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Abstract. A family F of graphs is triangle-intersecting if for every G,H ∈ F , G ∩H contains a
triangle. A conjecture of Simonovits and Sós from 1976 states that the largest triangle-intersecting
families of graphs on a fixed set of n vertices are those obtained by fixing a specific triangle and tak-
ing all graphs containing it, resulting in a family of size 1

8 2(
n
2). We prove this conjecture and some

generalizations (for example, we prove that the same is true of odd-cycle-intersecting families, and
we obtain best possible bounds on the size of the family under different, not necessarily uniform,
measures). We also obtain stability results, showing that almost-largest triangle-intersecting fami-
lies have approximately the same structure.
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1. Introduction

A basic theme in the field of extremal combinatorics is the study of the largest size of a
structure (e.g. a family of sets) given some combinatorial information concerning it (e.g.
restrictions on the intersection of any two sets in the family). The fundamental example of
this is the Erdős–Ko–Rado theorem [6] which bounds the size of an intersecting family of
k-element subsets of an n-element set (meaning a family in which any two sets have non-
empty intersection). For k < n/2, the simple answer is that the unique largest intersecting
families are those obtained by fixing an element and choosing all k-sets containing it.
This theorem is amenable to countless directions of generalizations: demanding larger
intersection size, having some arithmetic property of the intersection sizes, removing the
restriction on the size of the sets while introducing some measure on the Boolean algebra
of subsets of {1, . . . , n} etc. etc. Usually, the aesthetically pleasing theorems are those,
like the EKR theorem, where the structure of the extremal families is simple to describe,
often by focussing on a small set of elements through which membership in the family is
determined.
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A beautiful direction suggested by Simonovits and Sós is that of introducing structure
on the ground set, namely considering subgraphs of the complete graph on n vertices.
They initiated the investigation in this direction with the following definition and question.

Definition 1.1. A family of graphs F is triangle-intersecting if for every G,H ∈ F ,
G ∩H contains a triangle.

Question 1 (Simonovits–Sós). What is the maximum size of a triangle-intersecting fam-
ily of subgraphs of the complete graph on n vertices?

They raised the natural conjecture that the largest families are precisely those given by
fixing a triangle and taking all graphs containing this triangle. In this paper we prove their
conjecture.

Theorem 1.2. Let F be a triangle-intersecting family of graphs on n vertices. Then
|F | ≤ 1

8 2(
n
2). Equality holds if and only if F consists of all graphs containing a fixed

triangle.

Our main result in this paper is actually a strengthening of the above in several aspects.
First, we relax the condition that the intersection of any two graphs in the family contains
a triangle, and demand only that it contain an odd cycle (i.e. be non-bipartite). Secondly,
we allow the size of the family to be measured not only by the uniform measure on the
set of all subgraphs ofKn, but rather according to the product measure of random graphs,
G(n, p), for any p ≤ 1/2. Thirdly, for the case of the uniform measure, we relax the
condition that for any two graphs G and H in the family, G ∩ H contains a triangle, to
the condition that G and H ‘agree’ on some triangle—i.e. there exists a triangle that is
disjoint from the symmetric difference of G and H . Furthermore, we prove a stability
result: any triangle-intersecting family that is sufficiently close in measure to the largest
possible measure is actually close to a bona-fide extremal family. Finally, we observe
that our proofs can be pushed further without much effort to prove a similar result about
(not necessarily uniform) hypergraphs—a result one might refer to as dealing with Schur-
triple-intersecting families of binary vectors.

Before making all of the above precise and expanding a bit on our methods, let us
introduce some necessary notation and definitions and review some relevant previous
work.

1.1. Notation and main theorems

Let n be a positive integer, fixed throughout the paper. The power set of X will be de-
noted P(X). As usual, [n] denotes the set {1, . . . , n}. Also, [n](k) will denote {S ⊆ [n] :
|S| = k}. It will be convenient to think of the set of all subgraphs of Kn as the Abelian
group Z[n](2)

2 where the group operation, which we denote by ⊕, is the symmetric differ-
ence (i.e. H ⊕ G is the graph whose edge set is the symmetric difference between the
edge sets of G and H ); we will also use the notation 4 for the same operator. We will
write G for the complement of a graph G. Since we identify graphs with their edge sets,
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we will write |G| for the number of edges in G, and v(G) for the number of non-isolated
vertices inG. We will denote the fact thatG and H are isomorphic byG∼=H . IfG is the
disjoint union of two graphs G1,G2 (that is, G1,G2 have no edges in common), then we
will write G = G1 tG2.

Definition 1.3. A familyF of subgraphs ofKn is triangle-intersecting (respectively odd-
cycle-intersecting) if for everyG,H ∈ F ,G∩H contains a triangle (respectively an odd
cycle). We will say that F is triangle-agreeing (respectively odd-cycle-agreeing) if for
every G,H ∈ F , G⊕H contains a triangle (respectively an odd cycle).

Note that G ∩ H is contained in G⊕H , so a triangle-intersecting family is also
triangle-agreeing.

Given F , a family of subgraphs of Kn, we will want to measure its size according to
skew product measures: for any p ∈ [0, 1] and graph G on n vertices we will denote by
µp(G) the probability that G(n, p) = G, i.e.

µp(G) = p
|G|(1− p)(

n
2)−|G|,

and for a family of graphs F we define µp(F) to be the probability thatG(n, p) ∈ F , i.e.

µp(F) =
∑
G∈F

µp(G).

When p is fixed (e.g. throughout the section where p = 1/2) we will drop the subscript
and simply write µ(G) and µ(F). For any two functions f, g : Z[n](2)

2 → R we define
their inner product as

〈f, g〉 = E(f · g) =
∑
G

µ(G)f (G)g(G).

We will denote the graph on n vertices with no edges by ∅. A k-forest is any forest with
k edges. The graph on four vertices with 5 edges will be denoted by K−4 . A biconnected
component of a graph G means a maximal biconnected subgraph of G (i.e. it need not be
an entire component).

Let X be a finite set. Identifying a set with its characteristic function, we will often
identify the power set P(X) with {0, 1}X = ZX2 . A family F of subsets of X is said to be
an up-set if whenever S ∈ F and T ⊃ S, we have T ∈ F . The notation 1P for a predicate
P means 1 if P holds, and 0 otherwise. If A is an Abelian group, and Y ⊂ A, we write
0(A, Y ) for the Cayley graph on A with generating set Y , meaning the graph with vertex
set A and edge set {{a, a + y} : a ∈ A, y ∈ Y }.

A triangle junta is a family of all subgraphs of Kn with a prescribed intersection with
a given triangle. In the special case of the triangle junta being the family of all graphs
containing a given triangle, we will call this family a 4umvirate. (Don’t ask us how this
is pronounced.)

Our main theorem is the following.
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Theorem 1.4. • [Extremal families] Let p ≤ 1/2, and let F be an odd-cycle-inter-
secting family of subgraphs of Kn. Then µp(F) ≤ p3, with equality if and only if F
is a 4umvirate. Furthermore, in the case p = 1/2, if F is odd-cycle-agreeing then
µ(F) ≤ 1/8, with equality if and only if F is a triangle junta.
• [Stability] For each p ≤ 1/2 there exists a constant cp (bounded for p ∈ [δ, 1/2], for

any fixed δ > 0) such that for any ε ≥ 0, if F is an odd-cycle-intersecting family with
µp(F) ≥ p3

− ε then there exists a 4umvirate T such that

µp(T 4 F) ≤ cpε.

For p = 1/2, the corresponding statement holds for odd-cycle-agreeing families.

The stability results, together with the fact that our theorem holds for all p ≤ 1/2, allow
us to deduce a theorem concerning odd-cycle-intersecting families of graphs on n vertices
with precisely M edges, for M < 1

2

(
n
2

)
.

Corollary 1.5. Let α < 1/2 and letM = α
(
n
2

)
. LetF be an odd-cycle-intersecting family

of graphs on n vertices with M edges each. Then

|F | ≤
((n

2

)
− 3

M − 3

)
.

Equality holds if and only if F is the set of all graphs with M edges containing a fixed
triangle. Furthermore, if |F | > (1− ε)

((n2)−3
M−3

)
, then there exists a triangle T such that all

but at most cε|F | of the graphs in F contain T , where c = c(α).

This corollary follows in the footsteps of Corollary 1.7 in [8], and we omit its proof, since
it is identical to the proof given there. It suffices to say that the idea of the proof is to
study the family of all graphs containing a graph from F , and to apply Theorem 1.4 to it,
together with some Chernoff-type concentration of measure results.

We are also able to generalize our main theorem in the following manner, to not
necessarily uniform hypergraphs, although we will state the theorem in terms of charac-
teristic vectors. We discovered this generalization while studying the question of families
of subsets of Zn2 such that the intersection of any two subsets contains a Schur triple,
{x, y, x + y}.

Definition 1.6. We say that a family F of hypergraphs on [n] is odd-linear-dependency-
intersecting if for any G,H ∈ F there exist l ∈ N and nonempty sets A1, . . . , A2l+1 ∈

G ∩H such that
A1 4 · · · 4 A2l+1 = ∅.

Identifying subsets of [n] with their characteristic vectors in {0, 1}n = Zn2 , we have
the following equivalent definition:

Definition 1.7. A family F of subsets of Zn2 is odd-linear-dependency-intersecting if for
any two subsets S, T ∈ F , there exist l ∈ N and non-zero vectors v1, . . . , v2l+1 ∈ S ∩ T

such that
v1 + · · · + v2l+1 = 0.
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Naturally, an odd-linear-dependency-agreeing family is defined as above, with
G4H replacing G ∩H , and S 4 T replacing S ∩ T .

Note that a Schur triple is a linearly dependent set of size 3, so a Schur-triple-inter-
secting family is odd-linear-dependency-intersecting. We say that a family F of subsets
of Zn2 is a Schur-umvirate if there exists a Schur triple of non-zero vectors {x, y, x + y}
such that F consists of all subsets of Zn2 containing {x, y, x+y}. We say that F is a Schur
junta if there exists a Schur triple {x, y, x + y} such that F consists of all subsets of Zn2
with prescribed intersection with {x, y, x + y}.

The definition of µp generalizes to families of subsets of Zn2 in the obvious way. We
have the following:

Theorem 1.8. Let p ≤ 1/2, and let F be an odd-linear-dependency-intersecting family
of subsets of Zn2 . Then

µp(F) ≤ p3.

Equality holds if and only if F is a Schur-umvirate. Moreover, for each p ≤ 1/2 there
exists a constant cp (bounded for p ∈ [δ, 1/2], for any fixed δ > 0) such that for any
ε > 0, if µp(F) ≥ p3

− ε then there exists a Schur-umvirate T such that

µp(T 4 F) ≤ cpε.

For p = 1/2, the corresponding statements hold for odd-linear-dependency-agreeing
families.

Remarks. Note that this is indeed a generalization, since any triangle-intersecting family
of graphs can be lifted to a Schur-triple-intersecting family of hypergraphs by replacing
every graph with 22n−(n2) hypergraphs in the obvious manner. In some ways, the proof of
this version is simpler and more elegant. The fact that the ground set here is itself a vector
space over Z2 highlights the fact that a triangle is not only a ‘triangle’, but in fact an ‘odd
linear dependency over Z2’. This makes the use of discrete Fourier analysis, which by
design captures parity issues, a natural choice.

Note that {0, 1}n can be viewed as a vector matroid over Z2. Any odd linear depen-
dency

v1 + · · · + v2l+1 = 0

of non-zero vectors in {0, 1}n contains a minimal odd linear dependency, i.e. an odd-
sized circuit in the matroid. Hence, Theorem 1.8 can be seen as dealing with odd-circuit-
intersecting families in a matroid over Z2.

We will defer the proof of Theorem 1.8 until Section 5, and concentrate on the graph
setting, which is easier to explain and to follow.

1.2. History

We referred above to the question of Simonovits and Sós as ‘beautiful’. For us this re-
alization comes from studying their problem intensively, and realizing that the elemen-
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tary combinatorial methods (e.g. shifting) that are often applied to Erdős–Ko–Rado type
problems do not work in this setting, and that the structure on the ground set affects
the nature of the question substantially. The main breakthroughs in this problem, the re-
sult of [4] that we expand below and the current paper, came from introducing more
sophisticated machinery, which in retrospect seems to indicate the tastefulness of the
question.

There are two papers that we wish to mention in the prologue to our work, in order to
sharpen our perspective. The main progress on the Simonovits–Sós conjecture since it was
posed was made in [4], where it was proved that ifF is a triangle-intersecting family, then
µ(F) ≤ 1/4. This improves upon the trivial bound of 1/2 (which follows from the fact
that a graph and its complement cannot both be in the family.) The method used in [4]
is that of entropy/projections, and this is where the lemma known as Shearer’s entropy
lemma is first stated. It is quite interesting that our methods, under a certain restriction,
also give the bound of 1/4, although we do not see a direct connection (see Section 6.4).
However, the trivial observation that is our starting point is common with [4]: given a
triangle-intersecting family F and a bipartite graph B, for any two graphs F1, F2 ∈ F the
set F1 ∩F2 must have a non-empty intersection with B, as a triangle cannot be contained
in a bipartite graph. The approach in [4] was to study the projections of F on various
graphs B (the choice they made was taking B to be a complete bipartite graph). We will
also use this observation and study intersections with various choices of B, but from a
slightly different angle.

Here are several remarks relevant to [4] that are quite useful in the current paper.

