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Abstract. In this paper, we present a new approach to the construction of Einstein metrics by a
generalization of Thurston’s Dehn filling. In particular in dimension 3, we will obtain an analytic
proof of Thurston’s result.

1. Introduction

The goal of this paper is to give an analytic construction of Riemannian metrics g which
satisfy the Einstein equation Ric, = —(n — 1)g, by a process similar to Thurston’s Dehn
filling (see [Thu]). We will first describe the topology of the manifolds on which these
metrics live:

Let (M{fyp

note its cusps by Ny, ..., N, and assume that these are diffeomorphic to [0, c0) x 1,
i.e. that the cusps are standard. We can always choose the Ny so that they are bounded
by tori Ty = dNj which are images of horospheres under the universal covering pro-
jection and on which inj = w, where inj is the injectivity radius and w, the Margulis
constant. (For a more detailed description see Subsection 2.1.) Now apply the following
surgery procedure: Cut Myy, along the Ty, throw away the cusps Ny and glue in p solid
tori &~ D? x T"~2 by identifying their boundary with the T;. The topology of the result-
ing manifold can be uniquely characterized by the homotopy classes of meridional loops
o C 3(D? x T"2) inside the T (i.e. images of loops S! x {pt} € D? x T"~2 under
the gluing identification d(D? x T"~%) — Ty). These homotopy classes are simple, i.e.
not a nontrivial multiple of another homotopy class. Vice versa, given a homotopy class
of a simple closed loop oy C T for each k, we can produce a manifold Mz = M, ..., op)
by this gluing. In the following we will always assume that the o7, ..., o, are geodesic
representatives (inside 71, ..., T)) of their homotopy classes and set £; := £(ox) and
Lmin resp. max -— (min resp. max) (€g).
The statement of the theorem which we are going to prove is now:

, 8hyp) be a hyperbolic manifold of dimension n > 3 and finite volume. De-

Theorem 1.1. There is a constant L = L(n, V) such that whenever vol Mypy, < V and
Lmin > L, the manifold Mz carries an Einstein metric gz.
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Moreover, the metrics on Mz can be constructed in such a way that as €min — 00, the
(M7, gz) converge to the initial hyperbolic manifold (Myyp, ghyp) in the pointed Gromov—
Hausdorff sense if the basepoints are chosen away from the cusps.

A slightly weaker statement was also claimed in [And2]. Theorem 1.1 immediately im-
plies the Dehn filling Theorem in dimension 3:

Corollary 1.2. Let the dimension n = 3. There is a constant L = L(V') such that when-
ever vol Myy, < 'V and Lyin > L, the manifold Mz is hyperbolic.

A slightly weaker version of this theorem was proven by Thurston [Thu] using the defor-
mation theory of Kleinian groups. Our methods provide a new and analytic proof of his
result.

We will give a short sketch of the proof of Theorem 1.1: First, we endow the solid
tori which we will glue into the hyperbolic manifold Mpy, with a special Einstein met-
ric called the black-hole metric. This metric is asymptotically hyperbolic to its end and
thus each gluing can be arranged to be arbitrarily smooth for large ¢;. Hence, the result-
ing metric is almost Einstein, i.e. its traceless Ricci tensor is small in some C™*-sense.
Eventually, we apply an inverse function theorem like argument to perturb the metric into
the desired Einstein metric.

We mention that our proof builds on previous work of Tian [Tia] and Anderson
[And2]. Tian established the 3-dimensional case in which My, has only one cusp. Later
Anderson described a construction for the higher dimensional case and developed new
analytical tools of which we will also partly make use here.

We want to point out that the case in which the hyperbolic manifold Myy, has more
than one cusp is substantially more difficult than the case of one cusp for the following
reason: The accuracy of the gluing in the first step (i.e. the construction of the almost
Einstein metric) depends polynomially on the minimum £, of the €. However, as the £
get large, the invertibility of the linearized Einstein equation deteriorates logarithmically
in the maximum £, of the £x. So in the case of one cusp €min = fmax and thus the
accuracy of the gluing increases more rapidly than the invertibility deteriorates. But if
My, has more than one cusp and £min, £max are not sufficiently controlled with respect to
one another, then this consideration fails. In [And2], Anderson sketches an argument how
to get around this issue by looking at certain moduli spaces of solutions of a modified
Einstein equation. In this paper, we will be able to deal with the problems that arise in
this multiple cusp case and we will give a complete proof of Theorem 1.1. In fact, our
argument will be more elementary and we find it a more natural way of looking at the
problem.

The idea behind our proof is that the reason for the bad invertibility of the linearized
Einstein equation lies in certain variations of the metric (so called trivial Einstein varia-
tions) which correspond to a change of the moduli of the cross-sectional tori of the cusps.
It will turn out that with respect to some cleverly chosen norms (see Section 4), which
treat these trivial Einstein variations separately, the invertibility of the linearized Einstein
equation becomes in fact independent of £m,x (see our Proposition 5.1 as opposed to
Proposition 3.2 in [And2]). However, these new norms make it necessary to reprove the
inverse function theorem in order to make it applicable to our setting (see Section 5).
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Another difference between our proof and Anderson’s is that we have replaced the
proof of Lemma 3.4 in [And2], which used to involve the theory of the moduli spaces of
conformally compact Einstein metrics, by an elementary argument which even yields a
slight generalization.

We remark that it still remains an interesting question whether the constant L in Theo-
rem 1.1 can be chosen independent of the volume of Myy,. Hodgson and Kerckhoff [HK]
could confirm this in dimension 3 using algebraic techniques.

The paper is organized as follows: In Section 2, we will review some basic facts which
were also used in [And2]. Section 3 contains a brief recapitulation of the construction of
the almost Einstein metric as described in [And2]. In sections 4 to 6 we carry out the main
argument. In order to keep these chapters concise, we will defer most of the technical
calculations to Sections 7 and 8.

2. Preliminaries

2.1. Hyperbolic manifolds
We recall the thick-thin decomposition for hyperbolic manifolds.

Theorem 2.1. There is a constant i, > 0, the Margulis constant, such that the following
holds: If Ml’fyp is a finite volume hyperbolic manifold then Myy, can be decomposed into

a thin part M, and a thick part Mpick with Myyp = Min U Mnick such that:
o inj > w, on Mpick and Muick is relatively compact in Myyp.
o Min is a finite union of connected open sets Ny, ..., N, and N{, e, N;, where

— the Ny are cusps of the form [0, 00) x (T"~'/T%) for finite subgroups Ty <
Isom T~ with a warped product metric
8hyp = dS2 + e_2sgﬂat,T”’l/Fk; (21)

in the case in which T'y, = {1}, we call Ny standard;
— the N are covered by cylindrical neighborhoods around geodesics in hyperbolic
space.

