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Abstract. For a real central arrangement A, Salvetti introduced a construction of a finite com-
plex Sal(A) which is homotopy equivalent to the complement of the complexified arrangement in
[Sal87]. For the braid arrangement Ak−1, the Salvetti complex Sal(Ak−1) serves as a good com-
binatorial model for the homotopy type of the configuration space F(C, k) of k points in C, which
is homotopy equivalent to the space C2(k) of k little 2-cubes. Motivated by the importance of lit-
tle cubes in homotopy theory, especially in the study of iterated loop spaces, we study how the
combinatorial structure of the Salvetti complexes of the braid arrangements is related to homotopy-
theoretic properties of iterated loop spaces.

We prove that the skeletal filtrations on the Salvetti complexes of the braid arrangements give
rise to the cobar-type Eilenberg–Moore spectral sequence converging to the homology of �262X.
We also construct a new spectral sequence that computes the homology of �`6`X for ` > 2 by
using a higher order analogue of the Salvetti complex. The E1-term of the spectral sequence is
described in terms of the homology of X. The spectral sequence is different from known spectral
sequences that compute the homology of iterated loop spaces, such as the Eilenberg–Moore spectral
sequence and the spectral sequence studied by Ahearn and Kuhn in [AK02].

1. Introduction

The aim of this article is to reveal an unexpected connection between the combinatorics of
braid arrangements and homological properties of double (or more highly iterated) loop
spaces.

1.1. Homology of loop spaces

In order to bridge different terminologies, notations, and interests in these two subjects,
hyperplane arrangements and homology of loop spaces, let us first overview the difficul-
ties in computing the homology of loop spaces.

Given a based space Z and a homology theory h∗(−), the homology h∗(�Z) of the
loop space of Z is a functor of Z. It would be nice if we could describe h∗(�Z) in terms
of h∗(Z). In general, we cannot expect such a nice situation, but we do have a spectral
sequence whose E2-term is a functor of h∗(Z). Let us briefly recall the construction.
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Given a diagram of spaces

Y

X Z
?

g

-f

(1)

we can construct a cosimplicial space �geo(f, g), called the geometric cobar construc-
tion, as follows. The k-th space of �geo(f, g) is given by

�geo(f, g)k = X × Zk × Y

and the structure maps

d i : �geo(f, g)k −→ �geo(f, g)k+1, si : �geo(f, g)k −→ �geo(f, g)k−1

are essentially given by diagonals, projections, f , and g. The total space of this cosimpli-
cial space, Tot(�geo(f, g)), is known to be homeomorphic to the homotopy pullback of
the diagram (1),

Tot(�geo(f, g)) ∼= holim(X
f
→ Z

g
← Y ).

When X = Y = ∗, we obtain a cosimplicial model for the loop space of Z,

Tot(�(∗, ∗)) ∼= holim(∗
∗
→ Z

∗
← ∗) = �Z.

Rector [Rec70] used the cosimplicial model �geo(f, g) to reformulate the construc-
tion of a spectral sequence originally obtained by Eilenberg and Moore [EM66a, EM66b].

When h∗(−) is a multiplicative homology theory satisfying the strong form of the
Künneth formula

h∗(A× B) ∼= h∗(A)⊗h∗ h∗(B),

the E2-term of the spectral sequence for the diagram (1) can be written as the homology
of the algebraic cobar construction,

E2 ∼= H∗(�
alg(f∗, g∗)),

where �alg(f∗, g∗) is a negatively graded chain complex whose (−k)-th term is given by

�alg(f∗, g∗)−k = h∗(X)⊗h∗ h∗(Z)
⊗k
⊗h∗ h∗(Y )

and the boundaries are essentially given by the coalgebra structure on h∗(Z) and the
induced maps f∗ and g∗.

The homology of the cobar construction �alg(f∗, g∗) is isomorphic to the derived
functor Cotorh∗(Z)(h∗(X), h∗(Y )) of the cotensor product functor over the coalgebra
h∗(Z). Thus we obtain a spectral sequence with

E2 ∼= Cotorh∗(Z)(h∗(X), h∗(Y )).
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When h∗(−) is the ordinary homology theory with coefficients in a field k, the spectral
sequence is known to converge to the homology of Tot(�geo(f, g)) under certain condi-
tions. In particular, we have a spectral sequence

E2 ∼= CotorH∗(Z;k)(k, k) ⇒ H∗(�Z; k)

when Z is simply connected.
For other homology theories, especially nonconnective ones, however, the behavior of

the spectral sequence could be disastrous and the E∞-term might not have any relation to
the homology of Tot(�geo(f, g)) at all. For example, when Z is the Eilenberg–Mac Lane
space of (Z/pZ, 2)-type,

Z = K(Z/pZ, 2),

and h∗(−) is the mod p K-theory,

h∗(−) = K(−;Z/pZ),

the E2-term, and hence the E∞-term is trivial but h∗(�Z) = h∗(K(Z/pZ, 1)) is known
to be nontrivial. The spectral sequence does not give us any information on h∗(�Z).

There have been several attempts to find conditions under which the Eilenberg–Moore
spectral sequence can be used to compute the homology of �Z,

E2 ∼= Cotorh∗(Z)(h∗, h∗) ⇒ h∗(�Z).

We still do not know a complete answer, but partial answers are known. One of such
answers was given by the author. It is proved in [Tam94] that, when Z = �`−16`X,
there is a spectral sequence with

E2 ∼= Cotorh∗(�
`−16`X)(h∗, h∗), (2)

which splits into a direct sum of small spectral sequences each of which strongly con-
verges to the corresponding summand in the decomposition

h̃∗(�
`6`X) ∼=

⊕
k

h̃∗(C`(k)+ ∧6k X
∧k). (3)

This is the decomposition induced from the famous stable splitting due to Snaith [Sna74],

6∞�`6`X ' 6∞
(∨
k

C`(k)+ ∧6k X
∧k
)
. (4)

Thus we do have a spectral sequence that computes h∗(�Z) in this case. It was
also proved by the author [Tam07] that the spectral sequence (2) is isomorphic to the
Eilenberg–Moore spectral sequence.

The space C`(k) appearing in the direct sum decomposition (3) is the space of little
cubes studied by May in [May72]. The author constructed the spectral sequence (2) by
defining a filtration on each C`(k),

∅ = F−k−1C`(k) ⊂ F−kC`(k) ⊂ · · · ⊂ F−2C`(k) ⊂ F−1C`(k) = F0C`(k) = C`(k), (5)

which is a completely different method from the cosimplicial construction of the Eilen-
berg–Moore spectral sequence.
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1.2. Little 2-cubes and braid arrangements

The space C`(k) of k little `-cubes is homotopy equivalent to the configuration space
F(R`, k) of k distinct points in R`. When ` = 2,

C2(k) ' F(C, k) = {(z1, . . . , zk) ∈ Ck | zi 6= zj if i 6= j}.

For 1 ≤ i < j ≤ k, define a hyperplane in Rk ,

Li,j = {(x1, . . . , xk) ∈ Rk | xi = xj }.

Then F(C, k) is the complement of the complexification of the real central hyperplane
arrangement {Li,j | 1 ≤ i < j ≤ k},

F(C, k) = Ck −
⋃

1≤i<j≤k

Li,j ⊗ C.

Hyperplanes in this arrangement have the line {x1 = · · · = xk} in common. To make it
essential, let

hk = {(x1, . . . , xk) ∈ Rk | x1 + · · · + xk = 0} and L′i,j = Li,j ∩ hk.

The arrangement Ak−1 = {L
′

i,j | 1 ≤ i < j ≤ k} is essential and we have homotopy
equivalences

C2(k) ' F(C, k) = Ck −
⋃

1≤i<j≤k

Li,j ⊗ C ' hk ⊗ C−
⋃

1≤i<j≤k

L′i,j ⊗ C.

Note that these homotopy equivalences respect the right action of the symmetric
group 6k .

The homotopy types of complements of complexified arrangements have been ac-
tively studied by many people. One of the most interesting and useful constructions in
this area is a result of M. Salvetti [Sal87], who constructed a finite simplicial complex
Sal(A) for a real central essential arrangement A, embedded in the complement of the
complexification of A as a deformation retract. Thus we obtain

C2(k) ' hk ⊗ C−
⋃

1≤i<j≤k

L′i,j ⊗ C ' Sal(Ak−1). (6)

There should be a combinatorial meaning of the filtration (5) on C2(k) when trans-
lated to the Salvetti complex Sal(Ak−1) of the braid arrangement under the homotopy
equivalence (6).
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1.3. Statement of results

For any real central hyperplane arrangement A, Salvetti, on the other hand, defined a
structure of regular cell complex on Sal(A) by combining simplices by using the combi-
natorial structure of the face lattice of A.

It turns out that the filtration (5) on C2(k) designed for the Eilenberg–Moore spectral
sequence (2) coincides with the filtration defined by the cellular structure on Sal(Ak−1)

under the homotopy equivalence (6).

Theorem (Theorem 4.12). Let F−s Sal(Ak−1) be the (k−s)-skeleton of Sal(Ak−1) under
the cellular structure defined in [Sal87]. Then the homotopy equivalence

ϕk : Sal(Ak−1)
'
→ C2(k)

in (6) preserves filtrations and induces a 6k-equivariant homotopy equivalence on each
subquotient,

ϕk : F−s Sal(Ak−1)/F−s−1 Sal(Ak−1)
'
→ F−sC2(k)/F−s−1C2(k).

A filtration on each C2(k) induces a spectral sequence converging to the homology
h∗(C2(k)+ ∧6k X

∧k) and the Eilenberg–Moore spectral sequence (2) decomposes into
a direct sum of these small spectral sequences. Let {Er(Ak−1)} be the spectral sequence
for h∗(Sal(Ak−1)+ ∧6k X

∧k) defined by the skeletal filtration on Sal(Ak−1). Then the
E1-term of the spectral sequence defined in [Tam94] for h∗(�262X) can be identified as
follows:

E1
−s,t =

⊕
k≥0

E1
−s,t (Ak−1) ∼=

⊕
k≥0

Ck−s(Sal(Ak−1))⊗6k h̃t−k(X
∧k)

∼=

⊕
k≥0

Ck−s(Sal(Ak−1))⊗6k h̃t ((6X)
∧k),

where C∗(−) denotes the cellular chain complex functor. This is an isomorphism of chain
complexes. When h∗(−) is multiplicative and satisfies the strong form of the Künneth
formula, we have

E1
−s,∗
∼=

⊕
k≥0

Ck−s(Sal(Ak−1))⊗6k h̃∗(6X)
⊗k.

