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Abstract. In this paper, we present a new approach to the construction of Einstein metrics by a
generalization of Thurston’s Dehn filling. In particular in dimension 3, we will obtain an analytic
proof of Thurston’s result.

1. Introduction

The goal of this paper is to give an analytic construction of Riemannian metrics g which
satisfy the Einstein equation Ricg = −(n− 1)g, by a process similar to Thurston’s Dehn
filling (see [Thu]). We will first describe the topology of the manifolds on which these
metrics live:

Let (Mn
hyp, ghyp) be a hyperbolic manifold of dimension n ≥ 3 and finite volume. De-

note its cusps by N1, . . . , Np and assume that these are diffeomorphic to [0,∞)× T n−1,
i.e. that the cusps are standard. We can always choose the Nk so that they are bounded
by tori Tk = ∂Nk which are images of horospheres under the universal covering pro-
jection and on which inj = µn where inj is the injectivity radius and µn the Margulis
constant. (For a more detailed description see Subsection 2.1.) Now apply the following
surgery procedure: Cut Mhyp along the Tk , throw away the cusps Nk and glue in p solid
tori ≈ D2

× T n−2 by identifying their boundary with the Tk . The topology of the result-
ing manifold can be uniquely characterized by the homotopy classes of meridional loops
σk ⊂ ∂(D

2
× T n−2) inside the Tk (i.e. images of loops S1

× {pt} ⊂ D2
× T n−2 under

the gluing identification ∂(D2
× T n−2) → Tk). These homotopy classes are simple, i.e.

not a nontrivial multiple of another homotopy class. Vice versa, given a homotopy class
of a simple closed loop σk ⊂ Tk for each k, we can produce a manifold Mσ = M(σ1,...,σp)

by this gluing. In the following we will always assume that the σ1, . . . , σp are geodesic
representatives (inside T1, . . . , Tp) of their homotopy classes and set `k := `(σk) and
`min resp. max := (min resp. max)(`k).

The statement of the theorem which we are going to prove is now:

Theorem 1.1. There is a constant L = L(n, V ) such that whenever volMhyp < V and
`min > L, the manifold Mσ carries an Einstein metric gσ .
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Moreover, the metrics onMσ can be constructed in such a way that as `min →∞, the
(Mσ , gσ ) converge to the initial hyperbolic manifold (Mhyp, ghyp) in the pointed Gromov–
Hausdorff sense if the basepoints are chosen away from the cusps.

A slightly weaker statement was also claimed in [And2]. Theorem 1.1 immediately im-
plies the Dehn filling Theorem in dimension 3:

Corollary 1.2. Let the dimension n = 3. There is a constant L = L(V ) such that when-
ever volMhyp < V and `min > L, the manifold Mσ is hyperbolic.

A slightly weaker version of this theorem was proven by Thurston [Thu] using the defor-
mation theory of Kleinian groups. Our methods provide a new and analytic proof of his
result.

We will give a short sketch of the proof of Theorem 1.1: First, we endow the solid
tori which we will glue into the hyperbolic manifold Mhyp with a special Einstein met-
ric called the black-hole metric. This metric is asymptotically hyperbolic to its end and
thus each gluing can be arranged to be arbitrarily smooth for large `k . Hence, the result-
ing metric is almost Einstein, i.e. its traceless Ricci tensor is small in some Cm,α-sense.
Eventually, we apply an inverse function theorem like argument to perturb the metric into
the desired Einstein metric.

We mention that our proof builds on previous work of Tian [Tia] and Anderson
[And2]. Tian established the 3-dimensional case in which Mhyp has only one cusp. Later
Anderson described a construction for the higher dimensional case and developed new
analytical tools of which we will also partly make use here.

We want to point out that the case in which the hyperbolic manifold Mhyp has more
than one cusp is substantially more difficult than the case of one cusp for the following
reason: The accuracy of the gluing in the first step (i.e. the construction of the almost
Einstein metric) depends polynomially on the minimum `min of the `k . However, as the `k
get large, the invertibility of the linearized Einstein equation deteriorates logarithmically
in the maximum `max of the `k . So in the case of one cusp `min = `max and thus the
accuracy of the gluing increases more rapidly than the invertibility deteriorates. But if
Mhyp has more than one cusp and `min, `max are not sufficiently controlled with respect to
one another, then this consideration fails. In [And2], Anderson sketches an argument how
to get around this issue by looking at certain moduli spaces of solutions of a modified
Einstein equation. In this paper, we will be able to deal with the problems that arise in
this multiple cusp case and we will give a complete proof of Theorem 1.1. In fact, our
argument will be more elementary and we find it a more natural way of looking at the
problem.

The idea behind our proof is that the reason for the bad invertibility of the linearized
Einstein equation lies in certain variations of the metric (so called trivial Einstein varia-
tions) which correspond to a change of the moduli of the cross-sectional tori of the cusps.
It will turn out that with respect to some cleverly chosen norms (see Section 4), which
treat these trivial Einstein variations separately, the invertibility of the linearized Einstein
equation becomes in fact independent of `max (see our Proposition 5.1 as opposed to
Proposition 3.2 in [And2]). However, these new norms make it necessary to reprove the
inverse function theorem in order to make it applicable to our setting (see Section 5).
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Another difference between our proof and Anderson’s is that we have replaced the
proof of Lemma 3.4 in [And2], which used to involve the theory of the moduli spaces of
conformally compact Einstein metrics, by an elementary argument which even yields a
slight generalization.

We remark that it still remains an interesting question whether the constant L in Theo-
rem 1.1 can be chosen independent of the volume ofMhyp. Hodgson and Kerckhoff [HK]
could confirm this in dimension 3 using algebraic techniques.

The paper is organized as follows: In Section 2, we will review some basic facts which
were also used in [And2]. Section 3 contains a brief recapitulation of the construction of
the almost Einstein metric as described in [And2]. In sections 4 to 6 we carry out the main
argument. In order to keep these chapters concise, we will defer most of the technical
calculations to Sections 7 and 8.

2. Preliminaries

2.1. Hyperbolic manifolds

We recall the thick-thin decomposition for hyperbolic manifolds.

Theorem 2.1. There is a constant µn > 0, the Margulis constant, such that the following
holds: If Mn

hyp is a finite volume hyperbolic manifold then Mhyp can be decomposed into
a thin part Mthin and a thick part Mthick with Mhyp = Mthin ∪̇Mthick such that:

• inj ≥ µn on Mthick and Mthick is relatively compact in Mhyp.
• Mthin is a finite union of connected open sets N1, . . . , Np and N ′1, . . . , N

′

p′
where

– the Nk are cusps of the form [0,∞) × (T n−1/0k) for finite subgroups 0k <

Isom T n−1 with a warped product metric

ghyp = ds
2
+ e−2sgflat,T n−1/0k

; (2.1)

in the case in which 0k = {1}, we call Nk standard;
– the N ′k are covered by cylindrical neighborhoods around geodesics in hyperbolic

space.

Furthermore, we can choose the Nk such that their boundaries are images of horo-
spheres under the universal covering projection and inj = µn at some point on ∂Nk . If
Nk is standard this implies that inj = µn on ∂Nk .

In every dimension, diamMthick is bounded from above by a constant which only depends
on an upper bound on volMhyp and in dimension n ≥ 4, this is even true for the diameter
of Mthick ∪N

′

1 ∪ · · · ∪N
′

p′
= Mhyp \N1 ∪ · · · ∪Np.

We can compute the volume of the cusps in terms of the area of their boundary surface:

Lemma 2.2. There is a constant ηn such that for all cusps Nk we have

volNk = ηn vol ∂Nk.