Furthermore, we can choose the Ny such that their boundaries are images of horo-
spheres under the universal covering projection and inj = [, at some point on d Ny. If
Ny, is standard this implies that inj = w,, on 9 Ni.

In every dimension, diam Mk is bounded from above by a constant which only depends
on an upper bound on vol Myy, and in dimension n > 4, this is even true for the diameter
OfMthiCkUN{U~-~UNI/), = Mpyp \ N1 U---UN,.

We can compute the volume of the cusps in terms of the area of their boundary surface:
Lemma 2.2. There is a constant 0, such that for all cusps Ny we have

vol Ny = n, vol d Ng.
Proof. This can be checked easily using (2.1). O
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So a bound on the volume of M}y, gives us a bound on the volume of the d Ny. Since d N
lies in the thick part, we have a bound on the injectivity radius of d Ny (which is slightly
larger than w,, since d Ny is not totally geodesic). The next lemma shows that in fact we
get a bound on the diameter of 9 N from an upper volume bound on Mpyp. This implies
furthermore that the tori that can occur as cusp cross-sections of a hyperbolic manifold
with a given volume bound form a bounded subset in the moduli space of flat tori.

Lemma 2.3. For every V < oo and ¢ > 0 there is a d(n, V,1) < oo such that for any
flat torus T"~! we have

voIlT" ' < Vand injT" ' > = diam 7"~ < 4.

Proof. Lety : [0,1] — T" ! be a minimizing geodesic. Then the balls B,(y (1)),
B,(y (31)), ...are pairwise disjoint and have volume wn_1t""1. So

\%4
[ <2 ———+1 ). O
a)n_ltnfl

2.2. The Einstein operator

For any symmetric bilinear form % and any 1-form « on a Riemannian manifold (M, g)
we define the divergence and its formal conjugate by (e is a local orthonormal frame
field)

divg(h) = =Y " (Veh)(ei, ), (divia)(X,¥) = 5(Vxa)(Y) + (Vya)(X)).
i=1

Observe that divz o= %ﬁan g. Let 1 be a bilinear form. We can express the derivative of
the Ricci curvature in the direction of /4 by (for a computation see [Top, Sec. 2.3])

dRicy(h) = —3 A h — divi(divg h + 3dtrg h).

Here (ALh)(X,Y) = (AR)(X,Y)+2R(h)(X,Y) —h(Ric(X), Y) — h(X, Ric(Y)) is the
Lichnerowicz Laplacian and R(h)(X,Y) = tr h(R(-, X)Y, -). Since computing the Ricci
tensor is a diffeomorphism invariant operation, we have, for any 1-form o,

dRicg (divy @) = 5L,z Ricy . (2.2)

Thus d Ric, is not an elliptic operator. In order to make it elliptic, we have to add an extra
term: Let g be an arbitrary fixed background metric on M. We define

Vg {ge C®M;Symy T*): g > 0} > C>(M; Sym, T™)

by
Wg(g) := Ricg +div}(divg g + 3dtrg g).
Its derivative at g is
@Ug)g(h) = 1ALk,
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hence elliptic. For our purposes we define the Einstein operator
Og:{g € C®(M;Sym, T*) : g > 0} - C>(M; Sym, T*)
by
Pg(g) = Wg(g) + (n — D)g.
We have
(dPg(h) = —3ALh+ (n = Dh
= %(—Ah — 2R(h) + Ricoh + h oRic+2(n — 1)h).

Set Lz := 2(d®z)7 and call elements in the kernel of Lg Einstein variations. Using the
Weitzenbock formula, we can express this linear operator as

Lgh = (div* div + d*d)h — R(h) + iRic o h + Lh o Ric +2(n — 1)h

where d : C®°(M; Sym, T*) — C*°(M; AyT* ® T*) and its formal conjugate d* :
C®(M; MyT* @ T*) — C*°(M; Sym, T*) are defined by

(dh)(X,Y, Z) = (Vxh)(Y, Z) — (Vyh)(X, Z),

@D(X, Y) = =3 (Vet)ei, X, Y) + (V1) (ei, ¥, X)).

i=1
If g is Einstein with Ricg = —(n — 1)g, we have
Lgh = —Ah —2R(h) = (div* div + d*d)h — R(h) + (n — 1)h.
Tracing this equation gives us
trLgh = V*Vitrh+2(n — 1) trh. (2.3)
If g is hyperbolic of constant sectional curvature —1, we get
Lgh = —Ah —2h + 2(trg h)g = (div* div + d*d)h + (trh)gg + (n —2)h.  (2.4)
Lemma 2.4. If M is closed and Ricg < 0, then ®g(g) = 0 implies Ricg = —(n — 1)g.
Proof. This lemma can be found in [Biql] and [And2, Lemma 2.1]. We copy the proof
from the latter source since we need a variation of the argument later on. Let B, (h) :=
divg h + %dtrg h be the Bianchi operator. Applying 8, to ®z(g) = 0 yields
0 = Bg(Pg(g)) = B divi Bg(g) = 3(V*VBg(g) — Ricg (Bg(2))). 2.5
So Bz(g) = 0 and the claim follows. ]

Thus, in order to construct Einstein metrics, it suffices to look for zeros of ®z.
A similar result to Lemma 2.4 holds in the differential sense:



892 Richard H. Bamler

Lemma 2.5. If (M, g) is a complete Einstein manifold and h a symmetric bilinear form
such that |h|(x), |Vh|(x) — 0 for x — 00, then Lgh = 0 implies

dRicg(h) = —(n — Dh, divgh =0, trgh=0.

Proof. The proof is the same as in [Andl, Lemma 3.6]. Differentiate (2.5) with respect
to g to find
0= BgLgh = V*VBgh + (n — 1)Bzh. (2.6)

So pgh = 0. Moreover, by (2.3) we conclude triz = 0. ]

Observe that conversely, not every Einstein variation is divergence or trace free.

2.3. The hyperbolic cusp

We introduce a representation for the metric gnyp on a hyperbolic cusp which is different
from (2.1): Consider the coordinates (r, x7, ..., x;) on R4 x R"~! and the hyperbolic
metric

ghyp = r2dr? 4 r(dxd + -+ dx). 2.7

Note that in these coordinates, gnyp is not conformally equivalent to the Euclidean metric
(as opposed to the coordinates that arise after the transformation r +— 1/r). Obviously,
the metric is invariant under the action by Euclidean isometries on the last factor. Now
every hyperbolic cusp is the quotient of (R x R*~!, ghyp) under a discrete subgroup of
those isometries.