• The proof given in [4] used the fact that B is bipartite, not only triangle-free, hence it
actually holds if triangle-intersecting is replaced by odd-cycle-intersecting. This will
be true of our proof too.
• In [4], it was observed that given a triangle-agreeing family, one can, by a series of

monotone shifts, transform it into a triangle-intersecting family of the same size (see
Section 2.3). Hence, the maximum size of a triangle-agreeing family is equal to the
maximum size of a triangle-intersecting family. In fact, the proof in [4] also goes
through for odd-cycle-agreeing families. The same will be true of our proof, in the
uniform measure case (p = 1/2).
• A different way of stating the basic observation is that if G ∈ F and B is a bipartite

graph then G ⊕ B 6∈ F . This immediately suggests working in the group setting, and
replacing ‘intersecting’ with ‘agreeing’.
• Although the uniform measure is perhaps the most natural one to study, the question

makes perfect sense for any measure on the subgraphs of Kn, specifically for the prob-
ability measure µp induced by the random graph model G(n, p), defined above. The
proof in [4] can be modified to give the bound p2 for any p ≤ 1/2. We improve this
to p3, and conjecture that this holds for any p ≤ 3/4 (see the open problems section at
the end of this paper).

A second paper that is a thematic forerunner of the current one is [8]. It deals with
the question of the largest measure of t-intersecting families, using spectral methods.
The immediate generalization of the EKR theorem, appearing already in [6], is the case
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of t-intersecting families. For any fixed integer t ≥ 2, we say that a family of subsets
of [n] is t-intersecting if the intersection of any two members of the family has size at
least t . EKR showed that for any k, if n is sufficiently large depending on k, then the
unique largest t-intersecting families of k-subsets of [n] are those obtained by taking all
k-subsets containing t specific elements. Note that this is not necessarily true for smaller
values of n, where a better construction can be, for example, all subsets containing at least
t + 1 elements from a fixed set of t + 2 elements. In their paper [1], appropriately titled
‘The complete intersection theorem for systems of finite sets’, Ahlswede and Khachatrian
characterized the largest t-intersecting families for every value of n, k and t .

In [8], the question of t-intersecting families is studied in the setting of the product
measure of the Boolean lattice P([n]). Let p ∈ (0, 1) be fixed. A p-random subset of [n]
is a random subset of [n] produced by selecting each i ∈ [n] independently at random
with probability p. We define the product measure µp on P([n]) as follows. For any set
S ⊂ [n] define

µp(S) = p
|S|(1− p)n−|S|,

i.e. the probability that a p-random subset of [n] is equal to S. For a family F of subsets
of [n], we define

µp(F) =
∑
S∈F

µp(S).

It is well known that for p ≤ 1/2, the largest possible measure of an intersecting family
is p, and for p < 1/2, the unique largest-measure families consist of all sets containing
a given element. For t ≥ 1 it is shown in [8] that for p < 1/(t + 1), the unique largest-
measure t-intersecting families are t-umvirates, the families of sets defined by containing
t fixed elements. Stability results are also proved. From this it follows immediately, for
example, that Theorem 1.4 holds for all p ∈ (0, 1/4) if the constant c is allowed to depend
on p. In the following subsection, we will discuss the relevance of the methods of [8] to
our paper.

1.3. Methods

The reason we mention [8] in our prologue is that we are following the path set there, of
applying an eigenvalue approach to an intersection problem (and skew Fourier analysis
for the non-uniform measure). These spectral methods appear in similar settings in several
much earlier papers (e.g. [11, 16], to mention a few), but here they are tailored to our needs
in a manner that is inspired by [8]. In what follows below, we introduce at a pedestrian
pace the spectral engine that carries the proof.

If F is a triangle-intersecting family (or even an odd-cycle-agreeing family) and B is
a bipartite graph then we have

G ∈ F ⇒ G⊕ B 6∈ F . (1)

So flipping the edges of B takes a graph in the family and produces a graph not in the
family. Let us lift this operation to an operator AB acting on functions whose domain is
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the set of subgraphs of Kn, or equivalently, {0, 1}[n](2)
= Z[n](2)

2 . The definition is simple:

ABf (G) = f (G+ B).

Of course, this works equally well if we choose B at random from some distribution B
over bipartite graphs, producing an operator which is an average of AB ’s:

ABf (G) = E[f (G+ B)],

where the expectation is over a random choice of B from B.
The important property of AB for us is that if f is the characteristic function of F ,

then whenever f (G) = 1, we have ABf (G) = 0, so f · AB(f ) ≡ 0, and in particular

〈f,ABf 〉 = 0.

Now, of course, we can do this for any appropriate choice of B, and take (not necessarily
positive) linear combinations of several such operators, i.e. define an operator A of the
type A(f ) =

∑
cBAB(f ). Clearly A too has the property that

〈f,Af 〉 = 0. (1)

The next step is to identify the eigenvalues and eigenfunctions of A and use equation
(1) to extract information about the Fourier transform of f , and ultimately deduce infor-
mation about F . This eigenvalue approach in such a context stems, most probably, from
Hoffman’s bounds on the size of an independent set in a regular graph [11]. The extension
we apply to deduce uniqueness and stability is essentially reproducing the exposition of
[8] in our setting.

It turns out that when the distribution B is easy to understand then the spectral proper-
ties of AB are also extremely easy to describe, and most fortunately, for every choice of B
one has the precise same set of eigenvectors (whose eigenvalues depend on B), making
the linear combination

∑
cBAB particularly easy to understand and analyze.

Finally, in one sentence, we explain why fourteen years passed between the moment
in which Vera Sós asked the third author the question treated in this paper, and the res-
olution of the problem: even after discovering the spectral path, how does one choose
the distributions B and the appropriate weights cB in a way which produces the correct
eigenvalues? Most of the paper deals with the answer to that question.

1.4. Structure of the paper

We will treat the cases of p = 1/2 and p < 1/2 separately, since the latter is slightly
more complex and less routine. In Section 2 we begin the case of p = 1/2, and describe
the main tools that we will use for the proof. In Section 2.4 we construct the operators
and spectra that prove our main theorem. In Section 3 we study the cut statistics of ran-
dom cuts of a graph, and prove the necessary facts that show that our operators have the
desired properties. In Section 4 we treat the case of p < 1/2. In Section 5 we prove
the more general theorem on Schur-triple-intersecting families. In Section 6 we conclude
with some related open problems.
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2. The uniform measure, p = 1/2

2.1. Fourier analysis

We briefly recall the essentials of Fourier analysis on the Abelian group ZX2 , where X
is a finite set. (In our case, the set X will usually be [n](2), the edge set of the complete
graph Kn, and subsets S ⊂ X will be replaced by subgraphs G ⊂ Kn.) We identify
ZX2 with the power set of X in the natural way, i.e. a subset of X corresponds to its
characteristic function.

For any two functions f, g : ZX2 → R, we define their inner product as

〈f, g〉 = E(f · g) =
1

2|X|
∑
S⊂X

f (S)g(S);

this makes R[ZX2 ] into an inner-product space. For every subset R ⊂ X, we define a
function χR : ZX2 → R by

χR(S) = (−1)|R∩S|.

Then χR is a character of the group ZX2 , since for any S, T ⊂ X, we clearly have

χR(S ⊕ T ) = χR(S) · χR(T ).

It is routine to verify that the set {χR : R ⊂ X} is an orthonormal basis for the vector
space R[ZX2 ] of all real-valued functions on ZX2 ; it is called the Fourier–Walsh basis.
Hence, every f : ZX2 → R has a unique expansion of the form

f =
∑
R⊂X

f̂ (R)χR; (2)

we have f̂ (R) = 〈f, χR〉. We call (2) the Fourier expansion of f . From orthonormality,
for any two functions f, g, we have Parseval’s identity

〈f, g〉 =
∑
R⊂X

f̂ (R)ĝ(R).

In particular, whenever f is Boolean (0/1 valued), taking g ≡ 1 gives

f̂ (∅) = 〈f, 1〉 = E[f ] = E[f 2] = 〈f, f 〉 =
∑
R⊂X

f̂ (R)2.

Abusing notation, we will letF denote both a family of sets and its characteristic function,
so the above will be used in the form

µ(F) = F̂(∅) =
∑
R⊂X

F̂(R)2.

Another formula that is useful to keep in the back of our minds is the convolution formula

f̂ ∗ g = f̂ · ĝ, where f ∗ g(S) =
∑
T⊂X

f (T )g(S + T ).
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2.2. Cayley operators and their spectra

Questions about largest intersecting families can often be translated into the question of
finding a largest independent set in an appropriate graph (often a Cayley graph). One
can then use the spectral approach due to Hoffman [11] to bound the size of the largest
independent set in terms of the eigenvalues of the graph (meaning the eigenvalues of its
adjacency matrix). A central idea in [5] and [8] is that one may choose appropriate weights
on the edges of this graph to perturb the operator defined by the adjacency matrix, and
improve these bounds. These weights need not necessarily be positive. In this paper, we
will call these perturbed operators Odd-Cycle-Cayley operators, or OCC operators for
short. The Cayley graph 0 that we have is on the group Z[n](2)

2 , with the set of generators
consisting of all graphs B such that B is a bipartite graph,

0 = 0(Z[n](2)
2 , {B̄ : B ⊂ Kn, B is bipartite}).

Note that an odd-cycle-agreeing family of subgraphs of Kn is precisely an independent
set in this graph.

Definition 2.1. A linear operator A on real-valued functions on Z[n](2)
2 will be called

Odd-Cycle-Cayley, or OCC for short, if it has the following two properties:

1. If F is an odd-cycle-agreeing family, and f is its characteristic function, then

f (G) = 1 ⇒ Af (G) = 0.

2. The Fourier–Walsh basis is a (complete) set of eigenfunctions of A.

For eachG ⊂ Kn, we write λG for the eigenvalue corresponding to the eigenfunction χG.
We write 3 = (λG)G⊂Kn for the vector of eigenvalues of the OCC operator; we call this
an OCC spectrum. We denote the minimum eigenvalue by λmin, and we write 3min for
the set of graphs G with λG = λmin; we will call these the tight graphs. The spectral gap
of 3 is the maximal γ such that λH ≥ λmin + γ for all H 6∈ 3min.

Note that the set of OCC operators forms a linear space, and hence also the set of
OCC spectra is a linear space, a fact that is of crucial importance for us.

Our main tool for constructing OCC operators is by using equation (??) as described
in Subsection 1.3 where we discussed our methods. Let B be a bipartite graph, and let AB
be the operator on real-valued functions on Z[n](2)

2 , defined by

ABf (G) = f (G+ B).

Similarly, let B be a distribution over bipartite graphs, and let

ABf (G) = E[f (G⊕ B)],

where the expectation is over a choice of B from B. We make the following
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Claim 1. AB is an OCC operator, and its spectrum is given by

λR = (−1)|R| E[χB(R)].

Before proving the claim, we list several equivalent ways of describing AB, depending on
one’s mathematical taste:

• AB is a convolution operator, and therefore has the elements of the Fourier–Walsh basis
as eigenfunctions.
• AB is the average of the operatorsAB . Note thatAB is a tensor product of

(
n
2

)
operators

(one for each edge of Kn), each acting on functions on a two-point space. Hence, the
eigenfunctions of each AB include the tensor products of the eigenfunctions from each
coordinate, which, again, is the Fourier–Walsh basis. Therefore, the same is true ofAB.
• Alternatively, note that AB is the operator defined by the adjacency matrix of the Cay-

ley graph on Z[n](2)
2 with generating set {B̄}, which is a subgraph of 0. It is well-known

that the eigenvectors of the adjacency matrix of any Cayley graph on an Abelian group
include the characters of the group, i.e. the Fourier–Walsh basis in our case.
• AB is a Markov operator describing a random walk on Z[n](2)

2 . This random walk has
the uniform measure as its stationary measure and has the property that if F is odd-
cycle-intersecting then two consecutive steps cannot both lie in F .

This last characterization, which may seem less appealing, will become quite illuminating
once we move to the setting of µp for p < 1/2.

Proof of Claim 1. It is clear that if F is an odd-cycle-agreeing family, and f its charac-
teristic function, then

f (G) = 1 ⇒ ABf (G) = 0.

It is also quite simple to verify that the Fourier–Walsh characters are eigenfunctions
of AB, and to give an explicit formula for the eigenvalues:

ABχR(G) = E[χR(G⊕ B)] = χR(G) · E[χR(B)],

hence
λR = E[χR(B)].

It turns out to be slightly more useful to write this last expression as given by our claim:

λR = (−1)|R| E[χB(R)] = (−1)|R| E[χB(R ∩ B)]. (3)

ut

The following theorem is a weighted version of Hoffman’s theorem [11] which bounds
the size of an independent set in a regular graph in terms of its eigenvalues.

Theorem 2.2. Let3 = (λG)G⊂Kn be an OCC spectrum with λ∅ = 1, with minimal value
λmin such that −1 < λmin < 0, and with spectral gap γ > 0. Set ν = −λmin/(1− λmin)

(so λmin = −ν/(1− ν)). Then for any odd-cycle-agreeing family F of subgraphs of Kn
the following holds:
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• Upper bound: µ(F) ≤ ν.
• Uniqueness: If µ(F) = ν then F̂(G) 6= 0 only for G ∈ 3min ∪ {∅}.
• Stability: Letw =

∑
G 6∈3min∪{∅}

F̂(G)2. Thenw ≤ ν
(1−ν)γ (ν−µ(F)) = O(ν−µ(F)).

Before proving this theorem, let us state a corollary which will be the form in which the
theorem is applied.

Corollary 2.3. Suppose that there exists an OCC spectrum 3 with eigenvalues λ∅ = 1,
λmin = −1/7 and spectral gap γ > 0. Assume that all graphs in 3min (the set of graphs
G for which λG = λmin) have at most three edges. Then for any odd-cycle-agreeing
family F of subgraphs of Kn the following holds:

• Upper bound: µ(F) ≤ 1/8.
• Uniqueness: If µ(F) = 1/8, then F is a triangle junta.
• Stability: If µ(F) ≥ 1/8− ε, then there exists a triangle junta T such that µ(F 4 T )
≤ cε, where c > 0 is an absolute constant.

