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Abstract. It is shown that the maximum size of a set S of vectors of a k-dimensional vector space
over Fq , with the property that every subset of size k is a basis, is at most q + 1 if k ≤ p, and at
most q + k − p if q ≥ k ≥ p + 1 ≥ 4, where q = ph and p is prime. Moreover, for k ≤ p, the
sets S of maximum size are classified, generalising Beniamino Segre’s “arc is a conic” theorem.

These results have various implications. One such implication is that a k × (p + 2) matrix,
with k ≤ p and entries from Fp , has k columns which are linearly dependent. Another is that the
uniform matroid of rank r that has a base set of size n ≥ r + 2 is representable over Fp if and only
if n ≤ p+ 1. It also implies that the main conjecture for maximum distance separable codes is true
for prime fields; that there are no maximum distance separable linear codes over Fp , of dimension
at most p, longer than the longest Reed–Solomon codes. The classification implies that the longest
maximum distance separable linear codes, whose dimension is bounded above by the characteristic
of the field, are Reed–Solomon codes.

In the autumn of 2008 while I was visiting Budapest, together with Andras Gács, we
formulated the coordinate free version of Segre’s lemma of tangents (Lemma 2.1) which
is fundamental to this article. I dedicate this work to Andras, whose humour, enthusiasm
and brilliance I am grateful to have known.

1. Introduction

Let S be a set of vectors of the vector space Fkq such that every subset of S of size k is a
basis.

In this article we shall prove an upper bound on the size of S and for k ≤ p, where
q = ph and p is prime, we shall prove that the largest examples are equivalent to the
following example.

Example 1.1. The set

S = {(1, t, t2, . . . , tk−1) | t ∈ Fq} ∪ {(0, . . . , 0, 1)},

is a set of size q + 1. It is easily shown that S has the required property by checking that
the k × k Vandermonde matrix formed by k vectors of S has non-zero determinant.
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The following upper bound is easily proved.

Lemma 1.2. A set S of vectors of the vector space Fkq such that every subset of S of size
k is a basis, has size at most q + k − 1.

Proof. Consider the (k − 2)-dimensional subspace U spanned by k − 2 vectors of S.
Each of the q+ 1 hyperplanes containing U contains at most one other vector of S. Thus,
|S| ≤ k − 2+ q + 1. ut

In 1947, Bose [3] noted that if p ≥ k = 3 then |S| ≤ q + 1, and in the article [18] from
1955, Segre proved that if p ≥ k = 3 then equality in the bound was only attained by
examples equivalent to Example 1.1. In 1952, Bush [4] proved the following lemma.

Lemma 1.3. A set S of vectors of Fkq , k ≥ q, such that every subset of S of size k is a
basis, has size at most k + 1. Moreover, a set S which attains the bound is equivalent to

{(λ1, 0, . . . , 0), . . . , (0, . . . , 0, λk), (1, . . . , 1)}.

Proof. After a suitable choice of basis, we can assume that

S ⊇ S′ = {(λ1, 0, . . . , 0), . . . , (0, . . . , 0, λk), (1, . . . , 1)},

for some λi ∈ Fq \ {0}. Suppose there is an x ∈ S \ S′. Since k ≥ q either there are two
coordinates, the i-th and the j -th say, of x which are the same, or one of the coordinates,
the i-th say, is zero. In the first case the hyperplane defined by the equation Xi = Xj
contains k vectors of S. In the second case, the hyperplane Xi = 0 contains k vectors
of S. In both cases, this is a contradiction, so S = S′. ut

The main conjecture for maximum distance separable codes (which we shall define in
Section 9) in the terminology of this section is the following. This was essentially pro-
posed by Segre [19] in 1955, although as a question rather than a conjecture; see also
MacWilliams and Sloane [14].

Conjecture 1.4. A set S of vectors of the vector space Fkq such that every subset of S of
size k ≤ q is a basis, has size at most q + 1, unless q is even and k = 3 or k = q − 1, in
which case it has size at most q + 2.

In this article we shall prove the conjecture for all k ≤ p + 1, where q = ph and p is
prime, which will prove the conjecture in its entirety for q prime.

The conjecture is known to be true for all q ≤ 27, for all k ≤ 5 and k ≥ q − 3 and for
k = 6, 7, q − 4, q − 5 with some exceptions (see [11]).