Proof. This can be checked easily using (2.1). ut
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So a bound on the volume ofMhyp gives us a bound on the volume of the ∂Nk . Since ∂Nk
lies in the thick part, we have a bound on the injectivity radius of ∂Nk (which is slightly
larger than µn since ∂Nk is not totally geodesic). The next lemma shows that in fact we
get a bound on the diameter of ∂Nk from an upper volume bound on Mhyp. This implies
furthermore that the tori that can occur as cusp cross-sections of a hyperbolic manifold
with a given volume bound form a bounded subset in the moduli space of flat tori.

Lemma 2.3. For every V < ∞ and ι > 0 there is a d(n, V, ι) < ∞ such that for any
flat torus T n−1 we have

vol T n−1 < V and inj T n−1 > ι ⇒ diam T n−1 < d.

Proof. Let γ : [0, l] → T n−1 be a minimizing geodesic. Then the balls Bι(γ (ι)),
Bι(γ (3ι)), . . . are pairwise disjoint and have volume ωn−1ι

n−1. So

l < 2
(

V

ωn−1ιn−1 + 1
)
ι. ut

2.2. The Einstein operator

For any symmetric bilinear form h and any 1-form α on a Riemannian manifold (M, g)
we define the divergence and its formal conjugate by (ek is a local orthonormal frame
field)

divg(h) = −
n∑
i=1

(∇eih)(ei, ·), (div∗g α)(X, Y ) =
1
2 ((∇Xα)(Y )+ (∇Yα)(X)).

Observe that div∗g α =
1
2Lα]g. Let h be a bilinear form. We can express the derivative of

the Ricci curvature in the direction of h by (for a computation see [Top, Sec. 2.3])

d Ricg(h) = − 1
24Lh− div∗g(divg h+ 1

2 d trg h).

Here (4Lh)(X, Y ) = (4h)(X, Y )+ 2R(h)(X, Y )− h(Ric(X), Y )− h(X,Ric(Y )) is the
Lichnerowicz Laplacian and R(h)(X, Y ) = trh(R(·, X)Y, ·). Since computing the Ricci
tensor is a diffeomorphism invariant operation, we have, for any 1-form α,

d Ricg(div∗g α) =
1
2Lα] Ricg . (2.2)

Thus d Ricg is not an elliptic operator. In order to make it elliptic, we have to add an extra
term: Let g be an arbitrary fixed background metric on M . We define

9g : {g ∈ C∞(M;Sym2 T
∗) : g > 0} → C∞(M;Sym2 T

∗)

by
9g(g) := Ricg + div∗g(divg g + 1

2 d trg g).

Its derivative at g is
(d9g)g(h) = − 1

24Lh,
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hence elliptic. For our purposes we define the Einstein operator

8g : {g ∈ C∞(M;Sym2 T
∗) : g > 0} → C∞(M;Sym2 T

∗)

by
8g(g) = 9g(g)+ (n− 1)g.

We have

(d8g)g(h) = − 1
24Lh+ (n− 1)h

=
1
2 (−4h− 2R(h)+ Ric ◦h+ h ◦ Ric+2(n− 1)h).

Set Lg := 2(d8g)g and call elements in the kernel of Lg Einstein variations. Using the
Weitzenböck formula, we can express this linear operator as

Lgh = (div∗ div+ d∗d)h− R(h)+ 1
2 Ric ◦ h+ 1

2h ◦ Ric+2(n− 1)h

where d : C∞(M;Sym2 T
∗) → C∞(M;32T

∗
⊗ T ∗) and its formal conjugate d∗ :

C∞(M;32T
∗
⊗ T ∗)→ C∞(M;Sym2 T

∗) are defined by

(dh)(X, Y,Z) = (∇Xh)(Y, Z)− (∇Yh)(X,Z),

(d∗t)(X, Y ) = − 1
2

n∑
i=1

((∇ei t)(ei, X, Y )+ (∇ei t)(ei, Y,X)).

If g is Einstein with Ricg = −(n− 1)g, we have

Lgh = −4h− 2R(h) = (div∗ div+ d∗d)h− R(h)+ (n− 1)h.

Tracing this equation gives us

trLgh = ∇∗∇ trh+ 2(n− 1) trh. (2.3)

If g is hyperbolic of constant sectional curvature −1, we get

Lgh = −4h− 2h+ 2(trg h)g = (div∗ div+ d∗d)h+ (trh)gg + (n− 2)h. (2.4)

Lemma 2.4. If M is closed and Ricg < 0, then 8g(g) = 0 implies Ricg = −(n− 1)g.

Proof. This lemma can be found in [Biq1] and [And2, Lemma 2.1]. We copy the proof
from the latter source since we need a variation of the argument later on. Let βg(h) :=
divg h+ 1

2 d trg h be the Bianchi operator. Applying βg to 8g(g) = 0 yields

0 = βg(8g(g)) = βg div∗g βg(g) =
1
2 (∇
∗
∇βg(g)− Ricg(βg(g))). (2.5)

So βg(g) = 0 and the claim follows. ut

Thus, in order to construct Einstein metrics, it suffices to look for zeros of 8g .
A similar result to Lemma 2.4 holds in the differential sense:
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Lemma 2.5. If (M, g) is a complete Einstein manifold and h a symmetric bilinear form
such that |h|(x), |∇h|(x)→ 0 for x →∞, then Lgh = 0 implies

d Ricg(h) = −(n− 1)h, divg h = 0, trg h = 0.

Proof. The proof is the same as in [And1, Lemma 3.6]. Differentiate (2.5) with respect
to g to find

0 = βgLgh = ∇∗∇βgh+ (n− 1)βgh. (2.6)

So βgh = 0. Moreover, by (2.3) we conclude trh = 0. ut

Observe that conversely, not every Einstein variation is divergence or trace free.

2.3. The hyperbolic cusp

We introduce a representation for the metric ghyp on a hyperbolic cusp which is different
from (2.1): Consider the coordinates (r, x2, . . . , xn) on R+ × Rn−1 and the hyperbolic
metric

ghyp = r
−2dr2

+ r2(dx2
2 + · · · + dx2

n). (2.7)

Note that in these coordinates, ghyp is not conformally equivalent to the Euclidean metric
(as opposed to the coordinates that arise after the transformation r 7→ 1/r). Obviously,
the metric is invariant under the action by Euclidean isometries on the last factor. Now
every hyperbolic cusp is the quotient of (R+ × Rn−1, ghyp) under a discrete subgroup of
those isometries.

We will be interested in Einstein deformations of the metric ghyp which are invariant
by the group Rn−1 of Euclidean tranformations on the last factor. One type of deformation
will be very essential: Let uij be a symmetric (n − 1) × (n − 1) matrix indexed by
i, j = 2, . . . , n. Then if uij > −δij ,

r−2dr2
+ r2(dx2

2 + · · · + dx2
n + uijdxidxj )

is isometric to ghyp, hence it is also Einstein. We will denote this metric by ghyp + u.
It can be checked (e.g. using (2.3)) that the equation 8ghyp(ghyp + u) = 0 is equivalent
to tr u = 0. Likewise, dropping the lower bound for uij and setting h = r2uijdxidxj ,
we find that Lghyph = 0 iff tr u = 0. We will call variations of this kind trivial Einstein
variations.

2.4. The black-hole metric

We recall the definition of the black-hole metric (MBH, gBH) as in [And2]. Introduce
coordinates (r, θ, x3, . . . , xn) on Rn = R2

× Rn−2. Here, (r, θ) denote polar coordinates
on the first factor such that r is running from r+ = 21/n−1 to ∞ and θ from 0 to β =
4π/((n− 1)r+). The black-hole metric is defined as

gBH = V
−1dr2

+ V dθ2
+ r2(dx2

3 + · · · + dx2
n)
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where
V (r) = r2

−
2
rn−3 .

