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Abstract. We study various “generic” nefness and ampleness notions for holomorphic vector
bundles on a projective manifold. We apply this in particular to the tangent bundle and investigate
the relation to the geometry of the manifold.
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1. Introduction

The notion of generic nefness of a vector bundle is a concept which appeared first in
Miyaoka’s important paper [Mi87], in which he studied the cotangent bundles of non-
uniruled manifolds:

The cotangent bundle of a non-uniruled manifold is generically nef.

A vector bundle E on a projective n-dimensional manifold X is generically nef if the
following holds. Given any ample line bundles Hj , 1 ≤ j ≤ n − 1, let C be a curve cut
out by general elements in |mjHj | for mj � 0. Then the restriction E|C is nef.

In the same way generic ampleness is defined. If we fix the Hj , we speak of generic
nefness with respect to (H1, . . . , Hn−1).

The complete intersection curves C in the above definition play an important role in
the theory of (slope-)semi-stability: the rank r vector bundleE is semi-stable with respect
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to h = (H1, . . . , Hn−1) if and only if the Q-bundle E⊗ detE∗
r
|C is nef. So if E is h-semi-

stable with c1(E) · h ≥ 0, then E is h-generically nef. Therefore generic nefness can be
viewed as a weak version of semi-stability.

In this paper we are mainly interested in projective manifolds X with generically
nef and generically ample tangent bundles TX. Our motivation is twofold. First, these
classes seem to be appropriate algebraic notions for expressing that the manifold X has
(semi-)positive bisectional curvature in the general direction. These manifolds have in-
teresting geometric properties and could be good models for Campana’s special varieties
(see e.g. [Ca10]). Second, the aim is to better understand certain significant classes of
uniruled varieties, in particular those with nef anti-canonical bundles. Both issues will be
explained in more detail below.

A projective manifold X whose tangent bundle TX is generically nef with respect
to some polarization is uniruled, unless KX ≡ 0; this is a special case of Miyaoka’s
theorem. Actually much more holds: if C ⊂ X is an irreducible curve with KX · C < 0
and TX|C is nef, thenX is uniruled. If TX|C is even ample, thenX is rationally connected.
Uniruledness however is by far not enough to have a generically nef tangent bundle. E.g.,
one can take the product of P1 with a manifold of general type. More generally this is
demonstrated by the following mapping property.

1.1. Theorem. If TX is generically nef with respect to some polarization and if f :
X → Y is a surjective holomorphic map to a normal projective variety Y, then either
Y is uniruled or a smooth model of Y has Kodaira dimension 0.

In particular, the Albanese map of X is surjective.

On the other hand, there is of course no restriction on images of uniruled varieties.
This picture, which might be rephrased by saying that varieties with generically nef tan-
gent bundle have a pure geometry, is—as already mentioned—very similar to Campana’s
class of special varieties, and one might even speculate that there is a deep connection
between both classes.

Generic ampleness should be seen as a birational version of ampleness. Recall in
this context Mori’s theorem that Pn is the only manifold with ample tangent bundle. In
the birational context we want to characterize rationally connected manifolds. As said
before, if the tangent bundle TX is ample on one single curve, then X is already rationally
connected. Conversely, we expect

1.2. Conjecture. LetX be a rationally connected projective manifold (with−KX pseudo-
effective, possibly). Then TX is generically ample (at least for some polarization).

The assumption that −KX is pseudo-effective might be necessary in order to avoid “too
many blow-ups”. We support the conjecture by proving

1.3. Theorem. Let X be a projective manifold whose anti-canonical bundle −KX is big
and nef. Then TX is generically ample.

Notice that manifolds with −KX big and nef are rationally connected.
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Particularly interesting are Fano manifolds X, i.e., −KX is ample. Suppose also that
b2(X) = 1. A long-standing conjecture says that then TX is stable. Although known to be
valid in many cases, this conjecture is wide open in general. Since, as already explained,
the stability of TX in this case implies generic ampleness, Theorem 1.3 can be seen as
a weak substitute for the stability of the tangent bundle. It should also be noted that the
proofs of the generic ampleness and nefness theorem 1.3 and 1.4 use the theory of stable
bundles, namely the Mehta–Ramanathan theorem [MR82].

The proof of Theorem 1.3 also uses a cone theorem for the movable cone proved by
Birkar–Cascini–Hacon–McKernan [BCHM10] and further results from that paper.

Another step towards Conjecture 1.2 is done in Section 7: ifX is rationally connected,
we prove in all dimensions that there is an irreducible C whose numerical equivalence
class is in the interior of the movable cone and TX|C is ample.

Towards generic nefness, we show

1.4. Theorem. Let X be a projective manifold.

• If −KX is semi-ample, i.e., some multiple |−mKX| is spanned, then TX is generically
nef.
• If X is a rational surface with −KX pseudo-effective, then TX is H -generically ample

for a suitable ample divisor H.
• If X is a surface with −KX pseudo-effective and irregularity q(X) = 1, then TX is

generically nef for some H.

Observe that there are ruled surfaces X over curves of genus g ≥ 2 with −KX big.
Therefore the class of varieties with −KX generically nef is much larger than the class of
varieties with generically nef tangent bundles. Theorem 1.4 motivates

1.5. Conjecture. Let X be a projective manifold with −KX nef. Then TX is generically
nef.

For applications which are of biregular nature, generic nefness is sometimes not sufficient,
simply because one would like to have nefness of TX|C for some curves passing through a
fixed, not necessarily general point. For that purpose we introduce the notion of sufficient
nefness:

A vector bundle E is sufficiently nef if through any point of X there is a family of
(generically irreducible) curves covering the whole manifold X such that the bundle E is
nef on the general member of this family. In the same way we define sufficiently ample
bundles.

There is a relation between both ampleness notions:

1.6. Theorem. If E is generically ample with respect to some polarization, then E is
sufficiently ample.

This is proved in Section 2 (Theorem 2.10). Unfortunately the analogous statement in the
nef case fails in general, as shown by an example in Remark 2.11 (with E a vector bundle
of rank 2 on P3).
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So the logical implications of the four nefness/ampleness notions are as follows. E
generically ample implies E generically nef and sufficiently ample; E sufficiently ample
implies E sufficiently nef. E generically ample does not imply E sufficiently nef. The
remaining possible implications: E sufficiently nef (ample) implies E generically nef
(ample) for some polarization are likely to be false, even for line bundles, since the cone
of movable curves is in general much larger than the cone of complete intersection curves.

The importance of the notion of sufficient nefness lies in particular in

1.7. Theorem. If TX is sufficiently nef, then the Albanese map is a (surjective) submer-
sion.

It is conjectured in [DPS96] that the Albanese map of a projective manifold X with−KX
nef is a (surjective) submersion, the surjectivity being known by Zhang [Zh05]. If −KX
is hermitian semi-positive, i.e., X has a metric with semi-positive Ricci curvature, then
the Albanese map is indeed a surjective submersion [DPS96]. Since manifolds with nef
anti-canonical bundles also have the mapping property of Theorem 1.1, we are led to

1.8. Conjecture. Let X be a projective manifold. If −KX is nef, then TX is sufficiently
nef.

Theorem 1.7 says that Conjecture 1.8 implies the smoothness of the Albanese map of
a manifold with nef anti-canonical class. In this paper we prove Conjecture 1.8 in the
following cases.

1.9. Theorem. Let X be a projective manifold with −KX semi-ample. Then TX is suffi-
ciently nef.

As a consequence of the above results we conclude that the Albanese map for a manifold
with semi-ample anti-canonical bundle is a surjective submersion, that sections in a tensor
power of the cotangent bundle allow zeroes and that the rational quotient is a submersion
at all points where it is defined. These properties also follow from [DPS96], since the
anti-canonical bundle is hermitian semi-positive (using Kähler geometry), but the method
presented here has the advantage of immediately generalizing also to singular situations.
For simplicity we will however formulate all results only in the smooth case.

2. Generically nef vector bundles

Unless otherwise stated, X denotes a projective manifold of dimension n.

2.1. Definition. (1) LetH1, . . . , Hn−1 be ample divisors. A vector bundleE is said to be
(H1, . . . , Hn−1)-generically nef (resp. ample) if E|C is nef (resp. ample) for a gen-
eral curve C = D1∩· · ·∩Dn−1 withDi ∈ |miHi | general andmi � 0. Such a curve
is called MR-general, which is to say “general in the sense of Mehta–Ramanathan”.

(2) The vector bundle E is called generically nef (resp. ample) if E is (H1, . . . , Hn−1)-
generically nef (resp. ample) for all Hi .

(3) E is almost nef [DPS01] if there is a countable union S of algebraic subvarieties such
that E|C is nef for all curves C 6⊂ S.
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If Y is a normal projective variety and L a Weil divisor on Y , then L is locally free on
the regular part of Y . Let C be MR-general with respect to (H1, . . . , Hn−1). Then C does
not meet the singular locus of Y and thus L · C makes perfect sense. Hence the notion of
generic nefness (and ampleness) is well-defined also for Weil divisors.

2.2. Notation. LetX be a normal variety with smooth locusX0 and inclusion i : X0→X.

Then we define the tangent sheaf

T = i∗(TX0)

and the sheaf of p-forms
�

[p]
X = i∗(�

p
X0
).

