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Abstract. The notion of age of elements of complex linear groups was introduced by M. Reid
and is of importance in algebraic geometry, in particular in the study of crepant resolutions and
of quotients of Calabi–Yau varieties. In this paper, we solve a problem raised by J. Kollár and
M. Larsen on the structure of finite irreducible linear groups generated by elements of age ≤ 1.
More generally, we bound the dimension of finite irreducible linear groups generated by elements of
bounded deviation. As a consequence of our main results, we derive some properties of symmetric
spaces GUd (C)/G having shortest closed geodesics of bounded length, and of quotients Cd/G
having a crepant resolution.
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1. Introduction

Let V = Cd be a d-dimensional complex space and let G < GL(V ) be a finite subgroup.
A classical theme in group theory and representation theory, going back at least to work of
H. Blichfeldt on primitive linear groups, and work of G. C. Shephard and J. A. Todd [ST]
on complex reflection groups, is to characterize G under various conditions that force G
to contain non-identity elements which are “close” to the identity transformation on V .
Recall that a complex reflection group (c.r.g. for short) is a subgroup of GU(V ) that is
generated by a set of complex (pseudo)reflections. The complex reflection groups can be
arguably said to be one of the most ubiquitous objects in modern mathematics.

Recently, motivated by potential applications in algebraic geometry, string theory,
mirror symmetry, and quantum cohomology, J. Kollár and M. Larsen [KL] have raised
the problem of studying linear groups containing elements of bounded (or small) devia-
tion, where the deviation is defined in a certain way to measure the “closeness” of group
elements to the identity transformation. It turns out to be most convenient to work with
the following L2-variant of the Kollár–Larsen deviation: d2(g)

2
= 2(dim(V ) − |Tr(g)|)
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for g ∈ GL(V ) (see §2.2, in particular, Corollary 2.12 and Proposition 2.17(iii), for var-
ious notions of deviation and their relationships). Henceforth we say that a subgroup
G ≤ GL(V ) has property P up to scalars if there is a subgroup H ≤ GL(V ) with prop-
erty P such that Z(GL(V ))G = Z(GL(V ))H .

The first main result of the paper is the following theorem which bounds the dimen-
sion of the representation in terms of the deviations of generators.

Theorem 1.1. Let G < GL(V ) be a finite irreducible subgroup. Assume that there is
a constant C ≥ 4 such that, up to scalars, G is generated by some elements gi with
d2(gi)

2
≤ C, 1 ≤ i ≤ s. Then one of the following holds.

(i) dim(V ) ≤ f(C) := max{4C2/63, 40C}.
(ii) Z(G)× An ≤ G ≤ (Z(G)× An) · 2 and dim(V ) = n− 1, with An acting on V as

on its deleted natural permutation module.
(iii) G preserves a decomposition V = V1 ⊕ · · · ⊕ Vm, with dim(Vi) ≤ C/4 and G

inducing either Sm or Am while permuting the m subspaces V1, . . . , Vm.

One certainly expects the upper bound dim(V ) ≤ f(C) in Theorem 1.1(i) to have rather
a theoretical than practical value. However, we notice that for C large enough (say
C ≥ 630), this bound is already quite close to optimal (cf. Example 4.2). In general,
as pointed out to the authors by Kollár, Theorem 1.1 should have interesting implications
for differential geometry on symmetric spaces. Consider for instance locally symmetric
spaces that behave locally like GUn(C): they are of the form GUn(C)/G for a finite
subgroup G < GUn(C). Then the shortest closed geodesics in GUn(C)/G have length
2π min1 6=g∈G ‖g‖, where ‖g‖ is as defined in Definition 2.8. Here is one consequence of
Theorem 1.1 in this context.

Corollary 1.2. LetG < GU(V ) be a finite irreducible, primitive, tensor indecomposable
subgroup. Assume that the shortest closed geodesics in GU(V )/G have length≤ L. Then
either one of the conclusions (i), (ii) of Theorem 1.1 holds for G with C := max{4, L2

},
or dim(V ) ≤ (L · |Z(G)|/2π)2.

The next result shows that non-central elements g of finite irreducible subgroups of
GL(V ) usually have d2(g)

2
≥ 4, which implies that the condition C ≥ 4 in Theorem

1.1 is natural.

Theorem 1.3. Let G < GL(V ) be a finite primitive, irreducible subgroup. Let d :=
dim(V ) ≥ 2, g ∈ G \ Z(G), and set 1(g) := dim(V ) − |Tr(g)|. If G is tensor induced,
assume furthermore that g acts non-trivially on the set of tensor factors of V . Then one
of the following statements hold.

(i) d = 2 and 1(g) ≥ (3−
√

5)/2.
(ii) d = 3 and 1(g) ≥ 3−

√
3.

(iii) d = 4 and 1(g) ≥ 4− 2
√

2.
(iv) d ≥ 5 and either 1(g) ≥ 8 − 4

√
2, or 1(g) = 2 and g is a scalar multiple of a

reflection.
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(v) V = A⊗ B is tensor decomposable as a G-module, dim(A) = 2, 2 ≤ dim(B) ≤ 6,
g|B is scalar, and 1(g) ≥ dim(B) · (3−

√
5)/2.

The notion of age of elements of complex linear groups (see Definition 2.1), originates
from the work of M. Reid [R1], [R2], [IR]. Its importance in algebraic geometry comes
from the Reid–Tai criterion [R1]: If the subgroup G < GLd(C) contains no complex
reflections, then Cd/G is terminal, resp. canonical, if and only if age(g) > 1, resp.
age(g) ≥ 1 for every 1 6= g ∈ G (see e.g. [CK] for the definition of terminal and
canonical singularities). This implies in particular the following result of [IR]: If G is a
finite subgroup of GLd(C) and f : X → Cd/G is a crepant resolution, then G con-
tains elements g with age(g) ≤ 1. Recall that a resolution f : X → Y is said to be
crepant if f ∗KY = KX. Furthermore, in the profound programme of S. Mori to clas-
sify 3-dimensional algebraic varieties, and in mirror symmetry, the singularities of type
Cd/G for some finite subgroup G < GLd(C) form a very good test class where many
features of the general case can be tested in a computable setting. Recently, there has been
a tremendous amount of research devoted to crepant resolutions. For instance, minimal
models in Mori’s programme utilize crepant maps. Crepant resolutions of quotients X/G
of Calabi–Yau varieties X are also used in works on mirror symmetry (particularly as a
way of obtaining mirrors). Physicists have long believed that string theories on a quotient
space and on its crepant resolutions should be equivalent. Recent conjectures of Y. Ruan
[Ru], and J. Bryan and T. Graber [BG] state that if f : X → Y is a crepant resolution,
then quantum cohomology of X and of Y are essentially the same. More recently, Kollár
and Larsen [KL] studied quotients X/G of a smooth projective Calabi–Yau variety X by
a finite group G and showed in particular that the Kodaira dimension of X/G is con-
trolled by whether Stabx(G) contains non-trivial elements of age < 1 while acting on the
tangent space TxX for some x ∈ X.

The next two theorems of the paper classify finite irreducible subgroups of GL(V )
that are generated by junior elements, that is, elements g with 0 < age(g) ≤ 1, when
dim(V ) > 8.

Theorem 1.4. Let V = Cd with d ≥ 11 and let G < GL(V ) be a finite irreducible
subgroup. Assume that, up to scalars, G is generated by its elements with age ≤ 1. Then
G contains a complex bireflection of order 2 or 3, and one of the following statements
holds.

(i) Z(G) × Ad+1 ≤ G ≤ (Z(G) × Ad+1) · 2, with Ad+1 acting on V as on its deleted
natural permutation module.

(ii) G preserves a decomposition V = V1⊕· · ·⊕Vd , with dim(Vi) = 1 andG inducing
either Sd or Ad while permuting the d subspaces V1, . . . , Vd .

(iii) 2 | d , and G = D : Sd/2 < GL2(C) o Sd/2, a split extension of D < GL2(C)d/2
by Sd/2. Furthermore, if g ∈ G \ D has age(g) ≤ 1, then g is a bireflection (and
age(g) = 1).

Theorem 1.5. Let V = Cd with d ≥ 9 and let G < GL(V ) be a finite irreducible
subgroup. Assume that, up to scalars, G is generated by its elements with age ≤ 1, and
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that G contains a scalar multiple of a non-central element g with age(g) < 1. Then one
of the following statements holds.

(i) One of the conclusions (i), (ii) of Theorem 1.4 holds, andG contains a scalar multiple
of a complex reflection.

(ii) The conclusion (iii) of Theorem 1.4 holds, and, modulo scalars, G cannot be gener-
ated by its elements of age < 1.

The bound d ≥ 9 in Theorem 1.5 is best possible (cf. Remark 5.15). In the case 4 ≤
dim(V ) ≤ 10 of Theorem 1.4, the structure of the arising subgroups G is described in
Proposition 5.16. On the contrary, from the group-theoretic viewpoint there is not much
to say about the dimensions ≤ 3: if 1 6= g ∈ SLd(C) has finite order, then age(g) = 1 if
d = 2, and either age(g) or age(g−1) = 1 if d = 3.

A key ingredient in the proofs of Theorems 1.4 and 1.5 comes from Proposition 2.17
and its consequence Corollary 2.18, which relate age(g) to the L2-deviation d2(g)

2 and
thus allow us to invoke available results on character ratios for finite quasi-simple groups
[G], [GM]. Also, see Theorem 5.9 for a lower bound on the age of any non-central element
in finite linear groups. One should compare the latter result with the classical theorem of
Blichfeldt stating that the shortest arc of S1 which contains all eigenvalues of a non-
central element in a finite primitive complex linear group has length at least π/3.

In the case the finite subgroup G < GL(V ) fixes a non-degenerate symplectic form
on V , D. Kaledin [Ka] and M. Verbitsky [V] have shown that V/G can have a crepant
resolution only when G is generated by complex bireflections. In general, however, it is
not true that (non-central) elements of age ≤ 1 are always complex bireflections (nor
elements with fixed point subspace of codimension 2). In this regard, one of the main
assertions of Theorem 1.4 is the existence of complex bireflections in the groups G sat-
isfying the hypotheses of the theorem. If one knows that G is generated by complex
bireflections (or G contains complex bireflections and is quasiprimitive), one can then
appeal to available results on such groups, particularly [HW], [Hu], [Wa] (see also [Co]).

Interestingly, it was shown by V. Kac and K. Watanabe [KW], and independently by
N. Gordeev [Go1], that if the ring Sym(V )G of G-invariants is a complete intersection
for a finite group G < GL(V ), then G is generated by elements with fixed point sub-
space of codimension 2. The finite groups G < GL(V ) with Sym(V )G being a complete
intersection have been classified by [Go2] and [N].

In a certain sense, Theorem 1.4 gives indications that crepant resolutions seem to oc-
cur mostly in low dimensions. Indeed, let f : X → Cd/G be a crepant resolution, and
let K be the normal subgroup of G generated by all elements of age ≤ 1. Then by The-
orem 1.4, for any irreducible summand V of the K-module Cd , either dim(V ) ≤ 10, or
the action of K on V contains complex bireflections (of order 2 or 3), and so the quotient
V/K should behave reasonably well from the point of view of algebraic geometry. (See
[Ha] for the case of Sn acting on the sum Cn⊕Cn of two copies of the natural permutation
module.) We formulate one consequence of our results in this regard:

Corollary 1.6. Let d ≥ 11 and let G < GLd(C) be a finite irreducible, primitive, ten-
sor indecomposable subgroup. Assume that Cd/G is not terminal (for instance, it has a
crepant resolution). Then one of the following statements holds.
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(i) Z(G)× Ad+1 ≤ G ≤ (Z(G)× Ad+1) · 2, with Ad+1 acting on Cd as on its deleted
natural permutation module.

(ii) All junior elements of G are central, and |Z(G)| ≥ d.

Recall that (G, V ) is a basic non-RT pair if G < GL(V ) is a finite irreducible subgroup
and G = 〈gG〉 for every non-central element g ∈ G with age(g) < 1. This notion was
first introduced in [KL] and is of importance for the geometry of quotients of Calabi–Yau
varieties. Our third main result is concerned with this notion and is in fact predicted by
results of [KL].

Theorem 1.7. LetG < GL(V ) be a finite irreducible subgroup. Assume that,G contains
non-central elements g ∈ G with age(g) < 1, and that G = 〈gG〉 for any such element.
Assume in addition that dim(V ) > 4. Then, up to scalars,G is a complex reflection group.

Theorem 1.7 is not valid if dim(V ) = 4. Examples of 4-dimensional basic non-RT pairs
which are not projectively equivalent to a c.r.g. are given in [KL]; see also Examples 3.7
and 5.8. One should also compare Theorem 1.7 with the classical result that Cd/G is
smooth if and only the finite subgroup G < GLd(C) is a complex reflection group (see
e.g. [B, Theorem V.5.4]).

There should be similar results for representations in positive characteristic (where
we consider the eigenvalues of semisimple elements), and similar algebro-geometric ap-
plications. There are results which indicate that if G < GL(V ) with V finite-dimensional
over an algebraically closed field, then k[V ]G being a polynomial ring, resp. a complete
intersection, implies that G is generated by elements trivial on a subspace of codimen-
sion 1, resp. on a subspace of codimension at most 2 (cf. for instance [KM], [KW], [S]).
Such groups have been classified (see [GS] for the last statement and references—also in
[GS] finite and algebraic groups generated by symplectic reflections in all characteristics
were classified). The authors have recently obtained some results on the values of Brauer
characters which should be relevant.

2. Preliminaries

Let V = Cn be endowed with standard Hermitian form (·, ·); write ‖v‖ =
√
(v, v) for

any v ∈ V . Also let S1 := {λ ∈ C | |λ| = 1} and let B(V ) be the collection of all
orthonormal bases of V .

2.1. Age

Definition 2.1 ([IR], [R2]). Let g ∈ GL(V ) be conjugate to diag(e2πir1 , . . . , e2πirn),
where 0 ≤ rj < 1. Then age(g) :=

∑n
j=1 rj .

Classical examples of non-scalar elements with age < 1 are: reflections, complex re-
flections (or pseudoreflections), bireflections, and complex bireflections. These cases cor-
respond to (r1, . . . , rn) = (1/2, 0, . . . , 0), (0 < r1 < 1, 0, . . . , 0), (1/2, 1/2, 0, . . . , 0),
and (0 < r1 < 1, 1 − r1, 0, . . . , 0), respectively. (Note that all complex bireflections
considered in this paper have determinant 1.)
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To deal with scalar multiples of linear tranformations, it is also convenient to define

age∗(g) = inf
λ∈S1

age(λg)

for any (diagonalizable) g ∈ GU(V ).
First we record the following observations, which we usually apply to linear transfor-

mations of finite order (as elements of GL(V )).

Lemma 2.2. The following statements hold for any g ∈ GU(V ).

(i) age(g) and age∗(g) are well-defined, and constant on the GU(V )-conjugacy class
of g.

(ii) There is some µ ∈ S1 (of finite order, if |g| is finite) such that age∗(g) = age(µg).
In particular, g is scalar if and only if age∗(g) = 0.

(iii) If U ⊆ V is a g-invariant subspace then

age(g|U ) ≤ age(g) = age(g|U )+ age(g|V/U ).

(iv) If h ∈ GU(W), then

age∗ (diag(g, h)) ≥ age∗(g)+ age∗(h), age∗(g ⊗ h) ≥ dim(W) · age∗(g).

(v) If h ∈ GU(V ) and gh = hg, then

age(gh) ≤ age(g)+ age(h), age∗(gh) ≤ age∗(g)+ age∗(h).

Proof. (i) and (iii) are obvious.
(ii) Let e2πir1 , . . . , e2πirm , where 0 ≤ r1 < · · · < rm < 1, be the distinct eigenvalues

of g. Consider the function f (t) := age(e−2πit
· g) on the interval (0, 1]. Note that f

is decreasing on each of the intervals (0, r1], (r1, r2], . . . , (rm−1, rm], (rm, 1]. It follows
that age∗(g) = inft∈(0,1] f (t) is attained as the value of f at one of the points t =
r1, r2, . . . , rm, 1. Thus we can take µ−1 to be either 1 or one of the eigenvalues of g, and
so it has finite order in S1 if |g| is finite. (Also notice that if m ≥ 2, then age∗(g) ≥
min{r2 − r1, 1− (r2 − r1)}.)

(iv) Without loss we may assume that h = diag(s1, . . . , sm) with sj ∈ S1, and con-
sider any λ ∈ S1. Then by (iii) we have

age(λ · diag(g, h)) = age(λg)+ age(λh) ≥ age∗(g)+ age∗(h),

age(λg ⊗ h) = age (diag(λs1g, . . . , λsmg)) =
m∑
j=1

age(λsjg) ≥ m · age∗(g).

(v) Without loss we may assume that

g = diag(e2πir1 , . . . , e2πirm), h = diag(e2πis1 , . . . , e2πism),

with 0 ≤ rj , sj < 1. Then age(gh) ≤
∑m
j=1(rj + sj ) = age(g) + age(h). Next, by (ii)

there are α, β ∈ S1 such that age∗(g) = age(αg) and age∗(h) = age(βh). Now

age∗(gh) ≤ age(αβgh) = age(αg ·βh) ≤ age(αg)+age(βh) = age∗(g)+age∗(h). ut
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In fact, by the Chen–Ruan inequality [CR], Lemma 2.2(v) also holds without the condi-
tion gh = hg. Even more, the following inequality holds, where V X denotes the common
fixed point subspace for any subset X ≤ GL(V ).

Theorem 2.3 ([CR]). (i) If x, y ∈ GU(V ), then

age(x)+ age(y)− age(xy)+ dim(V x,y)− dim(V xy) ≥ 0.

(ii) If x, y, z ∈ GU(V ) and xyz = 1, then

age(x)+ age(y)+ age(z) ≥ dim(V )− dim(V x,y,z).

This theorem follows from the existence of a cohomology theory developed in [CR] (see
also [Hep]). We will give an elementary proof of this result.

First we set up some notation. For V = Cn and g ∈ GU(V ), write [g] = (v1, . . . , vn)

where 0 ≤ v1 ≤ · · · ≤ vn < 1 and the eigenvalues of g are e2πivj , 1 ≤ j ≤ n.

Lemma 2.4. Let dim(V ) > 1 and x, y ∈ GU(V ), where x is a complex reflection with
[x] = (r, 0, . . . , 0), 0 < r < 1, [y] = (a1, . . . , an) and [xy] = (b1, . . . , bn). Let
H = 〈x, y〉. Then the following conditions are equivalent:

(i) H acts irreducibly.
(ii) x and y have no common eigenvector.

(iii) The collection {a1, . . . , an, b1, . . . , bn} consists of 2n distinct elements.

Proof. If H acts reducibly, then xy = y on some non-trivial H -invariant space, whence
aj = bk for some j, k. Thus (iii) implies (i), and certainly (i) implies (ii).

Now assume (ii); in particular, neither y nor xy has an eigenvector on V x = u⊥

(for some 0 6= u ∈ V ). Note that xu = e2πiru. If ai = aj for i < j , then y has a
two-dimensional eigenspace which therefore intersects V x non-trivially, a contradiction.
Similarly, we see that bi 6= bj . Suppose now that both xy and y have a common eigen-
value β. In this case, again by (ii) we can find v,w ∈ u⊥ such that y(u+ v) = β(u+ v)
and xy(u+w) = β(u+w); in particular, y(u+w) = e−2πirβu+βw. Thus y(v−w) =
β(1−e−2πir)u+β(v−w). Note that |β| = 1 and ‖y(v−w)‖ = ‖v−w‖ as y ∈ GU(V ).
It follows that e2πir

= 1, a contradiction. ut

The key to Theorem 2.3 is the following beautiful result [BH, Cor. 4.7] on eigenvalue
interlacing (see also [MOW]).

Lemma 2.5 ([BH]). Let x, y ∈ GU(V ), where x is a complex reflection with [x] =
(r, 0, . . . , 0), 0 < r < 1, [y] = (a1, . . . , an) and [xy] = (b1, . . . , bn). Assume that
aj < aj+1 and bj < bj+1 for 1 ≤ j < n. Assume also that aj 6= bk for any j, k. Then
one of the following holds:

(a) a1 < b1 < · · · < an < bn; or
(b) b1 < a1 < · · · < bn < an.

Note that in either case |age(xy)−age(y)| < 1, and so by considering determinants, if (a)
above holds, then age(x)+age(y) = age(xy), while if (b) holds, then age(x)+age(y) =
age(xy)+ 1. In any case, age(x)+ age(y) ≥ age(xy).



612 Robert M. Guralnick, Pham Huu Tiep

We now sketch an elementary proof of Lemma 2.5.

Proof. 1) Clearly, we may assume dim(V ) > 1. Let V x = u⊥ for some 0 6= u ∈ V .
By Lemma 2.4, y cannot have any eigenvector in u⊥ or 〈u〉C. For t ∈ R \ Z, let x(t) be
the complex reflection with u⊥ as its reflecting hyperplane and x(t)u = e2πitu. Also set
x(t) = 1V if t ∈ Z.

Now let w(t) = x(t)y for t ∈ R. Note that by construction, for any t, t ′ ∈ R with
t − t ′ /∈ Z, w(t) and w(t ′) cannot have any common eigenvector. (Otherwise x(t − t ′)
and y have a common eigenvector v. This v must be either in u⊥ or 〈u〉C, contrary to the
aforementioned property of y.) It then follows by Lemma 2.4 that, when 0 ≤ t < t ′ < 1,
all the n eigenvalues ofw(t) are distinct, andw(t) andw(t ′) have no common eigenvalue.

2) Define akn+i = ai + k for k ∈ Z. Also, let [w(r)] = (b1(r), . . . , bn(r)) and
consider any 1 ≤ j ≤ n. By the conclusion of 1), ai < bj (r) < ai+1 for some i ∈ Z.
Note that the spectrum of w(t) depends continuously on t ∈ R. Hence, for t in some
small neighborhood of r , the j th entry bj (t) of [w(t)] satisfies ai < bj (t) < ai+1. Let

X := {s | r ≤ s < 1, ai < bj (t) < ai+1 for all t ∈ [r, s]}.