Using the coordinate transformation r = r+ + 1
2 s

2, we obtain

gBH =
s2

V (r+ +
1
2 s

2)
ds2
+ s2V (r+ +

1
2 s

2)

s2 dθ2
+ (r+ +

1
2 s

2)2(dx2
3 + · · · + dx2

n).

Since V (r+ + 1
2 s

2)/s2
→

1
2 (n− 1)r+ as s → 0, we conclude that gBH is in fact smooth

at the origin. The sectional curvatures of gBH are

K12 = −1+
(n− 3)(n− 2)

rn−1 , K1i = K2i = −1−
n− 3
rn−1 , i ≥ 3,

Kij = −1+
2
rn−1 , i, j ≥ 3.

Furthermore, gBH is Einstein with RicgBH = −(n − 1)gBH. For n = 3 this metric is just
the standard hyperbolic metric in cylindrical coordinates.

Observe that away from the origin the metric gBH is asymptotic to the standard hy-
perbolic metric ghyp from Subsection 2.3. To be precise: The black-hole manifold minus
a large cylinder around the core Rn−2 is geometrically close to some subset of Hn/〈γ 〉

where γ is a parabolic transformation. Taking the hyperbolic metric ghyp as a background
metric and identifying θ with x2, we find

gBH − ghyp = (V
−1(r)− r−2)dr2

+ (V (r)− r2)dx2
2

= 2r−n+1 r2

V (r)
· r−2dr2

− 2r−n+1
· r2dx2

2 .

From this, we can conclude |∇m(gBH − ghyp)| = O(r
−n+1) for all m ≥ 0.

We analyze the behavior of this metric under the addition of small trivial Einstein
deformations. Let uij (i, j = 2, . . . , n) be a traceless symmetric (n− 1)× (n− 1) matrix
and set

gBH + u = gBH + r
2uijdxidxj

where we set x2 = θ . Note that gBH + u is only smooth away from the origin. By the
closeness of gBH to ghyp we find, for sufficiently small u and say r > r+ + 1,

8gBH(gBH + u) = |u|O(r
−n+1) and LgBHu = |u|O(r

−n+1). (2.8)

Since we will need it later, we mention the following bound: Let u be small and u′ be
another traceless symmetric (n− 1)× (n− 1) matrix. Then

|(d8gBH)gBH+u(u
′)− (d8gBH)gBH(u

′)| = |u| |u′|O(r−n+1). (2.9)

The same decay holds for all higher covariant derivatives of the left hand side.
It will be useful later to discuss the geometric quotients of the black-hole metric. In

dimension n = 3 the isometries of (MBH, gBH) are the isometries of hyperbolic space.
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For n > 3, all isometries leave the topological splitting MBH = R2
× Rn−2 and the

coordinate r invariant, so they act as a rotation or reflection in the origin on the R2 factor
and as a Euclidean translation on the Rn−2 factor.

Let T n−1 be an arbitrary flat torus and σ ⊂ T n−1 a simple closed geodesic. Given
these data, we will now construct a Riemannian manifold with boundary N̂ = N̂T n−1,σ

such that:

(i) N̂ is diffeomorphic to a solid torus D2
× T n−2.

(ii) The boundary ∂N̂ is isometric to the given T n−1.
(iii) Denote by MBH(r ≤ R) the part of MBH on which r ≤ R. Then there is a group of

isometries 0 of MBH and a number R > 0 such that N̂ = MBH(r ≤ R)/0.
(iv) All isometries of 0 keep the splitting MBH = R2

× Rn−2 and the coordinate r
invariant, hence T n−1 ∼= ∂N̂ = MBH(r = R)/0.

(v) There is an isometric identification of MBH(r = R)/0 with T n−1 that sends the
meridional loop MBH(r = R, x3 = · · · = xn = 0)/0 to σ .

We will later use N̂ to fill in the truncated cusps.
The manifold N̂ is constructed as follows: Since V : [r+,∞)→ [0,∞) is invertible,

we can find an R > 0 such that V (R) = (`(σ )/β)2. Then MBH(r = R) ∼= S
1(`(σ )) ×

Rn−2. Consider the cyclic subgroup 〈[σ ]〉 < π1(T
n−1) and denote by T̃ → T n−1 the

corresponding cover. Obviously, σ ⊂ T n−1 can be lifted to a closed geodesic loop σ̃ ⊂ T̃ .
From this we conclude that there is an isometric identification of MBH(r = R) with T̃
such that the loop MBH(r = R, x3 = · · · = xn) is sent to σ̃ . Consider now the group of
deck transformations 0 of T̃ → T n−1. Its action on MBH(r = R) ∼= T̃ can be uniquely
continued to an isometric action on MBH and by the lifting property of σ we know that
this continuation is even fixed point free. Hence MBH/0 is smooth, and the manifold
N̂ := MBH(r ≤ R)/0 satisfies conditions (i)–(v) above.

We remark that the image of the core Rn−2 under the quotient map MBH → MBH/0

is a torus T̂ n−2
= r−1(r+) which we call the core torus. Furthermore, all level sets

r−1(r ′) for r ′ > r+ are diffeomorphic to T n−1 and we can check that (r ′)−1 diam r−1(r ′)

is an increasing function in r ′ (here diam denotes the intrinsic diameter).

3. The construction process

We will briefly explain how the approximate Einstein metric on the manifold Mσ is con-
structed. Recall that we are given simple closed geodesics σk inside the tori Tk ⊂ Mhyp
which bound the cusps Nk , and that inj = µn. In dimension 3 it is also important to
choose the N ′k such that on their boundary tori T ′k we also have inj = µn.

As mentioned in Subsection 2.4, we can find parameters Rk as well as lattices 0k <
IsomMBH such that the N̂k := N̂Tk,σk = MBH(r ≤ Rk)/0k are topological solid tori
with boundary isometric to Tk and such that the σk correspond to meridians. Set Rmin :=
minRk and observe that Rmin →∞ as `min →∞.

If we glue together the components Mhyp \
⋃p

k=1Nk and N̂k , we obtain the mani-
fold Mσ . We can endow Mσ with an almost Einstein metric gσ in the following sense (to
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simplify notation, we will denote this metric by gσ rather than the final Einstein metric):
gσ equals ghyp on the first component and gBH on the N̂k except on the tubular neighbor-
hoods

⋃p

k=1 B1Tk ∩ N̂k of radius 1 around the Tk where an interpolation between ghyp
and gBH is taking place. Thus gσ satisfies the Einstein equation on the complement of⋃p

k=1 B1Tk ∩ N̂k whereas on
⋃p

k=1 B1Tk ∩ N̂k the quantity Ricgσ +(n− 1)gσ and hence
8gσ (gσ ) is very small. To be precise: for any m there is a Cm such that using the Cm,α

norms defined in Section 4 below, we have

‖Ricgσ +(n− 1)gσ‖m,α < CmR
−n+1
min and ‖8gσ (gσ )‖m,α < CmR

−n+1
min .

Note that in dimension n = 3, the parts N ′k are already isometric to N̂ ′k = N̂T ′k ,σ ′k for
certain loops σ ′k ⊂ T

′

k .
For further details of this construction we refer to [And2].

4. Uniform norms on Mσ

In the following let L := Lgσ and fix some m ≥ 2 and 0 < α < 1. We will further
fix an upper volume bound on Mhyp and call all constants uniform which only depend
on this bound, but not on Mhyp or σ . Observe that the Riemannian manifolds (Mσ , gσ ),
as constructed in the last section, satisfy the following uniform geometric bounds: The
conjugate radius is uniformly bounded from below by some positive constant 2ζ and
there are uniform bounds Cm such that ‖∇mR‖ < Cm.