Proof of Theorem 2.2. Let A be an OCC operator with spectrum 3; then

A(F) =
∑
G

λGF̂(G)χG,

and therefore
0 = 〈F , AF〉 =

∑
G

λGF̂(G)2.

Next, recall that F̂(∅) =
∑
G F̂(G)2 = µ(F). Since

w =
∑

G 6∈3min∪{∅}

F̂(G)2,

we have ∑
G∈3min

F̂(G)2 = µ(F)− µ(F)2 − w.

Hence,

0 =
∑
G

λGF̂(G)2 ≥ λ∅µ(F)2 + λmin(µ(F)− µ(F)2 − w)+ (λmin + γ )w

= µ(F)2 −
ν

1− ν
(µ(F)− µ(F)2 − w)+ w

(
γ −

ν

1− ν

)
=
µ(F)2

1− ν
−
µ(F)ν
1− ν

+ wγ.

Therefore,
µ(F)2 − µ(F)ν + wγ (1− ν) ≥ 0.

Since γ > 0, we immediately obtain µ(F) ≤ ν, with equality if and only if w = 0. Thus,

µ(F)2 − µ(F)ν + wγ (1− ν)
µ(F)
ν
≥ 0.
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Cancelling and rearranging, we obtain

w ≤
ν

(1− ν)γ
(ν − µ(F)),

as required. ut

Proof of Corollary 2.3. The upper bound of 1/8 follows immediately from Theorem 2.2.
The uniqueness claim is a special case of [8, Lemma 2.8(1)], which we will quote below.
The stability follows from a powerful result of Kindler and Safra [13] (as was the case
in [8]). We recall their result too.

• Uniqueness. We first prove the uniqueness under the assumption that F is odd-cycle-
intersecting. The reduction from the agreeing case to the intersecting case is done in
Lemma 2.7 in the following subsection.

Since we know that the Fourier transform of F is concentrated on graphs with at
most three edges, it follows from a result of Nisan and Szegedy [14, Theorem 2.1] that F
depends on at most 3 · 23

= 24 coordinates, i.e. can be described by the intersection of its
members with a graph on 24 edges. However, even with a computer it seems extremely
difficult to check all such examples. Luckily for us we have two additional assumptions.
First, we may assume that F is an up-set, else we can replace it by its up-filter, the family
of all graphs containing a member of F , which would preserve the intersection property.
Secondly, we have µ(F) = 1/8. This falls precisely into the setting of the following
lemma.

Lemma 2.4 ([8]). Let N ∈ N, let p ≤ 1/2 and suppose f : {0, 1}N → {0, 1} is a
monotone Boolean function with Ep f = pt , and f̂ (S) = 0 whenever |S| > t . Then f is
a t-umvirate (depends only on t coordinates).

(Here, the expectation Ep is taken with respect to the skew product measure µp on
{0, 1}N ; in our case, p = 1/2.) Clearly, in our case, if F is triangle-intersecting and a
3-umvirate, it is a 4umvirate. The reduction from odd-cycle-agreeing families to odd-
cycle-intersecting families is in Lemma 2.7.

• Stability. We need Theorem 3 from [13]:

Theorem 2.5 (Kindler–Safra). For every t ∈ N, there exist ε0 > 0, c0 > 0 and T0 ∈ N
such that the following holds. Let N ∈ N, and let f : {0, 1}N → {0, 1} be a Boolean
function such that ∑

|S|>t

f̂ (S)2 = ε < ε0.

Then there exists a Boolean function g : {0, 1}N → {0, 1}, depending on at most T0
coordinates, such that

µ({R : f (R) 6= g(R)}) ≤ c0ε.
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The nice thing about this theorem is that as soon as the Fourier weight on the higher levels
is small enough, the number of coordinates needed for the approximating family does not
grow. We apply this in our setting as follows. Assume that F is an odd-cycle-agreeing
family of subgraphs of Kn with µ(F) > 1/8− ε. From Theorem 2.2, we have

w =
∑

G 6∈3min∪{∅}

F̂(G)2 ≤
1

7γ
ε.

Applying the Kindler–Safra result with t = 3, we see that provided ε ≤ 7γ ε0, F is
(
c0
7γ ε)-close to some family depending on at most T coordinates (edges). But there are

only a finite number of such families that are not triangle juntas, and by our uniqueness
result, all have measure less than 1/8. Choose ε1 > 0 such that all of these families have
measure less than 1/8 − (1 + c0

7γ )ε1. If ε ≤ ε1, F cannot have measure at least 1/8 − ε
and be ( c0

7γ ε)-close to one of these families, so the approximating family guaranteed by
Kindler–Safra must be a triangle junta. If ε > min(7γ ε0, ε1) =: ε2, we may simply
choose the constant c = 1/ε2, completing the proof of Corollary 2.3. ut

2.3. The intersecting/agreeing equivalence

In the proof of the uniqueness statement in Corollary 2.3 we assumed that the family of
graphs in question was odd-cycle-intersecting. We now wish to reduce the general case
of odd-cycle-agreeing to that of odd-cycle-intersecting. To this end, it will be helpful to
return to the related observation of Chung, Frankl, Graham and Shearer in [4] mentioned
earlier. For completeness, we reproduce their general statement and proof, as we will wish
to build upon it.

Let X be a finite set, and let Z ⊂ P(X) be a family of subsets of X. We say that a
family F ⊂ P(X) is Z-intersecting if for any A,B ∈ F there exists Z ∈ Z such that
Z ⊂ A ∩ B. We say that F ⊂ P(X) is Z-agreeing if for any A,B ∈ F there exists
Z ∈ Z such that Z ∩ (A4 B) = ∅. We write

m(Z) = max{|A| : A ⊂ P(X), A is Z-intersecting},
m(Z) = max{|A| : A ⊂ P(X), A is Z-agreeing}.

Chung, Frankl, Graham and Shearer proved the following:

Lemma 2.6. Let X be a finite set, and let Z ⊂ P(X). Then m(Z) = m(Z).

Proof. Clearly, a Z-intersecting family is Z-agreeing, and therefore m(Z) ≤ m(Z). We
will show that any Z-agreeing family can be made into a Z-intersecting family of the
same size.

For any i ∈ X, consider the i-monotonization operation Ci , defined as follows. Given
a family A ⊂ P(X), Ci(A) is produced by replacing A with A ∪ {i} for each set A such
that i /∈ A, A ∈ A and A ∪ {i} /∈ A. (Note that Ci is a special case of the so-called UV -
compression CUV , with U = {i} and V = ∅. The reader may refer to [7] for a discussion
of UV -compressions and their uses in combinatorics.)
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Clearly, |Ci(A)| = |A|; it is easy to check that if A is Z-agreeing then so is Ci(A).
Now let F ⊂ P(X) be a Z-agreeing family, and successively apply the operations Ci

for i ∈ X. Formally, we set F0 = F ; given Fk , if there exist F ∈ Fk and i ∈ X such that
F ∪ {i} /∈ Fk , then we let Fk+1 = Ci(Fk). At each stage of the process, the sum of the
sizes of the sets in the family increases by at least 1, so the process must terminate, say
with the family Fl . Let F ′ = Fl . Observe that F ′ is aZ-agreeing family with |F ′| = |F |.
Moreover, it is an up-set, meaning that if F ∈ F ′ and G ⊃ F , then G ∈ F ′. It follows
that F ′ must be Z-intersecting. (If F,G ∈ F ′, then F ∪ G ∈ F ′, so there exists Z ∈ Z
such that ((F ∪G)4G) ∩ Z = ∅. But then F ∩G ⊃ Z. Hence, F ′ is Z-intersecting.)

It follows that m(Z) ≤ m(Z), and therefore m(Z) = m(Z), as required. ut

We can now complete the proof of the uniqueness statement in Corollary 2.3, which
claims that if F is an odd-cycle-agreeing family and µ(F) = 1/8, then F is a triangle
junta. We will apply the monotonization operations above to F , and produce an odd-
cycle-intersecting family of the same size, which by our results must be a 4umvirate.
The following lemma then shows that F must be a triangle junta.

Lemma 2.7. Let F be an odd-cycle-agreeing family, and assume that a series of mono-
tonization operations Ce (for e ∈ [n](2)) as described above produces a family Fk which
is a 4umvirate. Then F is a triangle junta.

Proof. Suppose Fk ⊂ Z[n](2)
2 is odd-cycle-agreeing, and Fk+1 = Ce(Fk) 6= Fk is a T -

junta for some triangle T ⊂ Kn. Then there exists a graph G /∈ Fk+1 such that G∪ {e} ∈
Fk+1; since Fk+1 is a T -junta, we must have e ∈ T . Let S be the subgraph of T such that

Fk+1 = {G ∈ Z[n](2)
2 : G ∩ T = S}.

Clearly, e ∈ S. Let C = {G ∈ Fk : e /∈ G}, and let D = {G ∈ Fk : e ∈ G}; then we may
express

Fk = C tD.

Observe that if G ∈ C, then G ∪ {e} /∈ D: if G ∈ C and G ∪ {e} ∈ D, then G,G ∪ {e} ∈
Fk+1, contradicting the fact that all graphs in Fk+1 contain S. Hence,

Fk+1 = D t {G ∪ {e} : G ∈ C}.

It follows that all graphsG ∈ D haveG∩T = S, and all graphsG ∈ C haveG∩T = S−e.
Since Fk+1 6= Fk , we must have C 6= ∅; we will show that D = ∅. Suppose for a
contradiction that D 6= ∅. Let |D| = N ≥ 1; then |C| = 2(

n
2)−3
− N ≥ 1. Since T ⊕ e

intersects every triangle, if G ∈ Fk then G⊕ (T ⊕ e) /∈ Fk . Since

|C| + |D| = 2(
n
2)−3,

for every H ⊂ T exactly one of H ⊕ S ∈ D and H ⊕ S ⊕ T ⊕ e ∈ C holds. In other
words, the classes

V = {H ⊂ T : H ⊕ S ∈ D}, W = {H ⊂ T : H ⊕ S ⊕ T ⊕ e ∈ C}
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form a partition of the set of labelled subgraphs of T , with both classes non-empty. Hence,
there exist two adjacent subgraphs of T in different classes, i.e. there exists a subgraph
H ⊂ T and an edge f ∈ E(T ) such thatH⊕S ∈ D andH⊕f⊕S⊕T ⊕e ∈ C. But these
two graphs agree only on the graph T ⊕e⊕f , which is a 3-edge graph containing exactly
two edges of the triangle T , so cannot be a triangle. This contradicts our assumption that
Fk is odd-cycle-agreeing.

We conclude that D = ∅, i.e.

Fk = {G ∈ Gn : G ∩ T = S − e}.

Hence, Fk is also a T -junta.
By backwards induction on k, we see that F0 = F is also a T -junta, completing the

proof. ut

2.4. Constructing the required OCC spectrum

In this section we prove the existence of an OCC operator with the desired spectrum,
which together with Corollary 2.3 will complete the proof of Theorem 1.4 for the case of
p = 1/2. Our construction will proceed in two steps. First, we prove the existence of an
OCC spectrum 3(1) with the correct minimal eigenvalue, but for which 3min, the set of
graphs on which it is attained, includes also 4-forests and K−4 . We then take care of these
extra graphs by adding a multiple of 3(2), an OCC spectrum that takes positive value on
these problematic graphs while having value 0 for all graphs with three edges or less.

The main lemma we use is extremely easy to state and prove, yet turns out to be very
useful.

Lemma 2.8. Let B be a distribution on bipartite graphs, and for every B ∈ B let fB
be a real-valued function whose domain is the set of subgraphs of B. Then the following
function is an OCC spectrum:

λG = (−1)|G| E[fB(B ∩G)],

where, as usual, the expectation is with respect to a random choice of B from B.

Proof. Fix a bipartite graph B. From Claim 1, we know that AB is an OCC operator.
Equivalently, from (3), λG = (−1)|G|χB(G∩B) is an OCC spectrum. Moreover, if B ′ is
any subgraph of B, the function (−1)|G|χB ′(G∩B) = (−1)|G|χB ′(G∩B ′) also describes
an OCC spectrum. Since the set {χB ′ : B ′ ⊂ B} spans all functions f on the subgraphs
of B, we see that for any choice of f , the vector described by λG = (−1)|G|f (G ∩ B) is
also an OCC spectrum. Taking expectation with respect to a random choice of B from B
completes the proof. ut

The few choices of fB and B for which we will apply this lemma are quite simple. The
distribution B will always be the uniform distribution on complete bipartite subgraphs
of Kn, and the functions fB will always be invariant under isomorphism of subgraphs
of B. Hence, our OCC spectra (λG)G⊂Kn will always be invariant under graph isomor-
phism, so they may be seen as functions on the set of unlabelled graphs with at most n
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vertices. In fact, we will choose fB(G ∩ B) to be the indicator function of the event that
the number of edges of G ∩ B is i (for i = 1, 2 or 3), or to be the indicator function of
G ∩ B being isomorphic to a given graph R (for some small list of R’s).

Corollary 2.9. Let (V1, V2) be a random bipartition of the vertices of Kn, where each
vertex is chosen independently to belong to each Vi with probability 1/2. Let B be the set
of edges of Kn between V1 and V2. For any graph G ⊆ Kn, let

qi(G) = Pr[|G ∩ B| = i],

and for any bipartite graph R, let

qR(G) = Pr[G ∩ B ∼=R],

where H ∼=R means that H is isomorphic to R; all probabilities are over the choice of
the random bipartition. Then for any integer i,

λG = (−1)|G|qi(G)

is an OCC spectrum, and for any bipartite graph R,

(−1)|G|qR(G)

is an OCC spectrum.

