DOI 10.4171/JEMS/314

Olga Kharlampovich · Alexei Myasnikov

Limits of relatively hyperbolic groups and Lyndon's completions

Received September 9, 2009 and in revised form April 17, 2010

Abstract. We describe finitely generated groups H universally equivalent (with constants from G in the language) to a given torsion-free relatively hyperbolic group G with free abelian parabolics. It turns out that, as in the free group case, the group H embeds into Lyndon's completion $G^{\mathbb{Z}[t]}$ of the group G , or, equivalently, \overline{H} embeds into a group obtained from \overline{G} by finitely many extensions of centralizers. Conversely, every subgroup of $G^{\mathbb{Z}[t]}$ containing G is universally equivalent to G. Since finitely generated groups universally equivalent to G are precisely the finitely generated groups discriminated by G , the result above gives a description of finitely generated groups discriminated by G. Moreover, these groups are exactly the coordinate groups of irreducible algebraic sets over G.

1. Introduction

Denote by G the class of all non-abelian torsion-free relatively hyperbolic groups with free abelian parabolics. In this paper we describe finitely generated groups that have the same universal theory as a given group $G \in \mathcal{G}$ (with constants from G in the language). We say that they are *universally equivalent* to G. These groups are central to the study of logic and algebraic geometry of G . It turns out that, as in the case when G is a nonabelian free group $[11]$, a finitely generated group H universally equivalent to G embeds into Lyndon's completion $G^{\mathbb{Z}[t]}$ of the group G, or equivalently, H embeds into a group obtained from G by finitely many extensions of centralizers. Conversely, every subgroup of $G^{\mathbb{Z}[t]}$ containing G is universally equivalent to G [\[2\]](#page-20-0). Let H and K be G -groups (contain G as a subgroup). We say that a family of G-*homomorphisms* (homomorphisms identical on G) $\mathcal{F} \subset \text{Hom}_G(H, K)$ *separates* [*discriminates*] H into K if for every nontrivial element $h \in H$ [every finite set $H_0 \subset H$ of non-trivial elements] there exists $\phi \in \mathcal{F}$ such that $h^{\phi} \neq 1$ [$h^{\phi} \neq 1$ for every $h \in H_0$]. In this case we say that H is G-separated [G-*discriminated*] by K. Sometimes we do not mention G and simply say that H is separated [discriminated] by K. When K is a free group we say that H is *freely separated* [*freely discriminated*]. Since finitely generated groups universally equivalent to G are precisely the finitely generated groups discriminated by G ([\[1\]](#page-20-1), [\[15\]](#page-21-2)), the result above gives a description of finitely generated groups discriminated by G or *fully residually* G*-groups*. These groups are exactly the coordinate groups of irreducible algebraic sets

O. Kharlampovich, A. Myasnikov: Department of Mathematics, McGill University, 805 Sherbrooke St. West, Montreal, QC, H3A 2K6 Canada;

e-mail: okharlampovich@gmail.com, amiasnikov@gmail.com

over G. Therefore we obtain a complete description of irreducible algebraic sets over G. Our proof uses the results of [\[7\]](#page-21-3) and [\[17\]](#page-21-4), [\[19\]](#page-21-5).

1.1. Algebraic sets

Let G be a group generated by A, and $F(X)$ the free group on $X = \{x_1, \ldots, x_n\}$. A system of equations $S(X, A) = 1$ in variables X and with coefficients from G can be viewed as a subset of $G * F(X)$. A solution of $S(X, A) = 1$ in G is a tuple $(g_1, \ldots, g_n) \in G^n$ such that $S(g_1, \ldots, g_n) = 1$ in G. The set $V_G(S)$ of all solutions of $S = 1$ in G is called the *algebraic set* defined by S.

The maximal subset $R(S) \subseteq G * F(X)$ with

$$
V_G(R(S)) = V_G(S)
$$

is the *radical* of $S = 1$ in G. The quotient group

$$
G_{R(S)} = G[X]/R(S)
$$

is the *coordinate group* of $S = 1$.

The following conditions are equivalent:

- G is *equationally Noetherian*, i.e., every system $S(X) = 1$ over G is equivalent to some finite part of itself;
- the Zariski topology (formed by algebraic sets as a subbasis of closed sets) over $Gⁿ$ is *Noetherian* for every n , i.e., every proper descending chain of closed sets in $Gⁿ$ is finite.
- \bullet every chain of proper epimorphisms of coordinate groups over G is finite.

If the Zariski topology is Noetherian, then every algebraic set can be uniquely presented as a finite union of its *irreducible components*:

$$
V=V_1\cup\cdots\cup V_k.
$$

Recall that a closed subset V is *irreducible* if it is not the union of two proper closed subsets (in the induced topology).

1.2. Fully residually G*-groups*

A direct limit of a direct system of finite partial *n*-generated subgroups of G such that all products of generators and their inverses eventually appear in these partial subgroups, is called a *limit group over* G*.* The same definition can be given using the notion of "marked group".

A *marked group* (G, S) is a group G with a prescribed family of generators $S =$ (s_1, \ldots, s_n) . Two marked groups $(G, (s_1, \ldots, s_n))$ and $(G', (s'_1, \ldots, s'_n))$ are *isomorphic* as marked groups if the bijection $s_i \leftrightarrow s'_i$ extends to an isomorphism. For example, $((a), (1, a))$ and $((a), (a, 1))$ are not isomorphic as marked groups. Denote by \mathcal{G}_n the set of groups marked by n elements up to isomorphism of marked groups. One can define a

metric on \mathcal{G}_n by setting the distance between two marked groups (G, S) and (G', S') to be e^{-N} if they have exactly the same relations of length at most N. (This metric was used in [\[8\]](#page-21-6), [\[5\]](#page-21-7), [\[3\]](#page-20-2).) Finally, a *limit group over* G is a limit (with respect to the metric above) of marked groups (H_i, S_i) , where $H_i \leq G, i \in \mathbb{N}$, in \mathcal{G}_n .

The following two theorems summarize properties that are equivalent for a group H to the property of being discriminated by G (being G-discriminated by G).

Theorem A. [No coefficients] *Let* G *be an equationally Noetherian group. Then for a finitely generated group* H *the following conditions are equivalent:*

- 1. Th \forall (G) \subseteq Th \forall (H), *i.e.*, $H \in \text{Ucl}(G)$;
- 2. Th $\nexists(G) \supseteq Th\nexists(H)$;
- 3. H *embeds into an ultrapower of* G*;*
- 4. H *is discriminated by* G*;*
- 5. H *is a limit group over* G*;*
- 6. H is defined by a complete atomic type in the theory $Th_v(G)$;
- 7. H *is the coordinate group of an irreducible algebraic set over* G *defined by a system of coefficient-free equations.*

For a group A we denote by \mathcal{L}_A the language of groups with constants from A.

Theorem B. [With coefficients] *Let* A *be a group and* G *an* A*-equationally Noetherian* A*-group. Then for a finitely generated* A*-group* H *the following conditions are equivalent:*

- 1. Th_{∀, A} (G) = Th_{∀, A} (H) ;
- 2. Th_{∃,A} (G) = Th_{∃,A} (H) ;
- 3. H A*-embeds into an ultrapower of* G*;*
- 4. H *is* A*-discriminated by* G*;*
- 5. H *is a limit group over* G*;*
- 6. H is a group defined by a complete atomic type in the theory $Th_{\forall A}(G)$ in the lan*guage* LA*;*
- 7. H *is the coordinate group of an irreducible algebraic set over* G *defined by a system of equations with coefficients in* A*.*

Equivalences $1 \Leftrightarrow 2 \Leftrightarrow 3$ are standard results in mathematical logic. We refer the reader to [\[20\]](#page-21-8) for the proof of 2 \Leftrightarrow 4, to [\[9\]](#page-21-9), [\[1\]](#page-20-1) for the proof of 4 \Leftrightarrow 7. Obviously, $2 \Rightarrow 5 \Rightarrow 3$. The above two theorems are proved in [\[4\]](#page-20-3) for arbitrary equationally Noetherian algebras. Notice that in the case when G is a free group and H is finitely generated, H is a limit group if and only if it is a limit group in the terminology of $[21]$, $[3]$ or $[6]$, $[7]$.

1.3. Lyndon's completions of CSA-groups

The paper [\[15\]](#page-21-2), following Lyndon [\[14\]](#page-21-12), introduced a $\mathbb{Z}[t]$ -completion $G^{\mathbb{Z}[t]}$ of a given CSA-group G . In [\[2\]](#page-20-0) it was shown that if G is a CSA-group satisfying the Big Powers condition, then finitely generated subgroups of $G^{\mathbb{Z}[t]}$ are G-universally equivalent to G.

We refer to finitely generated G-subgroups of $G^{\mathbb{Z}[t]}$ as *exponential extensions* of G (they are obtained from G by iteratively adding $\mathbb{Z}[t]$ -powers of group elements). The

group $G^{\mathbb{Z}[t]}$ is the union of an ascending chain of extensions of centralizers of the group G (see [\[15\]](#page-21-2)).

A group obtained as the union of a chain of extensions of centralizers

$$
\Gamma = \Gamma_0 < \Gamma_1 < \cdots < \bigcup \Gamma_k
$$

where

$$
\Gamma_{i+1} = \langle \Gamma_i, t_i \mid [C_{\Gamma_i}(u_i), t_i] = 1 \rangle
$$

(extension of the centralizer $C_{\Gamma_i}(u_i)$) is called an *iterated extension of centralizers* and is denoted $\Gamma(U, T)$, where $U = \{u_1, \ldots, u_k\}$ and $T = \{t_1, \ldots, t_k\}.$

Every exponential extension H of G is also a subgroup of an iterated extension of centralizers of G.