Let h be a symmetric bilinear form onMσ and x ∈ Mσ . Pull back the bundle Sym2 T
∗

and its section h to the universal cover B̃ζ (x) of Bζ (x). Choose exponential coordinates
on B̃ζ (x) and trivialize Sym2 T

∗ by parallel transport. We can now view h as a vector-
valued function on a ball Bζ (0) ⊂ Rn. Fix the constant ζ once and for all and define the
local Hölder (semi)norm of h at x by this representation:

‖h‖m,α;x := ‖h|Bζ (x)‖m,α.

We note that we have Schauder estimates for these seminorms:

‖h‖m,α;x ≤ C sup
x′∈Bζ (x)

(‖Lh‖m−2,α;x′ + ‖h‖0;x′) (4.1)

such that C is a uniform constant.
Using these seminorms it is now easy to define the global Hölder norm by

‖h‖m,α := sup
x∈Mσ

‖h‖m,α;x .

We will need another norm that guarantees a certain decay away from the thick part
and the core tori. We therefore introduce a weight function W (or rather the inverse of a
weight function) on Mσ such that for n > 3,

W =

{
(r/Rk)

0.1
+ r−0.1 on N̂k,

1 on Mσ \
⋃p

k=1 N̂k.
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In dimension 3 we also choose the weight (r/R′k)
0.1
+ r−0.1 on the N ′k . The function W

is not continuous at the Tk . However, this discontinuity will not be essential since the
jump is between 1 and 1 + R−0.1

k and Rk > r+. On each N̂k the weight function W
attains its minimum at r = R

1/2
k . For later use, choose points ck ∈ N̂k(r = R

1/2
k ) (and

c′k ∈ N
′

k(r = (R
′

k)
1/2) in dimension 3). They lie approximately in the centers of the N̂k .

Set
‖h‖m,α;∗ := sup

x∈Mσ

W−1(x)‖h‖m,α;x .

It is immediate that we can derive uniform Schauder estimates for the norms ‖ · ‖m,α and
‖ · ‖m,α;∗ from (4.1):

‖h‖m,α ≤ C(‖Lh‖m−2,α + ‖h‖0), ‖h‖m,α;∗ ≤ C(‖Lh‖m−2,α;∗ + ‖h‖0;∗).

Finally, we have to define a more complicated norm that guarantees decay towards
some trivial Einstein variation: Let ρ1, . . . , ρp be cutoff functions onMσ such that ρk ≡ 1
on N̂k \ (B1Tk ∪ B2T̂

n−2
k ) and ρk ≡ 0 on Mσ \ N̂k and B1T̂

n−2
k where T̂ n−2

k is the core
torus of N̂k . We may assume that the ρk are constructed in such a way that they satisfy
some universal Cm bound for each m. Let u1, . . . , up be trivial Einstein variations of
the hyperbolic cusp metric which we assume to be defined on the corresponding N̂k .
Represent h by

h = h̄+

p∑
k=1

ρkuk (∗)

and define

‖h‖m,α;∗∗ := inf
h̄,u1,...,up
satisfy (∗)

(
‖h̄‖m,α;∗ +

p∑
k=1

|uk|
)

where we use an arbitrary uniform norm on the (finite-dimensional) space of trivial Ein-
stein deformations. In dimension 3 we have to alter the definition in order to also consider
trivial Einstein variations u′k on the N ′k . Observe that since W−1 > c > 0 we have, for
some uniform C,

C−1
‖h‖m,α ≤ ‖h‖m,α;∗∗ ≤ ‖h‖m,α;∗.

Lemma 4.1. We have the following uniform Schauder estimate for ‖ · ‖m,α;∗∗:

‖h‖m,α;∗∗ ≤ C(‖Lh‖m−2,α;∗ + ‖h‖0;∗∗). (4.2)

Note that the second norm is a ∗-norm.

Proof. We carry out the proof for n > 3 (for n = 3 we have to consider the N ′k as well).
Choose a decomposition h = h̄ +

∑p

k=1 ρkuk . From (2.8) we find that ‖Lρkuk‖m−2,α;∗
≤ C|uk|. Hence

‖Lh̄‖m−2,α;∗ ≤ ‖Lh‖m−2,α;∗ + C

p∑
k=1

|uk|.
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So by the Schauder estimate for ‖ · ‖m,α;∗ we find

‖h̄‖m,α;∗ ≤ C
(
‖Lh‖m−2,α;∗ +

p∑
k=1

|uk| + ‖h̄‖0;∗

)
;

hence the conclusion. ut

The following lemma gives us a tool to estimate the ‖ · ‖m,α;∗∗ norm:

Lemma 4.2. Let h be a symmetric bilinear form on Mσ . Choose uk such that
|(h − uk)(ck)| is minimal for each k and set h̄ = h −

∑p

k=1 ρkuk . In dimension 3 also
consider u′k such that |(h− u′k)(c

′

k)| is minimal. Then there is a uniform constant C such
that

‖h‖m,α;∗∗ ≤ ‖h̄‖m,α;∗ +

p∑
k=1

|uk| ≤ C‖h‖m,α;∗∗.

Proof. Assume again n > 3. Only the second inequality has to be shown. First observe
that since |(h− uk)(ck)| is minimal, we have (h− uk)(ck) ⊥ uk(ck) and hence

|uk(ck)| ≤ |h(ck)| ≤ C‖h‖m,α ≤ C‖h‖m,α;∗∗.

It remains to bound ‖h̄‖m,α;∗. Let h = h̄′ +
∑p

k=1 ρku
′

k be an arbitrary decomposition
of h analogous to (∗). We will show that

‖h̄‖m,α;∗ ≤ C
(
‖h̄′‖m,α;∗ +

p∑
k=1

|u′k|
)
.

Note that by the minimal choice of uk , we have |(uk−u′k)(ck)| ≤ |(h−u
′

k)(ck)|. We now
use

‖h̄‖m,α;∗ ≤ ‖h̄
′
‖m,α;∗ +

p∑
k=1

‖ρk(uk − u
′

k)‖m,α;∗

and bound the last term byC
∑p

k=1Mk|(uk−u
′

k)(ck)| ≤ C
∑p

k=1Mk|(h−u
′

k)(ck)|where

Mk = max
N̂k

W−1
= W−1(ck).

So if ρk(ck) = 1, then Mk|(h− u
′

k)(ck)| ≤ C‖h−
∑p

l=1 ρlu
′

l‖m,α;∗ = ‖h̄
′
‖m,α;∗. If not,

we have a uniform bound on Rk , hence on Mk and Mk|(h− u
′

k)(ck)| ≤ C‖h̄
′
‖m,α . ut
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5. Application of the inverse function theorem

We will use the following estimate on L−1 which we will prove in the next section:

Proposition 5.1. There are R0 = R0(n, V ) and 3 = 3(n, V ) <∞ such that whenever
volMhyp < V and Rmin > R0, then the operator L = Lgσ : Cm,α(Mσ ;Sym2 T

∗) →

Cm−2,α(Mσ ;Sym2 T
∗) is invertible and

‖h‖m,α;∗∗ ≤ 3‖Lgσ h‖m−2,α;∗

for any symmetric bilinear form h on Mσ .

Observe that there are different types of norms on both sides of this inequality. Thus
in order to construct a perturbation of gσ which is Einstein we cannot simply use this
estimate to strictly apply the inverse function theorem on Banach spaces. However, we
will show that the trivial Einstein deformations which make the difference between these
two norms, have a weak influence on the nonlinear term of the equation we want to solve.

