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Abstract. Grauert and Manin showed that a non-isotrivial family of compact complex hyperbolic
curves has finitely many sections. We consider a general moving enough family of high enough
degree hypersurfaces in a complex projective space. We show the existence of a strict closed subset
of its total space that contains the images of all its sections.

1. Introduction

Grauert [Gra-65] and Manin [Man-63] solved the Mordell conjecture for curves over
function fields. Lang generalised this statement in [Lang-86].

Conjecture (Lang’s conjecture over function fields). Let π : X → Y be a projective
surjective morphism of complex algebraic manifolds, whose generic fibre is of general
type. If π is not birationally isotrivial, then there is a proper subscheme of X that contains
the images of all sections of π .

Grauert’s proof can be read as a construction of first order differential equations satisfied
by all but a finite number of sections of the family π . First order differential equations are
also enough to deal with families of manifolds with ample cotangent bundles ([Nog-81],
[Mor-95]).

We implement this idea in higher dimensions with higher order differential equations,
in the case where the positivity assumption is made only for the canonical bundle. We
consider a family of hypersurfaces of Pn+1 parametrised by a curve C and given by a
section of an ample line bundle L = λ�OPn+1(d) on C × Pn+1:

X

π

��

ι // C × Pn+1

pr1
zzvvv

vvv
vvv

v

C

We will assume that the genus of C and the relative dimension n are at least 2. The degree
of the hypersurfaces in the family is the integer d. We will say that the family is moving
enough if deg λ is large. We prove
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Main Theorem. For a general moving enough family of high enough degree hypersur-
faces of a complex projective space, there is a proper algebraic subset of the total space
that contains the images of all its sections.

“General“ refers to the family being chosen outside a proper algebraic subset of the
parameter space. This assumption ensures in particular that the family is not birationally
isotrivial.

By Noether’s normalisation theorem and the primitive element theorem, every algebraic
manifoldX of dimension n defined over the field C(Y ) of rational functions on a connected
manifold Y is birational over C(Y ) to a (usually singular) hypersurface in Pn+1

C(Y ).
We point out that Noguchi [Nog-85] gave a proof of Lang’s conjecture when the

smooth members of the family are hyperbolic under the assumption that the smooth
part is hyperbolically embedded in the total space. Even though Kobayashi conjectured
that a generic hypersurface of large degree of Pn+1 is hyperbolic, our main result would
not follow. Our proof does not rely on properties of families of hyperbolic manifolds,
like normality. We benefit however from the recent works dealing with the Kobayashi
conjecture, especially from [Dem-95].

The first part of our work (Section 2) describes general tools for dealing with higher
order jets. The second part (Sections 3–5) is devoted to the proof of

Theorem 1. For every general moving enough family of high enough degree hypersurfaces
of Pn+1, there is a non-trivial differential equation of order n+1 satisfied by all its sections.

Then, adapting general techniques in universal families originating in the works of
Clemens [Cle-86], Voisin [Voi-96] and Siu [Siu-04], we obtain the main theorem in
the third part (Section 6).

2. Jet spaces for sections

Note that Lang’s conjecture would follow from a positive answer to the case when the
parameter space is a curve. We consider a proper morphism of complex manifolds π :
X → C, which we regard as a family of n-dimensional compact complex varieties
parametrised by a connected compact complex smooth curve C. We intend to construct
the jet spaces for the sections of π , allowing finite extensions of the base field C(C), that
is, finite covers of the curve C.

2.1. 1-jets

We follow the ideas of Grauert [Gra-65].
Consider a section s : Cρ → X of the pull-back family πρ : ρ?X → Cρ , where

ρ : Cρ → C is a finite morphism of curves:

ρ?X
ρ //

πρ

��

X

π

��
Cρ

ρ //

s

EE

C
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The map tds : s?�X → �Cρ satisfies tds ◦ s? tdπρ = Id�Cρ , so it is surjective and
provides a rank one quotient of s?�X . The corresponding curve s1 : Cρ → Xρ,1 inside
the bundle π0,ρ,1 : Xρ,1 := P(ρ?�X )→ ρ?X of rank one quotients of ρ?�X ,

Xρ,1
π0,ρ,1

��

ρ // X1:= P(�X )
π0,1

��
ρ?X

ρ //

πρ
��

X
π

��
Cρ

ρ //
s

EE
s1

::

C

lifts s (i.e. π0,ρ,1 ◦ s1 = s), is therefore a section of πρ,1 : Xρ,1 → Cρ . It avoids the divisor
D1 := P(�X /C) of vertical differentials, the divisor of the section of π?TC ⊗ O�X (1)
given by tdπ : π?�C → �X . We have to study the positivity properties of this line
bundle, which translate into mobility properties of the forbidden divisor D1.

2.2. 2-jets

The rest of the construction, which does not depend on the map π but only on the total
space X , is due to Demailly–Semple [Dem-95]. We will omit the cover ρ. As in the
preceding section, the curve s1 : C → X1 lifts to a curve inside the bundle of rank one
quotients of �X1 . More precisely, the rank one quotient tds1 : s?1�X1 → �C satisfies
tds1 ◦ s

?
1
tdπ0,1 =

tds. The map tds1 at the point [tds] of X1 vanishes on the image under
tdπ0,1 of the forms in the kernel of the tautological quotient tds. In other words, tds1 is a
rank one quotient of the quotient F1 of �X1 defined by the following diagram on X1:

0

��

0

��
S

��

S
tdπ0,1��

0 // π?0,1�X

��

tdπ0,1 // �X1

q1
��

// �X1/X // 0

0 // OX1(1)
tdπ0,1 //

��

F1

��

// �X1/X //

��

0

0 0 0

Define the 2-jet space to be π1,2 : X2 := P(F1)→ X1. As in the formalism of Arrondo,
Sols and Speiser [A-S-S-97], we need to keep track of the injective map a2 = P(q1) :
X2 → P(�X1) given by the quotient q1 : �X1 → F1:

X2
a2 //

π1,2

��

P(�X1)

{{www
ww

ww
ww

X1
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We hence get a map s2 : C → X2 defined by the quotient tds1 : s?1F1 → �C . Note that

π1,2 is the restriction to P(F1) ⊂ P(�X1) of the map defined by the quotient π?1�X
tdπ01
−−−→

�X1 so that the relation tds1 ◦ s
?
1
tdπ0,1 =

tds is rephrased by saying that the map s2 is a
lifting of s1 (i.e. π1,2 ◦ s2 = s1):

X2:= P(F1)

π1,2
��

OX2(1) := OF1(1)oo

X1:= P(�X )
π0,1

��

OX1(1) := O�X (1)oo

X
π

��
C

s

BB
s1

99
s2

77

The map tdπ01 : OX1(1)→ F1 gives rise to a section of π?1OX1(−1)⊗OX2(1) whose
divisor D2 := P(�X1/X ) ⊂ X2 is not hit by the curve s2 associated with the quotient tds1,

as �C ' s?1OX1(1)
s?1
tdπ01
−−−−→ s?1F1

tds1
−−→ �C vanishes nowhere.

