DOI 10.4171/JEMS/314

Olga Kharlampovich · Alexei Myasnikov

Limits of relatively hyperbolic groups and Lyndon's completions

Received September 9, 2009 and in revised form April 17, 2010

Abstract. We describe finitely generated groups H universally equivalent (with constants from G in the language) to a given torsion-free relatively hyperbolic group G with free abelian parabolics. It turns out that, as in the free group case, the group H embeds into Lyndon's completion $G^{\mathbb{Z}[t]}$ of the group G, or, equivalently, H embeds into a group obtained from G by finitely many extensions of centralizers. Conversely, every subgroup of $G^{\mathbb{Z}[t]}$ containing G is universally equivalent to G. Since finitely generated groups universally equivalent to G are precisely the finitely generated groups discriminated by G, the result above gives a description of finitely generated groups discriminated by G. Moreover, these groups are exactly the coordinate groups of irreducible algebraic sets over G.

1. Introduction

Denote by \mathcal{G} the class of all non-abelian torsion-free relatively hyperbolic groups with free abelian parabolics. In this paper we describe finitely generated groups that have the same universal theory as a given group $G \in \mathcal{G}$ (with constants from G in the language). We say that they are *universally equivalent* to G. These groups are central to the study of logic and algebraic geometry of G. It turns out that, as in the case when G is a nonabelian free group [11], a finitely generated group H universally equivalent to G embeds into Lyndon's completion $G^{\mathbb{Z}[t]}$ of the group G, or equivalently, H embeds into a group obtained from G by finitely many extensions of centralizers. Conversely, every subgroup of $G^{\mathbb{Z}[t]}$ containing G is universally equivalent to G [2]. Let H and K be G-groups (contain G as a subgroup). We say that a family of G-homomorphisms (homomorphisms identical on G) $\mathcal{F} \subset \text{Hom}_G(H, K)$ separates [discriminates] H into K if for every nontrivial element $h \in H$ [every finite set $H_0 \subset H$ of non-trivial elements] there exists $\phi \in \mathcal{F}$ such that $h^{\phi} \neq 1$ [$h^{\phi} \neq 1$ for every $h \in H_0$]. In this case we say that H is G-separated [G-discriminated] by K. Sometimes we do not mention G and simply say that H is separated [discriminated] by K. When K is a free group we say that H is freely separated [freely discriminated]. Since finitely generated groups universally equivalent to G are precisely the finitely generated groups discriminated by G([1], [15]), the result above gives a description of finitely generated groups discriminated by G or fully residually *G*-groups. These groups are exactly the coordinate groups of irreducible algebraic sets

e-mail: okharlampovich@gmail.com, amiasnikov@gmail.com

O. Kharlampovich, A. Myasnikov: Department of Mathematics, McGill University, 805 Sherbrooke St. West, Montreal, QC, H3A 2K6 Canada;

over G. Therefore we obtain a complete description of irreducible algebraic sets over G. Our proof uses the results of [7] and [17], [19].

1.1. Algebraic sets

Let *G* be a group generated by *A*, and *F*(*X*) the free group on $X = \{x_1, \ldots, x_n\}$. A system of equations S(X, A) = 1 in variables *X* and with coefficients from *G* can be viewed as a subset of G * F(X). A solution of S(X, A) = 1 in *G* is a tuple $(g_1, \ldots, g_n) \in G^n$ such that $S(g_1, \ldots, g_n) = 1$ in *G*. The set $V_G(S)$ of all solutions of S = 1 in *G* is called the *algebraic set* defined by *S*.

The maximal subset $R(S) \subseteq G * F(X)$ with

$$V_G(R(S)) = V_G(S)$$

is the *radical* of S = 1 in G. The quotient group

$$G_{R(S)} = G[X]/R(S)$$

is the *coordinate group* of S = 1.

The following conditions are equivalent:

- G is equationally Noetherian, i.e., every system S(X) = 1 over G is equivalent to some finite part of itself;
- the Zariski topology (formed by algebraic sets as a subbasis of closed sets) over G^n is *Noetherian* for every *n*, i.e., every proper descending chain of closed sets in G^n is finite.
- every chain of proper epimorphisms of coordinate groups over G is finite.

If the Zariski topology is Noetherian, then every algebraic set can be uniquely presented as a finite union of its *irreducible components*:

$$V = V_1 \cup \cdots \cup V_k.$$

Recall that a closed subset V is *irreducible* if it is not the union of two proper closed subsets (in the induced topology).

1.2. Fully residually G-groups

A direct limit of a direct system of finite partial n-generated subgroups of G such that all products of generators and their inverses eventually appear in these partial subgroups, is called a *limit group over* G. The same definition can be given using the notion of "marked group".

A marked group (G, S) is a group G with a prescribed family of generators $S = (s_1, \ldots, s_n)$. Two marked groups $(G, (s_1, \ldots, s_n))$ and $(G', (s'_1, \ldots, s'_n))$ are isomorphic as marked groups if the bijection $s_i \leftrightarrow s'_i$ extends to an isomorphism. For example, $(\langle a \rangle, (1, a))$ and $(\langle a \rangle, (a, 1))$ are not isomorphic as marked groups. Denote by \mathcal{G}_n the set of groups marked by n elements up to isomorphism of marked groups. One can define a

metric on \mathcal{G}_n by setting the distance between two marked groups (G, S) and (G', S') to be e^{-N} if they have exactly the same relations of length at most N. (This metric was used in [8], [5], [3].) Finally, a *limit group over* G is a limit (with respect to the metric above) of marked groups (H_i, S_i) , where $H_i \leq G, i \in \mathbb{N}$, in \mathcal{G}_n .

The following two theorems summarize properties that are equivalent for a group H to the property of being discriminated by G (being G-discriminated by G).

Theorem A. [No coefficients] Let G be an equationally Noetherian group. Then for a finitely generated group H the following conditions are equivalent:

- 1. Th_{\forall}(*G*) \subseteq Th_{\forall}(*H*), *i.e.*, *H* \in Ucl(*G*);
- 2. Th_{\exists}(*G*) \supseteq Th_{\exists}(*H*);
- 3. *H* embeds into an ultrapower of G;
- 4. *H* is discriminated by *G*;
- 5. *H* is a limit group over G;
- 6. *H* is defined by a complete atomic type in the theory $Th_{\forall}(G)$;
- 7. *H* is the coordinate group of an irreducible algebraic set over *G* defined by a system of coefficient-free equations.

For a group A we denote by \mathcal{L}_A the language of groups with constants from A.

Theorem B. [With coefficients] *Let A be a group and G an A-equationally Noetherian A-group. Then for a finitely generated A-group H the following conditions are equivalent:*

- 1. Th_{\forall,A}(*G*) = Th_{\forall,A}(*H*);
- 2. Th_{\exists,A}(*G*) = Th_{\exists,A}(*H*);
- 3. H A-embeds into an ultrapower of G;
- 4. H is A-discriminated by G;
- 5. *H* is a limit group over *G*;
- 6. *H* is a group defined by a complete atomic type in the theory $\operatorname{Th}_{\forall,A}(G)$ in the language \mathcal{L}_A ;
- 7. *H* is the coordinate group of an irreducible algebraic set over *G* defined by a system of equations with coefficients in *A*.

Equivalences $1 \Leftrightarrow 2 \Leftrightarrow 3$ are standard results in mathematical logic. We refer the reader to [20] for the proof of $2 \Leftrightarrow 4$, to [9], [1] for the proof of $4 \Leftrightarrow 7$. Obviously, $2 \Rightarrow 5 \Rightarrow 3$. The above two theorems are proved in [4] for arbitrary equationally Noetherian algebras. Notice that in the case when *G* is a free group and *H* is finitely generated, *H* is a limit group if and only if it is a limit group in the terminology of [21], [3] or [6], [7].

1.3. Lyndon's completions of CSA-groups

The paper [15], following Lyndon [14], introduced a $\mathbb{Z}[t]$ -completion $G^{\mathbb{Z}[t]}$ of a given CSA-group *G*. In [2] it was shown that if *G* is a CSA-group satisfying the Big Powers condition, then finitely generated subgroups of $G^{\mathbb{Z}[t]}$ are *G*-universally equivalent to *G*.

We refer to finitely generated *G*-subgroups of $G^{\mathbb{Z}[t]}$ as *exponential extensions* of *G* (they are obtained from *G* by iteratively adding $\mathbb{Z}[t]$ -powers of group elements). The

group $G^{\mathbb{Z}[t]}$ is the union of an ascending chain of extensions of centralizers of the group G (see [15]).

A group obtained as the union of a chain of extensions of centralizers

$$\Gamma = \Gamma_0 < \Gamma_1 < \cdots < \bigcup \Gamma_k$$

where

$$\Gamma_{i+1} = \langle \Gamma_i, t_i \mid [C_{\Gamma_i}(u_i), t_i] = 1 \rangle$$

(extension of the centralizer $C_{\Gamma_i}(u_i)$) is called an *iterated extension of centralizers* and is denoted $\Gamma(U, T)$, where $U = \{u_1, \dots, u_k\}$ and $T = \{t_1, \dots, t_k\}$.

