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Abstract. We prove the universal lifting theorem: for an α-simply connected and α-connected Lie
groupoid 0 with Lie algebroid A, the graded Lie algebra of multi-differentials on A is isomorphic
to that of multiplicative multi-vector fields on 0. As a consequence, we obtain the integration theo-
rem for a quasi-Lie bialgebroid, which generalizes various integration theorems in the literature in
special cases.

The second goal of the paper is the study of basic properties of quasi-Poisson groupoids. In
particular, we prove that a group pair (D,G) associated to a quasi-Manin triple (d, g, h) induces a
quasi-Poisson groupoid on the transformation groupoid G × D/G ⇒ D/G. Its momentum map
corresponds exactly with the D/G-momentum map of Alekseev and Kosmann-Schwarzbach.
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1. Introduction

According to the classical Lie’s third theorem, there is a bijection between (finite-dimen-
sional) Lie algebras and (finite-dimensional) connected and simply connected Lie groups.
Indeed it is a fundamental principle in Lie theory that given a connected and simply con-
nected Lie groupG, there should exist a one-one correspondence between various notions
concerning the Lie group G and their infinitesimal counterparts in its Lie algebra g. The
latter is easier to deal with, and the passage from a Lie algebra notion to its Lie group
counterpart is normally referred to as “integration”. Poisson groups are the classical limit
of quantum groups and have been extensively studied in the past two decades. It is a theo-
rem of Drinfel’d [13, 14] that there is a bijection between connected and simply connected
Poisson groups and their infinitesimal invariants: Lie bialgebras. A Poisson group is a Lie
group equipped with a compatible Poisson structure. By a compatible Poisson structure π
on a Lie groupG, we mean that the Poisson tensor π is multiplicative, i.e., the group mul-
tiplication G × G → G is a Poisson map. In [23], motivated by the theory of Poisson
groups, Lu studied multiplicative multi-vector fields on a Lie group and proved that they
are closed under the Schouten bracket. Therefore, the space of multiplicative multi-vector
fields on a Lie group constitutes a Lie subalgebra of the Lie algebra of multi-vector fields.
Moreover, Lu proved that this Lie subalgebra is isomorphic, under the assumption that
the Lie group is connected and simply connected, to the Lie algebra of derivations of the
algebra (

⊕∧
• g,∧). The latter implies Drinfel’d’s theorem above regarding integration

of Lie bialgebras.
On the other hand, symplectic groupoids were introduced by Karasev [18], Weinstein

[36] and Zakrzewski [43] independently in their study of Poisson geometry. Symplec-
tic groupoids are Lie groupoids equipped with compatible symplectic structures. They
have played an increasingly important role in quantization theory [7, 36]. In order to
explore the intrinsic relation between symplectic groupoid theory and Drinfel’d theory,
Weinstein introduced the notion of Poisson groupoids [37], i.e., Lie groupoids equipped
with compatible Poisson structures. In [27], Mackenzie and one of the authors introduced
the notion of Lie bialgebroids: pairs of Lie algebroids (A,A∗) in duality which satisfy
a certain compatibility condition. Furthermore, they proved that Lie bialgebroids are in
bijection with Poisson groupoids under a suitable simply-connectedness assumption [29].
This result extends the well-known result of Drinfel’d that a Lie bialgebra is the Lie bial-
gebra of a Poisson group [13, 14]. At the other extreme, they obtained, as a consequence,
a new proof of the existence of local symplectic groupoids for any Poisson manifolds, a
remarkable theorem of Karasev and Weinstein [18, 36].

In their study of the moduli space of flat connections on surfaces by using finite-
dimensional techniques, Alekseev, Malkin and Meinrenken introduced the notion of
quasi-Hamiltonian manifolds [3]. In [1, 2], the more general notion of quasi-Poisson man-
ifold was introduced by Alekseev and Kosmann-Schwarzbach. These are quasi-Poisson
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spaces with the so-called D/G-momentum maps. Here (d, g, h) is a quasi-Manin triple,
and D and G are connected and simply connected Lie groups with Lie algebras d and g
respectively. They also developed the theory of reduction for these quasi-Poisson spaces.
According to the Weinstein guiding principle [39], such a quasi-Poisson space can be
considered as a “symmetric space” by a Lie groupoid equipped with a certain Poisson
type structure. It is thus natural to explore the underlying structure on a groupoid, which
gives rise to such a D/G-momentum map. For this purpose, it turns out that one must
enlarge the notion of Poisson groupoids to consider groupoids equipped with multiplica-
tive bivector fields which are “Poisson up to homotopy”, i.e., quasi-Poisson groupoids.
The related notion of quasi-Lie bialgebroids was introduced by Roytenberg [33]. And
for a quasi-Manin triple (d, g, h), there is a naturally associated quasi-Lie bialgebroid.
However, it remains an open question whether every quasi-Lie bialgebroid integrates to a
quasi-Poisson groupoid.

The main goal of this paper is to study various integration problems from a general
perspective and prove an analogue of Lu’s theorem for Lie groupoids. More precisely, we
study multiplicative multi-vector fields on a Lie groupoid. Since left and right translations
are not well defined on a Lie groupoid, Lu’s definition does not have a straightforward
generalization to the groupoid setting. This difficulty can however be overcome by using
a generalized version of Weinstein’s coisotropic calculus [37]. The space of multiplicative
k-vector fields on 0 is denoted by Xkmult(0). We prove that

⊕
i X

i
mult(0) is closed under

the Schouten bracket, and therefore is a Gerstenhaber subalgebra of
⊕

i X
i(0).

To study the infinitesimal version of multiplicative multi-vector fields, we introduce
the notion of multi-differentials on a Lie algebroid. Recall that for a given Lie algebroid
A, the anchor map together with the Lie bracket on 0(A) extends to a graded Lie bracket
on

⊕
i 0(

∧i
A), which makes it into a Gerstenhaber algebra (

⊕
i 0(

∧i
A), [[·, ·]],∧)

[42]. By a k-differential on a Lie algebroid A, we mean a linear operator δ : 0(
∧
•
A)→

0(
∧
•+k−1

A) satisfying

δ(P ∧Q) = (δP ) ∧Q+ (−1)p(k−1)P ∧ δQ,

δ[[P,Q]] = [[δP,Q]]+ (−1)(p−1)(k−1)[[P, δQ]],
(1.1)

for all P ∈ 0(
∧p

A) and Q ∈ 0(
∧q

A) (see Definition 2.23 for an equivalent defini-
tion). In other words, δ is a differential (of degree k − 1) of the Gerstenhaber algebra
(⊕i0(

∧i
A), [[·, ·]],∧). The space of all multi-differentials, A =

⊕
k Ak , becomes a

graded Lie algebra under the graded commutator. The main theorem is the following

Universal lifting theorem. Assume that 0 ⇒ M is an α-simply connected and
α-connected Lie groupoid with Lie algebroid A. Then

⊕
i Ai is isomorphic to⊕

i X
i
mult(0) as graded Lie algebras.

Here, α-connected and α-simply connected Lie groupoid means that the fibers of
the fibration α : 0 → M are connected and simply connected, respectively (see the
end of the introduction for more details on the notation). To prove this theorem, one
direction is straightforward. Given a multiplicative k-vector field 5 ∈ Xkmult(0), for any
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P ∈ 0(
∧p

A), one proves that [5,
−→
P ] is again right-invariant, where

−→
P denotes the

right-invariant p-vector field on 0 corresponding to P ∈ 0(
∧p

A). Therefore, there
exists δ5P ∈ 0(

∧k+p−1
A) such that for any P ∈ 0(

∧p
A),

−−→
δ5P = [5,

−→
P ].

Thus δ5 is indeed a k-differential. When 0 is a Lie group, the above construction is called
the inner derivative [23]. To prove the other direction, we realize the groupoid 0 as the
moduli space of the space P(A) of all A-paths modulo gauge transformations. Such a
characterization was first obtained by Cattaneo–Felder motivated by the Poisson sigma
model when the Lie algebroid is the cotangent Lie algebroid associated to a Poisson man-
ifold [7]. The general case was due to Crainic–Fernandes [11] (see [6, 12] for applica-
tions). Heuristically, our idea can be described as follows. Let δ be a k-differential. Then
δ naturally induces a k-vector field πδ on A, which is linear along the fibers. It in turn
gives rise to a k-vector field π̃δ on the path space P̃ (A). We then prove that π̃δ induces a
k-vector field on the moduli space of the space P(A) of all A-paths.

As an important application, in the second part of the paper, we study quasi-Poisson
groupoids and their infinitesimals: quasi-Lie bialgebroids. A quasi-Poisson groupoid is a
triple (0,5,�), where 0 is a Lie groupoid, 5 is a multiplicative bivector field on 0 and
� ∈ 0(

∧3
A) such that the following compatibility conditions hold:

1
2 [5,5] =

−→
� −
←−
�, (1.2)

[5,
−→
� ] = 0. (1.3)

Infinitesimally, a quasi-Poisson groupoid corresponds to a quasi-Lie bialgebroid, i.e.
to a 2-differential whose square is a coboundary: δ ∈ A2 such that δ2

= [[�, ·]] for some
� ∈ 0(

∧3
A) satisfying δ� = 0. The notion of quasi-Lie bialgebroids, first introduced

by Roytenberg [33], is a natural generalization of Lie bialgebroids [27]. It also generalizes
Drinfeld’s quasi-Lie bialgebras [15], the classical limit of quasi-Hopf algebras.

As an immediate consequence of the universal lifting theorem, one concludes that
there is a bijection between quasi-Lie bialgebroids (A, δ,�) and quasi-Poisson groupoids
(0,5,�), where 0 is an α-simply connected and α-connected Lie groupoid integrating
the Lie algebroidA. In particular, when� = 0, one obtains a simpler proof of the Lie bial-
gebroid integration theorem of Mackenzie–Xu [29]. On the other hand, when (A, δ,�) is
the quasi-Lie bialgebroid corresponding to a twisted Poisson manifold [34], one recovers
the integration theorem of Cattaneo–Xu [8].

A fundamental example, which is also a driving force for our study, is the quasi-
Poisson groupoid induced by a quasi-Manin triple (d, g, h). Given such a quasi-triple
(d, g, h), there is an associated quasi-Lie bialgebra (g, δ, φ), where δ :

∧
• g →

∧
•+1 g

is a derivation of the Gerstenhaber algebra
∧

g such that δ2
= [φ, ·]. It is easy to see

that δ extends to a 2-differential of the transformation Lie algebroid g×D/G→ D/G,
where D and G are connected and simply connected Lie groups with Lie algebras d and
g respectively, and g acts on D/G as the infinitesimal action of the left G-multiplication
on D/G. We explicitly describe the corresponding quasi-Poisson groupoid structure on
G×D/G ⇒ D/G.
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Similar to the case of Poisson groupoids, a quasi-Poisson groupoid 0 also defines a
momentum theory via the so-called Hamiltonian 0-spaces. Important properties of such
spaces are also studied in this paper. For the quasi-Poisson groupoid G×D/G ⇒ D/G

above, we prove that the corresponding Hamiltonian 0-spaces are equivalent to the quasi-
Poisson spaces with D/G-momentum maps in the sense of Alekseev and Kosmann–
Schwarzbach [1]. However, our approach does not require h to be admissible. A particu-
larly interesting case is the quasi-Manin triple (g ⊕ g,1(g), 1

21−(g)) corresponding to
a Lie algebra g equipped with an ad-invariant nondegenerate symmetric pairing. In this
case, one obtains a quasi-Poisson groupoid structure on G×G ⇒ G, where G acts on G
by conjugation. The discussion on this topic occupies Section 4.

When (d, g, h) is a Manin triple and G is a complete Poisson group, we recover the
Poisson groupoid G × G∗ ⇒ G∗ [25] (which is symplectic in this case), G∗ being the
dual Poisson group. When G is not necessarily complete, the Poisson groupoid G ×
D/G ⇒ D/G, which is in fact a symplectic groupoid integrating the Poisson structure
on D/G, can be considered as a replacement of the Lu–Weinstein symplectic groupoid
G×G∗ ⇒ G∗.

We note that multiplicative multi-vector fields on a Lie groupoid are also related to
super-groupoids studied by Mehta [30]. We refer the interested reader to [30] for more
details. After the paper has been submitted, an alternative approach to the universal lift-
ing theorem has been proposed by Bursztyn–Cabrera [5]. Moreover, a number of impor-
tant applications of the universal lifting theorem have recently appeared, including, for
instance, in the study of Poisson quasi-Nijenhuis structures [35] and holomorphic Lie
algebroids [21].

Notation. Some remarks about notation are in order. For a Lie groupoid 0 ⇒ M , we
denote by α, β: 0 → M the source and target maps. Two elements g, h ∈ 0 are com-
posable if β(g) = α(h). We denote by 0(2) ⊂ 0 × 0 the subset of composable pairs in
0 × 0. By i : 0 → 0, g 7→ i(g) = g−1, we denote the inversion, and ε : M → 0,
x 7→ ε(x) = x̃, is the unit map. We denote by A → M the Lie algebroid of 0 (for
any m ∈ M , Am := Kerβ∗|ε(m)). Moreover, given a section X of A,

−→
X denotes the

right-invariant vector field on 0 corresponding to X. The cotangent Lie groupoid of 0 is
denoted by T ∗0 ⇒ A∗, A∗ being the dual of the Lie algebroid A, where the source and
target maps are denoted by α̃ and β̃, respectively, the inversion by ι̃, and the unit map by ε̃.

2. Multiplicative k-vector fields on Lie groupoids

2.1. Coisotropic submanifolds

In this section, we generalize Weinstein’s coisotropic calculus [37] to multi-vector fields.

Definition 2.1. Let V be a vector space and 5 ∈
∧k

V . We say that a subspace W of V
is coisotropic with respect to 5 if

5(ξ1, . . . , ξ k) = 0

for all ξ1, . . . , ξ k ∈ W ◦, where W ◦ is the annihilator of W , that is, W ◦ = {ξ ∈ V ∗ |
ξ|W = 0}.
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A slight modification of coisotropic calculus for bivector fields developed in [37] will
allow us to show several properties. We now give the following important lemma.

Lemma 2.2. Let V1, V2 be vector spaces and 5i ∈
∧k

Vi for i = 1, 2. If R ⊆ V1 × V2
is coisotropic with respect to51⊕52 and C ⊆ V2 is coisotropic with respect to52 then

R(C) = {u ∈ V1 | ∃ v ∈ C with (u, v) ∈ R}

is coisotropic with respect to 51.

Proof. Let R∗ ⊆ V ∗1 × V
∗

2 be the subspace given by

R∗ = {(ξ1, ξ2) ∈ V ∗1 × V
∗

2 | 〈ξ
1, v1〉 = 〈ξ

2, v2〉, ∀ (v1, v2) ∈ R}.

Then we have R(C)◦ = R∗(C◦).
Now, let ξ1, . . . , ξ k ∈ R(C)◦ = R∗(C◦). Then there exist ϕ1, . . . , ϕk ∈ C◦ such that

(ξ i, ϕi) ∈ R∗, i.e., (ξ i,−ϕi) ∈ R◦. Thus,

0 = (51 ⊕52)((ξ
1,−ϕ1), . . . , (ξ k,−ϕk)) = 51(ξ

1, . . . , ξ k)+ (−1)k52(ϕ
1, . . . , ϕk)

= 51(ξ
1, . . . , ξ k).

That is, R(C) is coisotropic. ut

A generalization of the notion of coisotropy to manifolds is the following.

Definition 2.3. Let M be an arbitrary manifold and 5 ∈ Xk(M). A submanifold S of M
is said to be coisotropic with respect to 5 if TxS is coisotropic with respect to 5(x) for
all x ∈ S.

Remark 2.4. It is easy to see that S is coisotropic with respect to the multi-vector field5
if and only if 5(df 1, . . . , df k)|S = 0 for any f 1, . . . , f k ∈ C∞(M) such that f i

|S = 0
(see [37] for the case of bivector fields).

On any manifold M , the usual Lie bracket of vector fields can be extended to multi-
vector fields, yielding the so-called Schouten bracket, denoted by [·, ·], in such a way that
(
⊕

k Xk(M), [·, ·]) is endowed with a structure of Gerstenhaber algebra. More precisely,
this bracket can be defined as follows. IfA is any subset of {1, . . . , k+k′−1}, letA′ denote
its complement and |A| the number of elements in A. If |A| = l and the elements in A
are {i1, . . . , il} in increasing order, let us write fA for the ordered k-tuple (f i1 , . . . , f il ).
Furthermore, we write εA for the sign of the permutation which rearranges the elements
of the ordered (k + k′ − 1)-tuple (A′, A) in the original order. Then the Schouten bracket
of 5 ∈ Xk(M) and 5′ ∈ Xk

′

(M) is given [4] by

[5,5′](df 1, . . . , df k+k
′
−1) = (−1)k+1

( ∑
|A|=k′

εA5(d(5
′(fA)), dfA′)

+ (−1)kk
′
∑
|B|=k

εB5
′(d(5(fB)), dfB ′)

)
. (2.4)

Using (2.4) and the characterization of coisotropic submanifolds in Remark 2.4, one can
deduce the following result.
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Proposition 2.5. If S is coisotropic with respect to the multi-vector fields5 and5′, then
S is coisotropic with respect to the multi-vector field [5,5′], defined by the Schouten
bracket of 5 and 5′.