2.3. Higher order jets

This scheme inductively leads to the construction of the k-jet space πk−1,k : Xk → Xk−1,
together with a map ak : Xk → P(�Xk−1) that completes the commutative diagram

Xk
ak //

πk−1,k

��

P(�Xk−1)

zzttttttttt

Xk−1

Note that a?kO�Xk−1
(1) = OXk (1). The bundle Fk on Xk is the quotient of �Xk defined

by
0

��

0

��
Sk

��

Sk

tdπk−1,k��
0 // π?k−1,k�Xk−1

tdπk−1,k//

��

�Xk //

qk
��

�Xk/Xk−1
// 0

0 // OXk (1) //

��

Fk

��

// �Xk/Xk−1
//

��

0

0 0 0
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The (k + 1)-jet space is πk,k+1 : Xk+1 := P(Fk) → Xk and the map ak+1 : Xk+1 →

P(�Xk ) is the injective map associated with the quotient qk : �Xk → Fk . Note that the
relative dimension of πk+1,k is equal to that of πk−1,k , which is n. Therefore

dimXk = (k + 1)n+ 1.

Now, given a section s : C → X of the family π : X → C, assuming that we
have constructed the lifts si : C → Xi up to level k, we get the (k + 1)-jet sk+1 :
C → Xk+1 by considering the surjective map tdsk : s?kFk → �C built from the relation
tdsk ◦ s

?
k
tdπk−1,k =

tdsk−1. Recall that the tautological quotient bundle OXk+1(1) pulls
back to C via sk+1 into the quotient �C under consideration:

s?k+1OXk+1(1) = �C .

The map tdπk−1,k : OXk (1) → Fk gives rise to a divisor Dk+1 = P(�Xk/Xk−1) in
Xk+1 = P(Fk) in the linear system |π?k+1,kOXk (−1) ⊗ OXk+1(1)| that the curve sk+1
avoids.

2.4. Description in coordinates

Choose a local coordinate t on C and an adapted system of local coordinates (t, z1, . . . , zn)

on X at a regular point of the map π such that the map π is given by (t, z1, . . . , zn) 7→ t .
The set of vectors ∂/∂t, ∂/∂z1, . . . , ∂/∂zn provides a local frame for TX . This defines
relative homogeneous coordinates [T1 : A1 : · · · : An] on X1.

The differential of a section s of π locally written as t 7→ (t, z1(t), z2(t), . . . , zn(t)) is

ds :
∂

∂t
7→

∂

∂t
+ z′1(t)

∂

∂z1
+ · · · + z′n(t)

∂

∂zn
.

The 1-jet of the curve s is therefore locally written as s1 : C → X1 = P(TX ),

s1 : t 7→ (t, z1(t), . . . , zn(t), [1 : z′1(t) : · · · : z′n(t)]).

It does not meet the divisor D1 := P(TX /C) locally given by T1 = 0.
Outside this divisor, we get relative affine coordinates a1 := A1/T1, . . . , an := An/T1.

Note that for the section s1 we infer that aj (t) = z′j (t). The set of vectors

∂

∂t
,
∂

∂z1
, . . . ,

∂

∂zn
,
∂

∂a1
, . . . ,

∂

∂an

provides a local frame for TX1 . The bundle F?1 is defined to be

F?1 := {(t, z, [A], v) ∈ TX1 | dπ0,1(v) ∈ [A] ⊂ TX }.

It has a local frame built with ∂/∂t + a1∂/∂z1 + · · · + an∂/∂zn ∈ OX1(−1) and ∂/∂ai ∈
TX1/X , 1 ≤ i ≤ n. This defines relative homogeneous coordinates [T2 : B1 : · · · : Bn]
on X2.
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The differential of the section s1 : C → X1 −D1 of π1 is

ds1 :
∂

∂t
7→

∂

∂t
+ z′1(t)

∂

∂z1
+ · · · + z′n(t)

∂

∂zn
+ z′′1(t)

∂

∂a1
+ · · · + z′′n(t)

∂

∂an

=

(
∂

∂t
+ a1(t)

∂

∂z1
+ · · · + an(t)

∂

∂zn

)
+ z′′1(t)

∂

∂a1
+ · · · + z′′n(t)

∂

∂an
.

The 2-jet s2 : C → X2 is locally written as

s2 : t 7→ (t, z1(t), . . . , zn(t), [1 : z′1(t) : · · · : z′n(t)], [1 : z′′1(t) : · · · : z′′n(t)]).

It does not meet the divisor D2 := P(TX2/X1) locally given by T2 = 0.
Coordinates in higher order jet spaces are defined similarly, over the regular points of

the family π .

3. Vanishing criterion and algebraic Morse inequalities

This section is devoted to the tools needed to prove Theorem 1 on the existence of
differential equations satisfied by all sections of the given family X → C or its pull-back
ρ?X → Cρ under a finite morphism ρ : Cρ → C.

3.1. Vanishing criterion

Consider the line bundles on the k-jet space Xk defined by

OXk (m) := π?1,kOX1(m1)⊗ π
?
2,kOX2(m2)⊗ · · · ⊗OXk (mk)

and

OXk (MD) := π?1,kOX1(M1D1)⊗ π
?
2,kOX2(M2D2)⊗ · · · ⊗OXk (MkDk).

Define

χρ :=
∫
Cρ

seg1(�Cρ ) = −

∫
Cρ

c1(TCρ ) = −2
∫
Cρ

Todd(TCρ ) = −2χ(Cρ)

= 2g(Cρ)− 2 ≥ (deg ρ)(2g(C)− 2) ≥ 0.

Take a line bundle µ on the base curve C. Consider a section σ of the line bundle
OXk (m) ⊗ OXk (MD) ⊗ π?kµ

−1. Pull it back to Xρ,k first and then to Cρ via the k-jet
sk : Cρ → Xρ,k of a section s of the pulled-back family ρ?X → Cρ . This gives a section
s?kσ of the line bundle �⊗|m|Cρ

⊗ ρ?µ−1. If the latter bundle has an ample dual bundle (i.e.
if deg ρ degµ > |m|χρ), then the section s?kσ has to vanish. This gives
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Lemma 3.1 (The vanishing criterion). If a line bundle µ on the base curve C has

degµ > |m|
χρ

deg ρ

then for every section σ of (a multiple of ) the line bundleOXk (m)⊗OXk (MD)⊗π?kµ
−1

on Xk and every section s of the pulled-back family ρ?X → Cρ , the k-jet sk of s lies in
the zero locus of ρ?σ ,

sk(Cρ) ⊂ Zero(ρ?σ) ⊂ Xρ,k.
Note that we have considered only those bundles having zero components along the Picard
group of X /C. For example, in the case of a family of hypersurfaces of Pn+1, bounding
the intersection number s(C) ·OPn+1(1), called the height of the section s, is a main step
in proving Lang’s conjecture. We could alternatively allow a negative part along the Picard
group of X /C. This will give the height estimates in Section 5.

3.2. Algebraic Morse inequalities

We therefore have to try to produce sections of bundles with negative components along
the Picard group of X /C. We will use the algebraic form of holomorphic Morse inequali-
ties [Dem-85], [Tra-95] to achieve this.

Proposition 3.2 (Algebraic Morse inequalities). Suppose a line bundle L on a projective
manifold of dimensionD can be written as the difference of two nef line bundles,L = A−B,
where the intersection number AD −DAD−1

· B is positive. Then L is big.

There are three elements to settle to get the proof of Theorem 1: first, the construction of
nef line bundles A and B on a jet space Xk with L = A−B having negative component on
Pic(Xk/C) and being of weight m; secondly, the inequality degµ > χρ |m|/deg ρ for the
negative part µ−1 of L coming from the base curve C needed to apply the vanishing crite-
rion; and finally the positivity of the intersection number AdimXk − dimXkAdimXk−1

· B.

4. The nef cones

From now on we will restrict to the situation of a family of hypersurfaces in Pn+1 given
by a section F0 of an ample line bundle L0 on C × Pn+1. We will assume that the genus
of C and the relative dimension n are at least 2.

