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Abstract. We describe finitely generated groups H universally equivalent (with constants from G
in the language) to a given torsion-free relatively hyperbolic groupGwith free abelian parabolics. It
turns out that, as in the free group case, the groupH embeds into Lyndon’s completionGZ[t] of the
group G, or, equivalently, H embeds into a group obtained from G by finitely many extensions of
centralizers. Conversely, every subgroup ofGZ[t] containingG is universally equivalent toG. Since
finitely generated groups universally equivalent to G are precisely the finitely generated groups
discriminated by G, the result above gives a description of finitely generated groups discriminated
byG. Moreover, these groups are exactly the coordinate groups of irreducible algebraic sets overG.

1. Introduction

Denote by G the class of all non-abelian torsion-free relatively hyperbolic groups with
free abelian parabolics. In this paper we describe finitely generated groups that have the
same universal theory as a given group G ∈ G (with constants from G in the language).
We say that they are universally equivalent to G. These groups are central to the study
of logic and algebraic geometry of G. It turns out that, as in the case when G is a non-
abelian free group [11], a finitely generated group H universally equivalent to G embeds
into Lyndon’s completion GZ[t] of the group G, or equivalently, H embeds into a group
obtained from G by finitely many extensions of centralizers. Conversely, every subgroup
of GZ[t] containing G is universally equivalent to G [2]. Let H and K be G-groups
(contain G as a subgroup). We say that a family of G-homomorphisms (homomorphisms
identical on G) F ⊂ HomG(H,K) separates [discriminates] H into K if for every non-
trivial element h ∈ H [every finite setH0 ⊂ H of non-trivial elements] there exists φ ∈ F
such that hφ 6= 1 [hφ 6= 1 for every h ∈ H0]. In this case we say that H is G-separated
[G-discriminated] by K . Sometimes we do not mention G and simply say that H is
separated [discriminated] byK . WhenK is a free group we say thatH is freely separated
[freely discriminated]. Since finitely generated groups universally equivalent to G are
precisely the finitely generated groups discriminated by G ([1], [15]), the result above
gives a description of finitely generated groups discriminated by G or fully residually
G-groups. These groups are exactly the coordinate groups of irreducible algebraic sets
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over G. Therefore we obtain a complete description of irreducible algebraic sets over G.
Our proof uses the results of [7] and [17], [19].

1.1. Algebraic sets

Let G be a group generated by A, and F(X) the free group on X = {x1, . . . , xn}. A sys-
tem of equations S(X,A) = 1 in variables X and with coefficients fromG can be viewed
as a subset of G ∗ F(X). A solution of S(X,A) = 1 in G is a tuple (g1, . . . , gn) ∈ G

n

such that S(g1, . . . , gn) = 1 in G. The set VG(S) of all solutions of S = 1 in G is called
the algebraic set defined by S.

The maximal subset R(S) ⊆ G ∗ F(X) with

VG(R(S)) = VG(S)

is the radical of S = 1 in G. The quotient group

GR(S) = G[X]/R(S)

is the coordinate group of S = 1.
The following conditions are equivalent:

• G is equationally Noetherian, i.e., every system S(X) = 1 over G is equivalent to
some finite part of itself;
• the Zariski topology (formed by algebraic sets as a subbasis of closed sets) over Gn

is Noetherian for every n, i.e., every proper descending chain of closed sets in Gn is
finite.
• every chain of proper epimorphisms of coordinate groups over G is finite.

If the Zariski topology is Noetherian, then every algebraic set can be uniquely presented
as a finite union of its irreducible components:

V = V1 ∪ · · · ∪ Vk.

Recall that a closed subset V is irreducible if it is not the union of two proper closed
subsets (in the induced topology).

1.2. Fully residually G-groups

A direct limit of a direct system of finite partial n-generated subgroups of G such that all
products of generators and their inverses eventually appear in these partial subgroups, is
called a limit group overG. The same definition can be given using the notion of “marked
group”.

A marked group (G, S) is a group G with a prescribed family of generators S =
(s1, . . . , sn). Two marked groups (G, (s1, . . . , sn)) and (G′, (s′1, . . . , s

′
n)) are isomorphic

as marked groups if the bijection si ↔ s′i extends to an isomorphism. For example,
(〈a〉, (1, a)) and (〈a〉, (a, 1)) are not isomorphic as marked groups. Denote by Gn the set
of groups marked by n elements up to isomorphism of marked groups. One can define a
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metric on Gn by setting the distance between two marked groups (G, S) and (G′, S′) to
be e−N if they have exactly the same relations of length at most N . (This metric was used
in [8], [5], [3].) Finally, a limit group over G is a limit (with respect to the metric above)
of marked groups (Hi, Si), where Hi ≤ G, i ∈ N, in Gn.

The following two theorems summarize properties that are equivalent for a group H
to the property of being discriminated by G (being G-discriminated by G).

Theorem A. [No coefficients] Let G be an equationally Noetherian group. Then for a
finitely generated group H the following conditions are equivalent:

1. Th∀(G) ⊆ Th∀(H), i.e., H ∈ Ucl(G);
2. Th∃(G) ⊇ Th∃(H);
3. H embeds into an ultrapower of G;
4. H is discriminated by G;
5. H is a limit group over G;
6. H is defined by a complete atomic type in the theory Th∀(G);
7. H is the coordinate group of an irreducible algebraic set over G defined by a system

of coefficient-free equations.

For a group A we denote by LA the language of groups with constants from A.

Theorem B. [With coefficients] Let A be a group and G an A-equationally Noetherian
A-group. Then for a finitely generated A-group H the following conditions are equiva-
lent:

1. Th∀,A(G) = Th∀,A(H);
2. Th∃,A(G) = Th∃,A(H);
3. H A-embeds into an ultrapower of G;
4. H is A-discriminated by G;
5. H is a limit group over G;
6. H is a group defined by a complete atomic type in the theory Th∀,A(G) in the lan-

guage LA;
7. H is the coordinate group of an irreducible algebraic set over G defined by a system

of equations with coefficients in A.

Equivalences 1⇔ 2⇔ 3 are standard results in mathematical logic. We refer the reader
to [20] for the proof of 2⇔ 4, to [9], [1] for the proof of 4⇔ 7. Obviously, 2⇒ 5⇒ 3.
The above two theorems are proved in [4] for arbitrary equationally Noetherian algebras.
Notice that in the case when G is a free group and H is finitely generated, H is a limit
group if and only if it is a limit group in the terminology of [21], [3] or [6], [7].

1.3. Lyndon’s completions of CSA-groups

The paper [15], following Lyndon [14], introduced a Z[t]-completion GZ[t] of a given
CSA-group G. In [2] it was shown that if G is a CSA-group satisfying the Big Powers
condition, then finitely generated subgroups of GZ[t] are G-universally equivalent to G.