We claim that X = [r, 1). Indeed, let f := supX ≤ 1 and assume f < 1. Then there
is a sequence {sn} ⊆ X such that limn→∞ sn = f . The spectrum continuity implies that
ai ≤ bj (f ) ≤ ai+1. Since 0 < f < 1, we must have ai < bj (f ) < ai+1. It is now easy to
check that there is some ε > 0 such that f + ε ∈ X, a contradiction. Thus f = 1, which
in turn implies that X = [r, 1). Similarly,

{s | 0 ≤ s < r, ∀t ∈ [s, r], ai < bj (t) < ai+1} = (0, r].

We have shown that

ai < bj (t) < ai+1 for all t ∈ (0, 1). (1)

3) Replacing (x, y) by (x−1, xy) if necessary, we may assume that a1 < b1. Note
that b1(0) = a1. Hence b1(t) is close to a1 when t ∈ (0, 1) is small enough and so (1)
implies that a1 < b1(t) < a2 for all t ∈ (0, 1); in particular, b1 = b1(r) < a2. Also,
a1 ≤ b1(1) = limt→1 b1(t) ≤ a2. Since b1(1) is some ak , we get b1(1) ∈ {a1, a2}.
Moreover, if b1(1) = a1 = b1(0), then the continuity of b1(t) on [0, 1] implies that some
w(t), w(t ′) with 0 < t < t ′ < 1 have a common eigenvalue, contrary to the conclusion
of 1). So b1(1) = a2.

4) Next, b2(0) = a2. If b2 = b2(r) > a2, then, as above, (1) implies that a2 <

b2(t) < a3 for all t ∈ (0, 1). Assume the contrary: b2 < a2. Again by (1) we must now
have a1 < b2(t) < a2 for all t ∈ (0, 1). Arguing as in 3) we get b2(1) ∈ {a1, a2} and
b2(1) 6= b2(0) = a2, i.e. b2(1) = a1. On the other hand, b2(t) ≥ b1(t) for all t ∈ [0, 1],
whence b2(1) ≥ b1(1) = a2, a contradiction. We have shown that a2 < b2(t) < a3 for
all t ∈ (0, 1). Continuing in the same fashion, we get aj < bj (t) < aj+1 for all j and
t ∈ (0, 1). ut

Proof of Theorem 2.3. Notice that age(z) = dim(V ) − age(xy) − dim(V xy), so (i) and
(ii) are equivalent. Next, diagonalize x and then write x as a product ofm ≤ n commuting
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complex reflections. To prove statement (i), we proceed by induction on m. First assume
that x is a complex reflection. Let H = 〈x, y〉. If H does not act irreducibly, the result
follows by induction on dim(V ) (by writing V = W ⊥ W⊥ where W is H -invariant).
So assume this is not the case; in particular, V x,y = 0. We need to prove that: age(x) +
age(y) ≥ age(xy)+ dim(V xy). By Lemma 2.4, no eigenspace of y or xy has dimension
more than 1, and xy and y have no common eigenvalues. By Lemma 2.5 and the remarks
before its proof, age(x) + age(y) ≥ age(xy). If xy has no trivial eigenvalue we are
done. So we may assume that xy does have exactly one trivial eigenvalue, whence y has
no trivial eigenvalue. Thus the case (b) of Lemma 2.5 holds and so age(x) + age(y) =
age(xy)+ 1 as desired.

For the induction step, write x = sx′ where s is a complex reflection and x′ is a
product of m − 1 complex reflections and age(x) = age(s) + age(x′). By the complex
reflection case,

age(s)+ age(x′y)+ dim(V s,x
′y) ≥ age(xy)+ dim(V xy).

By induction,

age(x′)+ age(y)+ dim(V x
′,y) ≥ age(x′y)+ dim(V x

′y).

Note that V s,x
′y
∩ V x

′,y
= V s,x

′,y
⊆ V x,y and V s,x

′y, V x
′,y
⊆ V x

′y , whence

dim(V x
′y)+ dim(V x,y) ≥ dim(V s,x

′y)+ dim(V x
′,y).

The last three relations on dimensions readily imply

age(x)+ age(y) = age(s)+ age(x′)+ age(y) ≥ age(xy)+ dim(V xy)− dim(V x,y). ut

2.2. The set-up (?)

We are interested in finite subgroups of GL(V ) that contain non-trivial elements of
age < 1, resp. ≤ 1. Of course it would be very difficult to classify these groups with-
out extra assumptions on them.

Lemma 2.6. Let W be a finite-dimensional vector space over C and let G < GL(W) be
a finite subgroup containing a non-trivial element g with age(g) < 1, resp. age(g) ≤ 1.
Then there is a normal subgroup K � G and a nonzero K-invariant subspace V of W
such that all the following conditions hold:

(i) K acts irreducibly on V ;
(ii) g ∈ K and 0 < age(g|V ) < 1, resp. 0 < age(g|V ) ≤ 1;

(iii) K is generated by the set of its elements whose restrictions to V have age < 1, resp.
≤ 1.

In fact, if 0 6= U ⊆ W is anyK-submodule, thenK is generated by the set of its elements
whose restrictions to U have age < 1, resp. ≤ 1.
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Proof. Let X denote the set of all non-trivial elements ofG that have age < 1, resp. ≤ 1,
and define K = 〈X 〉. Then K �G and K 3 g. Decompose W into a direct sum

⊕s
i=1 Vi

of irreducible K-submodules. We may assume by Lemma 2.2 that 0 < age(g|V1) < 1,
resp. 0 < age(g|V1) ≤ 1. Let Y := {h ∈ K | age(h|V1) < 1, resp. ≤ 1}. Observe that
X ⊆ Y , whence K = 〈Y〉. Thus V := V1 satisfies (i)–(iii).

Next, let 0 6= U ⊆ W be any K-submodule and let Y ′ := {h ∈ K | age(h|U ) < 1,
resp. ≤ 1}. Then again X ⊆ Y ′ and so K = 〈Y ′〉. ut

Lemma 2.6 shows that it is natural to restrict our attention to the following set-up, which
is slightly more general than the one considered in [KL]:

(?) G is a finite irreducible subgroup of G = GL(V ) and Z(G)G = 〈X 〉, where X :=
{g ∈ Z(G)G | 0 < age(g) < 1, resp. 0 < age(g) ≤ 1}.

The condition (?) means that, up to scalars, the finite irreducible subgroup G < GL(V )
is generated by some non-trivial elements with age < 1, resp. ≤ 1. In fact we can even
assume that these generators are non-scalar:

Remark 2.7. Assume G satisfies (?) and dim(V ) > 1. Then X ∗ 6= ∅ and Z(G)G =
Z(G)〈X ∗〉, where X ∗ := {g ∈ G | 0 < age∗(g) < 1, resp. 0 < age∗(g) ≤ 1}. Indeed, if
X ∗ = ∅ then all h ∈ X are scalar and so is G, contradicting the condition dim(V ) > 1.
Next, any x ∈ G can be written as g1 . . . gm with gi = αihi ∈ X , αi ∈ S1, hi ∈ G, and
hi ∈ X ∗ precisely when i ∈ J for some subset J ⊆ {1, . . . , m}. Then x = λ

∏
i∈J hi ∈

Z(G)〈X ∗〉 for λ =
∏m
i=1 αi ·

∏
j /∈J hj .

2.3. Deviations

A natural invariant metric on GU(V ) is defined as follows:

Definition 2.8. Let T ∈ GL(V ) be conjugate to diag(e2πir1 , . . . , e2πirn), where 0 ≤ rj
< 1. Then ‖T ‖ := (

∑n
j=1 min{rj , 1− rj }2)1/2.

For our purposes it is more convenient to work with the following:

Definition 2.9. Let j be any positive number and let T ∈ GU(V ) be any unitary linear
operator. Then

dj (T ) := inf
λ∈S1, B∈B(V )

(∑
b∈B

‖T (b)− λb‖j
)1/j

.

This definition is a slight generalization of [KL, Definition 27] (where one takes λ = 1
instead of the infimum over all λ ∈ S1). First we list some basic properties of dj (T ).

Lemma 2.10. Let A, T ∈ GU(V ) and α ∈ S1. Then the following hold:

(i) dj (T ) = dj (αT ).
(ii) dj (T ) = dj (ATA−1).

(iii) dj (T ) = dj (T −1).
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Proof. (i) Clearly αT ∈ GU(V ). Consider any λ ∈ S1 and B ∈ B(V ). Then∑
b∈B

‖αT (b)− λb‖j =
∑
b∈B

‖T (b)− α−1λb‖j ≥ dj (T )
j .

Taking the infimum over all λ ∈ S1 and B ∈ B(V ) we get dj (αT ) ≥ dj (T ). Applying
this inequality to S := αT and α−1 we obtain dj (T ) = dj (α

−1S) ≥ dj (S) = dj (αT ),
and the claim follows.

(ii) Consider any λ ∈ S1 and B ∈ B(V ). Then A−1(B) ∈ B(V ), and∑
b∈B

‖ATA−1(b)− λb‖j =
∑

c=A−1b∈A−1(B)

‖A(T (c)− λc)‖j

=

∑
c∈A−1(B)

‖T (c)− λc‖j ≥ dj (T )
j .

Taking the infimum over all λ ∈ S1 and B ∈ B(V ) we get dj (ATA−1) ≥ dj (T ). Apply-
ing this inequality to S := ATA−1 and A−1 we obtain dj (T ) = dj (A

−1S(A−1)−1) ≥

dj (S) = dj (ATA
−1), and the claim follows.

(iii) Consider any λ ∈ S1 and B ∈ B(V ). Then∑
b∈B

‖T −1(b)− λb‖j =
∑
b∈B

‖λ−1T (T −1(b)− λb)‖j =
∑
b∈B

‖T (b)− λ−1b‖j ≥ dj (T )
j .

Taking the infimum over all λ ∈ S1 and B ∈ B(V ) we get dj (T −1) ≥ dj (T ). Applying
this inequality to S := T −1 we get dj (T ) = dj (S

−1) ≥ dj (S) = dj (T
−1), and so the

claim follows. ut

Most of the time we will work with dj (T ) where j = 1 or 2.

Lemma 2.11. For T ∈ GU(V ) the following hold:

(i) d2(T ) ≤ d1(T ) ≤
√

dim(V ) · d2(T ).
(ii) d1(T ) ≥ dim(V )− |Tr(T )|.

(iii) d2(T )
2
= 2(dim(V )− |Tr(T )|). Moreover, for any B ∈ B(V ) we have

d2(T ) = inf
λ∈S1

(∑
b∈B

‖T (b)− λb‖2
)1/2

.

Proof. (i) For any λ ∈ S1 and B ∈ B(V ) we have

d2(T ) ≤
(∑
b∈B

‖T (b)− λb‖2
)1/2
≤

∑
b∈B

‖T (b)− λb‖.

Taking the infimum over all λ,B we get d2(T ) ≤ d1(T ). Next, again for any λ ∈ S1 and
B ∈ B(V ) by the Cauchy–Schwarz inequality we have

d1(T ) ≤
∑
b∈B

‖T (b)− λb‖ ≤
√

dim(V ) ·
(∑
b∈B

‖T (b)− λb‖2
)1/2

.

Taking the infimum over all λ,B we get d1(T ) ≤
√

dim(V ) · d2(T ).
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(ii) Consider any λ ∈ S1 and B ∈ B(V ). Let (aij )1≤i,j≤n be the matrix of T in the
basis B. Observe that∑
b∈B

‖T (b)− λb‖ =

n∑
l=1

( n∑
k=1

|akl − λδk,l |
2
)1/2
≥

n∑
l=1

|λ−1all − 1| ≥
n∑
l=1

<(1− λ−1all)

= n−<
(
λ−1

n∑
l=1

all

)
≥ n−

∣∣∣λ−1
n∑
l=1

all

∣∣∣ = dim(V )− |Tr(T )|.

Taking the infimum over all λ,B we arrive at the claim.
(iii) Consider an arbitrary B ∈ B(V ) and let A := (aij )1≤i,j≤n be the matrix of T in

the basis B. For any λ ∈ S1 we have∑
b∈B

‖T (b)− λb‖2 =

n∑
l=1

n∑
k=1

|δk,l − λ
−1akl |

2
=

∑
1≤k,l≤n

XklX̄kl = Tr( tX̄ ·X),

where X := (δk,l − λ−1akl)1≤k,l≤n = In − λ
−1A. Since T ∈ GU(V ), there is a matrix

C with tC̄ · C = In and a diagonal matrix E = diag(ε1, . . . , εn) with |εk| = 1 such that
A = tC̄EC. Then X = tC̄DC for D := In − λ−1E = diag(1 − α1, . . . , 1 − αn) with
αi := λ−1εi (all of modulus 1). It follows that∑

b∈B

‖T (b)− λb‖2 = Tr( tX̄ ·X) = Tr( tC̄ tD̄C · tC̄DC) = Tr( tD̄D)

=

n∑
l=1

|1− αl |2 =
n∑
l=1

(1+ |αl |2 − 2<(αl)) = 2n− 2<
( n∑
l=1

αl

)
. (2)

In particular,∑
b∈B

‖T (b)− λb‖2 ≥ 2n− 2
∣∣∣ n∑
l=1

αl

∣∣∣ = 2n− 2
∣∣∣ n∑
l=1

εl

∣∣∣ = 2(n− |Tr(T )|). (3)

Taking the infimum over all λ,B we obtain d2(T )
2
≥ 2(n− |Tr(T )|).

Now, in the above computation we choose λ = λ0 := eiθ , where Tr(T ) = reiθ and
|Tr(T )| = r ≥ 0. Then

n∑
l=1

αl = λ
−1
0

n∑
l=1

εl = λ
−1
0 Tr(T ) = e−iθ reiθ = r = |Tr(T )|.

Then (2) implies that

d2(T )
2
≤

∑
b∈B

‖T (b)− λ0b‖
2
= 2n− 2<

( n∑
l=1

αl

)
= 2(n− |Tr(T )|) ≤ d2(T )

2.

Together with (3), this last inequality chain yields

d2(T )
2
= 2(n− |Tr(T )|) =

∑
b∈B

‖T (b)− λ0b‖
2
= inf
λ∈S1

∑
b∈B

‖T (b)− λb‖2. ut

The relationship between ‖T ‖ and d2(T ) can be described as follows:
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Corollary 2.12. For T ∈ GU(V ) one has 4 infλ∈S1 ‖λT ‖ < d2(T ) ≤ 2π‖T ‖.

Proof. We may assume that T = diag(e2πia1 , . . . , e2πian) in some basis B ∈ B(V ),
where −1/2 ≤ aj < 1/2; in particular, ‖T ‖ = (

∑n
j=1 a

2
j )

1/2. It is easy to check that the
function (1−cos(x))/x2 is decreasing on (0, π], whence 2/π2

≤ (1−cos(x))/x2
≤ 1/2

for −π ≤ x ≤ π . Taking x = 2πaj , we get 4/π2 < |e2πiaj − 1|2/4π2a2
j ≤ 1, whence

4‖T ‖ ≤ (
∑
b∈B ‖T (b)− b‖

j )1/2 ≤ 2π‖T ‖. Now the statement follows by applying this
inequality to λT for all λ ∈ S1 and using Lemma 2.11(iii). ut

Lemma 2.13. Let T1, . . . , Tk ∈ GU(V ). Then the following hold:

(i) d2(T1 . . . Tk)
2
≤ k ·

∑k
i=1 d2(Ti)

2.
(ii) d2(T1T2T

−1
1 T −1

2 )2 ≤ 4 min{d2(T1)
2, d2(T2)

2
}.

Proof. (i) For any λi ∈ S1, B ∈ B(V ), and b ∈ B we have

T1 . . . Tk(b)− λ1 . . . λkb = T1 . . . Tk−1(Tkb − λ1b)+ λ1T1 . . . Tk−2(Tk−1b − λ2b)

+ λ1λ2T1 . . . Tk−3(Tk−2b − λ3b)+ · · · + λ1 . . . λk−1(T1b − λkb).

By the Cauchy–Schwarz inequality, ‖
∑k
i=1 vi‖

2
≤ k

∑k
i=1 ‖vi‖

2 for any v1, . . . , vk ∈V .
Since |λi | = 1 and Ti is unitary for all i, it now follows that

‖T1 . . . Tk(b)− λ1 . . . λkb‖
2
≤ k

k∑
i=1

‖Tib − λib‖
2,

But λ1 . . . λk ∈ S1, hence d2(T1 . . . Tk)
2
≤ k

∑k
i=1

∑
b∈B ‖Tib − λib‖

2. Taking the
infimum over all λi ∈ S1 and applying Lemma 2.11(iii), we obtain d2(T1 . . . Tk)

2
≤

k
∑k
i=1 d2(Ti)

2.
(ii) By (i) applied to S := (T1T2T

−1
1 ) · T −1

2 and by Lemma 2.10,

d2(S)
2
≤ 2(d2(T1T2T

−1
1 )2 + d2(T

−1
2 )2) = 4d2(T2)

2.

Breaking up S = T1 · T2T
−1

1 T −1
2 and arguing similarly, we get d2(S)

2
≤ 4d2(T1)

2. ut

Lemmas 2.11(iii) and 2.13 yield the following inequalities which we believe to be new
and non-trivial.

Corollary 2.14. Let χ be any complex character of any finite groupG and let g1, . . . , gk
∈ G. Then

(i) (k2
− 1)χ(1)− k

∑k
i=1 |χ(gi)| + |χ(

∏k
i=1 gi)| ≥ 0.

(ii) 3χ(1)− 4|χ(gi)| + |χ([g1, g2])| ≥ 0 for i = 1, 2. ut

Now we can prove an upper bound that links the dimension, covering number, and devi-
ation together.

Lemma 2.15. Let V = Cn with n > 1, G < GL(V ) a finite irreducible subgroup, and
let g ∈ G. Assume that any element of G/Z(G) is a product, of length at most β, of
conjugates of ḡ = gZ(G). Then dim(V ) ≤ (βd2(g))

2/2.
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Proof. By Weyl’s unitarian trick we can equip V with a G-invariant Hermitian form and
assume G < GU(V ). Consider any element h ∈ G \ Z(G). Then h = g1 . . . gkz with
gi ∈ g

G, z ∈ Z(G), and k ≤ β. By Schur’s Lemma, z is scalar, hence d2(h) = d2(h
′)

for h′ := g1 . . . gk by Lemma 2.10(i). Next, by Lemmas 2.10(ii) and 2.13(i), d2(h
′)2 ≤

k
∑k
i=1 d2(gi)

2
= k2d2(g)

2. It follows that d2(h)
2
≤ (βd2(g))

2.
Now by Burnside’s theorem on zeros we can choose h such that Tr(h) = 0. By Lemma

2.11(iii), d2(h)
2
= 2n and so 2n ≤ (βd2(g))

2. ut

Recall that a finite group G is almost quasi-simple if S � G/Z(G) ≤ Aut(S) for some
finite non-abelian simple group S. For any such S and any x ∈ S, let α(x) be the minimal
number of Aut(S)-conjugates of x which generate the subgroup 〈S, x〉. A sharp upper
bound on α(x) for 1 6= x ∈ Aut(S) has been obtained in [GS]. We will need the following
result of [GT2] that uses α(x) to bound the dimension of eigenspaces:

Lemma 2.16 ([GT2, Lemma 3.2]). Let G be a finite almost quasi-simple group acting
faithfully and irreducibly on a finite-dimensional vector space V over a field F, and let
g ∈ G \ Z(G). Then the dimension of any eigenspace of g on V is at most dim(V ) −
dim(V )/α(gZ(G)). ut

Next we prove key inequalities which relate the age of any element g ∈ GU(V ) to its
deviations.

Proposition 2.17. Let g ∈ GU(V ) and let X be a non-empty subset of eigenvalues of g.
Let m ≥ 1 be such that any λ ∈ X occurs as an eigenvalue of g on V with multiplicity at
leastm. Also assume that the shortest arc of S1 that containsX has length≥ δ > 0. Then

(i) 2π · age(g)− d1(g) ≥ m(δ − 2 sin(δ/2)); in particular, d1(g) ≤ 2π · age(g).
(ii) 4π · age(g)− d2(g)

2
≥ 2m(δ − 1+ cos(δ)).

(iii) d2(g)
2
≤ (2.9)π · age(g). In fact, if δ ≥ π − sin−1(0.725) then

(2.9)π · age(g)− d2(g)
2
≥ m{(1.45)δ − 2(1− cos(δ))}.

Proof. Let g be represented by diag(ε1, . . . , εn) in a basis B0 ∈ B(V ), where εj = e2πirj ,
0 ≤ rj < 1; in particular, age(g) =

∑n
j=1 rj .

(i) Consider the function f (x) := 2πx − |e2πix
− 1| = 2πx − 2 sin(πx) on [0,∞).

Since f ′(x) = 2π − 2π cos(πx) ≥ 0, f is increasing; also, f (x) ≥ 0. Taking λ = 1 and
B = B0 in the proof of Lemma 2.11(ii), we see that d1(g) ≤

∑n
j=1 |εj − 1|. Hence

2π · age(g)− d1(g) ≥

n∑
j=1

f (rj ) ≥
∑

j : εj∈X
f (rj ).

Suppose that 0 ≤ rj ≤ δ′/2π < δ/2π for all εj ∈ X. Then X is contained in the
arc (from 1 to eiδ

′

) of length δ′ < δ, contrary to the assumption. So without loss we
may assume that ε1 ∈ X and r1 ≥ δ/2π . Since ε1 occurs as an eigenvalue of g with
multiplicity ≥ m, we get

2π · age(g)− d1(g) ≥
∑

j : εj∈X
f (rj ) ≥ mf (r1) ≥ mf (δ/2π) = m(δ − 2 sin(δ/2)).
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(ii) Consider the function h(x) := 4πx − |e2πix
− 1|2 = 4πx − 2(1− cos(2πx)) on

[0,∞). Since h′(x) = 4π(1− sin(2πx)) ≥ 0, h is increasing, whence h(x) ≥ h(0) = 0.
Taking λ = 1 and B = B0 in the proof of Lemma 2.11(iii), we see that d2(g)

2
≤∑n

j=1 |εj − 1|2. Hence

4π · age(g)− d2(g)
2
≥

n∑
j=1

h(rj ) ≥
∑

j : εj∈X
h(rj ).