2.3. Notation. Fix ample line bundles Hi on a projective variety X and let E be a vector
bundle on X. Then we define the slope

µ(H1,...,Hn−1)(E) = detE ·H1 · . . . ·Hn−1

and obtain the usual notion of (semi-)stability with respect to (H1, . . . , Hn−1). This
makes also sense if the Hi are big and nef, or, more generally, if H1 · . . . ·Hn−1 is substi-
tuted by a class α.

We shall use the following result, proved in [CP11, Lemma 5.6].

2.4. Proposition. Let X be a projective manifold of dimension n and E a reflexive sheaf
on X. Let α ∈ ME(X) ∩ H 2n−2(X,Q) be a non-zero class. Let ωi be a rational Kähler
classes and set

αt = α + t (ω1 ∧ · · · ∧ ωn−1)

for t ≥ 0. Assume that E is α-stable. Then E is αt -semi-stable for sufficiently small t.

The relation between semi-stability and generic nefness is provided by

2.5. Proposition. Let X be a projective manifold of dimension n and E a rank r-vector
bundle on X. Suppose that E is (H1, . . . , Hn−1)-semi-stable and

detE ·H1 · . . . ·Hn−1 ≥ 0.

Then E is (H1, . . . , Hn−1)-generically nef. Moreover E is even generically ample with
respect to (H1, . . . , Hn−1) unless detE ·H1 · . . . ·Hn−1 = 0. In the latter case E|C is flat
for C MR-general.

Proof. Let C be MR-general with respect to (H1, . . . , Hn−1). Then E|C is semi-stable.
By Miyaoka [Mi87] this is equivalent to saying that the Q-bundle(

E ⊗
detE∗

r

)∣∣∣∣C
is nef (i.e. flat since the first Chern class of this Q-bundle vanishes). Since detE · C ≥ 0,
we conclude that E|C is nef. ut
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2.6. Remark. Suppose that detE ·H1 · . . . ·Hn−1 = 0. Then semi-stability and generic
nefness with respect to (H1, . . . , Hn−1) are the same. In fact, if C is MR-general with
respect to (H1, . . . , Hn−1), so that E|C is nef, hence numerically flat (see 2.13, possibly
normalize) and consequently E|C is semi-stable (2.5). Thus by [MR82], E is semi-stable
with respect to (H1, . . . , Hn−1). The remaining claim is clear.

For reasons which become clear later (and are already mentioned in the introduction),
we will also need nefness conditions for curves through any point. The relevant notion is
provided by

2.7. Definition. We say that a vector bundle E is sufficiently nef (resp. ample) if the
following holds. Given any point x ∈ X, there exists a covering family (Ct )t∈T of (gener-
ically irreducible) curves through x such that E|Ct is nef (resp. ample) for general t ∈ T .

2.8. Theorem. Let E be a vector bundle on the projective manifold Xn and x ∈ X.

Assume thatE is (H1, . . . , Hn−1)-stable. Then there exists a covering family (Ct ) through
x such that E|Ct is stable for general t , i.e. f ∗t (E) is stable, where ft is the normalization
of Ct .

Proof. Let π : X̃→ X be the blow-up of x with exceptional divisor D and fix an ample
divisor A on X̃. Then for any ε > 0, the divisor

H̃i = π
∗(Hi)+ εA

is ample for all i and π∗(E) is stable with respect to (π∗(H1), . . . , π
∗(Hn−1)). Hence by

Proposition 2.4 (with a trivial modification) π∗(E) is (H̃1, . . . , H̃n−1)-stable for suitable
sufficientl small ε. Now we apply Mehta–Ramanathan: Let C̃ be MR-general with respect
to (H̃1, . . . , H̃n−1), so that π∗(E)|C̃ is stable. Since π |C̃ is the normalization of π(C̃)
and since D ∩ C̃ 6= ∅, so that x ∈ π(C̃), the proof is complete. ut

2.9. Corollary. Suppose the vector bundle E is (H1, . . . , Hn−1)-stable and detE · H1 ·

. . .·Hn−1 ≥ 0. ThenE is sufficiently nef. If detE ·H1 ·. . .·Hn−1 > 0, thenE is sufficiently
ample.

Proof. Fix x ∈ X. By 2.7 there exists a covering family Ct through x such that E|Ct is
stable for general t. Since detE ·H1 · . . . ·Hn−1 ≥ 0, we conclude as in the proof of 2.4
that E|Ct is nef, and analogously for ampleness. ut

2.10. Theorem. Assume that the vector bundle E is generically ample with respect to
(H1, . . . , Hn−1). Let x ∈ X. Then there exists a covering family (Ct ) through x such that
E|Ct is ample for general t , i.e., E is sufficiently ample.

Proof. Let π : X̃→ X be the blow-up of x. Fix an ample divisor A on X̃ and write

H̃i,ε = π
∗(Hi)+ εA.

For ε > 0 rational and sufficiently small, H̃i,ε is an ample Q-divisor. Assuming our claim
false, we conclude that for C̃ ⊂ X̃ MR-general with respect to H̃1,ε, . . . , H̃n−1,ε the
bundle π∗(E)|C̃ is not ample. Let

Sε ⊂ π∗(E)|C̃
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be maximally ample. Then as in 5.4, Sε extends to a global subsheaf S̃ε ⊂ π∗(E). Notice
that S̃ε is a part of the Harder–Narasimhan filtration with respect to H̃1,ε, . . . , H̃n−1,ε ,
moreover by maximal ampleness we have

c1(S̃ε) · H̃1,ε · . . . · H̃n−1,ε ≥ π
∗(detE) · H̃1,ε · . . . · H̃n−1,ε . (∗)

By (the proof of) [CP11, 5.6] (Proposition 2.4), the sheaf S̃ε does not depend on ε for ε
suitable and sufficiently small; we therefore drop the index (the proof of [CP11, 5.6]
actually gives that for the maximal destabilizing subsheaf; otherwise consider the quotient
by the maximal destabilizing subsheaf and proceed by induction). Now we pass to the
limit ε → 0 in (∗) and obtain

c1(S̃) · π∗(H1) · . . . · π
∗(Hn−1) ≥ π

∗(detE) · π∗(H1) · . . . · π
∗(Hn−1).

Let S = π∗(S̃) ⊂ E. Then

(detE∗ + detS) ·H1 · . . . ·Hn−1 ≥ 0.

On the other hand, detE∗ + detS ⊂
∧p

E∗ for a suitable p and thus we obtain a contra-
diction to the assumption thatE is generically ample with respect to (H1, . . . , Hn−1). ut

2.11. Remark. The analogous statement: E generically nef implies E sufficiently nef , is
unfortunately false. E.g. let X = P3 and consider a rank 2-vector bundle E on P3 given as
an extension

0→ O(a)→ E → IZ → 0

with a suitable a > 0 and a suitable locally complete intersection curve Z ⊂ P3. Then
obviously E is generically nef, since the general curve does not meet T , but neither gener-
ically ample nor sufficiently nef (E |C is never nef for a curve C which meets Z in a finite
set).

The difficulty with going to the limit in 2.10 is the following. Fix x ∈ X and an
ample line bundle L. We now apply 2.10 to the h-generically ample bundle SmE ⊗ L.
So if x ∈ X we find a covering family (Ct ) through x such that Sm ⊗ L|Ct is ample for
general t. The family (Ct ) however depends on m and therefore one cannot conclude.

Although Theorem 2.10 fails in the generically nef case, the methods of the proof still
give something.

2.12. Theorem. Let E be generically nef with respect to (H1, . . . , Hn−1), and suppose
the same is true for small pertubations of the Hj . Suppose furthermore that sufficient
nefness fails at x, i.e., there is no covering family (Ct ) through x such that E|Ct is nef for
the general t. Then

(1) there exists a torsion free quotient E→ Q such that detQ ≡ 0;
(2) Q|Ct is negative modulo torsion for t general.



578 Thomas Peternell

Proof. Following the lines of argument in 2.10 (with maximal ampleness replaced by
maximal nefness), we obtain a subsheaf S̃ ⊂ π∗(E) such that

c1(S̃) · π∗(H1) · . . . · π
∗(Hn−1) ≥ π

∗(detE) · π∗(H1) · . . . · π
∗(Hn−1).

We again consider S = π∗(S̃) ⊂ E so that

(detE∗ + detS) ·H1 · . . . ·Hn−1 ≥ 0. (∗)

If we have strict inequality in (∗), then we can conclude as in 2.10 to get a contradiction.
Thus equality in (∗)must happen. Then for small pertubations ofHj , we also cannot have
a strict inequality (∗); consequently,

detE∗ + detS ≡ 0.

Introducing the torsion free quotient Q = E/S, we obtain detQ ≡ 0, proving (1).
Moreover we find a covering family (Ct ) through x such thatQ|C is negative modulo

torsion. To see this, consider Q̃ = π∗(E)/S̃ and observe that by construction Q̃|C̃ is
negative, where C̃ is MR-general for H̃1,ε, . . . , H̃n−1,ε and suitable small ε. We obtain
an exact sequence

0→ π∗(S̃)→ E→ π∗(Q̃)→ R1π∗(S̃)→ 0,

so that Q is a subsheaf of π∗(Q̃) which coincides with π∗(Q̃) outside x. Since π∗π∗(Q̃)
is a subsheaf of Q̃ modulo torsion, it follows that π∗(Q)|π(C̃) is negative and so does
Q|π(C̃), proving (2). ut

In the following we collect some material used in this paper.

2.13. Definition. A vector bundle E on a compact Kähler manifold is numerically flat
[DPS94] iff E is nef with c1(E) = 0.