1.4. Relatively hyperbolic groups

A group G is *hyperbolic* relative to a collection $\{H_{\lambda}\}_{{\lambda}\in {\Lambda}}$ of subgroups (parabolic subgroups) if G is finitely presented relative to $\{H_{\lambda}\}_{\lambda \in \Lambda}$,

$$
G = \Big\langle X \cup \Big(\mathcal{H} = \bigsqcup_{\lambda \in \Lambda} H_{\lambda}\Big) \Big| \mathcal{R} \Big\rangle,
$$

and there is a constant $L > 0$ such that for any word $W \in X \cup \mathcal{H}$ representing the identity in G we have Area^{rel} $(W) \le L\|W\|$, where Area^{rel} (W) is the minimal number k such that $W = \prod_{i=1}^{k} g_i R_i g_i^{-1}, r_i \in \mathcal{R}$, in the free product of the free group with basis X and groups $\{H_{\lambda}\}_{\lambda \in \Lambda}$.

In [\[7,](#page-21-3) Theorem 5.16] Groves showed that groups from G are equationally Noetherian. By Theorem 1.14 of [\[17\]](#page-21-4) the centralizer of every hyperbolic element from a group $G \in \mathcal{G}$ is cyclic. Therefore any non-cyclic abelian subgroup is contained in a finitely generated parabolic subgroup. It follows that finitely generated groups from $\mathcal G$ are CSA, that is, have malnormal maximal abelian subgroups (see also [\[6,](#page-21-11) Lemma 6.7]).

1.5. Big Powers condition

We say that an element $g \in G$ is *hyperbolic* if it is not conjugate to an element of one of the subgroups H_{λ} , $\lambda \in \Lambda$.

Proposition 1.1. *Groups from* G *satisfy the Big Powers condition for hyperbolic elements: if* U *is a set of hyperbolic elements,* $g = g_1 u_1^{n_1} g_2 \dots u_k^{n_k} g_{k+1}, u_1, \dots, u_k \in U$, and $g_{i+1}^{-1}u_i g_{i+1}$ do not commute with u_{i+1} , then there exists a positive number N such *that if* $|n_i| \ge N$ *, i* = 1*, ..., k, then* $g \ne 1$ *.*

The proof of this proposition is similar to that of $[19, \text{Lemma 4.4}]$ $[19, \text{Lemma 4.4}]$ and was suggested by D. Osin.

The Cayley graph of G with respect to the generating set $X \cup \mathcal{H}$ is denoted by $\Gamma(G, X \cup \mathcal{H})$. For a path p in $\Gamma(G, X \cup \mathcal{H})$, $l(p)$ denotes its length, and p_ and p+ denote the origin and the terminus of p , respectively.

Definition 1.2 ([\[17\]](#page-21-4)). Let q be a path in the Cayley graph $\Gamma(G, X \cup \mathcal{H})$. A (non-trivial) subpath p of q is called an H_{λ} -component for some $\lambda \in \Lambda$ (or simply a *component*) if

- (a) the label of p is a word in the alphabet $H_{\lambda} \setminus \{1\};$
- (b) p is not contained in a bigger subpath of q satisfying (a).

Two H_{λ} -components p_1, p_2 of a path q in $\Gamma(G, X \cup \mathcal{H})$ are called *connected* if there exists a path c in $\Gamma(G, X \cup \mathcal{H})$ that connects some vertex of p_1 to some vertex of p_2 and the label of the path, denoted $\phi(c)$, is a word consisting of letters from $H_{\lambda} \setminus \{1\}$. In algebraic terms this means that all vertices of p_1 and p_2 belong to the same coset gH_λ for a certain $g \in G$. Note that we can always assume that c has length at most 1, as every non-trivial element of $H_{\lambda} \setminus \{1\}$ is included in the set of generators. An H_{λ} -component p of a path q is called *isolated* (in q) if no distinct H_{λ} -component of q is connected to p.

The following lemma can be found in [\[18,](#page-21-13) Lemma 2.7].

Lemma 1.3. *Suppose that* G *is a group hyperbolic relative to a collection* $\{H_{\lambda} \mid \lambda \in \Lambda\}$ *of subgroups. Then there exists a constant* $K > 0$ *and finite subset* $\Omega \subseteq G$ *such that the following condition holds. Let q be a cycle in* $\Gamma(G, X \cup \mathcal{H})$ *, p₁, ..., p_k a set of isolated components of q for some* $\lambda \in \Lambda$, and g_1, \ldots, g_k the elements of G represented by the *labels of* p_1, \ldots, p_k *, respectively. Then for any* $i = 1, \ldots, k$ *, g_i belongs to the subgroup* $\langle \Omega \rangle \leq G$ *and the word lengths of* g_i *with respect to* Ω *satisfy the inequality*

$$
\sum_{i=1}^k |g_i|_{\Omega} \leq K l(q).
$$

Recall also that a subgroup is *elementary* if it contains a cyclic subgroup of finite index. The lemma below is proved in [\[19\]](#page-21-5).

Lemma 1.4. *Let* g *be a hyperbolic element of infinite order in* G*. Then*

1. The element g is contained in a unique maximal elementary subgroup $E_G(g)$ of G. 2. *The group* G *is hyperbolic relative to the collection* $\{H_\lambda \mid \lambda \in \Lambda\} \cup \{E_G(g)\}.$

Proof of Proposition [1.1.](#page-3-0) It suffices to prove the proposition under the following additional assumption: if u_i and u_j are conjugate, then $u_i = u_j$, and if $u_i = u_{i+1}$, then $g_{i+1} \notin E(u_i)$. Indeed, if $u_j = h^{-1}u_i h$, we replace u_j by $\bar{u}_j = u_i = hu_j h^{-1}$, g_j by $\bar{g}_j =$ $g_j h^{-1}$ and g_{j+1} by $\bar{g}_{j+1} = hg_{j+1}$. If $[g_j^{-1}u_{j-1}g_j, u_j] \neq 1$, then $h[g_j^{-1}u_{j-1}g_j, u_j]h^{-1} =$ $\left[\bar{g}_j^{-1}u_{j-1}\bar{g}_j, \bar{u}_j\right] \neq 1$. Similarly, if $\left[g_{j+1}^{-1}u_jg_{j+1}, u_{j+1}\right] \neq 1$, then $\left[\bar{g}_{j+1}^{-1}\bar{u}_j\bar{g}_{j+1}, u_{j+1}\right] \neq 1$. The CSA condition implies that $[g_{i+1}^{-1}u_i g_{i+1}, u_i] = 1$ is equivalent to $g_{i+1} \in E(u_i)$.

Joining g_1, \ldots, g_{k+1} to the finite relative generating set X if necessary, we may assume that $g_1, \ldots, g_{k+1} \in X$. Set

$$
\mathcal{F} = \{ f \in \langle \Omega \rangle \mid |f|_{\Omega} \le 4K \},\
$$

where K and Ω are given by Lemma [1.3.](#page-4-0) Suppose that $g_1u_1^{n_1} \dots g_ku_k^{n_k}g_{k+1} = 1$. We consider a loop $p = q_1r_1q_2r_2 \dots q_kr_kq_{k+1}$ in $\Gamma(G, X \cup \mathcal{H})$, where q_i (respectively, r_i) is labeled by g_i (respectively by $u_i^{n_i}$).

r

Note that r_1, \ldots, r_k are components of p. First assume that not all of these components are isolated in p. Suppose that r_i is connected to r_j for some $j > i$ and $j - i$ is minimal possible. Let s denote the segment $[(r_i)_+, (r_i)_-]$ of p, and let e be a path of length at most 1 in $\Gamma(G, X \cup \mathcal{H})$ labeled by an element of H_{λ} such that $e_{-} = (r_{i})_{+}$, $e_{+} = (r_{i})$ _− (see Fig. [1\)](#page-5-0). If $j = i + 1$, then the label Lab(s) is g_{i+1} . This contradicts the assumption $g_{i+1} \notin E(u_i)$ since Lab(s) and Lab(e) represent the same element in G. Therefore, $j = i + 1 + l$ for some $l \ge 1$. Note that the components $r_{i+1}, \ldots, r_{i+1+l}$ are isolated in the cycle se−¹ . (Indeed otherwise we can pass to another pair of connected components with smaller value of $j - i$.) By Lemma [1.3](#page-4-0) we have $u_q^{\eta_q} \in \langle \Omega \rangle$ for all $i+1 \leq q \leq i+1+l$ and

$$
\sum_{q=i+1}^{i+l+1} |u_q^{n_q}|_{\Omega} \le Kl(se^{-1}) = K(2k+2).
$$

Hence $|u_p^{n_p}|_{\Omega} \le K(2 + 2/k) \le 4K$ for at least one p, which is impossible for large n_p . Thus all components r_1, \ldots, r_k are isolated in p. Applying now Lemma [1.3](#page-4-0) again, we obtain

$$
\sum_{q=1}^{m} |u_q^{n_q}|_{\Omega} \le K l(p) = K(2k+2).
$$

This is again impossible for large n_1, \ldots, n_k .

1.6. Main results and the scheme of the proof

Our main result is the following theorem.

Theorem C. [With constants] *Let* $\Gamma \in \mathcal{G}$. A finitely generated Γ -group H is Γ -universally equivalent to Γ if and only if H is embeddable into $\Gamma^{\mathbb{Z}[t]}$.