X

π

��

ι //

R

&&
C × Pn+1

pr2 //

pr1
zzvvv

vvv
vvv

v
Pn+1

C

This gives a further sequence on X ,

0→ L?0|X
tdF0
−−→ �C ��Pn+1 |X

tdι
−→ �X = F0 → 0. (4.1)
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From the Leray–Hirsch theorem, we know that Pic(C×Pn+1) = pr?1 PicC⊕pr?2 Pic Pn+1.
In particular, we will write L0 as λ0 � OPn+1(d0) = pr?1 λ0 ⊗ pr?2OPn+1(d0). Note that
OPn+1(d0) = (L0)| pr−1

1 b
is ample (d0 > 0) and (pr1)?L0 = λ0 ⊗ S

d0Cn+2 is effective
(deg λ0 ≥ 0).

4.1. The nef cone of X

As the line bundle L0 is assumed to be ample and X is of dimension at least 3, the
Lefschetz hyperplane theorem reads

PicX = ι? Pic(C × Pn+1) = π? PicC ⊕ R? Pic Pn+1.

For a line bundle λ on C and an integer d, we will denote by OX (λ, d) = π?λ ⊗

R?OPn+1(d) the restriction to X of the line bundle λ�OPn+1(d).
The line bundle π?OB(1), nef but not ample, has its Chern class lying on a vertex

of the nef cone of X . If the morphism R : X → Pn+1 is not finite (e.g. the section
defining X does not involve all the homogeneous coordinates on Pn+1) then the line
bundle R?OPn+1(1) gives the second vertex. This is not the general case.

The top intersection number of the first Chern class c1(OX (λ, d)) ∈ NS(X ) is given
by

c1(OX (λ, d))n+1

= ι?[pr?1 c1(λ)+ pr?2 c1(OPn+1(d))]n+1

= [c1(λ0)+ c1(OPn+1(d0))].[c1(OPn+1(d))
n+1
+ (n+ 1)c1(λ) pr?2 c1(OPn+1(d))

n]
= dn[d deg λ0 + (n+ 1)d0 deg λ].

It has to be non-negative on the nef cone. We hence get, in NSR(X ) ≡ R2,

{(l, d) | d ≥ 0, l ≥ 0} = ι? Nef(B × Pn+1)

⊂ Nef(X ) ⊂
{
(l, d)

∣∣∣∣ d ≥ 0, l ≥ −
deg λ0

n+ 1
d

d0

}
.

4.2. The pseudo-effective cone of X

We now compute the pseudo-effective cone, Psef(X ) ⊃ Nef(X ). Take deg λ < 0 and
d > 0. The push-forward by pr1 of the sequence defining the structure sheaf of X
tensorised by λ�OPn+1(d) reads

0→ (pr1)?(λ⊗ λ
?
0 �OPn+1(d − d0))→ (pr1)?(λ�OPn+1(d))→ π?OX (λ, d)→ 0,

that is,

0→ λ⊗ λ?0 ⊗ S
d−d0Cn+2

→ λ⊗ SdCn+2
→ π?OX (λ, d)→ 0.
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As deg λ < 0, the associated long exact sequence gives

0→ H 0(X ,OX (λ, d))
→ H 1(C, λ⊗λ?0)⊗S

d−d0Cn+2
→ H 1(C, λ)⊗SdCn+2

→ H 1(C, π?OX (λ, d))→ 0.

Note that if ` is large, the higher direct image R1π?OX (λ⊗`, `d) vanishes, so that
H 1(C, π?OX (λ⊗`, `d)) and H 1(X ,OX (λ⊗`, `d)) become isomorphic. We infer

h0(X ,OX (λ, d)) ≥ h1(C, λ⊗ λ?0)⊗ S
d−d0Cn+2

− h1(C, λ)⊗ SdCn+2

≥ −χ(C, λ⊗ λ?0)⊗ S
d−d0Cn+2

+ χ(C, λ)⊗ SdCn+2

≥ [deg λ+ 1− g(C)]
(
d + n+ 1
n+ 1

)
− [deg λ− deg λ0 + 1− g(C)]

(
d − d0 + n+ 1

n+ 1

)
.

We find that if
deg λ > −

deg λ0

n+ 1
d

d0
,

then for large `, H 0(X ,OX (λ⊗`, `d)) 6= 0. Hence

{d ≥ 0, l ≥ 0} ⊂ Nef(X ) ⊂
{
d ≥ 0, l ≥ −

deg λ0

n+ 1
d

d0

}
⊂ Psef(X ).

4.3. The cones in the very general case

The ideas described here are due to Claire Voisin. The key result is the following

Lemma 4.1. Let Y ⊂ T ×P → T be a family of complex algebraic ample hypersurfaces
of dimension at least 3 of a projective manifold P . Assume that the fibre Y0 over 0 in T
is irreducible and that the nef cone and the pseudo-effective cone of its normalisation
coincide. Then the nef cone and the pseudo-effective cone of a very general fibre of Y → T

also coincide.

“Very general“ refers to the family being chosen outside a countable union of proper
algebraic subsets of the parameter space.

Proof. The Picard group of any general member Yt is induced by that of P by the Lefschetz
theorem. Take a numerical class c in NS(P ) and a line bundle L on P in the class c. Using
semicontinuity theorems for the universal bundle over Pic0(Y/T ) twisted by L and the
properness and flatness of the relative Picard scheme Pic0(Y/T )→ T over the smooth
locus of Y → T , we see that the locus Zc of T where the line bundle L|Yt is algebraically
equivalent to an effective line bundle is Zariski closed. Define Z to be the non-smooth
locus of Y → T together with the countable union of all those Zc that are strict in T .
Removing the countable union Z′ of images in T of components of the Hilbert scheme
of vertical curves in Y that do not dominate T , we can ensure that every curve C in Yt
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for t ∈ T − Z′ deforms locally around t , and by properness of components of the Hilbert
schemes, specialises to a curve C0 at 0.

Take a τ ∈ T − Z − Z′. Take a line bundle L ∈ Pic(P ) whose restriction to Yτ is
effective and a curve C in Yτ . We have to check that the degree degL|C is non-negative.
The line bundle L|Yt is algebraically equivalent to an effective line bundle on the whole of
T − Z − Z′ and therefore L|Y0 pulls back to a nef line bundle on the normalisation of Y0,
by hypothesis. Here we use the irreducibility of Y0 to make sure that the section obtained
does not identically vanish on some irreducible component of Y0. As deg ν?L|ν−1C0

≥ 0,
we infer, using intersection theory for line bundles on the singular fibre Y0 and especially
the projection formula, that the integer degL|C is non-negative. ut

In our setting, under an assumption on the shape of the defining line bundle L0, this leads
to

Proposition 4.2. Take a line bundle L0 = λ
n+1
0 �OPn+1(d0) on C × Pn+1, where λ0 is a

line bundle on C having a pencil of sections and d0 is any positive integer. If X is general
in the linear system |L0|, then

Nef(X ) = Psef(X ) =
{
(l, d)

∣∣∣∣ d ≥ 0, l ≥ − deg λ0
d

d0

}
.

Proof. Take a rational function f : C → P1 given by a pencil of sections of λ0 and a
generic hypersurface X of Pn+1 defined by a polynomial F of degree d0. Construct the
finite map from the Segre embedding and a generic projection

φ : C ×X→ P1
× Pn+1

→ P2n+1
→ Pn+1,

and consider the map 8 = (IdC, φ) : C ×X→ C × Pn+1. Denote its image by X0. The
map P1

× Pn+1
→ P2n+1

→ Pn+2 is explicitly given in coordinates by

([X0 : X1], [Y0 : Y1 : · · · : Yn+1]) 7→ [2X1Y0 : X0Y0 −X1Y1 : X0Y1 −X1Y2 : · · ·
· · · : X0Yn −X1Yn+1 : 2X0Yn+1].