Recall that ifG is a graph, a cut inG is a bipartite subgraph ofG produced by partitioning
the vertices ofG into two classes V1 and V2, and taking all the edges ofG that go between
the two classes. If V1, V2 and B are as above, G ∩ B is called a (uniform) random cut
in G. Note that qi(G) is the probability that a random cut in G has exactly i edges, so is
relatively easy to analyze; qR(G) is the probability that a random cut in G is isomorphic
to R.

The beauty of the functions qi(G) and qR(G) is that they supply us with a rich enough
space of eigenvalues to create a spectrum with the correct values on small graphs, yet they
decay quickly with the size of G, ensuring that the eigenvalues of larger graphs will be
bounded away from λmin. When tackling the problem, we tried taking a linear combina-
tion of as few as possible of these building blocks, constructing an OCC spectrum that
attains the desired values on subgraphs of the triangle; we have prayed that this is feasible,
and that the resulting eigenvalues for larger graphs maintain a spectral gap. Happily, with
some fine tuning, this works. This is manifested in the following two claims.

Claim 2. Let 3(1) be the OCC spectrum described by

λ
(1)
G = (−1)|G|

[
q0(G)−

5
7q1(G)−

1
7q2(G)+

3
28q3(G)

]
.

Then

• λ
(1)
∅
= 1.

• λ
(1)
min = −1/7.



858 David Ellis et al.

• 3
(1)
min consists of the following graphs: a single edge, a path of length two, two disjoint

edges, a triangle, all forests with four edges, and K−4 .
• For all H 6∈ 3(1)min we have λ(1)H ≥ −1/7+ γ ′ with γ ′ = 1/56.

Claim 3. Let 3(2) be the OCC spectrum described by

λ
(2)
G = (−1)|G|

[∑
qF (G)− q�(G)

]
where the sum is over all 4-forests F , and � denotes C4. Then

1. λ(2)H = 0 for all H with less than four edges.

2. λ(2)F = 1/16 for all 4-forests.

3. λ(2)
K−4
= 1/8.

4. |λ(2)G | ≤ 1 for all G.

We defer the proof of Claim 2 to the next section where we analyze the cut statistics of a
random cut of a graph. The proof of Claim 3 is quite easy.

Proof of Claim 3. 1. Clear: a cut in a graph with at most threee edges has size at most 3.
2. For any forest, each edge belongs to a random cut independently of any other

edge. Hence, qF (F ) = 2−|F | for any forest F . (See Section 3 for more details). Also,
q�(F ) = 0 and qF (F ′) = 0 for any two distinct 4-forests F ,F ′.

3. Let the vertices of K−4 be labelled by a, b, c, d, where a and c are the vertices of
degree 3. Then a random cut in K−4 is isomorphic to C4 if and only if a and c belong
to one side of the cut, and b and d to the other side. This happens with probability 1/8.
Clearly, qF (K−4 ) = 0 for any 4-forest F , so K−4 contains no 4-forest.

4. Finally, |λ(2)(G)| is the difference between two probabilities, hence is at most 1.
ut

Taking a linear combination of the two OCC spectra from the previous claims gives us
the desired OCC spectrum, which completes the proof of our main theorem, Theorem 1.4,
when p = 1/2.

Corollary 2.10. Let 3 = 3(1) + 16
17γ
′3(2). Then 3 is an OCC spectrum as described in

Corollary 2.3:

• λ∅ = 1.
• λG = −1/7 for all non-empty subgraphs G of K3 (and for the graph consisting of two

disjoint edges).
• Letting γ = 1

17γ
′ gives that λG ≥ −1/7+ γ for any G with more than three edges.

Proof. Note that for any 4-forest F , the new eigenvalue λF is now equal to −1/7 +
16
17

1
16γ
′, the eigenvalue λK−4 has increased to −1/7+ 16

17
1
8γ
′, and for all other non-empty

graphs G we have λG ≥ −1/7+ γ ′ − 16
17γ
′. ut
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3. Cut statistics

The purpose of this section is to study the cut statistics of graphs for a (uniform) random
cut, in order to prove Claim 2. We begin by using block decompositions of graphs to
simplify our calculations.

We will sometimes think of a random cut inG as being produced by a random red/blue
colouring of V (G), where each vertex is independently coloured red or blue with prob-
ability 1/2. For a red/blue colouring c : V (G) → {red, blue}, we let Y (c) denote the
number of edges in the associated cut, i.e. the number of multicoloured edges.

LetQ(G) = (qk)k≥0 denote the distribution of |G∩B|; we call this the cut distribution
of G. Let

QG(X) =
∑
k≥0

qk(G)X
k

denote the probability-generating function of |G ∩ B|. For example, if G is a single edge
then q0(−) = q1(−) = 1/2, and therefore

Q−(X) =
1
2 +

1
2X.

We will see that |G ∩ B| is a sum of independent random variables |H ∩ B|, where H
ranges over certain subgraphs ofG. Probability-generating functions will be a convenient
tool for us, since if Y1 and Y2 are independent random variables, we have QY1+Y2(X) =

QY1(X)QY2(X).
In the rest of the section, we will study the cut distribution in enough detail so that we

can prove Claim 2. But first, let us digress and explain how to construct 3(1). We begin
by considering some small graphs and their cut distributions:

G q0(G) q1(G) q2(G) q3(G) q4(G)

∅ 1 0 0 0 0
− 1/2 1/2 0 0 0
∧ 1/4 1/2 1/4 0 0
4 1/4 0 3/4 0 0
F4 1/16 4/16 6/16 4/16 1/16
K−4 1/8 0 1/4 1/2 1/8

In the table, F4 is a forest with four edges (they all have the same cut distribution).
Suppose we are looking for an OCC spectrum of the form

λ(G) = (−1)|G|[c0q0(G)+ c1q1(G)+ c2q2(G)+ c3q3(G)+ c4q4(G)].

Since λ(∅) = 1, we have c0 = 1. Applying the proof of Theorem 2.2 to a 4umvirate,
whose Fourier transform is concentrated on subgraphs of a triangle, shows that we need
λ(G) = λmin = −1/7 for all subgraphs of the triangle. This forces the choices c1 = −5/7
and c2 = −1/7. Substituting c0, c1, c2 into the equations defined by F4 and K−4 gives us
a lower and upper bound (respectively) on 4c3 + c4. Both bounds coincide (what luck!
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This good fortune does not hold for p > 1/2), implying that 4c3+ c4 = 3/7. To simplify
matters, we choose c4 = 0 and so c3 = 3/28.

The OCC spectrum of3(1) is engineered to work for the graphs appearing in the table.
In the rest of this section, we show that it also works for all other graphs.

Observe that if G = G1 tG2 then

QG(X) = QG1(X)QG2(X),

since G1 ∩ B and G2 ∩ B are independent, and |G ∩ B| = |G1 ∩ B| + |G2 ∩ B|.
Let G be a connected graph, and suppose that v is a cutvertex of G, meaning a vertex

whose removal disconnects G. Suppose the removal of v separates G into components
G[S1], . . . ,G[SN ]. For each i, let

Hi = G[Si ∪ {v}].

Observe that the system of random variables {Hi ∩B : i ∈ [N ]} is independent, since for
any vertex v, the distribution of H ∩ B remains unchanged even if we fix the class of the
vertex v, in which case the independence is immediate. Clearly,

|G ∩ B| =

N∑
i=1

|Hi ∩ B|.

It follows that

QG(X) =

N∏
i=1

QHi (X).

Let H =
⊔
i Hi ; H is produced by splitting the graph G at the vertex v. (For example,

splitting the graph FG at the cutvertex in its centre produces the graph B C.) Then

QG(X) = QH (X).

Recall that a bridge of a graph G is an edge whose removal increases the number of
connected components of G; a block of G is a bridge or a biconnected component of G.
Note that if G is bridgeless then q1(G) = 0, since a cut of size 1 would be a bridge.

Observe that if G and G′ have the same number of bridges and the same number of
blocks isomorphic to K for each biconnected graph K , then G and G′ have the same
cut distribution. In fact, if G has m bridges and tK blocks isomorphic to K (for each
biconnected graphK), then repeating the above splitting process within every component
until there are no more cutvertices, we end up producing a graph Gs which is a vertex-
disjoint union of all the blocks of G. We call Gs the split of G. We have

QG(X) = QGs (X) =
( 1

2 +
1
2X
)m ∏

K∈K
(QK(X))

tK =
1

2m (1+X)
m
∏
K∈K

(QK(X))
tK ,

where K denotes a set of representatives for the isomorphism classes of biconnected
graphs. For example,

QB−C =
( 1

2 +
1
2X
)
(QC(X))

2
=
( 1

2 +
1
2X
)( 1

4 +
3
4X

2)2.
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Now suppose G has exactly m bridges. Let H be the union of the biconnected com-
ponents of Gs ; write

QH (X) =
∑
i≥0

aiX
i .

Here (ai)i≥0 is the cut distribution of H , so obviously,
∑
i≥0 ai = 1. Note that a1 = 0,

since H is bridgeless. We have

QG(X) =
( 1

2 +
1
2X
)m
QH (X) =

1
2m (1+X)

m(a0 + a2X
2
+ a3X

3
+ · · · )

=
1

2m
(
1+mX +

(
m
2

)
X2
+
(
m
3

)
X3
+ · · ·

)
(a0 + a2X

2
+ a3X

3
+ · · · )

=
1

2m
(
a0 +ma0X +

((
m
2

)
a0 + a2

)
X2
+
((
m
3

)
a0 +ma2 + a3

)
X3
+ R(X)X4), (4)

where R(X) ∈ Q[X].

3.1. Proof of Claim 2

We will need the following additional facts about the cut distributions of graphs:

Lemma 3.1. Let G be a graph.

1. If G has exactly N connected components, then q0(G) = 2N−v(G).
2. If G has exactly m bridges, then q1(G) = mq0(G).
3. If G has a vertex with odd degree, then qk(G) ≤ 1/2 for any k ≥ 0.
4. For any odd k, qk(G) ≤ 1/2.
5. Always q2(G) ≤ 3/4.

Proof. 1. If G has N connected components then G ∩ B = 0 iff all the vertices of each
connected component are given the same colour; the probability of this is 2N−v(G).

2. This follows immediately from (4).
3. Let G be a graph with a vertex v of odd degree. For any red/blue colouring c:

V (G)→ {red, blue} of V (G), changing the colour of v produces a new colouring c′ with
Y (c′) 6= Y (c). Since (c′)′ = c, c′ determines c. Denote by Yv(c), Yv(c′) the number of
edges incident to v which are cut in c, c′, respectively. Then Yv(c) + Yv(c′) = deg(v),
hence Yv(c) 6= Yv(c′); since Y (c) − Yv(c) = Y (c′) − Yv(c′), necessarily Y (c) 6= Y (c′).
Thus at most one cut of each pair (c, c′) cuts exactly k edges.

4. By item 3, we may assume that all the degrees ofG are even. Since a graph is Eule-
rian if and only if it is connected and all its degrees are even, every connected component
of G is Eulerian. It follows that every cut in G has even size, and therefore qk(G) = 0.

5. The average number of edges in a random cut is |G|/2, and therefore

|G|/2 =
∑
k

kqk(G) < 2q2(G)+ (1− q2(G))|G| = |G| + (2− |G|)q2(G);

the inequality is strict because q0(G) > 0. Hence,

q2(G) <
|G|/2

2(|G| − 2)
=

1
2
+

1
|G| − 2

.

Therefore q2(G) < 3/4 if |G| ≥ 6. Assume from now on that |G| ≤ 5.
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Let Gs be the split graph obtained by splitting G into its blocks, as described above.
If G has any bridges, then q2(G) = q2(Gs) ≤ 1/2, by 3. Otherwise, since each block
has at least three edges and |G| ≤ 5, there is just one block, i.e. G = Gs is biconnected.
Therefore G is either a triangle, a C4, a C5 or a K−4 . One may check that q2(K3) =

q2(C4) = 3/4, q2(C5) = 5/8 and q2(K
−

4 ) = 1/4. ut

The following lemma encapsulates some trivial properties of graphs:

Lemma 3.2. Let G be a graph, and H be the union of its biconnected components.

1. We have q0(∅) = 1, q0(−) = 1/2, and q0(G) ≤ 1/4 for all other graphs.
2. If m = 0 and |G| is odd, then either q0(G) ≤ 1/16, or G is a triangle or a K−4 .
3. Either H = ∅, or a0 ≤ 1/4.

Proof. 1. Follows from Lemma 3.1(1).
2. Since m = 0, every connected component of G is biconnected, and so consists of

at least three vertices. If G has at least two connected components, then Lemma 3.1(1)
implies that q0(G) ≤ 1/16, so we may assume that G is connected. If G has at least five
vertices, then again, q0(G) ≤ 1/16. The only remaining graphs are the triangle and K−4 .

3. The graphH is a union of biconnected graphs. In particular,H 6= −. The item now
follows from item 1. ut

We can now prove Claim 2.

Proof of Claim 2. Write

f (G) = q0(G)−
5
7q1(G)−

1
7q2(G)+

3
28q3(G).

The proof breaks into two parts: odd |G| and even |G|.

Proof for graphs with an odd number of edges. We will show that if |G| is odd then
f (G) ≤ 1

7 , with equality if and only if G is an edge, a triangle, or K−4 , and that in all
other cases, f (G) ≤ 1

7 −
1

56 .
By Lemma 3.1, if G has exactly m bridges then q1 = mq0, so

f (G) =
(
1− 5

7m
)
q0(G)−

1
7q2(G)+

3
28q3(G). (5)

First suppose m = 1. In that case,

f (G) = 2
7q0(G)−

1
7q2(G)+

3
28q3(G).