We refer to finitely generated G-subgroups of GZ[t] as exponential extensions of G
(they are obtained from G by iteratively adding Z[t]-powers of group elements). The
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groupGZ[t] is the union of an ascending chain of extensions of centralizers of the groupG
(see [15]).

A group obtained as the union of a chain of extensions of centralizers

0 = 00 < 01 < · · · <
⋃
0k

where
0i+1 = 〈0i, ti | [C0i (ui), ti] = 1〉

(extension of the centralizer C0i (ui)) is called an iterated extension of centralizers and is
denoted 0(U, T ), where U = {u1, . . . , uk} and T = {t1, . . . , tk}.

Every exponential extension H of G is also a subgroup of an iterated extension of
centralizers of G.

1.4. Relatively hyperbolic groups

A group G is hyperbolic relative to a collection {Hλ}λ∈3 of subgroups (parabolic sub-
groups) if G is finitely presented relative to {Hλ}λ∈3,

G =
〈
X ∪

(
H =

⊔
λ∈3

Hλ

) ∣∣∣ R〉,
and there is a constant L > 0 such that for any wordW ∈ X∪H representing the identity
in G we have Arearel(W) ≤ L‖W‖, where Arearel(W) is the minimal number k such
that W =

∏k
i=1 giRig

−1
i , ri ∈ R, in the free product of the free group with basis X and

groups {Hλ}λ∈3.
In [7, Theorem 5.16] Groves showed that groups from G are equationally Noetherian.

By Theorem 1.14 of [17] the centralizer of every hyperbolic element from a groupG ∈ G
is cyclic. Therefore any non-cyclic abelian subgroup is contained in a finitely generated
parabolic subgroup. It follows that finitely generated groups from G are CSA, that is, have
malnormal maximal abelian subgroups (see also [6, Lemma 6.7]).

1.5. Big Powers condition

We say that an element g ∈ G is hyperbolic if it is not conjugate to an element of one of
the subgroups Hλ, λ ∈ 3.

Proposition 1.1. Groups from G satisfy the Big Powers condition for hyperbolic ele-
ments: if U is a set of hyperbolic elements, g = g1u

n1
1 g2 . . . u

nk
k gk+1, u1, . . . , uk ∈ U ,

and g−1
i+1uigi+1 do not commute with ui+1, then there exists a positive number N such

that if |ni | ≥ N , i = 1, . . . , k, then g 6= 1.

The proof of this proposition is similar to that of [19, Lemma 4.4] and was suggested by
D. Osin.

The Cayley graph of G with respect to the generating set X ∪ H is denoted by
0(G,X ∪ H). For a path p in 0(G,X ∪ H), l(p) denotes its length, and p− and p+
denote the origin and the terminus of p, respectively.
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Definition 1.2 ([17]). Let q be a path in the Cayley graph 0(G,X ∪H). A (non-trivial)
subpath p of q is called an Hλ-component for some λ ∈ 3 (or simply a component) if

(a) the label of p is a word in the alphabet Hλ \ {1};
(b) p is not contained in a bigger subpath of q satisfying (a).

Two Hλ-components p1, p2 of a path q in 0(G,X ∪ H) are called connected if there
exists a path c in 0(G,X ∪ H) that connects some vertex of p1 to some vertex of p2
and the label of the path, denoted φ(c), is a word consisting of letters from Hλ \ {1}. In
algebraic terms this means that all vertices of p1 and p2 belong to the same coset gHλ
for a certain g ∈ G. Note that we can always assume that c has length at most 1, as every
non-trivial element of Hλ \ {1} is included in the set of generators. An Hλ-component p
of a path q is called isolated (in q) if no distinct Hλ-component of q is connected to p.

The following lemma can be found in [18, Lemma 2.7].

Lemma 1.3. Suppose that G is a group hyperbolic relative to a collection {Hλ | λ ∈ 3}
of subgroups. Then there exists a constant K > 0 and finite subset � ⊆ G such that the
following condition holds. Let q be a cycle in 0(G,X ∪H), p1, . . . , pk a set of isolated
components of q for some λ ∈ 3, and g1, . . . , gk the elements of G represented by the
labels of p1, . . . , pk , respectively. Then for any i = 1, . . . , k, gi belongs to the subgroup
〈�〉 ≤ G and the word lengths of gi with respect to � satisfy the inequality

k∑
i=1

|gi |� ≤ Kl(q).

Recall also that a subgroup is elementary if it contains a cyclic subgroup of finite index.
The lemma below is proved in [19].

Lemma 1.4. Let g be a hyperbolic element of infinite order in G. Then

1. The element g is contained in a unique maximal elementary subgroup EG(g) of G.
2. The group G is hyperbolic relative to the collection {Hλ | λ ∈ 3} ∪ {EG(g)}.

Proof of Proposition 1.1. It suffices to prove the proposition under the following addi-
tional assumption: if ui and uj are conjugate, then ui = uj , and if ui = ui+1, then
gi+1 6∈ E(ui). Indeed, if uj = h−1uih, we replace uj by ūj = ui = hujh−1, gj by ḡj =
gjh
−1 and gj+1 by ḡj+1 = hgj+1. If [g−1

j uj−1gj , uj ] 6= 1, then h[g−1
j uj−1gj , uj ]h−1

=

[ḡ−1
j uj−1ḡj , ūj ] 6= 1. Similarly, if [g−1

j+1ujgj+1, uj+1] 6= 1, then [ḡ−1
j+1ūj ḡj+1, uj+1] 6= 1.

The CSA condition implies that [g−1
i+1uigi+1, ui] = 1 is equivalent to gi+1 ∈ E(ui).

Joining g1, . . . , gk+1 to the finite relative generating set X if necessary, we may as-
sume that g1, . . . , gk+1 ∈ X. Set

F = {f ∈ 〈�〉 | |f |� ≤ 4K},

where K and � are given by Lemma 1.3. Suppose that g1u
n1
1 . . . gku

nk
k gk+1 = 1. We

consider a loop p = q1r1q2r2 . . . qkrkqk+1 in 0(G,X ∪H), where qi (respectively, ri) is
labeled by gi (respectively by unii ).
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Note that r1, . . . , rk are components of p. First assume that not all of these compo-
nents are isolated in p. Suppose that ri is connected to rj for some j > i and j − i is
minimal possible. Let s denote the segment [(ri)+, (rj )−] of p, and let e be a path of
length at most 1 in 0(G,X ∪ H) labeled by an element of Hλ such that e− = (ri)+,
e+ = (rj )− (see Fig. 1). If j = i + 1, then the label Lab(s) is gi+1. This contradicts
the assumption gi+1 /∈ E(ui) since Lab(s) and Lab(e) represent the same element in G.
Therefore, j = i + 1 + l for some l ≥ 1. Note that the components ri+1, . . . , ri+1+l are
isolated in the cycle se−1. (Indeed otherwise we can pass to another pair of connected
components with smaller value of j − i.) By Lemma 1.3 we have u

nq
q ∈ 〈�〉 for all

i + 1 ≤ q ≤ i + 1+ l and

i+l+1∑
q=i+1

|u
nq
q |� ≤ Kl(se

−1) = K(2k + 2).