Every exponential extension H of G is also a subgroup of an iterated extension of centralizers of G.

1.4. Relatively hyperbolic groups

A group *G* is *hyperbolic* relative to a collection $\{H_{\lambda}\}_{\lambda \in \Lambda}$ of subgroups (parabolic subgroups) if *G* is finitely presented relative to $\{H_{\lambda}\}_{\lambda \in \Lambda}$,

$$G = \left\langle X \cup \left(\mathcal{H} = \bigsqcup_{\lambda \in \Lambda} H_{\lambda} \right) \mid \mathcal{R} \right\rangle,$$

and there is a constant L > 0 such that for any word $W \in X \cup \mathcal{H}$ representing the identity in *G* we have Area^{rel}(*W*) $\leq L ||W||$, where Area^{rel}(*W*) is the minimal number *k* such that $W = \prod_{i=1}^{k} g_i R_i g_i^{-1}$, $r_i \in \mathcal{R}$, in the free product of the free group with basis *X* and groups $\{H_{\lambda}\}_{\lambda \in \Lambda}$.

In [7, Theorem 5.16] Groves showed that groups from \mathcal{G} are equationally Noetherian. By Theorem 1.14 of [17] the centralizer of every hyperbolic element from a group $G \in \mathcal{G}$ is cyclic. Therefore any non-cyclic abelian subgroup is contained in a finitely generated parabolic subgroup. It follows that finitely generated groups from \mathcal{G} are CSA, that is, have malnormal maximal abelian subgroups (see also [6, Lemma 6.7]).

1.5. Big Powers condition

We say that an element $g \in G$ is *hyperbolic* if it is not conjugate to an element of one of the subgroups $H_{\lambda}, \lambda \in \Lambda$.

Proposition 1.1. Groups from \mathcal{G} satisfy the Big Powers condition for hyperbolic elements: if U is a set of hyperbolic elements, $g = g_1 u_1^{n_1} g_2 \dots u_k^{n_k} g_{k+1}, u_1, \dots, u_k \in U$, and $g_{i+1}^{-1} u_i g_{i+1}$ do not commute with u_{i+1} , then there exists a positive number N such that if $|n_i| \geq N$, $i = 1, \dots, k$, then $g \neq 1$.

The proof of this proposition is similar to that of [19, Lemma 4.4] and was suggested by D. Osin.

The Cayley graph of G with respect to the generating set $X \cup \mathcal{H}$ is denoted by $\Gamma(G, X \cup \mathcal{H})$. For a path p in $\Gamma(G, X \cup \mathcal{H})$, l(p) denotes its length, and p_- and p_+ denote the origin and the terminus of p, respectively.

Definition 1.2 ([17]). Let *q* be a path in the Cayley graph $\Gamma(G, X \cup \mathcal{H})$. A (non-trivial) subpath *p* of *q* is called an H_{λ} -component for some $\lambda \in \Lambda$ (or simply a component) if

- (a) the label of *p* is a word in the alphabet $H_{\lambda} \setminus \{1\}$;
- (b) p is not contained in a bigger subpath of q satisfying (a).

Two H_{λ} -components p_1 , p_2 of a path q in $\Gamma(G, X \cup \mathcal{H})$ are called *connected* if there exists a path c in $\Gamma(G, X \cup \mathcal{H})$ that connects some vertex of p_1 to some vertex of p_2 and the label of the path, denoted $\phi(c)$, is a word consisting of letters from $H_{\lambda} \setminus \{1\}$. In algebraic terms this means that all vertices of p_1 and p_2 belong to the same coset gH_{λ} for a certain $g \in G$. Note that we can always assume that c has length at most 1, as every non-trivial element of $H_{\lambda} \setminus \{1\}$ is included in the set of generators. An H_{λ} -component p of a path q is called *isolated* (in q) if no distinct H_{λ} -component of q is connected to p.

The following lemma can be found in [18, Lemma 2.7].

Lemma 1.3. Suppose that G is a group hyperbolic relative to a collection $\{H_{\lambda} \mid \lambda \in \Lambda\}$ of subgroups. Then there exists a constant K > 0 and finite subset $\Omega \subseteq G$ such that the following condition holds. Let q be a cycle in $\Gamma(G, X \cup \mathcal{H})$, p_1, \ldots, p_k a set of isolated components of q for some $\lambda \in \Lambda$, and g_1, \ldots, g_k the elements of G represented by the labels of p_1, \ldots, p_k , respectively. Then for any $i = 1, \ldots, k$, g_i belongs to the subgroup $\langle \Omega \rangle \leq G$ and the word lengths of g_i with respect to Ω satisfy the inequality

$$\sum_{i=1}^k |g_i|_{\Omega} \le Kl(q).$$

Recall also that a subgroup is *elementary* if it contains a cyclic subgroup of finite index. The lemma below is proved in [19].

Lemma 1.4. Let g be a hyperbolic element of infinite order in G. Then

- 1. The element g is contained in a unique maximal elementary subgroup $E_G(g)$ of G.
- 2. The group G is hyperbolic relative to the collection $\{H_{\lambda} \mid \lambda \in \Lambda\} \cup \{E_G(g)\}$.

Proof of Proposition 1.1. It suffices to prove the proposition under the following additional assumption: if u_i and u_j are conjugate, then $u_i = u_j$, and if $u_i = u_{i+1}$, then $g_{i+1} \notin E(u_i)$. Indeed, if $u_j = h^{-1}u_ih$, we replace u_j by $\bar{u}_j = u_i = hu_jh^{-1}$, g_j by $\bar{g}_j = g_jh^{-1}$ and g_{j+1} by $\bar{g}_{j+1} = hg_{j+1}$. If $[g_j^{-1}u_{j-1}g_j, u_j] \neq 1$, then $h[g_j^{-1}u_{j-1}g_j, u_j]h^{-1} = [\bar{g}_j^{-1}u_{j-1}\bar{g}_j, \bar{u}_j] \neq 1$. Similarly, if $[g_{j+1}^{-1}u_jg_{j+1}, u_{j+1}] \neq 1$, then $[\bar{g}_{j+1}^{-1}\bar{u}_j\bar{g}_{j+1}, u_{j+1}] \neq 1$. The CSA condition implies that $[g_{i+1}^{-1}u_ig_{i+1}, u_i] = 1$ is equivalent to $g_{i+1} \in E(u_i)$.

Joining g_1, \ldots, g_{k+1} to the finite relative generating set X if necessary, we may assume that $g_1, \ldots, g_{k+1} \in X$. Set

$$\mathcal{F} = \{ f \in \langle \Omega \rangle \mid |f|_{\Omega} \le 4K \},\$$

where *K* and Ω are given by Lemma 1.3. Suppose that $g_1 u_1^{n_1} \dots g_k u_k^{n_k} g_{k+1} = 1$. We consider a loop $p = q_1 r_1 q_2 r_2 \dots q_k r_k q_{k+1}$ in $\Gamma(G, X \cup \mathcal{H})$, where q_i (respectively, r_i) is labeled by g_i (respectively by $u_i^{n_i}$).

Note that r_1, \ldots, r_k are components of p. First assume that not all of these components are isolated in p. Suppose that r_i is connected to r_j for some j > i and j - i is minimal possible. Let s denote the segment $[(r_i)_+, (r_j)_-]$ of p, and let e be a path of length at most 1 in $\Gamma(G, X \cup \mathcal{H})$ labeled by an element of H_{λ} such that $e_- = (r_i)_+$, $e_+ = (r_j)_-$ (see Fig. 1). If j = i + 1, then the label Lab(s) is g_{i+1} . This contradicts the assumption $g_{i+1} \notin E(u_i)$ since Lab(s) and Lab(e) represent the same element in G. Therefore, j = i + 1 + l for some $l \ge 1$. Note that the components $r_{i+1}, \ldots, r_{i+1+l}$ are isolated in the cycle se^{-1} . (Indeed otherwise we can pass to another pair of connected components with smaller value of j - i.) By Lemma 1.3 we have $u_q^{n_q} \in \langle \Omega \rangle$ for all $i + 1 \le q \le i + 1 + l$ and

$$\sum_{q=i+1}^{i+l+1} |u_q^{n_q}|_{\Omega} \le Kl(se^{-1}) = K(2k+2).$$

Hence $|u_p^{n_p}|_{\Omega} \le K(2+2/k) \le 4K$ for at least one *p*, which is impossible for large n_p . Thus all components r_1, \ldots, r_k are isolated in *p*. Applying now Lemma 1.3 again, we obtain

$$\sum_{q=1}^{m} |u_q^{n_q}|_{\Omega} \le Kl(p) = K(2k+2).$$

This is again impossible for large n_1, \ldots, n_k .