We will be interested in Einstein deformations of the metric gnyp which are invariant
by the group R"~! of Euclidean tranformations on the last factor. One type of deformation
will be very essential: Let u;; be a symmetric (n — 1) x (n — 1) matrix indexed by
i, ] = 2, N (N Then ifuij > —3,’],

r2dr? + r2(dx§ 4+t dx,% + u;jdx;dx;)

is isometric to gnyp, hence it is also Einstein. We will denote this metric by gnyp + u.
It can be checked (e.g. using (2.3)) that the equation g, (gnyp + u) = 0 is equivalent
to tru = 0. Likewise, dropping the lower bound for u;; and setting h = r2u; jdx;dx;,
we find that Ly, s = 0 iff tru = 0. We will call variations of this kind trivial Einstein
variations.

2.4. The black-hole metric

We recall the definition of the black-hole metric (Mpy, ggn) as in [And2]. Introduce
coordinates (r, 0, x3, ..., x;) on R” = R% x R"~2, Here, (r, §) denote polar coordinates
on the first factor such that r is running from ry = 2'/"~! to oo and 6 from 0 to g =
47 /((n — 1)r4). The black-hole metric is defined as

ge = V7 ldr? + Vdo? 4+ r(dxd + - 4 dx?)
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where

_ 2
Vir)=r-— prE

Using the coordinate transformation r = ry + %52, we obtain

ggH= ————ds> +s 0% + (r4 + $sH%(x3 + -+ dxD).

52 , Viry + %52)
Vg +35%) ?

Since V (ry + %sz)/s2 — %(n — Dry as s — 0, we conclude that ggy is in fact smooth
at the origin. The sectional curvatures of gpy are

n—-3)(n-2) n—3 .
K12:—1+—, K][=K2i=_1__v l237
rn—l rn—l
2 .
K,'jz—l-i-’ﬁ, i,j=>3.
Furthermore, ggy is Einstein with Ricgyy = —(n — 1)gpy. For n = 3 this metric is just

the standard hyperbolic metric in cylindrical coordinates.

Observe that away from the origin the metric ggy is asymptotic to the standard hy-
perbolic metric gnyp from Subsection 2.3. To be precise: The black-hole manifold minus
a large cylinder around the core R”~? is geometrically close to some subset of H" /(y)
where y is a parabolic transformation. Taking the hyperbolic metric gpyp as a background
metric and identifying 6 with x;, we find

geH — ghyp = (V7' (1) = r 7 2)dr? + (V(r) = rP)dx;
2
= Zr_"'Hr— 7 2dr? — it -r2dx§.
V(r)
From this, we can conclude |V" (ggH — ghyp)| = Ot for all m > 0.

We analyze the behavior of this metric under the addition of small trivial Einstein
deformations. Let u;; (i, j = 2, ..., n) be a traceless symmetric (n — 1) x (n — 1) matrix
and set

gBH + 1 = gpu + r’u;jdx;dx;

where we set xo = 6. Note that ggyg + u is only smooth away from the origin. By the
closeness of gpH to gnyp we find, for sufficiently small  and say r > r + 1,

Doy (g +u) = |0 and  Lggu = ulO@™" ). (2.8)

Since we will need it later, we mention the following bound: Let u be small and u’ be
another traceless symmetric (n — 1) x (n — 1) matrix. Then

(AP gip) gt (1) = (AP gy gy (W] = Jua] /1O, (2.9)

The same decay holds for all higher covariant derivatives of the left hand side.
It will be useful later to discuss the geometric quotients of the black-hole metric. In
dimension n = 3 the isometries of (Mpy, gpn) are the isometries of hyperbolic space.
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For n > 3, all isometries leave the topological splitting Mgy = R? x R"2 and the
coordinate r invariant, so they act as a rotation or reflection in the origin on the R? factor
and as a Euclidean translation on the R"~2 factor.

Let 77! be an arbitrary flat torus and o € T"~! a simple closed geodesic. Given
these data, we will now construct a Riemannian manifold with boundary N = Npu-1 ,
such that:

@) N is diffeomorphic to a solid torus D? x T2,

(i) The boundary N is isometric to the given T"~ 1

(iii)) Denote by M (r < R) the part of My on Wthh r < R. Then there is a group of
isometries I of Mgy and a number R > 0 such that N = MBH(r <R)/T.

(iv) All isometries of I" keep the splitting Mpn = R? x R"~2 and the coordinate r
invariant, hence T"~! = ~ 9N = Mpu(r = R)/T.

(v) There is an isometric identification of Mpy(r = R)/T" with T"~! that sends the
meridional loop Mpy(r = R,x3=---=x, =0)/Ttoo.

We will later use IIY: to fill in the truncated cusps.

The manifold N is constructed as follows: Since V : [r4, co) — [0, 00) is invertible,
we can find an R > 0 such that V(R) = (E(o)/,B)2 Then Mgg(r = R) ~ gl (2(0)) X
R"~2. Consider the cyclic subgroup ([o]) < w1 (T"") and denote by T > T the
corresponding cover. Obviously, o € 7"~ ! can be lifted to a closed geodesic loop & C YL
From this we conclude that there is an isometric identification of Mgy(r = R) with T
such that the loop Mgy(r = R, x3 = --- = x,,) is sentto &. Con51der now the group of
deck transformations I" of T — T"~ 1 . Its action on Mpy(r = R) = T can be uniquely
continued to an isometric action on Mpy and by the lifting property of o we know that
tlllis continuation is even fixed point free. Hence Mpy/I" is smooth, and the manifold
N := Mpu(r < R)/ T satisfies conditions (i)—(v) above.

We remark that the image of the core R”~2 under the quotient map Mgy — Mpu/T
is a torus 72 = r_l(r+) which we call the core torus. Furthermore, all level sets
r~1(@") for r’ > r, are diffeomorphic to 7"~! and we can check that (+')~! diam r~1(+")
is an increasing function in r’ (here diam denotes the intrinsic diameter).