If F(1, 0, 0, 0) 6= 0 and F is generic, we can project to get a finite map P1
×X→ Pn+1,

([X0 : X1], [Y0 : Y1 : · · · : Yn+1]) 7→ [X0Y0 −X1Y1 : X0Y1 −X1Y2 : · · ·
· · · : X0Yn −X1Yn+1 : 2X0Yn+1].

The equation of the image X0 of 8,

F

(
Xn+1

0 U0 +X
n
0X1U1 +X

n−1
0 X2

1U2 + · · · +X
n+1
1

Un+1

2
: · · ·

· · · : Xn+1
0 Un−1+X

n
0X1Un+X

n−1
0 X2

1
Un+1

2
: Xn+1

0 Un+X
n
0X1

Un+1

2
: Xn+1

0
Un+1

2

)
=0,

is in the linear system |λ(n+1)d0
0 �OPn+1(d0)|. Note that n+ 1 is the degree of the image

of P1
× Pn, considered as a divisor in P1

× Pn+1, under the Segre map to P2n+1.
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The normalisation of X0 is C × X whose nef cone is equal to its effective cone.
By Lemma 4.1, we infer that the same holds true for very general deformations of the
image X0.

We can now apply this to get more linear systems than just those of type |λ(n+1)d0
0 �

OPn+1(d0)|. Take X to be a general hypersurface in the linear system |λ(n+1)
0 �OPn+1(1)|

whose nef cone and the pseudo-effective cone coincide. Consider the Frobenius like finite
morphism ψ : Pn+1

→ Pn+1 obtained by raising homogeneous coordinates to the power
δ0, and the hypersurface X ′ := (Id|B , ψ)−1(X ). It is a smooth ample hypersurface of
C × Pn+1 in the linear system |λ(n+1)

0 � OPn+1(δ0)|. By the Lefschetz theorem, its Q-
Néron–Severi group coincides with that of C × Pn+1. Take a curve C′ and an effective
divisor D′ in X ′. Its multiple δ0D

′ pulls back from an effective divisor D in X , which is
nef by hypothesis, and

δ0D
′
· C′ = ψ−1(D) · C′ = δn+1

0 D · ψ(C′) ≥ 0.

The hypersurface X ′ may not be general, but applying the lemma again, we infer that the
nef cone and the pseudo-effective cone of a very general hypersurface in the linear system
|λ
(n+1)
0 �OPn+1(δ0)| coincide. ut

4.4. A nef line bundle on X1

By the Leray–Hirsch theorem, the Picard group of X1 = P(F0) is

PicX1 = PicX ⊕ ZOX1(1) = PicC ⊕ Pic Pn+1
⊕ ZOX1(1).

Accordingly, we will use the notation OX1(λ, d;m1). The bundle �Pn+1 = 3nTPn+1 ⊗

KPn+1 is a quotient of (3nOPn+1(1)⊕n+1)⊗KPn+1 = (3nO⊕n+1
Pn+1 )⊗OPn+1(−2). Hence,

as �C is globally generated, the quotient (see 4.1) F0⊗OPn+1(2) and therefore the bundle
L1 := OX1(0, 2; 1) are also globally generated.

4.5. A nef line bundle on Xk+1

Generally, the bundle �Xk/Xk−1 = 3
n−1TXk/Xk−1 ⊗KXk/Xk−1 is a quotient of

3n−1(π?k−1,kF
?
k−1 ⊗OXk (1))⊗OXk (−n− 1)⊗ π?k−1,k detFk−1

= π?k−1,kFk−1 ⊗OXk (−2).

Assuming that OXk−1(mk−1) and OXk (mk−1, 1) are nef, we infer from the defining se-
quence of Fk ,

0→ OXk (3mk−1, 3)→ Fk ⊗OXk (2)⊗ π
?
k−1,kOXk−1(3mk−1)

→ �Xk/Xk−1 ⊗OXk (2)⊗ π
?
k−1,kOXk−1(3mk−1)→ 0

setting mk := (3mk−1, 2) = 2(mk−1, 1) + (mk−1, 0), that OXk (mk) and OXk+1(mk, 1)
are nef. We find that the line bundle

Lk := OXk (0, 2 · 3k−1
; 2 · 3k−2, . . . , 2 · 3, 2, 1)

is nef of total degree 3k .
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5. Construction of differential equations

Recall the setting of a family of hypersurfaces of Pn+1 cut out in C × Pn+1 by a section of
the line bundle L:

X

π

��

ι //

R

&&
C × Pn+1

pr2 //

pr1
zzvvv

vvv
vvv

v
Pn+1

C

5.1. Definitions of Segre classes

Recall that the total Segre class seg(E) of a complex vector bundle E → X of rank e
is defined in the following way: its component segi(E) of degree 2i is computed as
p?c1(OE(1))e−1+i , where p : P(E)→ X is the variety of rank one quotients of E. From
this construction, one deduces that for a line bundle L→ X,

segi(E ⊗ L) =
i∑

j=0

(
e − 1+ i
i − j

)
segj (E)c1(L)

i−j .

From the Grothendieck defining relation for Chern classes,

ce(p
?E? ⊗OE(1)) =

e∑
i=0

p?ci(E
?)c1(OE(1))e−i = 0,

one infers that the total Segre class seg(E) is the formal inverse c(E?)−1 of the total Chern
class of the dual bundle E?. It is therefore multiplicative in short exact sequences.

5.2. Computations on X

Write on C × Pn+1,

c1(L) = d pr?2 c1(OPn+1(1))+ r pr?1 c1(OC(1)).

We have the relations c1(OPn+1(1))n+2
= 0, c1(OC(1))2 = 0, c1(OPn+1(1))n+1

·

c1(OC(1)) = 1. Set on X ,

α := R?c1(OPn+1(1)) and β := π?c1(OB(1)).

Using α = ι? pr?2 c1(OPn+1(1)) and β = ι? pr?1 c1(OC(1)), we find the relations

αn+1
= c1(L) · pr?2 c1(OPn+1(1))n+1

= r,

αnβ = c1(L) · pr?2 c1(OPn+1(1))n · pr?1 c1(OC(1)) = d.
(5.1)

Hence, r is the degree of the map R := pr2 ◦ ι, and d is the degree of the generic member
of the family Xc ⊂ Pn+1. From the sequence (4.1) and the Euler sequence on Pn+1, we
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infer that the total Segre class of F0 = �X is

seg(F0) = π
? seg(�B)R? seg(�P3)ι

? seg(L?0)
−1

= π? seg(�B)R? seg(Cn+2
⊗OPn+1(−1))ι?c(L0)

= π? seg(�B)R?c(OPn+1(1))−(n+2)ι?c(L0)

= (1+ χβ)(1+ α)−(n+2)(1+ dα + rβ).

We find that the Segre classes of F0 are polynomials in (α, β) with coefficients that are
linear in (r, d). In particular,

seg1(F0) = (d − n− 2)α + (r + χ)β.

5.3. A recursion formula

Recall the defining relation for the bundles Fk on Xk ,

0→ OXk (1)→ Fk → �Xk/Xk−1 → 0, (5.2)

still valid for k = 0 if we set X−1 = C, X0 = X , F0 = �X , OX (1) = π?�C , that is,

0→ π?�C → �X → �X /C → 0.