1.6. Main results and the scheme of the proof

Our main result is the following theorem.

Theorem C. [With constants] Let $\Gamma \in \mathcal{G}$. A finitely generated Γ -group H is Γ -universally equivalent to Γ if and only if H is embeddable into $\Gamma^{\mathbb{Z}[t]}$.

The group $\Gamma^{\mathbb{Z}[t]}$ is discriminated by Γ . Indeed, it is enough to prove that any group H obtained from Γ by a finite series of extensions of centralizers is Γ -discriminated. We can obtain H from Γ in two steps. Let K be a subgroup of H that is obtained from Γ by only extending centralizers of elements from parabolic subgroups. Then $K \in \mathcal{G}$ and H is obtained from K by a series of extensions of centralizers of hyperbolic elements. By Proposition 1.1 applied to each centralizer extension, H is discriminated by K. Since K is discriminated by Γ by Lemma 1.3, H is also discriminated by Γ .

The proof of the converse follows the argument in [10], [11] with necessary modifications. It splits into steps. In Section 3 we will prove **Theorem D.** Let $\Gamma \in \mathcal{G}$ and H a finitely generated group discriminated by Γ . Then H embeds into an NTQ extension of Γ .

In Section 4 we will prove

Theorem E. Let $\Gamma \in \mathcal{G}$ and Γ^* an NTQ extension of Γ . Then Γ^* embeds into a group $\Gamma(U, T)$ obtained from Γ by finitely many extensions of centralizers.

2. Quadratic equations and NTQ systems and groups

Definition 2.1. A *standard quadratic equation* over the group G is an equation of one of the following forms (below d, c_i are non-trivial elements from G):

$$\prod_{i=1}^{n} [x_i, y_i] = 1, \quad n > 0;$$
(1)

$$\prod_{i=1}^{n} [x_i, y_i] \prod_{i=1}^{m} z_i^{-1} c_i z_i d = 1, \quad n, m \ge 0, m + n \ge 1;$$
(2)

$$\prod_{i=1}^{n} x_i^2 = 1, \quad n > 0; \tag{3}$$

$$\prod_{i=1}^{n} x_{i}^{2} \prod_{i=1}^{m} z_{i}^{-1} c_{i} z_{i} d = 1, \quad n, m \ge 0, n + m \ge 1.$$
(4)

Equations (1), (2) are called *orientable* of genus n, while equations (3), (4) are *non-orientable* of genus n.

Let W be a strictly quadratic word over a group G. Then there is a G-automorphism $f \in Aut_G(G[X])$ such that W^f is a standard quadratic word over G.

To each quadratic equation one can associate a punctured surface. For example, the orientable surface associated to (2) will have genus n and m + 1 punctures.

Definition 2.2. Strictly quadratic words of the type [x, y], x^2 , $z^{-1}cz$, where $c \in G$, are called *atomic quadratic words* or simply *atoms*.

By definition a standard quadratic equation S = 1 over G has the form

$$r_1\ldots r_k d=1,$$

where the r_i are atoms and $d \in G$. The number k is called the *atomic rank* of this equation; we denote it by r(S).

Definition 2.3. Let S = 1 be a standard quadratic equation written in the atomic form $r_1 \dots r_k d = 1$ with $k \ge 2$. A solution $\phi : G_{R(S)} \to G$ of S = 1 is called:

1. degenerate if $r_i^{\phi} = 1$ for some *i*, and *non-degenerate* otherwise;

- 2. *commutative* if $[r_i^{\phi}, r_{i+1}^{\phi}] = 1$ for all i = 1, ..., k 1, and *non-commutative* otherwise;
- 3. in general position if $[r_i^{\phi}, r_{i+1}^{\phi}] \neq 1$ for all $i = 1, \dots, k-1$.

Put

$$\kappa(S) = |X| + \varepsilon(S)$$

where $\varepsilon(S) = 1$ if S of the type (2) or (4), and $\varepsilon(S) = 0$ otherwise.

Definition 2.4. Let S = 1 be a standard quadratic equation over a group *G* which has a solution in *G*. The equation S(X) = 1 is *regular* if $\kappa(S) \ge 4$ (equivalently, the Euler characteristic of the corresponding punctured surface is at most -2) and there is a non-commutative solution of S(X) = 1 in *G*, or it is an equation of the type [x, y]d = 1 or $[x_1, y_1][x_2, y_2] = 1$.

Let G be a group with a generating set A. A system of equations S = 1 is called *triangular quasi-quadratic* (briefly, TQ) over G if it can be partitioned into the following subsystems:

$$S_1(X_1, X_2, ..., X_n, A) = 1,$$

 $S_2(X_2, ..., X_n, A) = 1,$
...
 $S_n(X_n, A) = 1,$

where for each *i* one of the following holds:

- 1) S_i is quadratic in the variables X_i ;
- 2) S_i = {[y, z] = 1, [y, u] = 1 | y, z ∈ X_i} where u is a group word in X_{i+1} ∪ … ∪ X_n ∪ A; in this case we say that S_i = 1 corresponds to an extension of a centralizer;
 3) S_i = {[y, z] = 1 | y, z ∈ X_i};
- 4) S_i is the empty equation.

Sometimes, we join several consecutive subsystems $S_i = 1, S_{i+1} = 1, ..., S_{i+j} = 1$ of a TQ system S = 1 into one block, thus partitioning the system S = 1 into new blocks. It is convenient to call a new system also a triangular quasi-quadratic system.

In the notation above define $G_i = G_{R(S_i,...,S_n)}$ for i = 1, ..., n and put $G_{n+1} = G$. The TQ system S = 1 is called *non-degenerate* (briefly, NTQ) if the following conditions hold:

- 5) each system $S_i = 1$, where X_{i+1}, \ldots, X_n are viewed as the corresponding constants from G_{i+1} (under the canonical maps $X_j \rightarrow G_{i+1}$, $j = i + 1, \ldots, n$), has a solution in G_{i+1} ;
- 6) the element in G_{i+1} represented by the word *u* from 2) is not a proper power in G_{i+1} .

An NTQ system S = 1 is called *regular* if each non-empty quadratic equation in S_i is regular (see Definition 2.4). The coordinate group of an NTQ system (resp., a regular NTQ system) is called an *NTQ group* (resp., a *regular NTQ group*).

3. Embeddings into NTQ extensions

Let $\Gamma \in \mathcal{G}$. In this section we will prove Theorem D. Namely, we will show how to embed a finitely generated fully residually Γ -group into an NTQ extension of Γ .

Theorem 3.1 ([7, Theorem 1.1]). Let $\Gamma \in \mathcal{G}$ and G a finitely generated freely indecomposable group with abelian JSJ decomposition \mathcal{D} . Then there exists a finite collection $\{\eta_i : G \to L_i\}_{i=1}^n$ of proper quotients of G such that, for any homomorphism $h : G \to \Gamma$ which is not equivalent to an injective homomorphism, there exists $h' : G \to \Gamma$ with $h \sim h'$ (the relation \sim uses conjugation, canonical automorphisms corresponding to \mathcal{D} and "bending moves"), $i \in \{1, ..., n\}$ and $h_i : L_i \to \Gamma$ so that $h' = \eta_i h_i$. The quotient groups L_i are fully residually Γ .

This theorem reduces the description of $\text{Hom}(G, \Gamma)$ to a description of $\text{Hom}(L_i, \Gamma)_{i=1}^n$. We then apply it again to each L_i in turn and so on with successive proper quotients. Such a sequence terminates by equationally Noetherian property. Using this theorem one can construct a Hom-diagram which is the same as the so-called Makanin–Razborov diagram constructed in Section 6 of [7].

The statement of the above theorem is still true if we replace the set of all homomorphisms $h: G \to \Gamma$ by the set of all Γ -homomorphisms. The proof is the same. Therefore, a similar diagram can be constructed for Γ -homomorphisms $G \to \Gamma$.

Proof of Theorem D. Let *G* be a finitely generated freely indecomposable group discriminated by Γ . According to the construction of the Makanin-Razborov diagram the set Hom(*G*, Γ) is divided into a finite number of families. Therefore one of these families contains a discriminating set of homomorphisms. Each family corresponds to a sequence of fully residually Γ -groups (see [13])

$$G = G_0, G_1, \ldots, G_n,$$

where G_{i+1} is a proper quotient of G_i and $\pi_i : G_i \to G_{i+1}$ is an epimorphism. Similarly to Lemma 16 from [13], for a discriminating family, π_i is a monomorphism for the following subgroups H in the JSJ decomposition \mathcal{D}_i of G_i :

- 1. *H* is a rigid subgroup in \mathcal{D}_i ;
- 2. *H* is an edge subgroup in \mathcal{D}_i ;
- 3. *H* is the subgroup of an abelian vertex group *A* in \mathcal{D}_i generated by the canonical images in *A* of the edge groups of the edges of \mathcal{D}_i adjacent to *A*.