If G = − then f (G) = − 1
7 . Otherwise, Lemma 3.2(1) shows that q0(G) ≤

1
4 . By

Lemma 3.1(4), q3(G) ≤
1
2 , and therefore

f (G) ≤ 2
7

1
4 +

3
28

1
2 =

1
8 =

1
7 −

1
56 .

If m ≥ 2, the coefficient of q0(G) in (5) is negative, and therefore

f (G) < 3
28 =

1
7 −

1
28 <

1
7 −

1
56 .
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From now on, we assume that m = 0. If q0(G) ≤
1

16 , then using q3(G) ≤
1
2 , we

obtain
f (G) ≤ 1

16 +
3

28
1
2 =

13
112 =

1
7 −

3
112 <

1
7 −

1
56 ,

so we are done. Otherwise, Lemma 3.2(2) implies that G is either a triangle or K−4 . One
calculates explicitly that f (K3) = f (K−4 ) =

1
7 , completing the proof for all graphs

with |G| odd.

Proof for graphs with an even number of edges. We will show that if |G| is even then
f (G) ≥ − 1

7 , with equality if and only if G is a 2-forest or a 4-forest, and that in all other
cases, f (G) ≥ − 1

7 +
1

28 .
By (4) we have

f (G) = 1
2m
[
a0 −

5
7ma0 −

1
7

((
m
2

)
a0 + a2

)
+

3
28

((
m
3

)
a0 +ma2 + a3

)]
=

1
2m
[(

1− 5
7m−

1
7

(
m
2

)
+

3
28

(
m
3

))
a0 +

(
−

1
7 +

3
28m

)
a2 +

3
28a3

]
.

When m = 0, i.e. every component of G is bridgeless,

f (G) = a0 −
1
7a2 +

3
28a3.

By Lemma 3.1(5), a2 ≤ 3/4, and therefore

f (G) > − 1
7 +

1
28 .

When m = 1,

f (G) = 1
2

( 2
7a0−

1
28a2+

3
28a3

)
=

1
7a0−

1
56a2+

3
28a3 > −

3
4

1
56 = −

1
7 +

29
224 > −

1
7 +

1
28 .

When m = 2,

f (G) = 1
4

(
−

4
7a0 +

1
14a2 +

3
28a3

)
= −

1
7a0 +

1
56a2 +

3
112a3.

We have f (G) = − 1
7 if and only if H = ∅, i.e. G has exactly two edges. If H 6= ∅,

Lemma 3.2(3) implies that a0 ≤
1
4 , and therefore

f (G) ≥ − 1
28 = −

1
7 +

3
28 > −

1
7 +

1
28 .

When m = 3,

f (G) = 1
8

(
−

41
28a0 +

5
28a2 +

3
28a3

)
= −

41
224a0 +

5
224a2 +

3
224a3.

Since |G| is even, H 6= ∅, so as above, a0 ≤
1
4 . It follows that

f (G) ≥ − 41
896 = −

1
7 +

87
896 > −

1
7 +

1
28 .

When m = 4,

f (G) = 1
16

(
−

16
7 a0 +

2
7a2 +

3
28a3

)
= −

1
7a0 +

1
56a2 +

3
448a3.
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We have f (G) = − 1
7 if and only if H = ∅, i.e. G is a forest with four edges. Otherwise,

a0 ≤
1
4 , and therefore

f (G) ≥ − 1
28 = −

1
7 +

3
28 > −

1
7 +

1
28 .

Finally, assume that m ≥ 5. Since the coefficients of a2 and a3 in f (G) are positive
for m ≥ 2, we need only bound the coefficient of a0 away from − 1

7 . Write

r(m) = 1
2m
(
1− 5

7m−
1
7

(
m
2

)
+

3
28

(
m
3

))
for this coefficient. For m = 5 we have

r(5) = − 41
448 .

Since e(G) is even, H 6= ∅, and therefore a0 ≤
1
4 , so

f (G) ≥ − 41
448

1
4 = −

1
7 +

215
1792 > −

1
7 +

1
28 .

For m = 6, we have
r(6) = − 23

448 ,

and therefore
f (G) ≥ − 23

448 = −
1
7 +

41
448 > −

1
7 +

1
28 .

For m = 7, we have
r(7) = − 13

512 .

For m ≥ 7, the polynomial
1− 5

7m−
1
7

(
m
2

)
+

3
28

(
m
3

)
in the numerator of r is strictly increasing, and therefore

r(m) ≥ − 13
512 ∀m ≥ 7.

Hence,
f (G) ≥ − 13

512 = −
1
7 +

421
3584 > −

1
7 +

1
28

whenever m ≥ 7, completing the proof of Claim 2. ut

4. p < 1/2

In this section, we explain how our method can be used to prove Theorem 1.4 for all p ∈
(0, 1/2). Note that when p < 1/2, the intersecting and agreeing questions are no longer
equivalent. Indeed, the triangle-agreeing family F of all graphs containing no edges of a
fixed triangle has µp(F) = (1−p)3 > p3. For p < 1/2, we will only be concerned with
odd-cycle-intersecting families.
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4.1. Skew analysis

The general setting for skew Fourier analysis is the ‘weighted cube’, i.e. {0, 1}X (where
X is a finite set), endowed with the product measure

µp(S) = p
|S|(1− p)|X|−|S| (S ⊂ X).

In our case, X = [n](2), the edge set of the complete graph, so our probability space is
simplyG(n, p). IfG ⊂ Kn, we define µp(G) to be the probability thatG(n, p) = G, i.e.

µp(G) = p
|G|(1− p)(

n
2)−|G|,

and if F is a family of graphs, we define µp(F) to be the probability that G(n, p) ∈ F ,
i.e.

µp(F) =
∑
G∈F

µp(G).

The measure µp induces the following inner product on the vector space R[{0, 1}X] of
real-valued functions on {0, 1}X:

〈f, g〉 = 〈f, g〉p = E
S∼µp

[f (S) · g(S)] =
∑
S⊂X

µ(S)f (S)g(S)

=

∑
S⊂X

p|S|(1− p)|X|−|S|f (S)g(S).

We define the p-skewed Fourier–Walsh basis as follows. For any e ∈ X, let

χe(S) =


√

p
1−p if e 6∈ S,

−

√
1−p
p

if e ∈ S.

For each R ⊂ X, let χR =
∏
e∈R χe. It is easy to see that {χR : R ⊂ X} is an orthonormal

basis for (R[{0, 1}X], 〈 , 〉); we call it the (p-skewed) Fourier–Walsh basis. Every f :
{0, 1}X → R has a unique expansion of the form

f =
∑
R⊂X

f̂ (R)χR;

we have f̂ (R) = 〈f, χR〉 for each R ⊂ X. We may call this the (p-skewed) Fourier
expansion of f . All the other formulas in Section 2.1 hold in the skewed setting also.

Definition 4.1. For p < 1/2, we define an OCC operator to be a linear operator A on
R[{0, 1}[n](2) ] such that

1. If f is the indicator function of an odd-cycle-intersecting family, then

f (G) = 1 ⇒ Af (G) = 0.

2. The Fourier–Walsh basis is a complete set of eigenfunctions of A.
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(Note the change from odd-cycle-agreeing in the uniform-measure case.) As before,
the set of OCC operators is a linear space.

We will now construct a collection of OCC operators, one for each bipartite graph B.
Let

M =

(
1−2p
1−p

p
1−p

1 0

)
;

we index the rows and columns of M with {0, 1}.
Let B ⊂ Kn be a bipartite graph. For each edge e of Kn, we define a 2 × 2 matrix

M
(e)
B as follows:

M
(e)
B =

{
M if e ∈ B,
I2×2 if e ∈ B,

where I2×2 denotes the 2× 2 identity matrix. Finally, we define

MB =

⊗
e∈Kn

M
(e)
B .

So MB is obtained from M⊗[n](2) by replacing M with I2×2 for each edge of B; its rows
and columns are indexed by {0, 1}[n](2) . More explicitly, for any G,H ⊂ Kn,

(MB)G,H =
∏
e∈Kn

(M
(e)
B )G(e),H(e)

(where, of course,G(.)means the characteristic function ofG). The matrixM was chosen
so that:

1. M1,1 = 0.
2. The skew Fourier–Walsh basis vectors

χ∅ =

(
1
1

)
, χ{e} =

 √
p

1−p

−

√
1−p
p

 (6)

are eigenvectors of M .

Note that these conditions determine M uniquely up to multiplication by a scalar ma-
trix. Together with the tensor product structure of MB , they guarantee that MB has the
respective properties of an OCC operator:

Claim 4. If B is a bipartite graph, then the matrixMB represents an OCC operator when
acting on functions by multiplying their vector representation from the left, i.e. by

(MBf )(G) =
∑
H⊂Kn

(MB)G,Hf (H).

For any graph G ⊂ Kn, the function χG is an eigenvector of MB with eigenvalue

λG =

(
−

p

1− p

)|G∩B|
=

(
−

p

1− p

)|G|(
−

1− p
p

)|G∩B|
.
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Proof. We need to show that if F is odd-cycle-intersecting, then 〈f,MBf 〉 = 0. By
linearity, it suffices to prove that for any G,H ⊂ Kn with G ∩ H ∩ B 6= ∅, we have
(MB)G,H = 0. Note that

(MB)G,H =
∏
e∈Kn

(M
(e)
B )G(e),H(e).

There exists e ∈ B such that G(e) = H(e) = 1; the corresponding multiplicand will be
M1,1 = 0, so (MB)F,G = 0, as required.

Note that the vectors (6) are simultaneously eigenvectors of M and I2×2; the corre-
sponding eigenvalues are 1,−p/(1−p) (for M) and 1, 1 (for I2×2). It follows by simple
tensorization that for any graph G ⊂ Kn, the function χG is an eigenvector of MB with
eigenvalue

λG =

(
−

p

1− p

)|G∩B|
=

(
−

p

1− p

)|G|(
−

1− p
p

)|G∩B|
. ut

Note that MB is the p-skew analogue of the operator AB in the uniform case; indeed,
when p = 1/2, we have M0,0 = 0, and therefore MB = AB .

It is rather instructive to spend a moment studying the transpose M>B of MB . By
exactly the same argument as above, whenever f is the indicator function of an odd-
cycle-intersecting family, we have 〈M>B f, f 〉 = 0, as well as 〈f,MBf 〉 = 0 (although
note that for p < 1/2, it is not in general the case that 〈f,MBg〉 = 〈M

>

B f, g〉). Despite
the fact that the right eigenvectors of M>B (which are the left eigenvectors of MB ) are not
the Fourier–Walsh basis, it turns out that the operator represented by M>B has an elegant
interpretation. For any two graphs G and H , we define G ⊕p H not as a graph, but as a
random graph, formed as follows. Begin with the graph G. For every edge in H , if it is
present in G remove it, and if it is absent from G add it, independently at random with
probability p/(1− p) (here, we rely on p ≤ 1/2). When p = 1/2, the operation ⊕p
degenerates into ⊕. Note that, as in the case of ⊕, the distribution of G ∩ (G ⊕p B) is
supported on graphs contained in B. We may lift the operation (·⊕pB) to an operatorNB :

NBf (G) = E[f (G⊕p B)].

This operator is precisely M>B . It has several nice properties. First and foremost, it is
clear that when f is the indicator function of an odd-cycle-intersecting family and B is
bipartite,

f (G) = 1 ⇒ NBf (G) = 0.

Secondly, it is a Markov operator representing a random walk on subgraphs of Kn, with
stationary measure G(n, p), and the property that no two consecutive steps can intersect
in an odd cycle.
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4.2. Engineering the eigenvalues for p < 1/2

In this subsection, we construct an OCC operator with the necessary spectrum for p ∈
[1/4, 1/2), thus (almost) completing the proof of Theorem 1.4. In fact, in order to show
that the constant cp in the stability part of Theorem 1.4 is bounded if p is bounded away
from 0, we will need to do this for a slightly extended interval.

For the rest of this section, we assume that p ∈ [τ, 1/2), where τ = 0.248. The
proof breaks down for slightly smaller p: the required inequality is violated by 3-forests.
However, as will be shown in Section 4.4, for p in any closed subinterval of (0, 1/4),
Theorem 1.4 follows from [8].

We start by generalizing Lemma 2.8 and Corollary 2.9:

Lemma 4.2. Let B be a distribution over bipartite graphs, and for every B ∈ B let fB
be a real-valued function whose domain is the set of subgraphs of B. Then

λG =

(
−

p

1− p

)|G|
E[fB(B ∩G)]

describes an OCC spectrum, where the expectation is over a random choice of B from B.

Proof. Trivial generalization of the proof of Lemma 2.8. ut

Corollary 4.3. Let (V1, V2) be a random bipartition of the vertices of Kn, where each
vertex is chosen independently to belong to each Vi with probability 1/2. Let B be the set
of edges of Kn between V1 and V2. For any graph G ⊆ Kn, let

qi(G) = Pr[|G ∩ B| = i],

and for any bipartite graph R, let

qR(G) = Pr[G ∩ B ∼=R],

where all probabilities are over the choice of the random bipartition. Then for any inte-
ger i,

λG =

(
−

p

1− p

)|G|
qi(G)

is an OCC spectrum, and for any bipartite graph R,(
−

p

1− p

)|G|
qR(G)

is an OCC spectrum.