2.2. Definition and examples

In this section, we will introduce the notion of multiplicative multi-vector fields and show
that it generalizes several concepts which have previously appeared in the literature.

Throughout this section, we fix a Lie groupoid 0 ⇒ M and denote its Lie algebroid
by A. Moreover, we denote by 3 the graph of the groupoid multiplication, that is,

3 = {(g, h, gh) | β(g) = α(h)}.

Definition 2.6. Let 0 ⇒ M be a Lie groupoid and 5 ∈ Xk(0) a k-vector field on 0. We
say that 5 is multiplicative if 3 is coisotropic with respect to 5⊕5⊕ (−1)k+15. The
space of multiplicative vector fields is denoted by Xkmult(0).

An interesting characterization of multiplicative multi-vector fields is the following:

Proposition 2.7. Let 0 ⇒ M be a Lie groupoid and 5 ∈ Xk(0) a k-vector field on 0.
Then the following are equivalent:

(i) 5 is multiplicative;
(ii) for any µig, ν

i
h ∈ T

∗0, such that β̃(µig) = α̃(ν
i
h),

5(gh)(µ1
g · ν

1
h, . . . , µ

k
g · ν

k
h) = 5(g)(µ

1
g, . . . , µ

k
g)+5(h)(ν

1
h, . . . , ν

k
h); (2.5)

(iii) the linear skew-symmetric function F5 on T ∗0×0 (k). . . ×0T
∗0 induced by 5,

F5(µ
1, . . . , µk) = 5(µ1, . . . , µk),

is a 1-cocycle with respect to the Lie groupoid

T ∗0×0
(k). . . ×0T

∗0 ⇒ A∗×M
(k). . . ×MA

∗. (2.6)

Here T ∗0×0 (k). . . ×0T
∗0 = {(µ1, . . . , µk) ∈ T ∗0 × . . . × T ∗0 | τ(µ1) = · · · =

τ(µk)}, τ : T ∗0 → 0 is the bundle projection onto its base, A∗×M (k). . . ×MA
∗
=

{(η1, . . . , ηk) ∈ A∗ × . . . × A∗ | p∗(η
1) = . . . = p∗(η

k)}, with p∗ : A∗ → M

the projection onto the base, and T ∗0×0 (k). . . ×0T
∗0 ⇒ A∗×M

(k). . . ×MA
∗ is

considered as a Lie subgroupoid of the direct product groupoid (T ∗0)k ⇒ (A∗)k .

Proof. It is well-known [9] that if 3 is the graph of the groupoid multiplication for
a groupoid 0 ⇒ M , then the graph of the groupoid multiplication for the cotangent
groupoid T ∗0 ⇒ A∗ is related to the conormal bundle of 3, N∗3, in the following way:

(µg, νh, γgh) ∈ N
∗

(g,h,gh)3 if and only if γgh = −µg · νh for µg, νh ∈ T ∗0. (2.7)
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Thus, for 5 a k-vector field, it follows from Definition 2.6 and (2.7) that 5 is multiplica-
tive if and only if for all (µ1

g, ν
1
h, γ

1
gh), . . . , (µ

k
g, ν

k
h, γ

k
gh) ∈ N

∗

(g,h,gh)3, we have

0 = (5⊕5⊕ (−1)k+15)((µ1
g, ν

1
h, γ

1
gh), . . . , (µ

k
g, ν

k
h, γ

k
gh))

= 5(g)(µ1
g, . . . , µ

k
g)+5(h)(ν

1
h, . . . , ν

k
h)−5(gh)(µ

1
g · ν

1
h . . . , µ

k
g · ν

k
h).

From this relation, the equivalences trivially follow. ut

Remark 2.8. From Proposition 2.7, one can deduce the well-known fact that a bivector
field 5 on a Lie groupoid 0 is multiplicative if and only if 5] : T ∗0 → T 0 is a Lie
groupoid morphism, i.e.,

5](µg · νh) = 5
](µg) ·5

](νh)

for all µg, νh ∈ T ∗0 such that β̃(µg) = α̃(νh).

A direct consequence of Proposition 2.5 and Definition 2.6 is the following.

Proposition 2.9. The Schouten bracket of multiplicative multi-vector fields is still multi-
plicative. That is, (

⊕
k Xkmult(0), [·, ·]) is a graded Lie subalgebra of (

⊕
k Xk(0), [·, ·]).

Below we list some well-known examples.

Example 2.10. Let G be a Lie group and 5 ∈ Xk(G) a k-vector field. From β̃(µig) =

α̃(νih) we deduce that
µig = (Lg−1)

∗(Rh)
∗νih.

Moreover, we have
µig · ν

i
h = (Lg−1)

∗νih.

Therefore, we see that (2.5) is equivalent to

((Lg−1)∗5(gh)− (Lg−1)∗(Rh)∗5(g)−5(h))(ν
1
h, . . . , ν

k
h) = 0.

That is, 5(gh) = (Rh)∗5(g) + (Lg)∗5(h). The converse is obvious. Therefore, our
definition of multiplicative k-vector fields is indeed a generalization of the usual notion
for Lie groups (see [24]).

Example 2.11. We say that an R-valued function σ on 0 is multiplicative if σ(gh) =
σ(g) + σ(h) for (g, h) ∈ 0(2). Therefore, multiplicative functions are multiplicative 0-
vector fields.

Example 2.12. A vector fieldX ∈ X(0) is said to be multiplicative if it is a Lie groupoid
morphism X : 0 → T 0 from a Lie groupoid 0 ⇒ M to the corresponding tangent Lie
groupoid T 0 ⇒ TM (see [28]), so we have X(gh) = X(g) · X(h) for β(g) = α(h).
Using this fact and that

(µg · νh)(ug · vh) = µg(ug)+ νh(vh) for all (ug, vh) ∈ T 0(2),

we deduce that X is a multiplicative 1-vector field in the sense of Definition 2.6.

Example 2.13. From Definition 2.6, we see that the Poisson tensor on a Poisson groupoid
is a multiplicative bivector field [37].
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Example 2.14. Given a Lie groupoid 0 with Lie algebroid A, if P ∈ 0(
∧k

A), then
−→
P −
←−
P is a multiplicative k-vector field on 0 ⇒ M .

2.3. Multiplicative and affine multi-vector fields

An affinoid structure on a space X is defined to be a subset of X4 whose elements are
designated as parallelograms, with axioms modeled on the properties of the quaternary
relation {(x, y, z, w) | yx−1

= wz−1
} on a group or groupoid. In the group case, this con-

cept boils down to the standard one of an affine space as developed originally by R. Baer.
An axiomatic approach to affinoid structures on a groupoid is given by Weinstein [38]
in connection with the study of Poisson geometry. For a Lie groupoid 0, let � be the
submanifold of 0 × 0 × 0 × 0 consisting of elements (l, h, g,w) such that w = hl−1g.
Then� is called the affinoid diagram corresponding to the groupoid 0 by Weinstein [38].
A characterization of multiplicative k-vector fields in terms of the affinoid diagram, anal-
ogous to the classification of multiplicative Poisson structures in [38, Thm. 4.5], is the
following:

Proposition 2.15. Let 5 be a k-vector field on a Lie groupoid. Then 5 is multiplicative
if and only if � is coisotropic with respect to5⊕ (−1)k+15⊕ (−1)k+15⊕5 andM is
coisotropic with respect to 5.

Proof. Suppose that5 is a multiplicative k-vector field on 0. Using (2.5) and the identity
ε̃(φm) · ε̃(φm) = ε̃(φm) for all φm ∈ A∗m, A∗m being the fiber at m ∈ M of the vector
bundle A∗, we have

5(ε(m))(̃ε(φ1
m), . . . , ε̃(φ

k
m)) = 25(ε(m))(̃ε(φ1

m), . . . , ε̃(φ
k
m))

for all φ1
m, . . . , φ

k
m ∈ A

∗
m,m ∈ M . Since ε̃(A∗) = N∗M , we deduce thatM is coisotropic

with respect to 5.
Now we mimic the proof of Theorem 4.5 in [38]. In the product 0 × 0̄ × 0̄ × 0 ×

0 × 0̄ (where 0̄ denotes 0 endowed with the k-vector field (−1)k+15), we consider the
coisotropic submanifold R = {(g, h, l, x, y, z) | gy = l and hz = x}. On the other hand,
it is easy to see that the diagonal 1 ⊂ 0 × 0̄ is a coisotropic submanifold. Therefore,
using Lemma 2.2, we find that R(1) is coisotropic submanifold of 0 × 0̄ × 0̄ × 0. It is
easy to see that R(1) = �. Our result thus follows.

Conversely, let5 be a k-vector field on a Lie groupoid such that� is coisotropic with
respect to 5 ⊕ (−1)k+15 ⊕ (−1)k+15 ⊕ 5 and M is coisotropic with respect to 5.
Applying Lemma 2.2 to R = � and C = M , we conclude that 3 is coisotropic with
respect to 5⊕5⊕ (−1)k+15. That is, 5 is multiplicative. ut

Next we recall the definition of an affine multi-vector field on a Lie groupoid. We will
also show its relation to multiplicative multi-vector fields.

Definition 2.16. A multi-vector field 5 on 0 is affine if for any g, h ∈ 0 such that
β(g) = α(h) = m and any bisections X ,Y through the points g, h, we have

5(gh) = (RY )∗5(g)+ (LX )∗5(h)− (RY ◦ LX )∗5(ε(m)). (2.8)
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A useful characterization of affine multi-vector fields is the following:

Proposition 2.17 ([29]). Let 5 be a k-vector field on a Lie groupoid 0 ⇒ M . Then 5
is affine if and only if [

−→
X ,5] is right-invariant for all X ∈ 0(A).

Multiplicative multi-vector fields are a particular case of affine multi-vector fields, as
shown in the following proposition.

Proposition 2.18. If 5 is a multiplicative k-vector field on a Lie groupoid 0, then 5 is
affine.

Proof. If 5 is multiplicative, then according to Proposition 2.15, � is coisotropic with
respect to5⊕ (−1)k+15⊕ (−1)k+15⊕5, andM is coisotropic with respect to5. For
any µ ∈ Tgh0, it follows from Lemma 2.6 in [41] that (−µ,L∗Xµ,R

∗

Yµ,−L
∗

XR
∗

Yµ) is
conormal to �. Therefore, for any µ1, . . . , µk ∈ Tgh0, we have

−5(gh)(µ1, . . . , µk)+5(h)(L∗Xµ
1, . . . , L∗Xµ

k)+5(g)(R∗Yµ
1, . . . , R∗Yµ

k)

−5(ε(m))(L∗XR
∗

Yµ
1, . . . , L∗XR

∗

Yµ
k) = 0.

Thus (2.8) follows immediately. ut

Similar to the case of multiplicative bivector fields, we can give another useful character-
ization of multiplicative k-vector fields.

Theorem 2.19. Let 0 ⇒ M be a Lie groupoid and 5 ∈ Xk(0) a k-vector field on 0.
Then 5 is multiplicative if and only if the following conditions hold:

(i) 5 is affine, i.e., (2.8) holds;
(ii) M is a coisotropic submanifold of 0;

(iii) α∗5(g) and β∗5(g) only depend on α(g) and β(g), respectively;
(iv) for all η1, η2

∈ �1(M), we have (α∗η1
∧ β∗η2) 5 = 0;

(v) for all θ ∈ �p(M), 1 ≤ p < k, then (β∗θ) 5 is a left-invariant (k − p)-vector
field on 0.

Proof. Let 5 be a multiplicative k-vector field on 0. From Propositions 2.15 and 2.18,
we obtain (i) and (ii).

Next, since
0g · (β∗η)h = (β∗η)gh (2.9)

for any η ∈ �1(M), from (2.5) it follows that

5((β∗η1)gh, . . . , (β
∗ηk)gh) = 5(0g · (β∗η1)h, . . . , 0g · (β∗ηk)h)

= 5((β∗η1)h, . . . , (β
∗ηk)h)

for all η1, . . . , ηk ∈ �1(M). Hence β∗5g only depends on β(g). Similarly, from the
equality

(α∗η)g · 0h = (α∗η)gh (2.10)

for all η ∈ �1(M), we also deduce that α∗5g only depends on α(g). Hence, (iii) holds.
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Let θ ∈ �p(M) be a p-form on M , 1 ≤ p < k. Then, using (2.5), (2.9) and (2.10),
we see that (β∗θ) 5 is tangent to α-fibers. Hence we have (iv). To prove (v), it suffices
to prove that

(LX )∗((β
∗θ) 5)(h)) = ((β

∗θ) 5)(gh), ∀(g, h, gh) ∈ 3,

whereX is an arbitrary bisection through g. According to [41, Eq. (5)], for anyµ ∈ T ∗gh0,
there exists ν ∈ T ∗g 0 which is characterized by the equation

〈ν, vg〉 = 〈µ, (Rh)∗(vg − (LX )∗β∗vg)〉, ∀vg ∈ Tg0,

and ν · (LX )∗µ = µ. Using this fact and (2.10), it follows that

((β∗θ) 5)(h)((LX )
∗µ1, . . . , (LX )

∗µp−k) = ((β∗θ) 5)(gh)(µ
1, . . . , µp−k)

for all µ1, . . . , µp−k ∈ �1(0). Thus, (v) follows.
To prove the converse, we first note that the following three types of vectors span

the whole conormal space of � at a point (g, h, l, w): (−µ,L∗Xµ,R
∗

Yµ,−L
∗

XR
∗

Yµ) for
any µ ∈ T ∗l 0, (−β∗η, β∗η, 0, 0) for any η ∈ T ∗α(k)0, and (−α∗ζ, 0, α∗ζ, 0) for any
ζ ∈ T ∗β(z)0, where X and Y are any bisections through the points g and h, respectively
(see [41, Thm. 2.8]). From (i), (iii), (iv) and (v) we deduce that � is coisotropic with
respect to 5 ⊕ (−1)k+15 ⊕ (−1)k+15 ⊕ 5 (see Theorem 2.8 in [41]). From this fact,
(ii) and Proposition 2.15, the conclusion follows. ut

The following proposition can be proved in a similar fashion to item (v) of Theorem 2.19.

Proposition 2.20. If 5 is a multiplicative k-vector field on 0, then for all θ ∈ �p(M),
1 ≤ p < k, (α∗θ) 5 is a right-invariant (k − p)-vector field on 0.

Finally, let us show an interesting property that generalizes the one obtained for multi-
plicative bivector fields in [37, Thm. 4.2.3].

Proposition 2.21. Let 0 ⇒ M be a Lie groupoid and 5 ∈ Xk(0) be a multiplicative
k-vector field on 0. Then there exists a unique k-vector field π on M such that

α∗5 = π, β∗5 = (−1)k+1π.

Proof. Since 5 is multiplicative, using property (iii) in Theorem 2.19, we can define a
k-vector field π on M by setting π = α∗5. Now, let us investigate the relation between
5, π and the map β.

First, we show that if i : 0→ 0 is the groupoid inversion, then

i∗5 = (−1)k+15. (2.11)

This is an immediate consequence of property (ii) in Theorem 2.19 and the fact that the
inverse (µg)−1 of µg ∈ T ∗g 0 is given by (µg)−1

= −i∗(µg). In fact,

0 = 5(̃ε(β̃(µ1
g)), . . . , ε̃(β̃(µ

k
g))) = 5(µ

1
g · (µ

1
g)
−1, . . . , µkg · (µ

k
g)
−1)

= 5(µ1
g, . . . , µ

k
g)+ (−1)k(i∗5)(µ1

g, . . . , µ
k
g)

for any µ1
g, . . . , µ

k
g ∈ T

∗
g 0. Finally, using (2.11) and the relation α ◦ i = β, we conclude

that β∗5 = (−1)k+1π . ut
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Example 2.22. From Proposition 2.21 and property (iv) in Theorem 2.19, we deduce that
the map (α, β) : 0→ M ×M satisfies

(α, β)∗5 = π ⊕ (−1)k+1π.

In particular, when0 is a pair groupoidM×M ⇒ M , since (α, β) : M×M → M×M is a
diffeomorphism, the only multiplicative k-vector fields are of the form π⊕(−1)k+1π , π ∈
Xk(M) (see [28, p. 67] and [37, Cor. 4.2.8] for the case k = 1 and k = 2, respectively).

2.4. k-differentials on Lie algebroids

We now turn to the study of the Lie algebroid counterpart of multiplicative k-vector fields,
namely, k-differentials.

Definition 2.23. Let (A, [[·, ·]], ρ) be a Lie algebroid over M . An almost k-differential is
a pair of linear maps δ : C∞(M)→ 0(

∧k−1
A) and δ : 0(A)→ 0(

∧k
A) satisfying

(i) δ(fg) = g(δf )+ f (δg) for all f, g ∈ C∞(M);
(ii) δ(fX) = (δf ) ∧X + f δX for all f ∈ C∞(M) and X ∈ 0(A).

An almost k-differential is said to be a k-differential if it satisfies the compatibility con-
dition

δ[[X, Y ]] = [[δX, Y ]]+ [[X, δY ]] (2.12)

for all X, Y ∈ 0(A).