We need the following result.

Lemma 3.2 ([13, Lemma 22]).

(1) Let $H = A *_D B$, D be an abelian subgroup that is maximal abelian in A or B, and $\pi : H \to \overline{H}$ be a homomorphism such that the restrictions of π to A and B are injective. Put

$$H^* = \langle \overline{H}, y \mid [C_{\overline{H}}(\pi(D)), y] = 1 \rangle.$$

Then for every $u \in C_{H^*}((\pi(D)) \setminus C_{\bar{H}}(\pi(D)))$, the map

$$\psi(x) = \begin{cases} \pi(x), & x \in A, \\ \pi(x)^u, & x \in B, \end{cases}$$

gives rise to a monomorphism $\psi : H \to H^*$.

(2) Let $H = \langle A, t | d^t = c, d \in D \rangle$, where D is abelian and either D or its image is maximal abelian in A, and let $\pi : H \to \overline{H}$ be a homomorphism such that the restriction of π to A is injective. Put

$$H^* = \langle \overline{H}, y \mid [C_{\overline{H}}(\pi(D)), y] = 1 \rangle$$

Then for every $u \in C_{H^*}((\pi(D)) \setminus C_{\bar{H}}(\pi(D)))$, the map

$$\psi(x) = \begin{cases} \pi(x), & x \in A, \\ u\pi(x), & x = t, \end{cases}$$

gives rise to a monomorphism $\psi : H \to H^*$.

Let now \mathcal{D} be an abelian JSJ decomposition of G. Combining foldings and slidings, we can transform \mathcal{D} into an abelian decomposition in which each vertex with non-cyclic abelian subgroup that is connected to some rigid vertex, is connected to only one vertex which is rigid. We suppose from the beginning that \mathcal{D} has this property. Let G_1 be the fully residually Γ proper quotient of G on the next level of the Makanin–Razborov diagram, and π be the canonical epimorphism $\pi : G \to G_1$. Let $G_1 = P_1 * \cdots * P_{\alpha} * F$ be the Grushko decomposition of G_1 relative to the set of all rigid subgroups and edge subgroups of \mathcal{D} . Here F is the free factor and each P_i is freely indecomposable modulo rigid subgroups and edge subgroups of \mathcal{D} .

We will construct a canonical extension G^* of $G = P_1 * \cdots * P_{\alpha}$ which is the fundamental group of the graph of groups Λ obtained from a single vertex v with the associated vertex group $G_v = \overline{G}$ by adding finitely many edges corresponding to extensions of centralizers (viewed as amalgamated products) and finitely many QH-vertices connected only to v. By construction of \overline{G} , each factor in this decomposition contains a conjugate of the image of some rigid subgroup or an edge group in \mathcal{D} . Indeed, the Grushko decomposition of \overline{G} is non-trivial only if the fundamental groups of some separating simple closed curves on the surfaces corresponding to QH subgroups of \mathcal{D} are mapped by π to the identity element. Such curves cut the surface into pieces, and the fundamental groups of all the pieces that are not attached to rigid subgroups are mapped into F.

Let g_1, \ldots, g_l be a fixed finite generating set of \overline{G} . For an edge $e \in \mathcal{D}$ we fix a tuple of generators d_e of the abelian edge group G_e . The required extension G^* of \overline{G} is constructed in three steps. On each step we extend the centralizers $C_{\overline{G}}(\pi(d_e))$ of some edges e in \mathcal{D} or add a QH subgroup. Simultaneously, to every edge $e \in \mathcal{D}$ we associate an element $s_e \in C_{G^*}(\pi(d_e))$.

Step 1. Let E_{rig} be the set of all edges between rigid subgroups in \mathcal{D} . One can define an equivalence relation \sim on E_{rig} by declaring for $e, f \in E_{rig}$ that

$$e \sim f \Leftrightarrow \exists g_{ef} \in G\left(g_{ef}^{-1}C_{\bar{G}}(\pi(e))g_{ef} = C_{\bar{G}}(\pi(f))\right).$$

Let *E* be a set of representatives of equivalence classes of E_{rig} modulo \sim . We construct a group $G^{(1)}$ by extending every centralizer $C_{\bar{G}}(\pi(d_e))$ of $\bar{G}, e \in E$, as follows. Let

$$[e] = \{e = e_1, \dots, e_{q_e}\}$$

and $y_e^{(1)}, \ldots, y_e^{(q_e)}$ be new letters corresponding to the elements in [*e*]. Then put $G^{(1)}$

$$= \langle \bar{G}, y_e^{(1)}, \dots, y_e^{(q_e)} (e \in E) \mid [C(\pi(d_e)), y_e^{(j)}] = 1, [y_e^{(i)}, y_e^{(j)}] = 1 \ (i, j = 1, \dots, q_e) \rangle.$$

One can associate with $G^{(1)}$ the system of equations over \overline{G} :

$$[\bar{g}_{es}, y_e^{(j)}] = 1, \quad [y_e^{(i)}, y_e^{(j)}] = 1, \quad i, j = 1, \dots, q_e, s = 1, \dots, p_e, e \in E,$$
 (5)

where $y_e^{(j)}$ are new variables and the elements $\bar{g}_{e1}, \ldots, \bar{g}_{ep_e}$ are constants from \bar{G} which generate the centralizer $C(\pi(d_e))$. We assume that the constants \bar{g}_{ej} are given as words in the generators g_1, \ldots, g_l of \bar{G} . We associate with the edge $e_i \in [e]$ an element s_{e_i} that is the conjugate of $y_e^{(i)}$ from $C_{G^{(1)}}(\pi(d_{e_i}))$.

Step 2. Let A be a non-cyclic abelian vertex group in \mathcal{D} and A_e the subgroup of A generated by the images in A of the edge groups of edges adjacent to A. Then $A = \text{Is}(A_e) \times A_0$ where $\text{Is}(A_e)$ is the isolator of A_e in A (the minimal direct factor containing A_e) and A_0 a direct complement of $\text{Is}(A_e)$ in A. Notice that the restriction of π_1 to $\text{Is}(A_e)$ is a monomorphism (since π_1 is injective on A_e and A_e is of finite index in $\text{Is}(A_e)$). For each non-cyclic abelian vertex group A in \mathcal{D} we extend the centralizer of $\pi_1(\text{Is}(A_e))$ in $G^{(1)}$ by the abelian group A_0 and denote the resulting group by $G^{(2)}$. Observe that since $\pi_1(\text{Is}(A_e)) \leq \overline{G}$ the group $G^{(2)}$ is obtained from \overline{G} by extending finitely many centralizers of elements from \overline{G} .

If the abelian group A_0 has rank r then the system of equations associated with the abelian vertex group A has the form

$$[y_p, y_q] = 1, \quad [y_p, \bar{d}_{ej}] = 1, \quad p, q = 1, \dots, r, \ j = 1, \dots, p_e,$$
 (6)

where y_p , y_q are new variables and the elements $\bar{d}_{e1}, \ldots, \bar{d}_{ep_e}$ are constants from \bar{G} which generate the subgroup $\pi(\text{Is}(A_e))$. We assume that the constants \bar{d}_{ej} are given as words in the generators g_1, \ldots, g_l of \bar{G} .

Step 3. Let Q be a non-stable QH subgroup in \mathcal{D} (not mapped by π into the same QH subgroup). Suppose Q is given by a presentation

$$\prod_{i=1}^{n} [x_i, y_i] p_1 \cdots p_m = 1$$

where there are exactly *m* outgoing edges e_1, \ldots, e_m from *Q* and $\sigma(G_{e_i}) = \langle p_i \rangle$, $\tau(G_{e_i}) = \langle c_i \rangle$ for each edge e_i . We add a QH vertex *Q* to $G^{(2)}$ by introducing new generators and the quadratic relation

$$\prod_{i=1}^{n} [x_i, y_i] (c_1^{\pi_1})^{z_1} \cdots (c_{m-1}^{\pi_1})^{z_{m-1}} c_m^{\pi_1} = 1$$
(7)

to the presentation of $G^{(2)}$. Observe that in the relations (7) the coefficients in the original quadratic relations for Q in \mathcal{D} are replaced by their images in \overline{G} .

Similarly, one introduces QH vertices for non-orientable QH subgroups in \mathcal{D} .

The resulting group is denoted by $G^* = G^{(3)}$.

We define a (Γ) -homomorphism $\psi : G \to G^*$ with respect to the splitting \mathcal{D} of Gand will prove that it is a monomorphism. Let T be the maximal subtree of \mathcal{D} . First, we define ψ on the fundamental group of the graph of groups induced from \mathcal{D} on T. Notice that if we consider only Γ -homomorphisms, then the subgroup Γ is elliptic in \mathcal{D} , so there is a rigid vertex $v_0 \in T$ such that $\Gamma \leq G_{v_0}$. The mapping π embeds G_{v_0} into \overline{G} , hence into G^* .