The group $\Gamma^{\mathbb{Z}[t]}$ is discriminated by Γ . Indeed, it is enough to prove that any group H obtained from Γ by a finite series of extensions of centralizers is Γ -discriminated. We can obtain H from Γ in two steps. Let K be a subgroup of H that is obtained from Γ by only extending centralizers of elements from parabolic subgroups. Then $K \in \mathcal{G}$ and H is obtained from K by a series of extensions of centralizers of hyperbolic elements. By Proposition [1.1](#page-3-0) applied to each centralizer extension, H is discriminated by K . Since K is discriminated by Γ by Lemma [1.3,](#page-4-0) H is also discriminated by Γ .

The proof of the converse follows the argument in $[10]$, $[11]$ with necessary modifications. It splits into steps. In Section 3 we will prove

Theorem D. Let $\Gamma \in \mathcal{G}$ and H a finitely generated group discriminated by Γ . Then H *embeds into an NTQ extension of* Γ *.*

In Section 4 we will prove

Theorem E. Let $\Gamma \in \mathcal{G}$ and Γ^* an NTQ extension of Γ . Then Γ^* embeds into a group $\Gamma(U, T)$ *obtained from* Γ *by finitely many extensions of centralizers.*

2. Quadratic equations and NTQ systems and groups

Definition 2.1. A *standard quadratic equation* over the group G is an equation of one of the following forms (below d, c_i are non-trivial elements from G):

$$
\prod_{i=1}^{n} [x_i, y_i] = 1, \quad n > 0; \tag{1}
$$

$$
\prod_{i=1}^{n} [x_i, y_i] \prod_{i=1}^{m} z_i^{-1} c_i z_i d = 1, \quad n, m \ge 0, m + n \ge 1; \tag{2}
$$

$$
\prod_{i=1}^{n} x_i^2 = 1, \quad n > 0; \tag{3}
$$

$$
\prod_{i=1}^{n} x_i^2 \prod_{i=1}^{m} z_i^{-1} c_i z_i d = 1, \quad n, m \ge 0, n + m \ge 1.
$$
 (4)

Equations [\(1\)](#page-6-0), [\(2\)](#page-6-1) are called *orientable* of genus n, while equations [\(3\)](#page-6-2), [\(4\)](#page-6-3) are *nonorientable* of genus n.

Let W be a strictly quadratic word over a group G . Then there is a G -automorphism $f \in Aut_G(G[X])$ such that W^f is a standard quadratic word over G.

To each quadratic equation one can associate a punctured surface. For example, the orientable surface associated to [\(2\)](#page-6-1) will have genus n and $m + 1$ punctures.

Definition 2.2. Strictly quadratic words of the type [x, y], x^2 , $z^{-1}cz$, where $c \in G$, are called *atomic quadratic words* or simply *atoms*.

By definition a standard quadratic equation $S = 1$ over G has the form

$$
r_1 \ldots r_k d = 1,
$$

where the r_i are atoms and $d \in G$. The number k is called the *atomic rank* of this equation; we denote it by $r(S)$.

Definition 2.3. Let $S = 1$ be a standard quadratic equation written in the atomic form $r_1 \dots r_k d = 1$ with $k \ge 2$. A solution $\phi : G_{R(S)} \to G$ of $S = 1$ is called:

1. *degenerate* if $r_i^{\phi} = 1$ for some *i*, and *non-degenerate* otherwise;

- 2. *commutative* if $[r_i^{\phi}]$ $\binom{\phi}{i}, r_{i+1}^{\phi}$ = 1 for all $i = 1, ..., k - 1$, and *non-commutative* otherwise;
- 3. *in general position* if $[r_i^{\phi}]$ $\binom{\phi}{i}, r_{i+1}^{\phi} \neq 1$ for all $i = 1, ..., k - 1$.

Put

$$
\kappa(S) = |X| + \varepsilon(S),
$$

where $\varepsilon(S) = 1$ if S of the type [\(2\)](#page-6-1) or [\(4\)](#page-6-3), and $\varepsilon(S) = 0$ otherwise.

Definition 2.4. Let $S = 1$ be a standard quadratic equation over a group G which has a solution in G. The equation $S(X) = 1$ is *regular* if $\kappa(S) \geq 4$ (equivalently, the Euler characteristic of the corresponding punctured surface is at most −2) and there is a noncommutative solution of $S(X) = 1$ in G, or it is an equation of the type $[x, y]d = 1$ or $[x_1, y_1][x_2, y_2] = 1.$

Let G be a group with a generating set A. A system of equations $S = 1$ is called *triangular quasi-quadratic* (briefly, TQ) over G if it can be partitioned into the following subsystems:

$$
S_1(X_1, X_2, ..., X_n, A) = 1,
$$

\n $S_2(X_2, ..., X_n, A) = 1,$
\n...
\n $S_n(X_n, A) = 1,$

where for each i one of the following holds:

- 1) S_i is quadratic in the variables X_i ;
- 2) $S_i = \{ [y, z] = 1, [y, u] = 1 | y, z \in X_i \}$ where u is a group word in $X_{i+1} \cup \cdots \cup$ $X_n \cup A$; in this case we say that $S_i = 1$ corresponds to an extension of a centralizer; 3) $S_i = \{ [y, z] = 1 \mid y, z \in X_i \};$
- 4) S_i is the empty equation.

Sometimes, we join several consecutive subsystems $S_i = 1, S_{i+1} = 1, \ldots, S_{i+j} = 1$ of a TQ system $S = 1$ into one block, thus partitioning the system $S = 1$ into new blocks. It is convenient to call a new system also a triangular quasi-quadratic system.

In the notation above define $G_i = G_{R(S_i,...,S_n)}$ for $i = 1,...,n$ and put $G_{n+1} = G$. The TQ system $S = 1$ is called *non-degenerate* (briefly, NTQ) if the following conditions hold:

- 5) each system $S_i = 1$, where X_{i+1}, \ldots, X_n are viewed as the corresponding constants from G_{i+1} (under the canonical maps $X_i \rightarrow G_{i+1}, j = i+1, \ldots, n$), has a solution in G_{i+1} ;
- 6) the element in G_{i+1} represented by the word u from 2) is not a proper power in G_{i+1} .

An NTQ system $S = 1$ is called *regular* if each non-empty quadratic equation in S_i is regular (see Definition [2.4\)](#page-7-0). The coordinate group of an NTQ system (resp., a regular NTQ system) is called an *NTQ group* (resp., a *regular NTQ group*).

3. Embeddings into NTQ extensions

Let $\Gamma \in \mathcal{G}$. In this section we will prove Theorem D. Namely, we will show how to embed a finitely generated fully residually Γ -group into an NTQ extension of Γ .

Theorem 3.1 ([\[7,](#page-21-3) Theorem 1.1]). Let $\Gamma \in \mathcal{G}$ and G a finitely generated freely indecom*posable group with abelian JSJ decomposition* D*. Then there exists a finite collection* ${\{\eta_i: G\to L_i\}_{i=1}^n}$ of proper quotients of G such that, for any homomorphism $h: G\to \Gamma$ which is not equivalent to an injective homomorphism, there exists $h' : G \to \Gamma$ with h ∼ h 0 (*the relation* ∼ *uses conjugation, canonical automorphisms corresponding to* D *and "bending moves"*), $i \in \{1, ..., n\}$ *and* $h_i : L_i \to \Gamma$ *so that* $h' = \eta_i h_i$. *The quotient groups* L_i *are fully residually* Γ *.*

This theorem reduces the description of Hom(G, Γ) to a description of Hom(L_i , Γ)_{$i=1$}. We then apply it again to each L_i in turn and so on with successive proper quotients. Such a sequence terminates by equationally Noetherian property. Using this theorem one can construct a Hom-diagram which is the same as the so-called Makanin–Razborov diagram constructed in Section 6 of [\[7\]](#page-21-3).

The statement of the above theorem is still true if we replace the set of all homomorphisms $h : G \to \Gamma$ by the set of all Γ -homomorphisms. The proof is the same. Therefore, a similar diagram can be constructed for Γ -homomorphisms $G \to \Gamma$.

Proof of Theorem D. Let G be a finitely generated freely indecomposable group discriminated by Γ . According to the construction of the Makanin-Razborov diagram the set $Hom(G, \Gamma)$ is divided into a finite number of families. Therefore one of these families contains a discriminating set of homomorphisms. Each family corresponds to a sequence of fully residually Γ -groups (see [\[13\]](#page-21-15))

$$
G=G_0, G_1, \ldots, G_n,
$$

where G_{i+1} is a proper quotient of G_i and $\pi_i : G_i \to G_{i+1}$ is an epimorphism. Simi-larly to Lemma 16 from [\[13\]](#page-21-15), for a discriminating family, π_i is a monomorphism for the following subgroups H in the JSJ decomposition \mathcal{D}_i of G_i :

- 1. *H* is a rigid subgroup in \mathcal{D}_i ;
- 2. *H* is an edge subgroup in \mathcal{D}_i ;
- 3. H is the subgroup of an abelian vertex group A in \mathcal{D}_i generated by the canonical images in A of the edge groups of the edges of \mathcal{D}_i adjacent to A.

We need the following result.

Lemma 3.2 ([\[13,](#page-21-15) Lemma 22]).

(1) Let $H = A *_{D} B$, D be an abelian subgroup that is maximal abelian in A or B, and π : $H \rightarrow H$ *be a homomorphism such that the restrictions of* π *to* A *and* B *are injective. Put*

$$
H^* = \langle \overline{H}, y \mid [C_{\overline{H}}(\pi(D)), y] = 1 \rangle.
$$

Then for every $u \in C_{H^*}((\pi(D)) \setminus C_{\overline{H}}(\pi(D))$ *, the map*

$$
\psi(x) = \begin{cases} \pi(x), & x \in A, \\ \pi(x)^u, & x \in B, \end{cases}
$$

gives rise to a monomorphism $\psi : H \to H^*$.