Hence |u
np
p |� ≤ K(2 + 2/k) ≤ 4K for at least one p, which is impossible for large np.

Thus all components r1, . . . , rk are isolated in p. Applying now Lemma 1.3 again, we
obtain

m∑
q=1

|u
nq
q |� ≤ Kl(p) = K(2k + 2).

This is again impossible for large n1, . . . , nk . ut

1.6. Main results and the scheme of the proof

Our main result is the following theorem.

Theorem C. [With constants] Let 0 ∈ G. A finitely generated 0-group H is 0-univers-
ally equivalent to 0 if and only if H is embeddable into 0Z[t].

The group 0Z[t] is discriminated by 0. Indeed, it is enough to prove that any group H
obtained from 0 by a finite series of extensions of centralizers is 0-discriminated. We
can obtain H from 0 in two steps. Let K be a subgroup of H that is obtained from 0 by
only extending centralizers of elements from parabolic subgroups. Then K ∈ G and H
is obtained from K by a series of extensions of centralizers of hyperbolic elements. By
Proposition 1.1 applied to each centralizer extension, H is discriminated by K . Since K
is discriminated by 0 by Lemma 1.3, H is also discriminated by 0.

The proof of the converse follows the argument in [10], [11] with necessary modifi-
cations. It splits into steps. In Section 3 we will prove
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Theorem D. Let 0 ∈ G and H a finitely generated group discriminated by 0. Then H
embeds into an NTQ extension of 0.

In Section 4 we will prove

Theorem E. Let 0 ∈ G and 0∗ an NTQ extension of 0. Then 0∗ embeds into a group
0(U, T ) obtained from 0 by finitely many extensions of centralizers.

2. Quadratic equations and NTQ systems and groups

Definition 2.1. A standard quadratic equation over the groupG is an equation of one of
the following forms (below d, ci are non-trivial elements from G):

n∏
i=1

[xi, yi] = 1, n > 0; (1)

n∏
i=1

[xi, yi]
m∏
i=1

z−1
i cizid = 1, n,m ≥ 0, m+ n ≥ 1; (2)

n∏
i=1

x2
i = 1, n > 0; (3)

n∏
i=1

x2
i

m∏
i=1

z−1
i cizid = 1, n,m ≥ 0, n+m ≥ 1. (4)

Equations (1), (2) are called orientable of genus n, while equations (3), (4) are non-
orientable of genus n.

Let W be a strictly quadratic word over a group G. Then there is a G-automorphism
f ∈ AutG(G[X]) such that W f is a standard quadratic word over G.

To each quadratic equation one can associate a punctured surface. For example, the
orientable surface associated to (2) will have genus n and m+ 1 punctures.

Definition 2.2. Strictly quadratic words of the type [x, y], x2, z−1cz, where c ∈ G, are
called atomic quadratic words or simply atoms.

By definition a standard quadratic equation S = 1 over G has the form

r1 . . . rkd = 1,

where the ri are atoms and d ∈ G. The number k is called the atomic rank of this equation;
we denote it by r(S).

Definition 2.3. Let S = 1 be a standard quadratic equation written in the atomic form
r1 . . . rkd = 1 with k ≥ 2. A solution φ : GR(S)→ G of S = 1 is called:

1. degenerate if rφi = 1 for some i, and non-degenerate otherwise;
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2. commutative if [rφi , r
φ

i+1] = 1 for all i = 1, . . . , k − 1, and non-commutative other-
wise;

3. in general position if [rφi , r
φ

i+1] 6= 1 for all i = 1, . . . , k − 1.

Put
κ(S) = |X| + ε(S),

where ε(S) = 1 if S of the type (2) or (4), and ε(S) = 0 otherwise.

Definition 2.4. Let S = 1 be a standard quadratic equation over a group G which has
a solution in G. The equation S(X) = 1 is regular if κ(S) ≥ 4 (equivalently, the Euler
characteristic of the corresponding punctured surface is at most −2) and there is a non-
commutative solution of S(X) = 1 in G, or it is an equation of the type [x, y]d = 1 or
[x1, y1][x2, y2] = 1.

Let G be a group with a generating set A. A system of equations S = 1 is called
triangular quasi-quadratic (briefly, TQ) over G if it can be partitioned into the following
subsystems:

S1(X1, X2, . . . , Xn, A) = 1,
S2(X2, . . . , Xn, A) = 1,

. . .
Sn(Xn, A) = 1,

where for each i one of the following holds:

1) Si is quadratic in the variables Xi ;
2) Si = {[y, z] = 1, [y, u] = 1 | y, z ∈ Xi} where u is a group word in Xi+1 ∪ · · · ∪

Xn ∪ A; in this case we say that Si = 1 corresponds to an extension of a centralizer;
3) Si = {[y, z] = 1 | y, z ∈ Xi};
4) Si is the empty equation.

Sometimes, we join several consecutive subsystems Si = 1, Si+1 = 1, . . . , Si+j = 1 of
a TQ system S = 1 into one block, thus partitioning the system S = 1 into new blocks. It
is convenient to call a new system also a triangular quasi-quadratic system.

In the notation above define Gi = GR(Si ,...,Sn) for i = 1, . . . , n and put Gn+1 = G.

The TQ system S = 1 is called non-degenerate (briefly, NTQ) if the following conditions
hold:

5) each system Si = 1, where Xi+1, . . . , Xn are viewed as the corresponding constants
from Gi+1 (under the canonical maps Xj → Gi+1, j = i + 1, . . . , n), has a solution
in Gi+1;

6) the element in Gi+1 represented by the word u from 2) is not a proper power in Gi+1.

An NTQ system S = 1 is called regular if each non-empty quadratic equation in Si
is regular (see Definition 2.4). The coordinate group of an NTQ system (resp., a regular
NTQ system) is called an NTQ group (resp., a regular NTQ group).
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3. Embeddings into NTQ extensions

Let 0 ∈ G. In this section we will prove Theorem D. Namely, we will show how to embed
a finitely generated fully residually 0-group into an NTQ extension of 0.

Theorem 3.1 ([7, Theorem 1.1]). Let 0 ∈ G and G a finitely generated freely indecom-
posable group with abelian JSJ decomposition D. Then there exists a finite collection
{ηi : G→ Li}

n
i=1 of proper quotients ofG such that, for any homomorphism h : G→ 0

which is not equivalent to an injective homomorphism, there exists h′ : G → 0 with
h ∼ h′ (the relation ∼ uses conjugation, canonical automorphisms corresponding to D
and “bending moves”), i ∈ {1, . . . , n} and hi : Li → 0 so that h′ = ηihi . The quotient
groups Li are fully residually 0.