For a given Lie algebroid A, it is known that the anchor map together with the bracket
on 0(A) extends to a graded Lie bracket on

⊕
k 0(

∧k
A), which makes it into a Gersten-

haber algebra (
⊕

k 0(
∧k

A), [[·, ·]],∧) [42].
A k-differential δ extends naturally to sections of

∧
A as follows:

δ(X1 ∧ · · · ∧Xs) =

s∑
i=1

(−1)(i+1)(k+1)X1 ∧ · · · ∧ (δXi) ∧ · · · ∧Xs (2.13)

for X1, . . . , Xs ∈ 0(A). In this way, we obtain a linear operator δ : 0(
∧
•
A) →

0(
∧
•+k−1

A). The following proposition can be directly verified.

Proposition 2.24. A k-differential on a given Lie algebroid A is equivalent to a deriva-
tion of degree of k − 1 of the associated Gerstenhaber algebra (

⊕
0(
∧
•
A), [[·, ·]],∧),

i.e., a linear operator δ : 0(
∧
•
A)→ 0(

∧
•+k−1

A) satisfying

δ(P ∧Q) = (δP ) ∧Q+ (−1)p(k+1)P ∧ δQ,

δ[[P,Q]] = [[δP,Q]]+ (−1)(p+1)(k+1)[[P, δQ]],
(2.14)

for all P ∈ 0(
∧p

A) and Q ∈ 0(
∧q

A).

As we see below, k-differentials reduce to various well-known notions in special cases.
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Example 2.25. Let (g, [·, ·]g) be a Lie algebra. A k-differential on g is just a linear map
δ : g→

∧k g such that

δ[X, Y ]g = adX(δ(Y ))− adY (δ(X)) for X, Y ∈ g,

that is, δ is a 1-cocycle on g relative to the adjoint representation ad of g on
∧k g [23,

Prop. 2.14].

Example 2.26. Let δ be a 0-differential, that is, δf = 0 for f ∈ C∞(M), and δX ∈
C∞(M) for X ∈ 0(A). From (ii) in Definition 2.23, we deduce that δ(fX) = f δX.
Therefore, there exists φ ∈ 0(A∗) such that

δX = φ(X) for X ∈ 0(A). (2.15)

Moreover, using (2.12), we find that φ is a 1-cocycle in the Lie algebroid cohomology
of A. Thus, 0-differentials are just Lie algebroid 1-cocycles with trivial coefficients.

Example 2.27. Let δ be an almost 1-differential, that is, δf ∈ C∞(M) for f ∈ C∞(M),
and δX ∈ 0(A) for X ∈ 0(A). From (i) in Definition 2.23, we deduce that there exists
X0 ∈ X(M) such that

δf = X0(f ) for f ∈ C∞(M). (2.16)

Moreover, using (ii), we obtain

δ(fX) = f δ(X)+X0(f )X,

that is, δ is a covariant differential operator on A, with anchor X0 (see [26, 28]). If,
moreover, δ is a 1-differential, from (2.12) we see that the covariant differential operator δ
is a derivation of the bracket on 0(A).

Example 2.28. Assume that A → M is a Lie algebroid whose dual vector bundle
A∗ → M is also furnished with a Lie algebroid structure. The pair (A,A∗) is said to
be a Lie bialgebroid if

dA∗ [[X, Y ]] = [[X, dA∗Y ]]− [[Y, dA∗X]] for X, Y ∈ 0(A),

where dA∗ is the Lie algebroid differential associated to A∗ (see [27]). It is well-known
that a Lie algebroid structure on a vector bundle V → M is equivalent to an almost
2-differential δ : 0(

∧
•
V ∗) → 0(

∧
•+1

V ∗) of square 0 (see, for instance, [20, 42]).
Thus, we see that a Lie bialgebroid corresponds to a 2-differential of square 0 on a Lie
algebroid A.

Example 2.29. If P ∈ 0(
∧k

A), then ad(P ) = [[P, ·]] is clearly a k-differential, which
is called the coboundary k-differential associated to P .

An easy but long computation shows that the space of almost differentials can be
endowed with a graded Lie algebra structure.
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Proposition 2.30. Let Âk denote the space of almost k-differentials and Â =
⊕

k Âk .
Define

[δ1, δ2] = δ1 ◦ δ2 − (−1)(k+1)(l+1)δ2 ◦ δ1 (2.17)
for δ1 ∈ Âk and δ2 ∈ Âl . Then
(i) [δ1, δ2] ∈ Â(k+l−1);

(ii) (Â, [·, ·]) is a graded Lie algebra.
Moreover, the subspace A =

⊕
k Ak of all differentials is a graded Lie subalgebra.

Remark 2.31. From (2.14) and (2.17), we deduce that

[δ, ad(P )] = ad(δP ) (2.18)

for any k-differential δ ∈ A and any multisection P ∈ 0(
∧
•
A).

To end this section, we note that one can introduce a graded Lie algebra structure on
Â⊕ 0(

∧
A), where 0(

∧
A) =

⊕
k 0(

∧k
A). This is defined by

[(δ1, P1), (δ2, P2)] = ([δ1, δ2], δ1(P2)− δ2(P1))

for (δ1, P1), (δ2, P2) ∈ Â⊕ 0(
∧
A).

Note that this is the semi-direct product Lie bracket when we consider the natural
representation of Â on 0(

∧
A).

Lemma 2.32. If δ is a k-differential on a Lie algebroid A, then there exists a k-vector
field πM on M given by

πM(df1, . . . , dfk) = (−1)k+1
〈ρ(δf1), df2 ∧ · · · ∧ dfk〉 for f1, . . . , fk ∈ C

∞(M),

where ρ : 0(
∧k

A)→ Xk(M) is the natural extension of the anchor ρ : 0(A)→ X(M).

Proof. Since δf ∈ 0(
∧k−1

A), we have, for any i ≥ 2,

{f1, f2, . . . , fi, fi+1, . . . , fk} = (−1)k+1
〈ρ(δf1), df2∧· · ·∧dfi ∧dfi+1∧· · ·∧dfk〉

= −(−1)k+1
〈ρ(δf1), df2∧· · ·∧dfi+1∧dfi ∧· · ·∧dfk〉

= −{f1, f2, . . . , fi+1, fi, . . . , fk}.

On the other hand, since δ is a k-differential, using (2.14) we find that, for all f, g ∈
C∞(M),

0 = δ[[f, g]] = [[δf, g]]+ (−1)k+1[[f, δg]] = (−1)kdAg δf + (−1)kdAf δg,

where dA is the differential of the Lie algebroid A. Thus for any f1, . . . , fk ∈ C
∞(M),

0 = (−1)k+1
〈df2 ρ(δf1), df3∧· · ·∧dfk〉+(−1)k+1

〈df1 ρ(δf2), df3∧· · ·∧dfk〉

= {f1, f2, . . . , fk}+{f2, f1, . . . , fk}.

Therefore {·, . . . , ·} is indeed skew-symmetric. Moreover, from the fact that both δ and d
are derivations, we can deduce that {·, . . . , ·} is a derivation with respect to each argument.
That is, {·, . . . , ·} induces a k-vector field πM ∈ Xk(M). ut

Example 2.33. If P ∈ 0(
∧k

A) and ad(P ) is the coboundary k-differential associated
to P , then the corresponding k-vector field on M is just ρ(P ).
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2.5. From multiplicative k-vector fields to k-differentials

Assume that 5 is a multiplicative k-vector field on 0. For any f ∈ C∞(M) and X ∈
0(A), it is known from Propositions 2.17, 2.18 and 2.20 that [5,α∗f ] and [5,

−→
X ] are

right-invariant, where
−→
X denotes the right-invariant vector field on 0 corresponding to

X ∈ 0(A). Therefore there exist δ5f ∈ 0(
∧k−1

A) and δ5X ∈ 0(
∧k

A) such that
−−→
δ5f = [5,α∗f ], ∀f ∈ C∞(M),

−−→
δ5X = [5,

−→
X ], ∀X ∈ 0(A). (2.19)

It is easy to see that δ5 is indeed a k-differential. We are now ready to state the main
theorem of the paper.

Theorem 2.34. Assume that 0 ⇒ M is an α-simply connected and α-connected Lie
groupoid with Lie algebroid A. Then the map

δ :
⊕
k

Xkmult(0)→
⊕
k

Ak, 5 7→ δ5,

is a graded Lie algebra isomorphism.

We divide the proof into several steps. The proof of the surjectivity of δ will be post-
poned to Section 3. Here we prove the following result.

Proposition 2.35. Under the hypothesis of Theorem 2.34, δ is an injective graded Lie
algebra homomorphism.

Proof. Using the graded Jacobi identity for the Schouten brackets and (2.17), we deduce
that if5 ∈ Xkmult(0) and5′ ∈ Xlmult(0) then δ[5,5′] = [δ5, δ5′ ]. Therefore, δ is a graded
Lie algebra homomorphism.

Next, let us prove that δ is injective. We will use the following lemma (see Theorem
2.6 in [29]):

Lemma 2.36. If5 is an affine multi-vector field on an α-connected Lie groupoid 0⇒M ,
then5 = 0 if and only if δ5X = 0 for allX ∈ 0(A), and5 vanishes on the unit spaceM .

Suppose that 5 is a multiplicative k-vector field on 0 such that δ5 = 0. It remains to
show that 5|M = 0. We know that T ∗ε(m)0 is spanned by the differentials of functions of
the type α∗f with f ∈ C∞(M), and the differentials of functions F which are constant
along M , i.e., such that df ∈ N∗M . Since M is coisotropic, we get

5(ε(m))(dF1, . . . , dFk) = 0.

Moreover,
iα∗f5 = (−1)k+1[5,α∗f ] = (−1)k+1δ5(f ) = 0,

which implies that

5(ε(m))(α∗f1, . . . , α
∗fj , dF1, . . . , dFl) = 0

for j + l = k and j ≥ 1. Therefore, 5|M = 0.
From Lemma 2.36, it follows that 5 = 0. Thus δ is injective. ut

Following [24], we also call δ5 the inner derivative of 5.
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Theorem 2.34 has many interesting corollaries. Below is a list of well-known results
which are in the literature.

Example 2.37. Let G be a simply connected and connected Lie group with Lie algebra
g and 5 ∈ Xkmult(G). Then δ5 : g→

∧k g is the 1-cocycle obtained by taking the inner
derivative of 5 [24]. Thus we have a one-to-one correspondence between 1-cocycles
g→

∧
∗ g and multiplicative multi-vector fields on G (see [23, Prop. 2.14]).

Example 2.38. If σ is a multiplicative function on 0, i.e., σ : 0 → R is a groupoid 1-
cocycle, then δσ ∈ 0(A∗) is exactly the corresponding Lie algebroid 1-cocycle. Thus for
an α-connected and α-simply connected Lie groupoid, there is a one-to-one correspon-
dence between groupoid 1-cocycles σ : 0→ R and Lie algebroid 1-cocycles δ ∈ 0(A∗).
This result was first proved in [40].

Example 2.39. Multiplicative vector fields on a Lie groupoid are exactly infinitesimals of
Lie groupoid automorphisms. 1-differentials on a Lie algebroid, on the other hand, are co-
variant differential operators onAwhich are derivations with respect to the bracket. These
are exactly infinitesimals of the Lie algebroid automorphisms. Thus for an α-connected
and α-simply connected Lie groupoid, we have a one-to-one correspondence between in-
finitesimals of the Lie groupoid automorphisms and infinitesimals of the corresponding
Lie algebroid automorphisms [28, Prop. 3.8 and Thm. 4.9].

Example 2.40. Let P ∈ 0(
∧k

A) be a k-section of A, and5 =
−→
P −
←−
P the correspond-

ing multiplicative k-vector field on 0. From the definition of δ5, we see that it is just
the coboundary k-differential ad(P ) = [[P, ·]]. Thus for an α-connected and α-simply
connected Lie groupoid, there is a one-to-one correspondence between coboundary mul-
tiplicative multi-vector fields on the Lie groupoid and coboundary k-differentials on its
Lie algebroid.

Example 2.41. Let (0 ⇒ M,5) be a Poisson groupoid, i.e., 5 ∈ X2
mult(0) such that

[5,5] = 0. From Theorem 2.34, there exists a 2-differential δ5 on A. Moreover,

δ2
5 = δ5 ◦ δ5 =

1
2 [δ5, δ5] = 1

2δ[5,5] = 0.

Thus, δ5 defines a Lie algebroid structure onA∗. Moreover, since δ5[[X, Y ]] = [[δ5X, Y ]]
+ [[X, δ5Y ]] for all X, Y ∈ 0(A), we deduce that (A,A∗) is a Lie bialgebroid. As a
consequence, we obtain the integration theorem of Mackenzie–Xu [29, Thm. 4.1]: there
is a one-to-one correspondence between α-connected and α-simply connected Poisson
groupoids and Lie bialgebroids.

3. Lifting of k-differentials

This section is devoted to the proof of the surjectivity of δ in Theorem 2.34.

3.1. A-paths

From now on, we use the notation I = [0, 1]. Let (A, [[·, ·]], ρ) be the Lie algebroid of
an α-connected and α-simply connected Lie groupoid 0. Following [11], we denote by
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P̃ (A) the Banach manifold of all C1-paths in A. A C1-path a : I → A is said to be an
A-path if

ρ(a(t)) =
dγ (t)

dt
, (3.20)

where γ (t) = (p ◦ a)(t) is the base path (p : A→ M is the bundle projection). The set
of A-paths, denoted by P(A), is a Banach submanifold of P̃ (A).

It is well-known that integrating along A-paths yields a 0-path [11, Prop 1.1]. We
recall this construction in order to be self-contained. Following [11], a 0-path is a C2-
path r(t) on the groupoid 0 such that r(0) ∈ M and α(r(t)) = r(0) for all t ∈ I .

There is a diffeomorphism I from the space of A-paths to the space of 0-paths. For
any a ∈ P(A), we define I(a) to be the solution r(t) of the initial value problem

dr(t)

dt
=
−→
a(t)r(t),

r(0) = γ (0),
(3.21)

where γ = p ◦ a is the base path. Conversely, for any 0-path r(t), the corresponding
A-path is given by a(t) = Lr−1(t) ∗

dr(t)
dt .

The purpose of this section is to study properties of the smooth map τ from P(A)

to 0 given by

τ(a) = I(a)(1). (3.22)

First, we study the covariance of τ . Recall that local bisections of 0 ⇒ M act on 0 by

r 7→ g̃−1
· r · g̃

for any bisection g̃ and r ∈ 0 (this last expression makes sense provided that the local
bisection is chosen so that the above products are defined). Differentiating with respect to
r , one obtains an automorphism of the Lie algebroid A→ M , denoted by Adg̃−1 : Am→
Ag̃−1·m. Since the Lie algebra of the group of bisections (over a contractible open subset
U ⊂ M) is the Lie algebra of sections of A (over U ), by differentiating furthermore with
respect to g̃, one constructs, for all ξ ∈ 0(A) and b ∈ A, an element in TbA, which we
denote by adξ b ∈ TbA. The reader should not confuse b 7→ adξ b, which is a tangent
vector on A, with the adjoint action of the Lie algebra 0(A) on itself.

For any 0-path r(t) and any C2-path g(t) in 0, such that r(t) and g(t) are composable
for all t ∈ I (i.e. β(r(t)) = α(g(t))), the path g(0)−1

·r(t)·g(t) is a 0-path again. It is easy
to check that I−1(g(0)−1

·r(t)·g(t)) is equal to Adg̃t I
−1(r(t))+

(
Rg̃t−1

∗

dg̃t
dt

)
|g̃tγ (t)

, where
g̃t is, for all t ∈ I , a (local) bisection of 0 ⇒ M through g(t) (defined in a neighborhood
of g(t)). In short, for any a ∈ P(A), and any time-dependent (local) bisection g̃t through
g(t), with a C2-dependence on t ,

τ

(
Adg̃t a(t)+

(
Rg̃t−1

∗

dg̃t
dt

)
|g̃t ·γ (t)

)
= g(0)−1

· τ(a) · g(1). (3.23)
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For any A-paths a1(t) and a2(t), if τ(a1) = τ(a2), then I(a1) = I(a2) ·g(t) for some
path g(t) on 0 such that g(0), g(1) ∈ M . Hence, it follows from (3.23) that τ(a1) = τ(a2)

if and only if there exists a time-dependent bisection g̃t such that

a2(t) = Adg̃t a1(t)+ Rg̃t−1(t) ∗

dg̃t
dt |g̃t ·γ (t)

and g̃0 and g̃1 are unital elements of the pseudo-group of local bisections.
Since 0 is α-simply connected, the pseudo-group of time-dependent local bisections

g̃t is connected. Therefore, τ(a1) = τ(a2) if and only if a1 and a2 can be linked by a
differentiable path in P(A) which is tangent to the differential of the action described by
(3.23). But vectors in TaP(A) tangent to this action are precisely the vectors of the form,
at a given A-path a(t) with base path γ (t),

(Gξ )|a : t 7→ adξ(t) a(t)+
dξ(t)

dt |γ (t)
, (3.24)

where ξ(t) is a C2-time-dependent section of A → M with ξ(0) = ξ(1) = 0, and
dξ(t)
dt |γ (t)

, an element of Aγ (t), is considered as an element of Ta(t)A.