(2) Let $H = \langle A, t \mid d^t = c, d \in D \rangle$, where D is abelian and either D or its image *is maximal abelian in* A, and let π : $H \rightarrow \bar{H}$ *be a homomorphism such that the restriction of* π *to* A *is injective. Put*

$$
H^* = \langle \bar{H}, y \mid [C_{\bar{H}}(\pi(D)), y] = 1 \rangle.
$$

Then for every $u \in C_{H^*}((\pi(D)) \setminus C_{\overline{H}}(\pi(D))$ *, the map*

$$
\psi(x) = \begin{cases} \pi(x), & x \in A, \\ u\pi(x), & x = t, \end{cases}
$$

gives rise to a monomorphism $\psi : H \to H^*$.

Let now D be an abelian JSJ decomposition of G . Combining foldings and slidings, we can transform D into an abelian decomposition in which each vertex with non-cyclic abelian subgroup that is connected to some rigid vertex, is connected to only one vertex which is rigid. We suppose from the beginning that D has this property. Let G_1 be the fully residually Γ proper quotient of G on the next level of the Makanin–Razborov diagram, and π be the canonical epimorphism $\pi : G \to G_1$. Let $G_1 = P_1 * \cdots * P_\alpha * F_\alpha$ be the Grushko decomposition of G_1 relative to the set of all rigid subgroups and edge subgroups of D . Here F is the free factor and each P_i is freely indecomposable modulo rigid subgroups and edge subgroups of D.

We will construct a canonical extension G^* of $G = P_1 * \cdots * P_\alpha$ which is the fundamental group of the graph of groups Λ obtained from a single vertex v with the associated vertex group $G_v = \overline{G}$ by adding finitely many edges corresponding to extensions of centralizers (viewed as amalgamated products) and finitely many QH-vertices connected only to v. By construction of \vec{G} , each factor in this decomposition contains a conjugate of the image of some rigid subgroup or an edge group in D . Indeed, the Grushko decomposition of G is non-trivial only if the fundamental groups of some separating simple closed curves on the surfaces corresponding to QH subgroups of $\mathcal D$ are mapped by π to the identity element. Such curves cut the surface into pieces, and the fundamental groups of all the pieces that are not attached to rigid subgroups are mapped into F .

Let g_1, \ldots, g_l be a fixed finite generating set of \overline{G} . For an edge $e \in \mathcal{D}$ we fix a tuple of generators d_e of the abelian edge group G_e . The required extension G^* of \bar{G} is constructed in three steps. On each step we extend the centralizers $C_{\tilde{G}}(\pi(d_e))$ of some edges e in D or add a QH subgroup. Simultaneously, to every edge $e \in \mathcal{D}$ we associate an element $s_e \in C_{G^*}(\pi(d_e))$.

Step 1. Let E_{rig} be the set of all edges between rigid subgroups in D . One can define an equivalence relation \sim on E_{rig} by declaring for $e, f \in E_{\text{rig}}$ that

$$
e \sim f \Leftrightarrow \exists g_{ef} \in \bar{G} \left(g_{ef}^{-1} C_{\bar{G}}(\pi(e)) g_{ef} = C_{\bar{G}}(\pi(f)) \right).
$$

Let E be a set of representatives of equivalence classes of E_{rig} modulo \sim . We construct a group $G^{(1)}$ by extending every centralizer $C_{\tilde{G}}(\pi(d_e))$ of $\tilde{G}, e \in E$, as follows. Let

$$
[e] = \{e = e_1, \ldots, e_{q_e}\}\
$$

and $y_e^{(1)}$, ..., $y_e^{(q_e)}$ be new letters corresponding to the elements in [e]. Then put $G^{(1)}$

$$
= \langle \bar{G}, y_e^{(1)}, \dots, y_e^{(q_e)}(e \in E) | [C(\pi(d_e)), y_e^{(j)}] = 1, [y_e^{(i)}, y_e^{(j)}] = 1 (i, j = 1, \dots, q_e) \rangle.
$$

One can associate with $G^{(1)}$ the system of equations over \bar{G} :

$$
[\bar{g}_{es}, y_e^{(j)}] = 1, \quad [y_e^{(i)}, y_e^{(j)}] = 1, \quad i, j = 1, \dots, q_e, s = 1, \dots, p_e, e \in E,
$$
 (5)

where $y_e^{(j)}$ are new variables and the elements $\bar{g}_{e1}, \ldots, \bar{g}_{ep_e}$ are constants from \bar{G} which generate the centralizer $C(\pi(d_e))$. We assume that the constants \overline{g}_{ej} are given as words in the generators g_1, \ldots, g_l of \overline{G} . We associate with the edge $e_i \in [e]$ an element s_{e_i} that is the conjugate of $y_e^{(i)}$ from $C_{G^{(1)}}(\pi(d_{e_i}))$.

Step 2. Let A be a non-cyclic abelian vertex group in D and A_e the subgroup of A generated by the images in A of the edge groups of edges adjacent to A. Then $A = Is(A_e) \times A_0$ where Is(A_e) is the isolator of A_e in A (the minimal direct factor containing A_e) and A_0 a direct complement of Is(A_e) in A. Notice that the restriction of π_1 to Is(A_e) is a monomorphism (since π_1 is injective on A_e and A_e is of finite index in Is(A_e)). For each non-cyclic abelian vertex group A in D we extend the centralizer of $\pi_1(Is(A_e))$ in $G^{(1)}$ by the abelian group A_0 and denote the resulting group by $G^{(2)}$. Observe that since $\pi_1(Is(A_\ell)) \leq \bar{G}$ the group $G^{(2)}$ is obtained from $\overline{\tilde{G}}$ by extending finitely many centralizers of elements from \bar{G} .

If the abelian group A_0 has rank r then the system of equations associated with the abelian vertex group A has the form

$$
[y_p, y_q] = 1, \quad [y_p, \bar{d}_{ej}] = 1, \quad p, q = 1, \dots, r, j = 1, \dots, p_e,
$$
 (6)

where y_p , y_q are new variables and the elements $\bar{d}_{e1}, \ldots, \bar{d}_{ep_e}$ are constants from \bar{G} which generate the subgroup $\pi(Is(A_e))$. We assume that the constants \overline{d}_{ej} are given as words in the generators g_1, \ldots, g_l of \overline{G} .

Step 3. Let Q be a non-stable QH subgroup in $\mathcal D$ (not mapped by π into the same QH subgroup). Suppose Q is given by a presentation

$$
\prod_{i=1}^n [x_i, y_i] p_1 \cdots p_m = 1
$$

where there are exactly m outgoing edges e_1, \ldots, e_m from Q and $\sigma(G_{e_i}) = \langle p_i \rangle$, $\tau(G_{e_i})$ $= \langle c_i \rangle$ for each edge e_i . We add a QH vertex Q to $G^{(2)}$ by introducing new generators and the quadratic relation

$$
\prod_{i=1}^{n} [x_i, y_i] (c_1^{\pi_1})^{z_1} \cdots (c_{m-1}^{\pi_1})^{z_{m-1}} c_m^{\pi_1} = 1
$$
\n(7)

to the presentation of $G^{(2)}$. Observe that in the relations [\(7\)](#page-10-0) the coefficients in the original quadratic relations for Q in D are replaced by their images in \bar{G} .

Similarly, one introduces QH vertices for non-orientable QH subgroups in D.

The resulting group is denoted by $G^* = G^{(3)}$.

We define a (Γ)-homomorphism $\psi : G \to G^*$ with respect to the splitting D of G and will prove that it is a monomorphism. Let T be the maximal subtree of D . First, we define ψ on the fundamental group of the graph of groups induced from D on T. Notice that if we consider only Γ -homomorphisms, then the subgroup Γ is elliptic in D, so there is a rigid vertex $v_0 \in T$ such that $\Gamma \leq G_{v_0}$. The mapping π embeds G_{v_0} into \tilde{G} , hence into $\tilde{G^*}$.

Let P be a path $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n$ in T that starts at v_0 . With each edge $e_i =$ $(v_{i-1} \rightarrow v_i)$ between two rigid vertex groups we have already associated the element s_{e_i} . Let us associate elements to other edges of P:

- a) if v_{i-1} is a rigid vertex, and v_i is either abelian or QH, then $s_{e_i} = 1$;
- b) if v_{i-1} is a QH vertex, v_i is rigid or abelian, and the image of e_i in the decomposition \mathcal{D}^* of G^* does not belong to T^* , then s_{e_i} is the stable letter corresponding to the image of e_i ;
- c) if v_{i-1} is a QH vertex and v_i is rigid or abelian, and the image of e_i in the decomposition of G^* belongs to T^* , then $s_{e_i} = 1$;
- d) if v_{i-1} is an abelian vertex with $G_{v_{i-1}} = A$ and v_i is a QH vertex, then s_{e_i} is an element from A that belongs to A_0 .

Since two abelian vertices cannot be connected by an edge in Γ , and we can suppose that two QH vertices are not connected by an edge, these are all possible cases.

We now define the embedding ψ on the fundamental group corresponding to the path P as follows:

$$
\psi(x) = \pi(x)^{s_{e_i}\dots s_{e_1}} \quad \text{for } x \in G_{v_i}.
$$

This map is a monomorphism by Lemma [3.2.](#page-8-0) Similarly we define ψ on the fundamental group of the graph of groups induced from D on T . We extend it to G using the second statement of Lemma [3.2.](#page-8-0)

Recursively applying this procedure to G_1 and so on, we will construct the NTQ group N such that G is embedded into N . Theorem D is proved.