Numerically flat bundles are filtered by hermitian flat bundles (which by definition
are given by unitary representations of the fundamental group):

2.14. Theorem. A vector bundle E is numerically flat iff there is a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ep = E

of subbundles such that the graded pieces Ej+1/Ej are hermitian flat. In particular E is
semi-stable with respect to any polarization.

For the proof we refer to [DPS94].

2.15. Remark. LetC be a smooth curve andE a nef vector bundle onC. ThenE contains
a maximal ample subsheaf F . Thus F is ample and any ample subsheaf of E is contained
in F . We refer to [PS00] and [KST07], the latter also showing that F is part of the Harder–
Narasimhan filtration of E.
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2.16. Notation. As usual, κ(L) is the Kodaira dimension of the line bundle L, and ν(L)
denotes the numerical dimension of a nef line bundle L, i.e., the largest number m so
that L 6≡ 0. The Kodaira dimension of a normal projective variety will be the Kodaira
dimension of a desingularization.

Given a projective manifold X, the movable cone is denoted by ME(X) (see
[BDPP04]). Also the subcone ME(X)− consisting of those γ ∈ ME(X) for which
KX · γ ≤ 0 will be of importance. The closed cone generated by the MR-general curves
will be denoted by CI(X) (“complete intersection”).

2.17. Remark. We recall for later use the nef reduction of a nef line bundleL on a normal
projective varietyX [B–W02]. Namely, there is an almost holomorphic map f : X 99K Q
(i.e., f is meromorphic, but the general fiber is compact) such that L is numerically trivial
on the general fiber of f and if x ∈ X is a general point andC an irreducible curve through
x with dim f (C) > 0, then L · C > 0.

3. Generically nef anti-canonical divisors

In this section we study varieties with generically nef anti-canonical divisors. Recall that
the Kodaira dimension κ(Y ) of a normal projective variety is by definition the Kodaira
dimension of a desingularization.

3.1. Theorem. Let Y be a normal projective variety. Assume that−KY is generically nef
with respect to (H1, . . . , Hn−1). Then either Y is uniruled or κ(Y ) = 0.

Proof. Let π : Ŷ → Y be a desingularization. Let C ⊂ Y be MR-general with respect
to (H1, . . . , Hn−1) and let Ĉ denote its strict transform in Ŷ . Since C does not meet the
center of π, we have

K
Ŷ
· Ĉ = KY · C ≤ 0.

If K
Ŷ
· Ĉ < 0, then Ŷ (hence Y ) is uniruled by [MM86]. Therefore we may assume that

K
Ŷ
· π∗(H1) · . . . · π

∗(Hn−1) = 0. (∗)

We assume that Ŷ is not uniruled and must show κ(Ŷ ) = 0. So by [BDPP04], K
Ŷ

is
pseudo-effective. Hence c1(KŶ ) is represented by a positive closed current T , e.g. via a
singular metric on K

Ŷ
. From (∗) we deduce that

[π∗(T )] ·H1 · . . . ·Hn−1 = 0

and therefore π∗(T ) = 0. Therefore the support of T is contained in the exceptional locus
of π , hence by Siu’s theorem [Si74] (see also [Sk82, Corollaire 1 and the following re-
mark]), we obtain a decomposition T =

∑
aiTEi ,where ai > 0, theEi are π -exceptional

and TEi denotes the current “integration over Ei”. By [BDPP04, 3.7, 3.10], the ai are ra-
tional, so that some multiple mK

Ŷ
is numerically equivalent to an effective divisor. From

[CP11] we finally obtain κ(Ŷ ) ≥ 0, hence κ(Ŷ ) = 0. ut

An application of Theorem 3.1 is
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3.2. Corollary. LetX be a projective manifold, and f : X→ Y a surjective holomorphic
map to a normal projective variety. Assume one of the following.

(1) −KX is nef;
(2) −mKX = OX(D) for some positive m and (X,D) is log canonical;
(3) there exists a positive number m such that h0(−mKX) > 0 and the base locus of
|−mKX| does not project onto Y .

Then either Y is uniruled or κ(Y ) = 0. In particular the Albanese map of X is surjective.

Proof. By [Zh05],−KY is generically nef. This is not explicitly stated in [Zh05], but this
is what the proofs of Theorems 2–4 there actually give. Now apply 3.1. ut

In [Zh05], even more is shown in case −KX nef: if f : X 99K Y is a dominant rational
map to the projective manifold Y , then Y is uniruled or κ(Y ) = 0.

It is natural to ask for a common generalization for the second and third assumptions
in Corollary 3.2; if f is a submersion, this is contained in [DPS01, Theorem 2.11]; if Y
is smooth and f is flat, it follows from Höring [Hoe06]. We generalize this as follows.

3.3. Theorem. Let f : X → Y be a surjective holomorphic map from the projective
manifold to the normal projective variety Y. Assume that−KX is pseudo-effective and let
h be a singular metric on −KX with positive curvature current. Assume that the support
of the multiplier ideal I(h) does not project on Y . Then −KY is generically nef.

Proof. Let τ : Ŷ → Y be a desingularization; choose a birational map π : X̂ → X

with X̂ such that the induced map f̂ : X̂ 99K Ŷ is holomorphic. Then the main result of
Berndtsson–Paun [BP08] implies that

K
X̂/Ŷ
+ π∗(−KX)

is pseudo-effective. Write K
X̂
= π∗(KX) +

∑
aiEi with ai > 0 and Ei being π -

exceptional. Then we conclude that

f̂ ∗(−K
Ŷ
)+

∑
aiEi

is pseudo-effective and consequently −K
Ŷ

is pseudo-effective. Now take an MR-general
curve C ⊂ Y and let Ĉ be its strict transform. Since C does not meet the exceptional
locus of τ, we conclude that

−KY · C = −KŶ · Ĉ ≥ 0,

the last inequality being justified by the pseudo-effectivity of −K
Ŷ
. ut

Notice that the support condition is really necessary; in fact, Zhang observed that there
are many ruled surfaces over curves of genus ≥ 2 with big (but not nef) anti-canonical
bundle.

3.4. Question. Let f : X → Y be a surjective map of projective manifolds. Assume
−KX nef. Is −KY pseudo-effective?
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In general, a generically nef line bundle is not pseudo-effective. The reason is simply that
the movable cone ME(X) in general is larger than the closed cone CI(X) generated by
MR-general curves. See [Pe10] for an example (joint with J. P. Demailly). However we
might ask:

3.5. Question. Suppose X is a projective manifold with KX generically nef. Is KX
pseudo-effective? In other words, if KX is not pseudo-effective, are there ample divisors
Hi such that

KX ·H1 · . . . ·Hn−1 < 0?

See [CP98] for some positive results.

4. Nefness properties of the tangent bundle

Miyaoka–Mori [MM86] proved that if KX · C < 0 for some MR-general curve (actually
a curve moving in a covering family suffices), then X is uniruled. This can be seen as
a special case of Miyaoka’s theorem [Mi87] stating that if T ∗X|C is not nef on the MR-
general curveC = m1H1∩· · ·∩mn−1Hn−1, thenX is uniruled. It is natural to ask whether
one really needs to consider MR-general curves; in fact movable curves are often easier
to handle. This should be seen in the context of the difference between the movable and
the complete intersection cone: the movable cone behaves well, the complete intersection
cone does not. We refer to [Pe10].

4.1. Question. Let T ⊂ Chow(X) be an irreducible component and assume that T ∗X|Ct
is not nef for general t ∈ T . Is X uniruled?

4.2. Remark. It is not sufficient to require T ∗X|Ct to be non-nef for the general mem-
ber Ct of some covering family of curves. In fact, in [BDPP04] it is shown that any K3
surface and any Calabi–Yau threefold admit a covering family (Ct ) of curves such that
T ∗X|Ct is not nef for general t. In other words T ∗X (as well as TX) is not almost nef. Con-
sequently, we also find projective n-folds X with κ(X) = n − 2 such that T ∗X is not
almost nef.

4.3. Question. LetX be a projective manifold with κ(X) ≥ dimX−1. Is T ∗X almost nef?

Since Question 4.1 seems to be too hard at the moment, we consider the stronger condition
that TX|C be nef. In [Pe06] the following is proved; for the ampleness statement see also
[KST07], [BM01].

4.4. Theorem. LetX be a projective manifold, and C ⊂ X an irreducible curve. If TX|C
is nef, then κ(X) < dimX. If additionally KX · C < 0, then X is uniruled. If TX|C is
ample, then X is rationally connected.

4.5. Corollary. Suppose X is uniruled with rational quotient f : X 99K W, where W
is smooth. Let C ⊂ X be an irreducible curve such that f is holomorphic near C and
assume dim f (C) > 0. Suppose that TX|C is nef and let S ⊂ TX|C be the maximal ample
subsheaf. If rkS = m > 0, then dimW ≤ n−m.
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Proof. We simply observe that the natural morphism S → f ∗TW |C must vanish, because
otherwise TW |f (C) would contain an ample subsheaf. Since TW |f (C) is nef (the map
TX|C → f ∗TW |C being generically surjective), we conclude by 4.4 that W is uniruled,
a contradiction. ut

The next theorem shows that manifolds with generically nef tangent bundles have the
same mapping properties as manifolds with nef anti-canonical bundles.

4.6. Theorem. Assume that TX is generically nef with respect to (H1, . . . , Hn−1). Let
f : X → Y be a surjective holomorphic map to the normal projective variety Y . Then
either Y is uniruled or κ(Y ) = 0.