For any C2-time-dependent section ξ(t) of A → M with ξ(0) = ξ(1) = 0, the
vector fieldGξ on P(A) given by (3.24) is called a gauge vector field. A smooth function
f : P(A)→ R is said to be invariant under the gauge transformation if Gξ (f ) = 0 for
any Gξ of the form described by (3.24) with ξ(0) = ξ(1) = 0. The following proposition
summarizes the above discussion.

Proposition 3.1. Assume that 0 is an α-connected and α-simply connected Lie groupoid.
Then the map τ : P(A) → 0 induces an isomorphism between C∞(0) and the algebra
of smooth functions on P(A) invariant under the gauge transformation.

Note that it follows from (3.23)–(3.24) that for any time-dependent section ξ(t) of 0(A),
we have

τ∗

(
adξ(t) a(t)+

dξ(t)

dt |γ (t)

)
=
−−→
ξ(1)−

←−−
ξ(0). (3.25)

This relation will be useful later on.
Next we need to introduce regular extensions to P̃ (A) of the 1-form dτ ∗f for a

smooth function f on 0. First, we give some definitions related to the cotangent spaces
of P(A) and P̃ (A).

For any a ∈ P̃ (A) (resp. P(A)), the cotangent space of P̃ (A) at a is denoted by
T ∗a P̃ (A) (resp. T ∗a P(A)). For any real-valued function f on P̃ (A) (resp. P(A)), its dif-
ferential at the point a ∈ P̃ (A) (resp. a ∈ P(A)), if it exists, is an element of T ∗a P̃ (A)
(resp. T ∗a P(A)), which is denoted by df|a .

For any a ∈ P̃ (A), denote by Pa(T ∗A) the space of C1-maps η : I → T ∗A such
that for all t ∈ I the identity π ◦ η(t) = a(t) holds, where π stands for the projection
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T ∗A→ A. The space Pa(T ∗A) can be considered as a subspace of T ∗a P̃ (A) in a natural
manner: to every η(t) ∈ Pa(T ∗A), one can associate a linear form on TaP̃ (A) by

TaP̃ (A)→ R, X(t) 7→

∫ 1

0
〈η(t), X(t)〉 dt, (3.26)

where 〈 , 〉 denotes the pairing between the cotangent and tangent vectors. With this
identification, throughout this section, we will always consider Pa(T ∗A) as a subspace
of T ∗a P̃ (A), and therefore, the vector bundle P(T ∗A)→ P̃ (A) as a vector subbundle of
T ∗P̃ (A)→ P̃ (A). We denote by P(T ∗A)|P(A)→ P(A) and T ∗P̃ (A)|P(A)→ P(A) the
restrictions of these vector bundles to P(A).

Definition 3.2. Given a 1-form ω on the Banach submanifold P(A) ofA-paths, by an ex-
tension (resp. regular extension), we mean a smooth section8ω of T ∗P̃ (A)|P(A)→P(A)

(resp. PT ∗A|P(A) → P(A)) such that 8ω|a is, for any a ∈ P(A), an extension of ω|a
(i.e., the restriction of 8ω|a to TaP(A) is ω|a for any a ∈ P(A)).

By a regular extension of a smooth function g ∈ C∞(P (A)), we mean a regular
extension of its differential. A regular extension of the zero function on P(A) will be
called a regular extension of zero. Also, we use the following notation: for any regular
extension 8ω, we denote by 8ω(t) the corresponding path in PaT ∗A.

Given a vector field X on P̃ (A) tangent to P(A), and a 1-form ω on P(A), the Lie
derivative of a regular extension 8ω of ω is defined by

(LX8ω)(Y ) = 8ω([Y,X])+X(8ω(Y )), (3.27)

where Y is the restriction to P(A) of a vector field on P̃ (A). This definition needs to be
justified. It is clear that the right hand side of (3.27) is C∞-linear with respect to Y and
depends only on its restriction to P(A). It therefore defines a section of T ∗P̃ (A)|P(A)
→ P(A). It follows from (3.27) that if Y itself is tangent to P(A), then (LX8ω)(Y ) =
(LXω)(Y ). Therefore, LX8ω is an extension of LXω.

In the following subsections, we need to investigate regular extensions8dτ∗f of dτ ∗f
for a smooth function f ∈ C∞(0). The following technical lemma will be very useful.

Lemma 3.3. (i) For any smooth function f : 0 → R, the pull-back function τ ∗f :
P(A)→ R admits a regular extension 8dτ∗f .

(ii) For any smooth function f : P̃ (A) → R whose restriction to P(A) vanishes, there
exists gt : I → C∞(M) with g0 = g1 = 0 such that df|a = dFdg|a . Here for any
time dependent 1-form ω : t 7→ ωt on M and any a ∈ P̃ (A) with base path γ (t),

Fω(a) =
∫
I

〈
ωt|γ (t) ,

dγ (t)

dt
− ρ(a)

〉
dt.

Proof. (i) We divide the proof of (i) into four steps. In what follows, γ always denotes
the base path of a ∈ P(A). We say that a path e(t) in a vector bundle p : E→ M is over
a base path γ if p ◦ e = γ .

Step 1. We first describe the differential τ∗ of the map τ defined in (3.22).
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The map (r, a) 7→ −→a |r from the fibered product 0×α,M,p A to T 0 maps a pair (r, a)
(with r ∈ 0, a ∈ A) to an element of Tr0. Considering the fibered product 0×α,M,pA as
a submanifold of 0 × A, one can extend this map to a smooth map F(α, a) from 0 × A

to T 0 with F(r, a) ∈ Tr0 for all r ∈ 0. This allows us to rewrite τ more conveniently.
Consider the map τ̃ : P̃ (A)×M → 0 given by

τ̃ (a,m) = r(1), (3.28)

where r : I → 0 is the solution of the initial value problem
dr(t)

dt
= F(r(t), a(t)),

r(0) = m.

By definition, we have τ(a) = τ̃ (a, (p ◦ a)(0)).
Linearizing the previous equation shows that the differential of the map τ̃ can be

written as
τ̃∗(δa, δm) = L(δm(0))+

∫
I

Lt (δa(t)) dt, (3.29)

where δa, δm are elements of TaP̃ (A) and TmM respectively, and Lt , L are linear maps
from Tr(t)0 and TmM to Tτ̃ (a,m)0 respectively. Thus the differential of τ : P(A) → 0

can be expressed as

τ∗(δa) =

∫
I

Lt (δa(t)) dt + L(p∗(δa(0))) (3.30)

where δa ∈ TaP(A).
At this point, we need to explain why some technical difficulties arise in the construc-

tion of a regular extension of τ ∗f and what remains to be done in order to avoid it.
It follows from (3.30) that the differential dτ ∗f = df ◦ τ∗ is the sum of two 1-forms,

namely ω1 : δa 7→
∫
I
Lt (δa(t)) dt and ω2 : δa 7→ L(p∗(δa(0))). It is easy to find a

regular extension of ω1: we can just choose, for any δa ∈ TaP̃ (A),

8ω1(δa) =

∫
I

Lt (δa(t)) dt.

Unfortunately, it is not so easy to find a regular extension of ω2, since this 1-form is
“concentrated” at 0. The remaining steps describe such an extension.
Step 2. We describe explicitly the tangent space TaP(A) of P(A).

Let us choose a connection ∇A on the vector bundle A → M . This allows us to
decompose the tangent space of A as a direct sum TbA = Tp(b)M ⊕Ap(b) for any b ∈ A.
With this convention, for any a ∈ P̃ (A), an element δa of TaP̃ (A) becomes a pair δa =
(ε, β) where ε : I → TM and β : I → A are C1-maps over the base path γ = p ◦ a.

We now choose a connection∇M on the tangent bundle TM → M . By differentiating
the relation dγ /dt = ρ(a), we see that δa = (ε, β) ∈ TaP̃ (A) is an element of the tangent
space of TaP(A) if and only if

∇
M
dγ /dtε = (∇ερ)(a)+ ρ(β), (3.31)

where (∇ερ)(a) = ∇Mε ρ(a)− ρ(∇
A
ε a) is a path in TM (over γ again).
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Step 3. For any A-path a, we want to construct a linear map5a from TaP̃ (A) to Tγ (0)M ,
where γ = p ◦ a is the base path, depending smoothly on a ∈ P(A), whose restriction
to TaP(A) is simply the differential of the map a 7→ γ (0), and which is “given by an
integral”. That is, the differential is of the form

5a(δa) =

∫
I

Mt (δa(t)) dt, (3.32)

where Mt is, for all t ∈ I , a linear map from Ta(t)A to Tγ (0)M . We proceed as follows.
Set δa = (ε, β) ∈ T P̃ (A) as in Step 2.

First, for any s ∈ I , we define ηs(t) : I → TM to be the unique solution of the initial
value problem {

∇
M
dγ (t)/dtηs(t) = (∇ηs (t)ρ)(a)+ ρ(β(t)),

ηs(s) = ε(s)
(3.33)

(this is a linear equation of order 1, which guarantees the existence and uniqueness of
solution). Then we define 5a(ε, β) by

5a(ε, β) =

∫
I

ηs(0) ds.

It follows from a classical result of ordinary linear differential equations (see, for instance,
[32]) that

ηs(0) = L(s)(ε(s))+
∫ 0

s

M(s, u)(β(u)) du

for some smooth function M(s, u) from Aγ (u) to Tγ (0)M . It is easy to check that for any
δa = (ε, β),

5a(δa) =

∫
I

L(s)(ε(s)) ds −

∫
I

∫ s

0
M(s, u)(β(u)) du ds.

The right hand side of this equation is of the form given by (3.32). Now it remains to
check that the restriction of 5a to T P (A) is equal to the map δa 7→ p∗(δa(0)). For any
δ = (ε, β) tangent to P(A), by the uniqueness of solution of the initial value problem,
we have ηs = ε for all s ∈ I . Therefore, the restriction of 5a to TaP(A) is equal to

5a(δa) =

∫
I

ε(0) dt = ε(0) = p∗(δa(0)).

Step 4. We can now define, for any f ∈ C∞(M),

8dτ∗f (δa) := τ̃∗(δa,5a(δa)).

It follows from (3.28)–(3.32) that 8dτ∗f is a regular extension of τ ∗f . This completes
the proof of (i).

(ii) We identify δa ∈ TaP̃ (A) with a pair of paths ε(t) in TM and β(t) in A, over the
same base path γ (t) as previously.
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Since 8dτ∗f is a regular extension, we have

8dτ∗f (ε, β) =

∫
I

〈M(t), ε(t)〉 dt +

∫
I

〈A(t), β(t)〉 dt

for some C1-maps M(t), A(t) from I to T ∗M and A∗ respectively, which are over the
base path γ (t).

Let ω : t 7→ T ∗γ (t)M be a path over γ which is a solution of the initial value problem{
∇
M
dγ (t)/dtω(t)+ ((∇ρ)a(t))

∗(ω(t)) = M(t),

ω(1) = 0,

where, for any fixed t ∈ I , ((∇ρ)a(t))∗ ∈ End(T ∗γ (t)M) is the dual of the endomorphism
v 7→ (∇vρ)(a(t)) of Tγ (t)M .

Using integration by parts, we obtain∫
I

〈M(t), ε(t)〉 dt = −

∫
I

〈ω(t),∇Mdγ (t)/dtε(t)〉 dt

+

∫
I

〈ω(t), (∇ε(t)ρ)(a(t))〉 dt + 〈ω(0), ε(0)〉.

Since 8dτ∗f (ε, β) vanishes as long as the conditions{
β(t) = 0,
∇
M
dγ (t)/dtε(t)− (∇ε(t)ρ)a(t) = 0

are satisfied, we must have ω(0) = 0.
Now, since

8dτ∗f (ε, β) =

∫
I

〈ω(t),∇Mdγ (t)/dtε(t)+ (∇ε(t)ρ)a(t)〉 dt +

∫
I

〈A(t), β(t)〉 dt

must vanish whenever ε, β satisfy (3.31), we must have A(t) = ρ∗ω(t). As a conse-
quence,

8df (δa) =

∫
I

〈ω(t),∇Mdγ (t)/dtε(t)− (∇ε(t)ρ)a(t)+ ρ(β(t))〉 dt.

According to Lemma 3.4(i), there exists a family of time-dependent functions gt from
I to C∞(M) vanishing at t = 0, 1 such that dgt|γ (t) = ω(t). The result now follows from
(ii) of the lemma below. ut

Lemma 3.4. (i) For any C1-path ω : I → T ∗M , there exists a time-dependent function
g : t 7→ gt vanishing at t = 0, 1 such that dgt|γ (t) = ω(t) for any t ∈ ]0, 1[.
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(ii) The function a 7→ dFdg|a is a regular extension of zero whose differential is of the
form

dFdg|a (ε, β) =

∫
I

〈dgt ,∇
M
dγ (t)/dtε(t)− (∇ε(t)ρ)a(t)+ ρ(β(t))〉 dt, (3.34)

where ε, β,∇M ,∇ are as in (3.31).

Proof. (i) We denote by expm : TmM → M the exponential map associated to the con-
nection∇M . Recall that expm is a local diffeomorphism from a neighborhood of 0 ∈ TmM
to a neighborhood of m. Let f (t) be a real-valued smooth function that vanishes at t = 0
and t = 1.

Define gt (m) = f (t)ψ(t,m)〈ω(t), exp−1
γ (t)(m)〉, where ψ(t,m) is a smooth function

on I×M satisfying two conditions: (1)ψ(t,m) is identically equal to 1 in a neighborhood
of the curve (t, γ (t)) for all t ∈ I , and (2) ψ(t,m) vanishes outside an open set on which
exp−1

γ (t) is well-defined. We leave it to the reader to check that these conditions can be
satisfied and that the function gt has the reqired properties.

(ii) The function Fdg is identically zero on P(A) by definition. We check that its
differential is of the form (3.34). Let a(t), γ (t), ε(t), β(t) be as in Lemma 3.4. Recall
that, by the definition of an A-path, we have dγ (t)/dt + ρ(a(t)) = 0. For any t ∈ [0, 1],
consider the functional

b 7→

〈
dgt (t),

dγ (t)

dt
+ ρ(b(t))

〉
.

Taking its derivative at the A-path a in the direction of the tangent vector (ε(t), β(t)) ∈
TaP̃ (A), we obtain, using (3.31),

(ε, β) 7→ 〈dgt (t),∇
M
dγ (t)/dtε(t)− (∇ε(t)ρ)a(t)+ ρ(β(t))〉

= 〈dgt (t),∇
M
dγ (t)/dtε(t)− (∇ε(t)ρ)a(t)+ ρ(β(t)))〉.

Integrating with respect to t , we obtain (3.34). ut

3.2. Almost differentials and linear multi-vector fields

In this subsection, we study a particular case of multi-vector fields on a vector bundle.
Let p : A→ M be a vector bundle. It is clear that there exists a bijection between the

space 0(A∗) of sections of the dual bundle p∗ : A∗→ M and the set C∞lin(A) of functions
which are linear on each fiber. In fact, for any section φ ∈ 0(A∗) the corresponding linear
function `φ is given by `φ(Xm) = 〈φ(m),Xm〉 forXm ∈ Am. On the other hand, by basic
functions, we mean functions on A which are the pull-back functions from M .

Definition 3.5. Let p : A→ M be a vector bundle and π ∈ Xk(A) a k-vector field on A.
We say that π is linear if π(df1, . . . , dfk) is a linear function whenever all f1, . . . , fk ∈

C∞(A) are linear functions.

Linear multi-vector fields were called homogeneous in [16]. They have the following
properties.
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Proposition 3.6. Let p : A → M be a vector bundle and π ∈ Xk(A) a linear k-vector
field on A with k ≥ 2. Then π(d`φ1 , . . . , d`φk−1 , d(p

∗f1)) is a basic function on A and

(d(p∗f1) ∧ d(p∗f2)) π = 0 ∀φ1, . . . , φk−1 ∈ 0(A
∗) and f1, f2 ∈ C

∞(M).

Proof. Proceed as in [10, pp. 643–644], using the Leibniz rule and the fact that (p∗f )`φ
= f̀ φ for f ∈ C∞(M) and φ ∈ 0(A∗). ut

Let π ∈ Xklin(A) be a linear k-vector field on A. Proposition 3.6 enables us to introduce a
pair of operations

ρ∗ : 0(A∗)× (k−1). . . ×0(A∗)→ X(M) and [·, . . . , ·]∗ : 0(A∗)× (k). . . ×0(A∗)→ 0(A∗)

by

ρ∗(φ1, . . . , φk−1)(f ) ◦ p = π(d`φ1 , . . . , d`φk−1 , d(f ◦ p)),

`[φ1,...,φk]∗ = π(d`φ1 , . . . , d`φk ),
(3.35)

for φ1, . . . , φk ∈ 0(A
∗) and f ∈ C∞(M).