4. Embedding of NTQ groups into $G(U, T)$

An NTQ group H over Γ is obtained from Γ by a series of extensions:

$$
\Gamma = H_0 < H_1 < \cdots < H_n = H,
$$

where for each $i = 1, \ldots, n$, H_i is either an extension of a centralizer in H_{i-1} or the coordinate group of a regular quadratic equation over H_{i-1} . In the second case, equivalently, H_i is the fundamental group of the graph of groups with two vertices, v and w, such that v is a QH vertex with QH subgroup Q, and H_{i-1} is the vertex group of w. Moreover, there is a retraction from H_i onto H_{i-1} . In this section we will prove the following theorem which, by induction, implies Theorem E.

Theorem 4.1. *Let* H *be the fundamental group of the graph of groups with two vertices,* v and w, such that v is a QH vertex with QH subgroup Q, $H_w = \Gamma \in \mathcal{G}$, and there is a *retraction from* H *onto* Γ *such that* Q *corresponds to a regular quadratic equation. Then* H can be embedded into a group obtained from Γ by a series of extensions of centralizers.

The idea of the proof is as follows. Let S_Q be a punctured surface corresponding to the QH vertex group in the decomposition (say D) of H as the graph of groups. We will find in Proposition [4.9](#page-18-0) a finite collection of simple closed curves (s.c.c.) on S_Q and a homomorphism $\delta : H \to K$, where K is an iterated centralizer extension of $\Gamma * F$, with the following properties:

- 1) δ is a retraction on Γ ,
- 2) each of the simple closed curves in the collection and all boundary elements of S_Q are mapped by δ into non-trivial elements of K,
- 3) each connected component of the surface obtained by cutting S_Q along this family of s.c.c. has Euler characteristic −1,
- 4) the fundamental group of each of these connected components is mapped monomorphically into a 2-generated free subgroup of K .

Given this collection of s.c.c. on the surface associated with the QH vertex group in the decomposition D , one can extend D by further splitting the OH vertex groups along the family of simple closed curves described above. Now the statement of Theorem [4.1](#page-11-0) will follow from Lemma [3.2.](#page-8-0)

Proposition 4.2 ([\[10,](#page-21-14) Prop. 3]). Let $S = 1$ be a non-degenerate standard quadratic *equation over a CSA-group* G. *Then either* S = 1 *has a solution in general position, or every non-degenerate solution of* S = 1 *is commutative.*

Proving the theorem we will consider the following three cases for the equation corresponding to the QH subgroup Q: orientable of genus ≥ 1 , genus = 0, and non-orientable of genus ≥ 1 . For an orientable equation of genus ≥ 1 we have the following proposition.

Proposition 4.3 (cf. [\[10,](#page-21-14) Prop. 4]). *Let* $S : \prod_{i=1}^{m} [x_i, y_i] \prod_{j=1}^{n} c_j^{z_j}$ $j_j^{z_j}g^{-1} = 1$ (*m* ≥ 1 , $n \geq 0$) *be a non-degenerate standard quadratic equation over a group* $G \in \mathcal{G}$. Then S = 1 *has a solution in general position in some group* H *which is an iterated extension of centralizers of* $G * F$ (*where* F *is a free group*) *unless* $S = 1$ *is the equation* $[x_1, y_1][x_2, y_2] = 1$ or $[x, y]c^z = 1$. *This solution can be chosen so that the images of* x_i *and* y_i *generate a free subgroup* (*for each* $i = 1, ..., m$ *).*

Proof. Let $n = 0$. Then we have a standard quadratic equation of the type

$$
[x_1, y_1] \dots [x_k, y_k] = g,
$$

which we will sometimes write as $r_1 \dots r_k = g$, where, as before, $r_i = [x_i, y_i]$.

Lemma 4.4. *Let* $S : [x_1, y_1][x_2, y_2] = g$ *be a non-degenerate equation over a group* $G \in \mathcal{G}$. Then $S = g$ has a solution in general position in some group H which is an iter*ated extension of centralizers of* $G * F$ *unless* $S = 1$ *is the equation* $[x_1, y_1][x_2, y_2] = 1$. *Moreover, for each i, x_i, y_i generate a free subgroup.*

Proof. Suppose $S = g$ has a solution ϕ such that $r_1^{\phi} = 1$ and $r_2^{\phi} = 1$. Then $g = 1$ and our equation takes the form

$$
[x, y][x_2, y_2] = 1.
$$
 (8)

From now on we assume that for all solutions ϕ either r_1^{ϕ} $r_1^{\phi} \neq 1$ or r_2^{ϕ} $x_2^{\phi} \neq 1.$

Suppose now that just one of the equalities $r_i^{\phi} = 1$ ($i = 1, 2$) holds, say $r_1^{\phi} = 1$. Write $x_2^{\phi} = a$ and $y_2^{\phi} = b$. Then the equation is

$$
[x, y][x_2, y_2] = [a, b] \neq 1.
$$

This equation has other solutions, for example, for a new letter c and $p > 2$,

$$
\psi: x \to (ca^{-1})^{-p}c, y \to c^{(ca^{-1})^p}, x_2 \to a^{(ca^{-1})^p}, y_2 \to (ca^{-1})^{-p}b \tag{9}
$$

for which

$$
r_1^{\psi} = [c, (ca^{-1})^p] \neq 1
$$
 and $r_2^{\psi} = [(ca^{-1})^p, a][a, b] \neq 1$.

We claim that $[r_1^{\psi}]$ $\frac{\psi}{1}, r_2^{\psi}$ $\binom{\psi}{2} \neq 1$. Indeed, $\lbrack r_1^{\psi} \rbrack$ $\frac{\psi}{1}, r_2^{\psi}$ $\binom{\psi}{2}$ = 1 if and only if

$$
[[c, (ca^{-1})^p], [(ca^{-1})^p, a][a, b]] = 1,
$$

but this is not true in $G * \langle c \rangle$.

Thus, just one case is left to consider. Suppose that $[r_1^{\phi}]$ $\frac{\phi}{1}, r_2^{\phi}$ $\binom{\phi}{2}$ = 1 and r_i^{ϕ} $i^{\phi} \neq 1$ (*i* = 1, 2) for all solutions ϕ . Suppose $x^{\phi} = a$, $y^{\phi} = b$, $x_2^{\phi} = c$ and $y_2^{\phi} = d$. We will use ideas from [\[12\]](#page-21-16) to change the solution. Let

$$
H = \langle G, t_1, t_2, t_3, t_4, t_5 | 1 = [t_1, b] = [t_2, t_1 a] = [t_3, d] = [t_4, t_3 c] = [t_5, t_2 b c^{-1} t_3^{-1}].
$$

Let $x^{\psi} = t_5^{-1}t_1a$, $y^{\psi} = (t_2b)^{t_5}$, $x_2 = (t_3c)^{t_5}$, $y_2^{\psi} = t_5^{-1}t_4d$. This ψ is also a solution of the same equation. But now x^{ψ} and y^{ψ} generate a free subgroup of H. If we have a word $w(x, y)$ then $w(x^{\psi}, y^{\psi}) = 1$ in H if all occurrences of t_5 disappear. This can only happen if $w(x, y)$ is made up of the blocks $x^{-1}yx$. But these blocks commute, hence $w = x^{-1}y^n$. But now $w^{\psi} = a^{-1}t_1^{-1}(t_2b)^n t_1a$, therefore w^{ψ} contains t_2 that does not disappear. Therefore $w^{\psi} \neq 1$. Similarly, x^{ψ} y_2^{ψ} and y_2^{ψ} y_2^{ψ} generate a free subgroup of H.

We will show now that $[r_1^{\psi}]$ y_1^{ψ}, r_2^{ψ} $\binom{\psi}{2} \neq 1$. Indeed,

$$
r_1^{\psi} r_2^{\psi} = [x^{\psi}, y^{\psi}][x_2^{\psi}, y_2^{\psi}] = [a, b][c, d],
$$

but

$$
r_2^{\psi} r_1^{\psi} = [x_2^{\psi}, y_2^{\psi}] [x^{\psi}, y^{\psi}] = t_5^{-1} c^{-1} t_3^{-1} t_5 d^{-1} t_3 c d a^{-1} t_1^{-1} b^{-1} t_2^{-1} t_1 a t_5^{-1} t_2 b t_5.
$$

And there is no way to make a pinch and cancel $t₅$ in the second expression. Therefore $[r_1^{\psi}$ $\frac{\psi}{1}, r_2^{\psi}$ $\binom{v}{2}$ \neq 1 and the proposition is proved.

Similarly, one can prove the following lemma.

Lemma 4.5 (cf. [\[10,](#page-21-14) Lemma 13]). *Let* $S : [x_1, y_1] \dots [x_k, y_k] = g$ *be a non-degenerate equation over a group* $G \in \mathcal{G}$ *and assume that* $k \geq 3$ *. Then* $S = g$ *has a solution in general position over some group* H *which is an iterated extension of centralizers of* G ∗ F*. Moreover, for each* i*,* xi, yⁱ *generate a free subgroup.*

Proof. The proof is by induction on k .

Let $k = 3$. Assume that $g = 1$. This means we have the equation

$$
[x_1, y_1][x_2, y_2][x_3, y_3] = 1,
$$

which has a solution

$$
x_1^{\phi} = a
$$
, $y_1^{\phi} = b$, $x_2^{\phi} = b$, $y_2^{\phi} = a$, $x_3^{\phi} = 1$, $y_3^{\phi} = 1$,

where a, b are arbitrary generators of F . Then the conclusion follows from Proposition 4 of [\[10\]](#page-21-14). But for convenience of the reader we will give a proof here. The equation

$$
[x_2, y_2][x_3, y_3] = [b, a]
$$

is non-degenerate of atomic rank 2; hence, by the lemma above, it has a solution θ such that $[r_2^{\theta}, r_3^{\theta}] \neq 1$, and the images $x_2^{\theta}, y_2^{\theta}$ (resp., the images $x_3^{\theta}, y_3^{\theta}$) generate a free nonabelian subgroup. We got a solution ψ such that

$$
x_1^{\psi} = a
$$
, $y_1^{\psi} = b$, $x_i^{\psi} = x_i^{\theta}$, $y_i^{\psi} = y_i^{\theta}$ for $i = 2, 3$.