The (k − s)-cells in Sal(Ak−1) are labeled by pairs of an ordered partition λ and a per-
mutation σ which is a subdivision of λ, in which case we write λ ≤ σ . Then we have

E1
−s,∗
∼=

⊕
k≥0

Z〈[D(λ, σ )] | λ ∈ 5k,k−s, σ ∈ 6k, λ ≤ σ 〉 ⊗6k h̃∗(6X)
⊗k

∼=

⊕
k≥0

Z〈[D(λ, (1| · · · |k))] | λ ∈ Ok,k−s〉 ⊗ h̃∗(6X)⊗k,

where (1| · · · |k) ∈ 6k is the identity and 5k,k−s and Ok,k−s are the set of ordered par-
titions and of order-preserving partitions of rank k − s, respectively. See §4 for precise
definitions.
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On the other hand, it is proved in [Tam07] that the E1-term of the spectral sequence
is isomorphic to the cobar complex of h∗(�62X) ∼= T (h̃∗(6X)), the tensor algebra on
h̃∗(6X). This means that the cellular structure of the Salvetti complex describes the iter-
ated cobar construction. This immediately gives us the description of the cobar differential
stated in Introduction of [Tam07]. (For the precise definitions, see p. 823 and p. 825.)

Theorem (Corollary 4.18). The first differential d1 on the spectral sequence is given by
the following formula:

d1
−s,∗([D(λ, (1| · · · |k))]⊗ [x1| · · · |xk])

=

∑
τ∈Ok,k−s−1, λ<τ

[D(τ, (1| · · · |k))]⊗
( ∑
ρ∈St (τ )

sgn(ρ)[x1| · · · |xk] · ρ
)
,

where St (τ ) is the set of shuffles of the same type as τ .

With this description, it is easy to see that the first differentials are induced by space-level
shuffles ∨

λ∈Ok,k−s

Sk−s(λ,(1|···|k)) ∧ (6X)
∧k
→ 6

( ∨
τ∈Ok,k−s−1, λ<τ

Sk−s−1
(τ,(1|···|k)) ∧ (6X)

∧k
)
,

where Sk−s(λ,(1|···|k)) and Sk−s−1
(τ,(1|···|k)) are copies of the spheres Sk−s and Sk−s−1, respectively.

This map may be of some use to study maps between wedge powers of suspended
spaces.

The spectral sequence (2) is defined not only for ` = 2 but for all ` ≥ 1. On the
other hand, it was observed by Björner and Ziegler [BZ92] and by De Concini and
Salvetti [DCS00] that the construction of Sal(A) can be extended to subspace arrange-
ments of higher codimensions. For a real central essential arrangement A in a vector
space V , there is a simplicial complex Sal(`−1)(A) embedded in the complement of the
`-dimensionalization,

Sal(`−1)(A) ↪→ V ⊗ R` −
⋃
L∈A

L⊗ R`,

as a deformation retract. We can generalize the cellular structure of Sal(A) = Sal(1)(A)
to Sal(`−1)(A) to make it a regular cell complex. Under the stable homotopy equivalence

�`6`X'
S

∨
k

C`(k)+ ∧X∧k '
∨
k

F(R`, k)+ ∧X∧k '
∨
k

Sal(`−1)(Ak−1)+ ∧X
∧k,

the skeletal filtration on Sal(`−1)(Ak−1) induces a spectral sequence that computes
h∗(�

`6`X).

Theorem (Theorem 5.35). For any homology theory there exists a spectral sequence

E1 ∼=
⊕
k

C∗(Sal(`−1)(Ak−1))⊗6k h̃∗(X
∧k) ⇒ h∗(�

`6`X), (7)

which is a direct sum of spectral sequences each of which strongly converges to the cor-
responding direct summand in (3).
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The spectral sequence is different from the Eilenberg–Moore spectral sequence (2) when
` > 2. It is also different from the spectral sequence studied by Ahearn and Kuhn [AK02].
Thus we obtain a new spectral sequence which can be used to compute h∗(�`6`X). As
we will see in §6, our spectral sequence is much finer than Ahearn–Kuhn’s.

It was pointed out by the referee that the construction of the higher order Salvetti com-
plex Sal(`−1)(Ak) for the braid arrangement together with the skeletal filtration could be
obtained by using Milgram’s model [Mil66] for �`6`X. We accomplish this by using a
categorical variant of Milgram’s construction found by Balteanu, Fiedorowicz, Schwänzl,
and Vogt [BFSV03] in §6.

The organization of this paper is as follows. We recall the construction of the Salvetti
complex in §2. Salvetti’s construction has been intensively studied and several alternative
descriptions and interpretations are known. We use the description in terms of matroid
product developed in [GR89], [Arv91], and [BZ92]. The properties of the filtration on the
space of little cubes are summarized in §3. After these preliminary sections, we compare
the Salvetti complex for the braid arrangement Ak−1 and the filtration on the space of k
little 2-cubes in §4 and prove Theorem 4.12. Higher order analogues are discussed in §5,
where we construct the spectral sequence (7) by using oriented matroids. Comparisons
with other spectral sequences that compute the homology of iterated loop spaces and
with Milgram’s construction are given in §6.

2. The Salvetti complex

For a real central arrangementA in Rn, Salvetti defined a simplicial complex Sal(A) em-
bedded in the complement of the complexification of the arrangement in Cn. Let us recall
the construction of Sal(A). Although the combinatorial information on a real central ar-
rangement can be translated into the language of oriented matroids and the construction
of the Salvetti complex can be generalized to oriented matroids, we follow the original
treatment [Sal87] in this section, since we need explicit descriptions of vertices for later
use. We use the matroid description of the Salvetti complex in §5.

Let us first fix the notation and terminology. Let A = {Mj }j∈J be a central arrange-
ment of hyperplanes in Rn. The arrangement A defines a stratification of Rn:

M0
= Rn −

⋃
j∈J

Mj ,

M1
=

⋃
j∈J

(
Mj −

⋃
k 6=j

Mj ∩Mk

)
,

...

M |J | =
⋂
j∈J

Mj ,

Rn = M0
∪M1

∪ · · · ∪M |J |.

The connected components of each stratum are called faces and a face in the top
stratum is called a chamber. The sets of all faces and of faces of codimension i are denoted
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by F(A) and F i(A). In particular, F0(A) is the set of chambers. We need an ordering in
F(A). Although a popular way to define an ordering is by “reverse inclusion”, Salvetti
defines an ordering as follows:

F ≥ F ′ ⇔ F ⊃ F ′.

In order to define a simplicial complex, we need vertices. For each face F , we choose
a point w(F) ∈ F and the collections of these points are denoted by

V(A) = {w(F) | F ∈ F(A)}, V i(A) = {w(F) | F ∈ F i(A)}.

These are points in Rn. We need to add some imaginary coordinates to obtain points
in Cn. Salvetti defines the imaginary part by using the following fact.

Lemma 2.1. For v ∈ V0(A) and F ∈ F(A), there exists a unique point w(v, F ) ∈
V0(A) with the following properties:

1. v and w(v, F ) belong to the same chamber ofA⊃F , which is the arrangement defined
by

A⊃F = {H ∈ A | H ⊃ F }.
2. w(v, F ) belongs to a chamber in {C ∈ F0(A) | C ≥ F }.

�
�
�
�
�
�
�
�
�
�
�
�
�

H1

@
@

@
@

@
@
@

@
@
@

@
@
@

H2

rv
rw(v, F )
C

�
�

�
�

�
��

F

Fig. 1. w(v, F )

The vertices of the Salvetti complex are given by

w(F)+ i(w(v, F )− w(F))

for each element v ∈ V0(A) and a face F . Note that w(v, F ) is a vertex corresponding to
a chamber. Thus the vertices of the Salvetti complex are given by

v(F,C) = w(F)+ i(w(C)− w(F))

for a face F and a chamber C satisfying a certain condition. When v varies, all points in
the chamber C with C ≥ F appear as w(v, F ). Thus we have the following.

Definition 2.2. For a real central arrangement A, define the vertex set by

sk0(Sal(A)) = {v(F,C) | F ∈ F(A), C ∈ F0(A), F ≤ C}
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In order to define higher dimensional simplices, we need to specify a condition for
a collection of vertices to form a simplex. The condition can be described by using a
“face-chamber” pairing

F(A)× F0(A)→ F0(A).

This can be extended to a “face-face” pairing

F(A)× F(A)→ F(A).

Proposition 2.3. For F,G ∈ F(A), there exists a unique face F ◦ G ∈ F(A) with the
following properties. Let H ∈ F(A⊃|F |) be the unique face with G ⊂ H . Then F ◦G is
the unique face with F ◦G ⊂ H and F ≤ F ◦G.

Lemma 2.4 ([Arv91]). The above face-face pairing has the following properties:

1. The pairing is associative.
2. If G is a chamber, then so is F ◦G.
3. If F is a chamber, then F ◦G = F .
4. If G ≤ G′, then F ◦G ≤ F ◦G′.

With this pairing, the simplices of the Salvetti complex can be defined as follows.

Definition 2.5. For a chain F0 > F1 > · · · > Fj inF(A) and a chamber C with C ≥ Fj ,
define a simplex by

s(F0, . . . , Fj ;C) = Conv({v(F0, F0 ◦ C), . . . , v(Fj , Fj ◦ C)})

where Conv(S) denotes the convex hull of S.
The Salvetti complex is defined by

Sal(A) =
⋃
j

{s(F0, . . . , Fj ;C) | F0 > · · · > Fj , C ≥ Fj , C ∈ F0(A)}.

Salvetti proves that Sal(A) is a deformation retract of the complement of the com-
plexification AC of A.

Theorem 2.6 (Salvetti [Sal87]). Sal(A) is contained in the complement of the complex-
ification of A and the inclusion is a homotopy equivalence,

Sal(A) ' Cn −
⋃
M∈A

MC,

where MC is the complexification of M .