As in (i), we may assume without loss that ε1 ∈ X and r1 ≥ δ/2π . Since ε1 occurs as an
eigenvalue of g with multiplicity ≥ m, we get

4π · age(g)− d2(g)
2
≥

∑
j : εj∈X

h(rj ) ≥ mh(r1) ≥ mh(δ/2π) = 2m(δ − 1+ cos(δ)).

(iii) Consider the function t (x) := (1.45)x−|eix −1|2 = (1.45)x−2(1− cos(x)) on
[0, 2π ]. Since t ′(x) = 1.45−2 sin(x), t is increasing on [0, θ]∪[π−θ, 2π ] and decreasing
on [θ, π − θ ], where θ := sin−1(0.725). Now t (0) = 0 and t (π − θ) > 0.0018, and so
t (x) ≥ 0 on [0, 2π ]. As above, d2(g)

2
≤
∑n
j=1 |εj − 1|2, hence

(2.9)π · age(g)− d2(g)
2
≥

n∑
j=1

t (2πrj ) ≥ 0.

Next suppose that δ ≥ π − θ . As in (i), we may assume without loss that ε1 ∈ X and
r1 ≥ δ/2π . Since ε1 occurs as an eigenvalue of g with multiplicity≥ m, t (x) ≥ 0 and t is
increasing on [π − θ, 2π ], we see that (2.9)π · age(g)− d2(g)

2
≥ m · t (2πr1) ≥ m · t (δ).

ut

Proposition 2.17 yields the following immediate consequence:

Corollary 2.18. Let G < GL(V ) be a finite subgroup. Assume g ∈ G is such that
age∗(g) ≤ 1. Then d1(g) ≤ 2π and d2(g)

2
≤ (2.9)π < 9.111. Furthermore, dim(V ) −

|Tr(g)| ≤ (1.45)π < 4.556. In fact,

dim(V )− |Tr(g)| <


4.278 if δ ≥ π,
3.632 if δ ≥ 6π/5,
3.019 if δ ≥ 4π/3,
2.676 if δ ≥ 7π/5,
2.139 if δ ≥ 3π/2,

where δ is the length of the shortest arc of S1 that contains all eigenvalues of g.

Proof. We apply Lemma 2.11(iii), and Proposition 2.17(i), (iii), with X = Spec(λg, V )
for any λ ∈ S1. Then the claims follow by taking the infimum over all λ ∈ S1. ut

Taking g = diag(1, 1, . . . , 1,−1,−1) ∈ GLn(C) with n ≥ 4, we see that age(g) = 1
and d2(g)

2
= 8. In fact, the complex reflection g = diag(e2πi/3, 1, . . . , 1) ∈ GLn(C) has

age(g) = 1/3 and d2(g)
2
= 2(n −

√
n2 − 3n+ 3). Hence, when n→∞, d2(g)

2
→ 3,

yielding d2(g)
2/age(g)→ 9. Thus the constant (2.9)π ≈ 9.111 in Proposition 2.17(iii)

and Corollary 2.18 is quite good.
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Lemma 2.19. Let G < GL(V ) be irreducible, primitive, and tensor indecomposable
on V , with a normal subgroup L�G such that L′ 6≤ Z(G).

(i) For any non-scalar g ∈ G, there exists h ∈ L \ Z(L) such that d2(h)
2
≤ 4d2(g)

2.
(ii) Assume furthermore that dim(V ) > 1 and that G satisfies the set-up (?). Then there

exists h ∈ L \ Z(L) such that d2(h)
2 < 36.444.

Proof. (i) By [GT3, Lemma 2.5], L′ is irreducible on V . We claim that there exists u ∈ L
such that [g, u] /∈ Z(L). Assume the contrary: [g, u] ∈ CG(L) for any u ∈ L. Then for
any u, v ∈ L we have [[u, v], g] = ([[v, g], u] · [[g, u], v])−1

= 1, whence [g,L′] = 1.
By Schur’s Lemma, the irreducibility of L′ on V now implies that g is scalar, a contra-
diction. Now we define h = [g, u] ∈ L \ Z(L), and we are done by Lemma 2.13(ii).

(ii) If every g ∈ X acts scalarly on V , then so does G. But in this case dim(V ) = 1,
a contradiction. Hence at least one g ∈ X is non-scalar, and has age ≤ 1. Now the claim
follows from (i) and Corollary 2.18. ut

2.4. Elements of small order

To estimate the age of elements of small order, we will need the following two statements.

Lemma 2.20. Assume g ∈ GU(V ) is conjugate to

diag(α1,−α1, α2,−α2, . . . , αm,−αm, β1, . . . , βs).

Then age∗(g) ≥ m/2. Moreover, if age∗(g) = m/2 then g has exactly two distinct eigen-
values.

Proof. Suppose age∗(g) ≤ m/2. Then age(µg) ≤ m/2 for some µ ∈ S1 by Lemma
2.2(ii). Note that the contribution of the pair (µαi,−µαi) to age(g) is at least 1/2, and
it equals 1/2 precisely when αi = ±µ−1. Next, the contribution of µβj to age(g) is at
least 0, and it equals 0 precisely when βj = µ−1. Hence the statements follow. ut

Lemma 2.21. Let g ∈ GU(V ) be a non-scalar element of age ≤ 1, dim(V ) ≥ 4, and let
λg have order 1 < m ≤ 5 for some λ ∈ S1. Then there is some µ ∈ S1 such that either
µg is a complex reflection, or one of the following statements holds for a suitable choice
of i =

√
−1.

(i) m = 2, and g is a bireflection.
(ii) m = 3, and one of the following holds, where ω = e2πi/3.

(a) µg is conjugate to diag(ω, ω, 1, . . . , 1).
(b) age(g) = 1, and g is conjugate to

diag(ω, ω2, 1, . . . , 1) or diag(ω, ω, ω, 1, . . . , 1).

(iii) m = 4, and one of the following holds.
(a) µg is conjugate to one of the elements

diag(i, i, 1, . . . , 1), diag(i, i, i, 1, . . . , 1), diag(i,−1, 1, . . . , 1).
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(b) age(g) = 1, and g is conjugate to one of the elements

diag(i,−i, 1, . . . , 1), diag(−1,−1, 1, . . . , 1), diag(i, i,−1, 1, . . . , 1),
diag(i, i, i, i, 1, . . . , 1).

(iv) m = 5, and one of the following holds, where ε = e2πi/5.
(a) µg is conjugate to one of the elements

diag(ε, ε, 1, . . . , 1), diag(ε2, ε2, 1, . . . , 1),
diag(ε, ε, ε, 1, . . . , 1), diag(ε, ε, ε, ε, 1, . . . , 1),

diag(ε, ε2, 1, . . . , 1), diag(ε, ε3, 1, . . . , 1), diag(ε, ε, ε2, 1, . . . , 1).

(b) age(g) = 1, and g is conjugate to one of the elements

diag(ε, ε4, 1, . . . , 1), diag(ε2, ε3, 1, . . . , 1), diag(ε, ε2, ε2, 1, . . . , 1),

diag(ε, ε, ε3, 1, . . . , 1), diag(ε, ε, ε, ε2, 1, . . . , 1), diag(ε, ε, ε, ε, ε, 1, . . . , 1).
Proof. The proofs of all these statements are similar, and we only handle (iv). By the
assumption, there is some t ∈ [0, 1/5) and integers a, b, c, d, e ≥ 0 such that a+b+ c+
d + e = dim(V ) ≥ 4 and

1 ≥ age(g) = at + b(t + 1/5)+ c(t + 2/5)+ d(t + 3/5)+ e(t + 4/5);

in particular, b+ 2c+ 3d + 4e ≤ 5. Now (iv) follows by an exhaustive enumeration. ut

2.5. Character ratios

We will need the following result of Gluck and Magaard [G], [GM].

Proposition 2.22. Let G be a finite group, let χ ∈ Irr(G) be of degree > 1, and let
g ∈ G \ Z(G).
(i) ([GM, Theorem 2.4]) Assume G is a finite quasi-simple group, not An nor 2An with

n ≥ 10. Then |χ(g)/χ(1)| ≤ 19/20.
(ii) ([GM, Theorem 1.6]) Let G = Sn or An with n ≥ 5, and let c(g) be the number of

cycles of the permutation g. Then |χ(g)/χ(1)| ≤ 1/2+ c(g)/2n. ut

Next we address the character ratios for spin representations of 2An and 2Sn.

Lemma 2.23. Let G = 2Sn or 2An with n ≥ 6, χ ∈ Irr(G) a faithful character of G,
and let g ∈ G \ Z(G). Then |χ(g)/χ(1)| ≤ 7/8.
Proof. Since g /∈ Z(G) = CG(G

′) and since G′ = 2An is generated by commutators
[x, y] with x, y being inverse images of 3-cycles, there exists an inverse image t of a 3-
cycle such that h := [g, t] /∈ Z(G). Observe that h = gtg−1

·t−1 projects onto the product
of two 3-cycles. It follows that (a G-conjugate of) h is contained in a natural subgroup
K ∼= 2A6 of G. (See [GM, Lemma 2.5] for a similar argument.) Clearly, h /∈ Z(K)

since [g, t] /∈ Z(G). Also, the restriction χ |K is a sum of faithful irreducible characters
of K . Inspecting [Atlas], one can check that |χ(h)| ≤ χ(1)/2, and so d2(h)

2
≥ χ(1). It

now follows from Lemma 2.13(ii) that d2(g)
2
≥ χ(1)/4, whence |χ(g)/χ(1)| ≤ 7/8 by

Lemma 2.11(iii). ut
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2.6. Tensor decomposable and tensor induced modules

First we recall a well-known remark:

Lemma 2.24. Let G be a finite irreducible subgroup of GL(W). Assume that there is a
tensor decomposition W = U ⊗ V such that G < GL(U) ⊗ GL(V ). Then there is a
finite central extension 1 → Z → G̃ → G → 1 of G and irreducible representations
8 : G̃→ GL(U) and9 : G̃→ GL(V ) such that g = 8(g̃)⊗9(g̃) for any g = g̃Z ∈ G.

Proof. First we observe that if a⊗ b = c⊗ d for some a, c ∈ GL(U) and b, d ∈ GL(V ),
then there is some γ ∈ C× such that a = γ c and b = γ−1d . Now, by hypothesis, there
are maps A : G → GL(U) and B : G → GL(V ) such that g = A(g) ⊗ B(g) for any
g ∈ G. If h ∈ G, then

A(gh)⊗B(gh) = gh = (A(g)⊗B(g)) · (A(h)⊗B(h)) = (A(g) ·A(h))⊗ (B(g) ·B(h)).

By our observation, we see thatA(gh) = λ(g, h)A(g)A(h) for some 2-cocycle λ : G×G
→ C×, and so A is a projective (irreducible) representation of G. Thus A lifts to a
linear representation 8 : G̃ → GL(U) of a finite central extension G̃ of G: A(g) =
α(g̃)8(g̃), where α : G̃ → C× and g = g̃Z. Now it is easy to check that the map
9 : G̃→ GL(V ) defined by 9(g̃) = α(g̃)B(g) for g = g̃Z is a group homomorphism,
and g = 8(g̃)⊗9(g̃). ut

Lemma 2.24 shows that if a finite irreducible subgroup G of GL(V ) preserves a tensor
decomposition of V , then we may (and will) view V as the tensor product of two modules
for some central extension G̃ of G, and then replace G by G̃.

Let V = Cd be a G-module which is tensor induced. This means that there is a
tensor decomposition V = V⊗m1 such that (the action of) G (on V ) is contained in
GL(V1)

⊗m : Sm, with Sm naturally permuting them tensor factors of V . (Note that we do
not claim that G ≤ H⊗m : Sm for a finite subgroup H ∈ GL(V1).)

Lemma 2.25. Under the above assumptions, assume G is finite and g ∈ G projects onto
h ∈ Sm, a product of s disjoint cycles. Then |Tr(g)| ≤ dim(V1)

s .

Proof. First we observe that if y = a⊗b has finite order for a ∈ GL(U) and b ∈ GL(V ),
then there is some δ ∈ C× such that both c := δ−1a and d := δb have finite order, and
y = c ⊗ d . (Indeed, I = yN = aN ⊗ bN , where we use I to denote any identity matrix.
So by the first sentence of the proof of Lemma 2.24, aN = γ I and bN = γ−1I for some
γ ∈ C× and 0 < N ∈ Z. Now choose δ to be an N th root of γ .)

In the case s > 1, conjugating g with a suitable element in Sm we may assume that
g preserves a tensor decomposition of V . Using the above observation and proceeding
by induction on s, we may assume that s = 1 and h = (1, 2, . . . , m). Now g = hb

with b = B1 ⊗ . . . ⊗ Bm and Bi ∈ GL(V1). Then one can check (see also [GI]) that
Tr(g) = Tr(B1 . . . Bm). Since G and Sm are finite, there is some integer N > 1 such that
gN = hN = Id. Since I = hN = gN = hNbh

N−1
bh

N−2
. . . bhb (where bx := x−1bx), we

have

I = gN = (B2 . . . BmB1)
N/m
⊗ (B3 . . . BmB1B2)

N/m
⊗ · · · ⊗ (B1 . . . Bm)

N/m.
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Pick an arbitrary eigenvalue λ of v := B1 . . . Bm. Note that all the matrices B2 . . . Bm1B1,
B3 . . . Bm1B1B2, . . . are conjugate to v. Hence λN/m . . . λN/m︸ ︷︷ ︸

m

= λN is an eigenvalue of

gN = I . We have shown that each eigenvalue of v is an N th root of unity and so it has
absolute value 1. Hence |Tr(g)| = |Tr(v)| is at most the size of v, which is dim(V1). ut

We will also need the following technical statement:

Lemma 2.26. Let C be a collection of finite simple groups and let G be any finite group.
Then G has a unique normal subgroup R such that

(i) every composition factor of R belongs to C; and
(ii) if N �G and every composition factor of N belongs to C, then N ≤ R.

Furthermore, R is a characteristic subgroup of G.

Proof. Let X be the collection of all normal subgroups N � G with the property that
all composition factors of N belong to C. For any M,N ∈ X , MN � G, and every
composition factor of MN also belongs to C since MN/N ∼= M/(M ∩ N), whence
MN ∈ X . Now the subgroup R =

∏
N∈X N clearly satisfies (i) and (ii). Let ϕ ∈ Aut(G).

Then ϕ(R)�G and ϕ(R) ∈ X since ϕ(R) ∼= R. By (ii), ϕ(R) = R. ut

3. Proof of Theorem 1.3

3.1. Reduction to the almost quasi-simple case

Proposition 3.1. It suffices to prove Theorem 1.3 for the case whereG is an almost quasi-
simple group which is irreducible, primitive, tensor indecomposable, and not tensor in-
duced on V .

Proof. Let χ denote the character of G afforded by V .
(i) First we consider the case G is tensor induced on V : V = V1 ⊗ · · · ⊗ Vm, with

dim(Vi) = a > 1 and G permutes the m tensor factors V1, . . . , Vm (transitively). By
assumption, g acts non-trivially on the set {V1, . . . , Vm}. Hence, |χ(g)| ≤ am−1

≤ d/2
by Lemma 2.25. Now if d = am ≥ 8 then 1(g) ≥ d/2 ≥ 4. On the other hand, if
d = am < 8, then d = 4 and 1(g) ≥ d/2 = 2.

(ii) Now assume that we are in the extraspecial case (i.e. the case (iii) of [GT3,
Proposition 2.8]). Then d = pm for some prime p and some integer m ≥ 2. By [GT1,
Lemma 2.4], |χ(g)| ≤ pm−1/2

≤ d/
√

2. In particular, if d ≥ 8, then1(g) ≥ d(1−1/
√

2)
≥ 8 − 4

√
2. If d = 5 or 7, then 1(g) ≥ d −

√
d ≥ 5 −

√
5 > 8 − 4

√
2. If d = 4, then

1(g) ≥ 4(1 − 1/
√

2) = 4 − 2
√

2. If d = 3, then 1(g) ≥ 3 −
√

3, and if d = 2, then
1(g) ≥ 2−

√
2 > (3−

√
5)/2.

(iii) Next we consider the tensor decomposable case: V = V1 ⊗ · · · ⊗ Vm, where
G is tensor indecomposable and primitive on Vi , dim(Vi) ≥ 2, and m ≥ 2. By [GT3,
Proposition 2.8] and by the hypothesis, we may assume that Theorem 1.3 holds for g
acting on Vi as long as g|Vi is not scalar. Let αi be the character afforded by Vi .
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Suppose that there is some j such that dim(Vj ) ≥ 3 and g|Vj is non-scalar. Then
αj (1)− |αj (g)| ≥ 4−

√
8 by Theorem 1.3 applied to (G, g, Vj ). Hence

χ(1)−|χ(g)| ≥ χ(1)−
χ(1)
αj (1)

|αj (g)| =
χ(1)
αj (1)

(αj (1)−|αj (g)|) ≥ 2(4−
√

8) = 8−4
√

2,

as required. So we may assume that dim(Vi) = 2 whenever g|Vi is non-scalar. But g is
non-scalar, so without loss we may suppose that dim(V1) = 2 and g|V1 is non-scalar. By
Theorem 1.3 applied to (G, g, V1) we have α1(1) − |α1(g)| ≥ (3 −

√
5)/2. Arguing as

above, we obtain

1(g) = χ(1)− |χ(g)| ≥
χ(1)
α1(1)

(α1(1)− |α1(g)|) ≥ d(3−
√

5)/4.

If d ≥ 13 in addition, then in fact d ≥ 14 and 1(g) ≥ 7(3 −
√

5)/2 > 8 − 4
√

2. If
d = 6 or 10, thenm = 2, dim(V2) = 3 or 5, and so g|V2 is scalar, whence we arrive at the
conclusion (v) of Theorem 1.3. The same holds if m = 2 and d ∈ {8, 12}. We also arrive
at the same conclusion when d = 4, as otherwise 1(g) ≥ 4− ((1+

√
5)/2)2 > 4−

√
8.

Finally, consider the case where d ∈ {8, 12} but m > 2; that is, m = 3. Then we may
assume that dim(V2) = 2 and g|V2 is not scalar (as otherwise Theorem 1.3(v) holds). As
in the case d = 4, we get α1(1)α2(1)− |α1(g)α2(g)| > 4−

√
8, whence

1(g) = χ(1)− |χ(g)| ≥
χ(1)

α1(1)α2(1)
(α1(1)α2(1)− |α1(g)α2(g)|) > 8− 4

√
2.

We are done by [GT3, Proposition 2.8]. ut

Throughout the rest of this section we will assume thatG is an almost quasi-simple group.
In fact, we will prove more than we need for the proof of Theorem 1.3: we will describe
all triples (G, V, g), where

(♣) G < GL(V ) is an almost quasi-simple, irreducible, primitive, tensor indecompos-
able subgroup, g ∈ G \ Z(G), and either 0 < age∗(g) ≤ 1, or 1(g) := dim(V ) −
|Tr(g)| ≤ 8− 4

√
2.

As usual, we denote by χ the character of G afforded by V , L := G(∞), S := L/Z(L).
The set-up (♣) implies that χ |L is irreducible, and that

1(g) = χ(1)− |χ(g)| < 4.556 (4)

by Corollary 2.18.

3.2. Alternating groups

First we dispose of the case S = An with n ≥ 8. For 1 ≤ k ≤ n− 1, let Rn(k) denote the
set of partitions λ ` n, where either λ or the conjugate partition λ∗ has the form (n−k, µ)

for some µ ` k. We will need the following statement which follows from the main result
of [Ra]:
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Lemma 3.2. Let ρ = ρλ ∈ Irr(Sn) be labeled by the partition λ ` n.

(i) If n ≥ 15, then either ρ(1) ≥ n(n− 1)(n− 5)/6, or λ ∈
⋃2
k=1 Rn(k).

(ii) If n ≥ 22, then either ρ(1) ≥ n(n− 1)(n− 2)(n− 7)/24, or λ ∈
⋃3
k=1 Rn(k). ut

We will now estimate ρλ(g). Let t denote the transposition (1, 2) ∈ Sn.

Lemma 3.3. Let 1 + α(g) denote the number of fixed points of the permutation g ∈ Sn,
and let n ≥ 9. Then

ρλ(g) =


(α(g)2 − α(g2))/2, λ = (n− 2, 12),

(α(g)2 + α(g2))/2− α(g)− 1, λ = (n− 2, 2),
(α(g)3 − 3α(g)α(g2)+ 2α(g3))/6, λ = (n− 3, 13),

(α(g)3 − α(g3))/3− α(g)2 + 1, λ = (n− 3, 2, 1),
(α(g)3 + 3α(g)α(g2)+ 2α(g3))/6− α(g)2 − α(g), λ = (n− 3, 3).

In particular, if g 6= 1 then |ρλ(g)| ≤ ρλ(t) for any of the above λ.

Proof. It is well known that Sym2(α) = ρ(n−2,2)
+ ρ(n−1,1)

+ ρ(n), ∧2(α) = ρ(n−2,12),
and ∧3(α) = ρ(n−3,13) (cf. [FH] for instance). Using the Littlewood–Richardson rule,
one can see that

(IndSn
Sn−1

(ρ(n−1)))⊗∧2(α) = IndSn
Sn−1

((ρ(n−2,12))|Sn−1)

= IndSn
Sn−1

(ρ(n−3,12)
+ρ(n−2,1)) = ρ(n−3,13)

+ρ(n−3,2,1)
+2ρ(n−2,12)

+ρ(n−2,2)
+ρ(n−1,1)

and so

α ⊗∧2(α) = ρ(n−3,13)
+ ρ(n−3,2,1)

+ ρ(n−2,12)
+ ρ(n−2,2)

+ ρ(n−1,1).