This theorem reduces the description of Hom(G, 0) to a description of Hom(Li, 0)ni=1.
We then apply it again to each Li in turn and so on with successive proper quotients. Such
a sequence terminates by equationally Noetherian property. Using this theorem one can
construct a Hom-diagram which is the same as the so-called Makanin–Razborov diagram
constructed in Section 6 of [7].

The statement of the above theorem is still true if we replace the set of all homomor-
phisms h : G→ 0 by the set of all 0-homomorphisms. The proof is the same. Therefore,
a similar diagram can be constructed for 0-homomorphisms G→ 0.

Proof of Theorem D. LetG be a finitely generated freely indecomposable group discrim-
inated by 0. According to the construction of the Makanin-Razborov diagram the set
Hom(G, 0) is divided into a finite number of families. Therefore one of these families
contains a discriminating set of homomorphisms. Each family corresponds to a sequence
of fully residually 0-groups (see [13])

G = G0,G1, . . . ,Gn,

where Gi+1 is a proper quotient of Gi and πi : Gi → Gi+1 is an epimorphism. Simi-
larly to Lemma 16 from [13], for a discriminating family, πi is a monomorphism for the
following subgroups H in the JSJ decomposition Di of Gi :

1. H is a rigid subgroup in Di ;
2. H is an edge subgroup in Di ;
3. H is the subgroup of an abelian vertex group A in Di generated by the canonical

images in A of the edge groups of the edges of Di adjacent to A.

We need the following result.

Lemma 3.2 ([13, Lemma 22]).

(1) Let H = A ∗D B, D be an abelian subgroup that is maximal abelian in A or B, and
π : H → H̄ be a homomorphism such that the restrictions of π to A and B are
injective. Put

H ∗ = 〈H̄ , y | [CH̄ (π(D)), y] = 1〉.
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Then for every u ∈ CH ∗((π(D))r CH̄ (π(D)), the map

ψ(x) =

{
π(x), x ∈ A,

π(x)u, x ∈ B,

gives rise to a monomorphism ψ : H → H ∗.
(2) Let H = 〈A, t | d t = c, d ∈ D〉, where D is abelian and either D or its image

is maximal abelian in A, and let π : H → H̄ be a homomorphism such that the
restriction of π to A is injective. Put

H ∗ = 〈H̄ , y | [CH̄ (π(D)), y] = 1〉.

Then for every u ∈ CH ∗((π(D))r CH̄ (π(D)), the map

ψ(x) =

{
π(x), x ∈ A,

uπ(x), x = t,

gives rise to a monomorphism ψ : H → H ∗.

Let now D be an abelian JSJ decomposition of G. Combining foldings and slidings, we
can transform D into an abelian decomposition in which each vertex with non-cyclic
abelian subgroup that is connected to some rigid vertex, is connected to only one vertex
which is rigid. We suppose from the beginning that D has this property. Let G1 be the
fully residually 0 proper quotient of G on the next level of the Makanin–Razborov dia-
gram, and π be the canonical epimorphism π : G → G1. Let G1 = P1 ∗ · · · ∗ Pα ∗ F

be the Grushko decomposition of G1 relative to the set of all rigid subgroups and edge
subgroups of D. Here F is the free factor and each Pi is freely indecomposable modulo
rigid subgroups and edge subgroups of D.

We will construct a canonical extension G∗ of Ḡ = P1 ∗ · · · ∗ Pα which is the funda-
mental group of the graph of groups3 obtained from a single vertex v with the associated
vertex group Gv = Ḡ by adding finitely many edges corresponding to extensions of cen-
tralizers (viewed as amalgamated products) and finitely many QH-vertices connected only
to v. By construction of Ḡ, each factor in this decomposition contains a conjugate of the
image of some rigid subgroup or an edge group in D. Indeed, the Grushko decomposi-
tion of Ḡ is non-trivial only if the fundamental groups of some separating simple closed
curves on the surfaces corresponding to QH subgroups ofD are mapped by π to the iden-
tity element. Such curves cut the surface into pieces, and the fundamental groups of all
the pieces that are not attached to rigid subgroups are mapped into F .

Let g1, . . . , gl be a fixed finite generating set of Ḡ. For an edge e ∈ D we fix a
tuple of generators de of the abelian edge group Ge. The required extension G∗ of Ḡ is
constructed in three steps. On each step we extend the centralizers CḠ(π(de)) of some
edges e in D or add a QH subgroup. Simultaneously, to every edge e ∈ D we associate
an element se ∈ CG∗(π(de)).

Step 1. Let Erig be the set of all edges between rigid subgroups in D. One can define an
equivalence relation ∼ on Erig by declaring for e, f ∈ Erig that

e ∼ f ⇔ ∃gef ∈ Ḡ
(
g−1
ef CḠ(π(e))gef = CḠ(π(f ))

)
.
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Let E be a set of representatives of equivalence classes of Erig modulo ∼. We construct a
group G(1) by extending every centralizer CḠ(π(de)) of Ḡ, e ∈ E, as follows. Let

[e] = {e = e1, . . . , eqe }

and y(1)e , . . . , y
(qe)
e be new letters corresponding to the elements in [e]. Then put

G(1)

= 〈Ḡ, y(1)e , . . . , y
(qe)
e (e ∈ E) | [C(π(de)), y

(j)
e ] = 1, [y(i)e , y

(j)
e ] = 1 (i, j = 1, . . . , qe)〉.

One can associate with G(1) the system of equations over Ḡ:

[ḡes, y
(j)
e ] = 1, [y(i)e , y

(j)
e ] = 1, i, j = 1, . . . , qe, s = 1, . . . , pe, e ∈ E, (5)

where y(j)e are new variables and the elements ḡe1, . . . , ḡepe are constants from Ḡ which
generate the centralizer C(π(de)). We assume that the constants ḡej are given as words in
the generators g1, . . . , gl of Ḡ. We associate with the edge ei ∈ [e] an element sei that is
the conjugate of y(i)e from CG(1)(π(dei )).

Step 2. Let A be a non-cyclic abelian vertex group in D and Ae the subgroup of A gener-
ated by the images in A of the edge groups of edges adjacent to A. Then A = Is(Ae)×A0
where Is(Ae) is the isolator of Ae in A (the minimal direct factor containing Ae) and A0 a
direct complement of Is(Ae) inA. Notice that the restriction of π1 to Is(Ae) is a monomor-
phism (since π1 is injective onAe andAe is of finite index in Is(Ae)). For each non-cyclic
abelian vertex groupA inD we extend the centralizer of π1(Is(Ae)) inG(1) by the abelian
group A0 and denote the resulting group by G(2). Observe that since π1(Is(Ae)) ≤ Ḡ

the group G(2) is obtained from Ḡ by extending finitely many centralizers of elements
from Ḡ.