For p = 2 and k = 3, one can add the vector (0, 1, 0) to Example 1.1 and obtain an
example with q + 2 vectors. For these parameters, such a set of q + 2 vectors is called
a hyperoval, and these have been extensively studied. There are many examples known
which are not equivalent (up to change of basis and field automorphisms) to Example 1.1,
the first of which were discovered by Segre [20], [21] and subsequently by Glynn [8],
Payne [16], Cherowitzo [5], Cherowitzo, Penttila, Pinneri and Royle [7], and Cherowitzo,
O’Keefe and Penttila [6].

The only other known examples of size q+1, which are not equivalent to the previous
ones, are the following.
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Example 1.5 (Glynn [9]). The set

S = {(1, t, t2 + ηt6, t3, t4) | t ∈ F9} ∪ {(0, . . . , 0, 1)},

is a set of 10 vectors of F5
9 with the required property if η is chosen such that η4

= −1.

Example 1.6 (Hirschfeld [10]). The set

S = {(1, t, t2
r

, t2
r
+1) | t ∈ Fq} ∪ {(0, . . . , 0, 1)},

is a set of q + 1 vectors of F4
q and has the required property when q = 2h and (r, h) = 1.

As we shall see in Lemma 5.1, every example of a set S in Fkq gives an example of

a set of size |S| with the required property in F|S|−kq . Thus, for example, the hyperovals
give rise to examples of size q + 2 in Fq−1

q , subsets of size q + 1 of the hyperovals give
rise to examples of size q + 1 in Fq−2

q and Example 1.6 gives rise to an example of size
q + 1 in Fq−3

q .
There are many upper bounds known on |S|, similar to those mentioned below. For a

complete list, see [11], and also [12]. Relevant to this article we know from Voloch [24]
that if 3 ≤ k ≤ q/45 + c1 and q is prime then |S| ≤ q + 1, where c1 is a constant. Also
relevant is the following from Segre [22] (with an improved constant Thas [23]), which
is improved upon here for q the square of a prime: If 3 ≤ k ≤

√
q/4+ c2 and q is an odd

square then |S| ≤ q + 1, where c2 is a constant. In Voloch [25], the bound |S| ≤ q + 1 is
proven for an odd q = p2e+1, e ≥ 1 and 3 ≤ k <

√
pq/4− 29p/16+ 4.

In all of the above if k is one less than the upper bound and |S| = q + 1 then S is
equivalent to Example 1.1. All classifications of |S| = q + 1 use Segre’s theorem [18],
mentioned before, that states that if |S| = q + 1 and p ≥ k = 3 then S is equivalent to
Example 1.1.

In [22] Segre uses the lemma of tangents, which we shall reprove in Section 2, to
prove that for k = 3 and q even, there is an algebraic curve of degree t = q + k− 1− |S|
which in the dual space contains all the vectors corresponding to tangent hyperplanes.
For q odd, he proves that there is an algebraic curve of degree 2t which in the dual space
contains all the vectors corresponding to tangent hyperplanes, and that the intersection
numbers with the hyperplanes, dual to the vectors of S, are 2. This curve extends to an
algebraic hypersurface in higher dimensions, as proven in [2].

Let q = ph, where p is a prime.
In Section 6, using the lemmas in the following sections, we shall prove the following

theorem.

Theorem 1.7. A set S of vectors of Fkq such that every subset of S of size k is a basis, has
size at most q + k + 1−min(k, p), where k ≤ q.

Furthermore, in Section 7, we shall prove the following generalisation of Segre’s theorem.

Theorem 1.8. If p ≥ k then a set S of q + 1 vectors of Fkq such that every subset of S of
size k is a basis, is equivalent to Example 1.1.
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In Section 8, we shall see that Theorem 1.8 leads to the following slight improvement on
Theorem 1.7 in the case q > k > p.

Theorem 1.9. A set S of vectors of Fkq such that every subset of S of size k ≥ 4 is a basis,
where q > k > p, has size at most q + k − p.

Finally, we shall prove the following theorem.

Theorem 1.10. A set S of vectors of Fkq such that every subset of S of size k is a basis,
where 3 ≤ q − p + 1 ≤ k ≤ q − 2, has size at most q + 1. Moreover, in the case of
equality S is equivalent to Example 1.1.

2. Segre’s lemma of tangents

Let S be a set of vectors of Fkq such that every subset of S of size k is a basis.
In this section we prove a coordinate free version of Segre’s lemma of tangents [22].
By the proof of Lemma 1.2, for every subset C of S of size k − 2, there is a set LC of

t = q + k − 1− |S|

hyperplanes 6 with 6 ∩ S = C.
Let HC be a set of t linear maps such that for each hyperplane 6 ∈ LC , there is a

linear map f ∈ HC with
6 = {x ∈ Fkq | f (x) = 0}.