Similarly,

α ⊗ ρ(n−2,2)
= ρ(n−3,3)

+ ρ(n−3,2,1)
+ ρ(n−2,12)

+ ρ(n−2,2)
+ ρ(n−1,1).

It now follows that

ρ(n−3,2,1)
= α ⊗∧2(α)−∧3(α)− α ⊗ α + 1,

ρ(n−3,3)
= α ⊗ ρ(n−2,2)

− α ⊗∧2(α)+∧3(α),

and we arrive at the above formulae for ρλ(g).
Next assume that g has exactly ki cycles of length i, i = 1, 2, . . . , in its decomposition

into disjoint cycles. We will write g = (1k12k2 . . .) in this case. Then α(g) = k1 − 1,
α(g2) = k1 + 2k2 − 1, and α(g3) = k1 + 3k3 − 1. Let ρ = ρλ for short. We also assume
that g is not 1 or a 2-cycle; in particular, −1 ≤ α(g) ≤ n− 4 and −1 ≤ α(g2) ≤ n− 1.

Consider the case λ = (n− 2, 12). Then ρ(t) = (n2
− 7n+ 10)/2, and

1− n ≤ −α(g2) ≤ 2ρ(g) = α(g)2 − α(g2) ≤ (n− 4)2 + 1 ≤ 2ρ(t).
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Next assume that λ = (n− 2, 2). Then ρ(t) = (n2
− 7n+ 12)/2. Furthermore,

−1− 2n ≤ 2ρ(g) = α(g)(α(g)− 2)+ α(g2)− 2 ≤ (n− 4)(n− 6)+ n− 3 ≤ 2ρ(t).

Now we consider the case λ = (n− 3, 3). Then ρ(t) = (n− 3)(n− 4)(n− 5)/6, and

ρ(g) = (k1 − 1)(k1 − 2)(k1 − 3)/6+ (k1 − 1)(k2 − 1)+ k3.

The desired estimate is clear if k1 = 0. Assume that k1, k2 ≥ 1, in particular ρ(g) ≥ 0.
Since ρ(g) is increasing when we replace (1k12k23k3) by (1k1+k32k2+k3), we may assume
that k3 = 0. Also, since ρ(g) is increasing when we replace (1k12k2) by (1k1+22k2−1)

for k2 ≥ 2, we may assume that k2 = 1. It follows that ρ(g) is maximized when g is
a 2-cycle. Finally, let k2 = 0. Again the desired estimate is clear if 1 ≤ k1 ≤ 5, so we
may assume k1 ≥ 6 and kj ≥ 1 for some j ≥ 3; in particular, ρ(g) ≥ 0. Notice that
ρ(g) increases when we replace a j -cycle by (1j−331) for j ≥ 4, and when we replace
(1k13k3) by (1k1+33k2−1) for k3 ≥ 2. Hence ρ(g) ≤ ρ(3-cycle) ≤ ρ(t).

Next assume that λ = (n− 3, 13). Then ρ(t) = (n− 2)(n− 3)(n− 7)/6. The desired
estimate is clear if α(g) ≤ 1 or if n = 9. On the other hand, if 2 ≤ α(g) ≤ n − 5 and
n ≥ 10, then

6|ρ(g)| = |α(g)3 − 3α(g)α(g2)+ 2α(g3)| ≤ (n− 5)3 + 3(n− 5)+ 2(n− 1) ≤ 6ρ(t).

Also, if α(g) = n− 4 and n ≥ 10, then 6ρ(g) = (n− 4)2(n− 7)+ 2(n− 1) < 6ρ(t).
Finally, we consider the case λ = (n−3, 2, 1). Then ρ(t) = (n−2)(n−4)(n−6)/3,

and
3ρ(g) = (k1 − 1)3 − 3(k1 − 1)2 − (k1 − 1)− 3(k3 − 1).

The desired estimate is clear if k1 ≤ 4, so we may assume k1 ≥ 5. Observe that ρ(g)
increases when we replace a j -cycle by (1j−221) for j ≥ 4, or if we replace a 3-cycle by
(1121) for k3 ≥ 1, or if we replace a 2-cycle by (12) for k2 ≥ 2. It now readily follows
that |ρ(g)| ≤ ρ(t). ut

Proposition 3.4. Let G be as in (♣) and S = An for some n ≥ 8. Then χ(1) = n − 1,
L = An, and L acts on V as on its deleted natural permutation module. Moreover, one of
the following holds.

(i) age∗(g) = 1/2, 1(g) = 2, and a scalar multiple of g is a 2-cycle, acting on V as a
reflection.

(ii) age∗(g) = 1, 1(g) = 3 or 4, and a scalar multiple of g is a 3-cycle, or a double
transposition, both acting on V as a (complex) bireflection.

Proof. 1) First we consider the case L = 2An. Since Aut(An) = Sn and CG(L/Z(L)) =
Z(G), we may replace G by H ∈ {2An, 2Sn}. By Lemma 2.23 and (4) we have 4.556 >
1(g) ≥ χ(1)/8 and so χ(1) ≤ 36. It is well known (cf. e.g. [KT]) that χ(1) ≥ 2bn/2c−1,
hence n ≤ 13. Now we can go through the irreducible spin characters of H for 8 ≤
n ≤ 13 as listed in [Atlas] and check that 1(g) can be less than 4.556 only when
χ(1) = 8, n = 8 or 9, and 1(g) = 4. However, in this exceptional case, age∗(g) > 1.
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2) Next we assume that L = An and moreover χ |L is not the character of the deleted
natural permutation module. Again as above we may replace G by H ∈ {An,Sn}. By
Proposition 2.22(ii), |χ(g)/χ(1)| ≤ 1 − 1/2n, whence 4.556 > 1(g) ≥ χ(1)/2n and
χ(1) < (9.112)n. Also we choose λ ` n such that χ |L is an irreducible constituent of
ρλ|L. By our assumption, λ /∈ Rn(1).

Consider the case n ≥ 14. Then by Lemma 3.2(i) (and by [GAP] for n = 14), either
ρλ(1) ≥ n(n− 1)(n− 5)/6, or λ ∈ Rn(2). Since χ(1) ≥ ρλ(1)/2, in the former case we
would have χ(1) ≥ (9.75)n, a contradiction. Hence λ ∈ Rn(2); in particular, χ |L = ρλ|L.
But in this case, Lemma 3.3 and its proof imply that 1(g) ≥ 1(t) ≥ 2n− 6 ≥ 22, again
a contradiction.

Finally, let 8 ≤ n ≤ 13. An inspection of irreducible characters of H [Atlas] reveals
that 1(g) > 4.556 in all cases.

3) We have shown that χ(1) = n − 1 and χ |L is the character of the deleted natural
permutation module. We may write g = αh, where h ∈ Sn and α ∈ C×. Then |χ(g)| =
|χ(h)| = |µ(h) − 1|, where µ(h) is the number of points fixed by the permutation h.
Since 1(g) < 4.556 and n ≥ 8, we see that n − 2 ≥ µ(h) ≥ n − 4. If µ(h) = n − 2,
then h is a 2-cycle, 1(g) = 2 and age∗(g) = age(h) = 1/2. If µ(h) = n− 3, then h is a
3-cycle, 1(g) = 3 and age∗(g) = age(h) = 1. If µ(h) = n− 4, then 1(g) = 4 and h is
either a double transposition, or a 4-cycle. In the former case age∗(g) = age(h) = 1. In
the latter case 1(g) = 4 and age∗(g) > 1 by Lemma 2.21(iii). ut

From now on we may assume that S 6∼= An for any n ≥ 8. By Lemma 2.19(i) and (4),
there is some h ∈ L \ Z(L) with

1(h) ≤ 41(g) < 18.224, (5)

which implies by Proposition 2.22(i) that χ(1)/20 < 18.224 and so

χ(1) ≤ 364. (6)

Let d(S) denote the smallest degree of a projective complex irreducible representation
of S. We will freely use the precise value of d(S) as recorded in [T].

3.3. Classical groups

To handle the finite classical groups, we will also need to estimate character ratios for
their Weil representations (cf. [TZ2], [GMST] and references therein for definitions and
detailed information on Weil representations).

Lemma 3.5. Let χ be an irreducible complex Weil character of L = SLn(q) or SUn(q),
n ≥ 3, (n, q) 6= (3, 2), (3, 3), (4, 2), and let g ∈ L \ Z(L). Then

|χ(g)|

χ(1)
<
qn−1

+ q2

qn − q
≤

2
3
.
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Proof. First we consider the case L = SUn(q) and let N = Fn
q2 denote the natural

module for L. Fix a primitive (q + 1)th root δ of unity in Fq2 , and let dk denote the
dimension of the subspace Ker(g−δk · Id) ofN , for 0 ≤ k ≤ q. Then the explicit formula
for χ as given in [TZ2] implies that χ(1) ≥ (qn − q)/(q + 1) and (q + 1)|χ(g)| ≤ S :=∑q

k=0 q
dk . Clearly,

∑q

k=0 dk ≤ n and 0 ≤ dk ≤ n− 1. Without loss we may assume that
d1 = max0≤k≤q dk . Now S ≤ (q+1)qn−3 < qn−1 if d1 ≤ n−3, S ≤ qn−2

+q2
+q−1 <

qn−1
+ q2 if d1 = n− 2, and S ≤ qn−1

+ 2q − 1 < qn−1
+ q2 if d1 = n− 1, and so we

are done.
Next, let L = SLn(q) and letN = Fnq denote the natural module for L. Fix a primitive

(q − 1)th root ε of unity in Fq , and let ek denote the dimension of the subspace Ker(g −
εk · Id) ofN , for 0 ≤ k ≤ q−2. Then the explicit formula for χ as given in [TZ2] implies
that χ(1) ≥ (qn − q)/(q − 1) and (q − 1)|χ(g)| ≤ R :=

∑q−2
k=0 q

dk + 2q − 2. Clearly,∑q−2
k=0 ek ≤ n and 0 ≤ ek ≤ n− 1. Without loss we may assume that e1 = max0≤k≤q ek .

NowR ≤ (q−1)(qn−3
+2) < qn−1

+q2 if e1 ≤ n−3,R ≤ qn−2
+q2
+3q−5 < qn−1

+q2

if e1 = n− 2, and R ≤ qn−1
+ 4q − 5 < qn−1

+ q2 if e1 = n− 1, and so we are again
done. ut

Lemma 3.6. Let χ be an irreducible complex Weil character of L = Sp2n(q), q odd,
n ≥ 2, and let g ∈ L \ Z(L). Then

|χ(g)|

χ(1)
≤



qn−1/2
+ 1

qn + 1
, q ≡ 1 (mod 4) and ± g is a transvection,

(q2n−1
+ 1)1/2

qn − 1
, q ≡ 3 (mod 4) and ± g is a transvection,

2qn−1

qn − 1
, ±g is not a transvection.

In particular, |χ(g)/χ(1)| ≤ 0.675 unless (n, q) = (3, 3), (2, 3).

Proof. Note that χ(1) = (qn − ε)/2 for some ε = ±1. If ±g is a transvection in L then
by [TZ2], |χ(g)| = (qn−1/2

− ε)/2 when q ≡ 1 (mod 4), and |χ(g)| =
√
q2n−1 + 1/2

when q ≡ 3 (mod 4). Assume ±g is not a transvection, i.e. the subspace Ker(g ± Id) on
the natural module F2n

q of L has dimension at most 2n − 2. Also consider the reducible
Weil character ω of L (that has χ as one of its irreducible constituents) (cf. [GMST]).
This character arises from the action of L as an outer automorphism subgroup of the
extraspecial p-group of order p1+2nf and exponent p, where q = pf and p is prime. By
[GT3, Proposition 2.8], |ω(g)|, |ω(−g)| ≤ qn−1. One can write ω = χ + η for another
irreducible Weil character η of L, and moreover |ω(−g)| = |χ(g)−η(g)|. It follows that
|χ(g)| ≤ qn−1. ut

3.3.1. S = PSLn(q), n ≥ 3, (n, q) 6= (3, q ≤ 7), (4, 3), (5, 2). Under these assumptions,
d(S) = (qn−q)/(q−1). Hence (6) implies that 3 ≤ n ≤ 8; moreover, q = 2 if n = 7, 8,
q ≤ 3 if n = 6, q ≤ 4 if n = 5, q ≤ 5 if n = 4, and q ≤ 17 if n = 3. In fact, if
in addition χ |L is a Weil representation, then 18.224 > 1(h) ≥ χ(1)/3 by Lemma 3.5,



A problem of Kollár and Larsen on finite linear groups 629

and so instead of (6) we have the much stronger upper bound χ(1) ≤ 54. Now in the
cases (n, q) = (8, 2), (7, 2), (6, 3), (5, 4), (5, 3), and (3, q ≥ 8), the upper bound (6) and
[TZ1, Theorem 3.1] imply that χ |L is indeed a Weil representation, of degree at least 72,
giving a contradiction. Also, the case (n, q) = (4, 2) has already been considered in
Proposition 3.4.

Assume (n, q) = (6, 2) or (4, 4). ThenL = SLn(q), and its character table is available
in [GAP]. It is straightforward to check that there is no non-trivial χ ∈ Irr(L) and h ∈
L\Z(L) with1(h) < 18.224 (notice that we need to check only the non-Weil characters
of degree at most 364).

It remains to analyze the case S = PSL4(5). The character degrees of SL4(5) are listed
by F. Lübeck [Lu2]. In particular, we see that all the non-trivial irreducible characters of
R := SL4(5) have degree 155, 156 (and they are Weil characters in these two cases), 248
(and there are exactly two characters of this degree), or at least 403. Hence we may assume
that χ(1) = 248. An inspection of character degrees as listed in [St] shows that GL4(5)
has no irreducible characters of degree 248. Thus χ |R is not stable under GL4(5). Since
Out(R) is a dihedral group of order 8 and GL4(5) induces the unique cyclic subgroup of
order 4 of Out(R), it follows that the inertia group of χ |R in Out(R) is an elementary
abelian 2-group. But χ |R extends to G. Thus G can induce only an elementary abelian
2-subgroup of Out(R). We conclude that g2

∈ Z(G)L. Notice that χ(1) − |χ(v)| ≥
χ(1)/20 = 12.4 for any v ∈ L \ Z(L) by Proposition 2.22(i). Together with (5), this
implies that 41(g) ≥ 1(h) ≥ 12.4 and so 1(g) ≥ 3.1. We will complete the case
S = PSL4(5) by showing that age∗(g) > 1.

First we suppose that g2 /∈ Z(G). Then 1(g2) ≥ 12.4 as above, and so age∗(g2) ≥

24.8/(2.9π) > 2.72 by Proposition 2.17(iii). It now follows from Lemma 2.2(v) that
age∗(g) > age∗(g2)/2 > 1.36. Finally, assume that g2

∈ Z(G). Then g acts on a suitable
basis of V via the matrix α ·diag

(
1, . . . , 1︸ ︷︷ ︸

k

,−1, . . . ,−1︸ ︷︷ ︸
l

)
for some α ∈ C× and 1 ≤ k, l <

k + l = 248. It is shown in [GS] that α(gZ(G)) ≤ 6, whence k, l ≥ 42 by Lemma 2.16.
It follows that |χ(g)| = |248− 2l| ≤ 164, 1(g) ≥ 84, and age∗(g) ≥ 168/(2.9π) > 18
again by Proposition 2.17(iii).

3.3.2. S = PSUn(q), n ≥ 3, (n, q) 6= (3, q ≤ 8), (4, 2), (4, 3), (5, 2), (6, 2). Under
these assumptions, d(S) = (qn−q)/(q+1) if n is odd and (qn−1)/(q+1) if 2 | n. Hence
(6) implies that 3 ≤ n ≤ 10; moreover, q = 2 if 7 ≤ n ≤ 10, q ≤ 3 if n = 6, q ≤ 4 if
n = 5, q ≤ 7 if n = 4, and q ≤ 19 if n = 3. As in §3.3.1, if in addition χ |L is a Weil
representation, then instead of (6) we have the much stronger upper bound χ(1) ≤ 54 (in
fact χ(1) ≤ 39 if (n, q) = (7, 2) or (4, 4)). Now in the cases (n, q) = (10, 2), (9, 2),
(8, 2), (6, 3), (5, 4), (5, 3), (4, 7), and (3, q ≥ 9), the upper bound (6) and [TZ1, The-
orem 4.1] imply that χ |L is indeed a Weil representation, of degree at least 60, giving a
contradiction. The same argument applies to (n, q) = (7, 2) as the Weil representations of
SU7(2) have degree at least 42 and the non-Weil representations have degree at least 860.

Assume (n, q) = (4, 4). Then L = SU4(4), and its character table is available
in [GAP]. It is straightforward to check that there is no non-trivial χ ∈ Irr(L) and
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h ∈ L \ Z(L) with 1(h) < 18.224 (notice that we need to check only the non-Weil
characters of degree at most 364).

It remains to analyze the case S = PSU4(5). The character degrees of SU4(5) are
listed by F. Lübeck [Lu2]. In particular, we see that all the non-trivial irreducible charac-
ters of SU4(5) have degree 104, 105 (and they are Weil characters in these two cases),
273 (and there are exactly two characters of this degree), or at least 378. Hence we
may assume that χ(1) = 273. Checking the character table of PSU4(5) (available in
[GAP]), we see that it also has exactly two irreducible characters of degree 273. It fol-
lows that L = S = PSU4(5). Direct inspection of these two characters of S reveals that
1(h) ≥ 250, a contradiction.

3.3.3. S = PSp2n(q), n ≥ 2, (n, q) 6= (2, q ≤ 5), (3, 2), (3, 3), (4, 2). Under these as-
sumptions, d(S) = (qn − 1)/2 if q is odd and (qn − 1)(qn − q)/2(q + 1) if 2 | q. Hence
(6) implies that 2 ≤ n ≤ 6; moreover, q = 3 if n = 6, q ≤ 3 if n = 5, q = 3, 5 if n = 4,
q = 5, 7, 9 if n = 3; if n = 2 then either q ≤ 27 and q odd or q = 8. Moreover, if in addi-
tion q is odd and χ |L is a Weil representation, then, by Lemma 3.6, instead of (6) we have
the much stronger upper bound χ(1) ≤ 56 (in fact χ(1) ≤ 29 if (n, q) = (2, 7) or (2, 9)).
Now in the cases (n, q) = (6, 3), (5, 3), (4, 5), (3, 5), (3, 7), (3, 9), and (2, q ≥ 11), the
upper bound (6) and [TZ1, Theorem 5.2] imply that χ |L is indeed a Weil representation,
of degree at least 60, giving a contradiction.

Assume (n, q) = (2, 7) or (2, 9). The character table of Sp2n(q) is determined in
[Sr]. It is now straightforward to check that1(h) ≥ 100 if χ |L is a non-Weil character of
degree at most 364. Moreover, the Weil characters of Sp4(9) have degree 40 or 41, larger
than the bound 29 mentioned above. On the other hand, when (n, q) = (2, 7), none of the
Weil characters (of degree 24 or 25) is fixed by an outer automorphism of Sp4(7). This
implies that G = Z(G)L and so we may assume g ∈ L in this case. Hence, if χ |L is a
Weil character, then 4.556 > 1(g) ≥ (1− 0.675)χ(1) by Lemma 3.6, and so χ(1) ≤ 14,
a contradiction. The same argument excludes the Weil characters of Sp8(3); all other non-
trivial irreducible characters of Sp8(3) have degree at least 780 by [TZ1, Theorem 5.2],
hence we are done in the case (n, q) = (4, 3). If (n, q) = (5, 2), then Out(L) = 1 and
so we may assume that g ∈ L, whence 1(g) ≥ χ(1)/20 ≥ 7.75 as d(S) = 155. Finally,
inspecting the character table of Sp4(8) (available in [GAP]), we see that 1(h) ≥ 168,
again a contradiction when (n, q) = (2, 8).

3.3.4. S = P�εn(q), n ≥ 7, (n, q) 6= (7, 3), (8, 2), (10, 2). If (n, q) 6= (8, 3) in addition,
then d(S) ≥ 620 by [TZ1], and so we are done. Consider the case S = P�±8 (3). Notice
that Spin7(3) embeds in Spin±8 (3) and any faithful irreducible character of Spin7(3) has
degree at least 520. Hence the bound (6) implies that L = S (this can also be deduced
using the list of character degrees of Spin±8 (q) as given in [Lu2]). Inspecting the character
table of P�±8 (3) (available in [Atlas]), we see that 1(h) ≥ 189, a contradiction.

3.3.5. S = PSL2(q), q ≥ 37. In these cases, χ(1) ≥ (q−1)/gcd(2, q−1) and |χ(h)| ≤
(
√
q + 1)/2 (cf. [D]). In particular, |χ(h)/χ(1)| ≤ 1/(

√
q − 1) < 0.2, and so (5) implies

that χ(1) ≤ 22. Since we are assuming q ≥ 37, this in turns forces that q = 37, 41,
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or 43, and χ |L is in fact a Weil character. But for these values of q, none of the Weil
characters of L is fixed by an outer automorphism of L. Hence G = Z(G)L, and so we
may assume that g ∈ L. Thus |χ(g)/χ(1)| < 0.2 as above, and 1(g) > (0.8)χ(1) ≥
14.4, a contradiction.

3.4. Exceptional groups of Lie type

Let S be a simple exceptional group of Lie type. If S is not isomorphic to 2B2(q) with
q ≤ 32, G2(q) with q ≤ 7, 3D4(q) with q ≤ 3, 2F4(2)′, or F4(2), then d(S) ≥ 504 (see
e.g. [Lu1]). Consider the case S = G2(7). Then L has a unique non-trivial irreducible
character of degree at most 364 (namely 344), and this character is labeled as χ32 in the
generic character table ofG2(q) [H]. One can now check that1(h) ≥ 332 for χ |L = χ32.
Similarly, if S = 3D4(3) then L has a unique non-trivial irreducible character of degree at
most 364 (namely 219). This character is unipotent, and its values are computed in [Sp].
In particular, one can check that 1(h) ≥ 195 in this case.