It is easy to see that the following identities are satisfied:

ρ∗(φ1, . . . , f φi, . . . , φk−1) = fρ∗(φ1, . . . , φi, . . . , φk−1),

[φ1, . . . , f φi, . . . , φk]∗ = (−1)i+1ρ∗(φ1, . . . , φ̂i, . . . , φk−1)(f )φi
(3.36)

+ f [φ1, . . . , φi, . . . , φk]∗

for any φ1, . . . , φk ∈ 0(A
∗) and f ∈ C∞(M). In particular, ρ∗ induces a bundle map∧k−1

A∗→ TM .
Conversely, if we have a pair (ρ∗, [·, . . . , ·]∗) satisfying (3.36), we can define a linear

k-vector field on A using (3.35).
Now, assume that δ is an almost k-differential. We construct a pair ([·, . . . , ·]∗, ρ∗)

satisfying (3.36) as follows. Let

ρ∗(φ1, . . . , φk−1)(f ) = 〈δf, φ1 ∧ · · · ∧ φk−1〉,

〈[φ1, . . . , φk]∗, X〉 =
k∑
i=1

(−1)i+kρ∗(φ1, . . . , φ̂i, . . . , φk)(φi(X))

− 〈δX, φ1 ∧ · · · ∧ φk〉,

for all φ1, . . . , φk ∈ 0(A
∗), X ∈ 0(A) and f ∈ C∞(M). Conversely, using these equa-

tions, one can construct an almost k-differential from ([·, . . . , ·]∗, ρ∗).
A combination of the above discussion leads to the following

Proposition 3.7. For a given Lie algebroid A, there is a one-to-one correspondence be-
tween linear multi-vector fields and almost differentials on A.
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For an almost differential δ on A, we denote the corresponding linear multi-vector field
by πδ . In local coordinates, the correspondence between almost k-differentials and k-
vector fields πδ on A can be described as follows. Let (x1, . . . , xn) be local coordinates
on M and {e1, . . . , es} a local basis of 0(A). Assume that

δxi =
∑

a
i1...ik−1
i (x)ei1 ∧ · · · ∧ eik−1 , δei =

∑
c
i1...ik
i (x)ei1 ∧ · · · ∧ eik ,

Then

πδ =
∑(

a
i1...ik−1
i (x)

∂

∂vi1
∧ · · · ∧

∂

∂vik−1

∧
∂

∂xi
− c

i1...ik
i (x)vi

∂

∂vi1
∧ · · · ∧

∂

∂vik

)
,

where (v1, . . . , vs) are the corresponding linear coordinates on the fibers.
The correspondence between almost differentials and linear multi-vector fields pre-

serves the graded Lie algebra structure, as shown in the following

Proposition 3.8. Given a Lie algebroid A, the map δ 7→ πδ is a graded Lie algebra
isomorphism from almost differentials on A to linear multi-vector fields on A. That is, for
any almost differentials δ1 and δ2,

[πδ1 , πδ2 ] = π[δ1,δ2].

Proof. Note that if P ∈ 0(
∧p

A) is given locally by
∑

1≤j1<···<jp≤n
P j1...jp (x)ej1∧· · ·∧

ejp for a given local basis {e1, . . . , es} of 0(A), then

δP =
∑

1≤j1<···<jp≤n

∑
i

∂P j1...jp (x)

∂xi
a
i1···ik−1
i (x)ei1 ∧ · · · ∧ eik−1 ∧ ej1 ∧ · · · ∧ ejp

+

∑
1≤j1<···<jp≤n

∑
i

(−1)(i+1)(k+1)P j1...jp (x)ej1 ∧ · · · ∧ δeji ∧ · · · ∧ ejp .

The assertion follows from a tedious computation and is left to the reader. ut

Example 3.9. If δ is an almost 0-differential, then δ is just the contraction operator by an
element φ ∈ 0(A∗). In this case, one shows that πδ ∈ X0

lin(A) = C
∞

lin(A) is just −`φ .

Example 3.10. When k = 1, as a consequence of Proposition 3.8, one obtains a Lie
algebra isomorphism between 0(CDO(A)), the space of covariant differential operators
on A, and 0(T LIN(A)), the space of linear vector fields on A (see [28]).

Example 3.11. Let δ be a 2-differential of square zero. We know that δ induces a Lie al-
gebroid structure on A∗ (see [20, 42]). On the other hand, from Proposition 3.8, it follows
that [πδ, πδ] = 0, and therefore πδ defines a Poisson structure on A. Such a correspon-
dence between Lie algebroid structures on A∗ and linear Poisson structures on the dual
bundle is standard (see [10] for instance). A generalization to arbitrary linear 2-vector
fields and pre-Lie algebroids was considered in [17].
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We end this subsection by recalling two kinds of liftings from 0(
∧
•
A) to multi-

vector fields on A, the complete and vertical lifts. Let P ∈ 0(
∧p

A), and ad(P ) its cor-
responding coboundary differential. Then the corresponding linear p-vector field πad(P )
is the so-called complete lift of P , which is denoted by P c (see [16]).

On the other hand, for any multisection P ∈ 0(
∧p

A), there exists another kind of
lift, called the vertical lift, denoted by P v . It is obtained via the natural identification
Am ' T

Vert
a (A) for a ∈ A. In local coordinates, if P =

∑
1≤j1<···<jp≤n

P j1...jp (x)ej1 ∧

· · · ∧ ejp for a given local basis {e1, . . . , es}, then

P v =
∑

1≤j1<···<jp≤n

P j1...jp (x)
∂

∂vj1

∧ · · · ∧
∂

∂vjp
.

Complete and vertical lifts have the following properties [16]:

f v = p∗f, (3.37)
f c = `dAf , (3.38)
(P ∧Q)c = P c ∧Qv

+ P v ∧Qc, (3.39)
(P ∧Q)v = P v ∧Qv, (3.40)
[P c,Qc] = [[P,Q]]c, (3.41)
[P c,Qv] = [[P,Q]]v, (3.42)
[P v,Qv] = 0, (3.43)

for all f ∈ C∞(M) and P,Q ∈ 0(
∧
•
A).

Proposition 3.12. Let δ be a k-differential and P ∈ 0(
∧
•
A). Then

[πδ, P c] = (δP )c, [πδ, P v] = (δP )v.

Proof. Using (2.18) and Proposition 3.8, we have

[πδ, P c] = [πδ, πad(P )] = π[δ,ad(P )] = πad(δP ) = (δP )
c.

The second identity can be checked directly using local coordinates. ut

Let

P0(
∧
•
A) = {I 3 t 7→ P(t) ∈ 0(

∧
•
A) : P(t) is of class C2 in t},

P00(
∧
•
A) = {I 3 t 7→ P(t) ∈ 0(

∧
•
A) : P(0) = P(1) = 0, P (t) is of class C2 in t}.

If P ∈ P00(
∧
•
A), we define G(P ) as the time-dependent multi-vector field on A given

by

G(P ) = P c +

(
dP

dt

)v
. (3.44)

The multi-vector fields G(P ) have the following properties.
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Proposition 3.13. If P,Q ∈ P0(
∧
•
A) and δ is a multi-differential on A, then

[G(P ),G(Q)] = G([P,Q]), (3.45)
G(P ∧Q) = G(P ) ∧Qv

+ P v ∧G(Q), (3.46)
[πδ,G(P )] = G(δ(P )). (3.47)

In particular, (3.46) implies that

G(f (t)P ) = f (t)G(P )+
df (t)

dt
P v. (3.48)

Proof. Using (3.41), (3.42) and (3.43) and the fact that d/dt is a derivation with respect
to the Schouten bracket, we deduce that (3.45) holds.

(3.47) is a direct consequence of Proposition 3.12 and the fact that δ commutes
with d/dt . ut

3.3. From k-vector fields on A to k-vector fields on P̃ (A)

We start this subsection with a construction that should be thought of, at least heuristically,
as a lifting of a time-dependent multi-vector field on A to a multi-vector field on P̃ (A).

Let π(t) be a time-dependent k-vector field on A with k ≥ 1. For given k 1-forms
η1, . . . , ηk ∈ �

1(P (A)) and their regular extensions8η1 , . . . , 8ηk , define a smooth func-
tion π̃(8η1 , . . . , 8ηk ) on P(A) as follows. For any a ∈ P(A),

π̃(8η1 , . . . , 8ηk )(a) :=
∫
I

π(t)|a(t)(8η1(a(t)), . . . , 8ηk (a(t))) dt. (3.49)

Remark 3.14. (3.49) still makes sense when one of the extensions8ηi is not necessarily
regular, with the following modification of its definition. Assume that 8η1 is not nec-
essarily regular, and that (8η2 , . . . , 8ηk ) are. Then πt (8η2(a(t)), . . . , 8ηk (a(t))) is an
element of T P̃ (A) and we can therefore define

π̃(8η1 , . . . , 8ηk )(a) = 8η1

(
πt (8η2(a(t)), . . . , 8ηk (a(t)))

)
.

We recover of course the previous definition of π̃ if 8η1 is regular.

For instance, consider the case k = 0. If ft is a time-dependent function on A, i.e.,
f ∈ C∞(I × A), then (3.49) gives

f̃ (a) =

∫
I

f (t, a(t)) dt. (3.50)

This still makes sense for any a ∈ P̃ (A) and hence defines a function on P̃ (A) that we
denote by f̃ again. Note also that for any time-dependent vector field X : t 7→ Xt on A,
X̃ is a vector field on P̃ (A), which, at any a(t) ∈ P̃ (A), is given by t 7→ Xt|a(t) .
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For any time-dependent vector fieldX : t 7→ Xt on P̃ (A), tangent to P(A), we define
the Lie derivative LX̃π̃ of π̃ as follows:

(LX̃π̃)(8η1 , . . . , 8ηk ) = X̃(π̃(8η1 , . . . , 8ηk ))−

k∑
i=1

π̃(8η1 , . . . ,LX̃8ηi , . . . , 8ηk ).

(3.51)

This definition has to be justified. Of course, the Lie derivative of a regular extension is
not necessarily a regular extension, but it is an extension and by Remark 3.14, the left
hand side of (3.51) makes sense.

Lemma 3.15. (i) For any time-dependent function g : t 7→ gt from I to C∞(M) with
g0 = g1 = 0 (i.e., g ∈ P0(

∧0
A)), we have G̃(g) = Fdg .

(ii) If ξ ∈ P00(A), then G̃(ξ) is the gauge vector field given by (3.24).
(iii) If ξ ∈ P0(A), then τ∗(G̃(ξ)) =

−−→
ξ(0) −

←−−
ξ(1), where τ : P(A) → 0 is the map

defined by (3.22).
(iv) For any multi-differential δ on A,

L
G̃(ξ)

π̃δ = G̃(δ(ξ)).

(v) For any multi-differential δ on A and time-dependent function g : t 7→ gt on M ,

π̃δ(G̃(g),8η2 , . . . , 8ηk ) = G̃(δ(g))(8η2 , . . . , 8ηk ).

Proof. (i) For any time-dependent function g : t 7→ gt from I to C∞(M), it follows from
(3.38) and (3.50) that

g̃c =

∫ 1

0
〈dgt , ρ(a(t))〉 dt. (3.52)

Now using (3.37) and (3.50) we have(̃
dg

dt

)v
=

∫ 1

0

dgt
dt
(p ◦ a(t)) dt = −

∫ 1

0

〈
dgt ,

dp ◦ a(t)

dt

〉
dt, (3.53)

where the last equality is obtained by integration by parts using the boundary condition
g0 = g1 = 0. Thus (i) follows.

(ii) follows from the fact that for any ξ ∈ 0(A), adξ is equal to ξ c, a fact that can be
easily checked in local coordinates.

(iii) is easily deduced from (ii) and (3.25).
(iv) From the definition of Lie derivatives given by (3.27) and (3.51), it follows that

LX̃t π̃t = ˜[Xt , πt ] (3.54)

for any time-dependent vector field X : t 7→ Xt on A such that X̃ is tangent to P(A).
Therefore L

G̃(ξ)
π̃δ = ˜[G(ξ), πδ] = G(δ̃(ξ)), where the last identity follows from (3.47).
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(v) For any time-dependent smooth function ft , t ∈ I , on A and any A-path a(t), the
differential at a of f̃t is a regular extension of the restriction of f̃t to P(A) given by

df̃t |a (X) =

∫
I

〈dft|a(t) , X(t)〉 dt

for any X ∈ TaP̃ (A), where dft|a(t) is the differential of the smooth function ft at the
point a(t).

By the definition of π̃δ , we have

π̃δ(dG̃(g),8η2 , . . . , 8ηk )|a =

∫
I

πδ(dG(g)|a(t),8η2(t), . . . , 8ηk (t)) dt

for any A-path a(t). By (3.47), we have

π̃δ(dG̃(g),8η2 , . . . , 8ηk )|a =

∫
I

G(δ(g))|a(t)(8η2(t), . . . , 8ηk (t)) dt

= G̃(δ(g))(8η2 , . . . , 8ηk ).

This proves (v). ut

To a given P ∈ P0(
∧k

A), we have so far associated G̃(P ), which should be interpreted
as a “multi-vector field on P̃ (A)” (defined at points of P(A)). It turns out that, if one
applies G̃(P ) to the functions obtained by pulling back those on 0, the resulting functions
depend only on P(0) and P(1), which are, heuristically, obtained by integrating some
total differentials on [0, 1]. However, several technical difficulties arise which need to be
addressed in order to justify the computation.

Proposition 3.16. For any P ∈ P0(
∧k

A), any functions f1, . . . , fk ∈ C
∞(0), and any

regular extensions 8dτ∗f1 , . . . , 8dτ∗fk of τ ∗f1, . . . , τ
∗fk , we have

G̃(P )(8dτ∗f1 , . . . , 8dτ∗fk ) =
−−→
P(1)(df1, . . . , dfk)−

←−−
P(0)(df1, . . . , dfk). (3.55)

First we need the following

Lemma 3.17. For any ξ ∈ P0(A), a ∈ P(A), any covector η ∈ T ∗a P(A) conormal to
the gauge orbit, and any regular extension 8η of η, the following identity holds:

d〈8η(a(t)), ξ
v(t)〉

dt
= 〈8η(t),G(ξ)(t)〉. (3.56)

In particular, for any smooth function f : 0 → R and any regular extension 8dτ∗f

of τ ∗f ,
d〈8dτ∗f (t), ξ

v(t)〉

dt
= 〈8dτ∗f (t),G(ξ)(t)〉. (3.57)
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Proof. Since η is conormal to the gauge orbits, for any smooth map χ : I → 0(A) with
χ(0) = χ(1) = 0 we have

〈η, G̃(χ)|a〉 = 〈8η, G̃(χ)|a〉 =

∫
I

〈8η(t),G(χ(t))|a(t)〉 dt = 0.

Applying this equality to χ(t) := ψ(t)ξ(t), where ψ(t) is any smooth function with
ψ(0) = ψ(1) = 0, and using (3.48), we obtain

0 =
∫ 1

0
ψ(t)〈8η(t),G(ξ(t))〉 dt +

∫ 1

0

dψ(t)

dt
〈8η(t), ξ

v(t)〉 dt. (3.58)

The result follows by integration by parts. ut

Now we are ready to prove Proposition 3.16.

Proof of Proposition 3.16. By Lemma 3.15, we have G̃(ξ)(τ ∗f ) =
−−→
ξ(1)(f )−

←−−
ξ(0)(f ) for

all f ∈C∞(0). On the other hand, by definition, G̃(ξ)(τ ∗f )=
∫ 1

0 〈8dτ∗f (t),G(ξ)(t)〉 dt .
Therefore, ∫ 1

0
〈8dτ∗f (t),G(ξ)(t)〉 dt =

−−→
ξ(1)(f )−

←−−
ξ(0)(f ).

By Lemma 3.17, it follows that∫ 1

0

d

dt
(〈8dτ∗f (t), ξ

v(t)〉) dt =
−−→
ξ(1)(f )−

←−−
ξ(0)(f ).

Hence

〈8dτ∗f (1), ξv(1)〉 − 〈8dτ∗f (0), ξv(0)〉 =
−−→
ξ(1)(f )−

←−−
ξ(0)(f ).

Since this identity holds for any time-dependent section ξ , we have

〈8dτ∗f (1), ξv(1)〉 =
−−→
ξ(1)(f ) and 〈8dτ∗f (0), ξv(0)〉 =

←−−
ξ(0)(f ).

This implies that for any P ∈ P0(
∧k

A),{
P v(1)(8dτ∗f1(1), . . . , 8dτ∗fk (1)) =

−−→
P(1)(f1, . . . , fk),

P v(0)(8dτ∗f1(0), . . . , 8dτ∗fk (0)) =
←−−
P(0)(f1, . . . , fk).