Let *P* be a path $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n$ in *T* that starts at v_0 . With each edge $e_i = (v_{i-1} \rightarrow v_i)$ between two rigid vertex groups we have already associated the element s_{e_i} . Let us associate elements to other edges of *P*:

- a) if v_{i-1} is a rigid vertex, and v_i is either abelian or QH, then $s_{e_i} = 1$;
- b) if v_{i-1} is a QH vertex, v_i is rigid or abelian, and the image of e_i in the decomposition \mathcal{D}^* of G^* does not belong to T^* , then s_{e_i} is the stable letter corresponding to the image of e_i ;
- c) if v_{i-1} is a QH vertex and v_i is rigid or abelian, and the image of e_i in the decomposition of G^* belongs to T^* , then $s_{e_i} = 1$;
- d) if v_{i-1} is an abelian vertex with $G_{v_{i-1}} = A$ and v_i is a QH vertex, then s_{e_i} is an element from A that belongs to A_0 .

Since two abelian vertices cannot be connected by an edge in Γ , and we can suppose that two QH vertices are not connected by an edge, these are all possible cases.

We now define the embedding ψ on the fundamental group corresponding to the path *P* as follows:

$$\psi(x) = \pi(x)^{s_{e_i} \dots s_{e_1}} \quad \text{for } x \in G_{v_i}.$$

This map is a monomorphism by Lemma 3.2. Similarly we define ψ on the fundamental group of the graph of groups induced from \mathcal{D} on T. We extend it to G using the second statement of Lemma 3.2.

Recursively applying this procedure to G_1 and so on, we will construct the NTQ group N such that G is embedded into N. Theorem D is proved.

4. Embedding of NTQ groups into G(U, T)

An NTQ group H over Γ is obtained from Γ by a series of extensions:

$$\Gamma = H_0 < H_1 < \cdots < H_n = H,$$

where for each i = 1, ..., n, H_i is either an extension of a centralizer in H_{i-1} or the coordinate group of a regular quadratic equation over H_{i-1} . In the second case, equivalently, H_i is the fundamental group of the graph of groups with two vertices, v and w, such that v is a QH vertex with QH subgroup Q, and H_{i-1} is the vertex group of w. Moreover, there is a retraction from H_i onto H_{i-1} . In this section we will prove the following theorem which, by induction, implies Theorem E.

Theorem 4.1. Let H be the fundamental group of the graph of groups with two vertices, v and w, such that v is a QH vertex with QH subgroup Q, $H_w = \Gamma \in \mathcal{G}$, and there is a retraction from H onto Γ such that Q corresponds to a regular quadratic equation. Then H can be embedded into a group obtained from Γ by a series of extensions of centralizers.

The idea of the proof is as follows. Let S_Q be a punctured surface corresponding to the QH vertex group in the decomposition (say \mathcal{D}) of H as the graph of groups. We will find in Proposition 4.9 a finite collection of simple closed curves (s.c.c.) on S_Q and a homomorphism $\delta : H \to K$, where K is an iterated centralizer extension of $\Gamma * F$, with the following properties:

- 1) δ is a retraction on Γ ,
- 2) each of the simple closed curves in the collection and all boundary elements of S_Q are mapped by δ into non-trivial elements of K,
- 3) each connected component of the surface obtained by cutting S_Q along this family of s.c.c. has Euler characteristic -1,
- 4) the fundamental group of each of these connected components is mapped monomorphically into a 2-generated free subgroup of *K*.

Given this collection of s.c.c. on the surface associated with the QH vertex group in the decomposition \mathcal{D} , one can extend \mathcal{D} by further splitting the QH vertex groups along the family of simple closed curves described above. Now the statement of Theorem 4.1 will follow from Lemma 3.2.

Proposition 4.2 ([10, Prop. 3]). Let S = 1 be a non-degenerate standard quadratic equation over a CSA-group G. Then either S = 1 has a solution in general position, or every non-degenerate solution of S = 1 is commutative.

Proving the theorem we will consider the following three cases for the equation corresponding to the QH subgroup Q: orientable of genus ≥ 1 , genus = 0, and non-orientable of genus ≥ 1 . For an orientable equation of genus ≥ 1 we have the following proposition.

Proposition 4.3 (cf. [10, Prop. 4]). Let $S : \prod_{i=1}^{m} [x_i, y_i] \prod_{j=1}^{n} c_j^{z_j} g^{-1} = 1$ ($m \ge 1$, $n \ge 0$) be a non-degenerate standard quadratic equation over a group $G \in \mathcal{G}$. Then S = 1 has a solution in general position in some group H which is an iterated extension of centralizers of G * F (where F is a free group) unless S = 1 is the equation $[x_1, y_1][x_2, y_2] = 1$ or $[x, y]c^z = 1$. This solution can be chosen so that the images of x_i and y_i generate a free subgroup (for each i = 1, ..., m).

Proof. Let n = 0. Then we have a standard quadratic equation of the type

$$[x_1, y_1] \dots [x_k, y_k] = g,$$

which we will sometimes write as $r_1 \dots r_k = g$, where, as before, $r_i = [x_i, y_i]$.

Lemma 4.4. Let $S : [x_1, y_1][x_2, y_2] = g$ be a non-degenerate equation over a group $G \in \mathcal{G}$. Then S = g has a solution in general position in some group H which is an iterated extension of centralizers of G * F unless S = 1 is the equation $[x_1, y_1][x_2, y_2] = 1$. Moreover, for each i, x_i, y_i generate a free subgroup.

Proof. Suppose S = g has a solution ϕ such that $r_1^{\phi} = 1$ and $r_2^{\phi} = 1$. Then g = 1 and our equation takes the form

$$[x, y][x_2, y_2] = 1.$$
(8)

From now on we assume that for all solutions ϕ either $r_1^{\phi} \neq 1$ or $r_2^{\phi} \neq 1$. Suppose now that just one of the equalities $r_i^{\phi} = 1$ (i = 1, 2) holds, say $r_1^{\phi} = 1$. Write $x_2^{\phi} = a$ and $y_2^{\phi} = b$. Then the equation is

$$[x, y][x_2, y_2] = [a, b] \neq 1.$$

This equation has other solutions, for example, for a new letter c and p > 2,

$$\psi: x \to (ca^{-1})^{-p}c, y \to c^{(ca^{-1})^{p}}, x_{2} \to a^{(ca^{-1})^{p}}, y_{2} \to (ca^{-1})^{-p}b$$
 (9)

for which

$$r_1^{\psi} = [c, (ca^{-1})^p] \neq 1$$
 and $r_2^{\psi} = [(ca^{-1})^p, a][a, b] \neq 1.$

We claim that $[r_1^{\psi}, r_2^{\psi}] \neq 1$. Indeed, $[r_1^{\psi}, r_2^{\psi}] = 1$ if and only if

$$[[c, (ca^{-1})^p], [(ca^{-1})^p, a][a, b]] = 1,$$

but this is not true in $G * \langle c \rangle$.

Thus, just one case is left to consider. Suppose that $[r_1^{\phi}, r_2^{\phi}] = 1$ and $r_i^{\phi} \neq 1$ (i = 1, 2) for all solutions ϕ . Suppose $x^{\phi} = a$, $y^{\phi} = b$, $x_2^{\phi} = c$ and $y_2^{\phi} = d$. We will use ideas from [12] to change the solution. Let

$$H = \langle G, t_1, t_2, t_3, t_4, t_5 \mid 1 = [t_1, b] = [t_2, t_1 a] = [t_3, d] = [t_4, t_3 c] = [t_5, t_2 b c^{-1} t_3^{-1}] \rangle.$$

Let $x^{\psi} = t_5^{-1} t_1 a$, $y^{\psi} = (t_2 b)^{t_5}$, $x_2 = (t_3 c)^{t_5}$, $y_2^{\psi} = t_5^{-1} t_4 d$. This ψ is also a solution of the same equation. But now x^{ψ} and y^{ψ} generate a free subgroup of *H*. If we have a word w(x, y) then $w(x^{\psi}, y^{\psi}) = 1$ in H if all occurrences of t_5 disappear. This can only happen if w(x, y) is made up of the blocks $x^{-1}yx$. But these blocks commute, hence $w = x^{-1}y^n x$. But now $w^{\psi} = a^{-1}t_1^{-1}(t_2b)^n t_1a$, therefore w^{ψ} contains t_2 that does not disappear. Therefore $w^{\psi} \neq 1$. Similarly, x_2^{ψ} and y_2^{ψ} generate a free subgroup of H.