3.5. Small groups

The list of our “small” groups consists of all the finite simple groups not considered in
the above subsections, that is: An with 5 ≤ n ≤ 7, PSL2(q) with 7 ≤ q ≤ 32, PSL3(q)

with 3 ≤ q ≤ 7, PSL4(3), SL5(2), PSU3(q) with 3 ≤ q ≤ 8, SU4(2), PSU4(3), SU5(2),
PSU6(2), Sp4(4), PSp4(5), Sp6(2), PSp6(3), Sp8(2), �7(3), �±8 (2), �

±

10(2),
2B2(q) with

8 ≤ q ≤ 32, G2(q) with 3 ≤ q ≤ 5, 3D4(2), 2F4(2)′, F4(2), and 26 sporadic simple
groups. Notice that the character table of the universal cover of S is known (see [GAP])
in all these cases.

Recall we are assuming that L = G(∞) is quasi-simple, and χ ∈ Irr(G) is irreducible
over L; moreover, 1 < χ(1) ≤ 364 by (6). The last condition excludes the cases S ∈
{J4,Fi23,Fi′24, Ly, BM = F2,M = F1}. We will use the character tables of the universal
cover of S as given in [Atlas], as well as the notation therein for the conjugacy classes in
G/Z(G).

3.5.1. Sporadic groups. One can check that

• 1(g) ≥ 6 if S = M22, Suz;
• 1(g) ≥ 8 if S = M11, M12, or if S = J2 but χ(1) > 6; and
• 1(g) ≥ 12 if S = M23,M24, J1, J3, HS, McL, He, Ru, HN, Fi22, Co3, Co2, Co1,O ′N ,

Th,

for all χ satisfying the above hypotheses.
Assume that S = J2 and χ(1) = 6; in particular, L = 2 · J2 and G = Z(G)L. Then

one can check that 1(g) ≥ 5−
√

5 > 8− 4
√

2. Next, suppose that 0 < age∗(g) ≤ 1; in
particular, |χ(g)| > 1.444. Then, in the notation of [Atlas], we may assume that χ |L =
χ22, and the class of gZ(G) in S is one of the following: 2A, 3A, 4A, 5B, 5C, 10D, and
15B. The first two cases lead to the row of 2 · J2 in Table I. In the last two cases, in the
notation of Corollary 2.18 we have δ ≥ 6π/5, but 1(g) > 4.38, whence age∗(g) > 1
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by Corollary 2.18. In the case of class 4A, a multiple of g has spectrum 1, 1, i, i,−i,−i,
and so age∗(g) > 1 by Lemma 2.21 (with i =

√
−1). Finally, in the case of classes 5B

and 5C, none of the eigenvalues of g occurs with multiplicity ≥ 3, and so age∗(g) > 1
by Lemma 2.21.

3.5.2. Small alternating groups: S = An with 5 ≤ n ≤ 7. Arguing as in the proof
of Proposition 3.4 (and using Lemmas 2.20 and 2.21), we may assume that χ |L is not
the character of the deleted natural permutation module. First we consider the case S =
A5. Direct check using [Atlas] shows that 1(g) ≥ (3 −

√
5)/2 if d = 2 and 1(g) ≥

(5−
√

5)/2 > 3−
√

3 if d = 3. Assume d = 4 (and so L = 2 · A5 by our assumptions).
If gZ(G) belongs to the class 5A or 5B of G/Z(G), then 1(g) = 3 and age∗(g) > 1 by
Lemma 2.21(iv). If gZ(G) belongs to the class 4A, then 1(g) = 4 and age∗(g) > 1 by
Lemma 2.20 (with m = 2). Similar arguments apply to the case d = 5. If d = 6, then
1(g) ≥ 6−

√
2 > 4.556.

Assume n = 6. Then the assumptions on χ , L, and 1(g) lead to one of the following
three possibilities.

• d = 3, L = 3A6, and 1(g) ≥ (5−
√

5)/2 > 3−
√

3.
• d = 4, L = 2 · A6, and 1(g) ≥ 2. The classes 2A, 2B, 2C, 3A, 3B, and 6B lead to

three rows of Table I. The other classes are excluded by Lemmas 2.20 and 2.21.
• d = 6, L = 3 · A6, 1(g) = 4, and gZ(G) belongs to the class 2A, which leads to a

row in Table I.

Assume S = A7. Then the assumptions on χ ,L, and1(g) lead to one of the following
two possibilities.

• d = 4, L = 2 · A7, G = Z(G)L, and 1(g) ≥ 2. The classes 2A, 3A, 3B, and 7A
lead to two rows of Table I. The other classes are excluded by Lemmas 2.20 and 2.21.
• d = 6, L = 3 · A7, G = Z(G)L, 1(g) = 4, and gZ(G) belongs to the classes 2A

or 6A. The former case leads to a row in Table I, and age∗(g) > 1 in the latter case by
Lemma 2.20 (with m = 2).

Lemma 3.7. There are subgroups G = C3 × 2Am < GL4(C) with m = 6, 7 which give
a basic non-RT pair not of reflection type. This pair is of AV -type if m = 6.

Proof. The faithful representation of G on V = C4 gives rise to a unique conjugacy
class gG of non-central elements of age < 1, namely class 3A in G/Z(G) ' Am. Let
K := 〈gG〉. Then Z(G)K = G by simplicity of G/Z(G), but g /∈ [G,G] = 2Am. It
follows that K = G and so G gives a basic non-RT pair. Furthermore, Z(GL(V ))G does
not contain any complex reflection, hence this pair is not of reflection type. Finally, if
m = 6 then the representation of G = C3 × SL2(9) < C3 × Sp4(3) on V can be written
over Q(

√
−3) and so the corresponding basic non-RT pair is of AV-type. ut

3.5.3. Small finite groups of Lie type. Let S be any of the small simple finite groups of
Lie type listed at the beginning of §3.5. Using [Atlas], it is straightforward to check that
1(g) ≥ 5 for all characters χ satisfying the above hypotheses, except possibly for one
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of the following cases. (Note that it suffices to consider only subgroups of G that induce
cyclic extensions of S in Aut(S), since 〈g,L〉 is such a subgroup.)

• d = 8, L = 2 · �+8 (2). Here, either 1(g) = 2, gZ(G) belongs to class 2F , and
g acts as a reflection, or 1(g) ≥ 3. In the latter case, either we get the row of �+8 (2)
in Table I with complex bireflections of order 2 and 3, or age∗(g) > 1 by Lemma 2.21
(when gZ(G) has order ≤ 5) and Corollary 2.18 (with δ ≥ 4π/3).
• d = 7 or 8, and S = Sp6(2). If d = 8, then 1(g) ≥ 4 and age∗(g) > 1. Assume

d = 7. Then either 1(g) = 2, gZ(G) belongs to class 2A, and −g acts as a reflection,
or 1(g) ≥ 3. In the latter case, either we get the row of Sp6(2) in Table I with complex
bireflections of order 2 and 3, or age∗(g) > 1 by Lemma 2.21.
• d = 10, L = SU5(2), 1(g) = 4, gZ(G) belongs to class 2A, and g acts as a

bireflection.
• d = 6, 20, or 21, and S = PSU4(3). Assume d = 6. Then either 1(g) = 2, gZ(G)

belongs to class 2D, and g acts as a reflection, or1(g) ≥ 3. In the latter case, either we get
the row of PSU4(3) in Table I with complex bireflections of order 2 and 3 and an element
with spectrum (1, 1, 1, e2π/3, e2π/3, e2π/3), or age∗(g) > 1 by Lemma 2.21 and Corollary
2.18 (with δ ≥ 4π/3) (and a direct check for some elements of order 6). If d = 21 and
L = S, then 1(g) ≥ 12. In all the remaining cases, 1(h) ≥ 13 for all h ∈ L \ Z(G),
and so 1(g) ≥ 13/4 by Lemma 2.19. We claim that we also have age∗(g) > 1. Assume
the contrary: age∗(g) ≤ 1. Let K be any subgroup of G that contains L and induces a
subgroup C2 of Out(S) = D8 while acting on L. It is straightforward to check that, for
any h ∈ K \ Z(K), 1(h) ≥ 10 and so age∗(h) > 2.19 by Corollary 2.18. Notice that
Out(S) = D8 has exponent 4. Hence, if g2 /∈ Z(G), we have g2

∈ K \ Z(K) for a
subgroup K of the aforementioned type, and so age∗(g2) > 2.19 and age∗(g) > 1.095
by Lemma 2.2(v). Thus g2

∈ Z(G), and so modulo scalars we may assume that g has
two eigenvalues 1, resp. −1, with multiplicity m, resp. d −m. By [GS], α(g) ≤ 6 and so
m, d − m ≤ d − 4 by Lemma 2.16. It follows that |χ(g)| = |2m − d| ≤ d − 8, whence
1(g) ≥ 8 and age∗(g) > 1.
• d = 4, 5, or 6, and S = SU4(2) ' PSp4(3). Assume d = 6. Then either 1(g) = 2,

gZ(G) belongs to class 2C, and g acts as a reflection, or 1(g) ≥ 3. In the latter case,
either we get a row with (d, L) = (6, SU4(2)) in Table I, or age∗(g) > 1 by Lemma
2.21 and Corollary 2.18 (with δ ≥ 4π/3). Assume d = 5. Then either 1(g) = 2, gZ(G)
belongs to class 2A, and−g acts as a reflection, or1(g) ≥ 5−

√
7 > 8−4

√
2. In the latter

case, either we get two rows with (d, L) = (5, SU4(2)) in Table I, or age∗(g) > 1 by
Lemma 2.21 and Corollary 2.18 (with δ ≥ 4π/3) (and a direct check for some elements
of order 6). Finally, assume d = 4, and so L = Sp4(3). This case by far has the most
(twelve) classes of elements g with 0 < age∗(g) ≤ 1 (leading to two rows in Table I), and
is handled by a direct case-by-case argument. In this case we always have1(g) ≥ 4−

√
7.

• d = 6 or 7, and S = SU3(3). Here we have 1(g) ≥ 3, and, aside from the entries
with (d, L) = (6, SU3(3)) and (7, SU3(3)) in Table I, age∗(g) > 1 by Lemmas 2.20,
2.21, and Corollary 2.18 (with δ ≥ 4π/3).
• d = 6 and L = 6 · PSL3(4). Here, 1(g) ≥ 4, and either we are in the row of

(d, L) = (6, 6 · PSL3(4)) in Table I, or age∗(g) > 1.
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• d = 6 or 7, and S = PSL2(13). If d = 7, then 1(g) > 4.69. If d = 6, then either
1(g) ≥ 5, or 1(g) > 3.69 and age∗(g) > 1 by Corollary 2.18 (with δ = 16π/13).
• d = 5 or 6, and S = PSL2(11). If d = 6, then either1(g) ≥ 5, or1(g) > 4.26 and

age∗(g) > 1 by Corollary 2.18 (with δ = 14π/11). If d = 5, then 1(g) ≥ 5 −
√

3, and
either we are in the row of (d, L) = (5,PSL2(11)) in Table I, or age∗(g) > 1 (by direct
calculation).
• d = 3, 4, or 6, and S = PSL2(7). If d = 3, then 1(g) ≥ 3 −

√
2. If d = 6, then

either we are in the row (d, L) = (6,PSL2(7)) of Table I, or 1(g) > 4 and age∗(g) > 1
by Corollary 2.18 (with δ ≥ 5π/4). Finally, if d = 4, then1(g) ≥ 4−

√
2, and either we

arrive at the row (d, L) = (4, SL2(7)) of Table I, or age∗(g) > 1 (by a direct check).
We have completed the proof of Theorem 1.3, as well as of the following result which

we will need later.

Theorem 3.8. Let G < GL(V ) be an almost quasi-simple subgroup such that the G-
module V is irreducible, primitive, and tensor indecomposable. Assume that 0 < age∗(g)
≤ 1 for some g ∈ G, and that d := dim(V ) ≥ 4. Then (d,G(∞), g,1(g), age∗(g)) is as
listed in Table I. ut

In Table I, in the cases where 0 < age∗(g) < 1, we indicate a minimal groupG containing
h with age(h) = age∗(g). We also list the conjugacy class of gZ(G) in G/Z(G) using
the notation of [Atlas], for one representative of the Aut(L)-conjugacy class of χ |L. The
notation L ∗ C4 stands for a central product of L by a cyclic group of order 4.

Remark 3.9. The spectra of elements g with 0 < age∗(g) ≤ 1 that occur in Table I are
listed as follows:
(a1) (−1, 1, . . . , 1) (a reflection, age = 1/2).
(a2) (e2πi/3, 1, 1, 1) (a complex reflection, age = 1/3).
(a3) (e4πi/3, 1, 1, 1) (a complex reflection, age = 2/3).
(a4) (e2πi/3, e2πi/3, 1, . . . , 1) (age = 2/3).
(a5) (eπi/3,−1, 1, 1) (age = 2/3).
(b1) (−1,−1, 1, . . . , 1) (a bireflection, age = 1).
(b2) (e2πi/3, e4πi/3, 1, . . . , 1) (a complex bireflection, age = 1).
(b3) (e2πi/3, e2πi/3, e2πi/3, 1, . . . , 1) (age = 1).
(b4) (eπi/2, e3πi/2, 1, 1) (a complex bireflection, age = 1).
(b5) (eπi/3, e2πi/3,−1, 1) (age = 1).
(b6) (eπi/3, eπi/3, e4πi/3, 1) (age = 1).
(b7) (e2πi/7, e4πi/7, e8πi/7, 1) (age = 1).
(b8) (eπi/6, e2πi/3, e7πi/6, 1) (age = 1).
Additionally, the following spectra also occur for the groups of extraspecial type:
(c1) (eπi/2, eπi/2, 1, 1) (age = 1/2).
(c2) (eπi/4, eπi/2, e5πi/4, 1) (age = 1).
(c3) (eπi/4, e3πi/4,−1, 1) (age = 1).
(c4) (e2πi/5, e4πi/5, e4πi/5, 1, 1) (age = 1).
(c5) (e2πi/5, e2πi/5, e6πi/5, 1, 1) (age = 1).
(c6) (eπi/2, eπi/2, eπi/2, eπi/2, 1, 1, 1, 1) (age = 1).
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Table I. Non-central elements of small age in almost quasi-simple groups.

d L := G(∞) G g 1(g) = d2(g)
2/2 age∗(g)

4 Sp4(3) L× 3
{

3B
3A, 3C, 6A

{
4−
√

7
4−
√

7, 2, 4−
√

3

{
1/3
2/3

4 2 · A6 L× 3 3A 2 2/3
4 2 · A7 L× 3 3A 2 2/3
4 2 · A5 L or L ∗ C4 2A, resp. 3A 4, resp. 3 1
4 2 · A5 L · 2 2B, resp. 6A 4, resp. 4−

√
3 1

4 SL2(7) L or L ∗ C4 2A, resp. 3A, 7B 4, resp. 3, 4−
√

2 1
4 2 · A6 L or L ∗ C4 2A, resp. 3B 4, resp. 3 1
4 2 · A6 L · 2 2B, resp. 2C, 6B 4, resp. 4, 4−

√
3 1

4 2 · A7 L or L ∗ C4 2A, resp. 3B, 7A 4, resp. 3, 2 1

4 Sp4(3) L or L ∗ C4

{
2AB, 3A, 3D
4A, 6BE, 12A

{
4, 4−

√
7, 3

2, 4−
√

3, 3
1

5 SU4(2) L× 2 2A 2 1/2
5 SU4(2) L× 3 3A 5−

√
7 2/3

5 A5 L 2A 4 1
5 A6 S6 × 2 (12)(34)(56) 4 1
5 PSL2(11) L 2A 4 1
5 SU4(2) L 2B, resp. 3D 4, resp. 3 1

6 SU4(2) L · 2 2C 2 1/2
6 61 · PSU4(3) L · 22 2D 2 1/2
6 PSL2(7) L 2A 4 1
6 3 · A6 L 2A 4 1
6 3 · A7 L 2A 4 1
6 6 · PSL3(4) L 2A 4 1
6 SU3(3) L× 2, L× 3 2A, resp. 3A 4, resp. 3 1
6 SU4(2) L, L× 2, or L× 3 2AB, resp. 3AB, 3C 4, resp. 3, 3 1
6 61 · PSU4(3) L 2A, resp. 3A, 3B 4, resp. 3, 3 1
6 2 · J2 L, L× 3 2A, resp. 3A 4, resp. 3 1

7 Sp6(2) L× 2 2A 2 1/2
7 SU3(3) L 2A 4 1
7 Sp6(2) L 2C, resp. 3A 4, resp. 3 1

8 2 ·�+8 (2) L · 2 2F 2 1/2
8 2 ·�+8 (2) L 2B, resp. 3A 4, resp. 3 1

10 SU5(2) L× 2 2A 4 1

n− 1 An Sn 2-cycle 2 1/2
n− 1 An L (1, 2, 3), resp. (1, 2)(3, 4) 3, resp. 4 1
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4. Linear groups generated by elements of bounded deviation

In this section we will prove Theorem 1.1. The standing hypothesis throughout the section
is that

(??) V = Cd , d > 1, G is a finite irreducible subgroup of G = GL(V ), X ⊂ G, C ≥ 4 a
given constant, Z(G)G = 〈X 〉, and d2(g)

2
≤ C for all g ∈ X .

Let χ denote the character of Z(G)G afforded by V .

4.1. The imprimitive case

Here we consider the case where G (transitively) permutes the m summands of a de-
composition V = V1 ⊕ · · · ⊕ Vm, m > 1. For any g ∈ X , let µ(g) denote the number of
subspaces Vi that are moved by g. Then g fixes (setwise) preciselym−µ(g) subspaces Vi ,
whence |χ(g)| ≤ (m− µ(g)) dim(V1). It follows that

C ≥ d2(g)
2
= 2(χ(1)− |χ(g)|) ≥ 2µ(g) dim(V1). (7)

Since Z(G)G = 〈X 〉, there must be some g ∈ X which acts non-trivially on the set
{V1, . . . , Vm}, for which µ(g) ≥ 2. Thus dim(V1) ≤ C/4 (also see Example 4.1 for a
partial converse).

Now we choose a G-invariant decomposition V = V1 ⊕ · · · ⊕ Vm with m > 1
smallest possible. This means that the induced action π of G on the set {V1, . . . , Vm} is
primitive. Assume in addition that (G, V ) does not satisfy the conclusion (iii) of Theorem
1.1, i.e. π(G) 6≥ Am. By [LS, Corollary 3], µ(g) > 2(

√
m − 1) (for some g ∈ X ).

On the other hand, as shown above, 1 ≤ k := dim(V1) ≤ C/4. Now (7) implies that
m < (1 + C/4k)2 and so dim(V ) < k(1 + C/4k)2 =: h(k). Since the function h(k) is
decreasing on [1, C/4], we see that dim(V ) < h(1) = (1+ C/4)2. Thus we have shown
that if G is as in (??) and G is imprimitive, then either G satisfies Theorem 1.1(iii), or
dim(V ) < (1+C/4)2. Observe that (1+C/4)2 < f(C) as C ≥ 4. Hence we have proved
Theorem 1.1 in the case G is imprimitive.

Example 4.1. Let C ≥ 4, V1 = Ck with 1 ≤ k ≤ C/4, and let H ≤ GL(V1) be any
subgroup generated by {[x−1hx, y] | x, y ∈ H } for a fixed element h ∈ H (for instance,
one can consider any quasi-simple subgroup H and any h ∈ H \ Z(H)). Then for any
m ≥ 2, the subgroup G = H o Sm < GLmk(C) is generated by gG for some element
g ∈ G satisfying d2(g)

2
≤ C. Indeed, we may write V = Cmk as the set of m-tuples

(v1, . . . , vm), vi ∈ V1, and define g via g(v1, v2, v3, . . . , vm) = (v2, h(v1), v3, . . . , vm);
in particular, Tr(g) = (m − 2)k and so d2(g)

2
= 2(dim(V ) − |Tr(g)|) = 4k ≤ C. For

any x, y ∈ H , observe that G contains the elements

x̃ : (v1, v2, . . . , vm) 7→ (x(v1), v2, . . . , vm),

ỹ : (v1, v2, . . . , vm) 7→ (y(v1), v2, . . . , vm).

Then K := 〈gG〉 contains the element [x̃−1g2x̃, ỹ] = (x̃−1gx̃)2 · (ỹx̃−1
· g · x̃ỹ−1)−2

which acts on V via (v1, v2, . . . , vm) 7→ ([x−1hx, y](v1), v2, . . . , vm). The assumption
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onH now implies thatK > H ×1×· · ·×1. But g induces the transposition (1, 2) while
acting on the m-tuples (v1, . . . , vm), vi ∈ V1. Hence K > Hm and K/Hm ∼= Sm, and so
K = G as stated.

4.2. Tensor decomposable case

Here we assume that G is primitive but tensor decomposable on V : χ = α1 ⊗ · · · ⊗ αn,
where n ≥ 2, αi ∈ Irr(G) is primitive and tensor indecomposable for each i, and α1(1) ≥
· · · ≥ αn(1) ≥ 2. Then we can find g ∈ X such that d2(g)

2
≤ C and |αn(g)| < αn(1).

In the case β := αn is tensor induced, among such elements g we can find one that
acts non-trivially on the set of tensor factors of β (as otherwise β|G would be tensor
decomposable). By Theorem 1.3 applied to (G, β, g), β(1)− |β(g)| ≥ δ := (3−

√
5)/2;

moreover, if β(1) ≥ 13 then β(1)− |β(g)| ≥ 2. In the latter case,

C ≥ 2(α(1)β(1)− |α(g)β(g)|) ≥ 2α(1)(β(1)− |β(g)|) ≥ 4α(1),

and so α(1) ≤ C/4, where α := α1⊗· · ·⊗αn−1. By the choice of αn, we get β(1) ≤ α(1)
and so χ(1) ≤ C2/16 < f(C). It remains to consider the case 2 ≤ β(1) ≤ 12. Then

C ≥ 2(α(1)β(1)− |α(g)β(g)|) ≥ 2α(1)(β(1)− |β(g)|) ≥ 2δα(1),

and so α(1) ≤ C/2δ. Therefore,

χ(1) ≤ 12 · C/2δ = 12C/(3−
√

5) < 16C < f(C),

and we are done.