Now we are in a position to apply the previous lemma to the equation

$$
[x_1, y_1][x_2, y_2] = [y_3^{\psi}, x_3^{\psi}].
$$

 \mathbf{u}

 \overline{u}

It follows that there exists a solution to $S = g$ in general position and such that the subgroups generated by the images of x_i , y_i are free non-abelian for $i = 1, 2, 3$.

Assume now that $g \neq 1$. Then there exists a solution ϕ such that for at least one i we have r_i^{ϕ} $i_{i}^{\phi} \neq 1$. Renaming variables one can assume that exactly $r_{3}^{\phi} = [a, b] \neq 1$, $a, b \in G$. Then the equation

$$
r_1r_2 = g[b, a]
$$

has a solution in G. Again, we have two cases. If $g[b, a] \neq 1$, then we can argue as in Lemma [4.4.](#page-12-0) We obtain first a solution ϕ such that $x_i^{\phi} = c_i$, $y_i^{\phi} = d_i$, $i = 1, 2$, $x_3^{\phi} =$ $a, y_3^{\phi} = b, [r_1^{\phi}]$ $\frac{\phi}{1}, r_2^{\phi}$ $\binom{\varphi}{2} \neq 1$, $[c_1, d_1] \neq g$, and c_i, d_i generate a free subgroup for $i = 1, 2$. Then we consider the equation $[x_2, y_2][x_3, y_3] = [d_1, c_1]g$ and apply Lemma [4.4](#page-12-0) once more.

If $g[b, a] = 1$ then $g = [a, b]$ and the initial equation $S = g$ actually has the form

$$
r_1r_2r_3=[a,b].
$$

In this event consider a solution θ such that

$$
x_1^{\theta} = c
$$
, $y_1^{\theta} = d$, $x_2^{\theta} = (ca^{-1})^{-1}d$, $y_2^{\theta} = c^{ca^{-1}}$, $x_3^{\theta} = a^{ca^{-1}}$, $y_3^{\theta} = (ca^{-1})^{-1}b$,

where c, d are non-commuting elements from F. Then $[r_i^{\theta}, r_j^{\theta}] \neq 1$, i, $j = 1, 2, 3$, and obviously x_i^{θ} , y_i^{θ} generate a free group.

Let $k > 3$. The equation

$$
r_1 \ldots r_k = g
$$

has a solution ϕ such that for at least one i, say $i = k$ (by renaming variables we can always assume this), we have $r_k^{\phi} = [a, b] \neq 1$. Then the equation

$$
r_1 \ldots r_{k-1} = g[b, a]
$$

is non-degenerate and by induction there is a solution θ such that $[r_i^{\theta}, r_{i+1}^{\theta}] \neq 1$ for all $i = 1, \ldots, k - 2$, and x_i, y_i generate a free subgroup for $i = 1, \ldots, k - 1$. Define now a solution θ_1 of the initial equation $S = g$ as follows:

$$
x_i^{\theta} = x_i^{\theta_1}, \quad y_i^{\theta} = y_i^{\theta_1} \quad \text{for } i = 1, \dots, k-2,
$$

$$
x_{k-1}^{\theta_1} = t_5^{-1} t_1 x_{k-1}^{\theta}, \quad y_{k-1}^{\theta_1} = (t_2 y_{k-1}^{\theta})^{t_5}, \quad x_k^{\theta_1} = (t_3 a)^{t_5}, \quad y_k^{\theta_1} = t_5^{-1} t_4 b,
$$

where

$$
[t_1, y_{k-1}^\theta] = [t_2, t_1 x_{k-1}^\theta] = [t_3, b] = [t_4, t_3 a] = [t_5, t_2 y_{k-1}^\theta a^{-1} t_3^{-1}] = 1.
$$

This solution satisfies the requirements of the lemma. \Box

Thus, Proposition [4.3](#page-12-1) is proved for the case $n = 0$. Consider now the case $n > 0$.

Lemma 4.6 (cf. [\[10,](#page-21-14) Lemma 14]). *The equation* $S : [x, y]c^z = g$, where $g \neq 1$, which is *consistent over a group* $G \in \mathcal{G}$ *always has a solution in general position in some iterated centralizer extension* H *of* G *such that the images of* x *and* y *generate a free subgroup.*

Proof. Let $x \to a$, $y \to b$, $z \to d$ be an arbitrary solution of $[x, y]c^z = g$, where $g \neq 1$. Then $g = [a, b]c^d$ and the equation takes the form

$$
[x, y]c^z = [a, b]c^d.
$$

We can assume that $[a, b] \neq 1$. Indeed, suppose $[a, b] = 1$. If $[c, d] \neq 1$, then we can write the equation as

$$
[x, y]c^z = c^d = [d, c^{-1}]c,
$$

which has the solution $x \to d$, $y \to c^{-1}$, $z \to 1$ such that $[x, y] \to [d, c^{-1}] \neq 1$. So we can assume now that $[c, d] = 1$, in which case we have the equation

$$
[x, y]c^z = c
$$
 or equivalently
$$
[x, y] = [c^{-1}, z].
$$

The group G is a non-abelian CSA-group; hence the center of G is trivial. In particular, there exists an element $h \in G$ such that $[c, h] \neq 1$. We see that $x \to c^{-1}$, $y \to h$, $z \to h$ is a solution ϕ for which $[x, y]^\phi \neq 1$.

Thus we have the equation $[x, y]c^z = [a, b]c^d$, where $[a, b] \neq 1$. Let $H = \langle G, t \rangle$ [t, bc^d] = 1). Consider the map ψ defined as follows:

$$
x^{\psi} = t^{-1}a
$$
, $y^{\psi} = t^{-1}bt$, $z^{\psi} = dt$.

Straightforward computations show that

$$
[x, y]^{\psi} = [a, b][b, t], \quad (c^z)^{\psi} = c^{dt};
$$

hence

$$
[x^{\psi}, y^{\psi}]c^{z^{\psi}} = [a, b]c^d,
$$

and consequently ψ is a solution.

We claim that $[r_1^{\psi}]$ y_1^{ψ}, r_2^{ψ} $\binom{\psi}{2} \neq 1$. Indeed, suppose $\lbrack r \rbrack^{\psi}$ r_1^{ψ}, r_2^{ψ} $\binom{y}{2}$ = 1; then we have

$$
[[x, y]^{\psi}, c^{z^{\psi}}] = 1, \quad [[a, b][b, t], c^{dt}] = 1,\nt^{-1}b^{-1}tb[b, a]t^{-1}d^{-1}c^{-1}dt[a, b]b^{-1}t^{-1}bd^{-1}cdt = 1,
$$

which implies

$$
t^{-1}b^{-1}tb[b,a]t^{-1}d^{-1}c^{-1}dt[a,b]b^{-1}bd^{-1}cd = 1.
$$

The letter *t* disappears only if c^d commutes with *b* or b^a commutes with bc^d . In both cases the last equality implies that [a, b] commutes with c^d and b commutes with b^a . Therefore $[a, b] = 1$, which contradicts the choice of a, b, c, d.

Now suppose that $m = 1, n > 1$. Let $\phi : G_S \to G$ be an arbitrary solution of $S = g$. Write

$$
h = g \left(\prod_{j=3}^{n} c_j^{z_j} \right)^{-\phi}
$$

and consider the equation

$$
[x, y]c_1^{z_1}c_2^{z_2} = h.
$$
 (10)

If this equation satisfies the conclusion of Proposition [4.3,](#page-12-1) then by induction the equation $S = g$ will satisfy the conclusion. So we need to prove the proposition just for equation [\(10\)](#page-16-0). There are now two possible cases.

Case (a): There exists a solution ξ of the equation [\(10\)](#page-16-0) such that $(c_2^{z_2})^{\xi} \neq h$. In this event by Lemma [4.6](#page-15-0) the equation

$$
[x, y]c_1^{z_1} = h(c_2^{z_2})^{-\xi} \neq 1
$$

has a solution θ in general position. Hence we can extend this θ to a solution of [\(10\)](#page-16-0) in such a way that $r_i^{\theta} \neq 1$ for $i = 1, 2$ and $[r_1^{\theta}, r_2^{\theta}] \neq 1$. Consequently, by Proposition [4.2](#page-12-2) we can construct a solution ψ in general position. It will automatically satisfy the conclusion of Proposition [4.3.](#page-12-1)

Case (b): Assume now that $(c_2^{z_2})^{\phi} = h$ for all solutions ϕ of [\(10\)](#page-16-0). Then we actually have

$$
[x, y]c_1^{z_1} = 1, \quad c_2^{z_2} = h,
$$

and this system of equations has a solution in G. It follows that $c_1 = [a, b] \neq 1$ for some $a, b \in G$. Therefore equation [\(10\)](#page-16-0) is

$$
[x, y][a, b]^{z_1}c_2^{z_2} = h,
$$

and has a solution ψ of the type

$$
x^{\psi} = b^f
$$
, $y^{\psi} = a^f$, $z_1^{\psi} = f$, $z_2^{\psi} = z_2^{\phi}$

where f is an arbitrary element in G and ϕ is an arbitrary solution of [\(10\)](#page-16-0). The two elements [a, b] and h are non-trivial in the CSA-group G, hence there exists $f^* \in G$ such that $[[a, b]^f^*$, $h] \neq 1$. But this implies that if we take $f = f^*$ then the solution ψ will satisfy $[r_2^{\psi}]$ $\frac{\psi}{2}$, r_3^{ψ} $\binom{w}{3}$ \neq 1. Now it is sufficient to apply Proposition [4.2.](#page-12-2)

Now we suppose that $m = 2$, $n > 1$. Then we have the equation

$$
[x_1, y_1][x_2, y_2] \prod_{j=1}^n c_j^{z_j} = g.
$$

Again, if there exists a solution ϕ of this equation such that

$$
\left(\prod_{j=1}^n c_j^{z_j}\right)^{\phi} \neq g,
$$

then we can write

$$
h = g \left(\prod_{j=1}^n c_j^{z_j} \right)^{-\phi},
$$

and consider the equation

$$
[x_1, y_1][x_2, y_2] = h
$$

which according to Lemma [4.5](#page-13-0) has a solution ξ in general position such that the images of x_i , y_i generate a free subgroup. We can extend it to a solution of $S = g$, and by Proposition [4.3](#page-12-1) applied to the equation

$$
[x_1^{\xi}, y_1^{\xi}][x_2, y_2] \prod_{j=1}^n c_j^{z_j} = g
$$

we can construct a solution ψ in general position with the required properties.