We will now prove Theorem 1.1 assuming Proposition 5.1.

Proof of Theorem 1.1. We only consider the case n > 3. It will be clear how to adapt the
proof to the 3-dimensional case by considering the N ′k as well.

In the following we set M = Mσ , g = gσ , 8 = 8g and L = Lg .
Assume that Rmin > R0. We want to find h ∈ Cm,α(M;Sym2 T

∗) such that the
equation8(g+h) = 0 holds. It will then follow from elliptic regularity that h is actually
smooth. The equation is equivalent to the fixed point equation

h = 9(h) = h− L−18(g + h).

In order to solve this equation for large Rmin, it suffices to show that there is an ε =
ε(n, V ) > 0 such that 9 is 1

2 -Lipschitz with respect to the ‖ · ‖m,α;∗∗-norm on Bε =
{h ∈ Cm,α(M;Sym2 T

∗) : ‖h‖m,α;∗∗ < ε}. Then, assuming Rmin to be large enough,
we can achieve ‖9(0)‖m,α;∗∗ = ‖L−18(g)‖m,α;∗∗ ≤ 3‖8(g)‖m−2,α;∗ <

1
2ε and apply

Banach’s fixed point theorem.
For h0, h1 ∈ Bε and ht = (1− t)h0 + th1 we compute

‖9(h0)−9(h1)‖m,α;∗∗ ≤

∥∥∥∥∫ 1

0
L−1(L− d8g+ht )(h0 − h1) dt

∥∥∥∥
m,α;∗∗

≤ 3

∫ 1

0
‖(d8g − d8g+ht )(h0 − h1)‖m−2,α;∗ dt.

(Observe that the subscript of d8 now indicates the point at which the derivative is taken
rather than the background metric which we used to define 8.) Thus, it suffices to show
that for any h ∈ Bε and h′ ∈ Cm,α(M;Sym2 T

∗) we have

‖d8g(h′)− d8g+h(h′)‖m−2,α;∗ ≤ δ(ε)‖h
′
‖m,α;∗∗

for some universal δ(ε) with δ(ε)→ 0 as ε→ 0.
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Represent h = h̄+
∑p

k=1 ρkuk and h′ = h̄′ +
∑p

k=1 ρku
′

k where the uk, u′k are trivial
Einstein variations. Then

‖d8g(h′)− d8g+h(h′)‖m−2,α;∗

≤ ‖d8g(h̄′)− d8g+h(h̄′)‖m−2,α;∗ +

p∑
k=1

‖d8g(ρku′k)− d8g+h(ρku′k)‖m−2,α;∗.

The first term can be bounded by C‖h‖m,α‖h̄′‖m,α;∗ ≤ C′‖h‖m,α;∗∗‖h̄′‖m,α;∗. As for the
second term we have

‖d8g(ρku′k)− d8g+h(ρku′k)‖m−2,α;∗ ≤ ‖d8g(ρku′k)− d8g+ρkuk (ρku
′

k)‖m−2,α;∗

+ ‖d8g+ρkuk (ρku
′

k)− d8g+h̄+ρkuk (ρku
′

k)‖m−2,α;∗.

Now, since uk is a trivial Einstein variation, we can use (2.9) to bound the first term by
C|uk| |u

′

k|. The second term is bounded by C‖h̄‖m,α;∗|u′k|. We conclude

‖d8g(h′)−d8g+h(h′)‖m−2,α;∗ ≤ C‖h‖m,α;∗∗‖h̄
′
‖m,α;∗+C

p∑
k=1

(|uk| |u
′

k|+‖h̄‖m,α;∗|u
′

k|)

≤ C‖h‖m,α;∗∗‖h̄
′
‖m,α;∗ + C

(
‖h̄‖m,α;∗ +

∑
k

|uk|
)∑

l

|u′l |.

By an appropriate choice of h̄ and uk , the right hand side can be made arbitrarily close
to C‖h‖m,α;∗∗(‖h̄′‖m,α;∗ +

∑
l |u
′

l |), which in turn by a good choice of h̄′ and u′k can be
made arbitrarily close to C‖h‖m,α;∗∗‖h′‖m,α;∗∗ ≤ Cε‖h′‖m,α;∗∗. This proves the desired
bound and hence the theorem. ut

6. Estimates for L−1

This section is devoted to the proof of Proposition 5.1. For the sake of a clear exposition
of the main ideas we will defer most of the technical arguments to Sections 7 and 8. We
first establish a bound on the ‖ · ‖m,α-norm:

Lemma 6.1. There are R0 = R0(n, V ) and 3 = 3(n, V ) < ∞ such that when-
ever volMhyp < V and Rmin > R0, then the operator Lgσ : Cm,α(Mσ ;Sym2 T

∗) →

Cm−2,α(Mσ ;Sym2 T
∗) is invertible and

‖h‖m,α ≤ 3‖Lgσ h‖m−2,α;∗

for any symmetric bilinear form h on Mσ .

Proof. The proof is similar to that of [And2, Proposition 3.2]. Observe that in that propo-
sition the right hand side of the inequality reads3 logRmax‖Lgσ h‖m−2,α . In our case, we
do not need the logRmax factor, but have to make use of a stronger norm of Lgσ .
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Recall that we have the Schauder estimate

‖h‖m,α ≤ C(‖Lgσ h‖m−2,α + ‖h‖0)

where C is uniform. So it is enough to show that:

There are R0 = R0(n, V ),3
′
= 3′(n, V ) < ∞ such that whenever volMhyp < V

and Rmin > R0, we have
‖h‖0 ≤ 3

′
‖Lgσ h‖m−2,α;∗

for all symmetric bilinear forms h on any Mσ .

Assume that this statement is wrong. Then we can find a sequence of hyperbolic
manifoldsM i

hyp with basepoints yi ∈ M i
thick and volM i

hyp uniformly bounded from above
as well as a sequence σ i such that Rimin → ∞ and symmetric bilinear forms hi on
M i
= Mσ i such that for gi = gσ i , L

i
= Lgi and f i := Lihi ,

‖hi‖0 = 1, but ‖f i‖m−2,α;∗→ 0

as i →∞. So there are points xi ∈ M i such that |hi |(xi) > γ for some universal γ > 0.
The Schauder estimate gives us a uniform Cm,α-bound for the hi .

1◦ In the first step we show that there are sequences d i →∞ and wi → 0 such that
|hi | < wi on Bd i (y

i).
Consider an arbitrary subsequence of counterexamples. After passing to a subse-

quence again, the pointed Riemannian manifolds (M i, yi) Gromov–Hausdorff converge
to a pointed hyperbolic manifold (M∞hyp, y

∞) of finite volume. Furthermore, the hi sub-
converge to a symmetric bilinear form h∞ on M∞hyp such that L∞(h∞) = 0 (here L∞

= Lg∞hyp
).

Denote by (M∞hyp)
s the manifold obtained from M∞hyp by truncating its cusps at dis-

tance s from the basepoint y∞. Using Stokes’ theorem and (2.4), we find∫
(M∞hyp)

s

(|dh∞|2 + |divh∞|2 + (n− 2)|h∞|2 + (trh∞)2) =
∫
∂(M∞hyp)

s

Q(h∞,∇h∞)

where the right hand side goes to 0 as s →∞. So h∞ ≡ 0 and we conclude that for any
d we have |hi | → 0 uniformly on Bd(yi) for a subsequence. Since we started with an
arbitrary subsequence, this implies that for any d we have |hi | → 0 on Bd(yi) uniformly
for the whole sequence and hence the claim.