Although Sal(A) has a nice simplicial structure, it is more convenient to combine sim-
plices which form a cell. In fact, Salvetti defines a CW-structure. Using the face-face
pairing, we have the following description.
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Definition 2.7. For F ∈ F(A) and C ∈ F0(A) with F ≤ C, define a subset of
sk0(Sal(A)) by

D(F, C) = {v(G,G ◦ C) | G ≥ F }.
This set is regarded as a poset via

v(G,G ◦ C) ≤ v(H,H ◦ C) ⇔ G ≤ H.

The (geometric realization of the) order complex of D(F, C) is denoted by D(F,C).

Salvetti proves the following (see [Arv91]).

Lemma 2.8. The complex D(F,C) has the following properties:

1. The inclusion of vertices induces a simplicial embedding

D(F,C) ↪→ Sal(A).

2. D(F,C) is homeomorphic to a disk of dimension codimF .
3. The boundary of D(F,C) is given by

∂D(F,C) =
⋃
G>F

D(G,G ◦ C).

4. The decomposition

Sal(A) =
⋃

v(F,C)∈sk0(Sal(A))
(D(F,C)− ∂D(F,C))

gives a structure of a finite regular cell complex.

3. The gravity filtration on little cubes

In [Tam94], the author introduced a filtration on the space of k little `-cubes, C`(k), for all
` and k. The subquotients F−sC`(k)/F−s−1C`(k) are analyzed in [Tam07]. In this section,
we recall the definition and basic properties of this filtration.

C`(k) is the space of little cubes in [−1, 1]`. In particular, we regard an element of
C`(1) as an embedding

c : (−1, 1)`→ (−1, 1)`.

In order to compare it with the Salvetti complex in the next section, however, it is more
convenient to consider cubes in R`.

Convention 3.1. In the rest of this paper, C`(k) denotes the space of k little `-cubes in R`
whose images have pairwise disjoint interiors and whose edges are parallel to coordinate
axes. However, when we draw a picture, we use the usual picture for little cubes, i.e.
“nonoverlapping small boxes in a big box”.

We also use a description of little cubes with centers and radii. For example, a little
1-cube

b : (−1, 1) ↪→ R
can be given by b(t) = Rt + C for R > 0 and C ∈ R.
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Let us begin by recalling the definition of the filtration {F−sC`(k)}s on C`(k) from
[Tam94]. The definition proceeds by defining a continuous function

us : F−sC`(k)→ [0, 1]

which measures the overlapping of the first coordinates of cubes inductively and by
putting

F−s−1C = u−1
s (0).

The author used little cubes in [−1, 1]` in [Tam94], but the definition of the functions us
works without a change. The construction of the function us is given as follows.

Definition 3.2. For an element b ∈ C1(1) given by b(t) = Rt + C and x ∈ R, define

d(x, b) =
2R −

∣∣|C + R − x| − |C − R − x|∣∣
2R

.

For two little 1-cubes b, b′ ∈ C1(1), define

dis(b, b′) = min{d(b(0), b′), d(b′(0), b)}.

Then we have a continuous map

dis : C1(1)× C1(1)→ [0, 1].

Composing it with the projection

pr1 : C`(1)→ C1(1)

onto the first coordinate, we obtain a continuous map

dis : C`(1)× C`(1)→ [0, 1].

These maps are designed to have the following property.

Lemma 3.3. For b ∈ C1(1), d(x, b) = 0 if and only if x 6∈ Im b, and d(x, b) = 1 if and
only if x = b(0). Thus, for b, b′ ∈ C1(1), dis(b, b′) = 0 if and only if the center of b
belongs to the image of b′ and vice versa. And dis(b, b′) = 1 if and only if the centers of
b and b′ coincide.

We define a function which measures the overlapping of little cubes with respect to a
partition of {1, . . . , k}. Here a partition always means an ordered partition.

Definition 3.4. A partition of {1, . . . , k} is a surjective map

λ : {1, . . . , k} → {1, . . . , k − r}

for some 0 ≤ r < k. The number r is called the rank of this partition.
The set of partitions of {1, . . . , k} is denoted by 5k . The subset of rank r partitions is

denoted by 5k,r .
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Note that rank 0 partitions are nothing but elements of 6k .

Definition 3.5. For c = (c1, . . . , ck) ∈ C`(k) and a nonempty subset S ⊂ {1, . . . , k},
define

OL(c, S) = min{dis(ci, cj ) | i, j ∈ S}.

For a partition λ : {1, . . . , k} → {1, . . . , s} of {1, . . . , k} of rank k − s, define

MOL(c, λ) = min{OL(c, λ−1(i)) | 1 ≤ i ≤ s}.

Note that we have continuous functions

OL(−, S) : C`(k)→ [0, 1], MOL(−, λ) : C`(k)→ [0, 1].

With these functions, we define the gravity filtration on C`(k) as follows.

Definition 3.6. Define
F0C`(k) = F−1C`(k) = C`(k).

Suppose we have defined F−sC`(k). Define

us : F−sC`(k)→ [0, 1] by us(c) = max{MOL(c, λ) | λ ∈ 5k,k−s}.

Now define
F−s−1C`(k) = u−1

s (0).

We have a filtration

∅ = F−k−1C`(k) ⊂ F−kC`(k) ⊂ · · · ⊂ F−2C`(k) ⊂ F−1C`(k) = F0C`(k) = C`(k).

It was proved in [Tam94] that each inclusion is an NDR pair.
In order to state the result in [Tam07], we need the following notation.

Definition 3.7. Fix ε > 0, and define a (k − 1)-dimensional convex polytope P k in the
hyperplane hk = {(t1, . . . , tk) ∈ Rk | t1 + · · · + tk = 0} by

P k = {(t1, . . . , tk) ∈ hk | |ti − tj | < ε for i 6= j}.

For a subset S = {s1, . . . , s`} ⊂ {1, . . . , k}, define

RS = Map(S,R) = {(ts1 , . . . , ts`) | ts1 , . . . , ts` ∈ R},
hS = {(ts1 , . . . , ts`) ∈ RS | ts1 + · · · + ts` = 0},

P S = {(ts1 , . . . , ts`) ∈ hS | |ts − ts′ | < ε for s 6= s′}.

Also for little cubes, we denote

C`(S) = {(cs1 , . . . , cs`) ∈ Map(S, C`(1)) | Im csi ∩ Im csj = ∅}.

With this notation, it is proved in [Tam07] that
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Proposition 3.8. We have a 6k-equivariant homotopy equivalence

F−sC`(k)/F−s−1C`(k) '∨
λ∈5k,k−s

C`−1(λ
−1(1))+∧(P λ

−1(1)/∂P λ
−1(1))∧· · ·∧C`−1(λ

−1(s))+∧(P
λ−1(s)/∂P λ

−1(s))

=

∨
λ∈5k,k−s

C`−1(λ)+ ∧ P
λ/∂P λ,

where

C`−1(λ) = C`−1(λ
−1(1))× · · · × C`−1(λ

−1(s)),

P λ = P λ
−1(1)
× · · · × P λ

−1(s)

for a partition λ of rank k − s.

This homotopy equivalence is proved as follows. The first step is to replace F−sC`(k) by
horizontally decomposable cubes.

Definition 3.9. Let Ds`(k) be the subset of C`(k) consisting of cubes which are horizon-
tally decomposable into s collections.

1

2 3

A more precise definition can be given in terms of the operad structure map. See
[Tam07] for details.

Note that Ds`(k) is included in F−sC`(k).

Lemma 3.10. Inclusion induces a 6k-equivariant homotopy equivalence

Ds`(k)/D
s+1
` (k) ' F−sC`(k)/F−s−1C`(k).

We also have

Ds`(k)/D
s+1
` (k) '

∨
λ∈5k,s

D1
`(λ
−1(1))/D2

`(λ
−1(1))∧· · ·∧D1

`(λ
−1(s))/D2

`(λ
−1(s)). (8)

Thus it is enough to analyzeD1
`(k)/D

2
`(k). We can makeD1

`(k) even smaller by removing
unnecessary cubes. Note that the following element in D1(3) can be moved into D2(3)
by shrinking the first coordinates of cubes.
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All we need is cubes in D1
`(k) which can be skewered vertically.

Definition 3.11. Define G−sC`(k) to be the subset of Ds`(k) consisting of cubes
(c1, . . . , cj ) which cannot be decomposed into s − 1 collections of cubes each of which
can be skewered by a vertical line (hyperplane) intersecting each interior.

Lemma 3.12. Inclusion induces a 6k-equivariant homotopy equivalence

G−1C`(k)/G−2C`(k) ' D1
`(k)/D

2
`(k).

Finally we adjust the radii of the first coordinates of cubes in G−1C`(k) so that they have
the same fixed radii.

Definition 3.13. For ε > 0, let Cε` (k) be the subspace of C`(k) consisting of cubes having
the radii of the first coordinates equal to ε.

Lemma 3.14. Inclusion induces a 6k-equivariant homotopy equivalence

G−1C`(k) ∩ Cε` (k)/G−2C`(k) ∩ Cε` (k) ' G−1C`(k)/G−2C`(k).

Now it is easy to describe G−1C`(k) ∩ Cε` (k)/G−2C`(k) ∩ Cε` (k).

Lemma 3.15. Define

P̃ k = {(t1, . . . , tk) ∈ Rk | |ti − tj | < ε for all i, j},

dP̃ k = {(t1, . . . , tk) ∈ Rk | |ti − tj | = ε for some i 6= j}.

Then we have a 6k-equivariant homeomorphism

G−1C`(k) ∩ Cε` (k)/G−2C`(k) ∩ Cε` (k) ∼= P̃
k/dP̃ k ∧ C`−1(k)+.
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Under the decomposition of the permutation representation

Rk ∼= hk ⊕ {(t, . . . , t) | t ∈ R}, (9)

we see that inclusion induces a 6k-equivariant homotopy equivalence

P k/∂P k ' P̃ k/dP̃ k.

The homotopy equivalence in Proposition 3.8 is induced by the composition of the
inclusions

P λ
−1(i) ↪→ P̃ λ

−1(i) ↪→ G−1C`(λ−1(i))∩Cε` (λ
−1(i)) ↪→ G−1C`(λ−1(i)) ↪→ D1

`(λ
−1(i))

(10)
together with the decomposition (8) and the homotopy equivalence in Lemma 3.10.