3. The construction process

We will briefly explain how the approximate Einstein metric on the manifold Mz is con-
structed. Recall that we are given simple closed geodesics oy inside the tori Ty C Mhy,
which bound the cusps Ni, and that inj = wu,. In dimension 3 it is also important to
choose the N/ such that on their boundary tori 7} we also have inj =

As mentioned in Subsection 2.4, we can find parameters Ry as well as lattices ['y <
Isom Mgy such that the ﬁk = 1’\77,{_,0,C = Mpu(r < Ry)/ Tk are topological solid tori
with boundary isometric to T and such that the o} correspond to meridians. Set Ry :=
min Ry and observe that Ry, —> 00 as £yin —> 0. R

If we glue together the components Mpyp \ U,f: | N and N, we obtain the mani-
fold Mz. We can endow Mg with an almost Einstein metric g5 in the following sense (to



Generalized Dehn filling 895

simplify notation, we will denote this metric by gz rather than the final Einstein metric):

gz equals ghyp on the ﬁrst component and ggy on the Nk except on the tubular neighbor-
hoods Uk | B1iT N Nk of radius 1 around the T where an interpolation between gpyp
and gy is taking place. Thus gz satisfies the Einstein equation on the complement of
Uk \ B1Te N Nk whereas on Uk | BTy N Nk the quantity Ric, 4(n — 1)g5 and hence
®,_(gz) is very small. To be precise: for any m there is a Cy, such that using the C"“
norms defined in Section 4 below, we have

IRicg, +(n — Dgzllma < CuRyn’' and @ (85) lma < Cu Ry

min min

Note that in dimension n = 3, the parts N, are already isometric to Nk NT/ / for

certain loops o, C T}.
For further details of this construction we refer to [And2].

4. Uniform norms on Mz

In the following let L := Lg_ and fix some m > 2 and 0 < o < 1. We will further
fix an upper volume bound on Myy, and call all constants uniform which only depend
on this bound, but not on Mpy, or ¢. Observe that the Riemannian manifolds (Mz, gz),
as constructed in the last section, satisfy the following uniform geometric bounds: The
conjugate radius is uniformly bounded from below by some positive constant 2¢ and
there are uniform bounds C,, such that ||[V"R| < C,,.

Let h be a symmetric bilinear form on Mz and x € Mz Pull back the bundle Sym, T*
and 1ts section A to the universal cover BZ (x) of B (x). Choose exponential coordinates
on B; (x) and trivialize Sym, T* by parallel transport. We can now view A as a vector-
valued function on a ball B;(0) C R". Fix the constant ¢ once and for all and define the
local Holder (semi)norm of £ at x by this representation:

1Allm.e:x = I1A1B, ) llm.c-

‘We note that we have Schauder estimates for these seminorms:

Ihllmex = C sup (ILA]lm—2,a:x" + [7llo;x) 4.1)
x'€Bg (x)

such that C is a uniform constant.
Using these seminorms it is now easy to define the global Holder norm by

IAllm,o == sup [IAllnqx-
XeEMyF
We will need another norm that guarantees a certain decay away from the thick part
and the core tori. We therefore introduce a weight function W (or rather the inverse of a
weight function) on M7z such that for n > 3,

W { (r/R®' + =% on N,
1 on Mz \ Uy_, Ni.
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In dimension 3 we also choose the weight (r/R;, )0'1 + =01 on the N;. The function W
is not continuous at the 7. However, this dlscontmulty will not be essential since the
jump is between 1 and 1 + R_Ol and Ry > r4. On each Nk the welght function W
attains its minimum at r = R, / . For later use, choose points ¢ € Nk(r = R, 172 ) (and
¢, € Nj(r = (R)'?)in d1mens1on 3). They lie approximately in the centers of the Nj.
Set

Wl == sup WOl

xeMyz

It is immediate that we can derive uniform Schauder estimates for the norms || - ||« and
I+ llm, ;% from (4.1):

”h”m,a =< C(”Lh”m—Z,a + ”hHO)» ”h”m,a;* =< C(”Lh”m—Z,a;* + ”h”O*)

Finally, we have to define a more complicated norm that guarantees decay towards
some trivial Einstein variation: Let o1, ..., pp be cutoff functions on Mz such that o = 1
on Ni \ (B1Tx U Bzf‘\kn_z) and p;y = 0 on Mz \ Ny and By 7\’,{"_2 where /T\k”_2 is the core
torus of ﬁk. We may assume that the p; are constructed in such a way that they satisfy
some universal C" bound for each m. Let uy, ..., u, be trivial Einstein variations Aof
the hyperbolic cusp metric which we assume to be defined on the corresponding Nk.
Represent /1 by

p
h=h+ Z PkUk ()
k=1
and define
P
”h”m,a;** = inf (”h”m,o{;* + Z |uk|>

houy,...up
satisfy ()

where we use an arbitrary uniform norm on the (finite-dimensional) space of trivial Ein-
stein deformations. In dimension 3 we have to alter the definition in order to also consider
trivial Einstein variations u;c on the N, ,i Observe that since W—! > ¢ > 0 we have, for
some uniform C,

T lma < Ihlmases < 1allm,a;e
Lemma 4.1. We have the following uniform Schauder estimate for || - ||m.q: 5"
”h”m,a;** =< C(”Lh“m—Z,a;* + ”hHO**) “4.2)

Note that the second norm is a *-norm.

Proof. We carry out the proof for n > 3 (for n = 3 we have to consider the N, as well).
Choose a decomposition & = h+ Z,le prui. From (2.8) we find that || Logug||m—2.a:%
< C|ug|. Hence

P
ILAlm 2.0 < ILRlIm 2,00 + C Y lul.
k=1
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So by the Schauder estimate for || - || q:+ We find

p
1l e = C(ILAIn 2,000 + Y lax] + Wil ):
k=1

hence the conclusion. O

The following lemma gives us a tool to estimate the || - |5, NOrm:

Lemmad4.2. Let h be a symmetric bilinear form on Mg. Choose uy such that
[(h — ug)(ck)| is minimal for each k and set h = h — Z,’;zl prltg. In dimension 3 also
consider u;. such that |(h — u})(c})| is minimal. Then there is a uniform constant C such
that

p
Ul < Wallmazse + Y Nkl < CllAlmains-
k=1

Proof. Assume again n > 3. Only the second inequality has to be shown. First observe
that since |(h — ug)(cy)| is minimal, we have (h — uy)(cx) L ugr(cr) and hence

luk(ci)l < |h(ci)| < Cllhlima < Clhllm,a; -

It remains to bound ||/ ]/ q:4. Let b = h' + Z,f':l pkuy, be an arbitrary decomposition
of h analogous to (). We will show that

P
Vol e = C (IR e + D lui])-

k=1

Note that by the minimal choice of uy, we have |(ux —u;) (c)| < [(h —u})(ck)|. We now
use

p
T 7/ /
Uil < Rl + Y 110k Gtk = 0}
k=1

and bound the last term by C Y"F_ | My |(ux—u})(c)| < C YF_ | My|(h—u))(ck)| where

M) = max wl = W_l(ck).
Ni

Soif p(ci) = 1, then My|(h — ) (ci)| < Cllh — X0 prteflm.aix = 17l 1 n0L,
we have a uniform bound on Ry, hence on My and My|(h — u;{)(ck)| < ClA |lm.a- O
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5. Application of the inverse function theorem

We will use the following estimate on L~! which we will prove in the next section:

Proposition 5.1. There are Ry = Ro(n, V) and A = A(n, V) < oo such that whenever
vol My, < V and Ryin > Ry, then the operator L = Lg_ : C™%(Mgz; Symy T*) —
CMm=2.9 (M Sym, T*) is invertible and

”h”m,a;** < A”Lgﬁh”mfZ,a;*
for any symmetric bilinear form h on M.