If the abelian group A0 has rank r then the system of equations associated with the
abelian vertex group A has the form

[yp, yq ] = 1, [yp, d̄ej ] = 1, p, q = 1, . . . , r, j = 1, . . . , pe, (6)

where yp, yq are new variables and the elements d̄e1, . . . , d̄epe are constants from Ḡwhich
generate the subgroup π(Is(Ae)). We assume that the constants d̄ej are given as words in
the generators g1, . . . , gl of Ḡ.

Step 3. Let Q be a non-stable QH subgroup in D (not mapped by π into the same QH
subgroup). Suppose Q is given by a presentation

n∏
i=1

[xi, yi]p1 · · ·pm = 1

where there are exactly m outgoing edges e1, . . . , em from Q and σ(Gei ) = 〈pi〉, τ(Gei )
= 〈ci〉 for each edge ei . We add a QH vertex Q to G(2) by introducing new generators
and the quadratic relation

n∏
i=1

[xi, yi](c
π1
1 )

z1 · · · (c
π1
m−1)

zm−1cπ1
m = 1 (7)
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to the presentation ofG(2). Observe that in the relations (7) the coefficients in the original
quadratic relations for Q in D are replaced by their images in Ḡ.

Similarly, one introduces QH vertices for non-orientable QH subgroups in D.
The resulting group is denoted by G∗ = G(3).
We define a (0)-homomorphism ψ : G → G∗ with respect to the splitting D of G

and will prove that it is a monomorphism. Let T be the maximal subtree of D. First, we
define ψ on the fundamental group of the graph of groups induced from D on T . Notice
that if we consider only 0-homomorphisms, then the subgroup 0 is elliptic in D, so there
is a rigid vertex v0 ∈ T such that 0 ≤ Gv0 . The mapping π embeds Gv0 into Ḡ, hence
into G∗.

Let P be a path v0 → v1 → · · · → vn in T that starts at v0. With each edge ei =
(vi−1 → vi) between two rigid vertex groups we have already associated the element sei .
Let us associate elements to other edges of P :

a) if vi−1 is a rigid vertex, and vi is either abelian or QH, then sei = 1;
b) if vi−1 is a QH vertex, vi is rigid or abelian, and the image of ei in the decomposition
D∗ ofG∗ does not belong to T ∗, then sei is the stable letter corresponding to the image
of ei ;

c) if vi−1 is a QH vertex and vi is rigid or abelian, and the image of ei in the decomposi-
tion of G∗ belongs to T ∗, then sei = 1;

d) if vi−1 is an abelian vertex with Gvi−1 = A and vi is a QH vertex, then sei is an
element from A that belongs to A0.

Since two abelian vertices cannot be connected by an edge in 0, and we can suppose that
two QH vertices are not connected by an edge, these are all possible cases.

We now define the embedding ψ on the fundamental group corresponding to the
path P as follows:

ψ(x) = π(x)sei ...se1 for x ∈ Gvi .
This map is a monomorphism by Lemma 3.2. Similarly we define ψ on the fundamental
group of the graph of groups induced from D on T . We extend it to G using the second
statement of Lemma 3.2.

Recursively applying this procedure to G1 and so on, we will construct the NTQ
group N such that G is embedded into N . Theorem D is proved.

4. Embedding of NTQ groups into G(U, T )

An NTQ group H over 0 is obtained from 0 by a series of extensions:

0 = H0 < H1 < · · · < Hn = H,

where for each i = 1, . . . , n,Hi is either an extension of a centralizer inHi−1 or the coor-
dinate group of a regular quadratic equation over Hi−1. In the second case, equivalently,
Hi is the fundamental group of the graph of groups with two vertices, v andw, such that v
is a QH vertex with QH subgroup Q, and Hi−1 is the vertex group of w. Moreover, there
is a retraction from Hi onto Hi−1. In this section we will prove the following theorem
which, by induction, implies Theorem E.
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Theorem 4.1. Let H be the fundamental group of the graph of groups with two vertices,
v and w, such that v is a QH vertex with QH subgroup Q, Hw = 0 ∈ G, and there is a
retraction from H onto 0 such that Q corresponds to a regular quadratic equation. Then
H can be embedded into a group obtained from 0 by a series of extensions of centralizers.

The idea of the proof is as follows. Let SQ be a punctured surface corresponding to the
QH vertex group in the decomposition (say D) of H as the graph of groups. We will
find in Proposition 4.9 a finite collection of simple closed curves (s.c.c.) on SQ and a
homomorphism δ : H → K, where K is an iterated centralizer extension of 0 ∗ F , with
the following properties:

1) δ is a retraction on 0,
2) each of the simple closed curves in the collection and all boundary elements of SQ are

mapped by δ into non-trivial elements of K ,
3) each connected component of the surface obtained by cutting SQ along this family of

s.c.c. has Euler characteristic −1,
4) the fundamental group of each of these connected components is mapped monomor-

phically into a 2-generated free subgroup of K .

Given this collection of s.c.c. on the surface associated with the QH vertex group in
the decomposition D, one can extend D by further splitting the QH vertex groups along
the family of simple closed curves described above. Now the statement of Theorem 4.1
will follow from Lemma 3.2.

Proposition 4.2 ([10, Prop. 3]). Let S = 1 be a non-degenerate standard quadratic
equation over a CSA-group G. Then either S = 1 has a solution in general position, or
every non-degenerate solution of S = 1 is commutative.

Proving the theorem we will consider the following three cases for the equation corre-
sponding to the QH subgroup Q: orientable of genus ≥ 1, genus = 0, and non-orientable
of genus≥ 1. For an orientable equation of genus≥ 1 we have the following proposition.

Proposition 4.3 (cf. [10, Prop. 4]). Let S :
∏m
i=1[xi, yi]

∏n
j=1 c

zj
j g
−1
= 1 (m ≥ 1,

n ≥ 0) be a non-degenerate standard quadratic equation over a group G ∈ G. Then
S = 1 has a solution in general position in some group H which is an iterated exten-
sion of centralizers of G ∗ F (where F is a free group) unless S = 1 is the equation
[x1, y1][x2, y2] = 1 or [x, y]cz = 1. This solution can be chosen so that the images of xi
and yi generate a free subgroup ( for each i = 1, . . . , m).

Proof. Let n = 0. Then we have a standard quadratic equation of the type

[x1, y1] . . . [xk, yk] = g,

which we will sometimes write as r1 . . . rk = g, where, as before, ri = [xi, yi].