(3.59)

Now assume that P(t) = ξ1(t) ∧ · · · ∧ ξk(t) for some time-dependent sections
ξ1, . . . , ξk of 0(A). Then, according to (3.46),

G(P )(t) =

k∑
i=1

ξv1 (t) ∧ · · · ∧G(ξi(t)) ∧ · · · ∧ ξ
v
k (t).
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Therefore, for any a(t) ∈ P(A),

G̃(P )(8dτ∗f1 , . . . , 8dτ∗fk )(a(t)) =

∫ 1

0
G(P )(t)(8dτ∗f1(t), . . . , 8dτ∗fk (t)) dt

=

k∑
i=1

∫ 1

0
(ξv1 (t) ∧ · · · ∧G(ξi(t))|a(t) ∧ · · · ∧ ξ

v
k (t))(8dτ∗f1(t), . . . , 8dτ∗fk (t)) dt

=

∑
σ∈Sk

k∑
i=1

(−1)|σ |

×

∫ 1

0
〈8dτ∗f1(t), ξ

v
σ(1)(t)〉 . . . 〈8dτ∗f1(t),G(ξσ(i)(t))〉 . . . 〈8dτ∗fk (t), ξ

v
σ(k)(t)〉 dt

(by Lemma 3.17)

=

∑
σ∈Sk

k∑
i=1

(−1)|σ |

×

∫ 1

0
〈8dτ∗f1(t), ξ

v
σ(1)(t)〉 . . .

d〈8dτ∗fi (t), ξσ(i)(t)〉

dt
. . . 〈8dτ∗fk (t), ξ

v
σ(k)(t)〉 dt

=

∑
σ∈Sk

(−1)|σ |
∫ 1

0

d

dt

(
〈8dτ∗f1(t), ξ

v
σ(1)(t)〉 . . . 〈8dτ∗fk (t), ξ

v
σ(k)(t)〉

)
dt

= P v(t)(8dτ∗f1(t), . . . , 8dτ∗fk (t))|
1
t=0.

The result now follows from (3.59). ut

3.4. From k-vector fields on P̃ (A) to k-vector fields on 0

Assume that 0 is an α-simply connected and α-connected Lie groupoid with Lie alge-
broid A. Let δ be a k-differential on A and π̃δ the corresponding k-vector field on P̃ (A).
The goal of this section is to construct a k-vector field 5δ on 0 from π̃δ .

Proposition 3.18. Let f1, . . . , fk ∈ C
∞(0) be a family of smooth functions on 0 and

8dτ∗f1 , . . . , 8dτ∗fk regular extensions of τ ∗f1, . . . , τ
∗fk . Then π̃δ(8dτ∗f1 , . . . , 8dτ∗fk )

is a smooth function on P(A), which is

(i) independent of the choice of the regular extensions 8dτ∗f1 , . . . , 8dτ∗fk of
dτ ∗f1, . . . , dτ

∗fk , and
(ii) invariant under gauge transformations.

Proof. (i) It suffices to prove that if 8dτ∗f1 is a regular extension of zero, the function
π̃δ(8dτ∗f1 , . . . , 8dτ∗fk ) vanishes. By Lemma 3.3(ii), for any a ∈ P(A), there exists
g : I → C∞(M) with g0 = g1 = 0 such that 8dτ∗f1 |a

= dFdg|a . Then

π̃δ(8dτ∗f1 , . . . , 8dτ∗fk )|a = π̃δ(dFdg,8dτ∗f2 , . . . , 8dτ∗fk ).
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According to Lemma 3.15 (i), we have Fdg = G̃(g). Lemma 3.15 (v) implies that

π̃δ(8dτ∗f1 , . . . , 8dτ∗fk )|a = G̃(δ(g))(8dτ∗f2 , . . . , 8dτ∗fk )|a .

The latter vanishes according to Proposition 3.16, since by assumption ξ(0) = ξ(1) = 0.
This proves (i).

Before starting the proof of (ii), we would like to add a comment. We have proven
in (i) that for any regular extension8 of 0, and any regular extensions8dτ∗f2 , . . . , 8dτ∗fk
of τ ∗f2, . . . , τ

∗fn, we have

π̃δ(8,8dτ∗f2 , . . . , 8dτ∗fk ) = 0.

Regular extensions are dense with respect to the induced topology of T ∗a P̃ (A). Thus,

π̃δ(8,8dτ∗f2 , . . . , 8dτ∗fk ) = 0 (3.60)

for any extension 8 of 0.
(ii) Since the functions τ ∗f1, . . . , τ

∗fk are invariant under the gauge transformation,
for each ξ ∈ P00(A) the Lie derivativeL

G̃(ξ)
8dτ∗fi is, for all i ∈ {1, . . . , k}, an extension

of zero. Therefore, by (3.60), π̃δ(8dτ∗f1 , . . . ,LG̃(ξ)8dτ∗fi , . . . 8dτ∗fk ) = 0 for all i ∈
{1, . . . , k}. By (3.51),

G̃(ξ)(π̃δ(8dτ∗f1 , . . . , 8dτ∗fk )) = (LG̃(ξ) π̃δ)(8dτ∗f1 , . . . , 8dτ∗fk ).

By Lemma 3.15(v),

G̃(ξ)(π̃δ(8dτ∗f1 , . . . , 8dτ∗fk )) = G̃(δ(ξ))(8dτ∗f1 , . . . , 8dτ∗fk ),

which is identically 0 according to Proposition 3.16. This proves (ii). ut

By Propositions 3.1 and 3.18(ii), the function π̃δ(8dτ∗f1 , . . . , 8dτ∗fk ) descends to a
smooth function on 0, which will be denoted by {f1, . . . , fk}. That is,

π̃δ(8dτ∗f1 , . . . , 8dτ∗fk ) = τ
∗
{f1, . . . , fk}. (3.61)

It is straightforward to check that the map f1, . . . , fk 7→ {f1, . . . , fk} indeed defines a
k-vector field 5δ on 0, i.e.,

{f1, . . . , fk} = 5δ(df1, . . . , dfk). (3.62)

Proposition 3.19. 5δ is a multiplicative k-vector field on 0.

Proof. By definition, 5δ is given, for any η1, . . . , ηk ∈ T
∗
g 0, by

5δ(η1, . . . , ηk) =

∫
I

(πδ)|a(t)(8τ∗η1(t), . . . , 8τ∗ηk (t)) dt (3.63)

where 8τ∗η1(t), . . . , 8τ∗ηk (t) are any regular extensions of τ ∗η1, . . . , τ
∗ηk , with a

smooth dependence on the variable t , and a(t) is anyA-path with τ(a) = g. Since smooth
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functions are dense in the space of piecewise continuous functions with finitely many dis-
continuities, (3.63) remains valid when the extensions 8τ∗η1(t), . . . , 8τ∗ηk (t) are just
assumed to be piecewise continuous in t (with finitely many discontinuities).

It is straightforward to check that for any g ∈ 0 with α(g) = m and β(g) = n,
there exists an A-path a(t) with τ(a) = g such that a(t) is constantly equal to m in a
neighborhood of t = 0 and constantly equal to n in a neighborhood of t = 1. Consider
two composable elements g1, g2 ∈ 0 and two composable elements η1 ∈ T ∗g1

0 and
η2 ∈ T

∗
g2
0. Choose now A-paths a1(t) and a2(t) satisfying the previous condition. Define

a(t) by a(t) = 2a1(2t) for t ∈ [0, 1/2] and by a(t) = 2a2(2t − 1) for t ∈ [1/2, 1]. By
construction, a(t) is an A-path and τ(a) = g1g2.

Let 8τ∗η1(t) and 8τ∗η2(t) be two regular extensions of τ ∗η1 and τ ∗η2 respectively.
Then the map defined by 8(t) = 8τ∗η1(2t) for t ∈ [0, 1/2] and 8(t) = 8τ∗η2(2t − 1)
for t ∈ [1/2, 1] is a regular extension of 8η1·η2 for η1 · η2 ∈ T

∗
g1g2

0, and it may have a
point of discontinuity at t = 1/2.

We now choose k compatible pairs ηi1, η
i
2 for i = 1, . . . , k of elements of T ∗g1

0 and
T ∗g2
0. For all i = 1, . . . , k we consider two regular extensions 8τ∗ηi1 and 8τ∗ηi2 of τ ∗ηi1

and τ ∗ηi2 respectively. And, for all i = 1, . . . , k again, we form 8ηi1·η
i
2
(t) as above.

(3.63) being valid even for piecewise regular extensions, the first of the identities
below is valid; the other ones are routine.

5δ(η
1
1 · η

1
2, . . . , η

k
1 · η

k
2) =

∫
I

(πδ)|a(t)(8η1
1 ·η

1
2
(t), . . . , 8ηk1 ·η

k
2
(t)) dt

=

∫ 1

0
(πδ)|a1(t)

(
8η1

1 ·η
1
2

(
t

2

)
, . . . , 8ηk1 ·η

k
2

(
t

2

))
dt

+

∫ 1

0
(πδ)|a2(t)

(
8η1

1 ·η
1
2

(
1+ t

2

)
, . . . , 8ηk1 ·η

k
2

(
1+ t

2

))
dt

=

∫
I

(πδ)|a1(t)(8τ∗η1
1
(t), . . . , 8τ∗ηk1

(t)) dt

+

∫
I

(πδ)|a2(t)(8τ∗η1
2
(t), . . . , 8τ∗ηk2

(t)) dt

= 5δ(η
1
1, . . . , η

k
1)+5δ(η

1
2, . . . , η

k
2).

(3.64)
By Proposition 3.6(ii), 5δ is multiplicative. ut

Finally to complete the proof of Theorem 2.34, we need to show that the map δ 7→ 5δ
constructed above is indeed the inverse of 5 7→ δ5. This is due to the following

Proposition 3.20. For any k-differential δ,

[5δ,
−→
X ] =

−→
δX, [5δ, α∗f ] =

−→
δf .

Proof. For any f1, . . . , fk ∈ C
∞(0) and any X ∈ 0(A), one has

[5δ,
−→
X ](f1, . . . , fk) =

−→
X (5δ(f1, . . . , fk))−

k∑
i=1

5δ(f1, . . . ,
−→
X (fi), . . . , fk). (3.65)
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Let ξ ∈ P0(A) be such that ξ(1) = X and ξ(0) = 0. According to Lemma 3.15,
we have τ∗(G̃(ξ)) =

−→
X . Therefore, for any regular extension 8dτ∗f of τ ∗f , where

f ∈ C∞(0), L
G̃(ξ)

8dτ∗f is a regular extension of τ ∗(
−→
X(f )).

Let us choose some regular extensions 8dτ∗f1 , . . . , 8dτ∗fk of τ ∗f1, . . . , τ
∗fk . Ap-

plying τ ∗ to both sides of (3.65) and using (3.62), we obtain

τ ∗([5δ,
−→
X ](f1, . . . , fk)) = G̃(ξ) · π̃δ(8dτ∗f1 , . . . , 8dτ∗fk )

−

k∑
i=1

π̃δ(8dτ∗f1 , . . . ,LG̃(ξ)8dτ∗fi , . . . , 8dτ∗fk ).

By (3.51), the right hand side above is

(L
G̃(ξ)

π̃ξ )(8dτ∗f1 , . . . , 8dτ∗fk ).

which is again, by Lemma 3.15(iv), equal to G̃(δ(ξ))(8dτ∗f1 , . . . , 8dτ∗fk ). By Propo-

sition 3.16, the latter is equal to τ ∗
−−→
δ(X)(f1, . . . , fk). This proves the first equality. The

proof of the other one is similar. ut

4. Quasi-Poisson groupoids

As an application of the general theory developed in the previous sections, we now in-
troduce the notion of quasi-Poisson groupoids and study their properties. In particular,
we study the relation with their infinitesimal invariants, namely quasi-Lie bialgebroids,
and prove the integration theorem. Application to momentum map theory will also be
discussed.

4.1. Definition and properties

Definition 4.1. A quasi-Poisson groupoid is a triple (0 ⇒ M,5,�), where 0 ⇒ M is
a Lie groupoid, 5 is a multiplicative bivector field on 0 and � ∈ 0(

∧3
A), such that the

following compatibility conditions hold:

1
2 [5,5] =

−→
� −
←−
�, (4.66)

[5,
−→
� ] = 0. (4.67)

Using Proposition 2.21 and (4.66) and (4.67), we obtain the following

Proposition 4.2. Given a quasi-Poisson groupoid (0 ⇒ M,5,�) there exists a bivector
field 5M on M such that

5M = α∗5 = −β∗5.
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5M satisfies the relations

1
2 [5M ,5M ] = �M , (4.68)

[5M , �M ] = 0, (4.69)

where�M is the 3-vector field�M = ρ(�), and ρ : 0(
∧3

A)→ X3(M) is the extension
of the anchor map.

Some interesting examples of quasi-Poisson groupoids are listed below.

Example 4.3. If � = 0 then we just have a multiplicative Poisson structure 5 on a Lie
groupoid 0 ⇒ M . That is, (0 ⇒ M,5) is a Poisson groupoid.

Example 4.4. IfG is a Lie group, then we recover the notion of quasi-Poisson structures
on a Lie group of Kosmann-Schwarzbach [19], that is, a multiplicative bivector field 5
on G and an element � ∈

∧3 g such that 1
2 [5,5] =

−→
� −
←−
� and [5,

−→
� ] = 0.

Proposition 4.5. Let (0 ⇒ M,5,�) be a quasi-Poisson groupoid such that5 ∈ X2(0)

is nondegenerate. Let ω ∈ �2(0) be the corresponding nondegenerate 2-form and
φ ∈ �3(M) be the 3-form on M defined by (

∧3
ω[)(
−→
�) = α∗φ. Then (0 ⇒ M,ω, φ) is

a nondegenerate twisted symplectic groupoid in the sense of [8, Def. 2.1]. That is,

1. dφ = 0;
2. dω = α∗φ − β∗φ;
3. ω is multiplicative, i.e., the 2-form (ω, ω,−ω) vanishes when restricted to the graph

of the groupoid multiplication 3 ⊂ 0 × 0 × 0.

Proof. Since 5 is multiplicative, it follows from Remark 2.8 that m∗ω = pr∗1 ω + pr∗2 ω.
That is, ω is multiplicative.

Since ω is multiplicative, we know (see [8]) that the Lie algebroid A of 0 is isomor-
phic to T ∗M as a vector bundle, and the isomorphism λ : A→ T ∗M is characterized by
ω[(
−→
X ) = α∗η for X ∈ 0(A) and η ∈ �1(M). In general, we have

(
∧k

ω[)(
−→
P ) = α∗ϕ, (

∧k
ω[)(
←−
P ) = β∗ϕ,

for all P ∈ 0(
∧k

A) and ϕ ∈ �k(M).
Define φ ∈ �3(M) as the 3-form on M such that (

∧3
ω[)(
−→
�) = α∗φ or, equiva-

lently,
−→
� = (

∧3
5])(α∗φ). Using the fact that 5] is the inverse of ω[, (

∧3
5])(dω) =

1
2 [5,5], and (4.66), we deduce that

(
∧3

5])(dω) = 1
2 [5,5] =

−→
� −
←−
� = (

∧3
5])(α∗φ − β∗φ).

As a consequence, dω = α∗φ − β∗φ.
Let 5M = α∗5. We will prove that

λ(−δ5P) = δ(λ(P )) for P ∈ 0(
∧
•
A), (4.70)
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where δ5 is the 2-differential corresponding to 5 (see Theorem 2.34), and δ : �•(M)→
�•+1(M) is the map characterized by

δf = df, ∀f ∈ C∞(M), δη = dη −5
]
M(η) φ, ∀η ∈ �1(M).

From Lemma 2.4 in [8], we know that δf = df = −λ(δ5f ). If η ∈ �1(M) and
X ∈ 0(A) are such that λ(X) = η (that is,

−→
X = 5](α∗η)), then using the relation

(
∧2

5])dγ = [5](γ ),5]− 1
2 (γ [5,5]), ∀γ ∈ �1(M),

and (2.19) and (4.66), we obtain

(
∧2

5])dα∗η = [5](α∗η),5]− (α∗η (
−→
� −
←−
�))

= −
−−→
δ5X − (α

∗η ((
∧3

5])(α∗φ − β∗φ))).

Applying
∧2

ω[ to both sides of this equation and using

(
∧2

ω[)(α∗η ((
∧3

5])(α∗φ − β∗φ))) = −α∗(5
]
M(η) φ),

we conclude that
−(
∧2

ω[)(
−−→
δ5X) = α

∗(dη −5
]
M(η) φ).

That is, −λ(δ5X) = δη. As a consequence, by (4.67), (4.70) and since λ(�) = φ, we
have δφ = 0, and dφ = 0. Thus, we conclude that (0 ⇒ M,ω, φ) is a nondegenerate
twisted symplectic groupoid. ut

4.2. Quasi-Poisson groupoids and quasi-Lie bialgebroids

In this subsection, we will describe the infinitesimal invariants of quasi-Poisson group-
oids, namely quasi-Lie bialgebroids. The notion of quasi-Lie bialgebroid was first intro-
duced by Roytenberg [33]. Here, we give an alternative definition using 2-differentials.

Definition 4.6. A quasi-Lie bialgebroid corresponds to a 2-differential whose square is
a coboundary, i.e., δ : 0(

∧
•
A) → 0(

∧
•+1

A) such that δ ◦ δ = [[�, ·]] for some
� ∈ 0(

∧3
A) satisfying δ� = 0.