We will also need the relative Euler sequence on Xk ,

0→ �Xk/Xk−1 → π?k−1,kFk−1 ⊗OXk (−1)→ OXk → 0. (5.3)

From the previous two sequences, we can compute the total Segre class of Fk in terms of
that of Fk−1 (k ≥ 1). Set

αk := c1(OFk−1(1)) = c1(OXk (1)).

To begin with, the first Segre classes are easy to compute. We find

seg1(Fk) = π?0,k seg1(F0)− n(αk + π
?
k−1,kαk−1 + · · · + π

?
1,kα1). (5.4)

In general,

seg(Fk) = seg(OXk (1)) seg(�Xk/Xk−1) = seg(OXk (1)) seg(π?k−1,kFk−1 ⊗OXk (−1))

=

(k+1)n+1∑
`=0

∑̀
i=0

seg`−i(OXk (1)) segi(�Xk/Xk−1)

=

(k+1)n+1∑
`=0

∑̀
i=0

seg`−i(OXk (1)) segi(π
?
k−1,kFk−1 ⊗OXk (−1))

=

(k+1)n+1∑
`=0

∑̀
i=0

α`−ik

i∑
j=0

(
n+ i

i − j

)
π?k−1,k segj (Fk−1)(−αk)

i−j
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=

(k+1)n+1∑
`=0

∑̀
j=0

π?k−1,k segj (Fk−1)α
`−j
k

∑̀
i=j

(−1)i−j
(
n+ i

i − j

)

=

(k+1)n+1∑
`=0

∑̀
j=0

[`−j∑
i=0

(−1)i
(
n+ j + i

i

)]
π?k−1,k segj (Fk−1)α

`−j
k .

Defining the numbers Lf+ee :=
∑f

i=0(−1)i
(
e+i
e

)
, we get

seg`(Fk) =
∑
a+b=`

Ln+`n+aπ
?
k−1,k sega(Fk−1)α

b
k .

5.4. Estimates for intersection numbers

The idea comes from [Div-09]. Recall that the line bundle Lk := OXk (0, 2 · 3k−2
;

2 · 3k−1, . . . , 2 · 3, 2, 1) is nef on Xk . Note that its entries depend neither on the degree d
nor on the variation r . Its first Chern class is

lk := αk + 2π?k−1,kαk−1 + 6π?k−2,kαk−2 + · · · + 2 · 3k−2π?1,kα1 + 2 · 3k−1π?0,kα.

We are in a position to prove

Lemma 5.1. For r, d � 1,

(πk−1,k)?l
n+1
k ≥ π?0,k−1 seg1(F0),

seg1(F0)
n+1
∼ (n+ 2)rdn+1,

l
m1
1 · · · l

ms
s · α ≤ An+1(r, d),

l
m1
1 · · · l

ms
s · β ≤ Bn+1(r, d),

where An+1 and Bn+1 are polynomials in (r, d) of degree less than or equal to n+ 1.

The output is that the leading numerical term comes from the relative canonical degree.

Proof. (1) Recall from (5.4) that

(πk−1,k)?l
n+1
k

= seg1(Fk−1)+ (n+ 1)(2αk−1 + 6αk−2 + · · · + 2 · 3k−2α1 + 2 · 3k−1α)

= π?0,k−1 seg1(F0)− n(αk−1 + αk−2 + · · · + α1)

+ (n+ 1)(2αk−1 + 6αk−2 + · · · + 2 · 3k−2α1 + 2 · 3k−1α)

= π?0,k−1 seg1(F0)+ (n+ 2)αk−1 + (5n+ 6)αk−2 + · · ·

+ ((n+ 1)2 · 3j−1
− n)αk−j + ((n+ 1)2 · 3j − n)αk−j−1 + · · ·

+ ((n+ 1)2 · 3k−2
− n)α1 + 2 · 3k−1α.

The claim follows from the inequalities (n+ 1)2 · 3j − n ≥ 3[(n+ 1)2 · 3j−1
− n] that

ensure the nefness of (πk−1,k)?l
n+1
k − π?0,k−1 seg1(F0).
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(2) Just compute

seg1(F0)
n+1
= ((d − n− 2)α + (r + χ)β)n+1

∼ dn+1αn+1
+ (n+ 1)rdnαnβ = (n+ 2)rdn+1.

(3) It follows from the recursion formula that, computed in X of dimension n+ 1,

l
m1
1 · · · l

ms
s · α =

∑
k≤n

∑
k≤n

∑
I=(i1,··· ,ik)
1≤i1···≤ik

CI si1(F0) · · · sik (F0) · α.

Recall that the Segre classes of F0 are polynomials in (α, β) whose coefficients are linear
in (r, d) and use (5.1) to get

l
m1
1 · · · l

ms
s · α = P(r, d)α

n+1
+Q(r, d)αnβ = P(r, d)r +Q(r, d)d

where P and Q are polynomials in (r, d) of degree less than or equal to n.
(4) In the previous computations, the class α can be replaced by the class β to get

l
m1
1 · · · l

ms
s · β = R(r, d)α

nβ = R(r, d)d

where R is a polynomial in (r, d) of degree less than or equal to n. ut

5.5. Choice of line bundles

Fix ρ : Cρ → C. We choose to work on the jet space of order κ = n + 1. We define
on Xn+1 a line bundle that is the tensor product of the nef line bundles constructed in
Section 4:

A = Ln+1 ⊗ · · · ⊗ L1,

and we choose B so that L := A − B has negative component along Pic(X /C) and
satisfies the vanishing criterion, that is, for some fixed positive rational number x, and
some positive rational number y with

χρ

deg ρ

n+1∑
j=1

(3j − 2 · 3j−1) =
χρ

deg ρ
3n+1
− 1

2
< y,

we have

B = OPn+1(2 · 3n+1−1
+ · · · + 2+ x)⊗OC(y) = OPn+1(3n+1

− 1+ x)⊗OC(y)

where OC(y) is any line bundle on the curve C of degree y. The precise knowledge of the
nef cone of X as in Proposition 4.2 could improve, from the effectivity point of view, the
choice of A and B.
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With κ = n+ 1, we have dimXκ = κ(n+ 1). Hence, if we only omit intersections of
nef classes,

AdimXκ = (lκ + · · · + l1)
dimXκ ≥ l(n+1)

κ · · · l
(n+1)
1

≥ π?0,κ−1 seg1(F0) · l
(n+1)
κ−1 · · · l

(n+1)
1 ≥ π?0,κ−2 seg1(F0)

2
· l
(n+1)
κ−2 · · · l

(n+1)
1

. . .
≥ seg1(F0)

κ
∼ (n+ 2)rdn+1

thanks to Lemma 5.1. On the other hand, by the same lemma, AdimXk−1
· B is bounded

above by a polynomial in (r, d) of degree less than or equal to n+ 1. If r and d are chosen
large enough, we find that AdimXκ − dimXkAdimXk−1

· B is positive. Hence, the line
bundle A− B is big and the sections of its powers provide non-zero equations for the jets
of sections of the family Xρ → Cρ .

We have proved a precise version of Theorem 1.

Theorem 2. Fix ρ : Cρ → C. Fix a positive rational x and a large enough positive
rational y. For r, d � 1, for a general family π of hypersurfaces of Pn+1 of degree d and
variation r , there is a non-trivial differential equation of order n+ 1 and total weight m,
given by a section of the line bundle

OXn+1(m)⊗OPn+1(−|m|x)⊗OC(−|m|y),

satisfied by all sections of the pull-back family πρ .