Proof. Let C ⊂ X be MR-general. Fix a desingularization τ : Ŷ → Y and choose
a smooth birational model π : X̂ → X such that the induced map f̂ : X̂ → Ŷ is
holomorphic. Then C can be considered as a curve on X̂ (but it is not an MR-curve
on X̂), and T

X̂
|C is nef. We claim that

K
Ŷ
· f̂ (C) ≤ 0. (∗)

In fact, otherwise we find a positive integer N and a non-zero section

ω ∈ H 0(NK
Ŷ
|f̂ (C)) = H 0((�m

Ŷ
)⊗N |f̂ (C))

having a zero (m = dim Ŷ ). Hence we obtain a section

f̂ ∗(ω) ∈ H 0((�m
X̂
)⊗N |C)

with a zero. This contradicts the nefness of (
∧m

T
X̂
)⊗N |C.

Now we proceed similarly to 3.1. If we have strict inequality in (∗), then Y is uniruled.
So suppose K

Ŷ
· f̂ (C) = 0. Assuming Y is not uniruled, we must show that κ(Ŷ ) = 0.

By [BDPP04], K
Ŷ

is pseudo-effective. Hence L = f̂ ∗(K
Ŷ
) is pseudo-effective with

L · C = 0. Then we just follow the arguments of 3.1 to conclude that κ(Ŷ ) = 0. ut

In particular the Albanese map of a manifold X whose tangent bundle TX is generically
(H1, . . . , Hn−1)-nef is surjective. Now we ask for conditions under which the Albanese
map is a submersion. Here we naturally need conditions concerning curves through every
point.

4.7. Definition. We say that TX is sufficiently nef (resp. ample) if the following holds.
Given any point x ∈ X, there exists a covering family (Ct ) of (generically irreducible)
curves through x such that TX|Ct is nef (resp. ample) for general t.

With this notion we have

4.8. Proposition. If TX is sufficiently nef, then the Albanese map of X is a surjective
submersion.



Varieties with generically nef tangent bundles 583

Proof. If the Albanese map is not surjective or not a submersion, then we find a nonzero
holomorphic 1-form ω on X admitting a zero x. Now consider a curve C through x such
that TX|C is nef and such that ω|C ∈ H 0(�1

X|C) does not vanish identically. Such a
curve exists by our assumption. Since ω(x) = 0, we obtain a contradiction. ut

4.9. Corollary. If TX is almost nef, then the Albanese map is a surjective submersion.

4.10. Remark. The arguments of 4.8 show more generally the following. If

0 6= ω ∈ H 0(X, (�1
X)
⊗N ),

then ω has no zeroes. As an application, if f : X → Y is a surjective holomorphic map
to a projective manifold Y with κ(Y ) ≥ 0 (where TX is sufficiently nef) then mKY = OY
for some m > 0 (and any non-zero η ∈ H 0(Y, (�1

Y )
⊗N ) is without zeroes). It seems

however impossible in general to conclude with these methods that f is a submersion.

Coming back to manifolds with nef anti-canonical bundles, we recall the following

4.11. Conjecture. Let X be a projective manifold with−KX nef. Then the Albanese map
is a (surjective) submersion.

This is known in dimension 3 [PS98] and in all dimensions if −KX is hermitian semi-
positive [DPS96] and, more generally, if −KX has a singular metric h with trivial mul-
tiplier ideal I(h) = OX [DPS01]—even in the Kähler case. As already mentioned, the
surjectivity is due to Zhang [Zh05]. However in the Kähler case, surjectivity in general is
still unknown.

Conjecture 4.11 is potentially a consequence of Proposition 4.8 via the first part of the
following

4.12. Conjecture. Let X be a projective manifold.

(1) If −KX nef, then TX is sufficiently nef and also generically nef.
(2) IfX is rationally connected and−KX is pseudo-effective, e.g. Fano, then TX is gener-

ically ample.

4.13. Example. LetX be a projective surface with−KX nef. Then TX is sufficiently nef,
as shown by the following considerations, using classification.

If q(X) ≥ 2, then X is a torus, and there is nothing to prove. If q(X) = 1, then either
X is hyperelliptic and we are done, or X = P(E) with a rank 2-vector bundle E over an
elliptic curve A. Then automatically TX is nef [CP91].

If q(X) = 0 and X is not uniruled, then X is K3 (or Enriques), this being settled
by 7.2 below. So it remains to treat the rational case. Here we may assume that X is the
plane blown up in at most nine points p1, . . . , pr . Fix x ∈ X. If x is disjoint from the
exceptional locus of π : X→ P2, then the claim is clear (take lines). Otherwise we have
say π(x) = p1. Since−KX is nef, at most three points can be infinitely near and it follows
easily that there is a 1-dimensional family of strict transforms of conics through p1 which
all contain x.
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5. Semi-stability

In this section we shall bring methods from the theory of stable vector bundles into the
game.

5.1. Proposition. (1) Assume TX is semi-stable with respect to (H1, . . . , Hn−1). If
−KX·H1·. . .·Hn−1 > 0, then TX is generically ample with respect to (H1, . . . , Hn−1)

and X is rationally connected.
(2) Assume TX is stable with respect to (H1, . . . , Hn−1). If−KX ·H1 · . . . ·Hn−1 ≥ 0 and

KX 6≡ 0, then again TX is generically ample with respect to (H1, . . . , Hn−1) and X
is rationally connected.

Proof. (1) If −KX · H1 · . . . · Hn−1 > 0, the stability follows from 2.5. Moreover TX|C
is ample for C MR-general, hence we may apply 4.4.

(2) The stability is again 2.5. For the rational connectedness, we may assume by (1)
that −KX · H1 · . . . · Hn−1 = 0. Since KX 6≡ 0, we find H ′1, . . . , H

′

n−1 ample such that
for all positive ε,

KX · (H1 + εH
′

1) · . . . · (Hn−1 + εH
′

n−1) < 0.

Then we find a sequence (tν) of positive numbers converging to 0 such that TX is stable
with respect to (H1 + tνH

′

1, . . . , Hn−1 + tνH
′

n−1) (adapt [CP11, 5.6] = Proposition 2.4,
where the case of all Hi equal is treated; actually by a convexity argument we have sta-
bility for all small t). Now we apply (1). ut

5.2. Theorem. Let X be a projective manifold.

(1) Assume that TX is not generically ample with respect to (H1, . . . , Hn−1) and that
−KX ·H1 · . . . ·Hn−1 > 0. Then there exists a reflexive subsheaf E ⊂ TX such that

c1(E) ·H1 · . . . ·Hn−1 ≥ −KX ·H1 · . . . ·Hn−1

and such that E |C is the maximal ample subsheaf, where C is MR-general with re-
spect to (H1, . . . , Hn−1).

(2) Assume that TX is not generically nef with respect to (H1, . . . , Hn−1) and that−KX ·
H1 · . . . ·Hn−1 > 0. Then there exists a reflexive subsheaf E ⊂ TX such that

c1(E) ·H1 · . . . ·Hn−1 > −KX ·H1 · . . . ·Hn−1

and such that E |C is the maximal nef subsheaf, where C is MR-general with respect
to (H1, . . . , Hn−1).

Proof. (1) Let C ⊂ X be MR-general with respect to (H1, . . . , Hn−1). Since TX|C is not
ample, TX|C has a quotient of non-positive degree. Since−KX ·C > 0, we conclude that
TX|C is not semi-stable. Consider the Harder–Narasimhan filtration of TX|C,

0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = TX|C.
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By [KST07], there exists a positive s such that Es is ample, and all ample subsheaves
FC ⊂ TX|C are contained in Es . In other words, Es is maximally ample. Consider the
exact sequence

0→ Es → TX|C → Q→ 0.

We claim that c1(Q) ≤ 0. In fact, if c1(Q) > 0, then, being non-ample, Q must contain
an ample subsheaf, which contradicts the maximality of Ek. Hence

c1(Ek) ≥ −KX · C. (∗)

Now by [MR82], Es extends to a torsion free sheaf E ⊂ TX, and by (∗) we conclude that

c1(E) ·H1 · . . . ·Hn−1 ≥ −KX ·H1 · . . . ·Hn−1.

For (2), we argue in the same way with nef instead of ample bundles, using the obvious
nef version of [KST07, Prop. 29]. ut

As a corollary we obtain (compare also [RC00]):

5.3. Corollary. LetX be a Fano manifold with b2(X) = 1. Then TX is generically ample
(with respect to −KX).

Proof. Let C ⊂ TX be MR-general (necessarily with respect to −KX) and assume TX|C
not ample. Then by Theorem 5.2 we obtain a subsheaf E ⊂ TX of some rank k such that

c1(E) ≥ −KX · C.

Hence
det E = −KX ⊗OX(a) ⊂

∧k
TX

with an integer a ≥ 0 (here OX(1) is the ample generator of Pic(X)). Thus

OX(a) ⊂
∧k

TX ⊗KX = �
n−k
X ,

which is clearly impossible, e.g. by restricting to curves on which TX is ample (these exist
by the rational connectedness of X). ut

5.4. Remark. The same argument as in 5.3 also works for a variety X which is Q-Fano
with ρ(X) = 1, i.e. X is a normal projective Q-factorial variety with at most canonical
singularities. In fact, most things go over verbatim (of course one needs to deal with Weil
Q-Cartier divisors), only at the end the following additions need to be made. The variety
X is rationally connected by [Zh06]; we have a Weil divisor L ⊂ �̃n−kX which is ample
or trivial, and the sheaf �̃n−kX is the extension of the sheaf of (n− k)-forms on the regular
part of X. Then we pass to a desingularization and argue there as before.