2◦ Next, we give an estimate for hi on the N̂ i
k (and N ′ik in dimension 3).

Choose coordinates (r, θ, x3, . . . , xn) on these components (to be precise on their
universal covers). Observe that N̂ i

k \ B1(T
i
k ) carries the exact black-hole metric. We have

|f i | < ‖f i‖m−2,α;∗W . Since dist(yi, T ik ) < diamM i
thick is uniformly bounded, we find

that |hi | < wi → 0 around the boundaries of the N̂ i
k .
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Consider the restriction of hi and f i to some N̂ i
k and take their average under the

S1
× Rn−2-action, i.e. let T n−1(r ′) := N̂ i

k(r = r ′) be the cross-sectional torus at the
coordinate r = r ′ and set

ĥist (r) :=
1

vol T n−1(r)

∫
T n−1(r)

hist .

Analogously define f̂ i . Obviously, ĥi and f̂ i are S1
× Rn−2 invariant and Li ĥi = f̂ i .

Furthermore, still

|f̂ i | < ‖f i‖m−2,α;∗W = ‖f
i
‖m−2,α;∗[(r/Rik)

0.1
+ r−0.1]

and since ∇hi is uniformly bounded and diam T n−1(r) < Cr/Rik , we conclude

|̂hi − hi | < Cr/Rik on T n−1(r).

We can now apply Proposition 8.1 to conclude

|hi | < C(wi + ‖f i‖m−2,α;∗ + r
−n+1.1

+ r/Rik). (6.1)

3◦ We can make the following conclusions on xi : From 1◦ we already know that
dist(yi, xi)→∞. This implies that xi eventually lies in some N̂ i

k (orN ′ik in dimension 3)
and r(xi)/Rik → 0. So by (6.1) we conclude that r(xi) has to stay bounded. This means
that the xi have to stay within bounded distance to some core tori (T̂ n−2

k )i of N̂ i
k (or

of N ′ik ).
So there is a sequence d ′i such that the universal covers (B̃

d ′i
(xi), xi) Gromov–

Hausdorff subconverge to the black-hole metric (MBH, x
∞) and the hi subconverge to

some h∞ on MBH which satisfies L∞h∞ = 0 and h∞(x∞) 6= 0. Moreover, since the
pointed manifolds (N̂ i

k, x
i) collapse to a ray, h∞ is invariant under the S1

×Rn−2-action.
From (6.1) we also conclude that |h∞| < Cr−n+1.1.

We can now use Proposition 8.3 to find that h∞ ≡ 0, a contradiction. ut

Finally, we can use Lemma 6.1 to refine our result and prove Proposition 5.1:

Proof of Proposition 5.1. Analogously to the proof of Lemma 6.1, we assume that the
statement is wrong and that we have sequences M i, σ i, hi such that Rimin →∞ and

‖hi‖0;∗∗ = 1, but ‖f i‖m−2,α;∗→ 0

for f i = Lihi (we also used (4.2) here).
By Lemma 6.1 we have ‖hi‖0 → 0. We now change the hi by certain trivial Einstein

variations of the N̂ i
k (or N ′ik in dimension 3): Let uik be those trivial Einstein deformations

as obtained in Lemma 4.2 and set h̄i = hi −
∑pi

k=1 ρ
i
ku
i
k . Then since ‖hi‖0 → 0 we have

|uik| → 0 as i →∞ and by Lemma 4.2,

‖h̄i‖∗∗;0 ≤ ‖h̄
i
‖0;∗ ≤ C‖h̄

i
‖0;∗∗
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for some uniform constant C. So we conclude that 1/2 < ‖h̄i‖0;∗∗ < 3/2 for large i and
hence we have the uniform estimate c < ‖h̄i‖0;∗ < C. However, we still have ‖h̄i‖0 → 0.
Finally, setting f̄ i = Li h̄i , we get ‖f̄ i‖m−2,α;∗→ 0.

By the lower bound on ‖h̄i‖0;∗, we can find points xi ∈ M i such that

W−1(xi)|h̄i |(xi) > γ > 0.

Since ‖h̄i‖0 → 0, we conclude W(xi) → 0. So the xi eventually lie in certain N̂ i
ki

(or N ′iki ), R
i
ki
→ ∞ and the distance of the xi to both T i

ki
as well as (T̂ n−2

ki
)i goes to

infinity. So there is a sequence d ′i such that the universal covers (B̃
d ′i
(xi), xi) converge

to hyperbolic space (Hn, x∞) on which we can choose coordinates (r∞, x2, . . . , xn) with
r∞(x∞) = 1 and r/r i → r∞ where r i := r(xi) (observe that we choose those coordi-
nates in which the hyperbolic metric takes the form (2.7)). In order to analyze the limiting
behavior of h̄i , we have to distinguish three cases:

1◦ For a subsequence we have r i(Ri
ki
)−1/2

→∞.
Then we have the (local) convergence(

Ri
ki

r i

)0.1

W =

(
r

r i

)0.1

+

(
Ri
ki

(r i)2
·
r i

r

)0.1

→ (r∞)0.1.

So (Ri
ki
/r i)0.1h̄i is locally bounded and (Ri

ki
/r i)0.1f̄ i → 0 locally. Hence the h̄i sub-

converge to some nonzero h̄∞ on Hn which satisfies |h̄∞| < C(r∞)0.1 and L∞h̄∞ = 0
(observe here that by Schauder estimates, we have uniform local bounds on some deriva-
tives of the h̄i). Since the sequence (B

d ′i
(xi), xi) collapses to a line, h̄∞ must be invariant

under the group Rn−1 acting on the last coordinates. We can now use Proposition 7.1 to
obtain a contradiction.

2◦ For a subsequence we have r i(Ri
ki
)−1/2

→ 0.
This time we have the convergence

(r i)0.1W =

(
(r i)2

Ri
ki

·
r

r i

)0.1

+

(
r

r i

)−0.1

→ (r∞)−0.1.

Now we can use the same arguments as in 1◦ to construct h̄∞ on Hn which obeys the
bound |h̄∞| < C(r∞)−0.1. This also contradicts Proposition 7.1.

3◦ For a subsequence we have r i(Ri
ki
)−1/2

→ q where 0 < q <∞.
This means that the points xi stay within bounded distance to the ci

ki
. Let c∞ ∈ Hn

be one of their limit points. We have the convergence

(r i)0.1W =

(
(r i)2

Ri
ki

·
r

r i

)0.1

+

(
r

r i

)−0.1

→ q0.2(r∞)0.1 + (r∞)−0.1.

Hence the same reasoning as in 1◦ yields a nonzero h̄∞ which satisfies |h̄∞| <
C((r∞)0.1 + (r∞)−0.1). So by Proposition 7.1, h̄∞ must be trivial.

However, by the construction of the h̄i we get |(h̄∞)(c∞)| ≤ |(h̄∞− u)(c∞)| for any
trivial Einstein variation u, contradicting the fact that h̄∞ is nonzero. ut
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7. Einstein variations of the hyperbolic cusp metric

Consider the hyperbolic metric

ghyp = r
−2dr2

+ r2(dx2
2 + · · · + dx2

n)

on R+ × Rn−1 and the parabolic isometric action of Rn−1 by translations on the second
factor.

Set L := Lghyp . We will prove the following result:

Proposition 7.1. Let h be a symmetric bilinear form on Hn that is invariant under the
Rn−1-action. Assume furthermore that |h| < r0.1

+ r−0.1. Then Lh = 0 implies that h is
trivial. Thus, if even |h| < r±0.1, then h ≡ 0.