Replacing ‘agreeing’ with ‘intersecting’, we have the following skewed analogue of The-
orem 2.2:

Theorem 4.4. Let3 = (λG)G⊂Kn be an OCC spectrum with λ∅ = 1, with minimal value
λmin such that −1 < λmin < 0, and with spectral gap γ > 0. Set ν = −λmin/(1− λmin)

(so λmin = −ν/(1− ν)). Then for any odd-cycle-intersecting family F of subgraphs
of Kn, the following holds:
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• Upper bound: µ(F) ≤ ν.
• Uniqueness: If µ(F) = ν, then F̂(G) 6= 0 only for G ∈ 3min ∪ {∅}.
• Stability: Let w =

∑
G 6∈3min∪{∅}

F̂(G)2. Then w ≤ ν
(1−ν)γ (ν − µ(F)).

Similarly, we have the following analogue of Corollary 2.3:

Corollary 4.5. Let p ∈ (0, 1). Suppose that there exists an OCC spectrum3 with eigen-
values λ∅ = 1, λmin = −p

3/(1− p3) and spectral gap γ > 0. Assume that all graphs in
3min (the set of graphs G for which λG = λmin) have at most three edges. Then if F is
an odd-cycle-intersecting family of subgraphs of Kn, the following holds:

• Upper bound: µp(F) ≤ p3.
• Uniqueness: If µp(F) = p3, then F is a 4umvirate.
• Stability: If µp(F) > p3

− ε, then there exists a4umvirate T such that µp(F 4T ) =
Op
( p3

(1−p3)γ
ε
)
.

Proof. Follows from Theorem 4.4 just as Corollary 2.3 follows from Theorem 2.2. ut

Our goal in this subsection is to exhibit an OCC spectrum satisfying the conditions of
Corollary 4.5, for p ∈ (0, 1/2). In Section 3, we explained how to choose c0, c1, c2, c3, c4
∈ R so that the OCC spectrum

λG =

(
−

p

1− p

)|G|
[c0q0(G)+ c1q1(G)+ c2q2(G)+ c3q3(G)+ c4q4(G)]

satisfied the requirements of Corollary 2.3. For general p ∈ (0, 1], the same calculations
give the following constraints:

c0 = 1, c1 =
p2
− p − 1

p2 + p + 1
, c2 =

p2
− 3p + 1

p2 + p + 1
,

5p2
− 27p + 45− 16/p
p2 + p + 1

≤ 4c3 + c4 ≤
5p2
− 27p + 45− 32/p + 8/p2

p2 + p + 1
.

When p = 1/2, the two bounds on 4c3 + c4 coincide. When p > 1/2, they contradict
one another, so the method fails. When p < 1/2, there is a gap, and choosing any value
inside the gap, we get a spectrum which is not tight on either 4-forests or K−4 . As before,
we choose c4 = 0. A judicious choice of c3 is

c3 =
5p2
− 27p + 45− 28/p + 6/p2

4(p2 + p + 1)
;

this choice guarantees that c3 > 0 for all p ∈ (0, 1/2].
We are now ready to state the main claim of this section:

Claim 5. Let 3(1) be the OCC spectrum described by

λ
(1)
G =

(
−

p

1− p

)|G|
[q0(G)+ c1q1(G)+ c2q2(G)+ c3q3(G)],
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where c1, c2, c3 are given by

c1 =
p2
− p − 1

p2 + p + 1
, c2 =

p2
− 3p + 1

p2 + p + 1
, c3 =

5p2
− 27p + 45− 28/p + 6/p2

4(p2 + p + 1)
.

Then there exists γ ′ > 0 not depending on n or p such that

• λ
(1)
∅
= 1.

• λ
(1)
min = −p

3/(1− p3).

• 3
(1)
min consists of the following graphs: a single edge, a path of length two, two disjoint

edges, and a triangle.
• For allH 6∈ 3min ∪F4 ∪{K

−

4 }, we have λ(1)H ≥ −p
3/(1−p3)+ γ ′, where F4 denotes

the set of 4-forests.

Before proving Claim 5, we show that it implies Theorem 1.4. We have the following
analogue of Claim 3:

Claim 6. Let 3(2) be the OCC spectrum described by

λ
(2)
G =

(
−

p

1− p

)|G|[ ∑
F∈F4

qF (G)− q�(G)
]
,

where � denotes C4. Then

1. λ(2)H = 0 for all H with less than four edges.

2. λ(2)F = 2−4p4/(1− p)4 for all 4-forests F .

3. λ(2)
K−4
= 2−3p5/(1− p)5.

4. |λ(2)G | ≤ 1 for all G.

Proof. Same as the proof of Claim 3, using the fact that |p/(1−p)| ≤ 1 to prove the last
item. ut

We have the following analogue of Corollary 2.10:

Corollary 4.6. Let 3 = 31 +
16
17γ
′32. Then 3 is an OCC spectrum as described in

Corollary 4.5:

• λ∅ = 1.
• λG = −p

3/(1−p3) for all non-empty subgraphsG ofK3 (and for the graph consisting
of two disjoint edges).
• Letting γ = p4

17(1−p)4 γ
′
≥

τ 4

17(1−τ)4 gives λG ≥ −
p3

1−p3 + γ whenever |G| > 3.

Proof. Same as the proof of Corollary 2.10, only λF , λK−4 are somewhat smaller. We use
the fact that p/(1− p) = 1/(1− p)− 1 is an increasing function of p. ut

This implies Theorem 1.4 for p ∈ [τ, 1/2). The rest of the proof is found in Subsec-
tion 4.4.
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4.3. Proof of Claim 5

The proof of Claim 5 uses Lemmas 3.1 and 3.2, and in principle follows the same route
as the proof of Claim 2 for p = 1/2. However, whereas in the case of p = 1/2 we
could verify all the estimates with explicit calculations, here we need to argue that certain
inequalities (which are fixed, i.e. do not depend on n) hold for the entire range p ∈
[τ, 1/2). The inequalities in question will always be of the form r(p) > min{ri(p) :
i ∈ S}, where r, ri are explicit rational functions. We actually verify the stronger claim
that r(p) > ri(p) for all i ∈ S. Each such inequality is equivalent to an inequality
Pi(p) > 0 for some polynomials Pi . These inequalities can be checked by verifying that
Pi(3/8) > 0 (note that τ < 3/8), and that Pi(x) has no zeroes in [τ, 1/2); the latter can
be verified formally using Sturm chains (see for example [12]). This verification has been
done for all inequalities of this form appearing below.

We will prove Claim 5 by reducing it to a finite number of cases (similarly to the
proof of Claim 2), and showing that λG > −p3/(1 − p3) for all graphs not in 3min.
This automatically implies the existence of a spectral gap γp > 0, which might depend
on p. If, however, we restrict ourselves to graphs other than 4-forests andK−4 , then all the
inequalities are strict on [τ, 1/2]: one can verify that the corresponding polynomial P has
P(3/8) > 0, and no zeros in [τ, 1/2]. So in these cases, by compactness, the minimum
spectral gap on the entire interval [τ, 1/2] is ≥ γ ′ for some γ ′ > 0 not depending on p.

We will need some easy facts about graphs in addition to Lemma 3.2:

Lemma 4.7. Let G be a graph with m bridges.

1. If m = 1 and |G| > 1, then |G| ≥ 4.
2. If m = 0 and |G| ≤ 5, then G is a triangle, a C4, a C5 or a K−4 .

Proof. 1. Every biconnected graph has at least three edges.
2. If G has two biconnected components, then |G| ≥ 6. The only biconnected graphs

with at most five edges are those given in the list. ut

Proof of Claim 5. We begin by noting that for p ∈ (0, 1/2], c0 and c3 are always positive,
and c1 is always negative. The remaining coefficient c2 changes signs from positive to
negative at (3 −

√
5)/2 = 0.382 (to 3 d.p.). Knowing the signs of the coefficients will

help us estimate λG.
The rest of the proof consists of two parts: |G| odd and |G| even.

Proof for graphs with an odd number of edges. Lemma 3.1(4, 5) implies the general
bound

λG ≥ −

(
p

1− p

)|G|[
q0(1+mc1)+max

( 3
4c2, 0

)
+

1
2c3
]
.

It can be checked that 1+ c1 > 0, whereas 1+mc1 < 0 for m ≥ 2.
When m ≥ 2, since 1+mc1 < 0, we have the sharper estimate

λG ≥ −

(
p

1− p

)|G|[
max

( 3
4c2, 0

)
+

1
2c3
]
.
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If |G| = 3 then G is a 3-forest, and we can verify that λG > −p3/(1 − p3) by direct
calculation. Otherwise, −(p/(1− p))|G| ≥ −(p/(1− p))5, so

λG ≥ −

(
p

1− p

)5[
max

( 3
4c2, 0

)
+

1
2c3
]
.

It can be checked that the right-hand side is always > −p3/(1− p3).
When m = 1, Lemma 4.7(1) implies that either |G| = 1 or |G| ≥ 5. In the former

case, λG = −p3/(1 − p3). In the latter case, Lemma 3.2(1) implies that q0 ≤ 1/4, and
therefore

λG ≥ −

(
p

1− p

)5[ 1
4 (1+ c1)+max

( 3
4c2, 0

)
+

1
2c3
]
.

It can be checked that the right-hand side is always > −p3/(1− p3).
When m = 0, Lemma 4.7(2) shows that either G is a triangle, C5 or K−4 , or |G| ≥ 7.

If G is a triangle then λG = −p3/(1 − p3). If G is C5 or K−4 , we can verify that λG >
−p3/(1− p3) by direct calculation, except that for K−4 , we get equality when p = 1/2.
Otherwise, Lemma 3.2(2) shows that q0 ≤ 1/16, and so

λG ≥ −

(
p

1− p

)7[ 1
16 +max

( 3
4c2, 0

)
+

1
2c3
]
.

It can be checked that the right-hand side is always > −p3/(1− p3).

Proof for graphs with an even number of edges. Equation (4) implies that

λG =

(
p

1− p

)|G|
(d0(m)a0 + d2(m)a2 + d3(m)a3),

where d0, d2, d3 are defined by

d0(m) = 2−m
[

1+mc1 +

(
m

2

)
c2 +

(
m

3

)
c3

]
,

d2(m) = 2−m(c2 +mc3), d3(m) = 2−mc3.

Since c3 > 0, we know that d3(m) > 0. We can further check that d2(m) > 0 when
m ≥ 2; this just involves checking that c2 + 2c3 > 0.

We claim that d1(m) > 0 for m ≥ 10. To see this, check first that c1 + 7c3 > 0 and
c2 + 2c3 > 0. Note that

2m+1d0(m+ 1)− 2md0(m) = c1 +mc2 +

(
m

2

)
c3 ≥ (c1 + 7c3)+m(c2 + 2c3) > 0,

using
(
m
2

)
≥ 2m + 7, which is true for m ≥ 7. It remains to check by direct calculation

that d1(10) > 0.
We have shown that if m ≥ 10, then λG > 0. If m < 10 and G is a forest,

then G is either a 2-forest, a 4-forest, a 6-forest or an 8-forest. If G is a 2-forest, then
λG = −p

3/(1 − p3). For the other forests listed, direct calculation shows that λG >

−p3/(1− p)3, except that for 4-forests, we get equality when p = 1/2.
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The remaining case is when m < 10 and G is not a forest. Lemmas 3.1(5) and 3.2(3)
give the following bound:

λG ≥

(
p

1− p

)2[
min

( 1
4d0(m), 0

)
+min

( 3
4d2(m), 0

)]
.

It can be checked that for all m < 10, the right-hand side is > −p3/(1− p3). ut

4.4. Small p

In this section, we complete the proof of Theorem 1.4 by considering the range p ∈ (0, τ ].
We read off the OCC spectrum constructed in [8] and analyze it. For the rest of the section,
we assume that p ∈ (0, τ ].

Claim 7. The following describes an OCC spectrum 3:

λG = λ|G| =

(
−

p

1− p

)|G|[
1−

1+ p
1+ p + p2 |G| +

1
1+ p + p2

(
|G|

2

)]
.

Moreover,

1. λ0 = 1.
2. λmin = λ1 = λ2 = λ3 = −p

3/(1 − p3); 3min consists of all graphs with 1, 2 or 3
edges.

3.

λ|G| ≥ λ5 = −

(
p

1− p

)5 6− 4p + p2

1+ p + p2

whenever |G| ≥ 4, so the spectral gap is

γ =
p3

1− p3 −

(
p

1− p

)5 6− 4p + p2

1+ p + p2 .

Proof. This can be deduced from [8]. Alternatively, Lemma 4.2 implies that any function
of the form

λG = λ|G| =

(
−

p

1− p

)|G|(
a0 + a1|G| + a2

(
|G|

2

))
(a0, a1, a2 ∈ R)

is an OCC spectrum:
(
|G|
i

)
simply counts the number of i-edge subgraphs ofG, and graphs

with one or two edges are bipartite. The coefficients chosen above are forced by λ0 = 1,
λ1 = λ2 = −p

3/(1− p3); it is easily checked that the above choice also guarantees that
λ3 = −p

3/(1− p3). For the rest, one may calculate that:

• λ5 < 0;
• λ|G| ≥ 0 whenever |G| ≥ 4 is even;
• |λ|G|+2| < |λ|G|| whenever |G| ≥ 5 is odd,

completing the proof. ut
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To deduce Theorem 1.4 from Corollary 4.5, we require only the following easy lemma:

Lemma 4.8. Let γ be the spectral gap in Claim 7. Then

p3

(1− p3)γ

is bounded from above for p ∈ (0, τ ].
Proof. Let

g(p) =
(1− p3)γ

p3 = 1−
p2(6− 4p + p2)

(1− p)4
It is easy to check that for p ∈ [0, 1/4], g(p) is a strictly decreasing function of p, with
g(0) = 1 and g(1/4) = 0. It follows that g(p) ≥ g(τ) > 0 for all p ∈ [0, τ ]. Hence,

p3

(1− p3)γ
≤

1
g(τ)

for all p ∈ (0, τ ], as required. ut

Lemma 4.8 and Corollary 4.6 imply that there exists an absolute constant C such that if
F is an odd-cycle-intersecting family with µp(F) ≥ p3

− ε, then∑
|G|>3

F̂(G)2 ≤ Cε.