Let TC(u), a function from Fkq to Fq , called the tangent function at C, be defined by

TC(u) =
∏
f∈HC

f (u).

Note that the tangent function is defined up to scalar factor; it is not important which
scalar multiple we use.

Lemma 2.1. If k = 3 and x, y, z ∈ S then

T{x}(y)T{y}(z)T{z}(x) = (−1)t+1T{x}(z)T{z}(y)T{y}(x).

Proof. With respect to the basis {x, y, z} the tangent function T{x} is the evaluation of a
polynomial of degree t , ∏

(a23X2 + a32X3),

for some aij .
For all d = (d1, d2, d3) ∈ S \ {x, y, z}, the subspace 〈x, d〉 is defined by the equation

d3X2−d2X3 = 0. The q−1 two-dimensional subspaces containing x, but not containing y
or z, are defined by the equations

X2 − αX3 = 0,
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where α ∈ Fq \ {0}. Since the product of the non-zero elements of Fq is −1, it follows
that ∏ d2

d3

∏ (−a32)

a23
= −1,

where the first product is taken over all d ∈ S \ {x, y, z} and the second product is taken
over the hyperplanes in L{x}.

Note that
∏
a23 = T{x}(y) and

∏
a32 = T{x}(z), and so the above implies

T{x}(z)
∏

d2 = (−1)t+1T{x}(y)
∏

d3.

Multiplying this equation with the corresponding equations for y and for z gives

T{x}(z)T{z}(y)T{y}(x)
∏

d1d2d3 = (−1)3t+3T{x}(y)T{y}(z)T{z}(x)
∏

d1d2d3,

which yields the conclusion. ut

This lemma generalises to higher dimensions in the following way.

Lemma 2.2. For all distinct vectors x1, x2, x3, y1, . . . , yk−3 of S,

T{x1}∪Y (x2)T{x2}∪Y (x3)T{x3}∪Y (x1) = (−1)t+1T{x1}∪Y (x3)T{x3}∪Y (x2)T{x2}∪Y (x1),

where Y = {y1, . . . , yk−3}.

Proof. It suffices to apply Lemma 2.1 in the quotient space Fkq/〈Y 〉. Alternatively, this
can be proved in the same way as Lemma 2.1, working with the basis {x1, x2, x3,

y1, . . . , yk−3}. ut

3. Interpolation of the tangent function

In this section an equation involving the function TY is obtained by interpolation.

Lemma 3.1. If |S| ≥ k + t > k then for any disjoint subsets Y = {y1, . . . , yk−2} and E
of S with |E| = t + 2,

0 =
∑
a∈E

TY (a)
∏

z∈E\{a}

det(a, z, y1, . . . , yk−2)
−1.

Proof. Suppose E={a1, . . . , at+2}. With respect to the basis B={a1, a2, y1, . . . , yk−2},
the tangent function TY is the evaluation of a homogeneous polynomial in two variables
of degree t .

Since {aj , a`, y1, . . . , yk−2} is a basis for all j 6= `, by interpolation at a1, . . . , at+1,

TY (x) =

t+1∑
j=1

TY (aj )

t+1∏
`=1
` 6=j

det(x, a`, y1, . . . , yk−2)

det(aj , a`, y1, . . . , yk−2)
,



738 Simeon Ball

which gives

TY (at+2)

t+1∏
m=1

det(at+2, am, y1, . . . , yk−2)
−1

= −

t+1∑
j=1

TY (aj )

t+2∏
`=1
` 6=j

det(aj , a`, y1, . . . , yk−2)
−1. ut

4. Combinations of the interpolation equation

The aim of this section is to combine the equation in Lemma 3.1 for E′ = (E \ E1) ∪ Y1
and Y ′ = (Y \ Y1) ∪ E1 for various Y1 ⊆ Y and E1 ⊆ E, to prove the following.

Lemma 4.1. If |S| ≥ k + t > k then for any disjoint subsets Y = {y1, . . . , yk−2} and E
of S with |E| = t + 2, and r ≤ min(k − 1, t + 2),

0 =
∑

a1,...,ar∈E

(r−1∏
i=1

Tθi (ai)

Tθi+1(yi)

)
Tθr (ar)

∏
z∈(E∪Y )\(θr∪{ar })

det(ar , z, θr)−1,

where θi = (a1, . . . , ai−1, yi, . . . , yk−2) is an ordered sequence and the sum is over all
ordered sequences a1, . . . , ar of distinct elements of E.

Moreover, the r! terms in the sum for which {a1, . . . , ar} = A, for some r-element
subset A of E, are the same.