In the following we investigate the existence of some polarization H such that TX is
H -semi-stable resp. generically nef (ample).

5.5. Proposition. Let X and Y be projective manifolds, π : X → Y birational. As-
sume that TY is (H1, . . . , Hn−1)-(semi-)stable. Then TX is (semi-)stable with respect to
(π∗(H1), . . . , π

∗(Hn−1)).
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Proof. We argue for stability only. Write H ′j = π∗(Hj ) for short and H ′ =

(H ′1, . . . , H
′

n−1); similarly introduce H. Assume that TX is H ′-unstable and let S ′ be
maximally destabilizing. Then

µH ′(S ′) ≥ µH ′(TX).

Let S := π∗(S ′) ⊂ π∗(TX) ⊂ TY . Now trivial calculations show

µH ′(TX) = µH (TY ) and µH ′(S ′) = µH (S).

Thus we obtain µH (S) ≥ µH (TY ), contradicting the stability of TY . ut

5.6. Corollary. Let π : X → Y be a birational map of projective manifolds. Assume
that TY is (H1, . . . , Hn−1)-stable. Then there are ample divisors H ′j on X such that TX is
(H ′1, . . . , H

′

n−1)-stable.

Proof. Combine the last proposition and Proposition 2.4. ut

5.7. Corollary. Let Y be a projective manifold with (H1, . . . , Hn−1)-stable tangent
bundle. Assume that −KY ·H1 · . . . ·Hn−1 > 0 (e.g. Y is a Fano manifold of dimension 3
with b2 = 1 or a rational-homogenenous manifold with b2 = 1). Let π : X→ Y be bira-
tional. Then there existH ′1, . . . , H

′

n−1 ample onX such that TX is (H ′1, . . . , H
′

n−1)-stable
and generically nef with respect to (H ′1, . . . , H

′

n−1).

Proof. By Proposition 2.4 we can take H ′j = π
∗(Hj )+ εA where A is ample and ε > 0

small. In order to prove generic nefness, we need to verify that

−KX ·H
′

1 · . . . ·H
′

n−1 > 0. (∗)

From −KY ·H1 · . . . ·Hn−1 > 0, we deduce

−KX · π
∗(H1) · . . . · π

∗(Hn−1) > 0,

hence (∗) for ε small enough. ut

5.8. Corollary. Let X be a rational surface. Then there exists H ample such that TX is
H -generically ample.

Proof. Choose a birational morphism π : X̂ → X such that X̂ is a blow-up of P2. By
the last corollary we find Ĥ ample on X̂ such that T

X̂
is Ĥ -generically ample. Arguing

by induction, we may assume that π is just one blow-up; let E be the exceptional curve.
Write

Ĥ = π∗(H)+ aE

with a < 0 and H ample on X. Let Ĉ ⊂ X̂ be MR-general with respect to Ĥ . Then
T
X̂
|Ĉ is ample. Since T

X̂
⊂ π∗(TX), also π∗(TX)|Ĉ is ample. Therefore TX is ample on

the image curve C = π(Ĉ). Since ampleness is a Zariski-open property, TX|C′ is ample
for C′ MR-general with respect to H. ut

Notice that for a Hirzebruch surface P(O ⊕ O(−e)) with e ≥ 3, the tangent bundle is
never stable for any polarization H ; however it is generically ample for all H.

Corollary 5.8 can be strengthened as follows.
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5.9. Theorem. Let X be a del Pezzo surface or a rational surface with −KX pseudo-
effective. Let H be ample. Then TX is H -generically ample.

Proof. Suppose TX is not H -generically ample. By 5.2 there exists a line bundle L ⊂ TX
such that

L ·H ≥ −KX ·H

and L|C ⊂ TX|C is maximally ample for C MR-general with respect to H. Moreover L
is a subbundle outside a finite set. Notice that our assumptions guarantee −KX · H > 0.
By [KST07], [BM01], the general leaf of the foliation L is algebraic and its closure is
rational. So the closures of the (general) leaves form an algebraic family and we find a
(smooth) blow-up p : C → X which is a generic P1-bundle q : C → B ' P1 such that

L = p∗(TC/B)∗∗ = p∗(−KC/B)
∗∗
⊂ p∗(TC) = TX.

Now

L ·H = (−KC/B) · p
∗(H) = −KC · p

∗(H)+ q∗(KB) · p
∗(H)

= p∗(−KX) · p
∗(H)+ q∗(KB) · p

∗(H).

Since B ' P1, we have q∗(KB) · p∗(H) < 0, which leads to

L ·H < −KX ·H,

a contradiction. ut

5.10. Remark. The same scheme of proof stills works for birationally ruled surfaces over
an elliptic curve with −KX pseudo-effective:

The tangent bundle of a surface with pseudo-effective anti-canonical bundle, which is
birationally equivalent to a ruled surface over an elliptic curve, is generically nef.

In the proof of 5.9 we take a priori L ⊂ TX such that LC is maximally nef. Since
−KX · C > 0, it is clear that LC is also maximally ample. Then we proceed as before,
having in mind that L ·H > −KX ·H.

Combining Theorem 5.9 and Remark 5.10 we obtain

5.11. Corollary. Let X be a smooth projective surface with −KX nef. Then TX is gener-
ically nef for some H.

6. The movable cone

6.1. Theorem. Let X be a Q-Fano variety, i.e. a normal projective Q-Gorenstein variety
with at most terminal singularities such that −KX ample. Let L ⊂ �

[r]
X be a reflexive

rank 1 subsheaf which is Q-Cartier. Then κ(L) = −∞.
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Proof. Let π : X̂→ X be a desingularization. By the Extension Theorem in [GKKP11],
there is a generically injective map

π∗(�
[r]
X )→ �r

X̂
.

This induces an injective map
π∗(L)/tor→ �r

X̂
.

If κ(L) ≥ 0, then there is an integer N such that

H 0(X̂, (�r
X̂
)⊗N ) = 0.

But X̂ is rationally connected by [Zh06], which is absurd (e.g. by [Ko95, IV.3.8]). ut

We next study the behaviour of the movable cone under surjective morphisms; the results
will be used in Theorem 6.3.

6.2. Theorem. Let f : X → W be a surjective holomorphic map with connected fibers
from the projective manifold X to the normal projective variety W. Let F be a general
fiber of f. Then
(1) The inclusion map i∗ : N1(F )→ N1(X) maps ME(F) to ME(X).
(2) ME(X/W) is the closed cone generated by covering families (Ct ) in X such that

f∗(Ct ) = 0.
(3) i∗ : ME(F)→ ME(X/W) is surjective.
Proof. (1) The following argument, simplifying my original proof, was provided by the
referee. The cone ME(F) is generated by the classes of F -covering families. So let a
be the class of an F -covering family. Since F is general, the countability of the number
of components of the Hilbert scheme shows that there is an X-covering family (Ct ) with
f∗(Ct ) = 0 inducing the original family in F . Hence a ∈ ME(X).

(2) Let L be a line bundle such that

L · Ct ≥ 0

for all covering families (Ct ) in X with f∗(Ct ) = 0. We need to show that

L · γ ≥ 0 (∗)

for γ ∈ ME(X/W). By (1), LF is pseudo-effective for the general fiber F. Choose an
ample line bundle A on X. Then L+ εA is f -big for all ε > 0. Hence (L+ εA) · γ > 0,
and (∗) follows by letting ε converge to 0.

(3) is a consequence of (2). ut

The following theorem will be important for the next section; we state it in a more general
form than necessary for future use.

6.3. Theorem. LetX be a projective manifold, and L a nef line bundle onX with (almost
holomorphic) nef reduction f : X 99K W. Let F be a general fiber of f and i : F → X

the inclusion map. Assume that
(1) L|F = OF ;
(2) dimW = ν(L).

Let γ ∈ ME(X) with L · γ = 0. Then there exists δ ∈ ME(F) such that γ = i∗(δ).
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Proof. In a first step we show that we may assume f is holomorphic. In fact, take a
birational map π : X̂ → X from a projective manifold X̂ such that the induced map
f̂ : X̂→ W is holomorphic. Of course, we blow up only inside the set of indeterminacies
of f. Then f̂ is a nef reduction for L̂ = π∗(L) and obviously ν(L̂) = ν(L). Next observe
that

γ̂ := π∗(γ ) ∈ ME(X̂).
To see that, take a pseudo-effective divisor D̂. Then the divisor π∗(D̂) is pseudo-effective
too, and therefore

D̂ · γ̂ = π∗(D) · γ ≥ 0.
Now apply [BDPP04] to conclude.

Since L̂ · γ̂ = 0 and since we assume in this step that the assertion of the proposition
is true in the case of a holomorphic nef reduction, we find an element δ̂ ∈ ME(F̂ ) (where
F̂ is a general fiber of f̂ ) such that

i∗(δ̂) = γ̂ .

But F = F̂ , since f is almost holomorphic, and thus our claim follows.
From now on we assume f holomorphic. By a birational base change and the above

arguments, we may also assumeW is smooth and f is flat, in particular equidimensional.
However X is now only normal.