Proof. We assume |h| < r0.1
+ r−0.1. Express h = hijdxidxj where we set x1 = r . Then

the hij only depend on r and the bound on |h| implies

r2
|h11|(r), |h1i |(r), r−2

|hij |(r) < r0.1
+ r−0.1

for i, j > 1.
The equation Lh = 0 writes out as (see (2.4))

4h+ 2h− 2(trh)ghyp = 0,

which implies

r2(r2h11)
′′
+ nr(r2h11)

′
− 2(n− 1)(r2h11) = 0, (I)

r2h′′1i + nrh
′

1i − nh1i = 0, (II)

r2(r−2hij )
′′
+ nr(r−2hij )

′
− 2δij

n∑
k=2

r−2hkk = 0. (III)

The trace of h satisfies (see (2.3))

4 trh− 2(n− 1) trh = 0.

In terms of coordinates, this implies, for q(r) = trh(r),

r2q ′′ + nrq ′ − 2(n− 1)q = 0. (IV)

The solutions of (I) and (IV) are both of the form A1r
γ1+A2r

γ2 with γ1/2 =
1
2 (−n+1±

√
n2 + 6n− 7). Hence by the bound on |h| we get r2h11 ≡ trh ≡ 0 and plugging this

into (III) gives
r2(r−2hij )

′′
+ nr(r−2hij )

′
= 0.

Solutions of this equation are of the form hij (r) = A1r
2
+A2r

−n+3 and thus hij = uij r2

(for i, j > 1).
Finally, (II) implies h1i(r) = A1r + A2r

−n, hence h1i ≡ 0 (for i > 1). ut



904 Richard H. Bamler

8. Variations of the black-hole metric

Consider the black-hole metric

g = gBH = V
−1dr2

+ V dθ2
+ r2(dx2

3 + · · · + dx2
n)

on MBH ≈ R2
× Rn−2. Set L = Lg . Recall that g is asymptotic to the hyperbolic metric

ghyp = r
−2dr2

+ r2(dθ2
+ dx2

2 + · · · + dx2
n)

for r →∞ in the sense that |∇m(g − ghyp)| = O(r
−n+1). That is why we can estimate

|Lgh− Lghyph| . O(r−n+1)|h| +O(r−n+1)|∇h| +O(r−n+1)|∇2h|

for r →∞.
In the following we will analyze Einstein variations of gBH or variations which are

almost Einstein. We will always assume that these variations are invariant under the
S1
× Rn−2-action. When we compare gBH with ghyp, this action becomes the parabolic

Rn−1-action.
We remark that Olivier Biquard has independently found elementary proofs of some

of the following results ([Biq2]).

Proposition 8.1. Let R > r+ and assume that on MBH(r ≤ R) we have Lh = f for
S1
× Rn−2 invariant h and f satisfying |h|(r) < 1 and

|f |(r) < α

[(
r

R

)0.1

+ r−0.1
]

for all r ≤ R and some α < 1. Then

|h|(r) < C(|h|(R)+ α + r−n+1.1)

for some universal constant C (which is independent of R).

We will need a technical lemma. Note that from now on whenever we use the notation
O(ϕ(r)) for a function ϕ(r), we indicate an error term whose absolute value is always
(not only for r →∞) bounded above by Cϕ(r) where C is a universal constant.

Lemma 8.2. Let a, b ∈ R and 0 ≤ B1, B2 ≤ ∞. Consider a solution f : (B1, B2)→ R
of the ODE

r2f ′′(r)+ arf ′(r)+ bf (r) = ϕ(r)

for some ϕ : (B1, B2) → R. Assume that a, b are chosen in such a way that the corre-
sponding homogeneous ODE (for ϕ ≡ 0) has the general solution f (r) = A1r

γ1+A2r
γ2

with γ1, γ2 ∈ R and γ1 < γ2.
Now, suppose ϕ(r) =

∑p

k=1O(r
δk ) where we assume δk 6= γ1, γ2 for each k. Then

f (r) = A1r
γ1 + A2r

γ2 +

p∑
k=1

O(rδk ).

Here the coefficients in O(rδk ) only depend on a, b, δ and the coefficients in the error
terms of ϕ.
Proof. The lemma follows by simple integration. ut
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Proof of Proposition 8.1. We assume from now on that |h|(r) < 1 and R > r++2. Using
the Schauder estimates we find that this implies |∇ lh| < Cl , so

|Lgh− Lghyph| = O(r
−n+1) (8.1)

for r > r+ + 1. In coordinates, the bound on h implies that

r2
|h11|(r), |h1i |(r), r−2

|hij |(r) < C

where i, j > 1 and r > r+ + 1 for the first quantity and r ≥ r+ for the rest.
We will use the equations from the last section to derive a better estimate on h. Set

H = |h|(R).
We first show how to bound r2h11. By equation (I) of the last section and (8.1) it

satisfies

r2(r2h11)
′′
+ nr(r2h11)

′
− 2(n− 1)(r2h11) = r

2f11 +O(r
−n+1),

where r2f11(r) = O(α(r/R)
0.1)+O(αr−0.1) for r > r+ + 1. Lemma 8.2 gives us

r2h11(r) = A1r
γ1 + A2r

γ2 +O(α(r/R)0.1)+O(αr−0.1)+O(r−n+1),

where γ1/2 =
1
2 (−n + 1 ±

√
n2 + 6n− 7). Observe that γ1 > 0.1 and γ2 < −n + 1.

Since r2h11 and the error terms above are bounded for say r ∈ (r+ + 1, r+ + 2), we
conclude that |A2| < C for some universal C. For r = R, we furthermore obtain |A1| <

CHR−γ1 +O(Rγ2−γ1)+O(αR−γ1)+O(R−n+1−γ1). Thus

r2
|h11|(r) < C[H(r/R)γ1+α(r/R)0.1+αr−0.1

+r−n+1] < C(H +α+r−n+1). (8.2)

Using (IV) from the last section, we conclude that the same bound holds for trh. More-
over, we can estimate h1i for i > 1 by the same method (this time we have to use (II) and
the fundamental solutions are r and r−n).

Using the first estimate from (8.2), we can now bound r−2hij for i, j > 1. By (III)
we obtain, for r > r+ + 1,

r2(r−2hij )
′′
+ nr(r−2hij )

′
= O(H(r/R)γ1)+O(α(r/R)0.1)+O(αr−0.1)+O(r−n+1).

Thus using O(r−n+1) < O(r−n+1.1), we conclude from Lemma 8.2 that

r−2hij (r) = A1+A2r
−n+1
+O(H(r/R)γ1)+O(α(r/R)0.1)+O(αr−0.1)+O(r−n+1.1).

As before, we find that |A2| < C and setting r = R yields |A1| < CH + O(H + α) +

O(R−n+1.1), so
r−2
|hij |(r) < C(H + α + r−n+1.1). ut

We will now prove the second result of this section.

Proposition 8.3. Let h be an S1
×Rn−2 invariant Einstein variation of gBH and assume

|h|(r)→ 0 for r →∞. Then h ≡ 0.
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We note that with a little more work, it is even possible to deduce that any S1
× Rn−2

invariant Einstein variation which is bounded is of the form

h = − tr u
n− 1
V rn−1 dr2

− tr u
V V ′

2r
dθ2
+ 2(tr u)r−n+3(dx2

3 + · · · + dx2
n)+ uij r

2dxidxj

for some symmetric (n− 2)× (n− 2) matrix uij indexed by i, j = 3, . . . , n.
Assume from now on that |h|(r)→ 0 as r →∞ and that Lh = 0. Using Proposition

8.1, we find that we even have |h|(r) < Cr−n+1.1. By Schauder’s estimates we can
deduce the same decay for all covariant derivatives of h.