We will show now that $[r_1^{\psi}, r_2^{\psi}] \neq 1$. Indeed,

$$r_1^{\psi}r_2^{\psi} = [x^{\psi}, y^{\psi}][x_2^{\psi}, y_2^{\psi}] = [a, b][c, d],$$

but

$$r_{2}^{\psi}r_{1}^{\psi} = [x_{2}^{\psi}, y_{2}^{\psi}][x^{\psi}, y^{\psi}] = t_{5}^{-1}c^{-1}t_{3}^{-1}t_{5}d^{-1}t_{3}cda^{-1}t_{1}^{-1}b^{-1}t_{2}^{-1}t_{1}at_{5}^{-1}t_{2}bt_{5}.$$

And there is no way to make a pinch and cancel t_5 in the second expression. Therefore $[r_1^{\psi}, r_2^{\psi}] \neq 1$ and the proposition is proved.

Similarly, one can prove the following lemma.

Lemma 4.5 (cf. [10, Lemma 13]). Let $S : [x_1, y_1] \dots [x_k, y_k] = g$ be a non-degenerate equation over a group $G \in \mathcal{G}$ and assume that $k \ge 3$. Then S = g has a solution in general position over some group H which is an iterated extension of centralizers of G * F. Moreover, for each i, x_i , y_i generate a free subgroup.

Proof. The proof is by induction on *k*.

Let k = 3. Assume that g = 1. This means we have the equation

$$[x_1, y_1][x_2, y_2][x_3, y_3] = 1,$$

which has a solution

$$x_1^{\phi} = a, \quad y_1^{\phi} = b, \quad x_2^{\phi} = b, \quad y_2^{\phi} = a, \quad x_3^{\phi} = 1, \quad y_3^{\phi} = 1,$$

where a, b are arbitrary generators of F. Then the conclusion follows from Proposition 4 of [10]. But for convenience of the reader we will give a proof here. The equation

$$[x_2, y_2][x_3, y_3] = [b, a]$$

is non-degenerate of atomic rank 2; hence, by the lemma above, it has a solution θ such that $[r_2^{\theta}, r_3^{\theta}] \neq 1$, and the images $x_2^{\theta}, y_2^{\theta}$ (resp., the images $x_3^{\theta}, y_3^{\theta}$) generate a free non-abelian subgroup. We got a solution ψ such that

$$x_1^{\psi} = a, \quad y_1^{\psi} = b, \quad x_i^{\psi} = x_i^{\theta}, \quad y_i^{\psi} = y_i^{\theta} \quad \text{ for } i = 2, 3.$$

Now we are in a position to apply the previous lemma to the equation

$$[x_1, y_1][x_2, y_2] = [y_3^{\psi}, x_3^{\psi}].$$

It follows that there exists a solution to S = g in general position and such that the subgroups generated by the images of x_i , y_i are free non-abelian for i = 1, 2, 3.

Assume now that $g \neq 1$. Then there exists a solution ϕ such that for at least one *i* we have $r_i^{\phi} \neq 1$. Renaming variables one can assume that exactly $r_3^{\phi} = [a, b] \neq 1$, $a, b \in G$. Then the equation

$$r_1r_2 = g[b, a]$$

has a solution in *G*. Again, we have two cases. If $g[b, a] \neq 1$, then we can argue as in Lemma 4.4. We obtain first a solution ϕ such that $x_i^{\phi} = c_i, y_i^{\phi} = d_i, i = 1, 2, x_3^{\phi} = a, y_3^{\phi} = b, [r_1^{\phi}, r_2^{\phi}] \neq 1$, $[c_1, d_1] \neq g$, and c_i, d_i generate a free subgroup for i = 1, 2. Then we consider the equation $[x_2, y_2][x_3, y_3] = [d_1, c_1]g$ and apply Lemma 4.4 once more.

If g[b, a] = 1 then g = [a, b] and the initial equation S = g actually has the form

$$r_1r_2r_3 = [a, b].$$

In this event consider a solution θ such that

$$x_1^{\theta} = c, \quad y_1^{\theta} = d, \quad x_2^{\theta} = (ca^{-1})^{-1}d, \quad y_2^{\theta} = c^{ca^{-1}}, \quad x_3^{\theta} = a^{ca^{-1}}, \quad y_3^{\theta} = (ca^{-1})^{-1}b,$$

where *c*, *d* are non-commuting elements from *F*. Then $[r_i^{\theta}, r_j^{\theta}] \neq 1, i, j = 1, 2, 3$, and obviously $x_i^{\theta}, y_i^{\theta}$ generate a free group.

Let k > 3. The equation

$$\ldots r_k = g$$

has a solution ϕ such that for at least one *i*, say i = k (by renaming variables we can always assume this), we have $r_k^{\phi} = [a, b] \neq 1$. Then the equation

 r_1

$$r_1 \dots r_{k-1} = g[b, a]$$

is non-degenerate and by induction there is a solution θ such that $[r_i^{\theta}, r_{i+1}^{\theta}] \neq 1$ for all i = 1, ..., k - 2, and x_i, y_i generate a free subgroup for i = 1, ..., k - 1. Define now a solution θ_1 of the initial equation S = g as follows:

$$x_i^{\theta} = x_i^{\theta_1}, \quad y_i^{\theta} = y_i^{\theta_1} \quad \text{for } i = 1, \dots, k - 2,$$

$$x_{k-1}^{\theta_1} = t_5^{-1} t_1 x_{k-1}^{\theta}, \quad y_{k-1}^{\theta_1} = (t_2 y_{k-1}^{\theta})^{t_5}, \quad x_k^{\theta_1} = (t_3 a)^{t_5}, \quad y_k^{\theta_1} = t_5^{-1} t_4 b,$$

where

$$[t_1, y_{k-1}^{\theta}] = [t_2, t_1 x_{k-1}^{\theta}] = [t_3, b] = [t_4, t_3 a] = [t_5, t_2 y_{k-1}^{\theta} a^{-1} t_3^{-1}] = 1.$$

This solution satisfies the requirements of the lemma.

Thus, Proposition 4.3 is proved for the case n = 0. Consider now the case n > 0.

Lemma 4.6 (cf. [10, Lemma 14]). The equation $S : [x, y]c^z = g$, where $g \neq 1$, which is consistent over a group $G \in \mathcal{G}$ always has a solution in general position in some iterated centralizer extension H of G such that the images of x and y generate a free subgroup.

Proof. Let $x \to a$, $y \to b$, $z \to d$ be an arbitrary solution of $[x, y]c^z = g$, where $g \neq 1$. Then $g = [a, b]c^d$ and the equation takes the form

$$[x, y]c^z = [a, b]c^d.$$

We can assume that $[a, b] \neq 1$. Indeed, suppose [a, b] = 1. If $[c, d] \neq 1$, then we can write the equation as

$$[x, y]c^{z} = c^{d} = [d, c^{-1}]c,$$

which has the solution $x \to d$, $y \to c^{-1}$, $z \to 1$ such that $[x, y] \to [d, c^{-1}] \neq 1$. So we can assume now that [c, d] = 1, in which case we have the equation

$$[x, y]c^z = c$$
 or equivalently $[x, y] = [c^{-1}, z]$.

The group *G* is a non-abelian CSA-group; hence the center of *G* is trivial. In particular, there exists an element $h \in G$ such that $[c, h] \neq 1$. We see that $x \to c^{-1}$, $y \to h$, $z \to h$ is a solution ϕ for which $[x, y]^{\phi} \neq 1$.

Thus we have the equation $[x, y]c^{z} = [a, b]c^{d}$, where $[a, b] \neq 1$. Let $H = \langle G, t | [t, bc^{d}] = 1 \rangle$. Consider the map ψ defined as follows:

$$x^{\psi} = t^{-1}a, \quad y^{\psi} = t^{-1}bt, \quad z^{\psi} = dt.$$

Straightforward computations show that

$$[x, y]^{\psi} = [a, b][b, t], \quad (c^z)^{\psi} = c^{dt};$$

hence

$$[x^{\psi}, y^{\psi}]c^{z^{\psi}} = [a, b]c^d,$$

and consequently ψ is a solution.

We claim that $[r_1^{\psi}, r_2^{\psi}] \neq 1$. Indeed, suppose $[r_1^{\psi}, r_2^{\psi}] = 1$; then we have

$$[[x, y]^{\psi}, c^{z^{\psi}}] = 1, \quad [[a, b][b, t], c^{dt}] = 1,$$

$$t^{-1}b^{-1}tb[b, a]t^{-1}d^{-1}c^{-1}dt[a, b]b^{-1}t^{-1}bd^{-1}cdt = 1$$

which implies

$$t^{-1}b^{-1}tb[b,a]t^{-1}d^{-1}c^{-1}dt[a,b]b^{-1}bd^{-1}cd = 1.$$

The letter *t* disappears only if c^d commutes with *b* or b^a commutes with bc^d . In both cases the last equality implies that [a, b] commutes with c^d and *b* commutes with b^a . Therefore [a, b] = 1, which contradicts the choice of a, b, c, d.