Consider the line bundle
A = f∗(L)

∗∗
;

here we use the assumption L|F = OF to see that A has indeed rank 1. The canonical
map f ∗f∗(L) → L gives rise to a map ψ : f ∗(A) → L which is defined outside of
the preimage of the singular locus S of the torsion free sheaf f∗(L). But S has codimen-
sion at least 2, and so does f−1(S), since f is equidimensional. Therefore ψ is defined
everywhere, and we can write

L = f ∗(A)+ E

with an effective divisor E. Since E is f -nef with f∗(OX(E)) = OW , it is easy to show
[Fu86, 1.5] that

mE = f ∗(B)

for some multiple m. In total we can write

mL = f ∗(A′) (∗)

with some nef line bundle A′. Notice that A′ also big by our assumption dimW = ν(L).

By passing to a desingularization of X, we may again assume that X is smooth; the new
map X → W might no longer be equidimensional, but this is not important for the rest
of the considerations.

We show that f∗(γ ) = 0. By (∗),

0 = L · γ = A′ · f∗(γ ).

Since f∗(γ ) ∈ ME(W) (again test by intersecting with a pseudo-effective divisor onW ),
we conclude from the bigness of A′ that f∗(γ ) = 0.

Now that we know f∗(γ ) = 0, we apply Theorem 6.2 to conclude. ut
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6.4. Remark. Suppose −KX · C > 0 for all movable curves C. One might expect that
then q(X) = 0 or even that X is rationally connected. One reason for such an expectation
is Serrano’s theorem that if −KX · C > 0 for all curves in a threefold X, then X is Fano
(the same being expected in all dimensions). This expectation however is completely
false, even if −KX is nef. Take an elliptic curve C and a rank 2-vector bundle E given by
a non-split extension

0→ OC → E→ OC → 0.

Let X = P(E). Then −KX · B = 0 only for one curve, the section defined by the
epimorphism E→ OC → 0.

We next prove a weak substitute for generic nefness for rationally connected mani-
folds. To do that we first observe

6.5. Theorem. Let X be a rationally connected projective manifold. Then there are cov-
ering families (Cjt ) of rational curves, 1 ≤ j ≤ m, such that

∑
j [Cjt ] is in the interior

ME0(X).

Proof. Applying [Ko95, IV.3.9] we find for all x1, x2 ∈ X an irreducible rational curve
Cx1,x2 joining x1 and x2. By the usual Chow scheme argument, there are finitely many
connecting families (Cjt ) of rational curves, with TX|C

j
t ample for general t and all j ,

1 ≤ j ≤ m, such that any two x1, x2 can be joined by an irreducible member of some
of the families. Moreover at least one of the families, say (C1

t ), has the property that two
general points of X can be joined by an irreducible member of this family. We may also
assume that for any j the generalCjt is smooth (resp. has only nodes whenX is a surface).
In order to prove that α :=

∑
j [Cjt ] is in the interior ME0(X), we check that

L · α > 0

for all pseudo-effective line bundles L on X which are not numerically trivial. Suppose
to the contrary that L · α = 0 for some L, so that

L · C
j
t = 0 (∗)

for all j , in particular L ·C1
t = 0. Let L = P +N be the divisorial Zariski decomposition

[Bo04] of L; see also [BDPP04] for a discussion. So P is an effective R-divisor and N is
nef in codimension 1. Thus

P · C1
t = N · C

1
t = 0

and by [BDPP04, 8.7], we first obtain N = 0 and consequently [ibid., 3.11] P is numer-
ically equivalent to a multiple of an effective divisor, hence (without loss of generality)
effective. Let Pk be the irreducible components of the support of P. Since P · Cjt = 0
and Pk · C

j
t ≥ 0 for all j , we have Pk · C

j
t = 0 for all j. Now pick x1 general and

x2 ∈ Pk and choose some irreducible Cjt joining x1 and x2. Thus 0 < P · C
j
t = L · C

j
t ,

contradicting (∗). ut
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It seems likely that we can find a single “connecting” family (Ct ) of rational curves (with
Ct irreducible!) such that [Ct ] is in the interior of the movable cone, but we cannot prove
that at the moment.

As a consequence of Theorem 6.5 we obtain

6.6. Theorem. Let X be a rationally connected manifold. Then there exists a smooth
curve C ⊂ X such that

(1) the deformations of C cover X;
(2) TX|C is ample;
(3) [C] ∈ ME0(X).

Proof. Choose families (Cjt ) on X as in Theorem 6.5. We form a reducible connected
curve

C′ =
∑

C
j
t ,

where the Cjt are chosen general so that the intersections are all transversal and that
through any point ofX there are at most two components. Then C′ is smoothable ([Ko95,
II.7.9]); let C be a smoothing so that [C] ∈ ME0(X). Since TX|C

j
t is ample for all j

and t general, so does TX|C, proving (2). Claim (1) is also clear since [C′] belongs to a
component of the Chow scheme which covers X. ut

The fact that [C] ∈ ME0(X) can be rephrased as follows. There are birational morphisms
πj : X̃j → X from projective manifolds X̃j and h̃j = (H̃

j

1 , . . . , H̃
j

n−1) ample such that
[C] =

∑
j ajπj∗(h̃j ) with positive numbers aj . It is not clear whether one can simply

achieve [C] = π∗(H̃ · . . . · H̃n−1).

7. Almost Fano manifolds and manifolds with semi-positive curvature

A projective manifoldX is almost Fano if−KX is big and nef. Our first purpose here is to
generalize Theorem 5.4 to the case of almost Fano manifolds. We will use the following
cone theorem [BCHM10].

7.1. Theorem. Let X be a projective manifold with −KX big and nef.

(1) ME
−
(X) = ME(X) is rationally polyhedral: ME

−
(X) =

∑r
j=1 Rj , where the Rj

are the extremal rays in ME(X).
(2) if R ⊂ ME

−
(X) is an extremal ray, then there is a sequence of contractions and flips

X 99K X′ and a Mori fiber space φ : X′→ Y such that the pull-back of a sufficiently
general curve contracted by φ is in R.

Proof. In case −KX is ample, this is [BCHM10, 1.3.5]. If −KX is merely big and nef,
write

−KX = A+D
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where A is an ample Q-divisor and D is an effective Q-divisor. Consider the birational
morphism ψ : X → Y defined by |−mKX| for large m. Then −D is ψ-ample; conse-
quently, −(KX + εD) is ample for small positive ε. Moreover the pair (X, εD) is klt, so
that we can apply [BCHM10, 1.3.5] to KX + εD. ut

One should expect that R contains the class of an irreducible rational curve whose de-
formations cover X. These curves should come from suitable rational curves in a general
fiber F ′ of φ. The technical difficulty lies in the fact that F ′ is singular (Fano) and one
needs to establish rational curves which avoid a set of codimension 2 in this singular
variety.

Of course one could ask for more:

7.2. Question. Let X be a projective manifold.

(1) Under which conditions is ME
−
(X) locally rationally polyhedral?

(2) If −KX is nef, is there a substitute of 7.1(2) with log-contractions and log-flips?
(3) IfX is rationally connected, is an extremal ray ofME

−
(X) represented by a covering

family of rational curves?

Observe however that 7.1(2) without nefness assumption will in general not be true, even
if−KX is big. Indeed, consider a ruled surfaceX = P(E) over a curve C of genus g ≥ 2.
Assume X has a negative section C0 with C2

0 = −e < 0 and e = 2g(C)− 1 so that−KX
is big. Let F be a ruling line. Then the boundary components of ME(X) are represented
by F and C0+eF. Then 7.1(2) obviously does not hold, since the contraction of C0 is not
a Mori contraction; moreover the ray determined by C0+ eF does not contain a covering
family of (generically irreducible) curves.

Lehmann [Le08] has shown that the cone NE(X)+ME(X) has a good decomposi-
tion in the sense of the cone theorem of Mori theory.

If X is an irrational surface with −KX nef, then obviously 7.2(1) & (2) hold; here we
have only one extremal ray.

7.3. Theorem. Let X be a projective manifold with −KX big and nef. Then TX is gener-
ically ample and therefore also sufficiently ample.

Proof. Generic ampleness implies sufficient ampleness by Theorem 2.8, therefore only
the first claim needs to be proved. If the claim were false, we would find by 5.5 some
ample (H1, . . . , Hn−1), and a subsheaf E ⊂ TX such that

(KX + det E) ·H1 · . . . ·Hn−1 ≥ 0.

Notice that det E ⊂
∧k

TX with k the rank of E , and therefore, as in 5.4,

KX + det E ⊂
∧k

TX ⊗KX = �
n−k
X . (∗)

We want to show that by a change of the polarizations Hj , we may achieve

(KX + det E) ·H1 · . . . ·Hn−1 > 0. (∗∗)
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So assume equality in (∗∗). Since the interior of CI(X) is open in N1(X), we find ample
Q-divisors H ′j sufficiently near to Hj such that

(KX + det E) ·H ′1 · . . . ·H
′

n−1 > 0

unless KX + det E ≡ 0. But this last alternative cannot happen: since π1(X) = 0,
we would have KX + det E ' OX and therefore by (∗), h0(�n−kX ) 6= 0, contradicting
H n−k(OX) = 0 (Kodaira vanishing). So (∗∗) can always be achieved.

By 6.1 there is an extremal ray R ⊂ ME
−
(X) such that

(KX + det E) · R > 0.