Proof. We first prove the final claim by showing that transposing aj and aj+1, j =
1, . . . , r − 1, does not affect the expression in the sum. Since all permutations on r letters
are generated by transpositions (1 2), (2 3), . . . , (r − 1 r), this will suffice.

For j = 1, . . . , r−2, writing Lr = (E∪Y ) \ (θr ∪{ar}), the expression in the sum is(j−1∏
i=1

Tθi (ai)

Tθi+1(yi)

)( r∏
i=j+2

Tθi (ai)

Tθi (yi−1)

)(
Tθj (aj )Tθj+1(aj+1)

Tθj+1(yj )

) ∏
z∈Lr

det(ar , z, θr)−1,

which is equal to(j−1∏
i=1

Tθi (ai)

Tθi+1(yi)

)( r∏
i=j+2

Tθi (ai)

Tθi (yi−1)

)(
(−1)t+1 Tθj (aj+1)T{a1,...,aj−1,aj+1,yj+1,...,yk−2}(aj )

T{a1,...,aj−1,aj+1,yj+1,...,yk−2}(yj )

)
×(−1)t+1

∏
z∈Lr

det(ar , z, a1, . . . , aj−1, aj+1, aj , aj+2, . . . , ar−1, yr , yr+1, . . . , yk−2)
−1,

by Lemma 2.2, and this is precisely the term in the sum corresponding to the sequence
(a1, . . . , aj−1, aj+1, aj , aj+2, . . . , ar). For j = r − 1, exactly the same argument works,
the only difference being the position of ar in the determinants.

Now we prove the main part of the lemma by induction.
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For r = 1, this is Lemma 3.1.
For r=2, the equation in Lemma 3.1 forE′=(E\{b})∪{y1} and Y ′=(Y \{y1})∪{b},

for some b ∈ E, is

0 = Tφ1(y1)
∏

z∈E\{b}

det(y1, z, φ1)
−1
+

∑
a1∈E\{b}

Tφ1(a1)
∏

z∈E′\{a1}

det(a1, z, φ1)
−1,

where φ1 = (b, y2, . . . , yk−2). Multiply this equation by TY (b)/Tφ1(y1) and note that
when we sum over b ∈ E, the sum of the first terms, after rearranging the order of the
vectors in the determinants, is zero by Lemma 3.1. Hence

0 =
∑
b∈E

∑
a1∈E\{b}

TY (b)

Tφ1(y1)
Tφ1(a1)

∏
z∈(E\{b,a1})∪{y1}

det(a1, z, φ1)
−1.

Letting b play the role of a1 and replacing a1 by a2 we have

0 =
∑

a1,a2∈E

Tθ1(a1)

Tθ2(y1)
Tθ2(a2)

∏
z∈(E\{a1,a2})∪{y1}

det(a2, z, θ2)
−1,

which is what we wanted to prove.
Now assume that the equation holds for some r , where 2 ≤ r ≤ min(k − 2, t + 1),

and consider this equation for E′ = (E \ {b}) ∪ {yr} and Y ′ = (Y \ {yr}) ∪ {b}, for some
b ∈ E. Defining

φi = (a1, . . . , ai−1, yi, . . . , yr−1, b, yr+1, . . . , yk−2)

for i ≥ 1, and

ψi = (yr , a2, . . . , ai−1, yi, . . . , yr−1, b, yr+1, . . . , yk−2)

for i ≥ 2, the equation is

0 =
∑

a1,...,ar∈E\{b}

(r−1∏
i=1

Tφi (ai)

Tφi+1(yi)

)
Tφr (ar)

∏
z∈(E∪Y )\(φr∪{ar })

det(ar , z, φr)−1

+ r
∑

a2,...,ar∈E\{b}

Tφ1(yr)

Tψ2(y1)

(r−1∏
i=2

Tψi (ai)

Tψi+1(yi)

)
Tψr (ar)

∏
z∈(E∪Y )\(ψr∪{ar })

det(ar , z, ψr)−1,

where in the second sum we have combined the terms corresponding to

(yr , a2, . . . , ar), (a1, yr , a3, . . . , ar), . . . , (a1, . . . , ar−1, yr),

since they are all equal, as proved in the first part of the proof.
Now multiply this equation by Tθ1(b)/Tφ1(yr), and note that if we sum over b ∈ E

then the second sum, after changing the order of the vectors in the determinants, is the
original expression, which, by induction, is zero.
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Hence

0 =
∑
b∈E

Tθ1(b)

Tφ1(yr)

∑
a1,...,ar∈E\{b}

(r−1∏
i=1

Tφi (ai)

Tφi+1(yi)

)
Tφr (ar)

∏
z∈(E∪Y )\(φr∪{ar })

det(ar , z, φr)−1.