Example 4.2. Given any C ≥ 4, choose m = 1 + bC/4c. Let Sm act on Cm−1 as on
its deleted natural permutation module. This induces a natural action of G = Sm × Sm
on V = Cm−1

⊗ Cm−1. Consider the element g1 = (τ, 1) and g2 = (1, τ ), where τ is
the transposition (1, 2) ∈ Sm. Then χ(1) = (m − 1)2, χ(gi) = (m − 1)(m − 3) and so
d2(gi)

2
= 4(m− 1). By the choice of m, we see that d2(gi)

2
≤ C is very close to C and

dim(V ) is very close to C2/16. Clearly, G satisfies the set-up (??) with X := gG1 ∪ g
G
2 .

(Adding toG an involution inverting the two factors Cm−1 of V , we then haveG = 〈gG1 〉.)

4.3. Tensor induced case

Consider the case where G is tensor induced on V : V = V1 ⊗ · · · ⊗ Vm, with dim(Vi) =
a > 1 and G permutes the m tensor factors V1, . . . , Vm (transitively). Then we can find
g ∈ X such that d2(g)

2
≤ C and g acts non-trivially on {V1, . . . , Vm}. By Lemma 2.25,

|χ(g)| ≤ am−1
≤ χ(1)/2. Hence C ≥ 2(χ(1)− |χ(g)|) ≥ χ(1).

4.4. Extraspecial case

Here we consider the case (iii) of [GT3, Proposition 2.8]. In this case, dim(V ) = pm for
some prime p and some integer m ≥ 2. Pick any g ∈ X \ Z(G). By [GT1, Lemma 2.4],
|χ(g)| ≤ pm−1/2

≤ χ(1)/
√

2. Thus C ≥ 2(χ(1) − |χ(g)|) ≥ χ(1)(2 −
√

2) and so
χ(1) ≤ C(1+ 1/

√
2).
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4.5. Almost quasi-simple groups

Here we consider the case where G is a finite almost quasi-simple group that satisfies
(??). In particular, L := G(∞) is quasi-simple and L/Z(L) is the unique non-abelian
composition factor ofG. By the above, we may assume in addition thatG is primitive and
tensor indecomposable on V . Since d > 1 and Z(G)G = 〈X 〉, there exists g ∈ G \Z(G)
with d2(g)

2
≤ C. By Lemma 2.19 and its proof, L acts irreducibly on V and there is

h ∈ L \ Z(L) such that d2(h)
2
≤ 4C.

First assume that L 6∼= An for any n ≥ 10. Then by Proposition 2.22(i) and Lemma
2.23, |χ(h)/χ(1)| ≤ 19/20. It follows that 4C ≥ d2(h)

2
= 2(χ(1)−|χ(h)|) ≥ χ(1)/10,

and so dim(V ) ≤ 40C ≤ f(C).
We may now assume that L = An for some n ≥ 10, and moreover V |L is not iso-

morphic to the deleted permutation module of L (as otherwise (G, V ) satisfies Theorem
1.1(ii)). Up to scalars we may also assume that An ≤ G ≤ Sn. By Proposition 2.22(ii),
|χ(g)/χ(1)| ≤ 1/2+ (n− 1)/2n = 1− 1/2n, whence

C ≥ d2(g)
2
= 2(χ(1)− |χ(g)|) ≥ χ(1)/n. (8)

In particular, if n ≤ 40, then χ(1) ≤ 40C ≤ f(C). Henceforth we may assume that
n ≥ 41.

Now we choose λ ` n such that χ |L is an irreducible constituent of ρλ|L, where
ρλ ∈ Irr(Sn) is labeled by λ, and apply Lemma 3.2 to ρλ. Assume we are in the former
case of Lemma 3.2(ii). Then χ(1) ≥ ρλ(1)/2 ≥ n(n − 1)(n − 2)(n − 7)/48 > 26n2 as
n ≥ 41. Together with (8), we now have 26n2 < χ(1) ≤ nC. It follows that n ≤ C/26
and so χ(1) < C2/26 < f(C).

It therefore remains to consider the case λ ∈ Rn(2)∪Rn(3); in particular, χL = ρλ|L.
Consider the case λ ∈ Rn(2). By Lemma 3.3 and its proof,

C ≥ 2(χ(1)− |χ(g)|) ≥ 2(χ(1)− |χ(t)|) ≥ 4n− 12 ≥ 152,

whence n ≤ 3+ C/4. Thus χ(1) ≤ (n− 1)(n− 2)/2 ≤ (1+ C/4)(2+ C/4)/2 ≤ f(C).
Finally, assume that λ ∈ Rn(3). By Lemma 3.3 and its proof,

C ≥ 2(χ(1)− |χ(g)|) ≥ 2(χ(1)− |χ(t)|) ≥ 2(n− 2)(n− 5) > 68n,

whence n < C/68. Hence (8) implies that χ(1) ≤ nC < C2/68 < f(C). Thus we
have proved Theorem 1.1 in case G is almost quasi-simple (and primitive, tensor inde-
composable on V ). By [GT3, Proposition 2.8], we have therefore completed the proof of
Theorem 1.1.

5. Linear groups generated by elements of age ≤ 1

In this section we will address the following situation:

(♠) V = Cd , d > 1, G is a finite irreducible subgroup of G = GL(V ), X ⊂ G,
Z(G)G = 〈X 〉, and 0 < age∗(g) ≤ 1 for all g ∈ X .
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By Corollary 2.18, such groups G satisfy the set-up (??) of §4 with C := 9.111. We will
denote by χ the character of Z(G)G afforded by V , and frequently refer to intermediate
results established in §4.

5.1. Imprimitive groups

First we record the following easy observation:

Lemma 5.1. Let a finite subgroup G < GL(V ) preserve a decomposition W = V1 ⊕

· · · ⊕ Vn of a subspace W ⊆ V , with dim(Vi) = 1 and G inducing either Sn or An while
permuting the n subspaces V1, . . . , Vn. Then for any element g ∈ G with age∗(g) ≤ 1,
one of the following holds.

(i) g acts either trivially, or as a 2-cycle on {V1, . . . , Vn}.
(ii) Some scalar multipleµg of g is a complex bireflection of order 2 or 3 on V , and g acts

as a 3-cycle, or a double transposition on {V1, . . . , Vn}. Furthermore, age∗(g) = 1.

Proof. Observe that, if h acts as an m-cycle on {V1, . . . , Vm}, then it has minimal poly-
nomial tm− α, and m eigenvalues βe2πij/m, 0 ≤ j ≤ m− 1, on V1⊕ · · ·⊕Vm, for some
α, β ∈ C×. In particular,

age∗(h|V1⊕···⊕Vm) ≥ (m− 1)/2. (9)

Now assume g ∈ G has age∗(g) ≤ 1 but g does not satisfy (i). By Lemma 2.2(ii),
there is µ ∈ S1 such that age(µg) ≤ 1. By Corollary 2.18, d2(g)

2
≤ (2.9)π , and so

g cannot move more than four subspaces Vi by (7). Thus g acts as a 3-cycle, a double
transposition, or a 4-cycle on {V1, . . . , Vn}. In the third case, age∗(g) > 1 by (9). In the
first two cases, (9), Lemma 2.2(iii), and the condition age(µg) ≤ 1 force µg to act as
a complex bireflection of order 3, resp. 2, on W , and trivially on a complement U to W
in V . The last claim in (ii) now follows from (9) and the assumption that age∗(g) ≤ 1. ut

Lemma 5.2. Let G < GL(V ) be as in (♠). Assume that G preserves a decomposition
V = V1 ⊕ · · · ⊕ Vn, with n > 1 smallest possible. Let π denote the induced permutation
action of Z(G)G on {V1, . . . , Vn}. Then one of the following holds:

(i) dim(Vi) = 1, and (π(G), n) = (Sn, n), (An, n), (ASL3(2), 8), (SL3(2), 7), (A5, 6),
(D10, 5). If g ∈ X and π(g) is not 1 nor a 2-cycle, then g is a complex bireflection of
order 2 or 3 and age∗(g) = 1.

(ii) dim(Vi) = 2, age∗(g) = 1 for any g ∈ X with π(g) 6= 1, and the conclusion (iii) of
Theorem 1.4 holds.

Proof. Our assumptions imply that π(G) is a primitive subgroup of Sn, and that there
must be some h ∈ X that moves µ(g) ≥ 2 subspaces Vi . By (7), 2µ(h) dim(V1) ≤ 9.111
and so µ(h) dim(V1) ≤ 4; in particular, dim(V1) = 1 or 2. Consider the former case:
dim(V1) = 1; in particular, µ(t) ≤ 4 for all t ∈ X . If µ(t) = 2, resp. 3, for some t ∈ X ,
then π(G) is a primitive permutation group containing a 2-cycle, resp. a 3-cycle, whence
π(G) = Sn or An by [W, Theorem 13.3]. Otherwise π(t) is a double transposition for
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all t ∈ X with π(t) 6= 1. Thus π(G) is a primitive subgroup of Sn generated by some
double transpositions. Assume in addition that π(G) 6≥ An. Then 4 > 2(

√
n− 1) by [LS,

Corollary 3], i.e. n ≤ 8, and we arrive at the primitive permutation groups listed in (i).
The second claim in (i) follows from Lemma 5.1(ii).

In the latter case, µ(h) = 2, i.e. h is a transposition. This conclusion in fact holds for
any g ∈ X with π(g) 6= 1. Thus π(G) is a primitive permutation group generated by
transpositions, and so π(G) = Sn. Let D := Ker(π) and consider any g ∈ G \ D with
age(g) ≤ 1. Then we may assume that g : V1 ↔ V2 and g(Vj ) = Vj for all j ≥ 3. It
is not difficult to see that Spec(g|V1⊕V2) is the union of two cosets of C2 = 〈−1〉 in S1.
By Lemma 2.20 (with m = 2) and Lemma 2.2(iii), the condition age(g) ≤ 1 implies that
g2
= 1V , age(g) = 1, g is trivial on each Vj with j ≥ 3; in particular, g is a bireflection.

This argument also shows that age∗(t) = 1 for all t ∈ X with π(t) 6= 1. We will apply this
observation to suitable inverse images (in G) of transpositions (i, i + 1), 1 ≤ i ≤ n− 1,
of Sn to show that G is a split extension of D by Sn. Indeed, denote the element g we
have just analyzed by g1. For any 1 ≤ i ≤ n− 1, aG-conjugate gi of g1 will project onto
the transposition (i, i+1) and have age = 1. Hence our observation (applied to gi) yields

gi : Vi ↔ Vi+1, g2
i = 1V , gi |Vj = 1Vj for j 6= i, i + 1.

Clearly, (gigj )2 = 1V if |i − j | > 1. Next, if v ∈ Vi then

(gigi+1)
3 : v 7

gi+1
−−→ v 7

gi
−→ gi(v) 7

gi+1
−−→ gi+1gi(v) 7

gi
−→ gi+1gi(v) 7

gi+1
−−→ gi(v) 7

gi
−→ v,

and similarly for all v ∈ Vj with j 6= i, whence (gigi+1)
3
=1V . Thus H =〈g1, . . . , gn−1〉

is a quotient of Sn, and DH = G = D · Sn. It follows that H ∼= Sn. In fact, one can find
a basis (ui, vi) of each Vi such that H acts via permuting the indices of the ui’s, resp. of
the vi’s:

gi : ui ↔ ui+1, vi ↔ vi+1, uj 7→ uj , vj 7→ vj , for j 6= i, i + 1. (10)

ut

Lemma 5.3. Let G < GL(V ) be a finite irreducible subgroup. Assume that G preserves
a decomposition V = V1 ⊕ · · · ⊕ Vn, with dim(Vi) = 1 and G inducing either Sn or An
while permuting the n subspaces V1, . . . , Vn, and that n ≥ 10. ThenG contains a complex
bireflection of order 3.

Proof. We represent elements of G by their matrices with respect to a basis (e1, . . . , en)

with Vi = 〈ei〉C. Let D be the normal subgroup of G consisting of diagonal elements, so
that Sn ≥ G/D�A := An. Notice that, as an A-module, every chief factor ofD is either
the trivial module I, or the heartH of the natural permutation module, in characteristic p
for some prime p. It is well known that H 2(A, I) = 0 if n ≥ 8 and p > 2. Furthermore,
H 2(A,H) = 0 if n ≥ 10 by the main result of [KP]. It follows that O2′(D) · A splits
over O2′(D). Since D = O2(D) × O2′(D), we may assume that G contains a subgroup
H = O2(D) · A.
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Now inside H we can find an inverse image g of order 3 of a 3-cycle in A. We
may assume that g = diag

((
a
b

c

)
, d1, . . . , dn−3

)
, where abc = 1 and d3

i = 1. Since
n − 3 ≥ 4, we may also assume that d1 = d2. Next, in H we can find an element

h = diag
((

x
y

)
, z,

(
u

v

)
, w1, . . . , wn−5

)
. Then [g, h] = diag

((
a′

b′

c′

)
, 1, . . . , 1

)
,

where a′b′c′ 6= 0; in particular, it permutes V1, V2, V3 cyclically. Notice that, [g, h] ≡
g−1 (modO2(D)) and so [g, h] ∈ O2(D) · C3, where C3 = 〈g〉. Hence, a suitable 2-
power t of [g, h] has order 3, acts as a 3-cycle on {V1, V2, V3}, and fixes every ei with
i ≥ 4. Clearly, such a t is conjugate to diag(e2πi/3, e4πi/3, 1, . . . , 1) and so it is a complex
bireflection of order 3. ut

Lemma 5.4. Let T = GL1(C)n be a maximal torus of G = GLn(C), so that N :=
NG(T ) = T · Sn, and n ≥ 5. Assume D < T is a finite subgroup which is normalized by
the subgroup T · An of N . Then D �N .

Proof. 1) Without loss we may assume that D is a p-group for some prime p. If exp(D)
= q = pc, then D is contained in T := {x ∈ T | xpc = 1}. Using the additive notation,
we may identify T with the natural permutation RSn-moduleM := 〈e1, . . . , en〉R , where
R := Z/qZ. It suffices now to prove that any An-submodule N of M is Sn-invariant.

2) Assume that p - n, with n ≥ 5 or (n, p) = (4, 5), and consider the module L :=
{
∑n
i=1 aiei | ai ∈ R,

∑n
i=1 ai = 0}. Let H denote the heart of the natural permutation

FpSn-module. The condition on (n, p) implies thatH is irreducible over An. Now observe
that the An-module L is uniserial, with H as the unique composition factor. Hence any
An-submodule Y of L is Sn-invariant. (Indeed, if t ∈ Sn then the An-modules Y and tY
have same composition length and so Y = tY as L is uniserial.)

3) Consider the case p - n. ThenM = A⊕B as Sn-modules, where A = 〈
∑n
i=1 ei〉R ,

and B = {
∑n
i=1 aiei | ai ∈ R,

∑n
i=1 ai = 0}. By the result of 2) applied to the Sn-

module L := B, any An-submodule Y of B is Sn-invariant. On the other hand, Sn acts
trivially on A, whence any An-submodule X of A is obviously Sn-invariant. Now set
X := N ∩ A and Y := N ∩ B. Observe that any composition factor of the An-module
N/(X ⊕ Y ) is a common composition factor of M/A ∼= B and M/B ∼= A. Hence
N = X ⊕ Y and so it is Sn-invariant.

4) Finally, we assume p | n and consider the natural subgroups An−1 and Sn−1 in Sn,
which fix e1. Then M = A ⊕ B as Sn−1-modules, where A = 〈e1,

∑n
i=2 ei〉R , and

B = {
∑n
i=2 aiei | ai ∈ R,

∑n
i=2 ai = 0}. Then the conclusion of 2) applied to the Sn−1-

module L := B implies that any An−1-submodule Y of B is Sn−1-invariant. Also, Sn−1
acts trivially on A, whence any An−1-submodule X of A is obviously Sn−1-invariant.
Now set X := N ∩ A and Y := N ∩ B. As in 3), we see that N = X ⊕ Y , and so it is
Sn−1-invariant. Thus N is invariant under 〈An,Sn−1〉 = Sn. ut

One of the main results of this subsection is the following

Theorem 5.5. Let G < G := GL(V ) be a finite irreducible subgroup that preserves a
decomposition V = V1⊕ · · ·⊕Vn, with n > 1 smallest possible. Assume in addition that
n ≥ 3 and dim(Vi) = 1.
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(i) Assume G satisfies (♠) and contains a non-central element g with 0 < age∗(g) < 1.
Assume in addition that π(G) ≥ An, where π denotes the permutation action of G
on {V1, . . . , Vn}. Then there is a finite subgroup Z < Z(G) such that ZG contains a
complex reflection.

(ii) If (G, V ) is a basic non-RT pair, then there is a finite subgroup Z < Z(G) and a
complex reflection group H = G(d, 1, n) with d > 1 (in the notation of [ST]) such
that ZG = ZH . Conversely, any G(d, 1, n) with d > 1 yields a basic non-RT pair.

Proof. Fix a basis vector ei for each Vi , and let D := Ker(π) � G consist of all the
elements of G that act diagonally on the basis (e1, . . . , en).

1) Here we show that if there is an element g ∈ G \D with age(g) < 1, then either

(a) D contains a non-scalar element h with age(h) < 1, or
(b) λg is a reflection for some λ = e−2πit , with 0 ≤ t < 1/2n and λ2

· 1V ∈ G.

For, by Lemma 5.1, g has the matrix diag
((

0 a
b 0

)
, c3, . . . , cn

)
in the given basis, for

some a, b, ci ∈ C×. Then Spec(g) = {
√
ab,−

√
ab, c3, . . . , cn}. Since g has finite

order, we may write cj = e2πirj with 0 ≤ rj < 1 for j > 2 and {
√
ab,−

√
ab} =

{e2πir1 , e2πi(r1+1/2)
} with 0 ≤ r1 < 1/2. By our assumptions, 1 > age(g) = 1/2 +

2r1 +
∑n
i=3 ri , and so 2r1 +

∑n
i=3 ri < 1/2. Observe that g2

= diag(ab, ab, c2
3, . . . , c

2
n)

and age(g2) ≤ 4r1 + 2
∑n
i=3 ri < 1. Now if g2 is non-scalar, then we can set h = g2.

Assume g2 is scalar; in particular, ab = c2
i for all i > 2 and c2

3 · 1V = g
2
∈ G. Notice

that c3 has finite order in S1 as |g| is finite. Then Spec(c−1
3 g) = {1,−1, 1,±1, . . . ,±1}.

By Lemma 2.21 (with m = 2), the condition age(g) < 1 now implies that Spec(c−1
3 g) =

{1,−1, 1, . . . , 1}, and so c−1
3 g is a reflection. Finally, Spec(g) = {−c3, c3, . . . , c3} and

age(g) < 1, so c3 = e
2πit with 0 ≤ t < 1/2n. Thus λ := c−1

3 has the properties specified
in (b).

2) Now we consider the situation of (ii). ThenG contains some non-central element g
with age(g) < 1 such that G = 〈gG〉. Since G is irreducible and n ≥ 3, G 6= D, and
so g /∈ D. Now we can apply the result of 1) to the element g. In the case D 3 h with h
non-scalar and age(h) < 1, we would have G = 〈hG〉 ≤ D (as (G, V ) is a basic non-
RT pair), a contradiction. Hence λg is a reflection for some λ as specified in (b). Since
G = 〈gG〉, we see that ZG = ZH for Z = 〈λ · 1V 〉 < Z(G) and H = 〈(λg)G〉 is a finite
group generated by reflections. Since the c.r.g. H acts imprimitively on V (inducing Sn
on {V1, . . . , Vn}), by [ST] we must haveH = G(de, e, n) for some positive integers d, e.
Assume e > 1. Then ZG contains non-central elements r := diag(1, . . . , 1, e2πi/e) and
λ−1r , with age(r) = 1/e ≤ 1/2 and age(λ−1r) = 1/e + n/t < 1. If λ · 1V ∈ G, then
G = ZG contains r . Otherwise, G has index 2 in ZG (since λ2

· 1V ∈ G) and so either
r or λ−1r belongs to G. In either case, we see that D contains a non-central element
s ∈ {r, λ−1r} with age(s) < 1 and 〈sG〉 ≤ D < G, a contradiction. So e = 1. Also d > 1
as otherwise H = G(1, 1, n) = Sn is reducible on V .

Conversely, we show that any c.r.g. H = G(d, 1, n) = D : Sn with d > 1 yields a
basic non-RT pair. Indeed, since D < SL(V ), for any non-central x ∈ D we have 0 <
age(x) ∈ Z and so age(x) ≥ 1. Now consider any non-central y ∈ H with age(y) < 1
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(such elements exist, for instance, one can take any transposition in Sn). By our observa-
tion and by Lemma 5.1, y induces a transposition, say (1, 2), on {V1, . . . , Vn}. We need
to show thatK := 〈yH 〉 coincides withH . It is clear thatKD = H . Next, for δ := e2πi/d

we have z := diag(δ, 1, δ−1, 1, . . . , 1) ∈ D andK 3 yzy−1z−1
= diag(δ−1, δ, 1, . . . , 1).

It is now easy to see that the set of all K-conjugates of yzy−1z−1 generates D, and so
K ≥ KD = H .

3) From now on we will assume that we are in the situation of (i) but there is no finite
subgroup Z < Z(G) such that ZG contains a complex reflection. By Lemma 2.2(ii), there
is µ ∈ S1 of finite order such that age(µg) = age∗(g) < 1. Replacing G by 〈µ · 1V 〉 ·G
and g by µg, we may (and will) assume that age(g) < 1. By the conclusion of 1), we see
thatD contains non-central elements h with age(h) < 1. By Lemma 5.4,D is normalized
by the monomial subgroup S ∼= Sn of GL(V ) (that acts via permuting the basis vectors
e1, . . . , en). In what follows we will freely conjugate elements of D by elements of S.