Observe that there are different types of norms on both sides of this inequality. Thus

in order to construct a perturbation of gz which is Einstein we cannot simply use this

estimate to strictly apply the inverse function theorem on Banach spaces. However, we

will show that the trivial Einstein deformations which make the difference between these

two norms, have a weak influence on the nonlinear term of the equation we want to solve.
We will now prove Theorem 1.1 assuming Proposition 5.1.

Proof of Theorem 1.1. We only consider the case n > 3. It will be clear how to adapt the
proof to the 3-dimensional case by considering the N, as well.

In the following we set M = Mz, g = g5, & = ®gand L = Lg.

Assume that Rpin > Ro. We want to find h € C™*(M; Sym, T*) such that the
equation ® (g + /) = 0 holds. It will then follow from elliptic regularity that % is actually
smooth. The equation is equivalent to the fixed point equation

h=Wh)=h—L'®(g+h).

In order to solve this equation for large Ry, it suffices to show that there is an ¢ =
g(n, V) > 0 such that V¥ is %-Lipschitz with respect to the || - ||,;,q:4+-nOrm on B, =
{h € C™*(M; Symy T*) : |[h|lm.a:« < €}. Then, assuming R, to be large enough,
we can achieve [|W(0) ||, ¢4 = ||L_1q>(g)||m,a;** S AP lm—2,0:% < %8 and apply
Banach’s fixed point theorem.

For hg, h1 € B; and h; = (1 — t)ho + thy we compute

1
W (o) = W (R lIm,asss < /0 LML = dDgin,)(ho — hy) dr

m,o; %k
1
<A / 1 APy — APy, (0 — 1) 2.0 .
0

(Observe that the subscript of d® now indicates the point at which the derivative is taken
rather than the background metric which we used to define ®.) Thus, it suffices to show
that for any & € B, and ' € C™*(M; Sym, T*) we have

||dq>g(h/) - dq>g+h (h/)”m—Z,oz;* =< S(S)Hh/llm,a;**

for some universal §(¢) with §(e) — Oase — 0.
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Representh = h+ Y r_, pxugand h’ = h' +Y"P_, pru), where the uy, u), are trivial
Einstein variations. Then

”dq)g (h/) - dq)g-l—h (h/) ||m—2,oc;*

p
< (1 dDg (A" = dDg iy (W) Im—2.aix + D 1dDg (orur) — APy (ortt}) lm—2.c:5-
k=1

The first term can be bounded by C ||| m.e 12 lm.a:x < C'I1Allm.ce:s |2 .oz As for the
second term we have

”dq)g(;oku;c) - dq)g+h (pk“;c)”mfla;* =< ||dq>g(/0ku;<) - dq)g-i—pkuk (Pku;g)”mfZ,a;*
+ ||d(bg+pkuk (Pku;g) - dq>g+ﬁ+pkuk (;Oku;() ||m—2,a;*~

Now, since uy is a trivial Einstein variation, we can use (2.9) to bound the first term by
Cluk! |u}|. The second term is bounded by C/|% | q;«|u}|. We conclude

p
1d®g (h")~dPg s (B lm—2.0:5 < CllAllmassllA Il a;5+C Z(Iukl et |1 s 1)
k=1

< Clltlm ol s + € (Wl i+ lual) D 1ul
k 1

By an appropriate choice of / and uy, the right hand side can be made arbitrarily close
t0 Cllhllm s (1A s + 3 lu;]), which in turn by a good choice of k' and u), can be
made arbitrarily close to C||A|lm,a;sx |18 lm,a;5 < C&lR' |l m,q; 5% This proves the desired
bound and hence the theorem. O

6. Estimates for L !

This section is devoted to the proof of Proposition 5.1. For the sake of a clear exposition
of the main ideas we will defer most of the technical arguments to Sections 7 and 8. We
first establish a bound on the || - |,;,,¢-norm:

Lemma 6.1. There are Ry = Ro(n,V) and A = A(n,V) < oo such that when-
ever vol Myy, < V and Rmin > Ry, then the operator Lg_ : C™%(Mz; Sym, T*) —
C" 29 (M5 Sym, T*) is invertible and

”h”m,a = A”Lg;h”m—Z,a;*

for any symmetric bilinear form h on Mz.

Proof. The proof is similar to that of [And2, Proposition 3.2]. Observe that in that propo-
sition the right hand side of the inequality reads A log Rmax||L g/ |lm—2,e- In our case, we
do not need the log Rimax factor, but have to make use of a stronger norm of L.



900 Richard H. Bamler

Recall that we have the Schauder estimate
12llm,e < CULgrhllm—2,a + lIAll0)

where C is uniform. So it is enough to show that:

There are Ry = Ro(n, V), A" = A'(n, V) < oo such that whenever vol Myy, < V
and Rpyin > R, we have

I2llo < A'ILgrhllm—2,a:
for all symmetric bilinear forms h on any M.

Assume that this statement is wrong. Then we can find a sequence of hyperbolic

manifolds Ml’;yp with basepoints y' € Mtihick and vol Méyp uniformly bounded from above
'in — ©© and symmetric bilinear forms A' on

Li = L, and fi=Ln,

as well as a sequence &' such that R
M' = M. such that for g' = g,

Ihillo =1, but [[f lm-2ax—> 0

as i — 00. So there are points x! € M’ such that |#?|(x") > y for some universal y > 0.
The Schauder estimate gives us a uniform C"*-bound for the A*.

1° In the first step we show that there are sequences d' — oo and w' — 0 such that
|h'| < w' on By .

Consider an arbitrary subsequence of counterexamples. After passing to a subse-
quence again, the pointed Riemannian manifolds (M’, y') Gromov—Hausdorff converge
to a pointed hyperbolic manifold (Mfl’;’p, y®) of finite volume. Furthermore, the i’ sub-
converge to a symmetric bilinear form 2% on Mfl’;’p such that L (h*°) = 0 (here L™
=L glf;p).