Now let b play the role of a1, replace (yr , y1, . . . , yr−1) by (y1, . . . , yr) and (a1, . . . , ar)

by (a2, . . . , ar+1). This gives

0 =
∑

a1,...,ar+1∈E

Tθ1(a1)

Tθ2(y1)

(r−1∏
i=1

Tθi+1(ai+1)

Tθi+2(yi+1)

)
Tθr+1(ar+1)

×

∏
z∈(E∪Y )\(θr+1∪{ar+1})

det(ar+1, z, a2, . . . , ar , a1, yr+1, . . . , yk−2)
−1,

which, rearranging the order of the vectors in the determinant, implies

0 =
∑

a1,...,ar+1∈E

( r∏
i=1

Tθi (ai)

Tθi+1(yi)

)
Tθr+1(ar+1)

∏
z∈(E∪Y )\(θr+1∪{ar+1})

det(ar+1, z, θr+1)
−1.

ut

Lemma 4.2. If |S| ≥ k + t > k then for any disjoint subsets Y = {y1, . . . , yk−2} and E
of S with |E| = t + 2 and E an ordered sequence , and r ≤ min(k − 1, t + 2),

0 = r!
∑

a1<···<ar∈E

(r−1∏
i=1

Tθi (ai)

Tθi+1(yi)

)
Tθr (ar)

∏
z∈(E∪Y )\(θr∪{ar })

det(ar , z, θr)−1.

Proof. This simply combines the two claims in Lemma 4.1. ut

We are now in a position to prove Theorem 1.7 for |S| ≥ k + t . In the next section, we
prove Lemma 5.1, which we shall need for the case |S| ≤ k + t − 1.

5. Construction of S′

In this section, we construct a set S′, of |S| vectors of F|S|−kq , such that every subset of S′

of size |S|−k is a basis. This we shall need to prove Theorem 1.7 in the case |S| ≤ k+t−1.
The following is well-known and is included only for the sake of completeness.

Lemma 5.1. Given a set S of vectors of Fkq such that every subset of S of size k is a

basis, we can construct a set S′, of |S| vectors of F|S|−kq , such that every subset of S′ of
size |S| − k is a basis.

Proof. Let G be the k × n matrix whose columns are the vectors of S, where n = |S|.
For any non-zero y ∈ Fkq , the row vector ytG has at most k− 1 zero coordinates since no
hyperplane contains k vectors of S. Hence ytG has at least n−k+1 non-zero coordinates.

Let H be an (n − k) × n matrix of rank n − k with HGt = 0. The kernel of H has
dimension k and so does {Gty | y ∈ Fkq}. Hence, all non-zero vectors in the kernel of H
have at least n− k + 1 non-zero coordinates.



Sets of vectors of a finite vector space in which every subset of basis size is a basis 741

Suppose thatH has n−k columns that are linearly dependent. Then there is a non-zero
x ∈ Fnq with at most n− k non-zero coordinates and with Hx = 0, a contradiction.

Thus, we can define S′ to be the columns of H . ut

If S is taken to be Example 1.1 then it is an exercise to show that

S′ = {(1, t, t2, . . . , tq−k) | t ∈ Fq} ∪ {(0, . . . , 0, 1)}.

6. Proof of Theorem 1.7

The case k = 2 is trivial and so we can assume k ≥ 3.
By Lemma 5.1 we can construct a subset S′ of Fk′q of size |S|, where k′ = |S| − k,

with the property that every subset of S′ of size k′ is a basis.
If both |S| ≤ k + t and |S′| ≤ k′ + t ′ then, since k + k′ = |S| = |S′|, we have k′ ≤ t

and k ≤ t ′, which implies

|S| ≤ q − 1+min(t ′ − t, t − t ′) ≤ q − 1.

If not then, without loss of generality, we can assume |S| ≥ k + t and apply Lem-
ma 4.2. Assume that t ≤ k − 3 and consider the equation in Lemma 4.2 with r = t + 2.

The sum has just one term, and the equation becomes

0 = (t + 2)!
(t+1∏
i=1

Tθi (ai)

Tθi+1(yi)

)
Tθt+2(at+2)

∏
z∈Y\(θt+2∪{at+2})

det(at+2, z, θt+2)
−1.

With the possible exception of the (t+2)! all the expressions in this product are non-zero.
Hence (t + 2)! = 0, which gives t ≥ p − 2.