Let A = {x1 | ∃ diag(x1, . . .) ∈ D} be the finite subgroup of S1 consisting of all the
first diagonal entries of all the elements in D. Also, let

B = {x1/x2 | ∃ diag(x1, x2, . . .) ∈ D},

C =
{

diag(z1, . . . , zn) | zi ∈ B,

n∏
i=1

zi = 1
}
.

Observe thatC ≤ D. Indeed, if x = diag(x1, x2, x3, . . . , xn) ∈ D, then some S-conjugate
of x equals y= diag(x2, x1, x3, . . . , xn) ∈ D, and so D 3 xy−1

= diag(α, α−1, 1, . . . , 1)
with α = x1/x2 ∈ B. Conjugating xy−1 suitably, we see that any diagonal matrix with
spectrum {α, α−1, 1, . . . , 1} (with counting multiplicities and α ∈ B) belongs to D.
Now any matrix diag(z1, . . . , zn) with zi ∈ B and

∏n
i=1 zi = 1, is the product of

n − 1 diagonal matrices diag(z1, z
−1
1 , 1, . . . , 1), diag(1, z1z2, (z1z2)

−1, 1, . . . , 1), . . . ,
diag(1, . . . , 1, z1 . . . zn−1, (z1 . . . zn−1)

−1), all having spectrum of indicated shape, and
so belongs to D.

4) Set Z1 = {z · 1V | z ∈ A} < Z(G). We claim that DZ1 = CZ1. Indeed, consider
any x = diag(x1, . . . , xn) ∈ D. Conjugating x suitably, we see that yi := xi/xn ∈ B

for 1 ≤ i ≤ n − 1 and xn ∈ A. Now express y := diag(y1, y2, . . . , yn−1, 1) ∈ DZ1 as
y = t1t2 . . . tn−1, where

t1 = diag(y1, y
−1
1 , 1, . . . , 1), t2 = diag(1, y1y2, (y1y2)

−1, 1, . . . , 1), . . . ,

tn−2 = diag(1, . . . , 1, y1 . . . yn−2, (y1 . . . yn−2)
−1, 1),

tn−1 = diag(1, . . . , 1, y1 . . . yn−1, 1).

Notice that t1, . . . , tn−2 ∈ C. If y1 . . . yn−1 6= 1, then obviously tn−1 ∈ DZ1 < Z1G is a
complex reflection, a contradiction. It follows that y1 . . . yn−1 = 1. Now y = t1 . . . tn−2 ∈

C and x = xny ∈ CZ1 for all x ∈ D, and so DZ1 = CZ1, as stated.
Let |B| = b. Denoting ε := e2πi/b, we have v := diag(ε, ε, . . . , ε, ε1−n) ∈ C and

CZ1 3 ε
−1v = diag(1, . . . , 1, ε−n). In particular, if εn 6= 1, then ε−1v is a complex

reflection, again a contradiction. Hence εn = 1 and so b | n. Now we turn our attention
to the non-central element h ∈ D with age(h) < 1. Since DZ1 = CZ1, we may write
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h = λc for some λ ∈ S1 and c ∈ C. Clearly, age∗(c) ≤ age(h) < 1. By Lemma 2.2(ii)
and its proof, there is some µ ∈ S1, where µ−1 is either 1 or one of the eigenvalues of c,
such that age(µc) = age∗(c) < 1. By the construction of C, µ ∈ B. Also, det(µc) =
µn det(c) = 1 as b | n. Now observe that 0 ≤ age(u) ∈ Z for any u ∈ SL(V ). Applying
this observation to µc, we see that age(µc) ∈ Z. Since 0 ≤ age(µc) < 1, we must have
age(µc) = 0, and so µc = 1V . Thus h = λc is central, a contradiction. ut

Example 5.6. Let 2 | n ≥ 6. We exhibit an example of a finite irreducible (imprimitive)
subgroup of GLn(C) which is generated by elements of age = 2/3, but cannot be gen-
erated by complex reflections (up to scalars). First consider any n ≥ 5. Pick a basis
(e1, . . . , en) of V = Cn and consider G = 〈y1, x2, x3, . . . , xn−2, zn−1〉, where

y1 : e1 ↔ e2, ej 7→ ej for 3 ≤ j ≤ n− 1, en 7→ eπi/3en,

xi : ei ↔ ei+1, ej 7→ ej for j 6= i, i + 1, n, en 7→ −en, for 1 ≤ i ≤ n− 2,
zn−1 : en−1 ↔ en, ej 7→ ej for 1 ≤ j ≤ n− 3, en−2 7→ −en−2.

Also, consider the subgroup Gn = 〈y3
1 = x1, x2, . . . , xn−2, zn−1〉 of G. Clearly, both

G and Gn induce Sn while permuting the 1-spaces 〈e1〉, . . . , 〈en〉. Next, we have y2
1 =

diag(1, . . . , 1, e2πi/3), and so (y2
1)
G generates a normal subgroup E of order 3n of G;

furthermore, G = E : Gn. We claim that Gn is an extension of F = {diag(a1, . . . , an) |

ai = ±1,
∏n
i=1 ai = 1} by Sn. Indeed, it is clear that Gn < SL(V ), the normal sub-

group F1 of all diagonal elements of Gn is contained in F , and Gn/F1 ' Sn. We will
obtain the claim, showing by induction on n ≥ 5 that F1 = F . When n = 5, a direct
check using [GAP] shows that |G5| = 24

· |S5| and so F1 = F . For the induction step,
〈x2, . . . , xn−2, zn−1〉 fixes e1 and plays the role of Gn−1 while acting on 〈e2, . . . , en〉. By
the induction hypothesis, Gn 3 f := diag(1, 1, . . . , 1,−1,−1), whence F1 = F .

Next we show that K := 〈(y1)
G
〉 equals G, and so G is generated by elements of

age = 2/3. Clearly, K induce Sn while permuting the 1-spaces 〈e1〉, . . . , 〈en〉. Also,
K 3 y2

1 , and so K > E. Observe that f = y3
1 · zn−1y

3
1z
−1
n−1 ∈ K , whence K > F and so

K = EGn = G.
Finally, assuming 2 | n, we show that any complex reflection in Z(GL(V ))G is diag-

onal, and so G cannot be generated by complex reflections (up to scalars). Assume the
contrary: there is some t ∈ G such that Spec(t) = {γ, δ, . . . , δ} with γ 6= δ and t is not
diagonal. Since age∗(t) < 1, by Lemma 5.1 we may assume that t ≡ x1 (modEF), i.e.
t = x1u, with u = diag(u1, . . . , un), uj = εmj for some mj ∈ Z and ε := eπi/3, and∑n
j=1mj ∈ 2Z. Since Spec(t) = {

√
u1u2,−

√
u1u2, u3, . . . , un−1,−un}, we must have

−γ = δ = εk for some k ∈ Z. Now

−1 = (−δn)3 = (det(t))3 = (det(u))3 =
( n∏
j=1

uj

)3
= ε

3
∑n
j=1 mj = 1

(since 2 | n), a contradiction.

Finally, we prove an analogue of Theorem 5.5(ii) for age ≤ 1:
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Theorem 5.7. Let G < GL(V ) be a finite imprimitive, irreducible subgroup. Assume G
contains non-central elements g with age(g) ≤ 1, and ZG = Z · 〈gG〉 for any such
element g, where Z := Z(GL(V )). Then dim(V ) ≤ 8.

Proof. Assume the contrary: dim(V ) ≥ 9 for such a group G. Clearly, G satisfies the
set-up (♠). Hence G satisfies one of the conclusions (i) and (ii) of Lemma 5.2.

1) Suppose the conclusion (i) of Lemma 5.2 holds. Since n = dim(V ) ≥ 9, we have
π(G) ≥ An. Let D = Ker(π) be the subgroup of all diagonal elements of G, in a basis
(e1, . . . , en) such that Vi = 〈ei〉.

First we consider the case D 6≤ Z. Then we may assume D 3 x = diag(x1, . . . , xn)

with x1 6= x2. Choosing s ∈ G with π(s) = (1, 2, 3), we get

G 3 y = [s, x] = diag(x3/x1, x1/x2, x2/x3, 1, . . . , 1)

= diag(e2πia, e2πib, e2πic, 1, . . . 1),

where 0 ≤ a, c < 1, 0 < b < 1, and a + b + c ∈ Z. It follows that either a + b + c = 1,
in which case age(y) = 1, or a + b + c = 2, in which case age(y−1) = 1. In either case,
we have found a diagonal non-central element z with age(z) = 1. It is clear that Z〈zG〉 is
diagonal and so cannot contain G, a contradiction.

We have shown that D ≤ Z and so V yields an irreducible projective representation
of degree n ≥ 9 of Sn or An, which is impossible by degree consideration.

2) Now we assume that the conclusion (ii) of Lemma 5.2 holds: G = D : Sn, with
n ≥ 3, D < GL2(C)n and the action of Sn described in (10) for a fixed basis (ui, vi) of
each Vi . Let A = {x1 | ∃ diag(x1, . . .) ∈ D} be the finite subgroup of GL2(C) afforded
by the action of D on V1, with respect to the basis (u1, v1). Also, let

B = {x1x
−1
2 | ∃ diag(x1, x2, . . .) ∈ D},

C =
{

diag(z1, . . . , zn) | zi ∈ B,

n∏
i=1

zi = I
}
,

where I denotes the identity 2 × 2-matrix. Note that, by their definition, B and C are
finite sets. Consider any a ∈ B. Then we can find x = diag(x1, x2, x3, . . . , xn) ∈ D

with a = x1x
−1
2 , and some conjugate y = diag(x2, x1, x3, . . . , xn) ∈ D of x, whence

D 3 xy−1
= α := diag(a, a−1, I, . . . , I ). Conjugating α suitably, we see that any

matrix diag(I, . . . , I, a, a−1, I, . . . , I ) belongs to D. Similarly, if b ∈ B, then β :=
diag(b, b−1, I, . . . , I ) ∈ D, and D 3 αβ = diag(ab, a−1b−1, I, . . . , I ). Conjugating the
latter element suitably, we see that D 3 diag(ab, I, a−1b−1, I, . . . , I ) and so ab ∈ B.
Thus B is closed under multiplication and so it is a group by finiteness. By the above
observation applied to ab, γ = diag(ab, (ab)−1, I, . . . , I ) belongs to D, and so does
δ := γ−1αβ = diag(I, [a, b], I, . . . , I ). Note that, since [a, b] ∈ SL2(C) (and has finite
order |δ|), we have either age([a, b]) = 1, or [a, b] = I . In the former case, age(δ) = 1
and Z〈δG〉 ≤ ZD 6≥ G, a contradiction. Hence, [a, b] = I for all a, b ∈ B, i.e. B is an
abelian group. This in turn implies that C is a subgroup of D.

Observe that A normalizes B. (Indeed, for any x1 ∈ A and b ∈ B, there is some
x = diag(x1, x2, . . . , xn) ∈ D and u = diag(b, I, b−1, I, . . . , I ) ∈ D. Hence D 3 xu
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= diag(x1b, x2, . . .) and so B 3 x1b(x2)
−1
= x1bx

−1
1 · x1x

−1
2 . But x1x

−1
2 ∈ B, hence

x1bx
−1
1 ∈ B as stated.) Since D ≤ A × · · · × A and G = D : Sn, we see that

C � G. In fact, we claim that [Sn,D] ≤ C. To prove this, let us identify the action
of σ ∈ Sn with its action on {u1, . . . , un} and on {v1, . . . , vn} (cf. (10)). Then for
any x = diag(x1, x2, . . . , xn) ∈ D we have σ−1xσx−1

= diag(b1, . . . , bn), where
bi = xσ(i)x

−1
i ∈ B. Now choose σ = (j, j + 1) for 1 ≤ j ≤ n− 1. Then we get bi = I

for i 6= j, j + 1, and bjbj+1 = xj+1x
−1
j · xjx

−1
j+1 = I . It follows that σ−1xσx−1

∈ C,
and so σ−1(xC)σ = xC in D/C for all σ = (j, j + 1). Consequently, σ−1(xC)σ = xC

in D/C for all σ ∈ Sn, as stated.
We have shown that C � G = DSn and [D, Sn] ≤ C. Hence the subgroup CSn is

normal in G. Recall that g1 = (1, 2) has age = 1 and g1 ∈ Sn. By our assumptions,
ZG = Z〈(g1)

G
〉 ≤ K := ZCSn. It follows that ZG = K . Let 8, resp. 81, denote the

representation of ZG on V , resp. of G1 := StabZG(V1) on V1. Then G1 = ZCSn−1,
where Sn−1 is acting trivially on V1. Hence 81(G1) = 81(ZC) = C×B is abelian.
But dim(V1) = 2, so 81 is reducible. Since 8 = IndZGG1

(81), we conclude that ZG is
reducible on V , a contradiction. ut

5.2. Extraspecial case

Here,G ≤ N := NG(E) for some p-groupE of extraspecial type. By [GT1, Lemma 2.4],
either |χ(g)| = 0, or |χ(g)|2 = |CE/Z(E)(g)|. It follows that 1(g) ≥ pm(1 − 1/

√
p).

Recall that C = 9.111 in the set-up (♠). Hence dim(V ) = pm ≤ 9.111(1+1/
√

2) and so
pm ≤ 13. Since we are assuming dim(V ) ≥ 4, we need to consider the following cases.

• dim(V ) = p ≥ 11. Then 1(g) ≥ 11−
√

11 > 7.68, and so age∗(g) > 1.
• dim(V ) = pm = 9. Here,1(g) ≥ 9−3

√
3; moreover, if |χ(g)| ≤ 3 then1(g) ≥ 6.

Thus we may assume that |χ(g)| = 3
√

3. Next, E = 31+4
+ , and the character table of

N = Z(G)E : Sp4(3) has been constructed explicitly by T. Breuer. Now one can verify
directly that N/Z(N) contains two classes of elements with |χ(g)| = 3

√
3; any such

element acts on E/Z(E) = F4
3 as a symplectic transvection. One of these classes has

age∗ = 1; the other class and all remaining non-central elements in G have age∗ > 1.
• dim(V ) = pm = 8. Here,1(g) ≥ 8− 4

√
2 and E = C4 ∗ 21+6

+ . The character table
of N = Z(G)E · Sp6(2) has been constructed explicitly by Breuer. In particular, Irr(N)
contains two, complex-conjugate, characters of degree 8. Hence it suffices to consider one
of these two characters and the classes of g with |χ(g)| ≥ 4. Now one can verify directly
that N/Z(N) contains three conjugacy classes of elements g with age∗(g) = 1; their
spectra are listed in items (b1) and (c6) of Remark 3.9. In all other cases, age∗(g) > 1 by
Lemmas 2.20 and 2.21.
• dim(V ) = pm = 7. Here, 1(g) ≥ 7−

√
7; moreover, if |χ(g)| ≤ 1 then 1(g) ≥ 6.

Thus we may assume that |χ(g)| =
√

7. Next, E = 71+2
+ , and the character table of

N = Z(G)E : Sp2(7) has been constructed explicitly by Breuer. In particular, Irr(N)
contains seven characters of degree 7, with exactly six being faithful on E, each of which
is uniquely determined by its central character. Hence it suffices to consider one of these
six characters. Now one can verify directly that in the cases where |χ(g)| =

√
7, the
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smallest arc of S1 that contains all eigenvalues of g has length δ ≥ π , and so age∗(g) > 1
by Corollary 2.18.
• dim(V ) = pm = 5. Here, 1(g) ≥ 5 −

√
5 and E = 51+2

+ . The character table
of N = Z(G)E : Sp2(5) has been constructed explicitly by Breuer. In particular, Irr(N)
contains five characters of degree 5, with exactly four being faithful onE, each of which is
uniquely determined by its central character. Hence it suffices to consider one of these four
characters. Now one can verify directly that N/Z(N) contains three conjugacy classes of
elements g with age∗(g) = 1; their spectra are listed in items (b1), (c4), and (c5) of
Remark 3.9. In all other cases, age∗(g) > 1 by Corollary 2.18 (with δ ≥ 6π/5).
• dim(V ) = pm = 4. Here, 1(g) ≥ 4 − 2

√
2 and E = C4 ∗ 21+4

+ . The char-
acter table of N = Z(G)E · Sp4(2) has been constructed explicitly by Breuer. In par-
ticular, Irr(N) contains two pairs (α, α) and (β, β) of complex-conjugate characters of
degree 4; furthermore, β can be obtained from α by tensoring with the sign character
of Sp4(2) ' S6. Hence we may assume that χ = α. Now one can verify directly that
N/Z(N) contains three conjugacy classes of elements g with 0 < age∗(g) < 1 and
spectra as listed in items (a1), (a4), and (c1) of Remark 3.9. Fixing an isomorphism be-
tween Sp4(2) and S6, we may assume that these three classes project onto the classes of
(1, 2), resp. (1, 2, 3), (1, 2)(3, 4)(5, 6), in S6. N/Z(N) also contains several classes of
elements g with age∗(g) = 1 and spectra as listed in items (b1), (b2), (b4), (c2), and
(c3) of Remark 3.9. In all other cases, age∗(g) > 1. Now we show that N contains a
subgroup M leading to a basic non-RT pair not of reflection type.

Lemma 5.8. There is a subgroupM = C3× (C4 ∗21+4
+ ) ·A6 < GL(C4) which gives rise

to a basic non-RT pair not of reflection type.

Proof. SinceM�E, the subgroupM acts irreducibly on V = C4. Notice that Z(G)M =
Z(G)[N,N] has index 2 in Z(G)N . By the above analysis, all non-central elements
g ∈ M with age∗(g) < 1 in M are [N,N]-conjugate to an element g with spectrum
(e2πi/3, e2πi/3, 1, 1) which corresponds to the class of (1, 2, 3) in A6. In fact one can
choose such an element g in C3 × 2A6 < M with age(g) < 1. We have shown that
gM = {h ∈ M \ Z(M) | age(h) < 1} and that M contains no complex reflection. It
remains to show that 〈gM 〉 = M .

Denote C := C3 × C4 < Z(G), E := C4 ∗ 21+4
+ , O = EC, M1 := E · A6 < M =

C3×M1, andK := 〈gM 〉. Since (1, 2, 3)A6 generates A6, we must haveKO = M . Next,
since O/C is the unique minimal normal subgroup of M/C, we see that KC ≥ O and
so KC = KO = M . Observe that [M,M] = [M1,M1] = M1. (Indeed, it is easy to
check that [M1,M1] contains 21+4

+ · A6 and so it has index at most 2 in M1. But M1 is a
normal subgroup of index 2 in E · S6, and one can check that E · S6 has only two linear
characters. It follows that [M1,M1] = M1.) Now we have K ≥ [K,K] = [KC,KC] =
[M,M] = M1. Also, M1 is a perfect subgroup of GL(V ), whence M1 < SL(V ). But
det(g) = e4πi/3

6= 1, so M ≥ K > M1. Since M/M1 ∼= C3, we conclude that K = M .
ut

We will need the following complement to Theorem 1.3:
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Theorem 5.9. Let G < GL(V ) be a finite, irreducible, primitive, tensor indecomposable
subgroup and let g ∈ G \Z(G). If theG-module V is tensor induced, assume in addition
that g acts non-trivially on the set of tensor factors of V .

(i) If dim(V ) = 2, then age∗(g) ≥ 1/5.
(ii) If dim(V ) = 3 or 4, then age∗(g) ≥ 1/3.

(iii) If dim(V ) > 4, then age∗(g) ≥ 1/2.

Proof. 1) First we consider the case V is tensor induced; in particular, d := dim(V ) = am

for some integers a,m ≥ 2, and 1(g) ≥ d(1 − 1/a) by Lemma 2.25. Now if d = 4,
then 1(g) ≥ 2 and so age∗(g) ≥ 4/(2.9π) > 0.43 by Proposition 2.17(iii). If d ≥ 5,
then1(g) ≥ 4 and so age∗(g) ≥ 8/(2.9π) > 0.86 again by Proposition 2.17(iii) (in fact,
age∗(g) > 1 unless d = 8). From now on we may assume that V is not tensor induced.

2) Consider the case d = 2 and assume that age∗(g) < 1/5. Then we may write
Spec(g) = {1, eiα} with 0 < α < 2π/5. It follows that |Tr(g)| = 2 cos(α/2) >
2 cos(π/5) = (1+

√
5)/2 and so 1(g) < (3−

√
5)/2, contradicting Theorem 1.3(i).

Next assume d = 3 and age∗(g) < 1/3. Then we may write Spec(g) = {1, eiα, eiβ}
with 0 ≤ α ≤ β ≤ α + β < 2π/3; in particular,

|Tr(g)|2 = 3+ 2 cos(β)+ 4 cos(β/2) cos(β/2− α).

Now cos(β) > −1/2 and cos(β/2) > 1/2 as 0 ≤ β < 2π/3. Also, cos(β/2− α) > 1/2,
since −π/3 < −α/2 ≤ β/2− α ≤ β/2 < π/3. It follows that |Tr(g)|2 > 3− 1+ 1 = 3
and so 1(g) < 3−

√
3, contradicting Theorem 1.3(ii).

3) Now we may assume that d ≥ 4. If we are in the extraspecial case, then age∗(g) ≥
1/2 by the results of §5.2. Otherwise, by [GT3, Proposition 2.8] we may apply Theo-
rem 3.8. ut

Note that the lower bounds given in Theorem 5.9 are best possible: cf. the examples of
SL2(5) < GL2(C), 31+2

+ : SL2(3) < GL3(C), and Table I for examples in dimensions
≥ 4.

5.3. Tensor decomposable case

Lemma 5.10. In the set-up (♠), assume that the G-module V is primitive and tensor
decomposable. Then d := dim(V ) ≤ 10.

Proof. Write V = V1 ⊗ · · · ⊗ Vm, where Vi are irreducible, primitive, tensor indecom-
posable G-modules of dimension ≥ 2, and m ≥ 2.