We apply Theorem 7.1 and run a suitable MMP X 99K X′ to obtain a Mori fiber space
φ : X′ → Y . Moreover, this fiber space is given by an extremal ray R′ which is spanned
by the images of the curves in R. Let E ′ ⊂ TX′ be the induced reflexive subsheaf, so that

KX′ + det E ′ ⊂ �̃n−k
X′

and
(KX′ + det E ′) · R′ > 0,

which is an easy calculation of intersection numbers (for birational contractions and flips
separately). Therefore (KX′ + det E ′) is a φ-ample Q-Cartier divisor. Now we restrict to
a general fiber F ′ of φ and, by the same techniques as fully explained in part (I) of the
proof of the next theorem and by applying Lemma 6.6, we obtain a contradiction. ut

One might ask whether the above method also works if −KX is merely nef, granted that
Questions 7.2(1) & (2) have positive answers. Of course we only ask for generic nefness.
We try to argue by induction as before and this time obtain E ⊂ TX such that

(KX + det E) ·H1 · . . . ·Hn−1 > 0.

So (∗∗) automatically holds. The problem is now that there is no way to deduce the
existence of an extremal ray R in the movable cone such that

(KX + det E) · R > 0.

If we had R, then things go through smoothly. It is clear that we arrived here at a subtle
point: up to now all arguments also work if−KX is merely pseudo-effective, but we know
that under this weaker assumption TX is in general not generically nef.

What we actually can conclude when −KX is nef is the existence of an element γ ∈
ME(X) such that

KX · γ = 0 and (KX + det E) · γ > 0.

We continue to discuss the case where −KX is not big (but still nef). Here −KX might
no longer be semi-ample. Geometrically speaking, we consider the nef reduction

φ : X 99K W
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of −KX and assume that 0 < dimW < dimX = n (that is, KX 6≡ 0 and there is a
covering family (Ct ) of curves such that KX · Ct = 0), and that ν(−KX) = dimW.

Then κ(X) = ν(X) and by Kawamata [Ka92] a suitable multiple −mKX is spanned
and thus φ is holomorphic and given by |−mKX|. Then −KX is automatically hermitian
semi-positive, but we do not use this information. The proof of Theorem 7.4 can also be
achieved without using Kawamata’s result, just using ν(−KX) = dimW. The reason is
that φ being almost holomorphic suffices to make our arguments work. We shall not use
the finer structure of manifold with −KX hermitian semi-positive [DPS96] (see also 8.5)
because we are aiming also for the general nef case; moreover the arguments in the proof
of 7.4 also work in a singular setting (canonical singularities).

7.4. Theorem. Let X be a projective manifold with −KX semi-ample. Then TX is gener-
ically nef.

Proof. (I) If KX ≡ 0, then Miyaoka’s theorem [Mi87] already gives the result; hence we
shall assume KX 6≡ 0.

Let φ : X→ W be the fibration given by a suitable multiple −mKX. In this first step
of the proof, we connect this morphism to the generic nefness of the tangent bundle.

By 7.3 we may assume that −KX is not big, hence dimW < dimX. Let F be a
general fiber of φ and set d = n− k = dimW. Then we have an exact sequence

0→ OdF → �1
X|F → �1

F → 0. (1)

Assuming that TX is not generically nef, we apply 5.2(2) and obtain a subsheaf E ⊂ TX
of rank k such that

(KX + det E) ·H1 · . . . ·Hn−1 > 0

for suitable ample divisors Hj .
We restrict the inclusion KX + det E ⊂ �n−kX to F and obtain an injective map

KF + det EF ⊂ �n−kX |F. (2)

We apply
∧n−k to (1) and obtain sequences

0→ Fj → Fj−1 → Fj−1/Fj → 0

with
Fj−1/Fj ' �n−k−j+1

F ⊗
∧j−1OdF .

Now we chase the inclusion (2) through these sequences, using the fact that any morphism

ψ : KF + det EF → (�rF )
⊕N

must vanish for r > 0. This will be proved below in Steps (II)–(IV). The outcome is a
non-vanishing morphism

ψ : KF + det EF →
∧n−k OdF = O

N
F .
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Such a morphism however cannot exist, since

(KX + det E) · B > 0

for a suitable movable curve B ⊂ F, the existence of which will also be proved below.

(II) It remains to prove the vanishing of ψ and the existence of B. By projection to a
suitable direct summand we obtain a non-zero morphism

τ : KF + det EF → �
j
F , (3)

for some j ≥ 0. Since F is a fiber of φ, the morphism associated with |−mKX|, we have
KF ≡ 0.

(III) This step is the core of the proof. We want to reduce ourselves to the case where

(KX + det E)>0 ∩ME(X) ∩K
⊥

X 6= {0}. (4)

This means that we can find an element γ ∈ ME(X) \ {0} with KX · γ = 0 such that

(KX + det E) · γ > 0.

This will lead to a contradiction in step (IV). Suppose that (4) is false and let H =
(KX + det E)⊥, so that

ME(X) ∩K⊥X ⊂ H≤0. (4′)

(III.1) We choose a pseudo-effective R-divisor P which is not big such that

P⊥ ∩ ∂ME(X) ⊂ H>0 (5)

and such that P is φ-ample, i.e. positive on K⊥X . The divisor P is constructed as a linear
form

λ : N1(X)→ R

which is non-negative on ME(X) (using [BDPP04] to conclude that P is pseudo-effec-
tive). More specifically, we apply Lemma 7.5 below with V = N1(X);K = ME(X) +

NE(X/W), the closed cone generated by ME(X); and NE(X/W), and L2 the vector
space generated byNE(X/W). Since we do not know thatL2∩K = NE(X/W) ⊂ H≤0,

we choose H̃ such that K ∩ H≤0 ⊂ K ∩ H̃≤0 and L2 ∩ K ⊂ H̃≤0. Clearly we can still
achieve ME(X) 6⊂ H̃≤0, since ME(X) 6⊂ H≤0. Therefore we may choose a linear
subspace L1 ⊂ N1(X) such that L1 ∩K ⊂ ∂K ∩ H̃>0.

Now we apply, working with H̃ , Lemma 7.5 to obtain a linear form λ : N1(X)→ R
with the properties stated in 7.5. The form λ is given by intersection with an R-divisor P
which is pseudo-effective by 7.5(1) and [BDPP04]. Moreover P is φ-ample by 7.5(2) and
is not big by 7.5(3). Since K ∩ H̃>0 ⊂ K ∩H>0, claim (5) follows from 7.5(2).

(III.2) Since −KX is the pull-back of an ample Q-divisor on W , and since P is φ-ample,
we conclude that A0 = λP − KX is an ample R-divisor for 0 < λ � 1. Fix such a
λ so that KX + A0 = λP. Choose ample Q-divisors Ak whose classes converge to the
class of λP. Let tk be the effective threshold or pseudo-effective value, i.e., the smallest
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positive number such that KX + tkAk is pseudo-effective. Since P is pseudo-effective
but not big, the sequence (tk) converges to 1 and therefore KX + tkAk converges to λP
(numerically). From (5) we deduce

(KX + t0A)
⊥
∩ ∂ME(X) ⊂ H>0 (6)

for k � 0. We fix such a large k, choose m such that A := mAk is Cartier and set
t0 = mtk. By [BCHM10, 1.1.7], tk is in Q+ and so is t0.

For ε > 0 rational and sufficiently small the Q-divisor KX + (t0− ε)A is not pseudo-
effective, so by [BCHM10] we can run the MMP and obtain a birational rational map

σ : X 99K X′

(composed of birational contractions and flips) together with a Mori contraction

f : X′→ Y

such that dimY < dimX. Notice that there is an algebraic set B ⊂ X′ of codimension at
least 2 such that σ is an isomorphism over X′ \ B. Let A′ be the divisor on X′ induced
by A. Then by construction KX′ + t0A′ is the pull-back of an ample Q-divisor on Y. Let
M ′ be the divisor on X′ induced by det E and let l′ be a general curve in F ′, a general
fiber of f. Then l′∩B = ∅ and we can consider its isomorphic preimage l ⊂ X.We claim
that

(KX′ +M
′) · l′ > 0. (7)

To prove (7), we need to verify (KX + det E) · l > 0, i.e. [l] ∈ H>0. By (6) this holds as
soon as we know that

(KX + t0A) · l = 0,

which however is obvious from

(KX + t0A) · l = (KX′ + t0A
′) · l′ = 0.

So (7) holds and thus KX′ +M ′|F ′ is ample (since ρ(X′/Y ) = 1). Now, taking
∧n−k of

the exact sequence of Kähler differentials on the regular locus of the normal variety F ′,

N∗F ′|X′ → �1
X′ |F

′
→ �1

F ′ → 0,

we conclude via Theorem 6.1 that KX′ + M ′|F ′ is a subsheaf of some �̃j
F ′
. This is

impossible, again by Theorem 6.1.

(IV) So (4) holds and consequently there exists γ ∈ ME(X) \ {0} with KX · γ = 0 such
that

(KX + det E) · γ > 0.

By 6.3 there exists δ ∈ ME(F) such that

γ = i∗(δ).
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By perturbation, we may assume δ is in the interior of ME(F). Moreover we have a
movable curve

B = µ∗(H
′

1 · . . . ·H
′

n−k)

(for some modification µ : F̃ → F) such that

(KF + det EF ) · B > 0.

Since KF ≡ 0 and since KF + det EF ⊂ �
j
F by (3), this contradicts [CP11] (and is

actually trivial for j = 0). ut

We still need to establish the following lemma.