Assume now that

$$
\left(\prod_{j=1}^n c_j^{z_j}\right)^{\phi} = g
$$

for all solutions ϕ of the equation $S = g$. This implies that an arbitrary map of the type

$$
x_1 \rightarrow a
$$
, $y_1 \rightarrow b$, $x_2 \rightarrow b$, $y_2 \rightarrow a$

extends by means of any ϕ above to a solution ψ of the equation $S = g$. Choose $a, b \in F$; then $[[b, a], r_3^{\phi}]$ $\binom{\varphi}{3}$ \neq 1 for the given solution ϕ . And we again just need to appeal to Proposition [4.3](#page-12-1) for the equation

$$
[a, b][x_2, y_2] \prod_{j=1}^n c_j^{z_j} = g.
$$

The case $m > 2$ is easy since if ϕ is a solution of the equation

$$
\prod_{i=1}^{m} [x_i, y_i] \prod_{j=1}^{n} c_j^{z_j} g^{-1} = 1,
$$

then we can consider the equation

$$
\prod_{i=1}^{m} [x_i, y_i] = g \left(\prod_{j=1}^{n} c_j^{z_j} \right)^{-\phi},
$$

which by Lemma [4.5](#page-13-0) has a solution in general position such that the images of x_i , y_i generate a free subgroup; after that to finish the proof we need only apply Proposition [4.2.](#page-12-2) Proposition [4.3](#page-12-1) is proved. \Box

The following proposition settles the genus 0 case.

Proposition 4.7. Let $S: c_1^{z_1} \ldots c_k^{z_k} = g$ be a non-degenerate standard quadratic equa*tion over a group* $G \in \mathcal{G}$ *. Then either* $S = g$ *has a solution in general position in some iterated centralizer extension of* $G * F$ *, or every solution of* $S = g$ *is commutative.*

Proof. By the definition of a standard quadratic equation, $c_i \neq 1$ for all $i = 1, ..., k$. Hence every solution of $S = g$ is non-degenerate. Now the result follows from Proposi-tion [4.2.](#page-12-2)

The following proposition can be proved similarly to Proposition 8 in [\[10\]](#page-21-14).

Proposition 4.8. Let $S: x_1^2 \ldots x_p^2 c_1^{z_1} \ldots c_k^{z_k} g = 1$ be a non-degenerate regular standard *quadratic equation over a group* $G \in \mathcal{G}$. Then there is a solution in general position in *some iterated centralizer extension of* $G * F$ *. If* $p > 2$ *and* $p + k > 3$ *, then the equation is regular.*

We now introduce some notation. For $S: \prod_{i=1}^{m} [x_i, y_i] \prod_{j=1}^{n} c_j^{z_j} = g$, denote $p_j = c_j^{z_j}$ $\dot{\vec{j}}$, $p_{n+1} = g^{-1}, q_k = \prod_{i=1}^k [x_i, y_i]$ for $k \leq m$ and $q_{m+k} = \prod_{i=1}^m [x_i, y_i] \prod_{j=1}^k p_k$.

For $S: \prod_{i=1}^{m} x_i^2 \prod_{j=1}^{n} c_j^{z_j} = g$, denote $p_j = c_j^{z_j}$ j^{z_j} , $p_{n+1} = g^{-1}$, $q_k = \prod_{i=1}^k x_i^2$ for $k \leq m$ and $q_{m+k} = \prod_{i=1}^{m} x_i^2 \prod_{j=1}^{k} p_k$.

Proposition 4.9. *Let* $S = g$ *be a regular quadratic equation over a group* $G \in \mathcal{G}$ *. Then there exists a solution* δ *in* $G * F$ *such that for any* $j = 1, ..., m + n - 1$ *:*

- 1. $[q_j^{\delta}, r_{j+1}^{\delta}] \neq 1;$
- 2. $[q_j^{\delta}, (r_{j+1} \ldots r_{n+m})^{\delta}] \neq 1;$
- 3. *there exists a solution* δ *in an iterated centralizer extension of* G ∗ F *such that the following subgroups are free non-abelian:* $\langle q_j^{\delta}, r_{j+1}^{\delta} \rangle$ *for any* $j = 1, ..., m + n - 1$; $\langle q_j^{\delta}, x_{j+1}^{\delta} \rangle$ for any $j = 1, ..., m-1; \langle q_{j+1}^{\delta}, x_{j+1}^{\delta} \rangle$ for any $j = 1, ..., m-1$.

Proof. Let $S = g$ be an orientable equation. We begin with the first statement. Let ϕ be a solution in general position constructed in Proposition [4.3.](#page-12-1) Let $q_{j-1} = \prod_{i=1}^{j-1} [x_i, y_i]$, $A =$ $q_{j-1}^{\phi}, x_j^{\phi} = a, y_j^{\phi} = b, x_{j+1}^{\phi} = c, y_{j+1}^{\phi} = d$. If $[A[a, b], [c, d]] \neq 1$, then the statement is proved for j. Suppose that $[A[a, b], [c, d]] = 1$. We can assume that $[b, c] \neq 1$ (taking ab instead of *b* if necessary). Let $t = bc^{-1}$. Take another solution ψ such that $q_{j-1}^{\psi} = q_{j-1}^{\phi}$, $x_j^{\psi} = t^{-s}a, y_j^{\psi} = b^{t^s}, x_{j+1}^{\psi} = c^{t^s}, y_{j+1}^{\psi} = t^{-s}d$ for a large $s \in \mathbb{N}$. If $[q_{j-1}^{\psi}[x_j^{\psi}]$ x_j^{ψ}, y_j^{ψ} $[y_j^{\psi}], [x_{j+1}^{\psi}, y_{j+1}^{\psi}]] = 1$, then

$$
A[a, b][b, ts][ts, c][c, d] = [ts, c][c, d]A[a, b][b, ts],
$$

and therefore

$$
A[a, b][c, d] = [ts, c]A[a, b][c, d][b, ts].
$$

If we denote $B = A[a, b][c, d]$, this is equivalent to $B = [t^s, c]B[b, t^s]$, which is equivalent, by commutation transitivity, to $[t, cBb^{-1}] = 1$ or $[t, B^{c^{-1}}] = 1$, or $[B, c^{-1}b] = 1$.

We take instead of c, d respectively $(d^p)c$, $((d^p)c)^k d$ and denote the new solution by $\delta_{s,p,k}$. If $[q_j^{\delta_{s,p,k}}]$ $j^{\delta_{s,p,k}}, [x_{j+1}^{\delta_{s,p,k}}]$ $\delta_{s, p, k}$, $y_{j+1}^{\delta_{s, p, k}}$ $\begin{bmatrix} \frac{\partial s, p, k}{j+1} \end{bmatrix}$ = 1 for all s, p, k, then by the CSA property $[b(d^pc)^{-1}, (d^pc)^kd] = 1$ for all p, k, contrary to c, d freely generating a free subgroup.

The proof for $j \geq m$ is similar.

The same solution $\delta_{s,p,k}$ can be used to prove the second statement.

We will now prove the third statement by induction on j. Let δ be a solution with properties 1 and 2. Let $j = 1$ and

$$
H_1 = \langle G * F, t_1 | [t_1, (r_2 \dots r_{m+n})^{\delta}] = 1 \rangle.
$$

We transform δ into a solution δ_1 in the following way. If $m \neq 0$, then

$$
x_1^{\delta_1} = x_1^{\delta}, \quad y_1^{\delta_1} = y_1^{\delta},
$$

and

$$
x_i^{\delta_1} = x_i^{\delta t_1}, \quad y_i^{\delta_1} = y_i^{\delta t_1}, \quad z_k^{\delta_1} = z_k^{\delta} t_1
$$

for $i = 2, \ldots, m, k = 1, \ldots, n$. The subgroup generated by $q_1^{\delta_1}, r_2^{\delta_1}$ is free. Using Propo-sition [4.3](#page-12-1) one can see that the subgroups generated by $q_1^{\delta_1}$, $x_2^{\delta_1}$ (if $m \ge 2$), and by $q_2^{\delta_1}$, $x_2^{\delta_1}$ are also free. In the case $m = 0$ we define

$$
z_1^{\delta_1} = z_1^{\delta}, \quad z_k^{\delta_1} = z_k^{\delta} t_1
$$

for $i = 2, ..., m, k = 1, ..., n$.

