N̂ is I (i → iv). Therefore, by the induction hypothesis,

StP (̂xK̂ )̂x
P̂
I (i→iv)

= x̂P̂
K̂

(4.5)

for any K̂ of size k. Taking into account that x̂I (i→jv) = M̂(iv, jv),

x̂P̂I (i→iv) = M̂
P̂ (j, jv) = M̃P (j, j ′′v ), x̂P̂I (i→jv) = M̂

P̂ (j, iv) = M̃P (j, j ′v),

and using (4.5) for K̂ = K , K̂ = K(i → iv) = K(i → j ′v), K̂ = K(i → jv) =

K(i → j ′′v ) and K̂ = I (i → jv) we get both equalities above. ut

Remark 4.6. Theorem 4.1 is proved in [P] for networks in a disk. Observe that in this
case tP vanishes identically, and hence XN and RP always commute.

4.2. Induced Poisson structures on LGk(n)

Consider a subspace LGIk(n) ⊂ LGk(n) consisting of all X ∈ LGk(n) such that the
Plücker coordinate xI does not vanish identically; clearly, XN ∈ LGIk(n). Therefore,
we can identify LGIk(n) with the space Ratk,m equipped with the 2-parameter family of
Poisson brackets {·, ·}I1,J1,I2,J2 .
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The following result says that for any fixed n1 = |I1| + |J1|, the families of brackets
{·, ·}I1,J1,I2,J2 on different subspaces LGIk(n) can be glued together to form the unique
2-parameter family of Poisson brackets on LGk(n) that makes all maps XN Poisson.

Theorem 4.7. (i) For any fixed n1, 0 ≤ n1 ≤ n, and any choice of parameters α and β
there exists a unique Poisson bracket Pn1

α,β on LGk(n) such that for any network N
with n1 boundary vertices on the outer circle, n− n1 boundary vertices on the inner
circle, k sources, n− k sinks and weights defined by (3.1), the map XN : (R\0)|E|→
LGk(n) is Poisson provided the parameters αij and βij defining the bracket {·, ·}N
on (R \ 0)|E| satisfy relations (3.4).

(ii) For any I ⊂ [1, n], |I | = k, and any n1, 0 ≤ n1 ≤ n, the restriction of Pn1
α,β to

the subspace LGIk(n) coincides with the bracket {·, ·}I1,J1,I2,J2 with I1 = I ∩ [1, n1],
J1 = [1, n1] \ I1, I2 = I \ I1, J2 = [n1 + 1, n] \ I2.

Proof. This result is an analog of Theorem 4.3 proved in [GSV3], and one may attempt
to prove it in a similar way. The main challenge in implementing such an approach is to
check that the Poisson structures defined for two distinct subspaces LGIk(n) and LGI

′

k (n)

coincide on the intersection LGIk(n) ∩ LG
I ′

k (n). For the case of networks in an annulus,
the direct check becomes too cumbersome. We bypass this difficulty in the following
way.

Assume first that |I∩I ′| = k−1 and take i ∈ I \I ′, j ∈ I ′\I . Denote by NetijI1,J1,I2,J2
the set of networks in NetI1,J1,I2,J2 satisfying the following two conditions: M(i, j) does
not vanish identically and there exists a path from bi to bj that does not intersect the cut.
The set Netji

I ′1,J
′

1,I
′

2,J
′

2
is defined similarly, with the roles of i and j interchanged. Clearly,

the path reversal introduced in Section 4.1 establishes a bijection between NetijI1,J1,I2,J2

and Netji
I ′1,J

′

1,I
′

2,J
′

2
. Moreover, a suitable modification of Theorem 3.8 remains true for net-

works in NetijI1,J1,I2,J2
: these networks represent all rational matrix functions such that

the corresponding component of the matrix does not vanish identically. To see that, we
use the following construction. Let v be the neighbor of bi in N and u be the neigh-
bor of bj in N . Add two new white vertices v′ and v′′ and two new black vertices u′

and u′′. Replace the edge (bi, v) by the edges (bi, v′) and (v′, v) so that the weight of
the resulting path is equal to the weight of the replaced edge. In a similar way, replace
(u, bj ) by (u, u′) and (u′, bj ). Moreover, add edges (v′, v′′) and (u′′, u′) of weight 1 and
two parallel edges (v′′, u′′), one of weight 1, and the other of weight −1. Finally, resolve
all the arising intersections with the help of the network Nid. Since the set of functions
representable via networks in NetijI1,J1,I2,J2

is dense in the space of all rational matrix
functions, the 2-parameter family {·, ·}I1,J1,I2,J2 is defined uniquely already by the fact
that MN is Poisson for any N ∈ NetijI1,J1,I2,J2

. Recall that the boundary measurement
map MN factors through FN ; clearly, the same holds for the Grassmannian boundary
measurement map XN . Moreover, the path reversal map RP commutes with the projec-
tion y: EN → FN and commutes with XN up to StP . Finally, Poisson brackets satisfy-
ing (3.7)–(3.10) and (3.11)–(3.13) commute with StP . Therefore, the Poisson structures
{·, ·}I1,J1,I2,J2 and {·, ·}I ′1,J ′1,I ′2,J ′2 coincide on LGIk(n)∩LG

I ′

k (n). If |I ∩ I ′| = r < k− 1,
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we consider a sequence (I = I (0), I (1), . . . , I (k−r) = I ′) such that |I (t)∩ I (t+1)
| = k−1

for all t = 0, . . . , k − r − 1 and apply to each pair (I (t), I (t+1)) the same reasoning as
above. ut
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