Denote by (Mfl’;’p)s the manifold obtained from Ml‘f;fp by truncating its cusps at dis-
tance s from the basepoint y°°. Using Stokes’ theorem and (2.4), we find

/ (1dh™®)? + |div h°> + (n = 2)|h°)* + (rh™®)?) = / 0(h™, Vh™)
(M)S

AM )

hyp hyp

where the right hand side goes to 0 as s — 00. So 4°° = 0 and we conclude that for any
d we have |h'| — 0 uniformly on B;(y') for a subsequence. Since we started with an
arbitrary subsequence, this implies that for any d we have |h’| — 0 on By(y") uniformly
for the whole sequence and hence the claim.

2° Next, we give an estimate for hi on the N, ,i (and N,f in dimension 3).

Choose coordinates (r, 6, X3, ..., Xn) on these components (to be precise on their
universal covers). Observe that N \ By (T}) carries the exact black-hole metric. We have
| £ < 11 £ llm—2.0:4W. Since dist(y', T}) < diam | M. is uniformly bounded, we find
that |2'| < w' — 0 around the boundaries of the ;.
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Consider the restriction of 2’ and f’ to some ]/\7\,2 and take their average under the
S x R"2.action, i.e. let T""1(+) := N, (r = r’) be the cross-sectional torus at the
coordinate r = r’ and set

h =— ht..
st ) vol 771 (r) Jyn-1 (r) st
Analogously define 7'. Obviously, 7' and f' are S' x R"~2 invariant and LA = f1.
Furthermore, still

P < 1 =26 W = L 2.l (/RO 47701
and since VA! is uniformly bounded and diam T"-1(r) < Cr/R%, we conclude
|;1\i —h| < Cr/R,i on T" 1 (r).
We can now apply Proposition 8.1 to conclude

| < C + 11 fillm—iae + 7" 4 7/RD). (6.1)

3° We can make the following conclusions on xl: From 1° we already know that
dist(y', x') — oo. This implies that x' eventually lies in some N (or N, ,f in dimension 3)
and r(x")/ R,l{ — 0. So by (6.1) we conclude that r(x") has to stay bounded. This means
that the x’ have to stay within bounded distance to some core tori (T"k"_z)i of N, ,i (or
of N/').

So there is a sequence d"" such that the universal covers (§ o (x%), x) Gromov—
Hausdorff subconverge to the black-hole metric (Mpy, x°°) and the h' subconverge to
some h*° on Mgy which satisfies L®h*® = 0 and A°°(x*°) # 0. Moreover, since the
pointed manifolds (IV I, x') collapse to a ray, h*° is invariant under the S' x R”~2-action.
From (6.1) we also conclude that |h*®°| < Cr—"t11,

We can now use Proposition 8.3 to find that 2°° = 0, a contradiction. O

Finally, we can use Lemma 6.1 to refine our result and prove Proposition 5.1:

Proof of Proposition 5.1. Analogously to the proof of Lemma 6.1, we assume that the
statement is wrong and that we have sequences M', 5", h' such that Rinm — oo and

”hl ”();** =1, but ”fl ||m—2,a;* -0

for f/ = L'h' (we also used (4.2) here). _
By Lemma 6.1 we have ||k [lo — 0. We now change the ' by certain trivial Einstein
variations of the N (or N,f in dimension 3): Let u}, be those trivial Einstein deformations

as obtained in Lemma 4.2 and set A = h! — Z,f’:l piui. Then since ||h'[|o — O we have
|u;'(| — 0 asi — oo and by Lemma 4.2,

”ﬁ’ ”**;0 =< ”Ijll ”O;* =< C”}_ll ||();*>x<
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for some uniform constant C. So we conclude that 1/2 < || A llo;x+ < 3/2 for large i and
hence we have the uniform estimate ¢ < ||ﬁi llo;« < C.However, we still have ||ﬁi llo — O.
Finally, setting fi=Lh, we get | lm—2.0:% = O.

By the lower bound on ||/ [|o.«, we can find points x’ € M such that

W) h | (x') > y > 0.
Since [|7]lg — 0, we conclude W (x') — 0. So the x eventually lie in certain N/,
(or N,:), R!, — o0 and the distance of the x’ to both T]ji as well as (YA"k’i._z)i goes to

infinity. So there is a sequence d”* such that the universal covers (E i (x"), x") converge
to hyperbolic space (H", x°°) on which we can choose coordinates (r*°, x», ..., x,) with
r®(x®) = 1and r/r’ — r* where r' := r(x') (observe that we choose those coordi-
nates in which the hyperbolic metric takes the form (2.7)). In order to analyze the limiting
behavior of 4!, we have to distinguish three cases:

1° For a subsequence we have ”i(R,ii)_lﬂ — 00.

Then we have the (local) convergence

Ri N0 SN0 R LinOd
k! _ k! 004,0.1
(r") W‘(F) +(<rf>2'7> -

So (R%, /r’)01h! is locally bounded and (R, /r')%! fi — 0 locally. Hence the i’ sub-
converge to some nonzero A* on H" which satisfies [7>°| < C(r°>)%! and L®h>® = 0
(observe her_e that by Schauder estimates, we have uniform local botlnds on some deriva-
tives of the /#'). Since the sequence (B i (x"), x") collapses to a line, 4°° must be invariant

under the group R"~! acting on the last coordinates. We can now use Proposition 7.1 to
obtain a contradiction.

2° For a subsequence we have r'(R},)~'/> — 0.
This time we have the convergence

i\2 0.1 —0.1

rH'w = (—(r > L,») + (i) — ()7L
ka r r

Now we can use the same arguments as in 1° to construct h* on H" which obeys the

bound [7%°| < C(+>)~%!. This also contradicts Proposition 7.1.

3° For a subsequence we have ”i(R,ii)_lﬂ — g where 0 < g < oo.

This means that the points x’ stay within bounded distance to the c;{i. Let ¢® e H"
be one of their limit points. We have the convergence

iy2 0.1 —0.1
H W = <ﬂ ) L) + <L> — ¢02(r%) 01 4 (400,

R]lci rl rl

Hence the same reasoning as in 1° yields a nonzero 4% which satisfies |7 <
C((r)%! + (r°>°)~01). So by Proposition 7.1, 2% must be trivial.

However, by the construction of the i’ we get [(A%°)(c™®)| < [(h*° — u)(c*®)| for any
trivial Einstein variation u, contradicting the fact that 2> is nonzero. O
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7. Einstein variations of the hyperbolic cusp metric

Consider the hyperbolic metric
ghyp = F2dr? 472 (dxg + -+ dx))

on R x R"~! and the parabolic isometric action of R"~! by translations on the second
factor.