We now appeal to Theorem 3 in Kindler–Safra [13], which is in fact stated for the p-skew
measure. (Note that we quote inferior bounds, for brevity.)

Theorem 4.9 (Kindler–Safra). For every t ∈ N and p ∈ (0, 1), there exist positive reals
ε0 = �(p

4t ), c = O(p−t ) and T = O(tp−4t ) such that the following holds. Let N ∈ N,
and let f : {0, 1}N → {0, 1} be a Boolean function such that∑

|S|>t

f̂ (S)2 = ε < ε0.

Then there exists a Boolean function g : {0, 1}N → {0, 1}, depending on at most T
coordinates, such that

µp({R : f (R) 6= g(R)}) ≤ cε.

Note that if p ∈ [δ, 1/2), where δ > 0 is fixed, then ε0, c and T can be chosen to
depend only upon δ. By the same argument as in the proof of Corollary 2.3, it follows
that F is cpCε-close to a 4umvirate, where cp depends only upon p, and is bounded for
p ∈ [δ, 1/2) for any fixed δ > 0, completing the proof of Theorem 1.4.

5. Odd-linear-dependency-intersecting families of subsets of {0, 1}n

In this section we prove Theorem 1.8.

5.1. Definitions and results

As stated in the Introduction, we say that a family F of hypergraphs on [n] is odd-linear-
dependency-intersecting (or odd-LD-intersecting, for short) if for any G,H ∈ F there
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exist l ∈ N and non-empty sets A1, . . . , A2l+1 ∈ G ∩H such that

A1 4 · · · 4 A2l+1 = ∅.

If we identify subsets of [n] with their characteristic vectors in {0, 1}n = Zn2 , then
the symmetric difference operation 4 is identified with vector-space addition, and hyper-
graphs on [n] are identified with subsets of {0, 1}n. Hence, equivalently, we say that a
family F of subsets of Zn2 is odd-LD-intersecting if for any two subsets S, T ∈ F there
exist l ∈ N and non-zero vectors v1, . . . , v2l+1 ∈ S ∩ T such that

v1 + · · · + v2l+1 = 0.

In other words, the intersection of the two subsets must contain a non-trivial odd linear
dependency.

Similarly, we say that a family F of subsets of Zn2 is odd-LD-agreeing if for any
S, T ∈ F there exist l ∈ N and non-zero vectors v1, . . . , v2l+1 ∈ S 4 T such that

v1 + · · · + v2l+1 = 0.

Since 0 cannot occur in a non-trivial odd linear dependency, it is irrelevant: if F is a
maximal odd-LD-agreeing family of subsets of Zn2 , then S ∪ {0} ∈ F iff S \ {0} ∈ F .
Hence, from now on we will consider only families of subsets of Zn2 not containing 0,
i.e. families of hypergraphs not containing ∅ as an edge. Therefore we will work in the
set {0, 1}n \ {0} = Zn2 \ {0}. This will make our proofs neater, since the 0 vector behaves
differently from all other vectors in Zn2 .

For p ∈ [0, 1], the skew product measure µp on Zn2 \ {0} is defined, naturally, as
follows. For S ⊂ Zn2 \ {0}, we define

µp(S) = p
|S|(1− p)2

n
−1−|S|,

i.e. the probability that a p-random subset of Zn2 \ {0} is equal to S, and if F is a family
of subsets of Zn2 \ {0}, we define

µp(F) =
∑
S∈F

µp(S).

We will work mostly with the uniform measure µ1/2, which we will write as µ.
A Schur triple of vectors in Zn2\{0} is a set of three vectors {x, y, z} such that x+y = z

(i.e. x+y+z = 0)—equivalently, a linearly dependent set of size 3. We say that a family T
of subsets of Zn2 \{0} is a Schur junta if there exists a Schur triple {x, y, x+y} such that T
consists of all subsets of Zn2 \{0}with prescribed intersection with {x, y, x+y}. Similarly,
we say that T is a Schur-umvirate if there exists a Schur triple {x, y, x + y} such that T
consists of all subsets of Zn2 \ {0} containing {x, y, x + y}.

An odd linear dependency will be the analogue of an odd cycle. We have the follow-
ing:
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Theorem 5.1. If F is an odd-LD-agreeing family of subsets of Zn2 \ {0} then

µ(F) ≤ 1/8.

Equality holds if and only if F is a Schur junta. Moreover, there exists a constant c
such that for any ε > 0, if F is an odd-LD-agreeing family of subsets of Zn2 \ {0} with
µ(F) > 1

8 − ε, then there exists a Schur junta T such that

µ(T 4 F) ≤ cε.

A similar result holds for the skew product measures:

Theorem 5.2. • [Extremal families] Let p ≤ 1/2. IfF is an odd-LD-intersecting family
of subsets of Zn2 \ {0}, then

µp(F) ≤ p3.

Equality holds if and only if F is a Schur-umvirate.
• [Stability] There exists a constant c such that for any ε ≥ 0, if F is an odd-LD-

intersecting family with µp(F) ≥ p3
− ε then there exists a Schur-umvirate T such

that
µp(T 4 F) ≤ cε.

We may deduce Theorem 1.4 from this by ‘lifting’ a family of graphs to a family of
subsets of Zn2 \ {0}, in the obvious way. In detail, let F be an odd-cycle-intersecting
family of graphs. Let

H = {F ∪ S : F ∈ F , S ⊂ {0, 1}n \ ([n](2) ∪ {0})};

then µp(H) = µp(F), and H is odd-LD-intersecting, since an odd cycle is lifted to an
odd linear dependency.

It seems impossible to deduce Theorem 5.1 from Theorem 1.4, so Theorem 5.1 is in
some sense a bona-fide generalization. The calculations required to prove Theorem 5.1
require one extra special case to be checked, but are in some ways simpler and more
elegant, suggesting that this is the correct setting for our ideas. Indeed, we make crucial
use of the fact that the ground set (as well as its power set) lives inside a vector space
over Z2.

We will focus on the case of the uniform measure, Theorem 5.1, and only mention
briefly how to prove Theorem 5.2.

5.2. Cayley operators

First, some preliminaries. If S ⊂ Zn2 \ {0}, we write rank(S) = dim(Span(S)) for the
dimension of the subspace spanned by S. Let I (S) = {v ∈ S : v /∈ Span(S \ {v})} be
the subset of S consisting of vectors which do not appear in any linear dependency of S,
and let m(S) = |I (S)|. We write J (S) = S \ I (S) for the union of the linearly dependent
subsets of S.
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For x, y ∈ Zn2 , we write

〈x, y〉 =

n∑
i=1

xiyi

for the standard bilinear form on Zn2 . If S ⊂ Zn2 , we write

S⊥ = {x ∈ Zn2 : 〈x, v〉 = 0}.

Then S⊥ is a subspace of Zn2 satisfying dim(S⊥)+ dim(Span(S)) = n.
Recall that an affine subspace of a vector space V is a subset of V of the form U + a,

where U is a vector subspace of V , and a ∈ V—i.e., it is a translate of a subspace. If U
has dimension d, then U + a is also said to have dimension d . If V has dimension n, an
affine subspace of V with dimension n− 1 is called an affine hyperplane of V .

We will need the following easy lemma:

Lemma 5.3. If S = {v1, . . . , vd} ⊂ Zn2 is linearly independent, then for any r1, . . . , rd ∈
{0, 1}, the set

A := {x ∈ Zn2 : 〈vi, x〉 = ri ∀i ∈ [d]}

is a translate of S⊥, and is therefore an affine subspace of dimension n− d.

Proof. For each i ∈ [d] choose a vector yi ∈ (S \ {vi})⊥ \ S⊥. Note that (S \ {vi})⊥

is a subspace of dimension n − d + 1, and S⊥ is a subspace of dimension n − d , so
(S \ {vi})

⊥
\ S⊥ is certainly non-empty. Moreover, 〈yi, vj 〉 = δi,j . Let

a =

d∑
i=1

riyi;

then A = a + S⊥, as required. ut

In particular, if w ∈ Zn2 \ {0} then a set of the form Aw := {v ∈ Zn2 : 〈v,w〉 = 1} is an
affine hyperplane. The following simple observation drives our whole approach:

Lemma 5.4. An affine hyperplane of the form

Aw = {v ∈ Zn2 : 〈v,w〉 = 1} (w ∈ Zn2 \ {0})

contains no odd linear dependency.

Proof. If v1, . . . , v2l+1 ∈ Aw then〈2l+1∑
i=1

vi, w
〉
=

2l+1∑
i=1

〈vi, w〉 = 1,

so
∑2l+1
i=1 vi 6= 0. ut

This motivates the following

Definition 5.5. A hyperplane subset is a subset of some Aw, where w ∈ Zn2 .
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Observe that if A is a hyperplane subset, F is odd-LD-agreeing, and S ∈ F , then
S ⊕ A /∈ F . A hyperplane subset will be the analogue of a bipartite graph. Indeed, a
bipartite graph G with bipartition (X, Y ) is a subset of Aw if we define wi = 1{i ∈ X}.

If w is a vector chosen uniformly at random from Zn2 , and S ⊂ {0, 1}n, we write
YS = |S ∩ Aw|. Note that S ∩ Aw is the analogue of a random cut in a graph. Indeed, if
S ⊂ [n](2), i.e. S is a graph, then S ∩ Aw is precisely a random cut in S, and YS is the
number of edges in a random cut in S. We write QS(X) for the probability-generating
function of the random variable YS .

We now have a Cayley graph on Z{0,1}
n
\{0}

2 (rather than Z[n](2)
2 ), where the generating

set is {A : A is a hyperplane subset}.

Definition 5.6. A linear operator A on real-valued functions on Z{0,1}
n
\{0}

2 will be called
Odd-Linear-Dependency-Cayley, or OLDC for short, if it has the following two proper-
ties:

1. If F is an odd-LD-agreeing family, and f is its characteristic function, then

f (S) = 1 ⇒ Af (S) = 0.

2. The Fourier–Walsh basis is a complete set of eigenfunctions of A.

The vector of eigenvalues of an OLDC operator, indexed by the subsets of {0, 1}n \ {0},
will be called an OLDC spectrum.

We have the following analogue of Corollary 2.9:

Corollary 5.7. Let w be a uniform random vector in Zn2 , i.e. each component is indepen-
dently chosen to be 0 or 1 with probability 1/2. Let

Aw = {v ∈ Zn2 : 〈v,w〉 = 1}.

For any subset S ⊂ Zn2 , let

qi(S) = Pr[|S ∩ Aw| = i],

and for any set R ⊂ Zn2 with no non-trivial odd linear dependency, let

qR(S) = Pr[S ∩ Aw ∼=R],

where H ∼=R means that there is a linear isomorphism of Zn2 mapping H to R, and all
probabilities are over the choice of the random vector w. Then for any integer i,

λS = (−1)|S|qi(S)

is an OLDC spectrum, and for any set R ⊂ Zn2 with no non-trivial odd linear dependency,

(−1)|S|qR(S)

is an OLDC spectrum.
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5.3. Construction of the OLDC spectrum

Note that if S = {v1, . . . , vd} is linearly independent, then {〈vi, w〉 : i ∈ [d]} is an
independent system of Bin(1, 1/2) random variables. To see this, observe that for any
r1, . . . , rd ∈ {0, 1}, by Lemma 5.3,

{w ∈ Zn2 : 〈vi, w〉 = ri ∀i ∈ [d]}

is an affine subspace of Zn2 of dimension n− d , and therefore has size 2n−d .
It follows that for each v ∈ I (S), the Bin(1, 1/2) random variable 〈v,w〉 is indepen-

dent of the system {〈v′, w〉 : v′ ∈ S \ {v}}. Hence, for any S, if I (S) = {v1, . . . , vm} and
J (S) = J = {u1, . . . , ul} then

YS =

m∑
i=1

Y{vi } + YJ .

Write
QJ (X) =

∑
i≥0

aiX
i
;

note that a1 = 0. We have

QS(X) =
( 1

2 +
1
2X
)m
QJ (X) =

1
2m (1+X)

m(a0 + a2X
2
+ a3X

3
+ · · · )

=
1

2m
(
1+mX +

(
m
2

)
X2
+
(
m
3

)
X3
+ · · ·

)
(a0 + a2X

2
+ a3X

3
+ · · · )

=
1

2m
(
a0 +ma0X +

((
m
2

)
a0 + a2

)
X2
+
((
m
3

)
a0 +ma2 + a3

)
X3
+ R(X)X4), (7)

where R(X) ∈ Q[X]; this is the exact analogue of (4).
The ‘same’ spectrum which worked before turns out to work in the new setting also:

Claim 8. Let 3(1) be the OLDC spectrum described by

λ
(1)
S = (−1)|S|

[
q0(S)−

5
7q1(S)−

1
7q2(S)+

3
28q3(S)

]
,

Then

• λ
(1)
∅
= 1.

• λ
(1)
min = −1/7.

• 3
(1)
min consists of all singletons, all sets of size two, all linearly independent sets of size

four, and all sets of the form {x, y, z, x + y, x + z}.
• For all S 6∈ 3(1)min we have λ(1)S ≥ −1/7+ γ ′ with γ ′ = 1/56.

We remark that sets of size 2 are the analogue of 2-forests, linearly independent sets of
size 4 are the analogue of 4-forests, and {x, y, z, x+ y, x+ z} is the analogue of K−4 . All
sets of size 2 (and all linearly independent sets of size 4) are isomorphic, so unlike in the
graph case, we need not distinguish between them.

In order to prove Claim 8, we need the following generalization of Lemma 3.1:
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Lemma 5.8. Let S be a set of vectors.