4. Salvetti complexes for braid arrangements

Consider the root system Ak−1, which is a collection of vectors in the Cartan subalgebra
hk of slk(R). We may regard

hk = {(t1, . . . , tk) ∈ Rk | t1 + · · · + tk = 0}

and the action of the Weyl group, which is the symmetric group 6k on k letters, on hk is
generated by the reflections with respect to the hyperplanes

Li,j = {x = (x1, . . . , xk) ∈ Rk | xi = xj }.

The complement of the complexification of this arrangement

Ck −
⋃
i 6=j

Li,j ⊗ C

is nothing but the configuration space of k points in C, F(C, k), and, under the identifi-
cation (9), it is 6k-equivariantly homotopy equivalent to the complement

hk ⊗ C−
⋃
i 6=j

(Li,j ∩ hk)⊗ C.

In fact, the projections

p : Rk → hk, p ⊗ C : Ck → hk ⊗ C

are6k-equivariant and the latter induces a6k-equivariant homotopy equivalence between
F(C, k) and hk ⊗ C−

⋃
i 6=j (Li,j ∩ hk)⊗ C.

The arrangement {Li,j | i 6= j} in Rk is denoted by Bn. Let us denote the induced
arrangement in hk by Ak−1. The purpose of this section is to study the Salvetti complex
for this arrangement and compare the skeletal filtration on it to the filtration on C2(k).
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Note that the chambers of the real complement

Rk −
⋃
i 6=j

Li,j

are labeled by elements in 6k . For σ ∈ 6k , define corresponding points by

w̃(σ ) = (σ (1), . . . , σ (k)), w(σ) = p(σ(1), . . . , σ (k)).

Then each of them belongs to the chamber labeled by σ . We have

V0(Bk) = {w̃(σ ) | σ ∈ 6k}, V0(Ak−1) = {w(σ) | σ ∈ 6k}.

More generally the faces in the s-th stratification (codimension s faces) in the arrange-
ment Bk are labeled by a partition of {1, . . . , k} into ordered k − s nonempty subsets.
Recall that we regard a partition as a surjective map

λ : {1, . . . , k} → {1, . . . , k − s}

for some s.

Definition 4.1. Given a partition λ ∈ 5k , define a face by

Fλ = {(x1, . . . , xk) ∈ Rk | xi < xj if λ(i) < λ(j) and xi = xj if λ(i) = λ(j)}.

Lemma 4.2. The faces of Bk are

F(Bk) = {Fλ | λ ∈ 5k}.

For brevity, we denote
hλ = hk ∩ Fλ.

Then the faces of Ak−1 are

F(Ak−1) = {hλ | λ ∈ 5k}.

We can also use this map λ to define a point in each face.

Definition 4.3. For a partition λ ∈ 5k , define

w̃(λ) = (λ(1), . . . , λ(k)), w(λ) = p(w̃(λ)).

Then w̃(λ) and w(λ) belong to the face Fλ and hλ, respectively. Thus we have chosen
vertex sets as

V(Bk) = {w̃(λ) | λ ∈ 5k}, V(Ak−1) = {w(λ) | λ ∈ 5k}.

The ordering of 5n corresponding to the ordering of F(Bk) is the following.
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Lemma 4.4. Order 5k as follows:

µ ≤ λ ⇔ λ is a subdivision of µ,

in other words

λ(i) = λ(j) ⇒ µ(i) = µ(j), λ(i) < λ(j) ⇒ µ(i) ≤ µ(j).

Then 5k is isomorphic as a poset to F(Bk), hence to F(Ak−1).

Before we go on to discuss general cases in detail, let us take a look at the simplest case,
k = 2.

Example 4.5. There are three partitions of {1, 2}:

52 = {(1|2), (2|1), (1, 2)}.

The faces of the arrangement B2 are

F(1|2) = {(x1, x2) ∈ R2
| x1 < x2},

F(2|1) = {(x1, x2) ∈ R2
| x2 < x1},

F(1,2) = {(x1, x2) ∈ R2
| x1 = x2} = M1,2.

and the faces of A1 are

h(1|2) = F(1|2) ∩ h2, h(2|1) = F(2|1) ∩ h2, h(1,2) = F(1,2) ∩ h2.

For each face, the assigned vertex is given by

w((1|2)) = p(1, 2) = (−1/2, 1/2), w((2|1)) = p(2, 1) = (1/2,−1/2),
w((1, 2)) = p(1, 1) = (0, 0),

respectively.
We have only 0-chains and 1-chains. The 0-chains are

h(1,2), h(1|2), h(2|1)

and the 1-chains are
h(1|2) > h(1,2), h(2|1) > h(1,2).

In order to find simplices, we need to determine the face-chamber pairing. By Lemma
2.4, we have

h(1|2) · h(1|2) = h(1|2),

h(1|2) · h(2|1) = h(1|2),

h(2|1) · h(1|2) = h(2|1),

h(2|1) · h(2|1) = h(2|1).
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Since (A2)⊃|h(1,2)| = A2, the unique face containing h(1|2) is h(1|2) itself. Since h(1,2) ·
h(1|2) is a chamber contained in this h(1|2), we have

h(1,2) · h(1|2) = h(1|2)

and for the same reason
h(1,2) · h(2|1) = h(2|1).

Thus the 0-simplices, i.e. vertices of the Salvetti complex are

v(h(1,2), h(1,2) · h(1|2)) = v(h(1,2), h(1|2)) = w((1, 2))+ i(w((1|2))− w((1, 2)))
= iw((1|2)),

v(h(1,2), h(1,2) · h(2|1)) = v(h(1,2), h(2|1)) = w((1, 2))+ i(w((2|1))− w((1, 2)))
= iw((2|1)),

v(h(1|2), h(1|2) · h(1|2)) = v(h(1|2), h(1|2)) = w((1|2))+ i(w((1|2))− w((1|2)))
= w((1|2)),

v(h(2|1), h(2|1) · h(2|1)) = v(h(2|1), h(2|1)) = w((2|1))+ i(w((2|1))− w((2|1)))
= w((2|1)).

We also have

v(h(1|2), h(1|2) · h(2|1)) = v(h(1|2), h(1|2)) = w((1|2))+ i(w((1|2))− w((1|2)))
= w((1|2)),

v(h(2|1), h(2|1) · h(1|2)) = v(h(2|1), h(2|1)) = w((2|1))+ i(w((2|1))− w((2|1)))
= w((2|1)).

The 1-simplices are given by

s(h(1|2), h(1,2); h(1|2)) = Conv({v(h(1|2), h(1|2) · h(1|2)), v(h(1,2), h(1,2) · h(1|2))})
= Conv({w((1|2)), iw((1|2))}),

s(h(1|2), h(1,2); h(2|1)) = Conv({v(h(1|2), h(1|2) · h(2|1)), v(h(1,2), h(1,2) · h(2|1))})
= Conv({w((1|2)), iw((2|1))}),

s(h(2|1), h(1,2); h(1|2)) = Conv({v(h(2|1), h(2|1) · h(1|2)), v(h(1,2), h(1,2) · h(1|2))})
= Conv({w((2|1)), iw((1|2))}),

s(h(2|1), h(1,2); h(2|1)) = Conv({v(h(2|1), h(2|1) · h(2|1)), v(h(1,2), h(1,2) · h(2|1))})
= Conv({w((2|1)), iw((2|1))}).

It follows that the Salvetti complex Sal(A1) is a 1-dimensional simplicial complex
with four vertices (1/2,−1/2), (−1/2, 1/2), (i/2,−i/2), (−i/2, i/2) and four edges
[(−1/2, 1/2), (−i/2, i/2)], [(−i/2, i/2), (1/2,−1/2)], [(1/2,−1/2), (i/2,−i/2)],
[(i/2,−i/2), (−i/2, i/2)]. It is the boundary of a square in hC

2 as is illustrated in the
following picture.
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Note that under the composition of the inclusion maps in (10), the vertices v(h(1|2), h(1|2)),
v(h(1,2), h(2|1)), v(h(2|1), h(2|1)), and v(h(1,2), h(1|2)) correspond to cubes

1 2 , 2
1

, 2 1 , 1
2

,

respectively. And we have the following picture:
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Let us consider the cell structure of Sal(A1). According to Lemma 2.8, 1-cells are

D(h(1,2), h(1|2)) = s(h(1|2), h(1,2); h(1|2)) ∪ s(h(2|1), h(1,2); h(1|2))

= Conv({w((1|2)), iw((1|2))}) ∪ Conv({w((2|1)), iw((1|2))})

=

r r
r
1
2
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D(h(1,2), h(2|1)) = s(h(1|2), h(1,2); h(2|1)) ∪ s(h(2|1), h(1,2); h(2|1))

= Conv({w((1|2)), iw((2|1))}) ∪ Conv({w((2|1)), iw((2|1))})

=

r r
r21

�
�
�
�
�@

@
@
@
@

and the 0-cells are

D(h(1|2), h(1|2)) = v(h(1|2), h(1|2)) = w((1|2)) = 1 2 ,
D(h(2|1), h(2|1)) = v(h(2|1), h(2|1)) = w((2|1)) = 2 1 .

Note that the 1-cells are labeled by the cubes 1
2

and 2
1

in F−1C2(2)−F−2C2(2) and
the 0-cells are labeled by cubes 1 2 and 2 1 in F−2C2(2). Thus the gravity filtration
induces a filtration on the Salvetti complex for A1 which coincides with the skeletal
filtration up to the shift of filtration by 2.

Let us return to the general case. For λ ∈ 5k and σ ∈ 6k , the real parts of the coor-
dinates of the point v(λ, σ ) are determined by λ and the imaginary parts are determined
by σ . To be more precise, it is convenient to use the following symbols.