Therefore t ≥ min(k − 2, p − 2) and since |S| = q + k − 1− t it follows that

|S| ≤ q + k + 1−min(k, p). ut

7. Classification of the largest subsets for k ≤ p

In Theorem 1.7 we proved the bound |S| ≤ q+1 for k ≤ p. In this section, we prove that
if |S| = q + 1 and k ≤ p then S is equivalent to Example 1.1.

Lemma 7.1. If p ≥ k ≥ 3 and q ≥ 2k − 2, then for any ordered basis E = (e1, . . . , ek)

⊂ S, where |S| = q + 1, and Y ⊆ S \ E of size k − 2,

0 =
k−1∑
j=1

TE\{ej ,ek}(ek)TE\{ej ,ek}(ej )
−1
∏
z∈Y

z−1
j + (−1)k−1

∏
z∈Y

z−1
k ,

where z = (z1, . . . , zk) are the coordinates of z with respect to E.
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Proof. By Lemma 4.2, with r = t + 1 = k − 1,

0 = (k − 1)!

×

∑
a1<···<ak−1∈E

(k−2∏
i=1

Tθi (ai)

Tθi+1(yi)

)
Tθk−1(ak−1)

∏
z∈(E∪Y )\(θk−1∪{ak−1})

det(ak−1, z, θk−1)
−1.

Let

cj =

(k−2∏
i=1

Tθi (ai)

Tθi+1(yi)

)
Tθk−1(ak−1),

where (a1, . . . , ak−1) = E \ {ej }. The above equation, after rearranging the order of the
vectors in the determinant, is

0 = (k − 1)!
k∑

j=1

cj
∏

z∈Y∪{ej }

det(E \ {ej }, z)−1,

It is a simple matter to check that

ck−1c
−1
k = T{e1,...,ek−2}(ek)T{e1,...,ek−2}(ek−1)

−1.

To calculate cj c−1
k , note that according to Lemma 4.1, we can arrange the sequence

(e1, . . . , ek−1) as (e1, . . . , ej−1, ej+1, . . . , ek−1, ej ), which changes the value of the de-
terminants by (−1)(k−1)(k−1−j), but does not alter the overall expression in the sum cor-
responding to this sequence. Therefore, replacing k − 1 by j in the above gives

cj c
−1
k = (−1)(k−1)(k−1−j)TE\{ej ,ek}(ek)TE\{ej ,ek}(ej )

−1.

Let z = (z1, . . . , zk) be the coordinates of z with respect to the basis E = (e1, . . . , ek)

and note that
det(E \ {ej }, z)−1

= (−1)k−jz−1
j .

Dividing the equation above through by (k − 1)!ck , we find that for p ≥ k,

0 =
k−1∑
j=1

TE\{ej ,ek}(ek)TE\{ej ,ek}(ej )
−1(−1)k−1

∏
z∈Y

z−1
j +

∏
z∈Y

z−1
k . ut

We are now in a position to prove Theorem 1.8.

Proof of Theorem 1.8. The case k = 2 is trivial and so we can assume k ≥ 3.
By Lemma 5.1 and the comment immediately thereafter, we can assume that q + 1

≥ 2k.
Suppose that S contains the basis E = {e1, . . . , ek}. Let U be a subset of S \E of size

k − 2 and suppose that x ∈ S \ (U ∪ E).
For ui ∈ U , apply Lemma 7.1 with Y = (U ∪ {x}) \ {ui}. This gives

0 =
k−1∑
j=1

TE\{ej ,ek}(ek)TE\{ej ,ek}(ej )
−1(−1)k−1

∏
z∈U\ui

z−1
j x−1

j +

∏
z∈U\ui

z−1
k x−1

k .
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Define a (k − 2)× k matrix A whose ij -th entry is∏
z∈U\ui

z−1
j .

The matrix obtained fromA by multiplying the j -th column ofA by
∏
z∈U zj is the matrix

whose i-th row is ui . Since {u1, . . . , uk−2} is a subset of S these vectors are linearly
independent, and so this matrix, and hence A, has rank k − 2. Therefore, the solution to
this system of equations has a two-dimensional kernel and there are n and ` such that for
all other m,

x−1
m = βmx

−1
n + εmx

−1
`

for some βm and εm.
The solutions to this equation for i = m, n, ` are

xi = γi(y − αi)
−1

for some γi and αi , where y ∈ Fq \ {αm, αn, α`}, and xi = γi .
We conclude that, after the change of coordinates in which xi replaced by γ−1

i xi , and
replacing the vectors λ−1

i ei by ei for i = 1, . . . , k,

S = {e1, . . . , ek}∪{((x−α1)
−1, . . . , (x−αk)

−1) | x ∈ Fq \{α1, . . . , αk}}∪{(1, . . . , 1)}.