5.6. Height inequalities

We now look for a statement that incorporates the dependence on the ramified cover
Cρ → C. We work on Xn+1 with A = Ln+1 ⊗ · · · ⊗ L1 and we choose B so that
L := A − B has negative component on Pic(X /B), that is, B = OPn+1(3n+1

− 1 + x).
The previous computations show that A− B is big for large enough r and d. As a result,
we obtain

Corollary 5.2. Fix a positive integer x. For r, d � 1, for a general family X of hypersur-
faces in Pn+1 of degree d and variation r , there exists a proper algebraic set Y ⊂ Xn+1
such that for every finite ramified cover ρ : Cρ → C and every section s of ρ?X → Cρ
whose (n+ 1)-jet does not lie in ρ?Y , the following height inequality holds:

h(s(C)) :=
s(Cρ) ·OPn+1(1)

deg ρ
≤

3n+1
− 1

2x
χρ

deg ρ
.

This is an analog of the first part of Vojta’s result [Voj-78]. The deepest part, dealing with
sections having (n+ 1)-jet inside Y , would require an analog of Jouanoulou’s result on
foliations [Jou-78], which seems out of reach now.
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6. Non-Zariski density

We follow the ideas of Siu [Siu-04], described in detail in [D-M-R-08]. Let d be a positive
integer, C be a connected compact complex smooth curve, and λ be a holomorphic line
bundle on C of degree r . Consider the linear system PN := |λ�OPn+1(d)| on C × Pn+1,
every element F of which represents a family πF : X F

→ C of degree d hypersurfaces
in Pn+1 parametrised by C with variation r . Consider the associated universal family

X
� � //

5

��

PN × C × Pn+1

xxqqqqqqqqqqq

PN

The variable t will denote a coordinate on the curve C. Coordinates on Pn+1 will be
denoted by z’s, while relative coordinates on X F

→ C will be denoted by x’s. Constant
sections are those whose 1-jet lies inside {z′1 = · · · = z

′

n+1 = 0}. We will denote by Xκ

the 5-relative κ-jet space of sections of the families (X F
→ C)F∈PN . It comes equipped

with natural line bundles L−µ,−x,m→ X that restrict on X F as LF−µ,−x,m.

6.1. Proof using vector fields on universal families

Choose an integer κ ≥ n+ 1. Fix positive rational numbers

x > 3n+1
− 1+ κ2

+ 2κ and y >
χρ

deg ρ
3n+1
− 1

2
.

Consider a family πF . Define µ := OC(y) to be any line bundle of degree y on C. Select
the line bundle on X F

κ ,

LF−µ,−x,m := OX F
κ
(m)⊗OPn+1(−|m|x)⊗ µ

−|m|.

We assume that r, d � 1, andm is a weight provided by Theorem 2 so that LF−µ,−x,m is big
and effective and satisfies the vanishing criterion. The push-forward (πFκ,0)?σ of a non-zero
section σ of LF−µ,−x,m is a non-zero section of the vector bundle (πFκ,0)?L

F
−µ,−x,m→ X F .

We can now prove the precise version of the main theorem.

Theorem 3. If r, d are large enough, if the equation F is general in PN , and if |m| is
large enough, then there is a non-zero section σ of the line bundle LF−µ,−x,m defined above
such that every non-constant section s of πF satisfies

s(C) ⊂ Zero((πFκ,0)?σ) ⊂ X
F .

The point is that the generality assumption on F enables one to transfer the constraints on
the jet sk given by the vanishing criterion into constraints on the section s itself.

Proof of Theorem 3. We only sketch the proof, the details being close to those given
in [D-M-R-08]. Aiming at a contradiction, assume that there exists a c0 in C where
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(πFκ,0)?σ(s(c0)) 6= 0. Now view the section σ as a meromorphic function

X F
κ → C, ζκ 7→

∑
wl(I)=m

qI (t, x)(x
′(ζκ))

i1 · · · (x(κ)(ζκ))
iκ ,

where I = (i1, . . . , ik), wl(I) =
∑k
j=1 jij and the qI (t, x) are meromorphic functions on

X F , holomorphic when viewed as local sections ofOPn+1(−|m|δ)⊗µ−|m|. The assumption
(πFκ,0)?σ(s(c0)) 6= 0 translates into the existence of a multiindex I0 of weighted length m
such that qI0(sκ(c0)) 6= 0.

We now use the semicontinuity theorem: for each multiindex M , the set of param-
eters G in PN such that the line bundle LG

−µ,−x,M has a section is an algebraic subset
of PN . The countable union of those contains the complement of a proper algebraic subset
(parametrising singular total spaces X F ). Hence there is a multiindex m valid for general
hypersurfaces. The semicontinuity theorem again ensures that the rank of the correspond-
ing direct image is positive. By the generality assumption on F , we may extend the section
(πFκ,0)?σ to a section (5κ,0)?σ̃ of (5κ,0)?L−µ,−x,m→ X on a neighbourhood UF of X F

in X.
We now need vector fields to isolate the coefficient qI0 by repeated derivations.

Proposition 6.1. Every vector in

T (X F
κ /X F )(sκ (c0)) ⊂ (TX

F
κ )(sκ (c0)) = T (Xκ/P

N )(F,sκ (c0)) ⊂ (TXκ)(F,sκ (c0))

outside the set 5−1
κ,1{z

′

1 = · · · = z
′

n+1 = 0} is the value of a meromorphic vector field on
5−1
κ,0(U

F ) ⊂ Xκ holomorphic when viewed with values in 5?κ,0OPn+1(κ2
+ 2κ).

Take it for granted until the next subsection. When we differentiate the extended meromor-
phic function σ̃ with the meromorphic vector fields obtained at most |m| times and restrict
to the fibre over F , we get meromorphic functions on X F that in turn can be viewed as
a section of LF

−µ,−x+(κ2+2κ),m. Recall that −x + 3n+1
− 1+ (κ2

+ 2κ) is still negative,
so that sκ still has to satisfy this new equation. If we choose the vector fields in a suitable
way, according to Proposition 6.1, this contradicts qI0(sκ(c0)) 6= 0. ut

The proof of the main theorem is now finished as follows. If the images of constant sections
dominated the total space X F , then because they have bounded height (they are constant in
the product C × Pn+1), there would exist an algebraic set S, a Hilbert scheme component
of the space of sections, and a dominant map C × S → X F over C. The criterion of
birational splitting of Maehara and Moriwaki [Mor-94], which follows from positivity
of direct images of pluricanonical line bundles, would show that the family has to be
birationally trivial.

6.2. Constructing vector fields on universal families

In homogeneous coordinates, if we choose a basis for Cn+2, the corresponding basis
(Zα)α of monomials for |OPn+1(d)|, and a basis (8β)β for |λ|, the hypersurface X of
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PN × C × Pn+1 is defined by the equation∑
α,β

Aβα8βZ
α
= 0.

On the open set {A0
0,d,0,...,0 6= 0}× {80(b) 6= 0}× {Z0

6= 0} the equation can be rewritten
in inhomogeneous coordinates as

F = zd1 +
∑

α∈Nn+1, |α|≤d
α 6=(d,0,...,0)

β≥1

aβαϕβ(b)z
α
= 0.

Over this open set, the natural open set of the 5-relative κ-jet space Xκ is given inside
CN × U × Cn+1

× Cn+1
× · · · × Cn+1︸ ︷︷ ︸
κ times

in terms of the operator

D :=
∂

∂t
+

κ∑
ν=0

n+1∑
j=1

z
(ν+1)
j

∂

∂z
(ν)
j

by the following set of equations:

∑
α∈Nn+1

|α|≤d
β≥1

aβαϕβ(t)z
α
= D

(∑
aβαϕβ(t)z

α
)
= D2

(∑
aβαϕβ(t)z

α
)

= · · · = Dκ
(∑

aβαϕβ(t)z
α
)
= 0.