Now suppose that m = 1, n > 1. Let $\phi : G_S \to G$ be an arbitrary solution of S = g. Write

$$h = g \left(\prod_{j=3}^{n} c_j^{z_j}\right)^{-q}$$

and consider the equation

$$[x, y]c_1^{z_1}c_2^{z_2} = h. (10)$$

If this equation satisfies the conclusion of Proposition 4.3, then by induction the equation S = g will satisfy the conclusion. So we need to prove the proposition just for equation (10). There are now two possible cases.

Case (a): There exists a solution ξ of the equation (10) such that $(c_2^{z_2})^{\xi} \neq h$. In this event by Lemma 4.6 the equation

$$[x, y]c_1^{z_1} = h(c_2^{z_2})^{-\xi} \neq 1$$

has a solution θ in general position. Hence we can extend this θ to a solution of (10) in such a way that $r_i^{\theta} \neq 1$ for i = 1, 2 and $[r_1^{\theta}, r_2^{\theta}] \neq 1$. Consequently, by Proposition 4.2 we can construct a solution ψ in general position. It will automatically satisfy the conclusion of Proposition 4.3.

Case (b): Assume now that $(c_2^{z_2})^{\phi} = h$ for all solutions ϕ of (10). Then we actually have

$$[x, y]c_1^{z_1} = 1, \quad c_2^{z_2} = h,$$

and this system of equations has a solution in G. It follows that $c_1 = [a, b] \neq 1$ for some $a, b \in G$. Therefore equation (10) is

$$[x, y][a, b]^{z_1}c_2^{z_2} = h,$$

and has a solution ψ of the type

$$x^{\psi} = b^{f}, \quad y^{\psi} = a^{f}, \quad z_{1}^{\psi} = f, \quad z_{2}^{\psi} = z_{2}^{\phi}$$

where f is an arbitrary element in G and ϕ is an arbitrary solution of (10). The two elements [a, b] and h are non-trivial in the CSA-group G, hence there exists $f^* \in G$ such that $[[a, b]^{f^*}, h] \neq 1$. But this implies that if we take $f = f^*$ then the solution ψ will satisfy $[r_2^{\psi}, r_3^{\psi}] \neq 1$. Now it is sufficient to apply Proposition 4.2. Now we suppose that m = 2, n > 1. Then we have the equation

$$[x_1, y_1][x_2, y_2] \prod_{j=1}^n c_j^{z_j} = g.$$

Again, if there exists a solution ϕ of this equation such that

$$\left(\prod_{j=1}^n c_j^{z_j}\right)^{\phi} \neq g,$$

then we can write

$$h = g \left(\prod_{j=1}^{n} c_j^{z_j}\right)^{-\phi}$$

and consider the equation

$$[x_1, y_1][x_2, y_2] = h$$

which according to Lemma 4.5 has a solution ξ in general position such that the images of x_i , y_i generate a free subgroup. We can extend it to a solution of S = g, and by Proposition 4.3 applied to the equation

$$[x_1^{\xi}, y_1^{\xi}][x_2, y_2] \prod_{j=1}^n c_j^{z_j} = g$$

we can construct a solution ψ in general position with the required properties.

Assume now that

$$\left(\prod_{j=1}^n c_j^{z_j}\right)^\phi = g$$

for all solutions ϕ of the equation S = g. This implies that an arbitrary map of the type

$$x_1 \to a, \quad y_1 \to b, \quad x_2 \to b, \quad y_2 \to a$$

extends by means of any ϕ above to a solution ψ of the equation S = g. Choose $a, b \in F$; then $[[b, a], r_3^{\phi}] \neq 1$ for the given solution ϕ . And we again just need to appeal to Proposition 4.3 for the equation

$$[a, b][x_2, y_2] \prod_{j=1}^{n} c_j^{z_j} = g$$

The case m > 2 is easy since if ϕ is a solution of the equation

$$\prod_{i=1}^{m} [x_i, y_i] \prod_{j=1}^{n} c_j^{z_j} g^{-1} = 1,$$

then we can consider the equation

$$\prod_{i=1}^{m} [x_i, y_i] = g\left(\prod_{j=1}^{n} c_j^{z_j}\right)^{-\phi},$$

which by Lemma 4.5 has a solution in general position such that the images of x_i , y_i generate a free subgroup; after that to finish the proof we need only apply Proposition 4.2.

Proposition 4.3 is proved.

The following proposition settles the genus 0 case.

Proposition 4.7. Let $S: c_1^{z_1} \dots c_k^{z_k} = g$ be a non-degenerate standard quadratic equation over a group $G \in \mathcal{G}$. Then either S = g has a solution in general position in some iterated centralizer extension of G * F, or every solution of S = g is commutative.

Proof. By the definition of a standard quadratic equation, $c_i \neq 1$ for all i = 1, ..., k. Hence every solution of S = g is non-degenerate. Now the result follows from Proposition 4.2.

The following proposition can be proved similarly to Proposition 8 in [10].

Proposition 4.8. Let $S: x_1^2 \dots x_p^2 c_1^{z_1} \dots c_k^{z_k} g = 1$ be a non-degenerate regular standard quadratic equation over a group $G \in \mathcal{G}$. Then there is a solution in general position in some iterated centralizer extension of G * F. If p > 2 and p + k > 3, then the equation is regular.

We now introduce some notation. For $S : \prod_{i=1}^{m} [x_i, y_i] \prod_{j=1}^{n} c_j^{z_j} = g$, denote $p_j = c_i^{z_j}$, $p_{n+1} = g^{-1}, q_k = \prod_{i=1}^k [x_i, y_i] \text{ for } k \le m \text{ and } q_{m+k} = \prod_{i=1}^m [x_i, y_i] \prod_{j=1}^k p_k.$

For $S : \prod_{i=1}^{m} x_i^2 \prod_{j=1}^{n} c_j^{z_j} = g$, denote $p_j = c_j^{z_j}$, $p_{n+1} = g^{-1}$, $q_k = \prod_{i=1}^{k} x_i^2$ for $k \le m \text{ and } q_{m+k} = \prod_{i=1}^{m} x_i^2 \prod_{i=1}^{k} p_k.$

Proposition 4.9. Let S = g be a regular quadratic equation over a group $G \in \mathcal{G}$. Then there exists a solution δ in G * F such that for any j = 1, ..., m + n - 1:

- 1. $[q_j^{\delta}, r_{j+1}^{\delta}] \neq 1;$ 2. $[q_j^{\delta}, (r_{j+1} \dots r_{n+m})^{\delta}] \neq 1;$
- 3. there exists a solution δ in an iterated centralizer extension of G * F such that the following subgroups are free non-abelian: $\langle q_j^{\delta}, r_{j+1}^{\delta} \rangle$ for any j = 1, ..., m + n - 1; $\langle q_i^{\delta}, x_{i+1}^{\delta} \rangle$ for any $j = 1, \ldots, m-1$; $\langle q_{i+1}^{\delta}, x_{i+1}^{\delta} \rangle$ for any $j = 1, \ldots, m-1$.

Proof. Let S = g be an orientable equation. We begin with the first statement. Let ϕ be a solution in general position constructed in Proposition 4.3. Let $q_{j-1} = \prod_{i=1}^{j-1} [x_i, y_i]$, $A = q_{j-1}^{\phi}, x_j^{\phi} = a, y_j^{\phi} = b, x_{j+1}^{\phi} = c, y_{j+1}^{\phi} = d$. If $[A[a, b], [c, d]] \neq 1$, then the statement is proved for *j*. Suppose that [A[a, b], [c, d]] = 1. We can assume that $[b, c] \neq 1$ (taking *ab* instead of *b* if necessary). Let $t = bc^{-1}$. Take another solution ψ such that $q_{j-1}^{\psi} = q_{j-1}^{\phi}$, $x_j^{\psi} = t^{-s}a, y_j^{\psi} = b^{t^s}, x_{j+1}^{\psi} = c^{t^s}, y_{j+1}^{\psi} = t^{-s}d$ for a large $s \in \mathbb{N}$.

If
$$[q_{i-1}^{\psi}[x_i^{\psi}, y_i^{\psi}], [x_{i+1}^{\psi}, y_{i+1}^{\psi}]] = 1$$
, then

$$A[a, b][b, t^{s}][t^{s}, c][c, d] = [t^{s}, c][c, d]A[a, b][b, t^{s}],$$

and therefore

$$A[a, b][c, d] = [t^{s}, c]A[a, b][c, d][b, t^{s}]$$

If we denote B = A[a, b][c, d], this is equivalent to $B = [t^s, c]B[b, t^s]$, which is equivalent, by commutation transitivity, to $[t, cBb^{-1}] = 1$ or $[t, B^{c^{-1}}] = 1$, or $[B, c^{-1}b] = 1$.