Suppose by induction that a solution δ_{i-1} in a group H_{i-1} which is an iterated centralizer extension of $G * F$ and satisfying the third statement of the proposition for indices from 1 to $j - 1$ has been constructed. Let

$$
H_j = \langle H_{j-1}, t_j | [t_j, (r_{j+1} \dots r_{m+n})^{\delta}] = 1 \rangle.
$$

We begin with the solution δ_{i-1} and transform it into a solution δ_i in the following way:

$$
x_i^{\delta_j} = x_i^{\delta_{j-1}}, \qquad y_i^{\delta_j} = y_i^{\delta_{j-1}}, \qquad i = 1, ..., j,
$$

\n
$$
x_i^{\delta_j} = x_i^{\delta_{j-1}t_j}, \quad y_i^{\delta_j} = y_i^{\delta_{j-1}t_j}, \qquad i = j + 1, ..., m,
$$

\n
$$
z_i^{\delta_j} = z_i^{\delta_{j-1}}t_j.
$$

The subgroups generated by $q_i^{\delta_j}$ $\delta_j^{\delta_j}$, $r_j^{\delta_j}$ $\int_{j+1}^{\delta_j}$, by $q_j^{\delta_j}$ $\delta_j^{\delta_j}$, $x_j^{\delta_j}$ $\int_{j+1}^{\delta_j}$ and by $q_{j-1}^{\delta_j}$ δ_j _{j+1}, $x_j^{\delta_j}$ \int_{j+1}^{9} are free. The proof for a non-orientable equation is very similar and we skip it.

We can now prove Theorem [4.1.](#page-11-0) Let H be the fundamental group of the graph of groups with two vertices, v and w, such that v is a QH vertex, $H_w = \Gamma \in \mathcal{G}$, and there is a retraction from H onto Γ . Let S_Q be a punctured surface corresponding to a QH vertex group in this decomposition of H . Elements q_i , x_i correspond to simple closed curves on the surface S_Q . By Proposition [4.9,](#page-18-0) we found a collection of simple closed curves on S_Q and solution δ with a properties 1)–4) from the beginning of Section 4.

Theorem E now follows from Theorem [4.1](#page-11-0) by induction.

Notice that Proposition [4.9](#page-18-0) also implies the following

Corollary 4.10 (cf. [\[21,](#page-21-10) Lemma 1.32]). *Let* Q *be the fundamental group of a punctured surface* S_Q *of Euler characteristic at most* -2 *. Let* μ : $Q \rightarrow \Gamma$ *be a homomorphism that maps* Q *into a non-abelian subgroup of* Γ *and the image of every boundary component of* Q *is non-trivial. Then either:*

- 1. *there exists a separating s.c.c.* $\gamma \subset S_Q$ *such that* γ *is mapped non-trivially into* Γ *,* and the image in Γ of the fundamental group of each connected component obtained *by cutting* S_O *along* γ *is non-abelian, or*
- 2. *there exists a non-separating s.c.c.* $\gamma \subset S_Q$ *such that* γ *is mapped non-trivially into* Γ *, and the image of the fundamental group of the connected component obtained by cutting* S_Q *along* γ *is non-abelian.*

Acknowledgments. We thank D. Osin who suggested a proof of Proposition [1.1](#page-3-0) and made other useful comments.

Both authors were supported by an NSERC grant.

References

- [1] Baumslag, G., Myasnikov, A., Remeslennikov, V.: Algebraic geometry over groups I. Algebraic sets and ideal theory. J. Algebra 219, 16–79 (1999) [Zbl 0938.20020](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0938.20020&format=complete) [MR 1707663](http://www.ams.org/mathscinet-getitem?mr=1707663)
- [2] Baumslag, G., Myasnikov, A., Remeslennikov, V.: Discriminating completions of hyperbolic groups. Geom. Dedicata 92, 115–143 (2002) [Zbl 1011.20041](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1011.20041&format=complete) [MR 1934015](http://www.ams.org/mathscinet-getitem?mr=1934015)
- [3] Champetier, C., Guirardel, V.: Limit groups as limits of groups. Israel J. Math. 146, 1-75, [Zbl 1103\(](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1103&format=complete)2005)20026 [MR 2151593](http://www.ams.org/mathscinet-getitem?mr=2151593)
- [4] Daniyarova, E., Myasnikov, A., Remeslennikov, V.: Unification theorems in algebraic geometry. In: Aspects of Infinite Groups, Algebra Discrete Math. 1, World Sci., 80–111 (2008) [Zbl pre05526605](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05526605&format=complete) [MR 2571513](http://www.ams.org/mathscinet-getitem?mr=2571513)
- [5] Grigorchuk, R.: Degrees of growth of f.g. groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat. 48, 939–985 (1984) [Zbl 0583.20023](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0583.20023&format=complete) [MR 0764305](http://www.ams.org/mathscinet-getitem?mr=0764305)
- [6] Groves, D.: Limit groups for relatively hyperbolic groups I: The basic tools. Algebr. Geom. Topol. 9, 1423–1466 (2009) [Zbl pre05597151](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05597151&format=complete) [MR 2530123](http://www.ams.org/mathscinet-getitem?mr=2530123)
- [7] Groves, D.: Limit groups for relatively hyperbolic groups II: Makanin–Razborov diagrams. Geom. Topol. 9, 2319–2358 (2005) [Zbl 1100.20032](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1100.20032&format=complete) [MR 2209374](http://www.ams.org/mathscinet-getitem?mr=2209374)
- [8] Gromov, M.: Groups of polynomial growth and expanding maps. Publ. Math. IHES 53, 53–73 (1981) [Zbl 0474.20018](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0474.20018&format=complete) [MR 0623534](http://www.ams.org/mathscinet-getitem?mr=0623534)
- [9] Kharlampovich, O., Myasnikov, A.: Description of fully residually free groups and irreducible affine varieties over a free group. In: Summer School in Group Theory in Banff, 1996, CRM Proc. Lecture Notes 17, Amer. Math. Soc., 71–80 (1999) [Zbl 0922.20027](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0922.20027&format=complete) [MR 1653685](http://www.ams.org/mathscinet-getitem?mr=1653685)
- [10] Kharlampovich, O., Myasnikov, A.: Irreducible affine varieties over a free group. 1: irreducibility of quadratic equations and Nullstellensatz. J. Algebra 200, 472–516 (1998) [Zbl 0904.20016](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0904.20016&format=complete) [MR 1610660](http://www.ams.org/mathscinet-getitem?mr=1610660)
- [11] Kharlampovich, O., Myasnikov, A.: Irreducible affine varieties over a free group. II: Systems in triangular quasi-quadratic form and description of residually free groups. J. Algebra 200, 517–570 (1998) [Zbl 0904.20017](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0904.20017&format=complete) [MR 1610664](http://www.ams.org/mathscinet-getitem?mr=1610664)
- [12] Kharlampovich, O., Myasnikov, A.: Implicit function theorem over free groups. J. Algebra 290, 1–203 (2005) [Zbl 1094.20016](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1094.20016&format=complete) [MR 2154989](http://www.ams.org/mathscinet-getitem?mr=2154989)
- [13] Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups. J. Algebra 302, 451–552 (2006) [Zbl 1110.03020](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1110.03020&format=complete) [MR 2293770](http://www.ams.org/mathscinet-getitem?mr=2293770)
- [14] Lyndon, R. C.: Groups with parametric exponents. Trans. Amer. Math. Soc. 96, 518–533 (1960) [Zbl 0108.02501](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0108.02501&format=complete) [MR 0151502](http://www.ams.org/mathscinet-getitem?mr=0151502)
- [15] Myasnikov, A., Remeslennikov, V.: Exponential groups II: extensions of centralizers and ten-sor completion of CSA-groups. Int. J. Algebra Comput. 6, 687–711 (1996) [Zbl 0866.20014](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0866.20014&format=complete) [MR 1421886](http://www.ams.org/mathscinet-getitem?mr=1421886)
- [16] Myasnikov, A., Remeslennikov, V.: Algebraic geometry II: logical foundations. J. Algebra 234, 225–276 (2000) [Zbl 0970.20017](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0970.20017&format=complete) [MR 1799485](http://www.ams.org/mathscinet-getitem?mr=1799485)
- [17] Osin, D.: Relatively hyperbolic groups: intrinsic geometry, algebraic properties and algorithmic problems. Mem. Amer. Math. Soc. 179, no. 843 (2006) [Zbl 1093.20025](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1093.20025&format=complete) [MR 2182268](http://www.ams.org/mathscinet-getitem?mr=2182268)
- [18] Osin, D.: Peripheral fillings of relatively hyperbolic groups. Invent. Math. 167, 295–326 (2007) [Zbl 1116.20031](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1116.20031&format=complete) [MR 2270456](http://www.ams.org/mathscinet-getitem?mr=2270456)
- [19] Osin, D.: Elementary subgroups of hyperbolic groups and bounded generation. Int. J. Algebra Comput. 16, 99–118 (2006) [Zbl 1100.20033](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1100.20033&format=complete) [MR 2217644](http://www.ams.org/mathscinet-getitem?mr=2217644)
- [20] Remeslennikov, V.: E-free groups. Siberian Math. J. 30, 193–197 (1989) [Zbl 0724.20025](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0724.20025&format=complete) [MR 1043446](http://www.ams.org/mathscinet-getitem?mr=1043446)
- [21] Sela, Z.: Diophantine geometry over groups I: Makanin–Razborov diagrams. Publ. Math. IHES 93, 31–105 (2001) [Zbl 1018.20034](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1018.20034&format=complete) [MR 1863735](http://www.ams.org/mathscinet-getitem?mr=1863735)