SetL:=1L We will prove the following result:

&hyp*

Proposition 7.1. Let h be a symmetric bilinear form on H" that is invariant under the
R"L_qction. Assume furthermore that |h| < POl 4 =01 Then Lh =0 implies that h is
trivial. Thus, if even |h| < rE0L then h = 0.

Proof. We assume |h| < rO1 4+ =01 Express h = hijdx;dx; where we set x; = r. Then
the h;; only depend on r and the bound on |4| implies

P2, hl), e 2l o) < %0l

fori, j > 1.
The equation Lh = 0 writes out as (see (2.4))

Ah 42k = 2(trh) ghyp = 0,

which implies

P2 ) +nr () = 20— D*hin) =0, M
r2h; + nrhy; — nhy; =0, (I
n
P2 2hi) + nr (e 2hig) = 28 Y r2hy = 0. (11
k=2

The trace of /h satisfies (see (2.3))
Atrh —2(n—1)trh =0.
In terms of coordinates, this implies, for ¢ (r) = tr h(r),
r2q" +nrq’ —2(n —1)g = 0. av)

The solutions of (I) and (IV) are both of the form A r?! 4- Axr?? with y 2 = %(—n +1+
v/n? 4 6n — 7). Hence by the bound on || we get r?hy; = trh = 0 and plugging this
into (IIT) gives
r2(r2hij)" +nr(r2hij) = 0.
Solutions of this equation are of the form A;;(r) = Arr? + Aor~13 and thus hij = uijr2
(fori, j > 1).
Finally, (I) implies /1; (r) = Ar 4+ A>r=", hence hy; = 0 (fori > 1). m]
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8. Variations of the black-hole metric

Consider the black-hole metric
g=gpn =V 'dr? +Vdo? +r?(dx] + - +dx2)
on Mgy ~ R x R" 2. Set L = L ¢- Recall that g is asymptotic to the hyperbolic metric
Shyp = r2dr? + r’z(dé’2 + dx% 4+t dx,%)
for r — oo in the sense that [V™" (g — gnyp)| = O(r—"*1). That is why we can estimate
|Lgh — Loy il S O™ ™|+ 06" )| VA| + 0"+ V?h|

for r — oo.

In the following we will analyze Einstein variations of ggy or variations which are
almost Einstein. We will always assume that these variations are invariant under the
S x R"~2-action. When we compare ggy with ghyp- this action becomes the parabolic
R*~!_action.

We remark that Olivier Biquard has independently found elementary proofs of some
of the following results ([Biq2]).

Proposition 8.1. Let R > ri and assume that on Mgg(r < R) we have Lh = f for
S' x R"=2 invariant h and f satisfying |h|(r) < 1 and

0.1
1£16) < a[(%) +r—‘“}

forallr < R and some o < 1. Then
|hI(r) < C(IRI(R) + o 4 r~"F11)
for some universal constant C (which is independent of R).

We will need a technical lemma. Note that from now on whenever we use the notation
O(p(r)) for a function ¢(r), we indicate an error term whose absolute value is always
(not only for r — 00) bounded above by C¢(r) where C is a universal constant.

Lemma 8.2. Leta,b € Rand 0 < By, By < o0o. Consider a solution f : (By, By) > R
of the ODE
r2 () + arf'(r) + bf (r) = ¢(r)
for some ¢ : (By, By) — R. Assume that a, b are chosen in such a way that the corre-
sponding homogeneous ODE (for ¢ = 0) has the general solution f(r) = A1r"' + Ayr??
with y1, y» € Rand y; < ys.
Now, suppose ¢(r) = Z,f:l O (r’) where we assume 8; # y1, y» for each k. Then

p
FO) = A + Ay + ) 00,
k=1

Here the coefficients in O(r) only depend on a,b,§ and the coefficients in the error
terms of .

Proof. The lemma follows by simple integration. O
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Proof of Proposition 8.1. We assume from now on that |4|(r) < 1 and R > r4 42. Using
the Schauder estimates we find that this implies VIR < €y, so

|Lgh — Lg, bl = O™ (8.1)

8hyp

for r > ry + 1. In coordinates, the bound on & implies that
P2, hul(r), il < C

where i, j > 1 and r > r 4+ 1 for the first quantity and » > r, for the rest.

We will use the equations from the last section to derive a better estimate on k. Set
H = |h|(R).

We first show how to bound r2h;;. By equation (I) of the last section and (8.1) it
satisfies

r2(rhi)” + nr(Phi) = 20— DEPhy) =7 fi + 0@,
where 72 fi1(r) = O(a(r/R)*") 4+ O(ar=%") for r > r, + 1. Lemma 8.2 gives us
r2hii(r) = Air?' + Ar?”? + O(a(r/R)™) + 0(ar ") + 0™,

where y1,2 = %(—n + 1 £ +/n?+6n—7). Observe that y; > 0.1 and y» < —n + 1.
Since r2h 11 and the error terms above are bounded for say r € (r4 + 1,74 + 2), we
conclude that |[A>| < C for some universal C. For »r = R, we furthermore obtain |A| <
CHR™ 4+ O(R”™") + O(@R™") 4+ O(R™"+!=71). Thus

r2lhi|(r) < CLHG /R +a(r/R)> +ar O 477"t < C(H+a+r7"Th). (8.2

Using (IV) from the last section, we conclude that the same bound holds for tr z. More-
over, we can estimate /1; for i > 1 by the same method (this time we have to use (II) and
the fundamental solutions are » and r™").

Using the first estimate from (8.2), we can now bound r—2h; j fori, j > 1. By (II)
we obtain, forr > ry + 1,

P2 2hi)" +nr(r ki) = OH(r/R)) + 0(a(r/R)*Y) + O(ar=*h) + 0" *1).
Thus using O (r 1) < O(~"+1'1), we conclude from Lemma 8.2 that
rhij(r) = Al 4+ Ay T O(H /R + 0 (/R + O (ar ™" hy+ 0 (-,

As before, we find that |A;| < C and setting » = R yields |A1| < CH + O(H + o) +
O(R_n+l'1), SO
r2|hij|(r) < C(H +a +r~ "1, O

We will now prove the second result of this section.

Proposition 8.3. Let h be an S' x R"? invariant Einstein variation of ggy and assume
|h|(r) = Oforr — oco. Then h = 0.
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We note that with a little more work, it is even possible to deduce that any S Iy rn—2
invariant Einstein variation which is bounded is of the form

n—1

A%
h=—tru dr? — trz42—d92 + 2(tru)r_"+3(dx§ + -+ dx,zl) + uijrzdx,-dxj
r

Vpn—1

for some symmetric (n — 2) x (n — 2) matrix u;; indexedby i, j =3,...,n.