Definition 4.6. For a partition λ ∈ 5k of rank r and σ ∈ 6k , define a symbol S(λ, σ ) as
follows:

1. For each 1 ≤ i ≤ k − r , draw vertically stacked squares Si of length |λ−1(i)|.

2. Order λ−1(i) according to σ and label each square in Si from bottom to top by ele-
ments in λ−1(i). For example, when λ−1(i) = {i1, i2, i3, i4, i5} and if these numbers
appear in (σ (1), . . . , σ (k)) in the order

i1, i2, i3, i4, i5

then Si is labeled as
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i1

i2

i3

i4

i5

3. Place S1, . . . , Sk−r side by side from left to right. S(λ, σ ) is the resulting picture.

S1

i1,1

i1,2

...

i1,s1

S2

i2,1

...

i2,s2

· · ·

Sk−r

The vertices of the simplicial complex Sal(Ak−1) are given by

v(hλ, hσ ) = w(λ)+ i(w(σ)− w(λ))

for a partition λ and a permutation σ ∈ 6k which is a subdivision of λ.

Lemma 4.7. There is a bijection between the set of vertices sk0(Sal(Ak−1)) and the set
of symbols {S(λ, σ ) | λ ∈ 5k, σ ∈ 6k, λ ≤ σ }.

Definition 4.8. Define a filtration on the vertex set sk0(Sal(Ak−1)) by the number of
distinct real coordinates:

F−s sk0(Sal(Ak−1)) = {w(λ)+ i(w(σ)− w(λ)) | |Im λ| ≥ s}.

The associated filtration on the Salvetti complex by subcomplexes is denoted by

∅ = F−k−1 Sal(Ak−1) ⊂ F−k Sal(Ak−1) ⊂ · · ·

⊂ F−s Sal(Ak−1) ⊂ F−s+1 Sal(Ak−1) ⊂ · · · ⊂ F−1 Sal(Ak−1) = Sal(Ak−1).

Note that this is a filtration by 6k-subcomplexes.

Lemma 4.9. The composition of the standard homotopy equivalences

Sal(Ak−1) ↪→ hk ⊗C−
⋃
i 6=j

(Li,j ∩ hk)⊗C ↪→ Ck −
⋃
i 6=j

Li,j ⊗C = F(C, k)→ C2(k)

preserves the filtrations. Furthermore, the vertex v(λ, σ ) is mapped to the symbol S(λ, σ )
which is regarded as an element of C2(k) in an obvious way.
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Let us denote this composition by

ϕk : Sal(Ak−1)→ C2(k).

Let us take a look at the induced map on the subquotients

F−s Sal(Ak−1)/F−s−1 Sal(Ak−1)→ F−sC2(k)/F−s−1C2(k).

Since the space of little 1-cubes, C1(k), is 6k-equivariantly homotopy equivalent
to 6k , Proposition 3.8 give us the following description for the subquotients for C2(k):

F−sC2(k)/F−s−1C2(k) '
∨

λ∈5k,k−s

(6λ)+ ∧ P
λ/∂P λ

where

6λ = 6λ−1(1),...,λ−1(s) = 6λ−1(1) × · · · ×6λ−1(s).

The subquotients for the Salvetti complex can be easily found by noticing that our
filtration essentially coincides with the skeletal filtration in Lemma 2.8.

Lemma 4.10. Let Sal(Ak−1)
(s) denote the s-skeleton of Sal(Ak−1) under the cell struc-

ture defined in Lemma 2.8. Then

F−s Sal(Ak−1) = Sal(Ak−1)
(k−s).

Corollary 4.11. We have a homeomorphism

F−s Sal(Ak−1)/F−s−1 Sal(Ak−1)

∼=

∨
λ∈5k,k−s

{σ ∈ 6k | λ ≤ σ }+ ∧D(λ, σ )/∂D(λ, σ ).

Note that, given a partition λ of rank k − s, the set {σ ∈ 6k | λ ≤ σ } is in one-to-one
correspondence to the set 6λ−1(1) × · · · × 6λ−1(s). By investigation, we see that the map
ϕk induces a 6k-equivariant homotopy equivalence on each subquotient.

Theorem 4.12. ϕk induces a 6k-equivariant homotopy equivalence, for each s,

ϕk : F−s Sal(Ak−1)/F−s−1 Sal(Ak−1)
6k
→ F−sC2(k)/F−s−1C2(k).

Recall that the spectral sequence (2) is induced from the stable filtration on �262X de-
fined by the filtration (5) on little 2-cubes. Thus we obtain the following description of
the E1-term.



The Salvetti complex and the little cubes 823

Corollary 4.13. The E1-term of the spectral sequence defined in [Tam94] can be identi-
fied as follows:

E1
−s,t =

⊕
k

E1
−s,t (Ak−1) ∼=

⊕
k

Ck−s(Sal(Ak−1))⊗6k h̃t−k(X
∧k)

∼=

⊕
k

Ck−s(Sal(Ak−1))⊗6k h̃t ((6X)
∧k)

∼=

⊕
k

Z〈[D(λ, σ )] | λ ∈ 5k,k−s, σ ∈ 6k, λ ≤ σ 〉 ⊗6k h̃t ((6X)
∧k).

This is an isomorphism of chain complexes.

Thus the d1 of the spectral sequence is given by the cell structure of Sal(Ak−1). Lemma
2.8 also gives us a concrete description of the first differential. Note that the cells in
Sal(Ak−1) are labeled by pairs of a partition and a permutation. In order to make an
explicit calculation, we use the following notation.

Definition 4.14. We denote a partition λ of rank r as a sequence of subsets

λ = (λ−1(1)| · · · |λ−1(k − r))

or as a sequence of numbers separated by vertical lines

λ = (i1,1, . . . , i1,s1 | · · · |ik−r,1, . . . , ik−r,sk−r )

when λ−1(1) = {i1,1, . . . , i1,s1}, . . . , λ
−1(k − r) = {ik−r,1, . . . , ik−r,sk−r }.

The symmetric group6k acts on the set of partitions5k,r . As a representative of each
orbit under this action, we may choose a partition which is an order-preserving map when
regarded as a map λ : {1, . . . , k} → {1, . . . , k−r}. LetOk,r be the set of order-preserving
partitions of rank r .

An element λ ∈ 5k,r is said to be of type (p1, . . . , pk−r) if

|λ−1(1)| = p1, . . . , |λ−1(k − r)| = pk−r .

The type of λ is denoted by t (λ).

Corollary 4.15. The E1-term is given by

E1
−s,t
∼=

⊕
n

Z〈[D(λ, (1| · · · |k))] | λ ∈ Ok,k−s〉 ⊗ h̃t (6X)⊗k

Example 4.16. Suppose h∗(−) satisfies the Künneth isomorphism and consider

d1
−1,t : E1

−1,t → E1
−2,t .
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We have

E1
−1,∗
∼=

⊕
k

Ck−1(Sal(Ak−1))⊗6k h̃∗(6X)
⊗k

∼=

⊕
k

Z[6k]〈[D((1, . . . , k), (1| · · · |k))]〉 ⊗6k h̃t (6X)
⊗k

∼=

⊕
k

Z〈[D((1, . . . , k), (1| · · · |k))]〉 ⊗ h̃t (6X)⊗k

E1
−2,∗
∼=

⊕
k

Ck−2(Sal(Ak−1))⊗6k h̃∗(6X)
⊗k

∼=

⊕
k

Z〈[D(λ, (1| · · · |k))] | λ ∈ Ok,k−2〉 ⊗ h̃∗(6X)
⊗k.

Consider the summand for k = 3. Under the action of 63, 53,1 has two orbits. One is
represented by (1|2, 3) and the other by (1, 2|3). The first differential is a map

d1
−1,∗ : Z〈([D(1, 2, 3), (1|2|3)])〉 ⊗ h̃∗(6X)⊗3

→ Z〈[D(λ, (1|2|3))] | λ ∈ O3,1〉 ⊗ h̃∗(6X)
⊗3

= Z〈[D((1|2, 3), (1|2|3))], [D((1, 2|3), (1|2|3))]〉 ⊗ h̃∗(6X)⊗3.

For elements x1, x2, x3 ∈ h̃∗(X), let us write the element (6x1)⊗ (6x2)⊗ (6x3) ∈

h̃∗(6X)
⊗3 by [x1|x2|x3]. Then we have

d1
−1,t ([D((1, 2, 3), (1|2|3))]⊗ [x1|x2|x3])

=

∑
λ∈53,1

[D(λ, λ ◦ (1|2|3))]⊗63 [x1|x2|x3]

inC1(Sal(A2))⊗63⊗h̃∗(6X)
⊗3, where eachD(λ, λ◦(1|2|3)) has the orientation induced

from D((1, 2, 3), (1|2|3)).
For λ = (i1|i2, i3) ∈ 53,1 with i2 < i3, let σ = (i1|i2|i3) ∈ 53,0 = 63 then

λ = (1|2, 3) ◦ σ.

The difference of orientations between D((1|2, 3), (1|2|3)) and D((i1|i2, i3), (1|2|3)) is
sgn(σ ) where sgn is the sign function

sgn : 63 → {±1}.

Then we have

[D(λ, λ ◦ (1|2|3))]⊗63 [x1|x2|x3] = sgn(σ )[D((1|2, 3), (1|2|3))] · σ ⊗63 [x1|x2|x3]
= sgn(σ )[D((1|2, 3), (1|2|3))]⊗63 [x1|x2|x3] · σ
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and

d1
−1,t ([D((1, 2, 3), (1|2|3)]⊗ [x1|x2|x3])

= [D((1|2, 3), (1|2|3))]⊗
( ∑
σ∈S1,2

sgn(σ )[x1|x2|x3] · σ
)

+ [D((1, 2|3), (1|2|3))]⊗
( ∑
σ∈S2,1

sgn(σ )[x1|x2|x3] · σ
)

where S1,2 and S2,1 are the sets of (1, 2)- and (2, 1)-shuffles.
For general n, d1

−1,∗ can also be described by (p, q)-shuffles.

In order to give a precise description of d1, we need to compare orientations of cells
in Sal(Ak−1). Note that the action of 6k on Sal(Ak−1) is induced by permutation of co-
ordinates. For an s-cellD(λ, ρ), choose an orientation. Each (s− 1)-cell in the boundary
is assigned the orientation induced from D(λ, ρ). For two (s − 1)-cells in the boundary,
D(µ,µ ◦ ρ) and D(µ′, µ′ ◦ ρ), if we write

D(µ′, µ′ ◦ ρ) = D(µ,µ ◦ ρ) · σ

with σ ∈ 6k , the (s − 1)-cell D(µ′, µ′ ◦ ρ) has two orientations, one induced from
D(λ, ρ) and the other induced fromD(µ,µ ◦ρ). The difference of the orientations is the
determinant of the linear action of σ , sgn(σ ).