7.5. Lemma. Let V be a finite-dimensional real vector space, K ⊂ V a closed cone
with K ∩ −K = {0}, and L1, L2 ⊂ V linear subspaces such that L1 ∩ K ⊂ ∂K. Let
H ∈ V ∗ \ {0} be such that L2 ∩ K ⊂ H≤0 and L1 ∩ K ⊂ H>0. Then there exists a
non-trivial linear form λ : V → R such that

(1) λ|K ≥ 0,
(2) λ|K ∩H≤0 > 0,
(3) λ|L2 ∩K > 0, and
(4) λ|L1 = 0.

Proof. We approximate H by some H̃ such that K ∩ H≤0 is in the interior of K ∩ H̃≤0
and still L1 ∩ K ⊂ H̃>0. We choose a sequence (Ki) of closed cones Ki ⊂ K with the
following properties:

• Ki ⊂ Ki+1,

• Ki ∩ L1 = {0} for all i,
• K =

⋃
Ki , and

• Ki ∩ H̃≤0 = K ∩ H̃≤0 for all i.

By Hahn–Banach we may choose λi : V → R linear such that λi |Ki > 0, λi |L1 = 0 and
‖λi‖ = 1 (for some norm in V ∗). Then we extract a limit λ : V → R, and automatically
(1), (2) and (4) hold. (3) is finally a consequence of (2). ut

8. Base points

Generic nefness is sometimes not good enough for applications, e.g. for the smoothness
of the Albanese map. Therefore we need to consider nefness concepts which deal with
curves through any point, introduced in Definition 2.7. Here we apply the results of Sect. 2
to the tangent bundle.

8.1. Theorem. Let X be a projective manifold with KX ≡ 0. Then TX is sufficiently nef.
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Proof. Fix ample divisors Hi . A priori TX is only semi-stable with respect to any
(H1, . . . , Hn−1). The Beauville–Bogomolov decomposition gives a splitting (possibly
after a finite étale cover which we may of course ignore)

X '
∏

Xj × A

such that TXj is stable for all j and A is abelian. Hence TXj is sufficiently nef for all j
and so is pj (TXj ). Since

TX =
⊕

p∗j (TXj )⊕ p
∗(TA)

where pj : X → Xj and p : X → A are the projections, we conclude easily that TX is
sufficiently nef. ut

8.2. Remark. (1) The arguments of 8.1 actually show the following. If X '
∏
Xj with

all TXj sufficiently nef, then TX is sufficiently nef.
(2) Using [Pe94], Theorem 8.1 also generalizes to the case where X has canonical

singularities.

Theorem 2.12 also gives

8.3. Proposition. Let X be a rationally connected manifold. If TX is generically nef, it is
sufficiently nef.

Proof. We assume that TX is not sufficiently nef at x. By 2.12 we obtain an epimor-
phism TX → Q → 0 with detQ ≡ 0. Since −KX is big and nef, detQ = OX, hence
H 0(X,�

j
X) 6= 0 for some j ≥ 1, a contradiction. ut

The same proof actually shows the following (using the almost holomorphy of the rational
quotient):

8.4. Proposition. Suppose that TX is generically nef, but not sufficiently nef. Let f :
X 99K W be the rational quotient and Q the quotient sheaf of TX constructed in 2.12.
Then the composite rational map TX/W → Q vanishes; in particular rkQ ≤ dimW.

We next discuss the case where X has semi-positive curvature.

8.5. Theorem. Suppose that −KX is hermitian semi-positive.

(1) The rational quotient has a model which is a holomorphic fiber bundle f : X → Z.
Possibly after finite étale cover,KZ = OZ and Z ' A×B with A the Albanese torus
of X and B a product of hyper-Kähler and Calabi–Yau manifolds.

(2) The tangent bundle TX is sufficiently nef.

Proof. (1) By [DPS96], and [Zh05] for the rational connectedness statement, the Al-
banese map α : X → A is a fiber bundle over A and possibly after a finite étale cover
of X, the fiber F of α is a product F =

∏
Fj such that the Fj are hyper-Kähler, Calabi–

Yau or rationally connected. From that it is immediately clear that the rational quotient
has a model which is a holomorphic fiber bundle X→ Z. Moreover Z is a holomorphic
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fiber bundle over its Albanese such that the fibers F have KF ≡ 0. Therefore KZ ≡ 0
and after a finite étale cover Z is a product as stated.

(2) The tangent bundles TFj are sufficiently nef by 8.1, resp. by 7.4 and 8.4. Therefore
TF is sufficiently nef by 8.2. This already solves the problem when π1(X) is finite.

Now assume that TX is not sufficiently nef at x and apply 2.12. In the following we
will freely pass to a finite étale cover if necessary. Consider the canonical morphism

λ : TX/A→ TX → Q

and set
Q′ = Im λ, S ′ = Ker λ.

Notice that the map S̃ → π∗α∗(TA) = Od
X̃

has non-maximal rank at most in codimen-

sion 2 (restrict to MR-general curves and use nefness of S̃ on those curves). Now an easy
diagram chase shows that Q′ has the same negativity property as Q in 2.12 since there is
an exact sequence

0→ Q′→ Q→ T ⊕OeX → 0.
Here T is a torsion sheaf, supported in codimension 2, and e is a non-negative integer. In
particular

detQ′ ≡ 0.
Now consider the relative tangent bundle sequence

0→ TX/Z → TX/A→ f ∗(TZ/A) = p
∗

B(TB)→ 0.

By restricting to a fiber of f (which is rationally connected) and by recalling detQ′ ≡ 0
the induced map

λ : TX/Z → Q′

vanishes. In fact we consider the exact sequence

0→ Im λF → Q′→ Coker λF → 0.

Since Coker λF is the quotient of a trivial bundle, namely f ∗(TZ/A)|F , and since F is
rationally connected, this clearly contradicts detQ′ = 0. So λF = 0 and hence λ = 0.
Therefore we obtain an epimorphism

f ∗(TZ/A) = p
∗

B(TB)→ Q′.

But TB is generically nef, and so is p∗B(TB). This contradicts the negativity of Q′ on
certain curves through x. ut

9. Threefolds

We end by considering Conjecture 1.5 in dimension 3.

9.1. Theorem. Let X be a smooth projective threefold with −KX nef. Then TX is gener-
ically nef for some (H1, H2) and even generically nef for all (H1, H2) unless (possibly)
we are in the following case: X is rationally connected, −KX is ample on all movable
curves; moreover there is a fibration f : X → B ' P1, whose general fiber has non-
semi-ample anti-canonical bundle.
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Proof. By 7.4 we may assume that −KX is not semi-ample. Thus by [BP04] we are in
one of the following cases:

(1) There is a finite étale cover X̃ → X such that X̃ ' B × S with B an elliptic curve
and −KS is not semi-ample.

(2) X is rationally connected, −KX is ample on all movable curves; moreover there is a
fibration f : X → B ' P1 whose general fiber has non-semi-ample anti-canonical
bundle.

(3) −KX is ample on all movable curves and X is a P1-bundle over an abelian surface.

In case (3) TX is even nef and there is nothing to prove. In case (1) clearly q(X̃) ≤ 2. If
q(X̃) = 2, so that q(S) = 1, then the Albanese of X̃, being smooth by [PS98], realizes X̃
as a P1-bundle over an abelian surface. Hence T

X̃
is nef and so is TX. So we may assume

q(S) = 0 and thus S is P2 blown up in nine points in general position. By 5.9, TS is
generically ample, hence T

X̃
is easily seen to be generically nef.

We finally treat the most difficult case (2) and need to prove the existence of some
h = (H1, H2) for which TX is generically nef. We fix an ample divisor H on X and set
A = OB(1). Introduce

h0 = p
∗(A) ·H

and notice that
KX · h0 < 0.

We claim that there is an open neighborhood U of h0 in ME(X) such that for all line
bundles L ⊂ TX and all h with [h] ∈ U,

(KX + L) · h < 0. (3.a)

For the proof of (3.a) we first observe that

(KX + L) · h0 < 0. (3.b)

In fact, by the definition of h0 this comes down to

(KF + LF ) ·HF < 0. (∗)

If the compos map KF ⊗ LF → KF ⊗ TX|F → KF ⊗ NF = KF is non-zero, then (∗)
and (3.b) are already clear. If this map vanishes, then we have an inclusion

KF ⊗ LF ⊂ KF ⊗ TF = �
1
F .

Since−KF is not semi-ample, F is either the plane blown up in nine points in sufficiently
general position, or the projectivization of a suitable semi-stable rank 2-bundle on an
elliptic curve. In the first case TX is generically ample, hence (∗) follows. In the second
case TF is nef and (∗) is also easily checked. This establishes (3.b).

From (3.b) the claim (3.a) is an immediate consequence since the set

{c1(L) | L ⊂ TX, L · h0 > 0}
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is finite.
We claim that TX is h-generically nef for [h] ∈ U(h0). Supposing the contrary for a

fixed h, we find by 5.4 a subsheaf E ⊂ TX such that

(KX + det E) · h > 0 (∗∗)

and E is hε-maximally nef. But then (3.a) conflicts with (∗∗), so we obtain a contradiction
and conclude. ut

9.2. Theorem. Let X be a smooth projective threefold with −KX nef. Then TX is suff-
ciently nef.

Proof. If −KX is hermitian semi-positive, we simply apply 8.5. Otherwise we are in of
the three “exceptional” cases listed in the proof of 9.1. In cases (1) and (3) it is clear that
TX is sufficiently nef; in case (2) we can argue as in 9.1 using 7.8, and everything remains
the same except that the positivity (∗∗) is replaced by

KX + det E ≡ 0. ut
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where the anti-canonical bundle of the target variety is not nef.
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