Assume from now on that |k|(r) — 0 as r — oo and that Lk = 0. Using Proposition
8.1, we find that we even have |h|(r) < Cr~"*!l By Schauder’s estimates we can
deduce the same decay for all covariant derivatives of .

Lemma 8.4. We have trh = 0, divh = 0 and hence dRicg(h) + (n — D)h = 0.

Proof. This follows from the maximum principle applied to (2.3) resp. (2.6) and the fact
that tr & and 8 (h) are decaying. O

Lemma 8.5. We have hi; = hj1 =0 foralli > 2.

Proof. Writing out the equation div s = 0 in terms of the h;; gives fori > 2
0=—(divh); = Vh}; + (V' + (n —=2)V/r)hy;

The solutions of these ODEs behave like 1/(r — ry) for r — r4, so the hj; must be
constantly zero. ]

Now we will alter 4 by an infinitesimal diffeomorphism dinj?; for some 1-form & to
eliminate its 11 entry. Observe that by (2.2) for every 1-form & we have

dRng(din &)+ n— l)divj’gjé =0
since g is Einstein. So for any 1-form £ the bilinear form A + divz & will still be an

infinitesimal Einstein variation. However, we might lose the divergence or trace freeness.

Lemma 8.6. There is an S' x R"™2 invariant 1-form & = &\ (r)dr such that for k =
h+ div* & we have k;; = ki =0 fori = 1,...,n and |k|(r) < C. Moreover, if k = 0,
then & = 0 and hence k = h.
Proof. We compute
V/

d' £ — / _ ,

div' &) =& + 2‘/51

(div* §) = 3V V'l

div*&);; =rVE  fori > 3.
The remaining components are zero.

We now solve the ODE (div* £);; = —hy;. Observe that it is equivalent to (V1/2£;)’
= —V 12}, and that V|hy;| < Cr~"*t!1, Hence, the solution

1 " Vhi
§1(r) := ——/ 77
viz J, Vi
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satisfies V1/2(r)|§1 |(r) < C(r— r+)1/2, which implies smoothness of & and boundedness
of div* &.
Now, if k = 0, then tr & = 0 implies trdiv* & = 0 and thus

VEl+ (V' +(n—=2)V/r)& =0.

Hence &;(r) = CV 1 (r)r "2 which behaves like ﬁ# as r — r4, contradicting

the smoothness of &. m]
We will now show that k has a very simple form. In order to do this, we introduce a new
coordinate s = s(r) (the distance to the origin) with the property that s(r;) = 0 and
gen = ds? + V(r(5))d6? + r2(s)(dx3 + - - - + dx2). From now on we will only work in

the coordinate system (s, 6, X3, . .., x,). Consider a metric g of the form
~ 1 0
The condition of being Einstein with Ricz = —(n — 1)g is equivalent to the following
system of ODEs (see e.g. [Lin]):
(VdetM M'M™YY —2(n — )VdetM E,,_; =0, D
Xn2(M'M™") —2(n —2)(n — 1) =0, (In

where E,_; denotes the unit matrix of rank » — 1 and x,—» the (n — 2)-th coefficient
of the characteristic polynomial, i.e. the elementary symmetric polynomial of degree 2 in
the eigenvalues. The prime denotes differentiation by s.

Now denote by M = diag(V (r(s)), r2(s), ..., r%(s)) the matrix corresponding to
the black-hole metric g = gpy and denote the given Einstein variation corresponding
to ko< j<n by M = M(s). Then M is a variation M = M(s) of (I) and (II). We will
moreover abbreviate u = +/det M and u = (v/det M)" = %u tr(MM™").

Lemma8.7. u = Asinh (n — )s for some A > 0 and i = Au. This implies trgk =
tr M(M%~1 = 24.
Proof. Tracing (I) yields

W' —n—1D*u=0
S_ince u(0) =0, wegetu = A sinh (n — 1)s apd a Variation of this equation gives i =
Asin h(n—1)s+ B cosh(n — 1)s. So % trk=AA~"+BA~! cosh(n — 1)s/sinh (n — 1)s.
Since tr k is bounded, we conclude B = 0 and therefore trk = const. O

Now observe that by the symmetries x; — —x; (i > 3), also the matrix

M;z —M23 —Mzn
L —Ms, Mz - Mz,

—Mp2 Mn3 o Mnn
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corresponds to an Einstein variation. Moreover, we can easily see that the entries Mzg,
..., M», are odd functions in s while all the other entries are even. So M is invariant
under the transformation 1 combined with s > —s.

Lemma 8.8. M = QM where Q is a symmetric matrix with Q2 = Qi» = 0 fori =
2....,n. Hence M = M+ and M, = 0.

Proof. A variation of (I) together with Lemma 8.7 gives
(sinh ((n — Ds)(M'M~ 1) = 0.

Hence
1

P
sinh (n — 1)s
for some constant matrix P. Moreover, observe that

MM Y =M ' - MM MM = MMM MY M (8.3)

MM~y =

So (M'M~Y) is mapped to —(M'M —1)* under the transformation L combined with
s > —s. Since sinh (n — 1)s is odd, this implies that P = P+, ie. P is of block form

Py 0 .- 0
0 P - P3y
P = . )
0 Pn3 Pnn

Since by (8.3) the lower block of (M’M~1)" stays bounded for s — 0, we find that
the lower block of (sinh (7 — 1)s)~! P must also stay bounded. Hence, the lower block
of P must be zero. Furthermore by (8.3) and tr M~'M = tMM~! = 24, we find
tr(M'M~1)" = 0 and hence tr P = 0. So P = 0 and we conclude using (8.3) again that
MM~! = Q for some constant matrix Q.

Now again since the problem is symmetric with respect to the transformation L com-
bined with s — —s and constant functions are even, we conclude that 0 = Q. Since
moreover My (s) = Q2 V (r(s)), we conclude by smoothness at the origin that Q2> = 0.

O

We can now summarize the discussion above: Returning to the old coordinates
(r,0, x3, ..., x,), we have proven so far that & takes the form

n
h=—div'E+r? Z u;jdx;dx;.
i,j=3
So hyp = —(div* £)7;. By the equations from the proof of Lemma 8.6, we conclude from
the decay of & that V1/2¢,(r) < Cr="t11 hence r=2|(div* £);;| < Cr—"*t!! fori > 3.
Together with || < Cr~"+11 this implies u;j = 0 and thus k = 0. Hence by Lemma 8.6
we have i = 0. This concludes the proof of Proposition 8.3.
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