We also need the following notation.

Definition 4.17. An element σ ∈ 6k is called a (p1, . . . , ps)-shuffle if p1+· · ·+ps = k

and

σ(1) < · · · < σ(p1),

σ (p1 + 1) < · · · < σ(p1 + p2),

· · ·

σ(p1 + · · · + ps−1 + 1) < · · · < σ(p1 + · · · + ps) = σ(k).

The set of (p1, . . . , ps)-shuffles is denoted by Sp1,...,ps .

Corollary 4.18. For x1, . . . , xk ∈ h̃∗(X), denote

[x1| · · · |xk] = (6x1)⊗ · · · ⊗ (6xk) ∈ h̃∗(6X)
⊗k.

Then, for λ ∈ Ok,k−s , the first differential in the spectral sequence is given by

d1
−s,∗([D(λ, (1| · · · |k))]⊗ [x1| · · · |xk])

=

∑
τ∈Ok,k−s−1, λ<τ

[D(τ, (1| · · · |k))]⊗
( ∑
ρ∈St (τ )

sgn(ρ)[x1| · · · |xk] · ρ
)
,

where [D(τ, (1| · · · |k))] has the orientation induced from that of [D(λ, (1| · · · |k))]. Re-
call that St (τ ) is the set of shuffles of the same type as τ .
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It is worth noting that the first differentials are induced by space-level shuffles∨
λ∈Ok,k−s

Sk−s(λ,(1|···|k)) ∧ (6X)
∧k
→ 6

( ∨
τ∈Ok,k−s−1,λ<τ

Sn−s−1
(τ,(1|···|k)) ∧ (6X)

∧k
)
,

where Sk−s(λ,(1|···|k)) and Sk−s−1
(τ,(1|···|k)) are copies of the spheres Sk−s and Sk−s−1, respectively.

This map may be of some use to study maps between wedge powers of suspended
spaces.

5. Higher order Salvetti complexes

Björner and Ziegler briefly discussed higher order oriented matroids in §9.4 of [BZ92].
Let us construct higher order Salvetti complexes for oriented matroids based on their idea.

5.1. Oriented matroids and real arrangements

In order to make the construction of the Salvetti complex described in §2 higher dimen-
sional, we use oriented matroids. Let us recall the relations between oriented matroids
and real arrangements.

Let A = {H1, . . . , Hn} be a real central arrangement in a vector space V . Choos-
ing a normal vector vi in each hyperplane Hi , we obtain a vector configuration V =
{v1, . . . ,vn} in V . Consider the set of linear dependencies of V:

lin-dep(V) = {λ = (λ1, . . . , λn) ∈ Rn − {0} | λ1v1 + · · · + λnvn = 0}

= {λ : V → R | λ(v1)v1 + · · · + λ(vn)vn = 0, λ 6= 0}.

We say a linear dependency λ is minimal if it is no longer a linear dependency when
any one of the λi’s is replaced with 0.

By using the sign function sign : R→ {+1, 0,−1} defined by

sign(x) =


+1, x > 0,
0, x = 0,
−1, x < 0,

we obtain a map
sign ◦ λ : V → {+1, 0,−1}.

The set
C(V) = {sign ◦ λ | λ ∈ lin-dep(V) minimal}

is called the set of signed circuits of V . This collection C(V) of signed circuits on V is
a typical example of an oriented matroid. In order to introduce a general definition of
oriented matroid, we regard +1, 0, and −1 just as symbols and denote the set of three
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elements {+1, 0,−1} by S1. The set S1 is equipped with a natural Z2-action. Note that a
function on a set E with values in S1,

X : E→ S1,

can be regarded as a “signed subset” of E, i.e. X determines and is determined by two
disjoint subsets of E,

X+ = X
−1(+1), X− = X

−1(−1).

The most fundamental signed subsets are the Kronecker delta functions δ+x , δ−x defined
for x ∈ E by

δ+x (y) =

{
+1, x = y,

0, x 6= y,
δ−x (y) =

{
−1, x = y,

0, x 6= y.

A signed subset X of E can be regarded as a subset of E± = {δ+x , δ
−
x | x ∈ E} satisfying

the following disjointness condition:

δ±x ∈ X ⇒ δ∓x 6∈ X.

For simplicity, we denote δ±x by ±x.

Remark 5.1. The adjoint
ad(δ) : E ↪→ P(E)

of the usual delta function
δ : E × E→ {0, 1}

embeds E in Map(E, {0, 1}) = P(E) as characteristic functions.
Analogously, the signed delta functions

δ+ : E × E→ S1, δ− : E × E→ S1

defined by

δ±(x, y) =

{
±1, x = y,

0, x 6= y,

induce embeddings

ad(δ+) : E ↪→ Map(E, S1), ad(δ−) : E ↪→ Map(E, S1).

The set E± is nothing other than the union of the images of these maps,

E± = ad(δ+)(E) ∪ ad(δ−)(E).

Note that the action of Z2 on S1 induces an action on E±.
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Definition 5.2. Given a set E, let

∗ : E±→ E±

be the involution defined by (±x)∗ = ∓x. A signed subset of E is a subset X of E± with

X ∩X∗ = ∅.

The set of signed subsets of E is denoted by P±(E).

The following is a definition of oriented matroid in terms of subsets of E± given in
[GR89]. It is essentially identical to the definition by “circuit axioms” in [BLVS+99].

Definition 5.3. An oriented matroid on a set E is a pair M = (E, C), where C ⊂
P±(E) − {∅} is a collection of nonempty signed subsets of E satisfying the following
conditions:

1. X ∈ C⇒ X∗ ∈ C,
2. X1, X2 ∈ C and X1 ⊂ X2 ∪X

∗

2 ⇒ X1 = X2 or X1 = X
∗

2 ,
3. X1, X2 ∈ C, e ∈ X1 ∩X

∗

2 , and X1 6= X
∗

2 ⇒ there exists Y ∈ C such that

Y ⊂ (X1 ∪X2)− {e, e
∗
}.

Example 5.4. Given a vector configuration V = {v1, . . . ,vn} in a real vector space V ,
the pair M(V) = (V, C(V)) is an oriented matroid.

For a real hyperplane arrangement A, the oriented matroid of the normal vector con-
figuration M(V) is independent of the choice of a normal vector configuration and is
denoted by M(A). And the set of signed circuits is denoted by C(A).

Combinatorial structures of a real hyperplane arrangement A can be described in
terms of the associated oriented matroid. For example, a face F of A can be regarded as
a function

τF : V±→ S1

by

τF (a) =


+1, F ⊂ {x | 〈a,x〉 > 0},
0, F ⊂ {x | 〈a,x〉 = 0},
−1, F ⊂ {x | 〈a,x〉 < 0}.

The following is a necessary and sufficient condition for such a function to be associated
with a face:

Lemma 5.5 (Gel′fand–Rybnikov). LetA be a real central hyperplane arrangement and
V be a vector configuration of normal vectors. For a function τ : V± → S1, there exists
a face F with τ = τF if and only if the following conditions hold:

1. τ(±a) = ±τ(a), i.e. τ ∈ MapZ2
(V±, S1).
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2. For any signed circuit X ∈ C(A),

τ(X) = {0} or τ(X) ⊃ {+1,−1}.

Thus we have a one-to-one correspondence between L(A) and the set

{τ ∈ MapZ2
(V±, S1) | τ(X) = {0} or τ(X) ⊃ {+1,−1} for X ∈ C(A)}.

The poset structure on L(A) induces a poset structure on this set.

Lemma 5.6. For

ϕ,ψ ∈ {τ ∈ MapZ2
(V±, S1) | τ(X) = {0} or τ(X) ⊃ {+1,−1} for X ∈ C},

ϕ ≤ ψ if and only if ϕ(a) 6= 0⇒ ψ(a) = ϕ(a).

Definition 5.7. For an oriented matroid M = (E, C), define

L(M) = {τ ∈ MapZ2
(E±, S1) | τ(X) = {0} or τ(X) ⊃ {+1,−1} for X ∈ C}.

This is regarded as a poset with the following ordering: ϕ ≤ ψ if and only if

ϕ(a) 6= 0 ⇒ ψ(a) = ϕ(a).

Elements in L(M) are called faces ofM and a face ϕ is called a chamber if ϕ(a) 6= 0
for any a ∈ E±. The set of chambers is denoted by L(0)(M).

Remark 5.8. For a real central arrangement A in a vector space V , we have a homotopy
equivalence

L(0)(A) ' V −
⋃
L∈A

L

if L(0)(A) is regarded as a discrete 0-dimensional complex.

An important operation on faces of an oriented matroid is the following matroid prod-
uct, which corresponds to pairings in Proposition 2.3.

Definition 5.9. For ϕ,ψ ∈ Map(E, S1), define ϕ ◦ ψ ∈ Map(E, S1) by

(ϕ ◦ ψ)(e) =

{
ψ(e), ϕ(e) ≤ ψ(e),

ϕ(e), otherwise,

=

{
ϕ(e), ϕ(e) 6= 0,
ψ(e), ϕ(e) = 0.

Lemma 5.10. The matroid product has the following properties: for F1, F2 ∈ L(M),

1. F1 ≤ F1 ◦ F2,
2. if F2 ∈ L(0)(M) then F1 ◦ F2 ∈ L(0)(M),
3. if F1 ≤ F2 then F1 ◦ F2 = F2,
4. F1 ◦ 0 = F1.
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It is well-known that the definition of oriented matroid can be given in terms of faces
(covectors). In order to describe the condition, it is convenient to introduce the following.

Definition 5.11. For σ, τ ∈ MapZ2
(E±, S1), define S(σ, τ ) ⊂ E± by

S(σ, τ ) = {x ∈ E± | σ(x) = τ(x)∗ 6= 0}.

This is called the separation set of σ and τ .
We say σ is orthogonal to τ and write σ ⊥ τ if S(σ, τ ) and S(σ, τ ∗) are both empty

or both nonempty.

The next proposition is called the “covector axiom” in [BLVS+99].