Lemma 8.4. We have trh ≡ 0, divh ≡ 0 and hence d Ricg(h)+ (n− 1)h = 0.

Proof. This follows from the maximum principle applied to (2.3) resp. (2.6) and the fact
that trh and β(h) are decaying. ut

Lemma 8.5. We have h1i = hi1 ≡ 0 for all i ≥ 2.

Proof. Writing out the equation divh = 0 in terms of the hij gives for i ≥ 2

0 = −(divh)i = V h′1i + (V
′
+ (n− 2)V/r)h1i

The solutions of these ODEs behave like 1/(r − r+) for r → r+, so the h1i must be
constantly zero. ut

Now we will alter h by an infinitesimal diffeomorphism div∗g ξ for some 1-form ξ to
eliminate its 11 entry. Observe that by (2.2) for every 1-form ξ we have

d Ricg(div∗g ξ)+ (n− 1) div∗g ξ = 0

since g is Einstein. So for any 1-form ξ the bilinear form h + div∗g ξ will still be an
infinitesimal Einstein variation. However, we might lose the divergence or trace freeness.

Lemma 8.6. There is an S1
× Rn−2 invariant 1-form ξ = ξ1(r)dr such that for k =

h + div∗ ξ we have k1i = ki1 = 0 for i = 1, . . . , n and |k|(r) < C. Moreover, if k ≡ 0,
then ξ ≡ 0 and hence k ≡ h.

Proof. We compute

(div∗ ξ)11 = ξ
′

1 +
V ′

2V
ξ1,

(div∗ ξ)22 =
1
2VV

′ξ1,

(div∗ ξ)ii = rV ξ1 for i ≥ 3.

The remaining components are zero.
We now solve the ODE (div∗ ξ)11 = −h11. Observe that it is equivalent to (V 1/2ξ1)

′

= −V 1/2h11 and that V |h11| < Cr−n+1.1. Hence, the solution

ξ1(r) := −
1

V 1/2

∫ r

r+

V h11

V 1/2
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satisfies V 1/2(r)|ξ1|(r) ≤ C(r−r+)
1/2, which implies smoothness of ξ and boundedness

of div∗ ξ .
Now, if k ≡ 0, then trh ≡ 0 implies tr div∗ ξ ≡ 0 and thus

V ξ ′1 + (V
′
+ (n− 2)V/r)ξ1 = 0.

Hence ξ1(r) = CV
−1(r)r−n+2 which behaves like C

2(n−1)
1

r−r+
as r → r+, contradicting

the smoothness of ξ . ut

We will now show that k has a very simple form. In order to do this, we introduce a new
coordinate s = s(r) (the distance to the origin) with the property that s(r+) = 0 and
gBH = ds2

+ V (r(s))dθ2
+ r2(s)(dx2

3 + · · · + dx2
n). From now on we will only work in

the coordinate system (s, θ, x3, . . . , xn). Consider a metric ĝ of the form

ĝ(s) =

(
1 0
0 M(s)

)
.

The condition of being Einstein with Ricĝ = −(n − 1)ĝ is equivalent to the following
system of ODEs (see e.g. [Lin]):

(
√

detMM ′M−1)′ − 2(n− 1)
√

detM En−1 = 0, (I)

χn−2(M
′M−1)− 2(n− 2)(n− 1) = 0, (II)

where En−1 denotes the unit matrix of rank n − 1 and χn−2 the (n − 2)-th coefficient
of the characteristic polynomial, i.e. the elementary symmetric polynomial of degree 2 in
the eigenvalues. The prime denotes differentiation by s.

Now denote by M = diag(V (r(s)), r2(s), . . . , r2(s)) the matrix corresponding to
the black-hole metric g = gBH and denote the given Einstein variation corresponding
to k2≤i,j≤n by Ṁ = Ṁ(s). Then Ṁ is a variation Ṁ = Ṁ(s) of (I) and (II). We will
moreover abbreviate u =

√
detM and u̇ = (

√
detM)· = 1

2u tr(ṀM−1).

Lemma 8.7. u = A sinh (n − 1)s for some A > 0 and u̇ = Ȧu. This implies trg k =
tr Ṁ(M0)−1

≡ 2Ȧ.

Proof. Tracing (I) yields
u′′ − (n− 1)2u = 0

Since u(0) = 0, we get u = A sinh (n − 1)s and a variation of this equation gives u̇ =
Ȧ sin h(n−1)s+ Ḃ cosh(n−1)s. So 1

2 tr k = ȦA−1
+ ḂA−1 cosh(n−1)s/sinh (n−1)s.

Since tr k is bounded, we conclude Ḃ = 0 and therefore tr k ≡ const. ut

Now observe that by the symmetries xi →−xi (i ≥ 3), also the matrix

Ṁ⊥ :=


Ṁ22 −Ṁ23 · · · −Ṁ2n
−Ṁ32 Ṁ33 · · · Ṁ3n
...

...
. . .

...

−Ṁn2 Ṁn3 · · · Ṁnn
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corresponds to an Einstein variation. Moreover, we can easily see that the entries Ṁ23,

. . . , Ṁ2n are odd functions in s while all the other entries are even. So Ṁ is invariant
under the transformation ⊥ combined with s 7→ −s.

Lemma 8.8. Ṁ = QM where Q is a symmetric matrix with Q2i = Qi2 = 0 for i =
2, . . . , n. Hence Ṁ = Ṁ⊥ and Ṁ22 = 0.

Proof. A variation of (I) together with Lemma 8.7 gives

(sinh ((n− 1)s)(M ′M−1)·)′ = 0.

Hence
(M ′M−1)· =

1
sinh (n− 1)s

P

for some constant matrix P . Moreover, observe that

(M ′M−1)· = Ṁ ′M−1
−M ′M−1ṀM−1

= M(M−1Ṁ)′M−1. (8.3)

So (M ′M−1)· is mapped to −(M ′M−1)· under the transformation ⊥ combined with
s 7→ −s. Since sinh (n− 1)s is odd, this implies that P = P⊥, i.e. P is of block form

P =


P22 0 · · · 0
0 P33 · · · P3n
...

...
. . .

...

0 Pn3 · · · Pnn

 .
Since by (8.3) the lower block of (M ′M−1)· stays bounded for s → 0, we find that

the lower block of (sinh (n − 1)s)−1P must also stay bounded. Hence, the lower block
of P must be zero. Furthermore by (8.3) and trM−1Ṁ = tr ṀM−1

≡ 2Ȧ, we find
tr(M ′M−1)· = 0 and hence trP = 0. So P = 0 and we conclude using (8.3) again that
ṀM−1

= Q for some constant matrix Q.
Now again since the problem is symmetric with respect to the transformation ⊥ com-

bined with s 7→ −s and constant functions are even, we conclude that Q = Q⊥. Since
moreoverM22(s) = Q22V (r(s)), we conclude by smoothness at the origin thatQ22 = 0.

ut

We can now summarize the discussion above: Returning to the old coordinates
(r, θ, x3, . . . , xn), we have proven so far that h takes the form

h = − div∗ ξ + r2
n∑

i,j=3

uijdxidxj .

So h22 = −(div∗ ξ)22. By the equations from the proof of Lemma 8.6, we conclude from
the decay of h that V 1/2ξ1(r) < Cr−n+1.1, hence r−2

|(div∗ ξ)ii | < Cr−n+1.1 for i ≥ 3.
Together with |h| < Cr−n+1.1 this implies uij = 0 and thus k ≡ 0. Hence by Lemma 8.6
we have h ≡ 0. This concludes the proof of Proposition 8.3.
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