Lemma 4.4. Let S : [x1, y1][x2, y2] = g be a non-degenerate equation over a group
G ∈ G. Then S = g has a solution in general position in some group H which is an iter-
ated extension of centralizers of G ∗ F unless S = 1 is the equation [x1, y1][x2, y2] = 1.
Moreover, for each i, xi, yi generate a free subgroup.
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Proof. Suppose S = g has a solution φ such that rφ1 = 1 and rφ2 = 1. Then g = 1 and
our equation takes the form

[x, y][x2, y2] = 1. (8)

From now on we assume that for all solutions φ either rφ1 6= 1 or rφ2 6= 1.
Suppose now that just one of the equalities rφi = 1 (i = 1, 2) holds, say rφ1 = 1.Write

x
φ

2 = a and yφ2 = b. Then the equation is

[x, y][x2, y2] = [a, b] 6= 1.

This equation has other solutions, for example, for a new letter c and p > 2,

ψ : x → (ca−1)−pc, y → c(ca
−1)p , x2 → a(ca

−1)p , y2 → (ca−1)−pb (9)

for which

r
ψ

1 = [c, (ca−1)p] 6= 1 and r
ψ

2 = [(ca−1)p, a][a, b] 6= 1.

We claim that [rψ1 , r
ψ

2 ] 6= 1. Indeed, [rψ1 , r
ψ

2 ] = 1 if and only if

[[c, (ca−1)p], [(ca−1)p, a][a, b]] = 1,

but this is not true in G ∗ 〈c〉.
Thus, just one case is left to consider. Suppose that [rφ1 , r

φ

2 ] = 1 and rφi 6= 1 (i = 1, 2)
for all solutions φ. Suppose xφ = a, yφ = b, xφ2 = c and yφ2 = d.We will use ideas from
[12] to change the solution. Let

H = 〈G, t1, t2, t3, t4, t5 | 1 = [t1, b] = [t2, t1a] = [t3, d] = [t4, t3c] = [t5, t2bc−1t−1
3 ]〉.

Let xψ = t−1
5 t1a, y

ψ
= (t2b)

t5 , x2 = (t3c)
t5 , y

ψ

2 = t
−1
5 t4d. This ψ is also a solution

of the same equation. But now xψ and yψ generate a free subgroup of H . If we have a
word w(x, y) then w(xψ , yψ ) = 1 in H if all occurrences of t5 disappear. This can only
happen if w(x, y) is made up of the blocks x−1yx. But these blocks commute, hence
w = x−1ynx. But now wψ = a−1t−1

1 (t2b)
nt1a, therefore wψ contains t2 that does not

disappear. Therefore wψ 6= 1. Similarly, xψ2 and yψ2 generate a free subgroup of H .
We will show now that [rψ1 , r

ψ

2 ] 6= 1. Indeed,

r
ψ

1 r
ψ

2 = [xψ , yψ ][xψ2 , y
ψ

2 ] = [a, b][c, d],

but

r
ψ

2 r
ψ

1 = [xψ2 , y
ψ

2 ][xψ , yψ ] = t−1
5 c−1t−1

3 t5d
−1t3cda

−1t−1
1 b−1t−1

2 t1at
−1
5 t2bt5.

And there is no way to make a pinch and cancel t5 in the second expression. Therefore
[rψ1 , r

ψ

2 ] 6= 1 and the proposition is proved. ut

Similarly, one can prove the following lemma.
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Lemma 4.5 (cf. [10, Lemma 13]). Let S : [x1, y1] . . . [xk, yk] = g be a non-degenerate
equation over a group G ∈ G and assume that k ≥ 3. Then S = g has a solution
in general position over some group H which is an iterated extension of centralizers of
G ∗ F . Moreover, for each i, xi, yi generate a free subgroup.

Proof. The proof is by induction on k.
Let k = 3. Assume that g = 1. This means we have the equation

[x1, y1][x2, y2][x3, y3] = 1,

which has a solution

x
φ

1 = a, y
φ

1 = b, x
φ

2 = b, y
φ

2 = a, x
φ

3 = 1, y
φ

3 = 1,

where a, b are arbitrary generators of F . Then the conclusion follows from Proposition 4
of [10]. But for convenience of the reader we will give a proof here. The equation

[x2, y2][x3, y3] = [b, a]

is non-degenerate of atomic rank 2; hence, by the lemma above, it has a solution θ such
that [rθ2 , r

θ
3 ] 6= 1, and the images xθ2 , y

θ
2 (resp., the images xθ3 , y

θ
3 ) generate a free non-

abelian subgroup. We got a solution ψ such that

x
ψ

1 = a, y
ψ

1 = b, x
ψ
i = x

θ
i , y

ψ
i = y

θ
i for i = 2, 3.

Now we are in a position to apply the previous lemma to the equation

[x1, y1][x2, y2] = [yψ3 , x
ψ

3 ].

It follows that there exists a solution to S = g in general position and such that the
subgroups generated by the images of xi, yi are free non-abelian for i = 1, 2, 3.

Assume now that g 6= 1. Then there exists a solution φ such that for at least one i we
have rφi 6= 1. Renaming variables one can assume that exactly rφ3 = [a, b] 6= 1, a, b ∈ G.
Then the equation

r1r2 = g[b, a]

has a solution in G. Again, we have two cases. If g[b, a] 6= 1, then we can argue as in
Lemma 4.4. We obtain first a solution φ such that xφi = ci, y

φ
i = di, i = 1, 2, xφ3 =

a, y
φ

3 = b, [rφ1 , r
φ

2 ] 6= 1, [c1, d1] 6= g, and ci, di generate a free subgroup for i = 1, 2.
Then we consider the equation [x2, y2][x3, y3] = [d1, c1]g and apply Lemma 4.4 once
more.

If g[b, a] = 1 then g = [a, b] and the initial equation S = g actually has the form

r1r2r3 = [a, b].

In this event consider a solution θ such that

xθ1 = c, yθ1 = d, xθ2 = (ca
−1)−1d, yθ2 = c

ca−1
, xθ3 = a

ca−1
, yθ3 = (ca

−1)−1b,
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where c, d are non-commuting elements from F . Then [rθi , r
θ
j ] 6= 1, i, j = 1, 2, 3, and

obviously xθi , y
θ
i generate a free group.

Let k > 3. The equation
r1 . . . rk = g

has a solution φ such that for at least one i, say i = k (by renaming variables we can
always assume this), we have rφk = [a, b] 6= 1. Then the equation

r1 . . . rk−1 = g[b, a]

is non-degenerate and by induction there is a solution θ such that [rθi , r
θ
i+1] 6= 1 for all

i = 1, . . . , k − 2, and xi, yi generate a free subgroup for i = 1, . . . , k − 1. Define now a
solution θ1 of the initial equation S = g as follows:

xθi = x
θ1
i , yθi = y

θ1
i for i = 1, . . . , k − 2,

x
θ1
k−1 = t

−1
5 t1x

θ
k−1, y

θ1
k−1 = (t2y

θ
k−1)

t5 , x
θ1
k = (t3a)

t5 , y
θ1
k = t

−1
5 t4b,

where

[t1, yθk−1] = [t2, t1xθk−1] = [t3, b] = [t4, t3a] = [t5, t2yθk−1a
−1t−1

3 ] = 1.