Proposition 5.12. A subset L of MapZ2
(E±, S1) is the set of faces of an oriented matroid

on E if and only if it satisfies the following conditions:

1. 0 ∈ L,
2. τ ∈ L⇒−τ ∈ L,
3. for τ1, τ2 ∈ L, τ1 ◦ τ2 ∈ L,
4. for τ1, τ2 ∈ L and x ∈ S(τ1, τ2), there exists τ3 ∈ L such that

(a) τ3(x) = 0,
(b) τ3(y) = (τ1 ◦ τ2)(y) = (τ2 ◦ τ1)(y) for all y 6∈ S(τ1, τ2).

In other words, a set L of signed subsets satisfying the above conditions determines a
set of signed circuits and vice versa. Note that P±(E) can be regarded as a subset of
MapZ2

(E±, {+1, 0,−1}) by identifying X ∈ P±(E) with

δX(x) =


1, x ∈ X,

−1, x ∈ −X,

0, otherwise.

Under this identification, the definition of the set of faces is given as follows:

Proposition 5.13. LetM = (E, C) be an oriented matroid. Then the set of faces is given
by

L = {τ ∈ MapZ2
(E±, S1) | τ ⊥ ϕ for all ϕ ∈ C}.

5.2. Higher order Salvetti complexes for oriented matroids

In this section, we recall the definition of oriented `-matroid and the `-dimensionalization
of an (ordinary) oriented matroid due to Björner and Ziegler [BZ92]. It was pointed out
by the referee that an analogous construction was given by De Concini and Salvetti in
[DCS00] without referring to higher order oriented matroids. It should be noted, however,
that these constructions give essentially the same cell complex models for the complement
of the `-dimensionalization of a real central arrangement.

In order to understand these constructions, let us first recall the definition of the Sal-
vetti complex for an oriented matroid. The following description is due to Gel′fand and
Rybnikov [GR89].
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Definition 5.14. Let S2 be the set of five elements S2 = {0, e1,−e1, e2,−e2}. We define
a partial order on S2 by the following rule:

0 < ±e1 < ±e2.

For an oriented matroid M = (E, C), define

L(1)(M) = {ϕ ∈ MapZ2
(E±, S2 − {0}) | ϕ(X) ⊂ {±e1} or ϕ(X) ⊃ {±e2} for X ∈ C}.

Remark 5.15. The elements of the set S2 are just symbols, but we may regard {e1, e2} as
the standard orthonormal basis of R2. S2 is considered to be equipped with a Z2-action
by changing signs.

The following observation is due to Gel′fand and Rybnikov, but we include a proof in
order to help the reader understand an analogous fact for higher-order versions.

Lemma 5.16. The set L(1)(M) is in one-to-one correspondence with the set of pairs

{(F, C) ∈ L(M)× L(0)(M) | F ≤ C}.

Proof. In order to define a bijection, take (F, C) in L(M) × L(0)(M) with F ≤ C. We
use the auxiliary Z2-equivariant maps

s1 : {±1, 0} → {±e1, 0}, s2 : {±1, 0} → {±e2, 0}

defined by
s1(1) = e1,

s1(0) = 0,
s2(1) = e2,

s2(0) = 0.

For a face F , define F ⊗ ei by

F ⊗ ei = si ◦ F : E→ S2.

For maps F1, F2 : E→ S2 we extend the matroid product as follows:

(F1 ◦ F2)(x) =

{
F2(x), F2(x) > F1(x),

F1(x), otherwise.

If C is a chamber we obtain an element (F ⊗ e1) ◦ (C ⊗ e2) ∈ L(1)(M).
In order to see that the correspondence

(F, C) 7→ (F ⊗ e1) ◦ (C ⊗ e2)

is a bijection, we need the Z2-equivariant maps

π1 : {±e1,±e2} → {±1, 0}, π2 : {±e1,±e2} → {±1, 0}

defined by
π1(e1) = 1,
π1(e2) = 1,

π2(e1) = 1,
π2(e2) = 0.
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Note that
π1(F ⊗ e1) = F,

π1(F ⊗ e2) = F,

π2(F ⊗ e1) = F,

π2(F ⊗ e2) = 0,

and

π1((F ⊗ e1) ◦ (C ⊗ e2)) = π1(F ⊗ e1) ◦ π1(C ⊗ e2) = F ◦ C = C,

π2((F ⊗ e1) ◦ (C ⊗ e2)) = π2(F ⊗ e1) ◦ π2(C ⊗ e2) = F ◦ 0 = F.

This completes the proof. ut

Definition 5.17. Define a partial order on L(1)(M) as follows: ϕ ≤ ψ if and only if

ϕ(a) = e1 ⇒ ψ(a) = e1 or ± e2,

ϕ(a) = −e1 ⇒ ψ(a) = −e1 or ± e2,

ϕ(a) = e2 ⇒ ψ(a) = e2,

ϕ(a) = −e2 ⇒ ψ(a) = −e2.

In other words, the ordering on L(1)(M) is induced from the ordering on S2 =

{0,±e1,±e2}.

Definition 5.18. The first order Salvetti complex Sal(1)(M) is the (geometric realization
of the) order complex of L(1)(M).

As we have seen in the proof of Lemma 5.16, L(1)(M) can be regarded as a subposet
of (L(M) ⊗ e1) ◦ (L(M) ⊗ e2). The notion of oriented 2-matroid was introduced by
Björner and Ziegler in [BZ92] by abstracting the properties of this poset. At the end of
their paper, they also introduced the notion of oriented `-matroid for ` ≥ 1.

We simplify their definition a little and introduce the notion of symmetric oriented
`-matroid.

Definition 5.19. Let
S` = {0, e1,−e1, . . . , e`,−e`}

be equipped with the following partial order:

0 < e1,−e1,

e1 < e2,−e2,

−e1 < e2,−e2,

...

e`−1 < e`,−e`,

−e`−1 < e`,−e`,

and the obvious Z2-action.
A signed `-vector on a set E is a Z2-equivariant map

ϕ : E±→ S`.
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For signed `-vectors ϕ and ψ , define the matroid product by

(ϕ ◦ ψ)(x) =

{
ψ(x), ψ(x) > ϕ(x),

ϕ(x), otherwise,

and the separation set by

S(ϕ,ψ) = {x ∈ E± | ϕ(x) = ψ(x)∗ 6= 0}.

Note that S` is equipped with a natural Z2-equivariant 6`-action. This naturally leads
us to the notion of symmetric oriented `-matroid.

Definition 5.20. A symmetric oriented `-matroid is a pair M = (E,L) of a set E and
L ⊂ MapZ2

(E±, S`) satisfying the following conditions:

1. 0 ∈ L,
2. F ∈ L ⇒ −F ∈ L,
3. F ∈ L ⇒ σ · F ∈ L for any σ ∈ 6`,
4. F1, F2 ∈ L ⇒ F1 ◦ F2 ∈ L,
5. F1, F2 ∈ L, x ∈ S(F1, F2) ⇒ ∃F3 ∈ L such that F3(x) < F1(x), F2(x) and

F3(y) = (F1 ◦ F2)(y) = (F2 ◦ F1)(y) for y 6∈ S(F1, F2).

Remark 5.21. A symmetric oriented `-matroid is a special case of an oriented `-matroid
in the sense of Björner and Ziegler.

There is a natural way to construct a symmetric oriented `-matroid from an oriented
(1-)matroid.

Definition 5.22. For 1 ≤ i ≤ `, define a Z2-equivariant map

si : {±1, 0} → {±ei, 0} ↪→ S`

by
si(1) = ei, si(0) = 0.

Lemma 5.23. Let M be an oriented (1-)matroid on a set E. For a face F ∈ L(M) and
1 ≤ i ≤ `, define F ⊗ ei ∈ MapZ2

(E±, S`) by

(F ⊗ ei)(x) = si(F (x)).

For simplicity, denote

L(M)⊗ R` = (L(M)⊗ e1) ◦ · · · ◦ (L(M)⊗ e`).

Then (E,L(M)⊗ R`) is a symmetric oriented `-matroid.
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Proof. The first and the second conditions are obviously satisfied. The third and the fourth
conditions follow from the fact that

(F ⊗ ei) ◦ (F
′
⊗ ej ) = (F

′
⊗ ej ) ◦ (F ⊗ ei) for i 6= j ,

(F ⊗ ei) ◦ (F
′
⊗ ei) = (F ◦ F

′)⊗ ei .

The final condition follows from the corresponding condition for the covector axiom for
oriented 1-matroids. ut

It is useful to identify elements of L(M)⊗ R` with a sequence of faces of M.

Lemma 5.24. For an oriented 1-matroid M, the set L(M)⊗ R` can be identified with

{(F1, . . . , F`) ∈ L(M)` | F1 ≤ · · · ≤ F`}.

Proof. For 0 ≤ i ≤ `, define a Z2-equivariant map πi : S`→ {±1, 0} by

πi(ej ) =

{
0, j < i,

1, j ≥ i.

Define a map

c : {(F1, . . . , F`) ∈ L(M)k | F1 ≤ · · · ≤ F`} → L(M)⊗ R`

by
c(F1, . . . , F`) = (F1 ⊗ e1) ◦ · · · ◦ (F` ⊗ e`).

The inverse to this map is given by p(F) = (π1 ◦ F, . . . , π` ◦ F). ut

Definition 5.25. For a symmetric oriented `-matroid M = (E,L), define

L(0) = {ϕ ∈ L | ϕ(x) 6= 0 for all x ∈ E}.

An element of L(0) is called a tope or a chamber.

Example 5.26. If M is an oriented 1-matroid on a set E, then (E,L(M) ⊗ R2) is a
symmetric oriented 2-matroid. It is easy to see that

(L(M)⊗ R2)(0) = L(1)(M).

Definition 5.27. For an oriented 1-matroid M, let us denote

L(`)(M) = (L(M)⊗ R`+1)(0).

This set is regarded as a subposet of L(M)⊗ R`+1, which has a poset structure induced
from S`+1.

The `-th order Salvetti complex ofM is the (geometric realization of the) order com-
plex, or the classifying space of this poset,

Sal(`)(M) = |1(L(`)(M))|.
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Lemma 5.28. The set L(`)(M) can be identified with

{(F`, . . . , F1, C) ∈ L(M)` × L(0)(M) | F` ≤ · · · ≤ F1 ≤ C}.