1) Consider the case where dim(Vi) ≥ 3, say for i = 1, and set W := V2 ⊗ · · · ⊗ Vm.
Then we can find g ∈ X such that g|V1 is non-scalar. In case the G-module V1 is tensor
induced, among such elements g we can find one that acts non-trivially on the set of
tensor factors of V1 (as otherwise the G-module V1 would be tensor decomposable). By
Theorem 5.9, age∗(g|V1) ≥ 1/3. By Lemma 2.2(iv), 1 ≥ age∗(g) ≥ dim(W) ·age∗(g|V1).
It follows that dim(W) ≤ 3 and so m = 2. Again, we can find h ∈ X such that h|V2 is
non-scalar. Notice that the G-module V2 is not tensor induced.
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Assume dim(V2) = 3. Then age∗(h|V2) ≥ 1/3 by Theorem 5.9(ii). Now by Lemma
2.2(iv), 1 ≥ age∗(h) ≥ dim(V1) · age∗(h|V2). It follows that dim(V1) ≤ 3 and so d ≤ 9.

Assume dim(V2) = 2. Then age∗(h|V2) ≥ 1/5 by Theorem 5.9(i). Now by Lemma
2.2(iv), 1 ≥ age∗(h) ≥ dim(V1) · age∗(h|V2). It follows that dim(V1) ≤ 5 and so d ≤ 10.

2) Now assume that dim(Vi) = 2 for all i; in particular, the G-module Vi is not
tensor induced. Then we can find g ∈ X such that g|V1 is non-scalar. By Theorem 5.9(i),
age∗(g|V1) ≥ 1/5. It now follows from Lemma 2.2(iv) that 1 ≥ age∗(g) ≥ (d/dim(V1)) ·

age∗(g|V1), d/dim(V1) ≤ 5, and so d ≤ 10. In fact, d = 4 or 8 in this case. ut

The example of (C5 × SL2(5)) ∗ (C2 × SU4(2)) acting on C2
⊗C5 shows that the bound

10 in Lemma 5.10 is best possible.

Lemma 5.11. In the set-up (♠), assume that the G-module V is primitive and tensor
decomposable and that G contains a non-central element g with age∗(g) < 1. Then
dim(V ) ≤ 8.

Proof. Assume the contrary: d := dim(V ) ≥ 9. Notice that d ≤ 10 by Lemma 5.10. It
follows that d = 9 or 10, and V = A⊗B, whereA andB are irreducible, primitive, tensor
indecomposable, not tensor induced, G-modules of dimension > 1. Since g /∈ Z(G), we
may assume that g|A is not scalar.

Assume dim(A) = 3 (and so dim(B) = 3). Then age∗(g|A) ≥ 1/3 by Theorem
5.9(ii), and so age∗(g) ≥ dim(B) · age∗(g|A) ≥ 1 by Lemma 2.2(iv), a contradiction.
Thus dim(A) = 2 or 5. Assume dim(A) = 2 (and so dim(B) = 5). Then age∗(g|A) ≥
1/5 by Theorem 5.9(i). Again by Lemma 2.2(iv), age∗(g) ≥ dim(B) · age∗(g|A) ≥ 1,
a contradiction. Finally, let dim(A) = 5 (and so dim(B) = 2). Then age∗(g|A) ≥ 1/2 by
Theorem 5.9(iii), and so age∗(g) ≥ dim(B) · age∗(g|A) ≥ 1, again a contradiction. ut

The example of (C5 × SL2(5)) ∗ (C3 × Sp4(3)) acting on C2
⊗ C4 shows that the bound

8 in Lemma 5.11 is best possible.

Lemma 5.12. Let g = A⊗B, where A ∈ G < GLm(C), B ∈ H < GLn(C), withm ≥ 3
and n ≥ 2. Assume that G and H are finite primitive irreducible subgroups, and that
A,B are non-scalar. Then age∗(g) > 1.

Proof. 1) Assume the contrary: age∗(g) ≤ 1. By a well-known result of Blichfeldt (cf.
[D]), the smallest arc that contains all eigenvalues of any non-central element in any
finite, primitive, irreducible linear group has length ≥ π/3. Thus α, β ≥ 1/6, where
2πα, resp. 2πβ, is the length of such smallest arc for A, resp. for B. In particular,
age∗(A), age∗(B) ≥ 1/6. On the other hand, age∗(A) ≤ 1/n ≤ 1/2 and age∗(B) ≤
1/m ≤ 1/3 by Lemma 2.2(iv), whence α ≤ 1/2 and β ≤ 1/3. By Lemma 2.2(ii), we can
multiply g by a suitable scalar and assume that age(g) ≤ 1. Multiplying B by a suitable
µ ∈ S1 and A by µ−1, we may assume that Spec(B) 3 1, e2πiβ , and all other eigen-
values of B belong to the arc [1, e2πiβ ] of S1. Write A = diag(e2πiα1 , . . . , e2πiαm) with
0 ≤ αj < 1.
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2) Here we consider the case n ≥ 3. Then B has a third eigenvalue e2πiδ with 0 ≤
δ ≤ β. For 0 < γ ≤ 1, observe that

age(e−2πiγB) ≥

 1+ β + δ − 3γ ≥ 1+ β − 2δ, 0 < γ ≤ δ,

2+ β + δ − 3γ ≥ 2(1− β) > 1, δ < γ ≤ β,

β + δ + 3(1− γ ) ≥ β + δ, β < γ ≤ 1.

We will apply this observation to γ = γj := 1 − αj . Since 1 ≥ age(A ⊗ B) =∑m
j=1 age(e−2πiγjB), we see that all γj must belong to (β, 1], and

1 ≥ age(A⊗ B) ≥
m∑
j=1

(β + δ + 3(1− γj )) ≥ mβ + 3
m∑
j=1

αj = mβ + 3age(A).

Recall m ≥ 3, β ≥ 1/6, and age(A) ≥ 1/6. It follows that m = 3 and age(A) = 1/6.
The last equality however contradicts Theorem 5.9(ii) applied to the element A of G.

3) Now we let n = 2. For 0 < γ ≤ 1, we have

age(e−2πiγB) =

{
1+ β − 2γ ≥ 1− β, 0 < γ ≤ β,

2+ β − 2γ ≥ β, β < γ ≤ 1.

We will again apply this observation to γ = γj := 1 − αj to estimate age(A ⊗ B) =∑m
j=1 age(e−2πiγjB). If at least one γj belongs to (0, β], then age(g) ≥ 1−β+(m−1)β
≥ 1+ (m− 2)β > 1, a contradiction. Hence, all γj belong to (β, 1], and so

1 ≥ age(A⊗ B) =
m∑
j=1

(β + 2(1− γj )) = mβ + 2
m∑
j=1

αj = mβ + 2age(A).

Recall that m ≥ 3, age(A) ≥ 1/6, and β = age(B) ≥ 1/5 by Theorem 5.9(i) applied
to the element B of H . It follows that m ≤ (1 − 2/6)/(1/5) and so m = 3. But in this
case, Theorem 5.9(ii) applied to the element A of G implies that age(A) ≥ 1/3 and so
age(A⊗ B) ≥ 3/5+ 2/3 > 1. ut

Corollary 5.13. Let G < GL(V ) be a finite primitive irreducible subgroup. Assume that
dim(V ) ≥ 5 and that the G-module V is tensor decomposable. Then, for any g ∈ G with
age∗(g) ≤ 1, ZG 6= Z〈gG〉, where Z := Z(GL(V )).

Proof. Write V = A ⊗ B for some G-modules A, B of dimension > 1. Then G is
irreducible and primitive on both A and B. Now consider any g ∈ G with age∗(g) ≤ 1.
By Lemma 5.12, g must act scalarly on A or on B, say on A. In this case,H := 〈gG〉 also
acts scalarly on A and so ZG 6= ZH by irreducibility of G on A. ut

5.4. Tensor induced case

Proposition 5.14. In the set-up (♠), assume that the G-module V is primitive, tensor
indecomposable, but tensor induced. Then dim(V ) = 4 or 8. Moreover, if dim(V ) = 8,
then G cannot be generated by its elements h with age∗(h) < 1 (modulo scalars).
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Proof. 1) By the assumptions, there is a tensor decomposition V = V⊗m1 with a :=
dim(V1) > 1 and m > 1 such that G < GL(V1)

⊗m : Sm, and there is some g ∈ X such
that 0 < age∗(g) ≤ 1 and g acts non-trivially on the m tensor factors of V . By Lemma
2.25, 4.556 > 1(g) = dim(V )−|Tr(g)| ≥ am−1(a−1). It follows that a = 2 andm = 2
or 3.

From now on we assume that (a,m) = (2, 3), i.e. V = V1 ⊗ V2 ⊗ V3 and dim(Vi)
= 2. Then g must project onto a 2-cycle of S3, as otherwise by Lemma 2.25, 1(g) ≥
8 − 2 = 6 and so age∗(g) > 1. Without loss we may assume that g = A ⊗ B, with
A < GL(V1)

⊗2 : S2 permuting the two tensor factors V1 and V2, and B ∈ GL(V3), and
that g has finite order: gN = I8 for some integer N > 1. (Here we let In denote the
identity n × n-matrix.) It follows that AN ⊗ BN = I8 = I4 ⊗ I2. By (the first sentence
of) the proof of Lemma 2.24, we can multiply A by a suitable λ ∈ C× (and B by λ−1)
such that AN = I4 and BN = I2.

2) Here we show that age∗(A) ≥ 1/2 and age∗(g) ≥ 1. By our assumptions, there
are some bases (e1, e2) of V1 and (f1, f2) of V2, and matrices X, Y ∈ GL2(C) such that,
in the basis (e1 ⊗ f1, e2 ⊗ f1, e1 ⊗ f2, e2 ⊗ f2) of V1 ⊗ V2, A = j(X ⊗ Y ), where
j : ei ⊗ fj 7→ ej ⊗ fi . Now direct computation shows that

det(A− tI ) = t4 − Tr(XY) · t3 + Tr(XY) · det(XY) · t − det(XY)2.

In particular, writing Spec(XY) = {x, xu2
} for some x, u ∈ C×, we get Spec(A) =

{x, xu2, xu,−xu}. Hence age∗(A) ≥ 1/2 by Lemma 2.20. Now by Lemma 2.2(iv) we
have age∗(g) ≥ 2age∗(A) ≥ 1. This lower bound is best possible as age(j⊗ I2) = 1 (in
fact, j⊗ I2 acts as a bireflection on V ).

3) We have shown that any element of G that acts non-trivially on the set of three
tensor factors of V has age∗ ≥ 1. In particular, if age∗(h) < 1 for some h ∈ G, then h
belongs to the base subgroupG∩GL(V1)⊗GL(V2)⊗GL(V3). Thus Z(GL(V )) · 〈h ∈ G |
age∗(h) < 1〉 < Z(GL(V ))G. ut

5.5. Proof of Theorem 1.7

Let d := dim(V ) > 4 and let G < GL(V ) satisfy the hypotheses of the theorem. If
G is imprimitive, then the statement follows from Lemma 5.2 and Theorem 5.5(ii). So
we may assume that the G-module V is primitive. Now by Corollary 5.13, V is tensor
indecomposable, and so it cannot be tensor induced by Proposition 5.14. The extraspecial
case cannot occur either, by the results of §5.2. Thus G is almost quasi-simple by [GT3,
Proposition 2.8], i.e. S �G/Z(G) ≤ Aut(S) for some simple non-abelian group S.

We can now apply Theorem 3.8; in particular, either (d, S) = (n − 1,An) or d ≤ 8.
In the former case, up to scalars, G = Sn (in its action on the deleted natural permutation
module) and so a c.r.g. Consider the latter case. If d = 8, then S = �+8 (2), G/Z(G) =
S · 2, and up to scalars, G is the Weyl group of type E8. If d = 7, then G/Z(G) = S =
Sp6(2), and up to scalars,G is the Weyl group of type E7. Assume d = 6. If S = SU4(2),
thenG/Z(G) = S ·2, and up to scalars,G is the Weyl group of type E6. If S = PSU4(3),
then G/Z(G) = S · 22 in the notation of [Atlas] (the other two involutions in Out(S)
do not preserve the 6-dimensional representation in question of G(∞)), and so G is a
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c.r.g. modulo scalars. In all these cases, there is only one conjugacy class in G/Z(G)
that contains non-central elements g with age∗(g) < 1, and these elements g are scalar
multiples of reflections. Finally, if d = 5, then G = SU4(2) · Z(G) and so it is also a
c.r.g. modulo scalars. ut

5.6. Proof of Theorem 1.4

Let (G, V ) satisfy the hypotheses of the theorem. If the G-module V is imprimitive, then
the statement follows from Lemmas 5.2 and 5.3. (Notice that in case (iii) the transposi-
tions in the subgroup Sn act on V as bireflections.) So we may assume that V is primitive,
of dimension ≥ 11. Hence the extraspecial case cannot occur by the analysis in §5.2.
Next, the G-module V cannot be tensor decomposable or tensor induced by Lemma 5.10
and Proposition 5.14. Thus we are in the almost quasi-simple case and can apply Theorem
3.8. Since dim(V ) ≥ 11, we arrive at conclusion (i). ut

5.7. Proof of Theorem 1.5

Let (G, V ) satisfy the hypotheses of the theorem. First we consider the case where the
G-module V is imprimitive and apply Lemma 5.2. In the case (ii) of Lemma 5.2, we
arrive at conclusion (ii) of the theorem (notice that all elements of G with age∗ < 1 are
contained in D and so cannot generate G modulo scalars). Suppose we are in the case (i)
of Lemma 5.2. ThenG satisfies the hypotheses of Theorem 5.5(i), and so we are done. So
we may assume that V is primitive and dim(V ) ≥ 9. Hence the extraspecial case cannot
occur by the analysis in §5.2. Next, the G-module V cannot be tensor decomposable or
tensor induced by Lemma 5.11 and Proposition 5.14. Thus we are in the almost quasi-
simple case and can apply Theorem 3.8. Since dim(V ) ≥ 9, we must now haveG = Sd+1
modulo scalars, as stated in (i). ut

Remark 5.15. (a) The group (C5 × SL2(5)) ∗ (C3 × Sp4(3)) < GL8(C) is generated by
its elements of age < 1, yet does not contain any complex reflection by Lemma 5.12.
Thus the bound d ≥ 9 in Theorem 1.5 is best possible.

(b) The case (ii) of Theorem 1.5 indeed occurs, as shown in the following example.
Consider the subgroupA = C7×SL2(5) of GL2(C) and letG be the wreath productAoSn
acting on V = C2n for any n ≥ 2. It is easy to check that G is generated by its (non-
central) elements with age ≤ 1, and G contains non-central elements with age = 2/7.
However, G does not contain any complex reflection. For, suppose g ∈ G is conjugate to
diag(α, α, . . . , α, β) for some α 6= β ∈ S1. By Lemma 5.2, g = diag(a1, . . . , an) ∈ A

n

since 0 < age∗(g) < 1. It follows that α14
= 1 and that some element x ∈ SL2(5) has

eigenvalues µα, µβ for some µ ∈ S1 with µ7
= 1. Now (µα)14

= 1, and so x must be
scalar, whence α = β, a contradiction.

5.8. Proof of Corollary 1.2

By assumption, 2π‖g‖ ≤ L for some 1 6= g ∈ G. Let N be the (normal) subgroup
generated by all elements in G with this property. By Corollary 2.12, N is generated by
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a set of elements g with d2(g)
2
≤ C, where C = max{4, L2

}. Also by [GT3, Lemma
2.5], either N ≤ Z(G), or N is irreducible on V . In the former case, the cyclic group
Z(G) contains an element g = e2πij/s

· 1V with s := |Z(G)|, 1 ≤ j ≤ s − 1, and
L ≥ 2π‖g‖ ≥ 2π

√
dim(V )/s, whence dim(V ) ≤ (Ls/2π)2. In the latter case, we may

apply Theorem 1.1 to N . Assume that the conclusion (i) of Theorem 1.1 does not hold;
in particular, d := dim(V ) > 40C ≥ 160. In case the conclusion (ii) of Theorem 1.1
holds for N , we have G�M := N (∞) ∼= Ad+1 and M acts irreducibly on V . By Schur’s
Lemma, CG(M) = Z(G), andG/CG(M) ≤ Aut(M) = M ·2, whence the conclusion (ii)
of Theorem 1.1 holds for G.

Finally, assume that the conclusion (iii) of Theorem 1.1 holds for N , and let D be the
normal subgroup ofN that fixes each Vi (setwise); in particular, Am ≤ N/D ≤ Sm. In this
case, 40C < d = m dim(V1) ≤ mC/4, whence m > 160. If, in addition, m ≤ C/4 + 1,
then C ≥ 640 and so d ≤ mC/4 ≤ (C/4 + 1)C/4 < 4C2/63 ≤ f(C). Hence we may
assumem > max{160, C/4+1}. Set e := dim(V1) and let C be the collection of all finite
simple groups S with the property that either S is cyclic, or S ∼= X/Y for some finite
subgroups Y �X < PGLe(C). Observe that every composition factor of D belongs to C.
(Indeed, consider the chain D = D0 � D1 · · · � Dm = 1, where Di is the kernel of the
action of Di−1 on Vi for 1 ≤ i ≤ m. Now let S be any non-abelian composition factor
of Di/Di−1. Thus S ∼= A/B for some B � A < GL(Vi) since Di/Di−1 ↪→ GL(Vi).
Since S is non-abelian, S is also a composition factor of AZ/BZ for Z := Z(GL(Vi)).
It follows that S is a composition factor of AZ/Z < PGL(Vi) ∼= PGLe(C), i.e. S ∈ C.)
Let R be the largest normal subgroup of N with every composition factor belonging to
C (cf. Lemma 2.26). Then D � R � N . Assume that R > D. Then Am is a composition
factor of R and so Am ∈ C. The latter inclusion means that Am ∼= X/Y for some finite
subgroups Y � X < PGLe(C), with e ≤ C/4 < m − 1 and m > 160. This however
contradicts the Feit–Tits Theorem (cf. [KlL, Theorem 3]). Thus R = D. By Lemma 2.26,
R � G. We have shown that D � G. Since D is reducible on V , by [GT3, Lemma 2.5]
we must have D ≤ Z(G) ∩N = Z(N). It follows that V yields an irreducible projective
representation of degree me ≤ mC/4 < m2 of N/D ∈ {Am,Sm}. Recall that m > 160.
Using the information on the small degrees of irreducible projective representations of
N/D as given in [Ra] and [KT], we see that me = m(m − 3)/2, M = N (∞) ∼= Am,
and V |M equals the restriction of the Specht module S(m−2,2) (labeled by the partition
(m − 2, 2)) to Am. But the latter restriction is primitive, whereas V is imprimitive, a
contradiction. ut

5.9. Proof of Corollary 1.6

By the assumption and the Reid–Tai criterion [R1], age(g) ≤ 1 for some 1 6= g ∈ G.
Let N be the (normal) subgroup generated by all elements in G with this property. By
[GT3, Lemma 2.5], either N ≤ Z(G), or N is irreducible on V = Cd . In the former
case, the cyclic group Z(G) contains an element g = e2πij/s

· 1V with s := |Z(G)|,
1 ≤ j ≤ s − 1, and 1 ≥ age(g) ≥ dim(V )/s, whence dim(V ) ≤ s. In the latter case,
we may apply Theorem 1.4 to N . Assume that the conclusion (i) of Theorem 1.1 holds
for N . Then G�M := N (∞) ∼= Ad+1 and M acts irreducibly on V . By Schur’s Lemma,
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CG(M) = Z(G), and G/CG(M) ≤ Aut(M) = M · 2, whence the conclusion (i) of
Corollary 1.6 holds for G.

Next, assume that either the conclusion (ii) or (iii) of Theorem 1.4 holds for N . In
the case of (ii), define D to be the normal subgroup of N that fixes each Vi (setwise);
in the case of (iii), consider the normal subgroup D defined therein. In particular, An ≤
N/D ≤ Sn. Also, let C be the collection of all finite simple groups S with the property
that either S is cyclic, or S ∼= X/Y for some finite subgroups Y � X < PGL2(C) (and
so S ∼= A5, as easily seen). Notice n ≥ 6 since n ≥ d/2. Arguing as in the last part of
the proof of Corollary 1.2, we see that D is the largest normal subgroup of N with all
composition factors belonging to C, and so D �G by Lemma 2.26. Since D is reducible
on V , by [GT3, Lemma 2.5] we must haveD ≤ Z(G)∩N = Z(N). Now in the case of the
conclusion (iii) of Theorem 1.4 for N , we have N = SnZ(N), with Sn acting reducibly
on V , a contradiction. Thus we are in the case of the conclusion (ii) of Theorem 1.4, in
particular n ≥ 11, and V yields an irreducible projective representation of degree n of
N/D ∈ {An,Sn}, again a contradiction. ut

5.10. Small dimension case

Proposition 5.16. Let G satisfy the set-up (♠), with 4 ≤ d := dim(V ) ≤ 10. Then one
of the following statements holds.

(i) G preserves a decomposition V = V1⊕· · ·⊕Vd of V into 1-spaces, and (π(G), d) =
(Sd , d), (Ad , d), (ASL3(2), 8), (SL3(2), 7), (A5, 6), (D10, 5), if π denotes the in-
duced permutation action of G on {V1, . . . , Vd}.

(ii) 2 | d , and G = D : Sd/2 < GL2(C) o Sd/2, a split extension of D < GL2(C)d/2 by
Sd/2.

(iii) G preserves a decomposition V = A⊗ B, with dim(A), dim(B) > 1.
(iv) G preserves a tensor structure V = A⊗m, with dim(A) = 2 and m = 2, 3.
(v) 4 ≤ dim(V ) = pa ≤ 9 for some prime p, and G normalizes a p-group E of

extraspecial type, with |E/Z(E)| = p2a .
(vi) G is almost quasi-simple, and G satisfies the conclusions of Theorem 3.8.

Proof. If the G-module V is imprimitive, then the statement follows from Lemma 5.2.
Assume V is primitive. Next, (iii), resp. (iv), (v), corresponds to the case when the G-
module V is tensor decomposable, resp. tensor induced, or G is in the extraspecial case.
Otherwise, by [GT3, Proposition 2.8] G satisfies the hypothesis, and so the conclusions,
of Theorem 3.8. ut
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