This solution satisfies the requirements of the lemma. ut

Thus, Proposition 4.3 is proved for the case n = 0. Consider now the case n > 0.

Lemma 4.6 (cf. [10, Lemma 14]). The equation S : [x, y]cz = g,where g 6= 1, which is
consistent over a group G ∈ G always has a solution in general position in some iterated
centralizer extension H of G such that the images of x and y generate a free subgroup.

Proof. Let x → a, y → b, z → d be an arbitrary solution of [x, y]cz = g, where
g 6= 1. Then g = [a, b]cd and the equation takes the form

[x, y]cz = [a, b]cd .

We can assume that [a, b] 6= 1. Indeed, suppose [a, b] = 1. If [c, d] 6= 1, then we can
write the equation as

[x, y]cz = cd = [d, c−1]c,

which has the solution x → d, y → c−1, z→ 1 such that [x, y]→ [d, c−1] 6= 1. So
we can assume now that [c, d] = 1, in which case we have the equation

[x, y]cz = c or equivalently [x, y] = [c−1, z].

The group G is a non-abelian CSA-group; hence the center of G is trivial. In particular,
there exists an element h ∈ G such that [c, h] 6= 1. We see that x → c−1, y → h, z→ h

is a solution φ for which [x, y]φ 6= 1.
Thus we have the equation [x, y]cz = [a, b]cd , where [a, b] 6= 1. Let H = 〈G, t |

[t, bcd ] = 1〉. Consider the map ψ defined as follows:

xψ = t−1a, yψ = t−1bt, zψ = dt.
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Straightforward computations show that

[x, y]ψ = [a, b][b, t], (cz)ψ = cdt ;

hence
[xψ , yψ ]cz

ψ

= [a, b]cd ,

and consequently ψ is a solution.
We claim that [rψ1 , r

ψ

2 ] 6= 1. Indeed, suppose [rψ1 , r
ψ

2 ] = 1; then we have

[[x, y]ψ , cz
ψ

] = 1, [[a, b][b, t], cdt ] = 1,
t−1b−1tb[b, a]t−1d−1c−1dt[a, b]b−1t−1bd−1cdt = 1,

which implies

t−1b−1tb[b, a]t−1d−1c−1dt[a, b]b−1bd−1cd = 1.

The letter t disappears only if cd commutes with b or ba commutes with bcd . In both
cases the last equality implies that [a, b] commutes with cd and b commutes with ba .
Therefore [a, b] = 1, which contradicts the choice of a, b, c, d . ut

Now suppose that m = 1, n > 1. Let φ : GS → G be an arbitrary solution of S = g.
Write

h = g
( n∏
j=3

c
zj
j

)−φ
and consider the equation

[x, y]cz1
1 c

z2
2 = h. (10)

If this equation satisfies the conclusion of Proposition 4.3, then by induction the equation
S = g will satisfy the conclusion. So we need to prove the proposition just for equa-
tion (10). There are now two possible cases.

Case (a): There exists a solution ξ of the equation (10) such that (cz2
2 )

ξ
6= h. In this

event by Lemma 4.6 the equation

[x, y]cz1
1 = h(c

z2
2 )
−ξ
6= 1

has a solution θ in general position. Hence we can extend this θ to a solution of (10) in
such a way that rθi 6= 1 for i = 1, 2 and [rθ1 , r

θ
2 ] 6= 1. Consequently, by Proposition 4.2 we

can construct a solution ψ in general position. It will automatically satisfy the conclusion
of Proposition 4.3.

Case (b): Assume now that (cz2
2 )

φ
= h for all solutions φ of (10). Then we actually

have
[x, y]cz1

1 = 1, c
z2
2 = h,

and this system of equations has a solution in G. It follows that c1 = [a, b] 6= 1 for some
a, b ∈ G. Therefore equation (10) is

[x, y][a, b]z1c
z2
2 = h,
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and has a solution ψ of the type

xψ = bf , yψ = af , z
ψ

1 = f, z
ψ

2 = z
φ

2

where f is an arbitrary element in G and φ is an arbitrary solution of (10). The two
elements [a, b] and h are non-trivial in the CSA-group G, hence there exists f ∗ ∈ G
such that [[a, b]f

∗

, h] 6= 1. But this implies that if we take f = f ∗ then the solution ψ
will satisfy [rψ2 , r

ψ

3 ] 6= 1. Now it is sufficient to apply Proposition 4.2.
Now we suppose that m = 2, n > 1. Then we have the equation

[x1, y1][x2, y2]
n∏
j=1

c
zj
j = g.

Again, if there exists a solution φ of this equation such that( n∏
j=1

c
zj
j

)φ
6= g,

then we can write

h = g
( n∏
j=1

c
zj
j

)−φ
,

and consider the equation
[x1, y1][x2, y2] = h

which according to Lemma 4.5 has a solution ξ in general position such that the images
of xi, yi generate a free subgroup. We can extend it to a solution of S = g, and by
Proposition 4.3 applied to the equation

[xξ1 , y
ξ
1 ][x2, y2]

n∏
j=1

c
zj
j = g

we can construct a solution ψ in general position with the required properties.
Assume now that ( n∏

j=1

c
zj
j

)φ
= g

for all solutions φ of the equation S = g. This implies that an arbitrary map of the type

x1 → a, y1 → b, x2 → b, y2 → a

extends by means of any φ above to a solutionψ of the equation S = g. Choose a, b ∈ F ;
then [[b, a], rφ3 ] 6= 1 for the given solution φ. And we again just need to appeal to Propo-
sition 4.3 for the equation

[a, b][x2, y2]
n∏
j=1

c
zj
j = g.
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The case m > 2 is easy since if φ is a solution of the equation

m∏
i=1

[xi, yi]
n∏
j=1

c
zj
j g
−1
= 1,

then we can consider the equation

m∏
i=1

[xi, yi] = g
( n∏
j=1

c
zj
j

)−φ
,

which by Lemma 4.5 has a solution in general position such that the images of xi, yi
generate a free subgroup; after that to finish the proof we need only apply Proposition 4.2.

Proposition 4.3 is proved. ut

The following proposition settles the genus 0 case.

Proposition 4.7. Let S : cz1
1 . . . c

zk
k = g be a non-degenerate standard quadratic equa-

tion over a group G ∈ G. Then either S = g has a solution in general position in some
iterated centralizer extension of G ∗ F , or every solution of S = g is commutative.