This implies S is equivalent to the set

{(g(x)(x − α1)
−1, . . . , g(x)(x − αk)

−1) | x ∈ Fq ∪ {∞}},

where g(x) =
∏k
i=1(x − αi), which is equivalent to Example 1.1, since the polynomials

g(x)/(x−αi) generate the vector space of polynomials of degree at most k− 1, as do the
monomials in Example 1.1. ut

8. Proofs of Theorems 1.9 and 1.10

Now, using Theorem 1.8, we can prove Theorem 1.9.

Proof of Theorem 1.9. For k = p + 1 this follows immediately from Theorem 1.8 and
Kaneta–Maruta’s theorem [13], which states that if every S of size q + 1 in Fkq , k < q,
with the property that every subset of S of size k is a basis, is equivalent to Example 1.1,
then every set S′ of vectors of Fk+1

q such that every subset of S′ of size k + 1 is a basis,
has size at most q + 1.

For k ≥ p + 2, let Y = {y1, . . . , yk−p−1} be distinct elements of S and note that
S′ = S/〈Y 〉 is a set of |S| − k+p+ 1 vectors in Fp+1

q such that every subset of S′ of size
p + 1 is a basis. ut

Finally, we prove Theorem 1.10.

Proof of Theorem 1.10. Suppose that S is a set of q+2 vectors of Fkq , where q−p+1 ≤
k ≤ q − 2, such that every subset of S of size k is a basis. By Lemma 5.1, we can
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construct a set S′ of vectors of Fq+2−k
q such that every subset of size q + 2− k is a basis.

This contradicts Theorem 1.9, since 4 ≤ q + 2− k ≤ p + 1. Hence |S| ≤ q + 1.
Suppose that S is a set of q+1 vectors of Fkq , where q−p+1 ≤ k ≤ q−2, such that

every subset of S of size k is a basis. By Lemma 5.1, we can construct a set S′ of vectors
of Fq+1−k

q such that every subset S′ of size q + 1 − k is a basis. By Theorem 1.8, since
3 ≤ q + 1− k ≤ p, S′ is equivalent to Example 1.1, which implies, by the comment after
Lemma 5.1, that so is S. ut

9. Consequences for maximum distance separable codes

In this section we shall list some consequences of the previous theorems for maximum
distance separable codes.

Let U be the k-dimensional subspace of F|S|q generated by the rows of the matrix
whose columns are the vectors of S and let u be a non-zero vector of U . Since no hyper-
plane contains k vectors of S, at most k − 1 of the coordinates of u are zero.

Define the weight of a vector u, with respect to a basis, to be the number of coordinates
of u that are non-zero. All the non-zero vectors of U have weight at least |S| − k + 1.

A linear code of length n and minimum distance d is a k-dimensional subspace U
of Fnq in which every non-zero vector has weight at least d , with respect to a fixed basis.

Thus, we have seen that S gives rise to a linear code of length |S|, dimension k and
minimum distance |S| − k + 1, and vice versa.

Let U be any linear code of length n, dimension k and minimum distance d . Fix any
n − d + 1 coordinates and consider two vectors x, y of U . If they agree on the selected
coordinates then x − y has weight d − 1, which does not occur since x − y ∈ U . Thus,
any two vectors of U disagree on any n− d + 1 coordinates and therefore |U | ≤ qn−d+1.
Since |U | = qk , it follows that k ≤ n−d+1. This is the singleton bound for linear codes.
If k = n− d + 1 then the code is called maximum distance separable.

Thus, we have seen that S gives rise to a maximum distance separable linear code
of length |S| and dimension k. By this construction Example 1.1 gives rise to a Reed–
Solomon code.

Suppose that q = ph and p is prime. The following corollaries are immediate conse-
quences of Theorems 1.7–1.10 respectively.

Corollary 9.1. A linear maximum distance separable code of dimension k over Fq has
length at most

q + k + 1−min(k, p), where k ≤ q.

Corollary 9.2. If p ≥ k then a linear maximum distance separable code over Fq of
dimension k and length q + 1 is a Reed–Solomon code.

Corollary 9.3. If p < k < q then a linear maximum distance separable code of dimen-
sion k over Fq has length at most q + k − p.
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Corollary 9.4. If 2 < q−p+ 1 < k < q− 2 then a linear maximum distance separable
code of dimension k over Fq has length at most q + 1. Moreover, in the case of equality
the code is a Reed–Solomon code.