We take instead of c, d respectively $(d^p)c$, $((d^p)c)^k d$ and denote the new solution by $\delta_{s,p,k}$. If $[q_j^{\delta_{s,p,k}}, [x_{j+1}^{\delta_{s,p,k}}, y_{j+1}^{\delta_{s,p,k}}]] = 1$ for all s, p, k, then by the CSA property $[b(d^pc)^{-1}, (d^pc)^k d] = 1$ for all p, k, contrary to c, d freely generating a free subgroup.

The proof for $j \ge m$ is similar.

The same solution $\delta_{s,p,k}$ can be used to prove the second statement.

We will now prove the third statement by induction on *j*. Let δ be a solution with properties 1 and 2. Let *j* = 1 and

$$H_1 = \langle G * F, t_1 \mid [t_1, (r_2 \dots r_{m+n})^{\delta}] = 1 \rangle.$$

We transform δ into a solution δ_1 in the following way. If $m \neq 0$, then

$$x_1^{\delta_1} = x_1^{\delta}, \quad y_1^{\delta_1} = y_1^{\delta},$$

and

$$x_i^{\delta_1} = x_i^{\delta_{t_1}}, \quad y_i^{\delta_1} = y_i^{\delta_{t_1}}, \quad z_k^{\delta_1} = z_k^{\delta_t} t_1$$

for i = 2, ..., m, k = 1, ..., n. The subgroup generated by $q_1^{\delta_1}, r_2^{\delta_1}$ is free. Using Proposition 4.3 one can see that the subgroups generated by $q_1^{\delta_1}, x_2^{\delta_1}$ (if $m \ge 2$), and by $q_2^{\delta_1}, x_2^{\delta_1}$ are also free. In the case m = 0 we define

$$z_1^{\delta_1} = z_1^{\delta}, \qquad z_k^{\delta_1} = z_k^{\delta} t_1$$

for i = 2, ..., m, k = 1, ..., n.

Suppose by induction that a solution δ_{i-1} in a group H_{j-1} which is an iterated centralizer extension of G * F and satisfying the third statement of the proposition for indices from 1 to j - 1 has been constructed. Let

$$H_j = \langle H_{j-1}, t_j \mid [t_j, (r_{j+1} \dots r_{m+n})^{\delta}] = 1 \rangle.$$

We begin with the solution δ_{i-1} and transform it into a solution δ_i in the following way:

$$\begin{aligned} x_i^{\delta_j} &= x_i^{\delta_{j-1}}, \quad y_i^{\delta_j} &= y_i^{\delta_{j-1}}, \quad i = 1, \dots, j, \\ x_i^{\delta_j} &= x_i^{\delta_{j-1}t_j}, \quad y_i^{\delta_j} &= y_i^{\delta_{j-1}t_j}, \quad i = j+1, \dots, m \\ z_i^{\delta_j} &= z_i^{\delta_{j-1}}t_j. \end{aligned}$$

The subgroups generated by $q_j^{\delta_j}$, $r_{j+1}^{\delta_j}$, by $q_j^{\delta_j}$, $x_{j+1}^{\delta_j}$ and by $q_{j+1}^{\delta_j}$, $x_{j+1}^{\delta_j}$ are free. The proof for a non-orientable equation is very similar and we skip it.

We can now prove Theorem 4.1. Let H be the fundamental group of the graph of groups with two vertices, v and w, such that v is a QH vertex, $H_w = \Gamma \in \mathcal{G}$, and there is a retraction from H onto Γ . Let S_Q be a punctured surface corresponding to a QH vertex group in this decomposition of H. Elements q_j , x_j correspond to simple closed curves on the surface S_Q . By Proposition 4.9, we found a collection of simple closed curves on S_Q and solution δ with a properties 1)–4) from the beginning of Section 4.

Theorem E now follows from Theorem 4.1 by induction.

Notice that Proposition 4.9 also implies the following

Corollary 4.10 (cf. [21, Lemma 1.32]). Let Q be the fundamental group of a punctured surface S_Q of Euler characteristic at most -2. Let $\mu : Q \to \Gamma$ be a homomorphism that maps Q into a non-abelian subgroup of Γ and the image of every boundary component of Q is non-trivial. Then either:

- 1. there exists a separating s.c.c. $\gamma \subset S_Q$ such that γ is mapped non-trivially into Γ , and the image in Γ of the fundamental group of each connected component obtained by cutting S_Q along γ is non-abelian, or
- 2. there exists a non-separating s.c.c. $\gamma \subset S_Q$ such that γ is mapped non-trivially into Γ , and the image of the fundamental group of the connected component obtained by cutting S_Q along γ is non-abelian.

Acknowledgments. We thank D. Osin who suggested a proof of Proposition 1.1 and made other useful comments.

Both authors were supported by an NSERC grant.

References

- Baumslag, G., Myasnikov, A., Remeslennikov, V.: Algebraic geometry over groups I. Algebraic sets and ideal theory. J. Algebra 219, 16–79 (1999) Zbl 0938.20020 MR 1707663
- [2] Baumslag, G., Myasnikov, A., Remeslennikov, V.: Discriminating completions of hyperbolic groups. Geom. Dedicata 92, 115–143 (2002) Zbl 1011.20041 MR 1934015
- [3] Champetier, C., Guirardel, V.: Limit groups as limits of groups. Israel J. Math. 146, 1–75, Zbl 1103(2005)20026 MR 2151593
- [4] Daniyarova, E., Myasnikov, A., Remeslennikov, V.: Unification theorems in algebraic geometry. In: Aspects of Infinite Groups, Algebra Discrete Math. 1, World Sci., 80–111 (2008) Zbl pre05526605 MR 2571513

П

- [5] Grigorchuk, R.: Degrees of growth of f.g. groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat. 48, 939–985 (1984) Zbl 0583.20023 MR 0764305
- [6] Groves, D.: Limit groups for relatively hyperbolic groups I: The basic tools. Algebr. Geom. Topol. 9, 1423–1466 (2009) Zbl pre05597151 MR 2530123
- [7] Groves, D.: Limit groups for relatively hyperbolic groups II: Makanin–Razborov diagrams. Geom. Topol. 9, 2319–2358 (2005) Zbl 1100.20032 MR 2209374
- [8] Gromov, M.: Groups of polynomial growth and expanding maps. Publ. Math. IHES 53, 53–73 (1981) Zbl 0474.20018 MR 0623534
- [9] Kharlampovich, O., Myasnikov, A.: Description of fully residually free groups and irreducible affine varieties over a free group. In: Summer School in Group Theory in Banff, 1996, CRM Proc. Lecture Notes 17, Amer. Math. Soc., 71–80 (1999) Zbl 0922.20027 MR 1653685
- [10] Kharlampovich, O., Myasnikov, A.: Irreducible affine varieties over a free group. 1: irreducibility of quadratic equations and Nullstellensatz. J. Algebra 200, 472–516 (1998) Zbl 0904.20016 MR 1610660
- [11] Kharlampovich, O., Myasnikov, A.: Irreducible affine varieties over a free group. II: Systems in triangular quasi-quadratic form and description of residually free groups. J. Algebra 200, 517–570 (1998) Zbl 0904.20017 MR 1610664
- [12] Kharlampovich, O., Myasnikov, A.: Implicit function theorem over free groups. J. Algebra 290, 1–203 (2005) Zbl 1094.20016 MR 2154989
- [13] Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups. J. Algebra 302, 451–552 (2006) Zbl 1110.03020 MR 2293770
- [14] Lyndon, R. C.: Groups with parametric exponents. Trans. Amer. Math. Soc. 96, 518–533 (1960)
 Zbl 0108.02501 MR 0151502
- [15] Myasnikov, A., Remeslennikov, V.: Exponential groups II: extensions of centralizers and tensor completion of CSA-groups. Int. J. Algebra Comput. 6, 687–711 (1996) Zbl 0866.20014 MR 1421886
- [16] Myasnikov, A., Remeslennikov, V.: Algebraic geometry II: logical foundations. J. Algebra 234, 225–276 (2000) Zbl 0970.20017 MR 1799485
- [17] Osin, D.: Relatively hyperbolic groups: intrinsic geometry, algebraic properties and algorithmic problems. Mem. Amer. Math. Soc. 179, no. 843 (2006) Zbl 1093.20025 MR 2182268
- [18] Osin, D.: Peripheral fillings of relatively hyperbolic groups. Invent. Math. 167, 295–326 (2007) Zbl 1116.20031 MR 2270456
- [19] Osin, D.: Elementary subgroups of hyperbolic groups and bounded generation. Int. J. Algebra Comput. 16, 99–118 (2006) Zbl 1100.20033 MR 2217644
- [20] Remeslennikov, V.: E-free groups. Siberian Math. J. 30, 193–197 (1989) Zbl 0724.20025 MR 1043446
- [21] Sela, Z.: Diophantine geometry over groups I: Makanin–Razborov diagrams. Publ. Math. IHES 93, 31–105 (2001) Zbl 1018.20034 MR 1863735