Proof. By the definition of a standard quadratic equation, ci 6= 1 for all i = 1, . . . , k.
Hence every solution of S = g is non-degenerate. Now the result follows from Proposi-
tion 4.2. ut

The following proposition can be proved similarly to Proposition 8 in [10].

Proposition 4.8. Let S : x2
1 . . . x

2
pc
z1
1 . . . c

zk
k g = 1 be a non-degenerate regular standard

quadratic equation over a group G ∈ G. Then there is a solution in general position in
some iterated centralizer extension of G ∗ F . If p > 2 and p + k > 3, then the equation
is regular.

We now introduce some notation. For S :
∏m
i=1[xi, yi]

∏n
j=1 c

zj
j = g, denote pj = c

zj
j ,

pn+1 = g
−1, qk =

∏k
i=1[xi, yi] for k ≤ m and qm+k =

∏m
i=1[xi, yi]

∏k
j=1 pk.

For S :
∏m
i=1 x

2
i

∏n
j=1 c

zj
j = g, denote pj = c

zj
j , pn+1 = g−1, qk =

∏k
i=1 x

2
i for

k ≤ m and qm+k =
∏m
i=1 x

2
i

∏k
j=1 pk.

Proposition 4.9. Let S = g be a regular quadratic equation over a group G ∈ G. Then
there exists a solution δ in G ∗ F such that for any j = 1, . . . , m+ n− 1:

1. [qδj , r
δ
j+1] 6= 1;

2. [qδj , (rj+1 . . . rn+m)
δ] 6= 1;

3. there exists a solution δ in an iterated centralizer extension of G ∗ F such that the
following subgroups are free non-abelian: 〈qδj , r

δ
j+1〉 for any j = 1, . . . , m + n − 1;

〈qδj , x
δ
j+1〉 for any j = 1, . . . , m− 1; 〈qδj+1, x

δ
j+1〉 for any j = 1, . . . , m− 1.
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Proof. Let S = g be an orientable equation. We begin with the first statement. Let φ be a
solution in general position constructed in Proposition 4.3. Let qj−1 =

∏j−1
i=1 [xi, yi], A =

q
φ

j−1, xφj = a, y
φ
j = b, x

φ

j+1 = c, y
φ

j+1 = d. If [A[a, b], [c, d]] 6= 1, then the statement is
proved for j . Suppose that [A[a, b], [c, d]] = 1.We can assume that [b, c] 6= 1 (taking ab
instead of b if necessary). Let t = bc−1. Take another solution ψ such that qψj−1 = q

φ

j−1,

x
ψ
j = t

−sa, y
ψ
j = b

ts , x
ψ

j+1 = c
ts , y

ψ

j+1 = t
−sd for a large s ∈ N.

If [qψj−1[xψj , y
ψ
j ], [xψj+1, y

ψ

j+1]] = 1, then

A[a, b][b, t s][t s, c][c, d] = [t s, c][c, d]A[a, b][b, t s],

and therefore
A[a, b][c, d] = [t s, c]A[a, b][c, d][b, t s].

If we denote B = A[a, b][c, d], this is equivalent to B = [t s, c]B[b, t s], which is equiv-
alent, by commutation transitivity, to [t, cBb−1] = 1 or [t, Bc

−1
] = 1, or [B, c−1b] = 1.

We take instead of c, d respectively (dp)c, ((dp)c)kd and denote the new solution
by δs,p,k . If [q

δs,p,k
j , [x

δs,p,k
j+1 , y

δs,p,k
j+1 ]] = 1 for all s, p, k, then by the CSA property

[b(dpc)−1, (dpc)kd] = 1 for all p, k, contrary to c, d freely generating a free subgroup.
The proof for j ≥ m is similar.
The same solution δs,p,k can be used to prove the second statement.
We will now prove the third statement by induction on j . Let δ be a solution with

properties 1 and 2. Let j = 1 and

H1 = 〈G ∗ F, t1 | [t1, (r2 . . . rm+n)δ] = 1〉.

We transform δ into a solution δ1 in the following way. If m 6= 0, then

x
δ1
1 = x

δ
1, y

δ1
1 = y

δ
1,

and
x
δ1
i = x

δt1
i , y

δ1
i = y

δt1
i , z

δ1
k = z

δ
kt1

for i = 2, . . . , m, k = 1, . . . , n. The subgroup generated by qδ1
1 , r

δ1
2 is free. Using Propo-

sition 4.3 one can see that the subgroups generated by qδ1
1 , x

δ1
2 (ifm ≥ 2), and by qδ1

2 , x
δ1
2

are also free. In the case m = 0 we define

z
δ1
1 = z

δ
1, z

δ1
k = z

δ
kt1

for i = 2, . . . , m, k = 1, . . . , n.
Suppose by induction that a solution δi−1 in a group Hj−1 which is an iterated cen-

tralizer extension ofG∗F and satisfying the third statement of the proposition for indices
from 1 to j − 1 has been constructed. Let

Hj = 〈Hj−1, tj | [tj , (rj+1 . . . rm+n)
δ] = 1〉.
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We begin with the solution δj−1 and transform it into a solution δj in the following way:

x
δj
i = x

δj−1
i , y

δj
i = y

δj−1
i , i = 1, . . . , j,

x
δj
i = x

δj−1tj
i , y

δj
i = y

δj−1tj
i , i = j + 1, . . . , m,

z
δj
i = z

δj−1
i tj .

The subgroups generated by q
δj
j , r

δj
j+1, by q

δj
j , x

δj
j+1 and by q

δj
j+1, x

δj
j+1 are free.

The proof for a non-orientable equation is very similar and we skip it. ut

We can now prove Theorem 4.1. Let H be the fundamental group of the graph of groups
with two vertices, v and w, such that v is a QH vertex, Hw = 0 ∈ G, and there is a
retraction from H onto 0. Let SQ be a punctured surface corresponding to a QH vertex
group in this decomposition of H . Elements qj , xj correspond to simple closed curves on
the surface SQ. By Proposition 4.9, we found a collection of simple closed curves on SQ
and solution δ with a properties 1)–4) from the beginning of Section 4.

Theorem E now follows from Theorem 4.1 by induction.
Notice that Proposition 4.9 also implies the following

Corollary 4.10 (cf. [21, Lemma 1.32]). Let Q be the fundamental group of a punctured
surface SQ of Euler characteristic at most −2. Let µ : Q→ 0 be a homomorphism that
maps Q into a non-abelian subgroup of 0 and the image of every boundary component
of Q is non-trivial. Then either:

1. there exists a separating s.c.c. γ ⊂ SQ such that γ is mapped non-trivially into 0,
and the image in 0 of the fundamental group of each connected component obtained
by cutting SQ along γ is non-abelian, or

2. there exists a non-separating s.c.c. γ ⊂ SQ such that γ is mapped non-trivially into 0,
and the image of the fundamental group of the connected component obtained by cut-
ting SQ along γ is non-abelian.
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