LetA be a real central hyperplane arrangement in a vector space V . The `-th order Salvetti
complex for M(A) is denoted by Sal(`)(A).

Sal(`)(A) can be embedded in V ⊗ R`+1
−
⋃
L∈A L ⊗ R`+1 as follows: we choose

an interior point v(F ) ∈ V in each face F of the stratification of V by A and define, for
ϕ ∈ L(k)(A),

v(ϕ) = v(π0 ◦ϕ)⊗e0+ (v(π0 ◦ϕ)−v(π1 ◦ϕ))⊗e1+· · ·+ (v(π0 ◦ϕ)−v(π` ◦ϕ))⊗e`,

where {e0, . . . , e`} is the standard orthonormal basis for R`+1.
Sal(`)(M) is designed to extend the homotopy equivalence

Sal(1)(A) ' V ⊗ R2
−

⋃
L∈A

L⊗ R2

for real central arrangements as follows.

Theorem 5.29. The map

v : sk0(Sal(`)(A)) = L(`)(A) ↪→ V ⊗ R`+1

induces an embedding

v : Sal(`)(A) ↪→ R`+1
−

⋃
L∈A

L⊗ R`+1

as a deformation retract.

This fact seems to be known to Björner and Ziegler [BZ92]. The proof requires no novelty.
The proof of the analogous fact in [BZ92] works with obvious modifications. We include
a sketch of proof in order to be self-contained.

The idea of Björner and Ziegler is to identify Sal(k)(A) as the (deformation retract of
the) complement of the link poset in |1(L(A)⊗ R`+1

− {0})|.

Lemma 5.30. For a real essential central arrangement A in V , the cell complex
|1(L(A)⊗ R`+1

− {0})| is homeomorphic to the unit sphere S(V ⊗ R`+1).

Definition 5.31. Define a subposet of L(A)⊗ R`+1
− {0} by

Klink(A⊗ R`+1) = {ϕ ∈ L(A)⊗ R`+1
− {0} | ϕ(e) = 0 for some e}.

This is the complement of L(`)(A) in L(A)⊗ R`+1
− {0}.

The following is a well-known fact and can be found in [BLVS+99, Lemma 4.7.27].

Lemma 5.32. Let P be a poset and Q a subposet. Then |1(Q)| is a deformation retract
of |1(P )| − |1(P −Q)|.
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The order complex of the poset Klink(A ⊗ R`+1) can be identified with the intersection
of S(V ⊗ R`+1) and the arrangement tensored with R`+1.

Lemma 5.33. We have a homeomorphism

|1(Klink(A⊗ R`+1))| ∼= S(V ⊗ R`+1) ∩
(⋃
L∈A

L⊗ R`+1
)
.

Thus Sal(`)(A) is homotopy equivalent to V ⊗ R`+1
−
⋃
L∈A L ⊗ R`+1 and Theorem

5.29 is proved.
Sal(`)(A) is a simplicial complex as the order complex of a poset. As we have done

in §2, we can glue simplices together to form a regular cell complex with fewer cells.
Instead of repeating the same argument, we use the following fact observed in [BZ92].

Proposition 5.34. Let K be a PL regular cell decomposition of a sphere Sn. For a sub-
complex L, let Q be the order ideal in the face poset P of K . Then there exists a regular
cell complex L′ with the following properties:

1. L′ is a subcomplex of the opposite regular cell decomposition of K ,
2. the face poset of L′ is isomorphic to (P −Q)op,
3. |L′| is homotopy equivalent to |K| − |L|.

Thus we can regard Sal(`)(A) as a subcomplex of S(V ⊗ R`+1) under a suitable regular
cell decomposition of S(V ⊗ R`+1).

Now consider the braid arrangement Ak−1. We have

Sal(`−1)(Ak−1) ' hk ⊗ R` −
⋃

1≤i<j≤k

L′i,j ⊗ R` ' F(R`, k) ' C`(k).

The above homotopy equivalences are all 6k-equivariant.
The skeletal filtration on Sal(`−1)(Ak−1) induces the following spectral sequence.

Theorem 5.35. For any homology theory there exists a spectral sequence

E1 ∼=
⊕
k

C∗(Sal(`−1)(Ak−1))⊗6k h̃∗(X
∧k) ⇒ h∗(�

`6`X),

which is a direct sum of spectral sequences each of which strongly converges to the cor-
responding direct summand in (4). In particular, when h∗(−) satisfies the strong form of
the Künneth formula, the E1-term is a functor of h∗(X).

Note that in the case ` = 2, the E1-term is described as a functor of h∗(6X). The shift
of degree by the suspension functor 6 is used to obtain an isomorphism between the E2-
term and Cotor. It is natural to expect that, when ` > 2, theE2-term can also be expressed
as a certain derived functor by making appropriate degree shifts in h∗(X).

6. Concluding remarks

We conclude this paper by making two remarks on relations to other works.
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6.1. The Arone–Ahearn–Kuhn spectral sequence

For the singular homology theoryH∗(−; k)with coefficients in a field k, Smirnov [Smi02]
constructed a spectral sequence converging toH∗(�`Z; k) whose E1-term is a functor of
H∗(Z; k).

On the other hand, Ahearn and Kuhn studied the Goodwillie tower of the functor
6∞Map∗(K,Z), in particular 6∞�`Z, in [AK02, Kuh] based on the analysis Arone
did in [Aro99]. Kuhn remarks in [Kuh] that, when K is a sphere, the spectral sequence

E1(Z; `) ⇒ h∗(�
`Z) (11)

obtained from the Arone–Goodwillie tower must necessarily agree with Smirnov’s.
Arone’s model describes the layers in the Arone–Goodwillie tower in terms of little

cubes. In particular, when Z = 6`X, the tower coincides with the Snaith splitting and
the spectral sequence collapses at the E1-term.

Our spectral sequence constructed in §5 is much finer than the Arone–Ahearn–Kuhn
spectral sequence (11) for Z = �`X. It is highly nontrivial. It would be interesting to
compare our spectral sequence and the Arone–Ahearn–Kuhn spectral sequence in the
case

E1(�`−m6`X;m) ⇒ h∗(�
`6`X).

6.2. Milgram’s model and free iterated monoidal categories

This paper is based on May’s little cube model [May72] of the `-fold loop space freely
generated by a based space X,

�`6`X '
(∐
k≥0

C`(k)×6k X
k
)/
∼.

Alternative models for �`6`X have been discovered by several people. In particular,
Milgram’s model [Mil66] is combinatorial in nature and the referee suggested a possible
connection with the construction in §5.

In fact, we can see there is an intimate relation between the Salvetti complex for
the braid arrangement and Milgram’s construction if we use a categorical construction
developed in [BFSV03] by Balteanu, Fiedorowicz, Schwänzl, and Vogt.

Recall that Milgram used permutohedra Pk , which is the convex hull of the orbit

{(σ (1), . . . , σ (k)) | σ ∈ 6k}

of (1, . . . , k) ∈ Rk under the action of 6k , to build a model for �`6`X. One of the ways
to describe the construction is as follows. Define

J
(`)
k = (Pk)

`−1
×6k/∼

by using a certain equivalence relation ∼ gluing the boundary cells. See Berger’s article
in [Vog] for more details. J (`)k is equipped with a right action of 6k by definition. Define

J (`)(X) = (J
(`)
k ×6k X

k)/∼
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where ∼ is the “base point relation”. It is the main result of [Mil66] that

J (`)(X) ' �`6`X

for a connected pointed CW-complex X.
Balteanu, Fiedorowicz, Schwänzl, and Vogt found a categorical model for J (`)k in

[BFSV03]. They defined the notion of `-fold monoidal category. They also defined a
free `-fold monoidal category F`(S) generated by a set S. Objects are finite expressions
generated by elements of S using associative operations 21, . . . , 2`. For example,

(i1,1 21 i1,2 21 · · ·21 i1,s1)22 · · ·22 (i`−r,1 21 · · ·21 i`−r,s`−r ) (12)

is an element of F2(S), where i1,1, . . . , i`−r,s`−r ∈ S. Morphisms are generated by

η
ij
abcd : (a 2j b)2i (c 2j d)→ (a 2i c)2j (b 2i d)

for a, b, c, d ∈ S and 1 ≤ i < j ≤ `. They studied the full subcategory M`(k) of
F`({1, . . . , k}) consisting of expressions in which each element 1, . . . , k appears exactly
once. Define a full subcategory J `(k) consisting of expressions in which 21 appears in
the outermost level, the operation 22 appears in the next level, and so on. For example,
(12) is an element of J 2(k).

The category J`(k) is a poset. Furthermore it is easy to see that it is isomorphic
to L(`−1)(Ak) by using the fact that the elements of the face poset F(Ak) of the braid
arrangement Ak are given by partitions of {1, . . . , k}. The higher order Salvetti complex
Sal(`−1)(Ak) for the braid arrangement can be identified with the order complex ofJ `(k).

Balteanu, Fiedorowicz, Schwänzl, and Vogt compared J `(k) and Milgram’s con-
struction in §5 of their paper. They proved that the classifying spaces of the categories
{J 2(k)}k≥0 give rise to a construction

J 2(X) =
(∐
k≥0

BJ 2(k)×6k X
k
)/
∼

which is homeomorphic to Milgram’s construction J (2)(X) (Theorem 3.12). For ` > 2,
they noticed that the analogous construction J `(X) does not coincide with Milgram’s
construction on the nose, but the natural quotient map

qk : J (`)k → BJ `(k) = Sal(`−1)(Ak)

induces a homotopy equivalence of preoperads (Theorem 3.13). Since qk maps cells onto
cells, we can define a cellular filtration on J (`)k which coincides with the skeletal filtration
on Sal(`−1)(Ak) up to homotopy. Thus it is possible to construct the spectral sequence in
Theorem 5.35 in terms of Milgram’s model, i.e. permutohedra.

The author thinks, however, that the skeletal filtration on the higher order Salvetti
complex is better in the sense that it is obtained by collapsing “homotopy-theoretically
redundant” information from Milgram’s construction. In particular, it is better suited for
analyzing the spectral sequence.
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