1. q0(S) = 2− rank(S).
2. q1(S) = m(S)q0(S) = m(S)2− rank(S).
3. If there exists i ∈ [n] such that |{v ∈ S : v(i) = 1}| is odd, then qk(S) ≤ 1/2 for any
k ≥ 0.

4. For any odd k, qk(S) ≤ 1/2.
5. Always q2(S) ≤ 3/4.

Proof. 1. Observe that q0(S) is the probability that w lies in the subspace S⊥, which has
dimension n− rank(S), and therefore size 2n−rank(S), proving item 1.

2. Observe that |S ∩Aw| = 1 if and only if w ∈ (S \ {v})⊥ \S⊥ for some v ∈ I (S): if
v ∈ S ∩ Aw participates in some linear dependency v =

∑
vi , then linearity of the inner

product implies that not all the vi can be outsideAw. The sets {(S \{v})⊥\S⊥ : v ∈ I (S)}
are disjoint, and each has size 2n−rank(S), proving item 2.

3. Let
Tk = {w ∈ {0, 1}n : |S ∩ Aw| = k}.

Observe that for any w ∈ Tk , w + ei /∈ Tk , where ei denotes the vector (0, 0, . . . , 0, 1, 0,
. . . , 0) with a 1 in the ith place (cf. the corresponding part in the proof of Lemma 3.1). It
follows that |Tk| ≤ 2n−1, i.e. qk(S) ≤ 1/2, proving item 3.

4. By item 3, we may assume that for each i ∈ [n], |{v ∈ S : v(i) = 1}| is even. But
then for any w ∈ Zn2 ,

∑
s∈S〈s, w〉 = 0 (since every w(i) is summed an even number of

times), and therefore |{s ∈ S : 〈s, w〉 = 1}| is even. Hence qk(S) = 0 for any odd k ∈ N,
proving item 4.

5. The average size of |S ∩ Aw| is |S|/2, and therefore

|S|/2 =
∑
k

kqk(S) < 2q2(S)+ (1− q2(S))|S| = |S| + (2− |S|)q2(S);

the inequality is strict because q0(S) > 0. Hence,

q2(S) <
|S|

2(|S| − 2)
=

1
2
+

1
|S| − 2

.

Therefore q2(S) < 3/4 if |S| ≥ 6. Assume from now on that |S| ≤ 5.
By item 3, we may assume that for each i ∈ [n], |{v ∈ S : v(i) = 1}| is even, and

therefore
∑
v∈S v = 0. Let T ⊂ S be the smallest linearly dependent subset of S. Since

|S| ≤ 5, T must be of the form {x, y, x+y}, {x, y, z, x+y+z}, or {x, y, z, v, x+y+z+v}.
Since S sums to zero, S \ T must also sum to zero, but |S \ T | ≤ 2, and no set of size 1
or 2 sums to zero. Hence, S \ T = ∅, i.e. S = T . One may check that

q2({x, y, x+y}) = q2({x, y, z, x+y+z}) = 3/4, q2({x, y, z, v, x+y+z+v}) = 5/8,

proving item 5. ut

We also need a counterpart of Lemma 3.2:

Lemma 5.9. Let S be a set of vectors.

1. We have q0(∅) = 1, q0({x}) = 1/2, and q0(S) ≤ 1/4 for all other sets.
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2. If m(S) = 0 and |S| is odd, then either q0(S) ≤ 1/16 or S is of the form

{x, y, x+y}, {x, y, z, x+y, x+ z}, or {x, y, z, x+y, y+ z, x+ z, x+y+ z}.

3. Either J (S) = ∅ or a0 ≤ 1/4.

Proof. 1. If S 6= ∅, {x} then rank S ≥ 2, so the item follows from Lemma 5.8(1).
2. If rank(S) ≥ 4 then item 1 implies that q0(S) ≤ 1/16. If rank(S) ≤ 3, the only

possibilities for S are those listed.
3. If J (S) 6= ∅ then rank(J (S)) ≥ 2, since there is no linear dependency in {x}, so

the item follows from item 1. ut

We note that in item 2, the first possibility corresponds to a triangle, and the second to
a K−4 . The third possibility has no graph counterpart.

As before, these lemmas enable us to prove Claim 8:

Proof of Claim 8. The proof of Claim 2 relied on (4) and Lemmas 3.1 and 3.2. In order to
prove Claim 8, we replace those by (7) and Lemmas 5.8 and 5.9. The proof goes through
line-by-line if we replace G with S, m with m(S) and H with J (S). The proof uses the
unconditional estimates of Lemma 3.1 and the conditional estimates of Lemma 3.2; these
carry through in the present setting. In a few places, f (G) was explicitly calculated for
some graphs; those are either forests, or the exceptional graphs of Lemma 3.2(2). In the
present setting, we require exactly the same explicit calculations for the corresponding
sets, and there is just one other exceptional structure to deal with,

S = {x, y, z, x + y, x + z, y + z, x + y + z},

which has
QS(X) =

1
8 +

7
8X

4.

In this case, we explicitly calculate f (S) = 1/8 = 1/7− 1/56. This completes the proof
of Claim 8. ut

We have the following analogue of Claim 3:

Claim 9. Let 3(2) be the OLDC spectrum described by

λ
(2)
S = (−1)|S|

[∑
qI (S)− q�(S)

]
where I denotes a linearly independent set of size 4, and � denotes the set {a, b, c,
a + b + c}. Then

1. λ(2)S = 0 for all S with |S| ≤ 3.

2. λ(2)S = 1/16 if S is a linearly independent set of size 4.

3. λ(2)
{x,y,z,x+y,x+z} = 1/8.

4. |λ(2)S | ≤ 1 for all S.
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Proof. 1. Clear.
2. For any linearly independent sets I, I ′ of size 4, qI (I ′) = q4(I

′) = 1/16. Also
q�(I

′) = 0.
3. Let S = {x, y, z, x + y, x + z}. Clearly, qI (S) = 0 for any linearly indepen-

dent set I of size 4. Note that the only subset of S isomorphic to {a, b, c, a + b + c} is
{y, z, x + z, x + z}, and therefore q�(S) = 1/8, proving item 3.

4. Finally, |λ(2)(S)| is the difference between two probabilities, hence is at most 1. ut

Exactly the same argument as before now shows that if F is an odd-LD-agreeing family
of subsets of {0, 1}n \ {0}, then µ(F) ≤ 1/8. If F is odd-LD-intersecting, we may deduce
from Lemma 2.4 that equality holds only if F consists of all families of subsets contain-
ing a fixed Schur triple {x, y, x + y}. If F is an odd-LD-agreeing family of subsets of
{0, 1}n \ {0}, we may deduce using the same monotonization argument as in Lemma 2.7
that equality holds only if F is a Schur junta. Stability follows by the same argument as
before.

5.4. p < 1/2

We now outline briefly how the skew-measure analogue, Theorem 5.2, can be proved
using the technique of Section 4. This time the proof of the main claim, Claim 5, relies
also on Lemma 4.7. It is easy to extend this lemma to the current setting:

Lemma 5.10. Let S be a set of vectors.

1. If m(S) = 1 and |S| > 1 then |S| ≥ 4.
2. If m(S) = 0 and |S| ≤ 5, then S is of the form

{x, y, x+y}, {x, y, z, x+y+z}, {x, y, z, w, x+y+z+w}, or {x, y, z, x+y, x+z}.

Proof. 1. The smallest linear dependency is {x, y, x + y}.
2. Easy enumeration. Note that {x, y, z, x + y, x + y + z} is isomorphic to the last

member in the list. ut

All sets in item 2 correspond to graphs: a triangle,C4,C5, andK−4 , respectively. Therefore
the only new case to check is the extra case in Lemma 5.9(2). In this case also, we have
λG > −p

3/(1 − p3), and so Claim 5 remains true in the current setting. This leads to a
proof of Theorem 5.2.

6. Discussion

There are many intriguing generalizations of the problems discussed in this paper. We
mention a few of them below, and state several conjectures.
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6.1. Cross-triangle-intersecting families

Many, or perhaps most, of the interesting theorems about intersecting families can be
generalized to cross-intersecting families. We say that two families of graphs, F and G,
are cross-triangle-intersecting if for any F ∈ F and G ∈ G the intersection F ∩ G
contains a triangle. A natural conjecture is the following:

Conjecture 1. Let F and G be cross-triangle-intersecting families of graphs on the same
set of n vertices. Then µ(F)µ(G) ≤ (1/8)2. Equality holds if and only if F = G is a
4umvirate.

The standard technique of extending spectral proofs à la Hoffman from the intersecting
case to the cross-intersecting case requires only one small additional piece of data. The
minimal eigenvalue, λmin, must also be the second largest in absolute value. In our case,
the OCC spectrum we have tailored does not have this property: the 3-forests have eigen-
value 41/224, which is greater than 1/7. It seems plausible that by using more of the qR’s,
one can construct an OCC spectrum with the required property, but we believe that the
calculations required will be substantially more involved.

6.2. p > 1/2

As we explained, our preliminary construction of an OCC spectrum of the form

λG = (−1)|G|
∑
i≥0

ciqi(G)

enjoyed a certain amount of luck, since the upper and lower bounds that were imposed
on 4c3 + c4 by the 4-forests and by K−4 coincided. For p > 1/2, our luck runs out, as the
bounds contradict each other, and a more sophisticated construction is required. So far we
have not been able to fix this flaw, but we see no theoretical barrier that rules out a spectral
proof of our main theorem for all p ≤ 3/4. Indeed, we conjecture that Theorem 1.4 holds
for all p ≤ 3/4. Easy homework for the reader: why does the theorem fail for p > 3/4?
(Hint: Mantel’s theorem.)

6.3. Other intersecting families

The definition of an odd-cycle-intersecting family of graphs is clearly a special case of
the definition of a G-intersecting family for any family of graphs G.

Definition 6.1. For a family G of graphs, let

m(G) = sup
n
{maxµ(F) : F is a G-intersecting family of graphs on n vertices}.

For a fixed graph, G we abbreviate m({G}) to m(G). We also will refer to mp(G) when
the measure in question is the skew product measure with parameter p.

Here is a sample of known facts and questions concerning m(G) for various choices
of G.
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• It was observed by Noga Alon [2] that for every star forestG, m(G) = 1/2. He further
conjectured that there is an ε > 0 so that for everyGwhich is not a star forest,m(G) <
1/2−ε, and pointed out that this holds for all non-bipartite graphsG and that it suffices
to prove the conjecture for P3, the path with three edges.
An intriguing fact is that the simplest guess,m(P3) = 1/8 (conjectured in [4]), is false.
Demetres Christofides [3] has constructed a P3-intersecting family of graphs on six
vertices with measure 17/128 > 1/8.
• The obvious conjecture generalizing our main theorem is that if Gk denotes the family

of non-k-colorable graphs, then mp(Gk) = p(
k+1

2 ) for all p ≤ (2k − 1)/2k, with equal-
ity only for Kk+1-umvirates. It is quite plausible that, at least for small values of k and
p = 1/2, this conjecture will be amenable to our methods.
• It seems to us, perhaps for lack of imagination, that the 4umvirate might be extremal

not only for odd-cycle-intersecting families, but also for the more general case of cycle-
intersecting families. If true, this would hold only for p ≤ 1/2. An indication that this
may be a significantly harder question is the fact that for p = 1/2 there is a neck-
to-neck race for maximality between the 4umvirate and the family of all graphs with
at least 1

2

(
n
2

)
+

1
2n edges, and to settle the result one needs to consult the table of

the normal distribution. Moreover, the generalization of this statement to non-uniform
hypergraphs is false. A cycle-intersecting family of graphs corresponds to a linear-
dependency-intersecting family of subsets of Zn2 \ {0}, but it is easy to construct such
a family with measure 1/2 − o(1). (Take all sets of vectors with cardinality at least
2n−1

+ (n + 1)/2. The intersection of any two is a set of at least n + 1 vectors, and
is therefore linearly dependent. Standard estimates show that this family has measure
1/2− o(1).)

There are many other interesting structures (other than a graph structure) that one may
impose on the ground set. An example studied in [4] is the cyclic group Zn of integers
modulo n. ForB ⊂ Zn, we say that a familyF of subsets of Zn isB-translate-intersecting
if the intersection of any two sets in F contains a translate of B. The authors conjecture
that a B-translate-intersecting family of subsets of Zn has size at most 2n−|B|. They prove
this in the case where B is an interval; Paul Russell [15] has given a different, algebraic
proof. Füredi, Griggs, Holzman and Kleitman [9] have proved it in the case |B| = 3.
Griggs and Walker [10] prove that for each B, the conjecture holds for infinitely many
values of n. For most configurations B, the question (for all n) remains open.

6.4. Connection to entropy?

The OCC spectrum that we constructed can be expressed in the form
∑
cBAB, where

the sum of the coefficients cB is 1. However, this is not a convex combination, as some
of the coefficients are negative. We observe that if we restrict ourselves to non-negative
coefficients, our proof method cannot give a bound better than 1/4. At the risk of falling
prey to mundane numerology, we cannot help but wonder if there is a connection to the
bound of 1/4 that one gets using entropy. We raise this question due to the other superficial
resemblances between our approach and that of [4].
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[3] Christofides, D.: Personal communication (August 2010)
[4] Chung, F. R. K., Graham, R. L., Frankl, P., Shearer, J. B.: Some intersection theorems for

ordered sets and graphs. J. Combin. Theory Ser. A 43, 23–37 (1986) Zbl 0655.05001
MR 0859293

[5] Ellis, D., Friedgut, E., Pilpel, H.: Intersecting families of permutations. J. Amer. Math. Soc.
24, 649–682 (2011) Zbl pre05913776 MR 2784326
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