Those are the equations one infers by differentiating the relation
∑
a
β
αϕβ(t)z

α(t) = 0
satisfied by the sections t 7→ (t, z1(t), . . . , zn+1(t)) of a family5−1(F ), after substituting
z
(ν)
j := ∂νzj (t)/∂tν .

Denote the partial sum
∑
α∈Nn+1, |α|≤d a

β
α z
α by Fβ . The equations for a vector field T

of the special shape T := (
∑
β Tβ)+ Tz, where

Tβ :=
∑
α

Aβα
∂

∂a
β
α

andq Tz :=
κ∑
ν=0

n+1∑
j=1

P νj
∂

∂z
(ν)
j

,

to be tangent to Xκ can be rewritten, thanks to the Leibniz formula and the fact that when
β 6= γ , Tβ ·DaFγ = 0, in terms of the operator

D :=
κ∑
ν=0

n+1∑
j=1

z
(ν+1)
j

∂

∂z
(ν)
j

,
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as ∑
β≥1

ϕβ(t)(Tβ + Tz) · Fβ = 0,∑
β≥1

ϕβ(t)(Tβ + Tz) ·D(Fβ)+ ϕ′β(t)(Tβ + Tz) · Fβ = 0,∑
β≥1

ϕβ(t)(Tβ + Tz) ·D
2(Fβ)+ 2ϕ′β(t)(Tβ + Tz) ·D(Fβ)+ ϕ

′′
β(t)(Tβ + Tz) · Fβ = 0,

...∑
β≥1

κ∑
a=0

(
κ

a

)
ϕ
(κ−a)
β (Tβ + Tz) ·D

a(Fβ) = 0.

A set of sufficient conditions is therefore

∀β, (Tβ + Tz) · Fβ = (Tβ + Tz) ·D(Fβ) = · · · = (Tβ + Tz) ·D
κ(Fβ) = 0

reducing to the absolute case. Note however that, as Theorem 2 provides a differential
equation of order n+1, we need to consider (n+1)-jets of hypersurfaces in Pn+1, whereas
the by now well settled results are for n-jets.

6.3. Constructing vector fields in the absolute case

We follow the ideas of Siu [Siu-04], Păun [Păun-08], Rousseau [Rou-07] and Merker
[Mer-09]. For notational simplicity, we will replace β by a dot in the following. The
exponents in brackets will be relative to the absolute operator D.

Write (T·+ Tz) ·Dl+1(F·) = [T·+ Tz,D]Dl(F·)+D((T·+ Tz) ·Dl(F·)) to infer that
a set of sufficient conditions for the special vector field T· + Tz to contribute to a tangent
to Xκ is

(T· + Tz) · F· = [T· + Tz,D] · F· = [T· + Tz,D] ·D(F·)

= · · · = [T· + Tz,D] ·Dκ−1(F·) = 0.

We will now further restrict the shape of the chosen vector field to simplify its commutator
with D.

Lemma 6.2. Let A·α and P be functions in the (z(ν)i ) variables. The commutator of the
very special vector field

T· + Tz =
∑
α

A·α
∂

∂a·α
+

κ∑
ν=0

P (ν)
∂

∂z
(ν)
j

with D is

[T· + Tz,D] = −
∑
α

(A·α)
′
∂

∂a·α
− P (κ+1) ∂

∂z
(κ)
j

.
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Proof. Simply check that

T·(D) = 0, D(T·) =
∑
α

(A·α)
′
∂

∂a·α
,

Tz(D) =

κ∑
ν=1

P (ν)
∂

∂z
(ν−1)
j

=

κ−1∑
ν=0

P (ν+1) ∂

∂z
(ν)
j

, D(Tz) =

κ∑
ν=0

P (ν+1) ∂

∂z
(ν)
j

. ut

We infer that a set of sufficient conditions for the very special vector field T· + Tz to
contribute to a tangent vector field to Xκ is

∑
α

A·αz
α
+ P

∑
α

a·α
∂zα

∂zj
= 0,

−

∑
α

(A·α)
′zα = −

∑
α

(A·α)
′(zα)′ = −

∑
α

(A·α)
′(zα)(2)

= · · · = −

∑
α

(A·α)
′(zα)(κ−1)

= 0

or equivalently, using the formulaDl+1(
∑
α Aαz

α) =
∑
α Aα(z

α)(l+1)
+
∑
α A
′
α(z

α)(l)+∑l−1
k=0D

l−k(
∑
α A
′
α(z

α)(k)), ∑
α

A·αz
α
= −P

∑
α

a·α
∂zα

∂zj∑
α

A·α(z
α)′ =

(
−P

∑
α

a·α
∂zα

∂zj

)′
...∑

α

A·α(z
α)(κ) =

(
−P

∑
α

a·α
∂zα

∂zj

)(κ)
(6.1)

or also∑
α

A·αz
α
= −P

∑
α

a·α
∂zα

∂zj
,∑

α

(A·α)
′zα =

∑
α

(A·α)
′′zα =

∑
α

(A·α)
(3)zα = · · · =

∑
α

(A·α)
(κ)zα = 0.

(6.2)

When P is of degree less than 2, the first equation in (6.2) can be satisfied with
constant A·α , making the other equations tautological.

When P is of the form P = zki , because the only non-zero term in the right hand side
of (6.2) can be written as

∑
|β|≤d

b·βz
β
+

k−1∑
`=1

∑
|β|=d

b·`β z
β+`εi ,
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we look for A·α in the form

A·α :=
∑

γ, |γ |≤κ
|α+γ |≤d

A·γα z
γ
+

min(αi ,k−1)∑
`=1

∑
γ, |γ |≤κ

|α+γ−`εi |=d

A·`,γα zγ .

Note that as αi ≥ `, the multiindex α+γ −`εi is non-negative. Then (6.2) can be rewritten,
after recursive simplifications of all terms involving a z(k)l -variable with k > 1, as a set
of systems, one for each multiindex µ + `εi where µ is a multiindex of length |µ| ≤ d
when ` = 0, or |µ| = d when 1 ≤ ` ≤ k − 1. They have disjoint sets of indeterminates
(A
·`,γ
α )α+γ=µ+`εi , |α|≤d,|γ |≤κ . Note that as αi ≥ `, the equality α + γ = µ+ `εi implies

γ ≤ µ. The coefficient in the row indexed by the multiindex δ ≤ µ of length |δ| ≤ κ and
the column indexed by γ ≤ µ of length |γ | ≤ κ is zµ+`εi−γ ∂ |δ|zγ /(∂z)δ . Its determinant
is checked, as in [Păun-08], to be non-zero, for otherwise there would exist a non-zero
polynomial of multidegree ≤ µ and total degree ≤ κ with all derivatives of order ≤ µ and
total order ≤ κ vanishing. Let P run over the set of polynomials in zi of degree ≤ κ . Over
the set {z′i 6= 0}, the determinant, computed by induction using (zji )

(l)
= (jz

j−1
i z′i)

(l−1)
=

j
∑l−1
a=0

(
l−1
a

)
(z
j−1
i )(a)z

(l−a)
i and combinations of rows,

det



1 zi z2
i · · · zκi

1′ (zi)
′ (z2

i )
′
· · · (zκi )

′

...

...

(1)(κ) (zi)
(κ) (z2

i )
(κ)
· · · (zκi )

(κ)

 = 1!2! · · · κ!(z′i)
κ(κ+1)/2

does not vanish. This shows that every vector in

T (X F
κ /X F )(sκ (b0)) ⊂ (TX

F
κ )(sκ (b0)) = T (Xκ/P

N )(A,sκ (b0)) ⊂ (TXκ)(A,sκ (b0))

is, up to “horizontal vectors”, the value of a meromorphic vector field on 5−1
κ,0(U

F ) ⊂ Xκ
holomorphic when viewed with values in 5?κ,0OPn+1(κ).