An interesting example of a quasi-Lie bialgebroid is the following:

Example 4.7. Recall that [34, (1)] a twisted Poisson structure (M, π, φ) is a bivector
field π ∈ X2(M) and a closed 3-form φ ∈ �3(M) such that

1
2 [π, π] = (

∧3
π])(φ), (4.71)

where π] is the bundle map T ∗M → TM induced by π (i.e. π](x)(σ ) := π(x)(σ, ·)

for x ∈ M and σ ∈ T ∗xM). As explained in [34], a twisted Poisson structure induces a
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Lie algebroid structure on T ∗M with anchor map π] and Lie bracket of sections σ and τ
defined by

[σ, τ ] := Lπ](σ )τ − Lπ](τ )σ − dπ(σ, τ )+ φ(π](σ ), π](τ ), ·). (4.72)

We will denote this Lie algebroid by (T ∗M)(π,φ). Sections of its exterior algebra are
ordinary differential forms. There is a derivation δπ,φ : �•(M) → �•+1(M) deform-
ing the de Rham differential d by φ, which is defined as follows. For f ∈ C∞(M),
δπ,φf = df , and δπ,φσ = dσ − π](σ ) φ if σ ∈ �1(M). It turns out that δπ,φ[σ, τ ] =
[δπ,φσ , τ ] + [σ, δπ,φτ ] for all σ, τ ∈ �1(M), and δ2

π,φ = [φ, ·]. Thus, one obtains a
quasi-Lie bialgebroid ((T ∗M)(π,φ), δπ,φ), which was first described in [8, p. 188].

A direct consequence of Lemma 2.32 is the following

Proposition 4.8. Let (A, δ,�) be a quasi-Lie bialgebroid. Then δ induces a bivector
field πM on M such that

1
2 [πM , πM ] = �M , [πM , �M ] = 0,

where�M is the 3-vector field�M = ρ(�), and ρ : 0(
∧3

A)→ X3(M) is the extension
of the anchor map.

Now we are ready to state the main theorem of this section: quasi-Lie bialgebroids are
indeed the infinitesimal invariants of quasi-Poisson groupoids.

Theorem 4.9. If (0 ⇒ M,5,�) is a quasi-Poisson groupoid, then there exists a natural
quasi-Lie bialgebroid structure (δ,�) on the Lie algebroid A of 0.

Conversely, if (A, δ,�) is a quasi-Lie bialgebroid, where A is the Lie algebroid of an
α-connected and α-simply connected Lie groupoid 0, then there exists a quasi-Poisson
groupoid structure (5,�) on 0 such that the corresponding quasi-Lie bialgebroid is
(δ,�).

Proof. Let (0 ⇒ M,5,�) be a quasi-Poisson groupoid. Since 5 is a multiplicative
bivector field, it induces a 2-differential δ5 on A according to Theorem 2.34. In addition,
since 5 7→ δ5 preserves the graded Lie algebra structures, (2.17) and (4.66) imply that

δ5 ◦ δ5 =
1
2 [δ5, δ5] = ad(�).

Moreover (4.67) yields δ5(�) = 0. As a consequence, (A, δ5, �) is a quasi-Lie bialge-
broid.

Conversely, let (A, δ,�) be a quasi-Lie bialgebroid. Since δ is a 2-differential, ac-
cording to Theorem 2.34, there exists a multiplicative bivector field 5 on 0 such that
δ5 = δ. On the other hand, the 3-differential ad(�) can be integrated to the multiplicative
3-vector field

−→
� −
←−
� . In addition, using the identity δ ◦ δ = [[�, ·]], we have

δ[5,5] = [δ, δ] = 2δ ◦ δ = 2 ad(�) = 2δ−→
�−
←−
�
.
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Thus, by Theorem 2.34 again, we have

1
2 [5,5] =

−→
� −
←−
� .

Moreover, [5,
−→
� ] =

−−→
δ5� =

−→
δ� = 0. Thus, we conclude that (0 ⇒ M,5,�) is a

quasi-Poisson groupoid integrating the quasi-Lie bialgebroid (A, δ,�). ut

Remark. Theorem 4.9 generalizes a result of Kosmann-Schwarzbach regarding quasi-
Poisson Lie groups and quasi-Lie bialgebras [19]. On the other hand, when � = 0, that
is, (A, δ) is a Lie bialgebroid, we recover the classical results in [27, 29]: there exists a
one-to-one correspondence between Lie bialgebroids and Poisson groupoids.

As another consequence of Theorem 4.9, we recover the construction of the nonde-
generate twisted symplectic groupoid associated with a twisted Poisson manifold [8].

Corollary 4.10. Let (M, π, φ) be a twisted Poisson structure. If the Lie algebroid
(T ∗M)(π,φ) can be integrated to an α-simply connected and α-connected Lie groupoid 0,
then 0 is a twisted symplectic groupoid.

Proof. Let λ : T ∗M → A be the Lie algebroid isomorphism between the Lie algebroid
A of 0 and T ∗M . Denote by δ and � the almost 2-differential and the 3-section of A
respectively such that

� = λ(φ), −λ(δπ,φϕ) = δ(λ(ϕ)), ∀ϕ ∈ �
•(M), (4.73)

where δπ,φ is defined as in Example 4.7. Then (A, δ,�) is clearly a quasi-Lie bialgebroid
induced by the quasi-Lie bialgebroid structure (T ∗M, δπ,φ, φ). Therefore, according to
Theorem 4.9, there exists a bivector field 5 such that (0 ⇒ M,5,�) is a quasi-Poisson
groupoid satisfying δ5 = δ. Using (2.19) and (4.73), we have

λ(df ) = λ(δπ,φf ) = −δf = 5
](α∗df ), ∀f ∈ C∞(M).

Thus, λ(η) = 5](α∗η) for all η ∈ T ∗M . As a consequence, λ∗ : A∗ → TM is given by
λ∗(ξ) = −α∗5

](ξ) for ξ ∈ A∗, where A∗ is identified with the conormal bundle of M .
Hence, λ∗(ξ) = −5](ξ), because 5](ξ) is tangent to M . Therefore,

5](ξ + α∗df ) = −λ∗(ξ)+ λ(df ), ∀ξ ∈ A∗ and f ∈ C∞(M).

Since any element of the cotangent space T ∗ε(m)0 (m ∈ M) can be written as ξ+α∗df with
ξ ∈ A∗ and f ∈ C∞(M), and λ and λ∗ are injective (λ is a vector bundle isomorphism),
it follows that 5 is nondegenerate along M . By Theorem 5.3 in [29], one can extend this
nondegeneracy to all points in 0. From Proposition 4.5, we conclude that 0 is the twisted
symplectic groupoid integrating (M, π, φ). ut

We end this section with the following proposition, which reveals the relationship between
the bivector fields obtained by Propositions 4.2 and 4.8.
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Proposition 4.11. Let (0 ⇒ M,5,�) be a quasi-Poisson groupoid, and (A, δ5, �) the
corresponding quasi-Lie bialgebroid. Denote by 5M and πM the bivector fields on M
induced from the quasi-Poisson groupoid structure on 0 and the quasi-Lie bialgebroid
structure on A as in Propositions 4.2 and 4.8 respectively. Then

5M = πM .

Proof. Let f, g ∈ C∞(M). Then, using (2.19),

−〈ρ(δf ), dg〉 = −〈α∗([5,α∗f ]), dg〉 = 5(α∗df, α∗dg) = (α∗5)(df, dg),

and the conclusion follows. ut

4.3. Hamiltonian 0-spaces of quasi-Poisson groupoids

Let 0 ⇒ M be a Lie groupoid. Recall that a 0-space is a smooth manifold X with a map
J : X→ M , called the momentum map, and an action

0 ×M X = {(g, x) ∈ 0 ×X | β(g) = J (x)} → X, (g, x) 7→ g · x,

satisfying

1. J (g · x) = α(g) for (g, x) ∈ 0 ×M X;
2. (gh) · x = g · (h · x) for g, h ∈ 0 and x ∈ X such that β(g) = α(h) and J (x) = β(h);
3. ε(J (x)) · x = x for x ∈ X.

For a Poisson groupoid 0, Hamiltonian 0-spaces were introduced in [22]; they generalize
the notion of Poisson actions of Poisson groups. In particular, Poisson reduction theory
works for Hamiltonian 0-spaces, which gives rise to new Poisson manifolds. For quasi-
Poisson groupoids, one can introduce Hamiltonian 0-spaces in a similar fashion.

Definition 4.12. Let (0 ⇒ M,5,�) be a quasi-Poisson groupoid. A Hamiltonian 0-
space is a 0-spaceX with momentum map J : X→ M and a bivector field5X ∈ X2(X)

such that:

1. the graph of the action {(g, x, g · x) | J (x) = β(g)} is a coisotropic submanifold of
(0 ×X ×X,5⊕5X ⊕−5X);

2. 1
2 [5X,5X] = �̂, where the hat denotes the map 0(

∧3
A)→ X3(X), induced by the

infinitesimal action of the Lie algebroid on X: 0(A)→ X(X), Y 7→ Ŷ .

Proposition 4.13. Let (0 ⇒ M,5,�) be a quasi-Poisson groupoid. If (X,5X) is a
Hamiltonian 0-space with momentum map J, then J maps 5X to 5M , where 5M is
given by Proposition 4.2.

Proof. The result follows using the coisotropy condition and the fact that (−β∗η, J ∗η, 0),
with η ∈ T ∗M , is conormal to the graph of the groupoid action. Indeed,

0 = 5(−β∗η1,−β
∗η2)+5(J

∗η1, J
∗η2) = (β∗5+ J∗5X)(η1, η2)

for any η1, η2 ∈ T
∗
mM . Thus, J∗5X = −β∗5 = 5M . ut
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The following theorem gives an equivalent description of Hamiltonian 0-spaces of quasi-
Poisson groupoids in terms of their infinitesimal objects.

Theorem 4.14. Let (0 ⇒ M,5,�) be a quasi-Poisson groupoid with the corresponding
quasi-Lie bialgebroid (A, δ5, �). Then (X,5X) is a Hamiltonian 0-space with momen-
tum map J : X→ M if and only if 1

2 [5X,5X] = �̂ and

[5X, J ∗f ] = δ̂5f , ∀f ∈ C∞(M), [5X, Ŷ ] = δ̂5(Y ), ∀Y ∈ 0(A). (4.74)

Proof. Using Theorem 7.1 in [22] we know that the coisotropy condition is equivalent to
the following conditions:

1. For any f ∈ C∞(M), XJ ∗f (x) = (rx)∗Xα∗f (u), where x ∈ X, u = J (x) and rx
denotes the map g 7→ g · x from β−1(u) to X.

2. For any compatible (g, x) ∈ 0 ×M X,

5X(g · x) = (LX )∗5X(x)+ (RY )∗5(g)− (RY )∗(LX )∗5(u),

where u = β(g) = J (x),X is any local bisection through g, and Y is any local section
of J through the point x.

From the first condition and the equality
−−→
δ5f = [5,α∗f ], it follows that [5X, J ∗f ]

= δ̂5f .
On the other hand, let x ∈ X and u = J (x). Applying the second condition to the

family of (local) bisections Xt = exp tY associated to Y ∈ 0(A) and gt = (exp tY )(u),
one obtains

(L−1
Xt )∗5X(gt · x) = 5X(x)+ (RY )∗(L

−1
Xt )∗5(gt )− (RY )∗5(u)

for any section Y of J . Then, taking derivatives on both sides, we have

[5X, Ŷ ] = δ̂5(Y ).

The other direction follows just by going backwards. ut

Remark. Note that (4.74) is equivalent to [5X, P̂ ] = δ̂5P for any P ∈ 0(
∧k

A), k ≥ 0.
That is, the following diagram is commutative:

0(
∧k+1

A) Xk+1(X)-

0(
∧k

A)

? ?

- Xk(X)̂

̂
δ5 [5X,·] ∀ k ≥ 0.
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4.4. Twists of quasi-Lie bialgebroids

As for quasi-Lie bialgebras [15], one can talk about twists of a quasi-Lie bialgebroid.
Given a quasi-Lie bialgebroid (A, δ,�) and a section t ∈ 0(

∧2
A), let δt = δ + [[t, ·]],

and �t = �+ δt + 1
2 [[t, t]]. Using (2.14) and the properties of the Schouten bracket, it is

easy to see that (A, δt , �t ) is also a quasi-Lie bialgebroid, which will be called the twist
of (A, δ,�) by t ∈ 0(

∧2
A).

The following proposition describes how a twist affects integration (see [1, (3.3.8)]
for the case of quasi-Lie bialgebras).

Proposition 4.15. Assume that (0 ⇒ M,5,�) is a quasi-Poisson groupoid with corre-
sponding quasi-Lie bialgebroid (A, δ,�), and t ∈ 0(

∧2
A). Then (0 ⇒ M,5t , �t ) is a

quasi-Poisson groupoid with quasi-Lie bialgebroid (A, δt , �t ), where5t = 5+−→t −←−t .

Proof. This is a direct consequence of Theorem 2.34. Note that if 5 and 5′ are multi-
plicative bivector fields then δ5+5′ = δ5+δ5′ . Also δ−→

t −
←−
t
= ad(t) (see Example 2.40).

ut

Next, we will show how a Hamiltonian 0-space of a quasi-Poisson groupoid (0 ⇒ M,

5,�) must be modified in order to obtain a Hamiltonian 0-space for the twisted quasi-
Poisson structure (5t , �t ).

Proposition 4.16. Assume that (0 ⇒ M,5,�) is a quasi-Poisson groupoid and t ∈
0(
∧2

A). There is a bijection between Hamiltonian 0-spaces of (0 ⇒ M,5,�) and
those of (0 ⇒ M,5t , �t ).

More precisely, if (X→ M,5X) is a Hamiltonian 0-space of (0 ⇒ M,5,�), then
(X→ M,5X + t̂ ) is a Hamiltonian 0-space of (0 ⇒ M,5t , �t ).

Proof. Let (X → M,5X) be a Hamiltonian 0-space of the quasi-Poisson groupoid
(0 ⇒ M,5,�). Using Theorem 4.14, we deduce that

[5X, P̂ ] = δ̂5P for any P ∈ 0(
∧k

A), k ≥ 0.

Therefore, from the fact that
⊕

k 0(
∧k

A) →
⊕

k Xk(X), Y 7→ Ŷ , is a graded Lie
algebra morphism, one gets

[5X + t̂ , P̂ ] = δ̂5P + [̂[t, P ]] = δ̂5tP .

On the other hand, it is trivial to see that

1
2 [5X + t̂ , 5X + t̂] = �̂t .

As a consequence of Theorem 4.14, (X → M,5X + t̂ ) is a Hamiltonian 0-space of the
quasi-Poisson groupoid (0 ⇒ M,5t , �t ). ut
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4.5. Quasi-Poisson groupoids associated to Manin pairs

In this subsection we will describe an example of a quasi-Poisson groupoid associated to
a quasi-Manin triple.

Let (d, g) be a Manin pair, that is, d is an even-dimensional Lie algebra with an invari-
ant, nondegenerate symmetric bilinear form, and g is a maximal isotropic subalgebra of d.
In this case, one can integrate the Manin pair (d, g) to the so-called group pair (D,G),
whereD andG are connected and simply connected Lie groups with Lie algebras d and g
respectively. Furthermore, the action of the Lie group D on itself by left multiplication
induces an action of D on S = D/G, and in particular a G-action on S, which is called
the dressing action. As in [1], the infinitesimal dressing action is denoted by v 7→ vS for
any v ∈ d.

If h is an isotropic complement of g in d, by identifying h with g∗ we obtain a quasi-
Lie bialgebra structure on g, with cobracket F : g →

∧2 g and 3-vector � ∈
∧3 g. If

{ei} is a basis of g and {εi} the dual basis of g∗ ∼= h, then F(ei) = 1
2
∑
j,k F

jk
i ej ∧ ek and

� = 1
6
∑
i,j,k �

ijkei ∧ ej ∧ ek . Moreover, the bracket on d ∼= g⊕ h can be written as

[ei, ej ]d =
n∑
k=1

ckij ek, [ei, εj ]d =
n∑
k=1

(−c
j
ikε

k
+ F

jk
i ek),

[εi, εj ]d =
n∑
k=1

(F
ij
k ε

k
+�ijkek),

(4.75)

where ckij are the structure constants of the Lie algebra g with respect to the basis {ei}.

Example 4.17. Let g be a Lie algebra endowed with a nondegenerate symmetric bilinear
form K . On the direct sum d = g⊕ g one can construct a scalar product (·|·) by

((u1, u2)|(v1, v2)) = K(u1, v1)−K(u2, v2)

for (u1, u2), (v1, v2) ∈ d. Then, (d,1(g), 1
21−(g)) is a quasi-Manin triple, where 1(v)

= (v, v) and1−(v) = (v,−v) for v ∈ g (see [1]). In this case, as far as the corresponding
quasi-Lie bialgebra is concerned, the cobracket F vanishes and � can be identified with
the trilinear form on g given by (u, v,w) 7→ 1

4K(w, [u, v]g).

Let λ : T ∗s S → g be the dual map of the infinitesimal dressing action g∗ ∼= h→ TsS.
That is,

〈λ(θs), η〉 = 〈θs, ηS(s)〉, ∀θs ∈ T
∗
s S and η ∈ h.