Remark 9.5. One can also consider codes that are not necessarily linear (see [14, Chap-
ter 2]). A recent result from Alderson and Gács [1] states that if a linear code can be
extended (i.e. we can extend the code to a subset of Fn+1

q with minimum distance d + 1)
then there is a linear extension of the code. This implies that if the maximum distance
separable code can be extended then we can add a vector to the set S, while preserving
the property that every subset of size k is a basis.

10. Consequences for projective spaces

An arc in the projective space PG(k − 1, q) is a set A of points such that any k points of
A span the whole space. Clearly from S we can construct an arc of size |S| by defining

A = {〈x〉 | x ∈ S},

and vice versa, given an arc A one can construct a set S of vectors of Fkq of size |A| with
the property that every subset of S of size k is a basis.

Suppose that q = ph and that p is prime.
The following corollaries are immediate consequences of Theorems 1.7–1.10 respec-

tively.

Corollary 10.1. An arc in PG(k− 1, q) has at most q + k+ 1−min(k, p) points, where
k ≤ q.

Corollary 10.2. If p ≥ k then an arc in PG(k − 1, q) of size q + 1 is a normal rational
curve.

Corollary 10.3. If p < k < q then an arc in PG(k − 1, q) has at most q + k − p points.

Corollary 10.4. If 2 < q − p + 1 < k < q − 2 then an arc in PG(k − 1, q) has at most
q + 1 points. Moreover, in the case of equality, the arc is a normal rational curve.

11. Consequences for matrices and matroids

Let p be a prime. Theorem 1.7 has the following immediate corollary.

Corollary 11.1. For any k × (p + 2) matrix with 2 ≤ k ≤ p and entries from Fp, there
is a set of k columns which are linearly dependent.
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Example 1.1 gives an example of a k × (p + 1) matrix which does not have the above
property, and Lemma 1.3 implies that the bound k ≤ p is essential.

A matroid M = (E, F ) is a pair in which E is a set and F is a set of subsets of E,
called independent sets, such that (1) every subset of an independent set is an independent
subset; and (2) for all A ⊆ E, all maximal independent subsets of A have the same cardi-
nality, called the rank of A and denoted r(A). A basis B of M is a maximal independent
set.

If E can be mapped to a subset of vectors of a vector space over a field K so that
I ⊆ E is an independent set if and only if the vectors of I are linearly independent, then
the matroid is said to be representable over K.

The following follows immediately from Theorem 1.7.

Corollary 11.2. If, for a matroid M = (E, F ) and prime p ≥ r(E), there is a sub-
set S ⊆ E of size p + 2 in which every subset of size r(E) is a basis, then M is not
representable over Fp.

The maximal independent sets of the uniform matroid of rank r are all the r-element
subsets of the set E. Theorem 1.7 implies the following, which is the prime case of Con-
jecture 14.1.5 from Oxley [15]. Note that the reverse implication holds since we can map
the elements of E to a subset of the columns of the matrix in Example 1.1.

Corollary 11.3. The uniform matroid of rank r with |E| ≥ r+2 is representable over Fp,
p prime, if and only if |E| ≤ p + 1.

12. Further consequences of the interpolation equation

Lemma 3.1 can be manipulated to give an equation for rational functions φR , for any
subset R of S of size k + t , such that φR(x) = 0 for any x ∈ S \ R.

In earlier versions of this manuscript Theorem 12.1 below was used in place of
Lemma 3.1. I am indebted to Aart Blokhuis for suggesting the weaker Lemma 3.1, which
is sufficient to prove Theorem 1.7. Theorem 12.1 is more useful in general because the
tangent functions do not depend on the tangent functions TX, for any X containing x.

Theorem 12.1. If |S| ≥ k + t + 1 then for any disjoint subsets Y = {y1, . . . , yk−3} and
E = {a1, . . . , at+2} of S, and distinct d and x ∈ S \ {Y ∪ E},

0 =
t+2∑
j=1

TY∪{d}(aj )TY∪{aj }(d)
−1TY∪{aj }(x)

∏
m6=j

det(aj , am, y1, . . . , yk−3, x)
−1.

Proof. By Lemma 3.1 with yk−2 = x we have

0 =
t+2∑
j=1

TY∪{x}(aj )
∏
m 6=j

det(aj , am, y1, . . . , yk−3, x)
−1.

Multiply through by (−1)t+1TY∪{d}(x)TY∪{x}(d)
−1 and apply Lemma 2.2. ut
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Note that the equation does not depend on the choice of d, since we could multiply by

TY∪{d}(a1)
−1TY∪{a1}(d)

and apply Lemma 2.2 to eliminate any mention of d .
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