For “horizontal vectors” (i.e. when P = 0), we use the set (6.1). By the Cramer
formulae, over the set {z′i 6= 0}, for any given set of (A·α)|α|≤κ, α 6=lεi there exist (A·lεi )l
that satisfy the previous equations. Their pole order is ≤ κ2

+ 2κ . The missing directions
(A·α)|α|>κ are obtained with even smaller pole order, by considering some universal
relations in the differential algebra of polynomials. Details for this last paragraph can be
found in [Mer-09].

7. Appendix: Using Morse inequalities for families of surfaces

We check that in the case of surfaces, the bound κ = n+ 1 is optimal to find differential
equations using holomorphic Morse inequalities.
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We remark first that the numbers L that appeared in the recursion formula for the Segre
classes of the bundles Fk can be easily computed writing the Pascal triangle.

Lfe e = 0 e = 1 e = 2 e = 3 e = 4 e = 5 e = 6 e = 7 e = 8 e = 9

f = 0 1
f = 1 0 1
f = 2 1 −1 1
f = 3 0 2 −2 1
f = 4 1 −2 4 −3 1
f = 5 0 3 −6 7 −4 1
f = 6 1 −3 9 −13 11 −5 1
f = 7 0 4 −12 22 −24 16 −6 1
f = 8 1 −4 16 −34 46 −40 22 −7 1
f = 9 0 5 −20 50 −80 86 −62 29 −8 1

They also satisfy the relations

Lfe − Lfe+1 = Lf+1
e+1 .

7.1. On X1

We choose ε to be equal to the bound we found when computing the generic nef cone
of X , that is, ε := r/(3d). Then, we take A = OX1(0, 2; 1) ⊗ OX (−εx, x) and B =
OX (0, 2+ x) with first Chern classes a = α1 + 2α + x(α − εβ) = α1 + (2+ x)α − xεβ
and b = (2+ x)α. We find

A5
− 5A4B = (α1 − εxβ)

5
− 10(α1 − εxβ)

3(2+ x)2α2
− 20(α1 − εxβ)

2(2+ x)3α3

= s3 − 5εxs2β − 10(2+ x)2s1α2
− 20(2+ x)3α3

+ 30ε(2+ x)2xα2β

whose dominant term

[−4χ + 20εx]d2
+ 20[1− (2+ x)2]rd = −4χd2

− 20[3+ (11/3)x + x2]rd

is negative.

7.2. On X2

Here we take A = OX2(0, 6; 2, 1)⊗OX1(0, 2y; y)⊗OX (−εx, x) and B = OX (0, 6+
2y + x) with first Chern classes

a = (α2 + 2α1 + 6α)+ y(α1 + 2α)+ x(α − εβ)
= α2 + (2+ y)α1 + (6+ 2y + x)α − εxβ

and b = (6+ 2y + x)α. The bundle A− B is OX2(−εx, 0; 2+ y, 1).
We compute only the term (A7

− 7A6B)dom in A7
− 7A6B of degree 3 in (r, d). From

the computation of the direct images on X of the Segre classes of F1, and from the Segre
numbers of F0 on X , we infer that the contributions have to contain a part in seg1 seg2 or



934 Christophe Mourougane

seg2
1 and should therefore contain only one power of α or β. We find that the dominant

term is, viewed in X2,

(A7
− 7A6B)dom = [α2 + (2+ y)α1]7

+ 7[α2 + (2+ y)α1]6[(6+ 2y + x)α − εxβ]
−7[α2 + (2+ y)α1]6(6+ 2y + x)α
= [α2 + (2+ y)α1]7

− 7εx[α2 + (2+ y)α1]6β,

and viewed in X1,

(A7
− 7A6B)dom = seg5(F1)+ 7(2+ y)α1 seg4(F1)− 7εx seg4(F1)β

+ 21(2+ y)2α2
1 seg3(F1)− 7 · 6εx(2+ y) seg3(F1)α1β

+ 35(2+ y)3α3
1 seg2(F1)− 7 · 15εx(2+ y)2 seg2(F1)α

2
1β

+ 35(2+ y)4α4
1 seg1(F1)− 7 · 20εx(2+ y)3 seg1(F1)α

3
1β

+ 21(2+ y)5α5
1 − 7 · 15εx(2+ y)4α4

1β.

This leads to the following expression for the dominant term, viewed in X :

(A7
− 7A6B)dom

= [−2− 14(2+ y)+ 63(2+ y)2 − 70(2+ y)3 + 35(2+ y)4]s1s2

− 7εx[−13+ 42(2+ y)− 45(2+ y)2 + 20(2+ y)3]s2
1β

= [−2− 14(2+ y)+ 63(2+ y)2 − 70(2+ y)3 + 35(2+ y)4](χd3
− 12rd2)

− 7εx[−13+ 42(2+ y)− 45(2+ y)2 + 20(2+ y)3]d3

= (222+ 518 y + 483 y2
+ 210 y3

+ 35 y4)(χd3
− 12rd2)

− 7εx(51+ 102 y + 75 y2
+ 20 y3)d3.

We can apply the vanishing criterion provided εx > χ(3+ 2y). This leads to

(A7
− 7A6B)dom ≤ (222+ 518 y + 483 y2

+ 210 y3
+ 35 y4)(χd3

− 12rd2)

− 7χ(3+ 2y)(51+ 102 y + 75 y2
+ 20 y3)d3

≤ −(849+ 2338 y + 2520 y2
+ 1260 y3

+ 245 y4)χd3

− (2664+ 6216 y + 5796 y2
+ 2520 y3

+ 420 y4)rd2.

7.3. On X3

Here we take A and B with first Chern classes

a = (α3 + 2α2 + 6α1 + 18α)+ z(α2 + 2α1 + 6α)
+ y(α1 + 2α)+ x(α − εβ)
= α3 + (2+ z)α2 + (6+ 2z+ y)α1 + (18+ 6z+ 2y + x)α − εxβ

and
b = (18+ 6z+ 2y + x)α.
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The bundle A− B is OX2(−εx, 0; 6+ 2z+ y, 2+ z, 1). In order to apply the vanishing
criterion, we choose εx = 9+ 3z + y. The dominant term of A9

− 9A8B is (computed
with Maple)

(34272 y3z+3304896 z3
+17136 z6

+25200 y2z4
+1332648+906336 y+3997944 z+495936 y2z+

34272 yz5
+ 181440 y2z3

+ 222768 z5
+ 212544 y2

+ 2416896 yz+ 1391040 yz3
+ 1189440 z4

+

5016096 z2
+352800 yz4

+17136 y3
+25200 y3z2

+6720 y3z3
+2613744 yz2

+450576 y2z2)rd3

−(869904 y3z+44108988 z3
+559608 z6

+32130 y4z+772380 y2z4
+16542612+12428586 y+

49627836 z+8196300 y2z+18900 y4z2
+1085616 yz5

+3507840 y2z3
+3780 y4z3

+4306554 z5
+

3512700 y2
+30564 z7

+33142896 yz+21170016 yz3
+19278 y4

+18008802 z4
+63329508 z2

+

6674220 yz4
+434952 y3

+664020 y3z2
+221760 y3z3

+26460 y3z4
+36642312 yz2

+65016 y2z5

+ 7663572 y2z2
+ 71316 z6y)χd3.
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