A direct consequence is that

λ(df ) =
n∑
i=1

(εi)S(f )ei for f ∈ C∞(S). (4.76)
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Remark 4.18. Recall that an isotropic complement h is said to be admissible at a point
s ∈ S = D/G if the infinitesimal dressing action restricted to h defines an isomor-
phism from h onto TsS [1]. In this case, we can define an isomorphism from g to T ∗s S,
ξ 7→ ξh(s), by

〈ξh(s), ηS(s)〉 = −(ξ | η), ∀η ∈ h,

where on the right hand side, (·|·) is the bilinear form on d. (d, g, h) is said to be an
admissible quasi-Manin triple if h is admissible at every point of S. In this case, if λ(θs) =
ξ then ξh(s) = −θs .

Next, we will show that on the transformation Lie algebroid g× S → S there exists a
natural quasi-Lie bialgebroid structure.

Proposition 4.19. Assume that (d, g, h) is a quasi-Manin triple with associated quasi-
Lie bialgebra (g, F,�). On the transformation Lie algebroid g × S → S (where g acts
on S by the infinitesimal dressing action) define an almost 2-differential

δ(f ) = λ(df ) for f ∈ C∞(S), δξ = −F(ξ) for ξ ∈ g, (4.77)

where λ is defined by (4.76) and ξ ∈ g is considered as a constant section of the Lie
algebroid g × S → S, extending this operation to all sections using the derivation law.
Then (g× S, δ,�) is a quasi-Lie bialgebroid.

Proof. We remark that it suffices to check the axioms of a quasi-Lie bialgebroid for func-
tions on S and constant sections of g×S, since the general case follows from the derivation
law.

If f ∈ C∞(S), then by (4.75),

δ2f =

n∑
i=1

δ((εi)S(f )ei) =

n∑
i,j=1

(εj )S(ε
i)S(f )ej ∧ ei +

n∑
i=1

(εi)S(f )δ(ei)

=

∑
i<j

(
(εi)S(ε

j )S(f )− (ε
j )S(ε

i)S(f )
)
ei ∧ ej +

n∑
i=1

(εi)S(f )δ(ei)

=

∑
i<j

([εi, εj ]d)S(f )ei ∧ ej +
n∑
k=1

(εk)S(f )δ(ek)

=

∑
i<j

n∑
k=1

(
F
ij
k (ε

k)S(f )+�
ijk(ek)S(f )

)
ei ∧ ej −

n∑
k=1

(εk)S(f )
∑
i<j

F
ij
k ei ∧ ej

=

∑
i<j

n∑
k=1

�ijk(ek)S(f )ei ∧ ej =
1
2

n∑
i,j,k=1

�ijk(ek)S(f )ei ∧ ej = [[�, f ]].

Moreover, since (g, F,�) is a quasi-Lie bialgebra, we have

δ2ξ = [[�, ξ ]], ∀ξ ∈ g.
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Next, let us show that δ[[ξ, f ]] = [[δξ, f ]] + [[ξ, δf ]] for ξ ∈ g and f ∈ C∞(S). Taking
ξ = ei and using (4.75), we obtain

[[δei, f ]]+[[ei, δf ]]−δ[[ei, f ]] =
n∑

j,k=1

(ej )S(f )F
jk
i ek +

n∑
j=1

(ei)S(ε
j )S(f )ej

+

n∑
j,k=1

(εj )S(f )c
k
ij ek −

n∑
j=1

(εj )S(ei)S(f )ej

=

n∑
j=1

(
(ei)S(ε

j )S(f )ej − (ε
j )S(ei)S(f )ej

)
+

n∑
j,k=1

(
(ej )S(f )F

jk
i + (ε

j )S(f )c
k
ij

)
ek

=

n∑
j=1

[(ei)S, (εj )S](f )ej −
n∑

j,k=1

(F
jk
i ek − c

j
ikε

k)S(f )ej

=

n∑
j=1

[(ei)S, (εj )S](f )ej −
n∑
j=1

([ei, εj ]d)S(f )ej = 0.

Since also δ[ξ1, ξ2] = [δξ1, ξ2]+ [ξ1, δξ2] for any ξ1, ξ2 ∈ g, the conclusion follows. ut

Now, consider the transformation groupoid 0 : G × S ⇒ S associated to the dressing
action. Theorem 4.9 implies that 0 is a quasi-Poisson groupoid. In what follows, we will
explicitly describe the multiplicative bivector field 5 on 0.

The fact that (g, F,�) is a quasi-Lie bialgebra implies that G is a quasi-Poisson Lie
group with multiplicative bivector field denoted by 5G. Moreover, there exists a bivector
field 5S on S given by 5S = −

∑n
i=1(ei)S ⊗ (ε

i)S , i.e.,

5S(df, dg) = −
n∑
i=1

(εi)S(f )(ei)S(g), ∀f, g ∈ C∞(S). (4.78)

Using Proposition 4.8 and (4.77) and (4.78), we directly deduce the following:

Proposition 4.20. Let (d, g, h) be a quasi-Manin triple and (g × S → S, δ,�) the cor-
responding quasi-Lie bialgebroid. Then the bivector field on S induced by δ as in Propo-
sition 4.8 coincides with 5S = −

∑n
i=1(ei)S ⊗ (ε

i)S .

Proof. For all f, g ∈ C∞(S),

−(δf )S(g) = −

n∑
i=1

(εi)S(f )(ei)S(g) = 5S(df, dg). ut
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Example 4.21. Let g be a Lie algebra endowed with a nondegenerate symmetric bilinear
form K and consider the corresponding quasi-Manin triple (d,1(g), 1

21−(g)) (see Ex-
ample 4.17). Then g acts on S = G by the adjoint action and the 2-differential is given
by

δ(f ) =
1
2

n∑
i=1

(
−→
ei +
←−
ei )(f )ei, ∀f ∈ C

∞(G), δξ = 0, ∀ξ ∈ g,

where {ei} is an orthonormal basis of g. Moreover, the bivector field onG induced by δ is

5G =
1
2

n∑
i=1

←−
ei ∧
−→
ei ,

which was first obtained in [1] (see also [2]).

Now we are ready to describe the quasi-Poisson groupoid structure on the transfor-
mation groupoid G× S ⇒ S.

Theorem 4.22. Assume that (d, g, h) is a quasi-Manin triple. Define a bivector field 5
on G× S by

5((θg, θs), (θ
′
g, θ
′
s)) = 5G(θg, θ

′
g)−5S(θs, θ

′
s)

+ 〈θ ′s, (L
∗
gθg)S〉 − 〈θs, (L

∗
gθ
′
g)S〉 (4.79)

for any (g, s) ∈ G × S, θg, θ ′g ∈ T
∗
gG, and θs, θ ′s ∈ T

∗
s S, where (L∗gθg)S denotes the

vector field on S corresponding to the dressing action of L∗gθg ∈ g∗ ∼= h ⊂ d, and
similarly for (L∗gθ

′
g)S . Then (G× S ⇒ S,5,�) is a quasi-Poisson groupoid integrating

the 2-differential δ given by (4.77).

Proof. Let5 be the multiplicative bivector field onG× S integrating δ. Then, by Propo-
sitions 4.11 and 4.20 and the fact that β(g, s) = s for any (g, s) ∈ G× S,

5((0, df ), (0, dg)) = 5(β∗(df ), β∗(dg)) = (β∗5)(df, dg) = −5S(df, dg).

Therefore,
5((0, θs), (0, θ ′s)) = −5S(θs, θ

′
s), ∀θs, θ

′
s ∈ T

∗
s S.

Next, if f ∈ C∞(S) and θg ∈ T ∗gG, then from (2.19), (4.76) and (4.77), it follows that

5((0, df ), (θg, 0)) = 〈5](β∗(df )), (θg, 0)〉 = −〈L(g,s)∗(δf ), (θg, 0)〉
= −〈(Lg)∗(δf ), θg〉 = −〈δf, L

∗
gθg〉 = −〈df, (L

∗
gθg)S〉.

Thus,
5((0, θs), (θg, 0)) = −〈θs, (L∗gθg)S〉 for θg ∈ T ∗gG, θs ∈ T

∗
s S.

Finally, fixing s ∈ S, we write 5s for the bivector field on G defined by 5s(g)(θg, θ ′g) =
5(g, s)((θg, 0), (θ ′g, 0)). Then it is clear that 5s is a multiplicative bivector field on G.

Moreover, if ξ ∈ g is considered as a constant section of g× S → S, then
−→
ξ = (

−→
ξG, 0),
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where
−→
ξG is the unique right invariant vector field on G through ξ . Using (2.19) and

(4.77), we get

([5s,
−→
ξG], 0) = [5,

−→
ξ ] =

−→
δξ = (−

−−→
F(ξ)G, 0) = (−[

−→
ξG,5G], 0) = ([5G,

−→
ξ ]G, 0).

As a consequence, 5s coincides with 5G, that is,

5((θg, 0), (θ ′g, 0)) = 5G(θg, θ ′g), ∀θg, θ
′
g ∈ T

∗
gG.

Summing up, the multiplicative bivector field 5 integrating δ is the one given by (4.79),
and (0 ⇒ S,5,�) is a quasi-Poisson groupoid. ut

Example 4.23. In the particular case when h is also a Lie subalgebra of d, that is, (d, g, h)
is a Manin triple, then � = 0 and (G,5G) is a Poisson group. Moreover, if the dressing
action is complete, we have D/G ∼= G∗, the dual Poisson group. Thus, we recover a
Poisson groupoid structure on G×G∗ ⇒ G∗, whose Poisson bivector field is described
in [23].

On the other hand, when the dressing action is not complete, we can still have a
Poisson groupoidG× (D/G) ⇒ D/G, while the groupoidG×G∗ ⇒ G∗ does not exist
any more. It would be interesting to study the relation between this Poisson groupoid and
the symplectic groupoid of Lu–Weinstein [25].

From Examples 4.17 and 4.21 and Theorem 4.22, one can deduce the following:

Corollary 4.24. Assume that g is a Lie algebra endowed with a nondegenerate symmetric
bilinear form K , and G is the corresponding connected and simply connected Lie group.
Then the transformation groupoid G × G ⇒ G, where G acts on G by conjugation,
together with the multiplicative bivector field 5 on G×G:

5(g, s) =
1
2

n∑
i=1

(←−
e2
i ∧

−→

e2
i −

←−

e2
i ∧

←−

e1
i −

−−−−−−−→

(Adg−1 ei)
2
∧

−→

e1
i

)
,

and the bi-invariant 3-form � := 1
4K(·, [·, ·]g) ∈

∧3 g∗ ∼= �3(G)G on G, is a quasi-
Poisson groupoid. Here {ei} is an orthonormal basis of g and the superscript refers to the
respective G-component.

Remark. We remark that, under the change of coordinates (g, s) 7→(a, b)=(s−1g−1, g),
5 becomes the bivector field on G×G obtained in Example 5.3 of [2], i.e.,

5 =
1
2

n∑
i=1

(←−
e1
i ∧

−→

e2
i +

−→

e1
i ∧

←−

e2
i

)
.
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4.6. D/G momentum maps

Next, we investigate the relation between quasi-Hamiltonian spaces with D/G-moment-
um map in the sense of [1] and Hamiltonian 0-spaces, where 0 is the quasi-Poisson
groupoid G × S ⇒ S associated to a quasi-Manin triple (d, g, h) as described in Sec-
tion 4.5.

First, we recall the notion of a quasi-Hamiltonian space with D/G-momentum map.

Definition 4.25 ([1, Def. 4.1.5]). Let (G,5G, �) be a connected quasi-Poisson Lie
group acting on a manifold X with a bivector field 5X. The action 8 : G × X → X

of G on X is said to be a quasi-Poisson action if

8∗(5G ⊕5X) = 5X, (4.80)
1
2 [5X,5X] = �X, (4.81)

where�X ∈ X3(X) is defined using the map
∧3 g→ X3(X) induced by the infinitesimal

action.

Now, we recall the definition of a quasi-Hamiltonian action with a momentum map J .

Definition 4.26. Let 8 be a quasi-Poisson action of a quasi-Poisson Lie group
(G,5G, �) on (X,5X). A G-equivariant map J : X→ S is called a momentum map if

5
]
X(J

∗θs) = −(λ(θs))X for θs ∈ T ∗s S, (4.82)

where G acts on S by dressing action. The action is called quasi-Hamiltonian if it admits
a momentum map and X is then called a quasi-Hamiltonian space.

Remark. Our definition does not require any assumption on (d, g, h). In [1, Def. 5.5.1],
the isotropic complement h to g in d is required to be admissible on J (U), U being
any open subset of X (see Remark 4.18 for the notion of admissibility). Therefore, our
definition is more general than that in [1].

Proposition 4.27. Let (G,5G, �) be a quasi-Poisson Lie group. If X is a quasi-Hamil-
tonian space then the momentum map is a bivector map from (X,5X) to (S,5S), i.e.,

J∗5X = 5S . (4.83)

Proof. Let f, g ∈ C∞(S). Using (4.76), (4.82) and G-equivariance, we have

5X(J
∗df, J ∗dg) = 〈5

]
X(J

∗df ), J ∗dg〉 = −J∗(λ(df )X)(g)

= −(λ(df ))S(g) = 5S(df, dg). ut

Theorem 4.28. Let (d, g, h) be a quasi-Manin triple. If (X,5X) is a quasi-Hamiltonian
space with momentum map J : X→ S, then X is a Hamiltonian 0-space, where 0 is the
quasi-Poisson groupoid (G× S ⇒ S,5,�). Here the 0-action is given by

(g, s) · x = 8(g, x) for g ∈ G, s ∈ S and x ∈ X such that J (x) = s, (4.84)

and 8(g, x) denotes the G-action on X.
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Conversely, if (X,5X) is a Hamiltonian 0-space with momentum map J : X → S,
then (X,5X) is a quasi-Hamiltonian space with momentum map J : X → S, where the
G-action on X is given by

8(g, x) = (g, J (x)) · x for g ∈ G and x ∈ X.

Proof. First of all, using the fact that J : X → S is G-equivariant, we know that 8
can be extended to an action of 0 on X by (4.84). In addition, the conormal space of
the graph of the 0-action at a point ((g, x), s,8(g, x)) is spanned by vectors of the form
(−(8x)

∗θ, 0,−(8g)∗θ, θ) for θ ∈ T ∗8(g,x)X and (0, γ,−J ∗γ, 0) for γ ∈ T ∗s S. We ac-
cordingly divide our proof into three cases:

Case 1. The two covectors are of the first type. From the definition of 5 (see (4.79)) we
see that the coisotropy condition is equivalent to

8∗(5G ⊕5X) = 5X.

Case 2. The two covectors are of the second type. From (4.79), we deduce that 5⊕5X
⊕−5X being coisotropic is equivalent to

J∗5X = 5S .

Case 3. One covector is of the first type and the other of the second. In this case, the
coisotropy condition is just the momentum map condition, i.e.,

5
]
X(J

∗γ )+ (λ(γ ))X = 0.

Finally, we note that (4.81) is equivalent to 1
2 [5X,5X] = �̂. ut

In [2], the authors study quasi-Hamiltonian spaces for the particular case when the Manin
pair is the one associated with a Lie algebra g endowed with a nondegenerate symmet-
ric bilinear form K (see Example 4.17). We now recall their definitions and discuss the
relation with Hamiltonian 0-spaces of quasi-Poisson groupoids.

Definition 4.29 ([1, 2]). A quasi-Poisson manifold is a G-manifold X equipped with an
invariant bivector field 5X such that

1
2 [5X,5X] = �X.

Moreover, one can also introduce the following specific definition of momentum
maps.

Definition 4.30 ([1, 2]). An Ad-equivariant map J : X→ G is called a momentum map
for the quasi-Poisson manifold (X,5X) if

5
]
X(d(J

∗f )) = (J ∗(Df ))X, ∀f ∈ C∞(G),

where D : C∞(G)→ C∞(G, g) is defined by Df = 1
2
∑n
i=1(
−→
ei +
←−
ei )(f )ei . The triple

(X,5X, J ) is then called a Hamiltonian quasi-Poisson manifold.
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Remark. Note that the operator D is exactly the 2-differential δ on the Lie algebroid
g× S → S applying to functions (see Example 4.21).

As a consequence of Theorem 4.28 we deduce the following

Corollary 4.31. Let G be a Lie group with Lie algebra g endowed with a nondegener-
ate symmetric bilinear formK . If (X,5X) is a Hamiltonian quasi-Poisson manifold with
momentum map J : X→ G, where the action is denoted by 8(g, x), then X is a Hamil-
tonian 0-space, where 0 is the quasi-Poisson groupoid (G×G ⇒ G,5,�) obtained in
Corollary 4.24. Here the 0-action is given by

(g, s) · x = 8(g, x) for g ∈ G, s ∈ S and x ∈ X such that J (x) = s.

Conversely, if (X,5X) is a Hamiltonian 0-space with momentum map J : X → G,
then (X,5X) is a quasi-Poisson manifold with momentum map J : X → G, where the
G-action on X is given by

8(g, x) = (g, J (x)) · x for g ∈ G and x ∈ X.

It is thus natural to expect that, for any Hamiltonian 0-space, there is a general Pois-
son reduction theory, which generalizes the reduction theory of Alekseev, Kosmann-
Schwarzbach and Meinrenken [2] for quasi-Poisson spaces. This will be investigated
elsewhere.
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